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AMulti-item Deteriorating Inventory
Model Under Stock Level-Dependent,
Time-Varying, and Price-Sensitive
Demand

Abhijit Barman and P. K. De

Abstract This paper advocates a multi-item deteriorating inventory model where
shortages are not allowed. Here, we have proposed a single-stage EOQ model for
deteriorating items where the demand function is depending on nonlinear selling
price, nonlinear time, and inventory stock. The model is developed under a known
initial inventory. The main objective of this model is to determine the selling price
and time length until the inventory reaches zero for each item. To demonstrate our
model, one numerical example has been given which is followed by a sensitivity
analysis of the major parameters involved in this model.

Keywords Multi-item inventory · Deteriorating items · Selling price · Order
quantity · Hessian matrix

1 Introduction

In real-life situations, it is observed that demand for an inventory model changes
for the number of items increases in the stocks. That is why companies or any firm
owners dealwith themulti-item inventory system. The present paper presents amulti-
item inventory system over a single period with a finite time horizon. The product
deteriorates with the passes of time under the different deteriorating rates. Most of
the items that undergo decay over time are medicine, blood banks, volatile liquids,
vegetables, etc. Demand for the items is deterministic which depends on inventory
label, selling price, and time-varying. The main goal of this model is to determine
the unit selling price of a product and the length of the period up to zero inventory
that maximizes the overall profit of a retailer or any inventory warehouse.
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Even though sufficient literature is available in the area of deteriorating items, but
still very less literature is available onmulti-item inventory systemwith deterioration.

The first effort to illustrate the optimum order policies for deteriorating items
was established by Chare and Schratures [1]. They introduced an EOQ model for
an exponentially decaying inventory system. Later, Covert and Philip [2] extended
this model by incorporating variable deterioration rate with two parameters Weibull
distribution. Bhattacharya [3] proposed a new method for deteriorating items with
linear stock-dependent demand rate in a two items inventory system. Dye et al. [4]
discussed pricing and ordering policy for deteriorating items with shortages where
the deterioration and demand rate are continuous as well as a differentiable function
of time and price, respectively. Pal et al. [5] established a multi-item EOQ model
with nonlinear price-dependent and price break-sensitive demand. In the case of
non-instantaneous deteriorating items, a joint pricing and inventory model has been
established by Maihami and Kamalabadi [6]. Linear price-sensitive and nonlinear
time-dependent demand functions have been considered to develop this model with
partially backlogging. Sarkar et al. [7] established an inventory model for deteri-
orating items considering time-sensitive demand with a finite production rate. The
selling price and component cost are considered at a continuous rate of time. Yang [8]
studied an EOQ model where the holding cost is stock-dependent and the demand
rate is also stock-dependent with relaxed terminal environments under shortages.
The prime goal of this model is profit maximization by determining optimum order
quantity and level of ending inventory. Janssen et al. [9] reviewed 393 articles that are
published from January 2012 toDecember 2015 and categorized the articles based on
the different demand characteristics and the deterioration of the items. Feng et al. [10]
used the demand as a multivariate function of stock, price, and freshness in an EOQ
model. Chen et al. [11] discovered an inventory model for time elapse deteriorating
items with a short lifecycle. This model is designed for the stock label, time-varying,
and price-sensitive deterministic demand in a finite horizon multi-period setting.

This paper address an EOQ model for n numbers of different items in a finite
time horizon. For each item, an initial inventory stock depending on store capacity
has been taken separately. The deterministic demand function is taken in a pattern
of the nonlinear selling price, exponential time-varying, and linear stock-dependent.
Shortages of products are not allowed in this multi-item inventory system. Thus,
this paper determines the optimum selling price, time length for which the inventory
reaches zero for each item and the overall profit.

The rest of the paper is organized as follows. In Sect. 2, we describe the notations
and assumptions used throughout the model. We inaugurate the mathematical model
with necessary and sufficient conditions in Sect. 3. In Sect. 4, a numerical example
has been provided to illustrate the solution procedure. In Sect. 5, a sensitivity analysis
of the optimum solutions concerning different parameters has also been provided.
Finally, the summarized findings and some future research suggestions are discussed
in Sect. 6.
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2 Notations and Assumptions

The following notations and assumption are adopted to develop the model:

Notations

Mi Manufacturing cost per item for ith product

Oi Ordering cost for ith product

hi Holding cost per unit time for ith product

Qi Initial order quantity for ith product

pi Unit selling price for ith item

Ri Demand rate for each product

θ i Deterioration rate for ith product

ai , bi , ci , μi , αi , λi Demand and stock elasticity parameters

I (pi , t) Inventory level for ith product at time t

Ti Time length up to zero inventory

T P Total profit

Assumptions

• The model is considered for n number of different types of products for
deteriorating items in a single stage.

• Shortages are not considered in this inventory model i.e. Ii (pi , t) ≥ 0 for i = 1,
2, 3…n.

• The replenishment rate is infinite and lead time is negligible.
• Deterioration rate θi is constant for ith product.
• Demand rateRi is deterministic in nature and a function of inventory level Ii (pi , t)

with nonlinear selling price (ai − bi pi − ci p2i ) and exponentially time varying.
For i = 1, 2, 3…n with considering ai�bi�ci, Ri is represented by

Ri = (ai − bi pi − ci p
2
i )αi e

λi t + μi I (pi , t).
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3 Mathematical Model Formulation and Solution
Methodology

At the beginning of the cycle, the system starts with inventory Qi for the ith product.
Over the course of the period, the inventory level down due to both demand and
deterioration until it reaches zero at time Ti. During the time interval [0, Ti ], the
following differential equation represents the inventory status for the ith product

d Ii (pi , t)

dt
+ θi I (pi , t) = −Ri (1)

with two boundary conditions, Ii (pi , 0) = Qi and Ii (pi , Ti ) = 0 for i = 1, 2, …n.
Solving the inventory system and using the boundary conditions, we get the level of
inventory of ith item at time t is

Ii (pi , t) = Qie
−(θi+μi )t + (ai − bi pi − ci p2i )αi

(θi + μi + λi )
[e−(θi+μi )t − eλi t ] (2)

From the second boundary condition, we have

Ti = 1

(θi + μi + λi )
Log

[
Qi (θi + μi + λi )

(ai − bi pi − ci p2i )αi
+ 1

]
(3)

Next, for i= 1, 2, 3…n, the total profit in the whole cycle consists of the following
five elements:

• Total ordering cost for the ith product is given by

OCi = Oi (4)

• Inventory holding cost for the ith product is given by

HCi = hi

Ti∫
0

I (pi , t)dt = hi Ki (5)

• Total manufacturing cost for the ith product is

MCi = Mi Qi (6)

• Deteriorating cost for the ith product is given by
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DCi = Mi

Ti∫
0

θi I (pi , t)dt = Miθi Ki (7)

