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Abstract The study on analytical solutions of differential equations is quite useful
in Modeling in fluid dynamics, physics, etc. In this review work we studied the ana-
lytical solutions of Korteweg–de Vries equation (K-dV), Burgers equation, Schamel
equation, and Schamel–Korteweg–de Vries equations by using different analytical

methods such as tanh method, sech method, sine-Gordon equation method,
(
G ′
G

)

expansion method, and tanh–coth methods. The
(
G ′
G

)
method has different types

that are used to solved Schamel equation and Schamel–K-dV equation.

Keywords K-dV equation · Burgers equation · Schamel equation ·
Schamel–K-dV equation · tanh method · coth method · sech method · (

G ′
G

)

methods · Sine-Gordon method · tanh-coth method

1 Introduction

Nonlinear evolution equations are used to describe the physical existence or physical
models. The study of applications study on analytical solutions of the nonlinear
partial differential equations is in fluid dynamics, plasma physics, nonlinear optics,
engineering, mathematical physics and modeling, and so on. The important and
applied nonlinear evolution equations areK-dV equation, Burgers equation, Schamel
equation. Schamel–K-dV equation, and so on. To find out the analytical solutions
of the nonlinear equations, many authors provide many methods and out of those
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methods tanh method, sech method, tanh–coth method, sine–cosine method,
(
G ′
G

)

method, and sine-Gordon method are quite famous.
The tanh method is used to solve different nonlinear evolution equations in

recent years. In 1996, Willy Malfliet solved K-dV Burgers, Dissipative-Dispersion,
combined K-dV-MKdV, and extended MKdV–Bureges equations [1]. In 2000, Fan
explores the solution of K-dV–Burgers–Kuramoto, 2-dimensional K-dV–Burgers
and generalized Burgers–Fisher equations [2]. In 2004, Wazwaz solved general-
ized K-dV, generalized Fishers equations [3]. In 2005, Evans and Raslan studied
the improved K-dV equation, equal width wave equation (EWE), Regularized long
Wave and Coupled Burgers equations [4]. In 2007, Wazwaz studied the analytical
solutions of the fifth-order K-dV equation, Lax equation, Sawada–Kotera (SK) equa-
tions, etc. [5]. In 2009, Sarma solved K-dV equation and MKdV equations [6, 7].
In 2010, Jawad et al. solved Burgers, K-dV–Burgers, Coupled Burgers, generalized
time-delayed Burgers, Perturbed Burgers equations [8]. In 2013, Karimi solved a
modified K-dV equation [9]. In 2016, Zhang and Yin solved Burgers equation [10].
Adem solved Coupled KP equation [11], Tariq and Akram solved Cahn-Allen and
Phi-4 equations [12] and Ralson et al. solved time-fractional EW and MEW equa-
tions [13]. In 2019, Ali et al. solved variable coefficients of Burgers equation [14]
and so on.

The tanh–coth method is used to solve analytical solutions of nonlinear evo-
lutions equations is quite useful. In 2007 and In 2008, Wazwaz solved Fisher,
Newell–Whitehead, Allen–Cahn and Fitz–Hugh–Nagumo, Burgers–Fisher, Burgers,
Kodomtsev–Petviashvili, Pochhammer–Chree equations [15–17]. In 2009, Wazzan
solved K-dV and K-dV Burgers equations [18]. In 2010, Parkes solved the MKdV
equation, Salas and Gomezs solved K-dV equation of sixth order and MKdV equa-
tion of sixth order [19, 20]. In 2013, Jawad solved one-dimensional Burgers equation,
K-dV–Burgers equation, Coupled Burgers equation, and generalized time-delayed
Burgers equation [21]. In 2017 Chukkol et al. solved K-dV–Burgers equation with
forcing term [22]. Asokan and Vinodh solved Sawad–Kotera equation [23]. In 2018,
Asokan and Vinodh solved generalized K-dV–BBM and potential K-dV–BBM equa-
tions [24] and so on.

The sine-Gordonmethod is used to solved nonlinear evolution equations. In 2003,
Yan solved K-dV equation, MKdV equation, and Complex NLS positive equation
[25]. In 2016, Alquran and Krishnan solved generalized Phi-4 equation, general-
ized regularized long-wave equation and equal width equation and regularized long-
wave equations [26]. In 2020, Korkmaz et al. solved conformable time-fractional
RLW equation [27]. Guirao et al. solved (3 + 1)-dimensional B-type Kadomtsev-
Petviashvili–Boussinesq equation [28].

The sine–cosine method is used to get analytical solutions of nonlinear equa-
tions. In 2004 and 2005, Wazwaz solved K-dV equation, generalized K-dV equa-
tion, Boussinesq equation, RLW equation, and Phi-4 equation, complex modified
K-dV equation and complex generalized K-dV equation [29, 30]. In 2014, Bibi and
Mohyudi-Din solved a modified K-dV equation [31]. In 2015, Yang and Tang solved
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the Schamel–K-dV equation [32]. In 2017, Raslan solved coupled general equal
width wave equation [33]and so on.

The sech method is used to solve nonlinear evolution equations. In 2004, Bald-
win et al. solved Hirota Satsuma System of Coupled K-dV equation [34]. In 2007,
Wazwaz solved Jaulent–Miodek equation [35]. In 2008, Ganji and Abdollahzadeh
solved Lax seventh-order K-dV equation [36]. In 2011, Wei and Tang solved cou-
pled ZK equation [37]. In 2016, Jawad solved modified ZK equations, Dubrovsky
equations [38], and so on.(

G ′
G

)
method is used to solve many nonlinear evolution equations out of those

equations such equations are K-dV equation [19, 39, 40], modified-K-dV equation
[41], fifth-order K-dV equation [42], seventh-order K-dV equation [43], ninth-order
K-dV equation [44], K-dV–Burgers equation [45], the 2D-K-dV equation [46], Burg-
ers equation [47, 48], equalwidthBurgers equation [49], K-dV-MKdVequation [50],
coupled MKdV equation [51], Schrodinger–K-dV equation [52], coupled MKdV
equation [53], Schamel–K-dV equation [54], and so on.

