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Abstract The study on analytical solutions of differential equations is quite useful
in Modeling in fluid dynamics, physics, etc. In this review work we studied the ana-
Iytical solutions of Korteweg—de Vries equation (K-dV), Burgers equation, Schamel
equation, and Schamel-Korteweg—de Vries equations by using different analytical

methods such as tanh method, sech method, sine-Gordon equation method, (%)

expansion method, and tanh—coth methods. The % method has different types

that are used to solved Schamel equation and Schamel-K-dV equation.

Keywords K-dV equation - Burgers equation - Schamel equation -
Schamel-K-dV equation - tanh method + coth method - sech method - (%)
methods * Sine-Gordon method - tanh-coth method

1 Introduction

Nonlinear evolution equations are used to describe the physical existence or physical
models. The study of applications study on analytical solutions of the nonlinear
partial differential equations is in fluid dynamics, plasma physics, nonlinear optics,
engineering, mathematical physics and modeling, and so on. The important and
applied nonlinear evolution equations are K-dV equation, Burgers equation, Schamel
equation. Schamel-K-dV equation, and so on. To find out the analytical solutions
of the nonlinear equations, many authors provide many methods and out of those
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methods tanh method, sech method, tanh—coth method, sine—cosine method, (%)

method, and sine-Gordon method are quite famous.

The tanh method is used to solve different nonlinear evolution equations in
recent years. In 1996, Willy Malfliet solved K-dV Burgers, Dissipative-Dispersion,
combined K-dV-MKdV, and extended MKdV-Bureges equations [1]. In 2000, Fan
explores the solution of K-dV-Burgers—Kuramoto, 2-dimensional K-dV-Burgers
and generalized Burgers—Fisher equations [2]. In 2004, Wazwaz solved general-
ized K-dV, generalized Fishers equations [3]. In 2005, Evans and Raslan studied
the improved K-dV equation, equal width wave equation (EWE), Regularized long
Wave and Coupled Burgers equations [4]. In 2007, Wazwaz studied the analytical
solutions of the fifth-order K-dV equation, Lax equation, Sawada—Kotera (SK) equa-
tions, etc. [5]. In 2009, Sarma solved K-dV equation and MKdV equations [6, 7].
In 2010, Jawad et al. solved Burgers, K-dV-Burgers, Coupled Burgers, generalized
time-delayed Burgers, Perturbed Burgers equations [8]. In 2013, Karimi solved a
modified K-dV equation [9]. In 2016, Zhang and Yin solved Burgers equation [10].
Adem solved Coupled KP equation [11], Tariq and Akram solved Cahn-Allen and
Phi-4 equations [12] and Ralson et al. solved time-fractional EW and MEW equa-
tions [13]. In 2019, Ali et al. solved variable coefficients of Burgers equation [14]
and so on.

The tanh—coth method is used to solve analytical solutions of nonlinear evo-
lutions equations is quite useful. In 2007 and In 2008, Wazwaz solved Fisher,
Newell-Whitehead, Allen—Cahn and Fitz—Hugh—Nagumo, Burgers—Fisher, Burgers,
Kodomtsev—Petviashvili, Pochhammer—Chree equations [15-17]. In 2009, Wazzan
solved K-dV and K-dV Burgers equations [18]. In 2010, Parkes solved the MKdV
equation, Salas and Gomezs solved K-dV equation of sixth order and MKdV equa-
tion of sixth order [19, 20]. In 2013, Jawad solved one-dimensional Burgers equation,
K-dV-Burgers equation, Coupled Burgers equation, and generalized time-delayed
Burgers equation [21]. In 2017 Chukkol et al. solved K-dV-Burgers equation with
forcing term [22]. Asokan and Vinodh solved Sawad—Kotera equation [23]. In 2018,
Asokan and Vinodh solved generalized K-dV-BBM and potential K-dV-BBM equa-
tions [24] and so on.

The sine-Gordon method is used to solved nonlinear evolution equations. In 2003,
Yan solved K-dV equation, MKdV equation, and Complex NLS positive equation
[25]. In 2016, Alquran and Krishnan solved generalized Phi-4 equation, general-
ized regularized long-wave equation and equal width equation and regularized long-
wave equations [26]. In 2020, Korkmaz et al. solved conformable time-fractional
RLW equation [27]. Guirao et al. solved (3 + 1)-dimensional B-type Kadomtsev-
Petviashvili-Boussinesq equation [28].

The sine—cosine method is used to get analytical solutions of nonlinear equa-
tions. In 2004 and 2005, Wazwaz solved K-dV equation, generalized K-dV equa-
tion, Boussinesq equation, RLW equation, and Phi-4 equation, complex modified
K-dV equation and complex generalized K-dV equation [29, 30]. In 2014, Bibi and
Mohyudi-Din solved a modified K-dV equation [31]. In 2015, Yang and Tang solved
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the Schamel-K-dV equation [32]. In 2017, Raslan solved coupled general equal
width wave equation [33]and so on.