• Sales revenue for the ith product is written by:

SRi = pi

Ti∫
0

Ri (pi , t)

= 1

λi
piαi (ai − bi pi − ci p

2
i )(e

λi Ti − 1) + piμi Ki (8)

where

Ki =
TI∫
0

Ii (pi , t)dt = Qi

(θi + μi )
[1 − e−(θi+μi )Ti ]

+
{

(ai − bi pi − ci p2i )αi

(θi + μi + λi )

[
1

λi
+ 1

(θi + μi )
− eλi Ti

λi
− e−(θi+μi )

(θi + μi )

]}
(9)

Therefore, the total profit of the retailer for all the items in the whole cycle is

T P(p1, p2, . . . pn) =
n∑

i=1

[SRi − (OCi + HCi + MCi + DCi )]

=
n∑
1

[
1

λi
piαi (ai − bi pi − ci p

2
i )(e

λi Ti − 1) + (piμi − hi − Mi θi )Ki − Oi − Mi Q

]
i

(10)

TP (p1, p2,…pn) is function of p1, p2, …pn. So, for some Ti (from Eq. 3), the
necessary conditions for the overall profit function come from ∂T P(p1,p2,...pn)

∂pi
= 0 for

i = 1, 2, 3…n.
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This gives a system of nonlinear equations with n number of unknowns pi for i
= 1,2…n.

Concavity test by the Hessian matrix

To checkwhether the profit function (10) is concave,we have to determine the hessian
matrix

H =

⎡
⎢⎢⎢⎢⎣

∂2T P
∂p21

∂2T P
∂2 p1∂p2

. . . ∂2T P
∂p1∂pn

∂T P
∂p2∂p1

∂2T P
∂p22

. . . ∂2T P
∂p2∂pn

. . . . . . . . . . . .
∂2T P
∂pn∂p1

∂2T P
∂pn∂p2

. . . ∂2T P
∂p2n

⎤
⎥⎥⎥⎥⎦

We have to show all the principal minors of the hessian matrix will alternate their
sign starting with a negative sign. Since the expression of the second-order deriva-
tives is highly nonlinear, we will check the result numerically with some graphical
representation. We have shown numerically as well as graphically the concavity of
profit function T P(p1, p2, . . . pn) in the given numerical example.

4 Numerical Investigation

Let us consider a storehouse problem with two different items with different demand
rates and deterioration rates are listed by the following parametric values in Table 1.

Table 1 Different parametric
values

Value of the
parameter

Item 1 Item 2

Demand elasticity
parameter

a1 = 120; b1 =
3.0;
c1 = 0.005;
λ1 = 0.1; α1 = 1

a2 = 140; b2 =
3.2;
c2 = 0.005;
λ2 = 0.15; α2 =
1.5

Manufacturing cost
($)

M1 = 10 M2 = 12

Ordering cost ($) O1 = 70 O2 = 80

Holding cost ($) h1 = 3 h2 = 4

Deterioration rate θ1 = 0.08 θ2 = 0.05

Stock elasticity
parameter

μ1 = 0.6 μ2 = 0.8

Initial inventory
level

160 units 200 units
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Fig. 1 Variation of optimal profit with respect to selling prices p1 and p2

UsingMathematica software, we determine the optimum selling price, time length
for the different products, and also the net profit. Unit selling price of first item (p∗

1)= $35.284, Unit selling price of second item (p∗
2) = $38.292, Cycle length for first

item (T ∗
1 ) = 4.3837 days, Cycle length for second item (T ∗

2 ) = 3.3807 days, and the
total profit (T P∗) = $6049.46. We get �1 = −40.55 ≤ 0 and �2 = 3174.3878 ≥ 0.
The sign of principle minor of the hessian matrix alternate starting with a negative
sign. So, the condition of sufficiency is also satisfied.

The following figure (Fig. 1) represents the nature of concavity of the profit
function (10). For selling price p∗

1 = $35.284 and p∗
2 = $38.292, the corresponding

total profit T P∗ = $6049.46 gives the global maximum in the concave Fig. 1.

5 Sensitivity Analysis

A post-optimality analysis is carried out to analyze the outcome of the changes
of different parameters on the optimal solutions. The results of the post-optimality
analysis are listed in Table 2 and Table 3, respectively. The changes to the optimum
values p∗

1, p
∗
2, T

∗
1 , T2,∗ T P∗ have been done by decreasing/increasing the values of

the major parameters ai , bi , ci , μi , αi , θi , λi for i = 1, 2…n. The post-optimality
analysis is accomplished from −20% to 20% by changing one parameter at a time
and keeping remain parametric values unchanged.

The sensitive analysis which is explored in Tables 2 and 3 indicates the following
observations:

• It is visible in Table 2 that, with the increase of purchasing cost (Mi), the selling
price (pi) for both the products as well as the time interval (Ti) will decrease. So,
the total profit (TC) will decrease with increasing the purchasing cost (Mi).

• It also observed that with the increasing of holding cost (hi), the selling price (pi),
time length (Ti), and the overall profit (TC) decrease rapidly. From a financial
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Table 2 Sensitivity analysis with respect to different parameters

Parameter Percentage change in parameter p1 p2 T1 T2 T P

Mi −20% 35.367 38.336 4.4410 3.4156 6916.08

−10% 35.326 38.314 4.4121 3.3981 6482.71

M1 = 10; M2 = 12 35.284 38.292 4.3837 3.3807 6049.46

10% 35.242 38.269 4.3558 3.3636 5616.31

20% 35.200 38.247 4.3284 3.3468 5183.28

Oi −20% 35.284 38.292 4.3837 3.3807 6079.46

−10% 35.284 38.292 4.3837 3.3807 6064.46

Oi 35.284 38.292 4.3837 3.3807 6049.46

10% 35.284 38.292 4.3837 3.3807 6034.46

20% 35.284 38.292 4.3837 3.3807 6019.46

hi −20% 35.597 38.584 4.6106 3.6346 6384.55

−10% 35.441 38.439 4.4930 3.5012 6215.58

hi 35.284 38.292 4.3837 3.3807 6049.46

10% 35.127 38.143 4.282 3.2713 5886.05

20% 34.969 37.994 4.1863 3.1714 5725.22

Qi −20% 35.036 38.096 3.8780 2.9830 4998.59

−10% 35.160 38.195 4.1369 3.1864 5561.73

Q1 = 160; Q2 = 200 35.284 38.292 4.3837 3.3807 6049.46

10% 35.405 38.384 4.6199 3.5669 6678.74

20% 35.522 38.472 4.8470 3.7459 7234.29

lookout, it is clear that increasing inventory holding cost directly affects the total
profit.

• From Table 2, it is clear that ordering cost (Oi) does not affect the selling price
(pi). So, the change of overall profit (TC) is negligible for that case.