2 Solutions of K-dV Equation by tanh Method

Sarma in 2009 [6] evaluated the solutions of the K-dV equations of 3rd order using
tanh method. K-dV equation of third order is of the form

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (1)

where A and B are nonzero constants and u = u(x, t). Nowwe are using wave trans-
formation X = a(x − kt) to convert the partial differential equation into ordinary
differential equation, where a and k are nonzero constants.

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (2)

where u = u(X).Now introducing the independent variable Z=tanhX and u(X) =
ω(Z). Now substituting these values in (2),

Ba2(1 − Z2)(1 − Z2)
d2ω

dZ2
− 2Ba2Z(1 − Z2)

dω

dZ
+ A

ω2

2
− kω = 0 (3)

The above equation has power series solution as it has a singular point +1 and −1.

ω(Z) =
∞∑
r=0

ar Z
ρ+r



112 S. K. Mohanty and A. N. Dev

Then Eq. (3) becomes

Ba2(1 − Z2)(1 − Z2)
∞∑
r=0

ar (ρ + r)(ρ + r − 1)Zρ+r−2

−2Ba2Z(1 − Z2)
∞∑
r=0

ar (ρ + r)Zρ+r−1

+ A
2 (

∞∑
r=0

ar Zρ+r )2 − k
∞∑
r=0

ar Zρ+r = 0 (4)

Now equating the highest order derivative and highest power on nonlinear term in
(4) and taking ρ = 0.

Z4+ρ+r−2 = Z (ρ+r)2

⇒ 4 + r − 2 = 2r

⇒ r = 2.

For r = 2, we have

ω(Z) = a0 + a1Z + a2Z
2, a2 �= 0. (5)

Now (3) becomes

2a2Ba
2Z4 + 4Ba2a2Z

4 + A

2
a22 Z

4 + 2Ba2a1Z
3 + Aa1a2Z

3

−4a2Ba
2Z2 − 4Ba2a2Z

2 + A

2
a21 Z

2 + Aa0a2Z
2 − ka2Z

2

−2Ba2a1Z + Aa0a1Z − ka1Z + A

2
a20 − ka0 + 2a2Ba

2 = 0 (6)

Now equating the coefficient of Z4, Z3, Z2, Z and constant terms in (6) to get the
value of a0, a1, a2 and k. Here a0 = 1

A (k + 8Ba2), a1 = 0, a2 = − 1
A12Ba

2 and
k = ±4Ba2. Now substituting the values of a0, a1 and a2 in (5).

Case 1 K = 4Ba2 and Z = tanhX .

⇒ u(X) = 12

A
Ba2(1 − tanh2X)

⇒ u(X) = 12

A
Ba2sech2X

⇒ u(x, t) = 12

A
Ba2sech2[a(x − kt)]

⇒ u(x, t) = 12

A
Ba2sech2[a(x − 4Ba2t)] (7)
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Case 2 K = −4Ba2, Z = tanhX

u(x, t) = 4

A
Ba2(−2 − 3sech2[a(x − kt)]) (8)

Equations (7) and (8) are the required solutions of the K-dV equation (1).

3 Solutions of K-dV Equation by sech Method

Sarma in 2009 [7] evaluated the numerical solution of the K-dV equations of third
order y using tanh method. The well-known K-dV equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (9)

Now using transformation X = a(x − kt).
Equation (9) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (10)

whereu = u(X).Now introducing the independent variable Z = sechX and u(X) =
ω(Z).

Then Eq. (10) can be written as

Ba2Z2(1 − Z2)
d2ω

dZ2 + Ba2(Z − 2Z3)
dω

dZ
+ A

ω2

2
− kω = 0 (11)

Let us assume the power series solution of the Eq. (11) as follows:

ω(Z) =
∞∑
r=0

ar Z
ρ+r .

Now Eq. (11) becomes

Ba2Z2(1 − Z2)

∞∑
r=0

ar (ρ + r)(ρ + r − 1)Zρ+r−2

+Ba2(Z − 2Z3)

∞∑
r=0

ar (ρ + r)Zρ+r−1

+ A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− k
∞∑
r=0

ar Z
ρ+r = 0 (12)
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Now equating the highest order derivative and highest power on nonlinear term in
(12) and taking ρ = 0.

Z4+ρ+r−2 = Z (ρ+r)2

⇒ 4 + r − 2 = 2r

⇒ r = 2.

For r = 2, then

ω(Z) = a0 + a1Z + a2Z
2, a2 �= 0 (13)

Now Eq. (11) becomes

−2Ba2a2Z
4 − 4Ba2a2Z

4 + A

2
a22 Z

4 − 2Ba2a1Z
3 + Aa1a2Z

3

+4Ba2a2Z
2 + A

2
a21 Z

2 + Aa0a2Z
2 − ka2Z

2 + Ba2a1Z

+Aa0a1Z − ka1Z + A

2
a20 − ka0 = 0 (14)

Now equating the coefficient of Z4, Z3, Z2, Z and the constant terms in (14) to get
the value of a0, a1, a2, and k. We have

a0 = − 8

A
Ba2, a1 = 0, a2 = 12

A
Ba2 and k = ±4Ba2 (15)

Now substituting these values in Eq. (13)

Case 1 K = 4Ba2

u(x, t) = 12

A
Ba2sech2[a(x − 4Ba2t)] (16)

Case 2 K = −4Ba2

u(x, t) = 12

A
Ba2sech2[a(x + 4Ba2t)] (17)

Equations (16) and (17) are the required solutions of the K-dV equation (9).