The sech method is used to solve nonlinear evolution equations. In 2004, Bald-
win et al. solved Hirota Satsuma System of Coupled K-dV equation [34]. In 2007,
Wazwaz solved Jaulent—Miodek equation [35]. In 2008, Ganji and Abdollahzadeh
solved Lax seventh-order K-dV equation [36]. In 2011, Wei and Tang solved cou-
pled ZK equation [37]. In 2016, Jawad solved modified ZK equations, Dubrovsky
equations [38], and so on.

G

(E) method is used to solve many nonlinear evolution equations out of those

equations such equations are K-dV equation [19, 39, 40], modified-K-dV equation
[41], fifth-order K-dV equation [42], seventh-order K-dV equation [43], ninth-order
K-dV equation [44], K-dV-Burgers equation [45], the 2D-K-dV equation [46], Burg-
ers equation [47, 48], equal width Burgers equation [49], K-dV-MKdV equation [50],
coupled MKdV equation [51], Schrodinger—K-dV equation [52], coupled MKdV
equation [53], Schamel-K-dV equation [54], and so on.

2 Solutions of K-dV Equation by tanh Method

Sarma in 2009 [6] evaluated the solutions of the K-dV equations of 3rd order using
tanh method. K-dV equation of third order is of the form

—t+Au—+B;=o 1)

where A and B are nonzero constants and u = u(x, t). Now we are using wave trans-
formation X = a(x — kt) to convert the partial differential equation into ordinary
differential equation, where a and k are nonzero constants.

B2 4% ji—o @)
Caxx T THER
where u = u(X). Now introducing the independent variable Z=tanhX and u(X) =
w(Z). Now substituting these values in (2),
d*w
dz?

2

B2 N Y
2Ba*Z(1 Z)dZ+A kw=0 (3)

Ba*(1 - zH(1 - 7? 5

The above equation has power series solution as it has a singular point +1 and —1.

o0
w(Z) = Za,Z”H
r=0
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Then Eq. (3) becomes

Ba(1— 221 =22 3" ar(p+r)(p+r — 2P+ 2

r=0

o0
—2Ba2Z(1—Z% Y ar(p+r)zrtr—1

r=0

HAY 2Pk Y a2 =0 )

r=0 r=0

Now equating the highest order derivative and highest power on nonlinear term in
(4) and taking p = 0.

Z4+p+r—2 — Z(p+r)2

=4+r—-2=2r
=>r=2.

For r = 2, we have
w(Z) =ay+aZ +arZ?, ar #0. 6)
Now (3) becomes
2azBa2Z4 + 4BaZaQZ4 + §a§Z4 + ZBazalZ3 + Aa]a223
—4(12BazZ2 — 4Ba2a222 + %afzz + Aa0a2Z2 — ka222
—ZBazalZ + Aaya Z — kaZ + %aé — kag + 26123(12 =0 (6)
Now equating the coefficient of Z*, Z3, Z2, Z and constant terms in (6) to get the

value of ag, a1, a; and k. Here ag = +(k + 8Ba?), a; =0, a, = —+12Ba’* and
k = £4Ba%. Now substituting the values of ay, a; and a; in (5).

Casel K =4Ba?and Z = tanhX.
12, )
= u(X) = XBQ (1 —tanh“X)
12, 5
= u(X) = XBa sech”X
12_, )
= ux,t) = XBa sech”[a(x — kt)]

125 2 2
= ux,t) = XBa sech”[a(x —4Ba“t)] @)
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Case2 K = —4Ba?, Z = tanhX
402 2
u(x,t) = ZBa (=2 —3sech“la(x — kt)]) ®)

Equations (7) and (8) are the required solutions of the K-dV equation (1).

3 Solutions of K-dV Equation by sech Method

Sarma in 2009 [7] evaluated the numerical solution of the K-dV equations of third
order y using tanh method. The well-known K-dV equation in the simplest form is

ou ou Pu

— +Au—+B—=0 9
o T Mo TP ©)
Now using transformation X = a(x — kt).
Equation (9) is of the form
d*u u?
Ba’— + A— —ku =0, 10
a + 7 u (10)

where u = u(X). Now introducing the independent variable Z = sechX and u(X) =
w(Z).
Then Eq. (10) can be written as

dw w?

A
Z+2

d*w
252 2 2 3 —
BaZ(l—Z)—deJrBa (Z—ZZ)d kw=0 (11

Let us assume the power series solution of the Eq. (11) as follows:
oo
w(Z) = a, 2",
r=0
Now Eq. (11) becomes

o0
Ba’Z*(1— 2% ar(p+r)(p+r— 1z =2
r=0

o0
+Ba*(Z —22% Y ar(p+ 12/t !
r=0
o0

0 2
A r T
+37 <§“’2p+) —kY @z’ =0 (12)

r=0
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Now equating the highest order derivative and highest power on nonlinear term in
(12) and taking p = 0.

Z4+p+r—2 — Z(p+r)2

=4+r—-2=2r
=r=2.