• From Table 2, it is found that increasing with initial inventory stock level (Qi) the
selling price and time interval for both the items will increase. For this case, the
net profit will also increase rapidly.

• When the parametric value a1, a2 increase the value of selling price (pi) for both
the product will increase but the time length for each item (Ti) of the inventory
cycle will decrease. In this case, the overall profit (TC) also increases very rapidly
which is shown in Table 3.

• With increasing the value of the other parameter bi, ci the value of the selling
price (pi) decreases. So, the value of the total profit (TC) also decreases. For that
case, bi is more effective other than the parameter ci.

• The effect of change in overall profit (TC) with respect to the change in parameters
λi and αi are shown in Table 3 separately. It is observed that, as λi or αi increases,
the increment of total profit (TC) is not significant.
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Table 3 Sensitivity analysis with respect to different parameters

Parameter Percentage change in parameter p1 p2 T1 T2 T P

ai −20% 28.425 31.045 4.6555 3.5545 3630.42

−10% 31.873 34.697 4.5140 3.4647 4847.11

a1 = 120; a2 = 140 35.284 38.292 4.3837 3.3807 6049.46

10% 38.658 41.832 4.2626 3.3018 7238.05

20% 41.998 45.3201 4.1501 3.2276 8413.38

bi −20% 43.192 46.108 4.5789 3.5519 8548.57

−10% 38.885 41.887 4.4817 3.4666 7191.25

b1 = 3.0; b2 = 3.2 35.284 38.292 4.3837 3.3807 6049.46

10% 32.237 35.204 4.2869 3.2962 5079.12

20% 29.630 32.529 4.1929 3.2140 4246.66

ci −20% 35.718 38.989 4.4207 3.4289 6222.68

−10% 35.499 38.635 4.4019 3.4044 6134.79

c1 = 0.005; c2 = 0.008 35.284 38.292 4.3837 3.3807 6049.46

10% 35.074 37.959 4.3659 3.3579 5966.55

20% 34.868 37.638 4.3486 3.336 5885.94

λi −20% 35.275 38.291 4.4768 3.4654 6025.37

−10% 35.279 38.291 4.4296 3.4224 6037.45

λ1 = 0.1; λ2 = 0.15 35.284 38.292 4.3837 3.3807 6049.46

10% 35.288 38.293 4.3391 3.3405 6061.39

20% 35.293 38.294 4.2957 3.3015 6073.23

μi −20% 34.323 37.545 4.2037 3.2193 5608.43

−10% 34.830 37.944 4.2915 3.2984 5835.33

μ1 = 0.4; μ2 = 0.6 35.284 38.292 4.3837 3.3807 6049.46

10% 35.685 38.590 4.4802 3.4663 6250.93

20% 36.036 38.843 4.5810 3.5549 6439.94

θi −20% 35.594 38.454 4.6934 3.5441 6362.40

−10% 35.437 38.373 4.5311 3.4597 6239.93

θ1 = 0.08; θ2 = 0.05 35.284 38.292 4.3837 3.3807 6049.46

10% 35.134 38.212 4.2491 3.3066 6006.71

20% 34.987 38.131 4.1255 3.2369 5895.45

αi −20% 35.579 38.514 4.9575 3.8329 5921.67

−10% 35.418 38.394 4.6456 3.5871 5986.68

α1 = 1; α2 = 2 35.284 38.292 4.3837 3.3807 6049.46

10% 35.172 38.204 4.1598 3.2045 6109.82

20% 35.077 38.129 3.9658 3.0518 6167.71



A Multi-item Deteriorating Inventory Model Under … 11

• When the value of parameter μi increases then the selling price (pi), time length
(Ti), and the total profit (TC) also increase. The physical phenomena of this
parameter suggest that demand proportional to the inventory of the firm.

• Increasing of parameter θi the overall profit (TC) will decrease. The economic
viewpoint of this observation shows that as increasing the deterioration rate the
profit will be minimized.

6 Conclusion

In this paper, we explored a short life period multi-item EOQ model where dete-
rioration is considered. A stock level-dependent, time-varying, and price-sensitive
deterministic demand have been considered to develop the model under a known
primary stock. To design themodel, the effect of nonlinear selling price and nonlinear
time-varying demand functions has been estimated. Our model is demonstrated and
illustratedwith one numerical examplewith a graphical explanation. Sensitivity anal-
ysis is shown to see the changes in overall profit with respect to the variant of several
parameters involved in this model. The contribution of this paper helps decision-
makers to increase the overall profit by understanding the market demand situation.
As a result, retailers may change their earlier selling price of the items to earn the
maximum profit.

This paper can be extended by incorporating various other concepts like inflation,
reliability, or some other fuzzy environments.
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On Estimation of Reliability Following
Selection from Pareto Populations

Ajaya Kumar Mahapatra, Brijesh Kumar Jha, and Chiranjibi Mahapatra

Abstract Let
∏

1,
∏

2, . . . ,
∏

k be k populations, where
∏

i follows a Pareto dis-
tribution with unknown scale parameters αi and common known shape parameters
βi ; i = 1, . . . , k. Independent random samples are drawn from each of these popula-
tions. Let Ti be the smallest observation in the ith sample. The natural selection rule
is to select the population with the largest Ti . Then, we consider the estimation of
the reliability function of the selected population. The uniform minimum variance
unbiased estimator is derived. A class of scale equivariant estimators have been pro-
posed. An inadmissibility result in regards to the class of scale equivariant estimators
is established generally

Keywords Selection rule · UMVUE · MLE · Scale equivariant estimators ·
Brewster–Zidek technique

1 Introduction

Let
∏

1,
∏

2, . . . ,
∏

k be as defined above with each of them corresponding to a prob-
ability density function/ probability mass function f (x |θi ), i = 1, . . . , k. A common
problem is to choose the population or a subset of populations having the best. The
populationmaybe regarded as the best according to some attributes such as the largest
mean, smallest variance, etc.An important practical problem is to estimate the param-
eters of the selected population or an attribute of the selected subset. These problems
are in general mentioned as “Estimation after selection”. Such problems have been
at first constructed and explored by Rubinstein [16]. Estimation of the quantile of a
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selected population has been considered by Sharma and Vellaisamy [17], Kumar and
Kar ([10–12]) and Vellaisamy [18]. Mishra and van derMeulen [15] have studied the
estimation after selection in general truncation distributions. The estimation of the
reliability function of a selected subset was studied by Kumar et al. [13] for the case
of two-parameter exponential distribution. It was assumed that the scale parameters
are known and the location parameters are unknown and unequal. They derived the
Uniform Minimum Variance Unbiased Estimator(UMVUE) for the survival func-
tion and proposed some natural estimators. These estimators are compared in terms
of their risks using Brewster and Zidek technique. Further, this estimator is also
improved by solving a differential inequality in the light of Vellaisamy and Punen
[19]. They have considered the estimation of the location parameter from a selected
subset of exponential distribution.