4 Solutions of K-dV Equation by sine−cosine Method

Wazwaz in 2009 [29] solved the solutions of the kdv equation by using sine−cosine
method. The well-known K-dV equation in the simplest form is
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∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (18)

Now using transformation X = a(x − kt).
Equation (18) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (19)

where u = u(X).

Case 1
Let us assume the solutions of the Eq. (19) as follows:

u(X) = λ cosβ(μX),where |X | � π

μ
, (20)

λ, μ are nonzero constants. Now Eq. (19) becomes

−Ba2λμ2β cosβ(μX) − Ba2λμ2β(β − 1) cosβ(μX) − kaλ cosβ(μX)

+Ba2λμ2β(β − 1) cosβ−2(μX) + A

2
aλ2 cos2β(μX) = 0 (21)

Now equating the coefficient of Eq. (21), β = −2, λ = 3k
2A and μ =

√
−k
8Ba , where

k < 0.
Now substituting these values in Eq. (20), it becomes

u(X) = λ cosβ(μX)

= 3k

2A
cos−2(μX)

⇒ u(x, t) = 3k

2A
cos−2{μ[a(x − kt)]} (22)

Case 2
Let us assume the solutions of the Eq. (19) as follows:

u(X) = λ sinβ(μX),where |X | � π

μ
, (23)

λ, μ are nonzero constants. Now Eq. (19) becomes

−Ba2λμ2β sinβ(μX) − Ba2λμ2β(β − 1) sinβ(μX) − kaλ sinβ(μX)

+Ba2λμ2β(β − 1) sinβ−2(μX) + A

2
aλ2 sin2β(μX) = 0 (24)
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Now equating the coefficient of Eq. (24), β = −2, λ = 3k
A and μ =

√
−k
4Ba2 , where

k < 0.
Now substituting these values in Eq. (23), it becomes

u(X) = λ sinβ(μX)

= 3k

A
sin−2 μ(X)

⇒ u(x, t) = 3k

A
sin−2{μ[a(x − kt)]} (25)

Equations (24) and (25) are the required solutions of the K-dV equation (18).

5 Solutions of K-dV Equation by Sine−Gordon Method

Hepson, Korkmaz, Hosseini, Rezazadeh and Eslami together solved the K-dV equa-
tion bu using sine−Gordon method in 2017. The well-known K-dV equation in the
simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (26)

Now using transformation X = a(x − kt).
Equation (26) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (27)

where u = u(X).
The sine-Gordon equation is

∂2u

∂x2
− ∂2u

∂t2
= m2sinu, (28)

where u = u(x, t) and using the transformation X = a(x − ct). Equation (29)
becomes

d2u

dX2
= m2sinu

a2(1 − k2)
(29)

Again introducing the new variable ω(X)=u(X), dω
dX = sinω, sinω(X) = sech(X),

cosω(X) = tanh(X) and using some integral calculation, the predicated solution of
(29) is
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u(ω) = A0 +
n∑
j=1

cos j−1(A j cosω + Bjsinω) (30)

Let us assume the solution of Eq. (27) of type (30). Now taking the derivatives of (30)
and substituting the derivative values in (27). Then in order to balance the two-term
equation it has j = 2.

Then Eq. (30) becomes

u(ω) = A0 + A1 cosω + A2 cos
2 ω + B1 sinω + B2 sinω cosω (31)

Now taking the derivatives of (31) and substituting in (27) then Eq. (27) becomes

sinω(a2BB2 + AA2B2 + AA0B2 + AA1B1 − kB2)

+ sin2 ω(−4a2BB1 + 2AB1B2 − 3AA1A2 − AA0A1 − k A1)

+ sin3 ω(−20a3BB2 − 5AA2B2 − 2AA0B2 − AA1B1 + 2kB2)

+ sin4 ω(4a2BB1 − 3AB1B2 + 3AA1A2 + 2a2BA1)

+ sin5 ω(24a2BB2 + 4AA2B2)

+ cosω(16a2BA2 − AB2
2 − 2AA0A2 + AB2

1 − A2A1 + 2K A2)

+ cos3 ω(−40a2BA2 − 2AA2
2 + 3AB2

2 + 2AA0A2 + AB2
1 − AA2

1 + 2K A2)

+ cos5 ω(24a2BA2 + 2AA2
2 − 2AB2

2 )

+ sinω cosω(AA0B1 − kB1 − 5a2BB1 − 2AA2B1 − 2AA1B2)

+ sinω cos3 ω(6a2BB1 + 3AA1B2 + 3AA2B1) = 0 (32)

Now equating the coefficients of (32) to get the value of A0, A1, A2, B1, B2 and k.
Here

A1 = 0, A2 = −6a2B

A
, B1 = 0, B2 = 0, k = −14a2B + AA0

Then

u(ω) = A0 − 6a2B

A
cos2 ω

u(X) = A0 − 6a2B

A
tanh2(X)

u(x, t) = A0 − 6a2B

A
tanh2[a(x − kt)]

u(x, t) = A0 − 6a2B

A
tanh2[a(x − (−14a2B + AA0)t)]. (33)

Equation (33) is the solution of Eq. (26).
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6 Solutions of K-dV Equation by G′
G Method

Mehdipoor and Neirameh [39] in 2015 studied the analytic solution of K-dV equa-
tions by usingG ′

G method. The well-known K-dV equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (34)