For r = 2, then
wZ)=ao+aZ+arZ* a» #0 (13)
Now Eq. (11) becomes
2 4 2 4 Ay 2 3 3
—2Ba“a,Z” —4Ba“a, Z” + EaZZ —2Ba*a,Z° + Aajar Z
A
+4BazazZ2 + 501222 + Aa0a2Z2 — ka222 + BazaIZ
A,

+Aapa1 Z — ka1 Z + an —kay =0 (14)

Now equating the coefficient of Z*, Z3, Z?, Z and the constant terms in (14) to get
the value of ag, a;, a,, and k. We have

8 ) 12 2 2
apy = _XBa , ap = 0’ ap = XB[I and k = +4Ba (15)

Now substituting these values in Eq. (13)
Casel K = 4Ba?

12, 2 2
u(x,t) = XBG sech”la(x — 4Ba“t)] (16)
Case2 K = —4Ba?
12 5 2 2
u(x,t) = XBa sech“la(x +4Ba“t)] 17

Equations (16) and (17) are the required solutions of the K-dV equation (9).

4 Solutions of K-dV Equation by sine—cosine Method

Wazwaz in 2009 [29] solved the solutions of the kdv equation by using sine—cosine
method. The well-known K-dV equation in the simplest form is
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o T Aus + B =0 (18)

Now using transformation X = a(x — kt).
Equation (18) is of the form

B2 L AL _wu=—o, (19)
ax2 "0
where u = u(X).
Case 1

Let us assume the solutions of the Eq. (19) as follows:

u(X) = Acos’ (uX), where |X| < —, (20)

=3

A, u are nonzero constants. Now Eq. (19) becomes

—Baz)\uzﬂ COSB(,uX) — Baz)\uzﬂ(ﬂ -1 cosﬁ(uX) — ka\ cosg(,uX)

A
+Ba* N2 B(3 — 1) cos’ 2 (uX) + Ea)\z cos®’ (uX) =0 (1)
Now equating the coefficient of Eq. (21), 8 = =2, A = % and p = 8’7@, where
k <0.
Now substituting these values in Eq. (20), it becomes
u(X) = Acos’(uX)
3k
= A cos’z(,uX)
3k -
= ux, 1) = 34 {pla(x — kn)]} (22)
Case 2
Let us assume the solutions of the Eq. (19) as follows:
u(X) = Asin®(uX), where |X] < =, (23)
1

A, o are nonzero constants. Now Eq. (19) becomes

—Ba* 2B sin® (uX) — Ba? 2 B(6 — 1) sin” (uX) — kaXsin” (uX)
A )
+Ba’ 233 — 1) sin” 2 (uX) + Ea)\z sin??(uX) =0 (24)
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Now equating the coefficient of Eq. (24), B = —2, A = = and b=/ Baz, where
k <0.
Now substituting these values in Eq. (23), it becomes
u(X) = Asin’(uX)
3k ., x)
= —sin
1 M
3k
= u(x,t) = X sin”™ {,u[a(x —kt)]} (25)

Equations (24) and (25) are the required solutions of the K-dV equation (18).

5 Solutions of K-dV Equation by Sine—Gordon Method

Hepson, Korkmaz, Hosseini, Rezazadeh and Eslami together solved the K-dV equa-
tion bu using sine—Gordon method in 2017. The well-known K-dV equation in the
simplest form is

—t+Au—+B;=0 (26)

Now using transformation X = a(x — kt).
Equation (26) is of the form

dZ 2
Ba zdxz—i-A——ku_O 27)
where u = u(X).
The sine-Gordon equation is
07 0?
8_;; — 8_:; = m’sinu, 28)

where u = u(x,t) and using the transformation X = a(x — ct). Equation (29)
becomes

d*u . m2sinu (29)
dx?  a*(1—k?)

Again introducing the new variable w(X)= u(X), & 9% = sinw, sinw(X) = sech(X),
cos w(X) = tanh(X) and using some integral calculation, the predicated solution of
(29) is
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u(w) = Ag + Z cosj’I(Aj cosw + Bjsinw) (30)
j=1

Let us assume the solution of Eq. (27) of type (30). Now taking the derivatives of (30)
and substituting the derivative values in (27). Then in order to balance the two-term
equation it has j = 2.

Then Eq. (30) becomes

u(w) = Ag+ Aycosw + A, cos?w + By sinw + B, sinw cos w 31
Now taking the derivatives of (31) and substituting in (27) then Eq. (27) becomes

sinw(a’BBy + AAyBy + AAgB, + AA| B — kB5)

+sin> w(—4a’*BB; + 2AB By — 3AA A, — AApA, — kA))

+sin® w(—=20a°>BB, — 5AA,B, —2AA¢B, — AA| B + 2kB5)
+sin*w(@a’BB; —3AB B, +3AA | A> +2a*BA))

+sin’ w(24a’ BB, + 4AA,By)

+cosw(16a’BA, — AB? —2AAgA; + AB} — A*A; + 2K Ay)

+cos’ w(—40a’BA; — 2AA5 + 3AB3 + 2AA¢As + AB] — AAT + 2K Ay)
+cos’ w(24a*BA; +2AA3 — 2AB3)