Income distributions were studied initially using Pareto distribution. Later on, it
was applied to reliability and life testing, industrial and engineering studies. Johnson
and Katz [8], Harris [7], Davis and Feldstein [4], Freiling [6], Berger andMandelbrot
[2], etc., have described several situations where the Pareto model is very useful.
This model has been found suitable to describe the allotment of service times in
regard to city maintenance, allocation of fallout of nuclear particles, etc. Kumar and
Gangopadhyaya [9] have taken up the case to estimate the scale parameter of the
chosen Pareto population. In this paper, we study the estimation of the reliability
function in the following selection. In Sect. 4, we have derived the UMVUE for the
reliability function of the selected Pareto population. In Sect. 5, an inadmissibility
result has been established generally for the estimators in the scale equivariant class.

2 Deriving the UMVUE

Independent random samples Xi1, Xi2, . . . , Xin, i = 1, . . . , k are drawn from k pop-
ulations

∏
1,

∏
2, . . . ,

∏
k , respectively. Let these observations from the respective

populations have an associated probability density function fi (.), given by the Pareto
model.

fi (x) =
{

βα
β

i
xβ+1 , if αi ≤ x < ∞, αi > 0, β > 0,
0, elsewhere, for i = 1, 2, . . . , k.

(1)

Let us assume overall that the scale parameters α1, α2, . . . , αk are completely
unknown and the common shape parameter β is known. Let Ti = min(Xi1, Xi2, . . . ,

Xin). Then the statistic T = (T1, T2, . . . , Tk) is complete and sufficient. It is also
the maximum likelihood estimator (MLE) of α = (α1, α2, . . . , αk), i = 1, . . . , k. It
may be seen that Ti follows a Pareto distribution with shape parameter nβ and scale
parameter αi , i = 1, . . . , k. It is given by
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gi (y) =
{

nβα
nβ
i

ynβ+1 , if αi ≤ y < ∞,

0, elsewhere, for i = 1, 2, . . . , k.
(2)

The reliability function of the population
∏

i is given by

Ri (t) = P(Xi j > t) =
(αi

t

)β

, αi < t. (3)

Our goal is to choose the population associated with the highest reliability Ri (t),
i = 1, . . . , k. The probability density of Ti has monotone likelihood ratio property
in (αi , Ti ), i = 1, . . . , k. A logical selection rule is to select the population

∏
i if

Ti = max(T1, . . . , Tk), i = 1, . . . , k. Optimality properties in this regard have been
scrutinized by Bahadur and Goodman [1], Lehmann [14] and Eaton [5]. Let T(1) ≤
T(2),≤ T(k) stand for the ordered values of T ′

i s. We want to estimate

RJ (t) =
k∑

j=1

(α j

t

)β

I j , (4)

where

I j =
{
1, if Tj = T(k), j = 1, . . . , k;
0, otherwise.

(5)

An unbiased estimator δ of RJ (t) satisfies E(δ − RJ (t)) = 0. To derive the UMVUE
of RJ (t), we need the following lemmas.

Lemma 2.1 Let X be a random variable with pdf gi (.), given by

gi (x) =
{

nβα
nβ
i

xnβ+1 if αi ≤ x < ∞
0 otherwise, for i = 1, . . . , k.

(6)

Suppose that U(x) be a real-valued function defined on R, such that
(a) Eα(U (x)) < ∞ ∀α ∈ �,

(b) The integral
∫ ∞
x U (t)P(t, β)dt exists and is finite,

where P(x, β) = n
βn−1xnβ+1 for 0 < x < ∞,

(c) limx→∞[xβ
∫
U (t)P(t, β)dt] = 0.

Then the function

V (x) = xβU (x) − βxβ−1

P(x, β)

∫ ∞

x
U (t)P(t, β)dt

satisfies

EαV (x) = αβEαU (x) (7)
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Proof The proof follows using integration by parts to the second expression. The
following lemma is a generalization of the above lemma.

Lemma 2.2 Let T1, T2, . . . , Tk be k independent random variables with pdf gi (.) as
defined in (4.2).
Suppose that U1(t),U2(t), . . . ,Uk(t) be k real-valued function defined on R, such
that
(a) Eα(Ui (T )) < ∞ ∀αi > 0, i = 1, . . . , k.
(b) The integral

∫ ∞
ti

U (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx exists and is finite,
where P(x, β) = n

βn−1xnβ+1 for 0 < ti < ∞,

(c) Then the function

Vi (T ) = tβi Ui (T ) − βtβ−1
i

P(ti , β)

∫ ∞

ti

U (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx

satisfies
EαVi (T ) = αi

βEαUi (T )

Next, since RJ (t) = ∑k
j=1

α j
β

tβ I j , define

Ui (t) =
{

1
tα if Tj = T(k)

0 otherwise
(8)

then we can write E(RJ (t)) = ∑k
i=1 αi

βE[Ui (t)], from lemma (4.2) we have

E[
k∑

i=1

Vi (T )] = E[
k∑

i=1

αi
βUi (T )]

which is the unbiased estimator of RJ (t).

Theorem 2.1 The UMVUE of RJ (t) is given by R̂U
J (t) = 1

n

(
T(k)

t

)β

[

n − 1 − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

.

Proof We have

Vi (t) = tβi Ui (t) − βtβ−1
i

P(ti , β)

∫ ∞

ti

Ui (t1, t2, . . . , ti−1, x, ti+1, . . . , tk)P(x, β)dx

= tβi
tβ

I (ti ≥ max
i 	= j

t j ) − βtβ−1
i

P(ti , β)

∫ ∞

ti

I (ti ≥ max
i 	= j

t j )
P(x, β)

tβ
dx

=
[

tβi − βtβ−1
i

P(ti , β)

∫ ∞

ti

P(x, β)dx

]
I (ti ≥ maxi 	= j t j )

tβ
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⇒ E
( k∑

i=1

Vi (T )
)

= 1

tβ

[

T β

(k) −
( k−1∑

i=1

βT β

i

P(Ti , β)

) ∫ ∞

T(k)

P(x, β)dx

]

= 1

n

(T(k)

t

)β
[

n − 1 −
k−1∑

i=1

( Ti
T(k)

)nβ+β
]

,

which is the UMVUE of RJ (t).

3 An Inadmissibility Result

In this section,wewill try to find out the formof an equivariant estimator of RJ (t). For
this, let us consider the scale group of transformationsG = {gc : gc(x) = cx, c > 0}.
Under this transformation α → cα, RJ → cβRJ . Hence, the decision problem is
invariant under this transformation in regards to the quadratic loss, given by

L(R̂J (t), RJ (t)) =
(
R̂J (t) − RJ (t)

RJ (t)

)2

,

where R̂J (t) is any estimator of RJ (t). An estimator h(T ) is said to be equivariant if

h(cT1, cT2, . . . , cTk) = cβh(T1, T2, . . . , Tk).