Now using transformation X = (x − kt).
Equation (34) is of the form

B
d2u

dX2
+ A

u2

2
− ku = 0, (35)

where u = u(X).
Now introducing the independent variable Z = G ′(X)

G(X) and u(x) = ω(X), where
G(X) satisfies the second-order differential equation

G ′′ + λG ′ + μG = 0, (36)

where λ and μ are constants. Then Eq. (35) is converted into

B(−μ − λZ − Z2)2
d2ω

dZ2
+ B(−λ − 2Z)(−λZ − μ − Z2)

dω

dZ

+ A

2
ω2 − kω + C1 = 0 (37)

Let us assume the power series solution of the Eq. (37) as follows:

u(Z) = αm1

(
G ′

G

)m1

+ · · · , (38)

where αi ’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. NowEq. (37) becomes

B(−μ − λZ − Z2)2[αm1m1(m1 − 1)Zm1−2 + · · · ]
+B(−λ − 2Z)(−λZ − μ − Z2)[αm1m1Zm1−1 + · · · ]
+ A

2
ω2 − kω + C1 = 0. (39)

Considering the homogeneous balance between u2 and d2u
dx2 in Eq. (39), m1 = 2 then

Eq. (38) becomes and substitute G ′
G = Z .

u(Z) = α0 + α1Z + α2Z
2, α2 �= 0. (40)
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Now by using (40) in (37), it becomes

6Bα2Z
4 + A

2
α2Z

4 + 2Bα1Z
3 + 10Bλα2Z

3 + Aα1α2Z
3

+3Bα1λZ
2 + 4Bα2λ

2Z2 + 8Bα2μZ
2 + A

2
α2
1Z

2

+Aα2α0Z
2 − kα2Z

2 + Bα1λ
2Z + 2Bμα1Z + 6Bλμα2Z + Bλα1μ

+2Bα2μ
2 + A

2
α2
0 − kα0 + C1 = 0 (41)

Now equating the coefficient of Z4, Z3, Z2, Z and the constant terms in (41) to get
the value of α2 = −12B

A , α1 = −12λB
A , k = Aα0 + Bλ2 + 8μB.

Then Eq. (40) becomes

u(Z) = α0 − 12λB

A
Z − 12B

A
Z2, α2 �= 0, (42)

where X = x − (Bλ2 + Aα0 + 8Bμ).
Now considering the general solution of Eq. (36).

Case 1
Hyperbolic function traveling wave solutions when λ2 − 4μ > 0.

G(X) = C2e
( −λ

2 +
√

λ2−4μ
2 )X + C3e

( −λ
2 −

√
λ2−4μ
2 )X (43)

Now by using Eq. (43) in Eq. (42)

u(X) = − 3B

A
(λ2 − 4μ)

d1 sinh
1
2

√
λ2 − 4μX + d2 cosh

1
2

√
λ2 − 4μX

d2 sinh
1
2

√
λ2 − 4μX + d1 cosh

1
2

√
λ2 − 4μX

+ 3Bλ2

A
+ α0 = 0.

(44)

In particular, if d1 �= 0 and d2 = 0 then Eq. (44) becomes

u(X) = 3B

A
(λ2 − 4μ)sech2

(
1

2

√
λ2 − 4μX

)
+ B

12A
μ + α0 (45)

Case 2
Trigonometric function traveling wave solutions when λ2 − 4μ < 0.

G(X) = e(
−λ
2 )X {C2 cos

√
λ2 − 4μ

2
X + C3 sin

√
λ2 − 4μ

2
X} (46)

Now by using Eq. (46) in Eq. (42)

u(X) = − 3B

A
(4μ − λ2)

{ −C2 sinh
1
2

√
λ2 − 4μX + C3 cosh

1
2

√
λ2 − 4μX

C3 sinh
1
2

√
λ2 − 4μX + C2 cosh

1
2

√
λ2 − 4μX

}2

+ 3Bλ2

A
+ α0. (47)
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In particular, if C2 �= 0 and C3 = 0 in Eq. (47), it is

u(X) = −3B

A
(4μ − λ2)tanh2

1

2

√
λ2 − 4μX + 3Bλ2

A
+ α0 (48)

Case 3
Trigonometric function traveling wave solutions when λ2 − 4μ = 0.

G(X) = (C2 + C3X)e
−λ
2 X (49)

Now by using Eq. (49) in Eq. (42)

u(X) = −12B

A
(

C3

C2 + C3X
)2 + 3B

A
λ2 + α0. (50)

Here (44), (47), (50) are the types of solutions of the K-dV equations by using G ′
G

method.

7 Solutions of K-dV Equation by tanh−coth Method

K-dV equation is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (51)

Now using transformation X = (x − kt).
Equation (51) is of the form

B
d2u

dX2
+ A

u2

2
− ku = 0, (52)

where u = u(X).
Let the power series solution of Eq. (52) of the form

u(X) = a0 +
n∑
j=1

[a jY
j (X) + b jY

− j (X)], (53)

Y (X) is the solution of the Riccati equation

Y
′ = A1 + B1Y + C1Y

2, (54)

where A1, B1, C1 are constants.
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Now using Eq. (53) and substituting the values in Eq. (52).