+sinwcosw(AAgB; — kB; — 5a’BB, — 2AA,B| — 2AA,B,)

+sinwcos® w(6a’BBy + 3AA B, +3AA,B;) =0 (32)

Now equating the coefficients of (32) to get the value of Ay, Ay, Az, By, B> and k.
Here

—6a*B

A =04, = ,B=0,B, =0,k =—14a’B + AA,

Then

a2
u(w) =Ag — 2 cos® w

2
B
tanh*(X)

6a’B

6a
u(X) =Ag —

u(x,t) = Ag — tanhz[a(x — k)]

2

6a°B ) 2
u(x,t) = Ag — tanh“la(x — (—=14a”B + AAp)1)]. (33)

Equation (33) is the solution of Eq. (26).
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6 Solutions of K-dV Equation by % Method

Mehdipoor and Neirameh [39] in 2015 studied the analytic solution of K-dV equa-
tions by using% method. The well-known K-dV equation in the simplest form is

Ou Ou Pu

4+ Au—+B—=0 34
o T TP G
Now using transformation X = (x — kt).
Equation (34) is of the form
d*u u?
B—+A— —ku=0, 35
axz Thg T (35)
where u = u(X).
Now introducing the independent variable Z = % and u(x) = w(X), where

G (X) satisfies the second-order differential equation
G"+ \G' + uG =0, (36)

where A and p are constants. Then Eq. (35) is converted into

d*w dw
B(—p—\Z — zz)zﬁ + B(—=\—=272)(—\Z — i — z2)ﬁ
A
+5w2 —kw+C =0 (37)

Let us assume the power series solution of the Eq. (37) as follows:

/7 ml
u(Z) = am (%) b (38)

where «;’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. Now Eq. (37) becomes

B(—p = \Z = Z2) [agmy(my — DZ™ ™2 4]
+B(=A=2Z)(—=AZ — i — ZD)[apm1Z™ 1 4.

+§w2—kw+C1 =0. (39

Considering the homogeneous balance between u” and % in Eq. (39), m1 = 2 then
Eq. (38) becomes and substitute % =Z.

u(Z)=op+a1Z+arZ? ap #0. (40)
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Now by using (40) in (37), it becomes

A
6BayZ* + Eazz“ +2Ba1Z3 + 10BAaa Z? + Aajan Z°

A
+3BaiAZ% + 4By 2Z% + 8BappuZ? + Ea%zz
+AapanZ? — kanZ? + Bag N2 Z + 2Buay Z + 6BApan Z + Bhajp

A
+2Ba2u2+5a5—kao+cl =0 (41)

Now equating the coefficient of Z*, Z3, Z2, Z and the constant terms in (41) to get
the value of o = =28 o) = =128 'k = Aaq + BA? + 8uB.
Then Eq. (40) becomes

12AB 12B _,
ul)=ay— ——72—-—272°, w»#0, (42)
A A
where X = x — (BN + Aag + 8B ).
Now considering the general solution of Eq. (36).

Case 1
Hyperbolic function traveling wave solutions when \> — 44 > 0.

G(X) = Cre P+ 4 Cpe @0 43)
Now by using Eq. (43) in Eq. (42)
_ 3B, , disinh LVNZ —4uX + dy cosh L /N2 — aux 3B)2 -
0= 4#)d2sinh%\/mx+dlcosh% )\2—4MX+ 4 Teo=0
(44)
In particular, if d; # 0 and d, = 0O then Eq. (44) becomes
3B ., , (1 B
u(X) = 7()\ — 4p)sech E\/ A2 —4uX ) + Akt + ap (45)

Case 2
Trigonometric function traveling wave solutions when A — 4y < 0.

N —4 JN—4
e LX) (46)

G(X) = e 3X{C; cos X + Cssin

Now by using Eq. (46) in Eq. (42)

2
x 3B @ Az) —C sinh%\/kz —4pX + C3 cosh %\/)\2 —4uX N 3B)\2 (47)
u =——@p- — + .
A Cssinh L /A2 — 44X + Cp cosh L VA —4px A
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In particular, if C, # 0 and Cs = 0 in Eq. (47), it is

3B\’
A

3B 1
u(X) =—7(4u—>\2)tanh2§\/mX+ + ag

Case 3
Trigonometric function traveling wave solutions when A\ — 4y = 0.

G(X) = (C2 + C3X)e 2 X

Now by using Eq. (49) in Eq. (42)

12B (& 3B
(—3)2 + 7/\2 + ap.

u(X) = ———
A G+ CX

(43)

(49)

(50)

Here (44), (47), (50) are the types of solutions of the K-dV equations by using %

method.

7 Solutions of K-dV Equation by tanh—coth Method

K-dV equation is

Now using transformation X = (x — kt).
Equation (51) is of the form

d%u u?
B—+A— —ku=0,
axz tAg M

where u = u(X).
Let the power series solution of Eq. (52) of the form
u(X) =aop+ Y _la;Y'(X)+b;Y 7 (X)],
j=1
Y (X) is the solution of the Riccati equation

Y = A+ BY+CY?

where A, By, C; are constants.