Let c = 1
Tk
, we have

h

(
T1
Tk

,
T2
Tk

, . . . ,
Tk−1

Tk
, 1

)

= 1

T β

k

h(T )

⇒ h(T ) = T β

k h(Z), (9)

where Z = (Z1, Z2, . . . , Zk−1), Zi = Ti
Tk

, for i = 1, . . . , k − 1 and let z = (z1, z2,
. . . , zk−1) be any observed value of Z .

It can be easily seen that the UMVUE is a scale equivariant estimator. We now
use the Brewster–Zidek technique for improving upon the equivariant estimators.

The risk of h(T ) for estimating Ri (t), for i = 1, 2, . . . , k is given by

R(T β

k h(Z), Ri (t)) = E[T β

k h(Z) − Ri (t)]2 = EZ [ET |Z (T β

k h(Z) − Ri (t))
2|Z ]

Differentiating the above equation with respect to h(Z). We see that the inner con-
ditional expectation is minimized by
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h∗
β(z) = Ri (t)

E(T β

k |Z = z)

E(T 2β
k |Z = z)

(10)

In order to find out the expectation above, we need the conditional density of Tk
given Z = z. It is given by

knβ α
knβ
i

t knβ+1
k zi knβ

,
αi

zi
≤ tk < ∞, and

αi+1

αi
≤ zi < ∞. (11)

(See also Kumar and Kar [9].
Hence

h∗
β(Z) = kn − 2

kn − 1

(
α j

tαi

)β

zi
β, i 	= j.

If we fix j and vary i such that i 	= j , we have

ĥβ(z) = sup h∗
β(Z) = kn − 2

kn − 1

(
max(z1, . . . , zk−1, 1)

t

)β

also inf h∗
β(z) = 0. (12)

Summarizing the above results the following theorem is concluded immediately.

Theorem 3.1 Let �(Z) be an estimator of R as defined in (5.1), then define an
estimator �∗(Z) by

�∗(Z) =
{

�(Z), if �(Z) < ĥβ(Z),

ĥβ(Z), otherwise.
(13)

Then, �∗(Z) is an improved estimator of �(Z) provided P{�(Z) ≥ ĥβ(Z)} > 0.

Remark 3.1 It can be seen that Theorem 3.1 will also hold good even for the usual
squared error loss function. This is because the proof ofBrewster–Zidek [3] technique
was established on the orbits of Z = z.

Remark 3.2 For n > 2, then the estimator R̂c
J = 1

n

(
T(k)

t

)β
[

c − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

uniformly dominates R̂U
J (t) = 1

n

(
T(k)

t

)β
[

n − 1 − ∑k−1
i=1

(
Ti
T(k)

)nβ+β
]

for n2−2n−1
n−1 ≤

c < n − 1.

Proof Consider the risk difference RD1 of the above two estimators. So,
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RD1 = E[(R̂U
J (t), RJ )

2 − (R̂c
J (t) − RJ (t))

2]
= E[(R̂U

J (t) + R̂c
J (t))((R̂

U
J (t) − R̂c

J (t)))]
− E[2RJ (t)((R̂U

J (t) − R̂c
J (t)))].

We have R̂U
J (t) + R̂c

J (t) = 1

n

(T(k)

t

)β
[

n − 1 + c − 2
k−1∑

i=1

( Ti
T(k)

)nβ+β
]

,

R̂U
J (t) − R̂c

J (t) = n − 1 + c

n

(T(k)

t

)β

and E[RJ (t)(R̂J (t) − R̂c
J (t))] = 1

tβ
E

[
n − 1 − c

n

k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]

Taking Ui (T ) = Ti
β I (Ti ≥ maxi 	= j Tj ), from Lemma 2.2, we have

E
[ k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]
=

k∑

i=1

E
[
Ti

2β I (Ti ≥ max
i 	= j

Tj )

− βTi
nβ+β

∫ ∞

Ti

I (x ≥ maxi 	= j Tj )

xnβ−β+1 dx
]

= E

[ T 2β
(k)

n − 1

(
n − 2 −

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

. (14)

With the help of (14), we are in a position to compute RD1.

RD1 = 1

tβ

[
n − 1 − c

n2
E

{
T 2β

(k)

(
n − 1 + c − 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)}

− 2
n − 1 − c

n(n − 1)
E

{
T 2β

(k)

(
n − 2 − 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)}]

= 1

tβ
n − 1 − c

n2(n − 1)
E

[

T 2β
(k)

(
1 + 2n − n2 + c(n − 1) + 2

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

. (15)

We see that for n2−2n−1
n−1 ≤ c < n − 1 andn > 2, then RD1 > 0.Hence the conclusion

follows immediately.

Remark 3.3 The natural estimator R̂∗
J (t) = (

T(k)

t )β is inadmissible.

Proof Consider the counterpart of theUMVUEfor the component problem ˆRAU
J (t) =

n−1
n (

T(k)

t )β . We claim that this estimator dominates uniformly the natural estimator
for n > 2. The risk difference between these two estimators RD2 is given by



20 A. K. Mahapatra et al.

RD2 = E[(R̂∗
J (t), RJ (t))

2 − ( ˆRAU
J (t) − RJ (t))

2]
= E[(R̂∗

J (t) + ˆRAU
J (t))((R̂∗

J (t) − ˆRAU
J (t)))

− E[2RJ (t)((R̂∗
J (t) − ˆRAU

J (t)))]
We have R̂∗

J (t) + ˆRAU
J (t) = 2n − 1

n

(T(k)

t

)β

,

R̂∗
J (t) − ˆRAU

J (t) = 1

n

(T(k)

t

)β

and E[RJ (t)(R̂∗
J (t) − ˆRAU

J (t))] = 1

tβ
E

[
1

n

k∑

i=1

(αi

t

)β

Ti
β I (Ti ≥ max

i 	= j
Tj )

]

Proceeding similarly as above, we have

RD2 = 1

tβ
2n − 1

n2(n − 1)
E

[

T 2β
(k)

(
n + 1 + 2n

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

> 0. (16)

Hence the conclusion follows.

Remark 3.4 The estimator ˆRAU
J (t) = n−1

n (
T(k)

t )β is inadmissible.

Proof For the component problem, let us consider the counterpart of the best scale

equivariant estimator, given by, R̂S
J (t) = n−2

n−1 (
T(k)

t )β . Here also we see that the esti-

mator R̂S
J (t) dominates uniformly ˆRAU

J for n > 2. We compute the risk difference
RD3, which is given by

RD3 = E[(R̂U
J (t), RJ (t))

2 − (R̂S
J (t) − RJ (t))

2]

= 1

tβ
1

n2(n − 1)2
E

[

T 2β
(k)

(
1 + 2n(n − 1)

k−1∑

i=1

( Ti
T(k)

)nβ+β)]

> 0. (17)

Hence the conclusion follows.