Ba2

⎡
⎣

n∑
j=1

[
a j j ( j − 1)Y j−2(X) + b j ( j)( j + 1)Y− j−2(X)

]
⎤
⎦

+ A

2

⎡
⎣

n∑
j=1

[
a jY

j (X) + b jY
− j (X)

]
⎤
⎦

2

−k

⎡
⎣a0 +

n∑
j=1

[
a jY

j (X) + b jY
− j (X)

]
⎤
⎦ = 0 (55)

The parameter n is the positive constant that can be determined by balancing the
linear highest term of highest order with the nonlinear term, here n = 2. Then Eq.
(53) becomes

u(X) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2. (56)

Now using Eqs. (54) and (58) then Eq. (52) is

Y 4
(
6Ba2a2C

2
1 + A

2
a22

)

+Y 3
(
2Ba2a1C

2
1 + 10Ba2a2B1C1 + Aa1a0

)

+Y 2
(
3Ba2a1B1C1 + 4Ba2a2B

2
1 + 8Ba2a2B1C1 − ka2 + A

2
a21 + Aa0a2

)

+Y
(
Ba2a1B

2
1 + 2Ba2a1A1C1 + 6Ba2a2A1B1 − ka1 + Aa0a1 + Aa0a2

)

+Y−1
(
Ba2b1B

2
1 + 2Ba2b1A1C1 + 6Ba2b2B1C1 − 2Ba2b2B

2
1 − kb1 + Aa0b1 + Aa1b2

)

+Y−2
(
3Ba2b1A1B1 + 6Ba2b2B

2
1 + 8Ba2b2A1C1 − kb2 + A

2
b21 Aa − 0b2

)

+Y−3
(
2Ba2b1 + 10Ba2b2A1B1 + Ab1b2

)

+Y−4
(
6Ba2b2A

2
1 + A

2
b22

)

+Ba2a1A1B1 + 2Ba2a2A
2
1 + Ba2b1B1C1 + 2Ba2b2C

2
1 − ka0 + A

2
a20 + Aa1b1 + Aa2b2 = 0 (57)

Now equating the coefficients of Z4, Z3, Z2, Z , Z−1, Z−2, Z−3, Z−4 and the constant
terms in (57) to get the values of a0, a1, a2, b1, b2.

Thena1 = 60 B
Aa

2B1C1,a2 = −12 B
Aa

2C2
1 ,b1 = 60B2a4A3

1B1

ABa2−6ABa2A2
1
,b2 = −12 B

Aa
2A2

1.
Now substituting the values of the coefficients in

u(X) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2, (58)

where Y is the solution of the Riccati equation.
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8 Solutions of Burgers Equation by tanh Method

Consider the Burgers equation of the form.

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (59)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x − kt) to convert the partial differential equation into ordinary differential equa-
tion, where a and k are nonzero constants.

Here,

X = a(x − kt) ⇒ dX

dx
= a and

dX

dt
= −ka

∂

∂t
= d

dX

dX

dt
= d

dX
(−ka) = −ka

d

dX
∂

∂x
= d

dX

dX

dx
= d

dX
(a) = a

d

dX
∂2

∂x2
= ∂

∂x

∂

∂x
= ∂

∂x

(
a

d

dX

)
= a

d

dX

dX

dx

(
d

dX

)
= a2

d

dX

(
d

dX

)
= a2

d2

dX2

Now substituting these values in (59), we have

−ka
du

dX
+ Aua

du

dX
− Ba2

d2u

dX2
= 0

⇒ −k
du

dX
+ Au

du

dX
− Ba

d2u

dX2
= 0

⇒ −ku + A
u2

2
− Ba

du

dX
= 0, (60)

whereu = u(X).Now introducing the independent variable Z = tanhX and u(X) =
ω(Z)

⇒ dZ

dX
= sech2X and

dω

dX
= dω

dZ

dZ

dX
= dω

dZ
sech2X

Now substituting these values in (60), then

− kω + A
ω2

2
− Ba(1 − Z2)

dω

dZ
= 0 (61)

Let us assume the power series solution of the Eq. (61) as follows:
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ω(Z) =
∞∑
r=0

ar Z
ρ+r

⇒ dω

dZ
=

∞∑
r=0

ar (ρ + r)Zρ+r−1

Now substituting these values in Eq. (61)

− k
∞∑
r=0

ar Z
ρ+r + A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− Ba(1 − Z2)

∞∑
r=0

ar (ρ + r)Zρ+r−1 = 0

(62)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking ρ = 0.

2ρ + 2r = ρ + r + 1

⇒ r = 1.

For r = 1, we have

ω(Z) = a0 + a1Z , a1 �= 0

⇒ dω

dZ
= a1 (63)

Now (61) becomes

A

2
a20 − ka0 − Baa1 + Aa0a1Z − ka1Z + A

2
a21 Z

2 + Baa1Z
2 = 0 (64)

Now equating the coefficient of Z2, Z and the constant terms in (64) to get the value
of a0, a1, and k.

We have a0 = k
A , a1 = − 2Ba

A , k = 2Ba and k = −2Ba.

Case 1 K = 2Ba

u(x, t) = 2Ba

A
(1 −

√
1 − sech2[a(x − 2Bat)]) (65)

Case 2 K = −2Ba

u(x, t) = −2Ba

A
(1 +

√
1 − sech2[a(x + 2Bat)]) (66)

Equations (65) and (66) are the required solutions of the Burgers equation (59).
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9 Solutions of Burgers Equation by sech Method

Consider the Burgers equation of the form.

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (67)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x − kt) to convert the partial differential equation in to ordinary differential equa-
tion, where a and k are nonzero constants.

Then Eq. (67) is of the form

− ku + A
u2

2
− Ba

du

dX
= 0, (68)

whereu = u(X).Now introducing the independent variable Z = sechX and u(X) =
ω(Z)

⇒ dZ

dX
= −sechXtanhX and

dω

dX
= dω

dZ

dZ

dX
= −ZtanhX

dω

dZ

Now substituting these values in (68), then

− kω + A
ω2

2
+ Baz

√
1 − Z2

dω

dZ
= 0 (69)

Let us assume the power series solution of the Eq. (69) as follows:

ω(Z) =
∞∑
r=0

ar Z
ρ+r

⇒ dω

dZ
=

∞∑
r=0

ar (ρ + r)Zρ+r−1

Now substituting these values in Eq. (69)

− k
∞∑
r=0

ar Z
ρ+r + A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− Ba(1 − Z2)

∞∑
r=0

ar (ρ + r)Zρ+r−1 = 0 (70)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking ρ = 0.