(D

(52)

(53)

(54)



Study on Analytical Solutions of K-dV Equation, Burgers Equation ... 121

Now using Eq. (53) and substituting the values in Eq. (52).

Ba® | Y [a;j(G — DY/ 2(X) + b; () + DY 7 72(X)]
j=1
- 2
Al . A
+5 | 2 [a Y 00 + by ()]
_j=1
—k lao+ Y [a;Y/(X)+b;Yy T (X)] | =0 (55)
j=1

The parameter n is the positive constant that can be determined by balancing the
linear highest term of highest order with the nonlinear term, here n = 2. Then Eq.
(53) becomes

uX)=ap+a1¥Y +a¥>+ b, Y ' +bY 2. (56)

Now using Egs. (54) and (58) then Eq. (52) is

A
r4 <GBa2a2C12 + Ea%)
+73 (2Baza1C12 + IOBa2a231C1 + Aalao)
A
+Y2 <3Baza] B1C1 + 4Ba2a2312 + 8BazazB|C| — kap + 5012 + Aaoa2>
+¥ (Ba?ay B} +2Ba%a A1 C 2 -
1By +2Ba“ajA|C| +6Ba“ayA| B — kay + Aagay + Aagay
+7 71 (Ba?by B} +2Ba’b1 A{C] + 6Ba> —2Ba’by B} —
1By +2Ba“bA|Cy +6Ba”by BIC| — 2Ba“by By — kb| + Aagby + Aa1by
A
+y 2 (33112171 A1B) +6Ba’by B} +8Ba’byA1Cy — kby + Eb%Aa - 0b2>
4y3 (23021;. +10Ba’byA; By + Ablbz)
_ A
+y4 (6Ba2b2A% + Ebg)

A
+Ba®aj A1 By +2Ba’ayA? + Ba’b) B1Cy +2Ba’byC} — kag + Eag + Aayby + Aaby =0 (57)

Now equating the coefficients of Z*, Z3, 22,7, Z~', 272, Z—3, Z~* and the constant
terms in (57) to get the values of ag, a;, az, by, b;.
2 443
Thena; = 602a?BC,ay = —12842C2, by = 244D py) — 1284242

ABa®—6ABa%A3}’
Now substituting the values of the coefficients in
w(X) =ap+arY + Y + oY~ + by, (58)

where Y is the solution of the Riccati equation.
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8 Solutions of Burgers Equation by tanh Method
Consider the Burgers equation of the form.
4t Au— —B— =0 (59)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x — kt) to convert the partial differential equation into ordinary differential equa-
tion, where a and k are nonzero constants.

Here,
dx dX
X=alx—kt)=> E:a and ’n = —ka

0 d dX d d

— = —— = —(—=ka) = —-ka—

o dxX ar ~ax k= —kagy

0 d dX d d

_— —_=——— = —(a) =ad—-:

Ox dX dx dXx 179.4

? 90 0 d d dXx [ d ,d (d , d
_——=—— = — a——— =d— — _— = ad — _— = ad —
ox*  Ox0x Ox \ dX dX dx \dX dX \dX dX?

Now substituting these values in (59), we have

_kad_u + Auad_” _ BQZﬂ -0
dx dx ax2
:>—kd—+Aud—u—Bad2u =0
dX dX ax?
:>—ku+A”—2—Bad—“=0, (60)
2 dx

where u = u(X). Now introducing the independent variable Z = tanh X and u(X) =
w(Z)

dzZ ) dw dwdZ dw 2
= — =sech"X and — = —— = —sech"X
dX dX dZdX dZ

Now substituting these values in (60), then

w2

dw
—kw+ A= —Ba(l-7Z>)— =0 61
wt+ A a( )dZ (61)

Let us assume the power series solution of the Eq. (61) as follows:



Study on Analytical Solutions of K-dV Equation, Burgers Equation ... 123

o0
w(Z) = Z a, 7"+
r=0

dw

= — =
dz

o0
> a(p+rz!
r=0

Now substituting these values in Eq. (61)

o) 00 2 00
A
—kD @z + o (§ arZ”“) ~Ba(1- 2% a,(p+nZ""" =0
r=0 r=0

r=0
(62)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking p = 0.

204+2r=p+r+1
=r=1.

For r = 1, we have

w(Z)=ap+a1Z, ag #0
dw
— = 63
A (63)
Now (61) becomes

A, A, s 2
an—kao—Baa]—i—AaOa]Z—ka]Z—i—EalZ + Baa1Z- =0 (64)

Now equating the coefficient of Z?, Z and the constant terms in (64) to get the value
of ag, ay, and k.
We have ag = %, a; = =284 k = 2Ba and k = —2Ba.

Casel K =2Ba

u(x,r) = 2'%(1 — \/1 — sech?[a(x — 2Bat)]) (65)

Case2 K = —2Ba

u(x.t) = ?(1 + V1 = sech’[a(x + 2Ban)]) (66)

Equations (65) and (66) are the required solutions of the Burgers equation (59).
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9 Solutions of Burgers Equation by sech Method

Consider the Burgers equation of the form.