Conclusion: Under the mean squared error criterion the estimator R̂S
J dominates

R̂U
J , which once again improves upon the natural estimator R̂∗

J . Hence R̂U
J is pre-

ferred. One should not prefer R̂J unless one is not interested in the class of unbiased
estimators. Also we have R̂c

J which dominates R̂J .
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Inventory Model with Partial
Backordering and Single Deteriorating
Item for a Two-Warehouse System

S. K. Indrajitsingha , A. K. Sahoo , P. N. Samanta, and U. K. Misra

Abstract Present paper explores a model of inventories having deteriorating items
with kept in two warehouses. We also considered the shortages which are fulfilled by
partial backlogging in which the demand is depending upon the selling price. If the
ordering quantity exceeds the capacity of the owned warehouse, the excess amount
of stock will store in a rented warehouse. To reduce the storage cost, the items in
the rented warehouse are released first. Due to demand and deterioration in the first
interval the items in rented warehouse decreases to zero. On the other hand, the items
in the owned warehouse decreases only due to deterioration. After a certain period,
the inventory level in owned warehouse reaches zero and hence shortage starts. It is
assumed that the rate of backlogging and the demand are exponential functions. In
order to establish the model, we discussed with numerical examples and to study the
behaviour of the model, sensitivity analysis has been carried out.
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1 Introduction

The most successful operation research techniques that are used by the modern
industries or business is inventory theory. The economic value of a company always
depends upon the inventory and thus it plays an extremely important role in the
economy of any country. Since the primary function of inventory is to provide the
customer service in right time at right cost and at right place, the management part
of inventory should be taken very carefully. Though it depends upon various aspects
having different cost, our ultimate goal is to maximise the profit in the business.
Among them the main factor is to maintain more stock byminimizing the investment
cost. Here, the main objective is to resolve, where the inventories be stored. Most of
the researchers worked by taking a single warehouse with unlimited capacity. But
in actual practice, a warehouse has limited capacity. Hartely [1] is the first person
to explore the model having different warehouses (owned and rented) in 1976. The
inventory are put away first in the owned warehouse having fixed limit ‘W ’ and the
main overabundance units are put away in rented warehouse. Clearly, the holding
cost of a rented warehouse is higher than that of owned warehouse. In 1987, a
deterministic model with two storage facilities have been developed by Sharma [2].

In 1992,Goswami andChaudhuri [3] designed an inventorymodel,which includes
both with and without shortages having linearly increasing demand. Subsequently in
the same year Pakkala and Achary [4] planned a two-warehouse inventory model for
deteriorating items with finite replenishment rate. In 1997, Bomkherouf [5] extended
the work of Palkkala by considering two shortage facilities. However, in 2004, Yang
[6] gave an effective result of the Bomkherouf”s model under inflation. Other promi-
nent papers along this path have been established by Lee and Hsu [7], Yang [8], Jaggi
and Verma [9].

A recent work towards this direction are by Cheng and Zhang [10], Cardenas-
Barron [11], Liang and Zhou [12] and Sett et al. [13]. It is found that numerous
analysts have been working on inventory management taking two-warehouse for
keeping more stock with exponentially growing demand. In 2012, Yadav et al. [14]
considered a fuzzy inventory model for deteriorating items with two-warehouse and
demand depending upon stock by the help of genetic algorithm. Yang and Chang
[15] developed a two-warehouse inventorymodel with partially backlogging in 2013.
In 2015, Shabani et al. [16] designed an inventory model with fuzzy deterioration
and demand rate in which stocks are stored in two warehouses. In 2016, Tiwari et al.
[17] did an effective work on impact of trade credit and inflation on retailers ordering
policies for non-instantaneous deteriorating items in a two-ware-house environment.
Mandal and Giri [18] developed an inventory model under stock-dependent demand
quantity with discount offer in two stockrooms. Most recently, Indrajitsingha et al.
[19] considered a two-warehouse inventory model with a linear demand depending
upon selling price and partially backlogging shortages. But in this model, the demand
is exponential function. In the present article, we extended the above model by
developing a two-warehouse inventory model in which demand is exponentially
increasing and affecting the total average cost of the model in a short period of time.
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2 Notations

OW Owned warehouse.
RW Rented warehouse.
Ir (t) Amount of stock in RW at time t.
Io(t) Amount of stock in OW at time t.
θ Rate of deterioration.
α Initial demand rate.
β Positive demand parameter.
tr Time at which the inventory level in rented warehouse depletes to zero.
to Time at which the inventory level in ownedwarehouse depletes to zero.
W Storage capacity of OW.
p Selling price ($/unit/year).
D(p) Demand rate depending upon selling price.
q Order quantity.
PC Purchasing cost.
HC Holding cost.
DC Deterioration cost.
SC Shortage cost.
LC Lost sale cost.
S Initial stock level.
q1 Backorder quantity during stock out.
T Length of the replenishment cycle.
c Purchasing cost ($/unit/day).
k Backlogging rate.
hr Holding cost ($/unit/year) in RW.
ho Holding cost ($/unit/year) in OW.
d Unit deterioration cost ($/unit/day).
C1 Shortage cost per unit ($/unit/day).
C2 Unit lost sale cost ($/unit/day).
T AC(tr , to) Total average cost ($/unit/day).

3 Assumptions

Through out the paper we assume that:

(i) The model consists of a finite planning horizon.
(ii) The demand rate is exponential and depending upon selling price, i.e. D(p) =

αp−β, α, β > 0.
(iii) Negligible lead time.
(iv) The shortages are allowed and backlogged partially.
(v) The limited capacity owned warehouse.
(vi) The unlimited capacity rented warehouse.
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(vii) The unit holding cost of RW is more than that of OW.
(viii) Those products have deteriorating nature are considered.
(ix) Higher powers of θ are neglected.
(x) Items are kept in OW first.
(xi) Items are stored in RW will be consumed first.