2ρ + 2r = ρ + r − 1 + 2

⇒ r = 1.
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For r = 1, we have

ω(Z) = a0 + a1Z , a1 �= 0

⇒ dω

dZ
= a1 (71)

Now (69) becomes

− ka0 + A

2
a20 − ka1Z + Aa0a1Z + Baa1Z + A

2
a21 Z

2 − 1

2
Baa1Z

3 = 0 (72)

Now equating the coefficient of Z2, Z and the constant terms in (72) to get the value
of a0, a1, and k.

We have a0 = 2k
A , a1 = − Ba

A , k = 2Ba and k = −Ba.

u(x, t) = −Ba

A
(1 − secha(x + Bat)) (73)

Equation (73) is the required solutions of the Burgers equation (67).

10 Solutions of Burgers Equation by
(
G′
G

)
Method

The well-known Burgers equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (74)

Now using transformation X = a(x − kt). Equation (74) is of the form

− ku + A
u2

2
− Ba

du

dX
= 0, (75)

where u = u(X).
Now introducing the independent variable Z = G ′(X)

G(X) and u(x) = ω(X), where
G(X) satisfies the second-order differential equation

G ′′ + λG ′ + μG = 0, (76)

where λ and μ are constants. Then Eq. (75) is converted into

− kω + A

2
ω2 − Ba(−μ − λZ − Z2)

dω

dZ
= 0 (77)

Let us assume the power series solution of the Eq. (77) as follows:
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ω(Z) = αm1(
G ′

G
)m1 + · · · , (78)

where αi ’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. NowEq. (77) becomes

− k(αm1Z
m1 + · · · ) + A

2
(αm1Z

m1 + · · · )2 − Ba(−μ − λZ2)(αm1m1Z
m1−1 + · · · ) = 0 (79)

Considering the homogeneous balance between u2 and du
dx in Eq. (79), m1 = 1 then

Eq. (78) becomes and substitute G ′
G = Z .

ω(Z) = α0 + α1Z , α1 �= 0.

⇒ dω

dZ
= α1 (80)

Now by using (80) in (77), it becomes

A

2
α2
1Z

2 + Baα1Z
2 − kα1Z + Aα0α1Z + Baα1λZ − kα0 + A

2
α2
0 + Baμα1 = 0. (81)

Now equating the coefficient of Z2, Z and constant terms in (81) to get the value of
α1 = −2Ba

A ,α0 = K
A − Ba

A λ.
Then Eq. (80) becomes

ω(Z) = K

A
− aB

A
λ − 2B

A
aZ , (82)

Now considering the general solution of Eq. (76).

Case 1
Hyperbolic function traveling wave solutions when λ2 − 4μ > 0.

G(X) = C2e

(
−λ
2 +

√
λ2−4μ
2

)
X + C3e

(
−λ
2 −

√
λ2−4μ
2

)
X

(83)

Now by using Eq. (83) in Eq. (82)

u(X) = K

A
− B

A
aλ − B

A
a
√

λ2 − 4μ
d1 sinh

1
2

√
λ2 − 4μX + d2 cosh

1
2

√
λ2 − 4μX

d2 sinh
1
2

√
λ2 − 4μX + d1 cosh

1
2

√
λ2 − 4μX

= 0. (84)

Case 2
Trigonometric function traveling wave solutions when λ2 − 4μ < 0.

G(X) = e(
−λ
2 )X

{
C2 cos

√
λ2 − 4μ

2
X + C3 sin

√
λ2 − 4μ

2
X

}
(85)
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Now by using Eq. (85) in Eq. (82)

u(X) = k

A
− Ba

A

√
4μ − λ2

−C2 sinh 1
2

√
λ2 − 4μX + C3 cosh 1

2

√
λ2 − 4μX

C3 sinh 1
2

√
λ2 − 4μX + C2 cosh 1

2

√
λ2 − 4μX

. (86)

Case 3
Trigonometric function traveling wave solutions when λ2 − 4μ = 0.

G(X) = (C2 + C3X)e
−λ
2 X (87)

Now by using Eq. (87) in Eq. (82)

u(X) = k

A
− 2Ba

A

(
C3

C2 + C3X

)
. (88)

Here (84), (86), (88) are the types of solutions of the Burgers equations by using G ′
G

method.

11 Solutions of Burgers Equation by Sine−Gordon
Method

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (89)

Now using transformation X = a(x − kt).
Equation (89) is of the form

− Ba
du

dX
+ A

u2

2
− ku = 0, (90)

where u = u(X).
The sine–Gordon equation is

∂2u

∂x2
− ∂2u

∂t2
= m2sinu, (91)

where u = u(x, t) and using the transformation X = a(x − ct). Equation (92)
becomes

d2u

dX2
= m2sinu

a2(1 − k2)
(92)
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Again introducing thenewvariableω(X) = u(X), dω
dX = sinω, sinω(X) = sech(X),

cosω(X) = tanh(X) and using some integral calculation, the predicated solution of
(92) is

u(ω) = A0 +
n∑
j=1

cos j−1(A j cosω + Bjsinω) (93)

Let as assuming the solution of Eq. (90) of type (93). Now taking the derivatives
of (93) and substituting the derivative values in (90). Then in order to balance the
two-term equation it has j = 1.