4+ Au— —B=— =0 (67)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x — kt) to convert the partial differential equation in to ordinary differential equa-
tion, where a and k are nonzero constants.

Then Eq. (67) is of the form

u? du
—ku+A— — Ba— =0, 68
u+ 5 a—~ (68)

where u = u(X). Now introducing the independent variable Z = sech X and u(X) =
w(Z)

dzZ dw dwdZ dw
= — = —sechXtanhX and — = —— = —ZtanhX —
dx dX dzZdX dZ

Now substituting these values in (68), then

w? dw
—k A— + B 1-722—=0 6
w+ 5 + Baz 77 (69)

Let us assume the power series solution of the Eq. (69) as follows:

o0
w(Z) =) a,z"""
r=0

= ez
dz r=0 '

Now substituting these values in Eq. (69)
—k garzﬂ” +5 (g a,Z‘H") — Ba(l1 — 7% ;ar(p +rzr=t=0  (70)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking p = 0.

204+2r=p+r—1+2
=r=1.
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For r = 1, we have
wZ)=ay+ar1Z, a1 #0

dw

> 2= (71)

Now (69) becomes
_ A, Aoy 1 3 _
kay + an ka1 Z + AagaZ + Baa,Z + Ealz EBaalZ =0 (72)

Now equating the coefficient of Z2, Z and the constant terms in (72) to get the value
of ay, a;, and k.
We have ap = %, ay = —%, k =2Ba and k = —Ba.

ulx,r) = _TBa(l — secha(x + Bat)) (73)

Equation (73) is the required solutions of the Burgers equation (67).

10 Solutions of Burgers Equation by (%) Method
The well-known Burgers equation in the simplest form is

+Au— —B=—— =0 (74)

Now using transformation X = a(x — kt). Equation (74) is of the form

2 du

u
—k A— — Ba— =0, 75
ut A= a (75)
where u = u(X).
Now introducing the independent variable Z = % and u(x) = w(X), where

G (X) satisfies the second-order differential equation
G"+ )G + uG =0, (76)
where )\ and p are constants. Then Eq. (75) is converted into
A dw
—kw+ =w? — Ba(—p—\Z — Z*)— =0 77
w+ 7Y a(—p ) 17 77

Let us assume the power series solution of the Eq. (77) as follows:
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G/
w(Z) = aml(g)"” 4o (78)

where «;’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. Now Eq. (77) becomes

A
—k(om1 Z" )+ S 2" )% = Ba(—p = A2 amm 2"+ =0 (79)

Considering the homogeneous balance between u? and Z—; in Eq. (79), m1 = 1 then
Eq. (78) becomes and substitute % =Z.

w(Z)=ap+a1Z, o #0.
o 4 (80)
az ~ "
Now by using (80) in (77), it becomes
%a%lz + Bac; Z* — ko Z + Aagay Z + Baag\Z — kag + ga% + Bapa; =0. (81)
Now equating the coefficient of Z2, Z and constant terms in (81) to get the value of

Q) = _2Ba,Oéo = % - %)\
Then Eq. (80) becomes

w(Z) =~ ——\—"az, (82)

Now considering the general solution of Eq. (76).

Case 1
Hyperbolic function traveling wave solutions when \> — 44 > 0.

(83)
Now by using Eq. (83) in Eq. (82)
inh L /2 = 1 /2
W(X) = K B Ea)\_ Eamdl sinh 54/ A% —4pX + dp cosh 54/ A° —4pX —0. (84)
A A A dy sinh 2\/A2 — 4uX + dj cosh J3/AZ — dpx

Case 2
Trigonometric function traveling wave solutions when \> — 4, < 0.

VA2 —4pu w/)\2—4,uX (85)
2 2

G(X) = (X {Cz cos X + C5sin
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Now by using Eq. (85) in Eq. (82)

k B —Cpsinh /02 —4ux +C hl /N2 —aux
w) = K _ B9 g mCasinh 3N - 4uX 4 Creosh 3V - X g

A A Cssinh 2\/A2 — 44X + Cy cosh $3/02 —4uX

Case 3
Trigonometric function traveling wave solutions when A\ — 4y = 0.

G(X) = (Ca + C3X)e 2 X (87)

Now by using Eq. (87) in Eq. (82)

k 2Ba Cs
uX)y=———~(—1. (88)
A A C, + C3X

Here (84), (86), (88) are the types of solutions of the Burgers equations by using %
method.

11 Solutions of Burgers Equation by Sine—Gordon
Method

—+Au——-B— =0 (89)

Now using transformation X = a(x — kt).
Equation (89) is of the form

du u?
where u = u(X).
The sine—Gordon equation is
*u  O*u 5 .
prhalvoi m-sinu, 9D

where u = u(x,t) and using the transformation X = a(x — ct). Equation (92)
becomes

d*u m2sinu

N D) ©2)
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Againintroducing the new variable w(X) = u(X), j—“X’ = sinw,sinw(X) = sech(X),

cosw(X) = tanh(X) and using some integral calculation, the predicated solution of
92) is

u(w) = Ag + Z cos’ ' (A cosw + Bjsinw) (93)
=1

Let as assuming the solution of Eq. (90) of type (93). Now taking the derivatives
of (93) and substituting the derivative values in (90). Then in order to balance the
two-term equation it has j = 1.