4 Mathematical Formulation

The issuewhichwe have discussed here is themeans bywhich retailers knowwhether
or not to take a rented warehouse to hold the things. If the order quantity q ≤W, then
it is not necessary to take rented warehouse. But, if q > W, then W units are stored
in owned warehouse and the remaining is dispatched into the rented warehouse. So
during the interval (o, tr), the items in rented warehouse decrease due to demand and
deterioration until it reaches level zero. On the other hand, a portion on the inventory
in owned warehouse is depleted due to deterioration only. During the interval (tr , to)
the inventory in owned warehouse decreases due to demand and deterioration. After
t = to, shortages start and backlogging rate is negative exponential function of time.
The pictorial representation of the above system can be represented by Fig. 1 and
the behaviour of the problem is instructed by the following differential equations.

d Ir (t)

dt
= −θ Ir (t) − αp−β, 0 ≤ t ≤ tr (1)

Fig. 1 Inventory time graph for two warehouses
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with Ir (tr ) = 0.

d Io(t)

dt
= −θ Io(t), 0 ≤ t ≤ tr (2)

with Io(0) = W .

d Io(t)

dt
= −θ Io(t) − αp−β, tr ≤ t ≤ to (3)

with Io(to) = 0.
The solutions of (1), (2) and (3) are as follows:

Ir (t) = αp−β

θ

{
eθ(tr−t)

}
0 ≤ t ≤ tr , (4)

Io(t) = We−θ t , 0 ≤ t ≤ tr , (5)

Io(t) = −αp−β

θ
+ αeθ to .p−β

θ
e−θ t tr ≤ t ≤ to. (6)

From (5), we have

Ir (0) = S − W

S = αp−β

θ

(
eθ tr − 1

)
(7)

At t = tr , Eqs. (5) and (6) yield.

W = αp−β

θ
eθ tr

{
eθ(to−tr ) − 1

}
(8)

S = αp−β

θ

{
eθ to − 1

}
(9)

With the above data following parameters are calculated:

PC = (S + q1)c,

where

q1 = T∫
to
kαp−βdt.

Then,
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PC =
{
αp−β

{
eθ to − 1

θ
+ k(T − to)

}}
c. (10)

HC = HCr + HCo,

where

HCr = hr
tr∫
0
Ir (t)dt = hrαp−β

θ

{(
eθ tr − 1

θ

)
− tr

}
. (11)

And

HCo = ho

{
tr∫
0
Io(t)dt + to∫

tr
Io(t)dt

}

= ho
θ

{
W

(
1 − e−θ tr

) − αp−β

θ

(
1 − eθ(to−tr )

) − αp−β

θ
(to − tr )

}
(12)

DC = DCr + DCo,

where

DCr = d

{
αp−β

{
eθ tr − 1

θ
− tr

}}
. (13)

And

DCo = d
{
W − αp−β(to − tr )

}
. (14)

SC = C2

T∫
to

αp−βdt = C2αp
−β(T − to) (15)

LC = C3

T∫
to
(1 − k)αp−βdt = C3(1 − k)αp−β(T − to). (16)

Total average cost T AC(tr , to) for this model during a cycle is given by

T AC(tr , to) = 1

T
[PC + HC + DC + SC + LC]

= 1

T

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

{
αp−β

{
eθ to − 1

θ
+ k(T − to)

}}
c + hrαp−β

θ

{(
eθ tr − 1

θ

)
− tr

}

+ ho
θ

{
W

(
1 − e−θ tr

) − αp−β

θ

(
1 − eθ(to−tr )

)
− αp−β

θ
(to − tr )

}

+ d

{
αp−β

{
eθ tr − 1

θ
− tr

}}
+ d

{
W − αp−β (to − tr )

} + C1αp
−β (T − to)

+ C2(1 − k)αp−β (T − to)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (17)
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To minimize the total average cost function T AC(t1, t2) per unit time, the values
of tr and to can be obtained by solving the equations:

∂T AC(tr , to)

∂tr
= 0 and

∂T AC(tr , to)

∂to
= 0. (18)

Thus, values of tr and to obtained from the above equations will minimize the
total cost function.

5 Numerical Examples

Let us consider the realistic values of the parameters in these two examples which
are not considered from any case study.

Example 1 Supposeα = 85 units,β = 0.001, p = $23/unit/day, k = 0.7 unit,C1 =
$12/unit/day, C2 =$11/unit/day, c = $15/unit/day, θ = 0.006, W = 100 units, d =
0.5 unit, h̃r = $. 0.07/unit/day, h̃o = $ 0.06/unit/day, T = 365 days. Corresponding
to these input values, tr = 30.1824 days, to = 73.5827 days will minimize TAC and
the minimum value is T AC(tr , to) = $2085.64.

Example 2 Suppose α = 80 units, β = 0.01, p = $23/unit/day, k = 0.7 unit, C1 =
$12/unit/day, C2 = $11/unit/day, c = $15/unit/day, θ = 0.006, W = 100 units, d =
0.5 unit, h̃r = $. 0.07/unit/day, h̃o = $ 0.06/unit/day, T = 365 days. Corresponding
to these input values, tr = 30.1424 days, to = 73.5684 days will minimize TAC and
the minimum value is T AC(tr , to) = $1908.38.

6 Sensitivity Analysis

The following observations are carried out by changing the parameters θ, β, α and
T using Mathematica 11.1 software.

• Table 1 indicates the value of θ increases, total average cost increases with a
decrease in tr and to.

Table 1 Sensitivity analysis of Deterioration rate (θ)

θ tr to T AC

0.006 30.1555 73.5731 1962.99

0.008 22.9873 58.0709 1982.51

0.010 18.3142 47.954 1995.35

0.012 15.0313 40.8352 2004.44

0.014 12.6015 35.551 2011.21

0.016 10.7324 31.4834 2016.44

(continued)



30 S. K. Indrajitsingha et al.

Table 1 (continued)

θ tr to T AC

0.018 9.25135 28.2481 2020.61

0.020 8.05005 25.6156 2024.01

0.022 7.05693 23.432 2026.84

0.024 6.2229 21.5913 2029.22

• Table 2 indicates as the value of β increases, total average cost decreases with a
decrease in tr and to very slowly.

Table 2 Sensitivity analysis of positive demand parameter (β)

β tr to T AC

0.001 30.1555 73.5731 1962.99

0.003 30.1526 73.5721 1950.72

0.005 30.1497 73.5711 1938.53

0.007 30.1468 73.57 1926.41

0.009 30.1439 73.569 1914.37

0.011 30.1409 73.5679 1902.41

0.013 30.138 73.5668 1890.52

0.015 30.135 73.5658 1878.71

0.017 30.132 73.5647 1866.97

0.019 30.1289 73.5636 1855.3
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Table 3 Sensitivity analysis of initial demand rate (α)

α tr to T AC

70 30.0901 73.5497 1717.69

72 30.1046 73.5549 1766.75

74 30.1184 73.5598 1815.81

76 30.1314 73.5645 1864.87

78 30.1438 73.5689 1913.93

80 30.1555 73.5731 1962.99

82 30.1667 73.5771 2012.05

84 30.1773 73.5809 2061.11

86 30.1875 73.5845 2110.17

88 30.1971 73.588 2159.23

• Table 3 indicates as the value of α increases, total average cost increases with a
very little increasing effect on tr and to.

• Table 4 indicates as the value of T decreases, total average cost decreases and
there is no effect on tr and to.