Then Eq. (93) becomes

u(ω) = A0 + A1 cosω + B1 sinω (94)

Now taking the derivatives of (94) and substituting in (90) then Eq. (90) becomes

−k A0 + A

2
A2
0 + A

2
A2
1 − k A1 cosω + AA0A1 cosω − kB1 sinω

+AA0B1 sinω − A

2
A2
1 sin

2 ω + A

2
B2
1 sin

2 ω + BA1a sin
2 ω

+AA1B1 cosω sinω − BB1a cosω sinω = 0 (95)

Now equating the coefficients of (95) to get the value of A0, A1, B1 and k. Here

A1 = Ba

A
, B1 = ±i

Ba

A
,

Then

u(x, t) = A0 + aB

A

√
1 − sech2X ± i

Ba

A
sech. (96)

Equation (96) is the solution of Eq. (89).

12 Solutions of Schamel–K-dV Equation by G′
G Method

Consider the simplest form of Schamel–K-dV equation as

∂u

∂t
+ Au

1
2
∂u

∂x
+ B

∂3u

∂x3
= 0, (97)

where A and B are arbitrary coefficients and u = u(x, t).
Now using the wave transformation X = x − kt , where k is constant.
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Then Eq. (97), becomes

− k
dU

dX
+ AU 1/2 + B

d3U

dX3
= 0, (98)

where U = U (X). Now integrating Eq. (98), then we have

− kU + 2

3
AU 3/2 + B

d2U

dX2
+ c = 0, (99)

where c is the integration constant.
Let us consider U 1/2(X) = V (X) Eq. (99) becomes

⇒ −kV 2 + 2

3
AV 3 + 2B

(
dV

dX

)2

+ 2BV
d2V

dX2
+ c = 0 (100)

Let us assume the solution of (100) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

(101)

where G = G(X) satisfies the the second-order differential equation

G ′′ + λG ′ + μG = 0 (102)

where λ and μ are constants.
Now substituting the value of d2V

dX2 , dV
dX , V (X) in Eq. (100) balancing the highest

order nonlinear term with highest order derivative we get n = 2. Then Eq. (101)
becomes

V (X) = a0 + a1

(
G ′

G

)
+ a2

(
G ′

G

)2

(103)

Now substituting the values of V (X), d2V
dX2 , dV

dX in (100) and equating the coefficients

of
(
G ′
G

)i
to get the values of a0, a1, a2, k we have

a0 = a0, a1 = −30
B

A
λ, a2 = −30

B

A
(104)

Substituting these values in the assuming solution and applying the transformation
U = V 2 we have the following different types of solution of the form:

U (X) =
[
a0 − 30

B

A
λ

(
G ′

G

)
− 30

B

A

(
G ′

G

)2
]2

(105)
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where

Case 1 When λ2 − 4μ > 0

(
G ′

G

)
=

√
λ2 − 4μ

2

⎛
⎝d2 cosh

√
λ2−4μ
2 X + d1 sinh

√
λ2−4μ
2 X

d1 cosh
√

λ2−4μ
2 X + d2 sinh

√
λ2−4μ
2 X

⎞
⎠ − λ

2

Case 2 When λ2 − 4μ < 0

(
G ′

G

)
=

√
4m − λ2

2

(
−d1 sin

√
4m−λ2

2 X + d2 cos
√
4m−λ2

2 X
)

(
d1 cos

√
4m−λ2

2 X + d2 sin
√
4m−λ2

2 X
) − λ

2

Case 3 When λ2 − 4μ = 0

(
G ′

G

)
= −λ

2
+ c2X

c1 + c2X

13 Solutions of Schamel–K-dV Equation by Different Form
of G′

G Method

Consider the simplest form of Schamel–K-dV equation as

∂u

∂t
+ Au

1
2
∂u

∂x
+ B

∂3u

∂x3
= 0, (106)

where A and B are arbitrary coefficients and u = u(x, t).
Now using the wave transformation X = x − kt , where k is constant.
Then Eq. (106), becomes

− k
dU

dX
+ AU 1/2 + B

d3U

dX3
= 0, (107)

where U = U (X). Now integrating Eq. (107), then we have

− kU + 2

3
AU 3/2 + B

d2U

dX2
+ c = 0, (108)

where c is the integration constant.
Let us consider U 1/2(X) = V (X) Eq. (108) which becomes
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⇒ −kV 2 + 2

3
AV 3 + 2B

(
dV

dX

)2

+ 2BV
d2V

dX2
+ c = 0 (109)

Let us assume the solution of (109) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

+
n∑

i=1

bi

(
G ′

G

)−i

(110)

where G = G(X) satisfies the the second-order differential equation

G ′′ + μG = 0 (111)

μ is constants.
Now substituting the value of d2V

dX2 , dV
dX , V (X) in Eq. (109) and balancing the

highest order nonlinear term with highest order derivative we get n = 1. Then Eq.
(110) becomes

V (X) = a0 + a1

(
G ′

G

)
+ b1

(
G ′

G

)−1

(112)

Now using Eq. (112) and its derivatives into Eq. (109) and equating the coeffi-

cients of
(
G ′
G

)i
, where i = 0,±1,±2,±3,±4,±5,±6 to find out the values of

a0, a1, b1,μ, b, c. By using Mathematica we got the values as follows

a0 = 3k

2A
, a1 = −6B

A
, a2 = 0, b1 = 0, b2 = 0,μ = −k

4B
, c = 0.