Then Eq. (93) becomes

u(w) =Ayp+ Ajcosw + B;sinw 94)

Now taking the derivatives of (94) and substituting in (90) then Eq. (90) becomes

A A
—kAy + EAé + EAf —kAjcosw+ AAgA;cosw — kBy sinw

. A oo A oo )
+AAgB; sinw — EAl sin” w + EBI sin“w + BAjasin” w
+AA;Bicoswsinw — BBjacoswsinw = 0 95)

Now equating the coefficients of (95) to get the value of Ay, A, B; and k. Here

Ba Ba
Al _ T Bl - :i:l—,
A
Then
aB .Ba
u(x,t) = Ao+ 7\/ 1 —sech?X :l:ljsech. (96)

Equation (96) is the solution of Eq. (89).

12 Solutions of Schamel-K-dV Equation by % Method

Consider the simplest form of Schamel-K-dV equation as

ou 1 Ou A*u
— 4+ Au?—+B— = 7
o TA G T B =0 ©7)

where A and B are arbitrary coefficients and u = u(x, 1).
Now using the wave transformation X = x — k¢, where k is constant.
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Then Eq. (97), becomes

—k—X+AU‘/2+B;:0, (98)

where U = U (X). Now integrating Eq. (98), then we have

2 d*U
—kU+3AU3/2+Bd +c=0, (99)

where c is the integration constant.
Let us consider U'/?(X) = V(X) Eq. (99) becomes

= kv2+2Av3+2B av 2+szsz +c=0 (100)
3 dXx dX?
Let us assume the solution of (100) of the form
n G’ i
V(X) = | = 101
(X) ;‘ a ( G ) (101)
where G = G (X) satisfies the the second-order differential equation

G "+ \G' +uG=0 (102)

where )\ and p are constants.
Now substituting the value of £y 4V V(X) in Eq. (100) balancing the highest

dx?’ dx’
order nonlinear term with highest order derivative we get n = 2. Then Eq. (101)
becomes
G G’ 2
V(X)=ap+a (E) + az <E> (103)
Now substituting the values of V (X), Z X‘; R Z; in (100) and equating the coefficients

N
of (%) to get the values of ag, ai, az, kK we have

= = 308/\ = 3OB (104)
apg = ap, a; = 0 ,ay = A

Substituting these values in the assuming solution and applying the transformation
U = V? we have the following different types of solution of the form:

!/ N\ 2 2
v =[a-2053(F) 202 (4] (105
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where

Case 1 When \> — 4, > 0

(G/> N —ap [ dycosh Y2 X gy sinh Y2 M x|

G 2 h YA gy sinh Yy )2

dj cos

Case2 When A2 — 44 <0

(G’) B Jam = X2 (—dl sin “4"5‘A2X + d; cos —V‘"’;‘AZX)

G 2 (dl cos —M”;_AZX—i-dg sin —V“”;_AZX)

A
2

Case3 When A2 — 44 =0
G’ A 6‘2X
— )= =
G 2 ci+cX

13 Solutions of Schamel-K-dV Equation by Different Form
of & Method

Consider the simplest form of Schamel-K-dV equation as

0, (106)

where A and B are arbitrary coefficients and u = u(x, 1).
Now using the wave transformation X = x — k¢, where k is constant.
Then Eq. (106), becomes

U

dU
—k— 4+ AU+ B— =0, 107
dx + + dx3 (107)

where U = U (X). Now integrating Eq. (107), then we have

d*U

2 Te=0, (108)

2
— kU + 5AU3/2 +B

where c is the integration constant.
Let us consider U'/?(X) = V(X) Eq. (108) which becomes



Study on Analytical Solutions of K-dV Equation, Burgers Equation ... 131

, 2 dv\’ d2v
= KV JAVI2B( ) +2BV 4 =0 (109)

Let us assume the solution of (109) of the form

n G’ i n G’ —i
V(X) = il = bi | = 110
(X) §G<G)+§ (G) (110)
where G = G(X) satisfies the the second-order differential equation

G +uG=0 (111)

14 1s constants. .
Now substituting the value of £%, 4¥. V(X) in Eq. (109) and balancing the

axz’ d_X’
highest order nonlinear term with highest order derivative we get n = 1. Then Eq.
(110) becomes
G’ G’ -1
V(X) = — b | — 112
(X) a0+al(G>+1<G) (112)

Now using Eq. (112) and its derivatives into Eq. (109) and equating the coeffi-

cients of (&), where i =0, 1,42, %3, %4, £5, £6 to find out the values of
ap, ay, b1, u, b, c. By using Mathematica we got the values as follows

_3 ay = =0,b1 =0,b _0/1 0
apg = —, = —,a, =0, =0, =0, =—,c=0.
0 7 A 1 2 1 2 B

Substituting these values in the assuming solution and applying the transformation
U = V2, we have the following different types of solution of the form:

3k 6B (G\T
UX) = [ﬂ - (E)} (113)

where

Casel When —p > 0

G’ _ dy cosh /—uX + d sinh /— X
—vH dy cosh /—puX + dy sinh \/—pu X

G

Case2 When —p < 0

(Gl> (—d1 sin ﬁX + d, cos ﬂX)
G) (d1 cos ./iX + dp sin ﬁX)
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14 Solutions of Coupled Schamel-K-dV Equation
by (%) Method

Consider the coupled Schamel-K-dV equation of the form

8u+ %8u+bdu+ 63u_
ot au-ﬁx udx p3x3 o

0 (114)

where a, b, and p are arbitrary coefficients. Now using the wave transformation
X = x — kt, where k is constant. Then Eq. (114) becomes

du? dU L dU dU
kL 4aUi—— 4+ bU—= =0 115
Pax Fax T ax TV ax (113)

Integrating Eq. (115), it becomes

v’ KU + 2aU3 + Lo 4 e =0 (116)
Pax? 3¢ 2 ‘<=

where c is the integration constant.
1
Let U2 = V then Eq.(116) becomes

y V(Y 2 Kypapaysgbysy €y (117)
dx? dx 2p 3p 4p 2p

Let us assume the solution of (117) of the form
n G, i
V(X) = | = 118
(X) ;0 a ( G ) (118)
where G = G (X) satisfies the the second-order differential equation
G'"+ MG +uG =0 (119)

where A and y are constants.

Balancing the highest order nonlinear term with highest order derivative of V ZZT‘Q
and V4, then it comes out that n = 1. Then
G/
V(X)=ao+a <E> (120)

Now using Eq. (120) and its derivatives into Eq. (117) and equating the coefficients
of (%) ,wherei =0, 1, 2, 3, 4 to find out the values of ag, a;, A, i1, b, c. By using
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Mathematica, we got the values as follows:

15 15k
a0 = = (k +20/pk), a = +—2P%
8a 2a
, k —16a2
N b= b= =0, (121)
4p 75k

Substituting these values in the assuming solution and applying the transformation
U = V? we have the following different types of solution of the form:

2
15 15V pk (G’
UX) = | =k +20/pk) + —YPX (2 (122)
8a 2a G
where
Casel When A2 — 44 > 0
(G’) N —dp [dycosh YX 4 dysinh VX))
G 2 dj cosh —”/\;MX + d; sinh —“’/\;MX 2
Case 2 When \2 — 4, < 0
(G/) m(—dl sin —@X—i—dzcos —@X)
G 2 (dl cos —WX + d5 sin —WX) 2
Case3 When \> —4u =0
G/ A CzX
— )= —
G 2 gt aeX
15 Solutions of Coupled Schamel-K-dV Equation
by Different Form of (%) Method
Consider the Coupled Schamel-K-dV equation of the form
Ou 1 Ou du Pu
— I — + bu— — =0 123
ot +au28x+ udx+p3x3 (123)

where a, b and p are arbitrary coefficients. Now using the wave transformation X =
x — kt, where k is constant. Then Eq. (123) becomes
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1 dU
p— —k—+aU?2—+bU—=0 (124)

Integrating Eq. (124), it becomes

du? 2 51,
—kU +3aU% + 2bU* +¢=0 (125)

Pax? 3

where c is the integration constant.
1
Let U2 = V then Eq. (125) becomes

d*v dv k s b
V—7s+ V+—V + —v +—=0 (126)
aXx dx 2p 3p 4p 2p

Let us assume the solution of (126) of the form

n G/ i n G/ —i
V(X) = I b | — 127
(X) ;“(G>+§ (G> (127)
where G = G (X) satisfies the the second-order differential equation
G'"+uG=0 (128)

where (4 is constants.
Balancing the highest order nonlinear term with highest order derivative of V 4%

dx2
and V4, then it comes out that n = 1. Then
G’ G\
V(X) = ap + a (E) + b <E> (129)

Now using Eq. (129) and its derivatives into Eq. (126) and equating the coefficients

of (&), where i = 0, 1, +2, 43, %4 to find out the values of ao. ay, by, 1, b, .
By using Mathematica, we got the values as follows:

15k 15/pk 15k/pk
aO = _’ al = :t 9 bl = :t—3
8a 2a 64ap
k 162 225K°
LI = 130
=3, 75k ¢ T 51242 (130)

Substituting these values in the assuming solution and applying the transformation
U = V2, we have the following different types of solution of the form:

U = [ 12K 4 1DYPR (5) L kK <5> 2 (131)
| 8a 2a G 64ap G
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where

Case1l When —p > 0

G’ _ i dy cosh \/—uX + d; sinh /—p X
G/) a dy cosh /—pX + dp sinh /—p X

Case2 When —pu < 0

<G/) B f(_dl sin (/71X + d cos /1uX)
G)~ v (di cos /uX + dasin /uX)
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