Substituting these values in the assuming solution and applying the transformation
U = V 2, we have the following different types of solution of the form:

U (X) =
[
3k

2A
− 6B

A

(
G ′

G

)]2

(113)

where

Case 1 When −μ > 0

(
G ′

G

)
= √

μ

(
d2 cosh

√−μX + d1 sinh
√−μX

d1 cosh
√−μX + d2 sinh

√−μX

)

Case 2 When −μ < 0

(
G ′

G

)
= √

μ

(−d1 sin
√

μX + d2 cos
√

μX
)

(
d1 cos

√
μX + d2 sin

√
μX

)
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14 Solutions of Coupled Schamel–K-dV Equation
by

(
G′
G

)
Method

Consider the coupled Schamel–K-dV equation of the form

∂u

∂t
+ au

1
2
∂u

∂x
+ bu

du

dx
+ p

∂3u

∂x3
= 0 (114)

where a, b, and p are arbitrary coefficients. Now using the wave transformation
X = x − kt , where k is constant. Then Eq. (114) becomes

p
dU 3

dX
− k

dU

dX
+ aU

1
2
dU

dX
+ bU

dU

dX
= 0 (115)

Integrating Eq. (115), it becomes

p
dU 2

dX2
− kU + 2

3
aU

3
2 + 1

2
bU 2 + c = 0 (116)

where c is the integration constant.
Let U

1
2 = V then Eq. (116) becomes

V
d2V

dX2
+

(
dV

dX

)2

− k

2p
V 2 + a

3p
V 3 + b

4p
V 4 + c

2p
= 0 (117)

Let us assume the solution of (117) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

(118)

where G = G(X) satisfies the the second-order differential equation

G ′′ + λG ′ + μG = 0 (119)

where λ and μ are constants.
Balancing the highest order nonlinear term with highest order derivative of V d2V

dX2

and V 4, then it comes out that n = 1. Then

V (X) = a0 + a1

(
G ′

G

)
(120)

Now using Eq. (120) and its derivatives into Eq. (117) and equating the coefficients

of
(
G ′
G

)i
, where i = 0, 1, 2, 3, 4 to find out the values of a0, a1,λ,μ, b, c. By using
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Mathematica, we got the values as follows:

a0 = 15

8a
(k ± 2λ

√
pk), a1 = ±15

√
pk

2a
,

λ2 − 4μ = k

4p
, b = −16a2

75k
, c = 0. (121)

Substituting these values in the assuming solution and applying the transformation
U = V 2 we have the following different types of solution of the form:

U (X) =
[
15

8a
(k ± 2λ

√
pk) ± 15

√
pk

2a

(
G ′

G

)]2

(122)

where

Case 1 When λ2 − 4μ > 0

(
G ′

G

)
=

√
λ2 − 4μ

2

⎛
⎝d2 cosh

√
λ2−4μ
2 X + d1 sinh

√
λ2−4μ
2 X

d1 cosh
√

λ2−4μ
2 X + d2 sinh

√
λ2−4μ
2 X

⎞
⎠ − λ

2

Case 2 When λ2 − 4μ < 0

(
G ′

G

)
=

√
4m − λ2

2

(
−d1 sin

√
4m−λ2

2 X + d2 cos
√
4m−λ2

2 X
)

(
d1 cos

√
4m−λ2

2 X + d2 sin
√
4m−λ2

2 X
) − λ

2

Case 3 When λ2 − 4μ = 0

(
G ′

G

)
= −λ

2
+ c2X

c1 + c2X

15 Solutions of Coupled Schamel–K-dV Equation
by Different Form of

(
G′
G

)
Method

Consider the Coupled Schamel–K-dV equation of the form

∂u

∂t
+ au

1
2
∂u

∂x
+ bu

du

dx
+ p

∂3u

∂x3
= 0 (123)

where a, b and p are arbitrary coefficients. Now using the wave transformation X =
x − kt , where k is constant. Then Eq. (123) becomes
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p
dU 3

dX
− k

dU

dX
+ aU

1
2
dU

dX
+ bU

dU

dX
= 0 (124)

Integrating Eq. (124), it becomes

p
dU 2

dX2
− kU + 2

3
aU

3
2 + 1

2
bU 2 + c = 0 (125)

where c is the integration constant.
Let U

1
2 = V then Eq. (125) becomes

V
d2V

dX2
+

(
dV

dX

)2

− k

2p
V 2 + a

3p
V 3 + b

4p
V 4 + c

2p
= 0 (126)

Let us assume the solution of (126) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

+
n∑

i=1

bi

(
G ′

G

)−i

(127)

where G = G(X) satisfies the the second-order differential equation

G ′′ + μG = 0 (128)

where μ is constants.
Balancing the highest order nonlinear term with highest order derivative of V d2V

dX2

and V 4, then it comes out that n = 1. Then

V (X) = a0 + a1

(
G ′

G

)
+ b1

(
G ′

G

)−1

(129)

Now using Eq. (129) and its derivatives into Eq. (126) and equating the coefficients

of
(
G ′
G

)i
, where i = 0,±1,±2,±3,±4 to find out the values of a0, a1, b1,μ, b, c.

By using Mathematica, we got the values as follows:

a0 = 15k

8a
, a1 = ±15

√
pk

2a
, b1 = ±15k

√
pk

64ap
,

μ = k

32p
, b = −16a2

75k
, c = 225k3

512a2
(130)

Substituting these values in the assuming solution and applying the transformation
U = V 2, we have the following different types of solution of the form:

U (X) =
[
15k

8a
± 15

√
pk

2a

(
G ′

G

)
± 15k

√
pk

64ap

(
G ′

G

)]2

(131)
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where

Case 1 When −μ > 0

(
G ′

G

)
= √

μ

(
d2 cosh

√−μX + d1 sinh
√−μX

d1 cosh
√−μX + d2 sinh

√−μX

)

Case 2 When −μ < 0

(
G ′

G

)
= √

μ

(−d1 sin
√

μX + d2 cos
√

μX
)

(
d1 cos

√
μX + d2 sin

√
μX

)
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