Table 4 Sensitivity analysis of total time period (T)

T tr to T AC

365 30.1555 73.5731 1962.99

355 30.1555 73.5731 1960.32

345 30.1555 73.5731 1957.51

335 30.1555 73.5731 1954.52

325 30.1555 73.5731 1951.35

315 30.1555 73.5731 1947.98

305 30.1555 73.5731 1944.39

(continued)
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Table 4 (continued)

T tr to T AC

295 30.1555 73.5731 1940.55

285 30.1555 73.5731 1936.45

275 30.1555 73.5731 1932.04

7 Conclusion

This article amalgaments the concepts of two-warehouse inventory model of single
deteriorating items with shortages under partially backlogging, where demand is
considered as an exponential function. From this model, we conclude that the time
period of rented warehouse and owned warehouse has no effect, while the total time
period is either going increase or decrease and it is directly proportional to total
average cost. Therefore this model will be very much profitable for the business in
which the stock period is less. For future research, this study can be extended by
considering preservation technology in deterioration.

References

1. V.R. Hartely, Operations Research—A Managerial Emphasis (Santa Monica, CA, 1976),
pp. 315–317

2. K.V.S. Sarma, A deterministic order-level inventory model for deteriorating items with two
storage facilities. Eur. J. Oper. Res. 29, 70–73 (1987)

3. A. Goswami, K.S. Chaudhuri, An economic order quantity model for items with two levels of
storage for a linear trend in demand. J. Oper. Res. Soc. 43, 157–167 (1992)

4. T.P.M. Pakkala, K.K. Achary, A deterministic inventory model for deteriorating items with two
warehouses and finite replenishment rate. Eur. J. Oper. Res. 57, 71–76 (1992)

5. L. Benkherouf, A deterministic inventory model for deteriorating items with two storage
facilities. Int. J. Prod. Econ. 48(1), 167–175 (1997)

6. H.H. Yang, Two-ware house inventory models for deteriorating items with shortages under
inflation. Eur. J. Oper. Res. 157, 344–356 (2004)

7. C.C. Lee, S.L. Hsu, A two-warehouse production model for deteriorating inventory items with
time dependent demands. Euro. J. Oper. Res. 194(3), 700–710 (2009)



Inventory Model with Partial Backordering and Single Deteriorating Item … 33

8. H.L. Yang, Two-warehouse inventory models for deteriorating items with shortages under
inflation. Euro. J. Oper. Res. 157(2), 344–356 (2004)

9. C.K. Jaggi, P. Verma, Joint optimization of price and order quantity with shortages for a
two-warehouse system. Top (Spain) 16(1), 195–213 (2008)

10. M. Cheng, B. Zhang, G. Wang, Optimal policy for deteriorating items with trapezoidal type
demand and partial backlogging. Appl. Math. Model. 35, 3552–3560 (2011)

11. L.E. Cardenas-Barron, The economic production quantity (EPQ) with shortage derived
algebraically. Int. J. Prod. Econ. 70, 289–292 (2011)

12. Y.Liang, F.Zhou,A two-warehouse inventorymodel for deteriorating itemsunder conditionally
permissible delay in payments. Appl. Math. Model. 35(1), 2221–2231 (2011)

13. B.K. Sett, B. Sarkar, A. Goswami, A two-ware house inventory model with increasing demand
and time varying deterioration. Sci. Iran. Trans. E Ind. Eng. 19, 306–310 (2012)

14. D. Yadav, S.R. Singh, R. Kumari, Inventory model of deteriorating items with two-warehouse
and stock dependent demand using genetic algorithm in fuzzy environment. Yugoslav J. Operat.
Res. 22(1), 51–78 (2012)

15. H.L.Yang, C.T. Chang,A two-warehouse partial backlogging inventorymodel for deteriorating
itemswith permissible delay in payment under inflation. Appl.Math.Model. 37(1), 2717–2726
(2013)

16. S. Shabani, A. Mirzazadeh, E. Sharifi, A two-warehouse inventory model with fuzzy deterio-
ration rate and fuzzy demand rate under conditionally permissible delay in payment. J. Indus.
Prod. Eng. 33(8), 516–532 (2015)

17. S. Tiwari, L.E. Cardenas-Barron, A. Khanna, C.K. Jaggi, Impact of trade credit and inflation
on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse
environment. Int. J. Prod. Econ. 176, 154–169 (2016)

18. P. Mandal, B.C. Giri, A two-warehouse integrated inventory model with imperfect production
process under stock dependent demand quantity discount offer. Int. J. Syst. Sci. Operat. Logist.
4(4), 1–12 (2017)

19. S.K. Indrajitsingha, P.N. Samanta and U.K. Misra, A fuzzy two-warehouse inventory model
for single deteriorating itemwith selling price dependent demand and shortages under partially
backlogged condition. Applicat. Appl. Math. 14(1), 511–536, ISSN 1932-9466 (2019)



On Factorization of Sixth-Degree
Polynomial of Type-(3,3)

Anjan Debnath

Abstract A special type of monic polynomial equations of degree 6 with real coef-
ficients has been chosen, and it is shown how to obtain the complete factorization
provided the given equation is factorisable in to two cubic equations satisfying some
special conditions. Important examples and several results have been provided in
order to establish the ideas and methodologies.

Keywords Computation of polynomials · Factorization of polynomials ·
Sixth-degree equation
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1 Introduction

An expression of the form

pn(x) := a0x
n + a1x

n−1 + · · · + an−1x + an

is called a univariate polynomial in x or simply a polynomial in x with coefficients
a0, a1, . . . , an , which we regard as reals only in this paper. n ∈ N is the degree of
this polynomial pn(x). The coefficients a0 and an are called the leading coefficient
and the constant term, respectively. Clearly, the equation is of degree n implies the
leading coefficient a0 is non-zero. The expression pn(x) = 0 is called polynomial
equation in x .

In literature, solution of any univariate polynomial equation under radical sign
is an interesting problem provided when the degree of the polynomial is at most
4. In case, the degree is 5 or higher, it is very well known to us, that the general
method of determination of solution under radical sign is impossible. There are
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some special methods through which one can find the solution of some special
polynomial equations. In [1], a special case of pentic polynomials has been shown
how to factorize.

In the present paper, we have considered a different approach. We consider a very
specific type of polynomials based on their factorisation. Let us first define them.
This definition is provided in [1] already. We restate the same here for the present
purpose. We shall use S[x] to denote the set of all polynomials with coefficients from
the set S where S can be either R or Q or Z.

Definition 1.1 A polynomial pn(x) with real coefficients is said to be of type
(l1, l2, . . . , lm) ∈ N × · · · × N if pn(x) can be expressed as a product of m number
of non-constant polynomials gl1(x), . . . , glm (x) of degree l1, . . . , lm , respectively.

For example, the polynomial x4 − 1 is of type (2, 2) because x4 − 1 = (x2 −
1)(x2 + 1). Similarly, the polynomial x5 + 6x3 + x2 + 8x + 4 is of type (3, 2) type
because

x5 + 6x3 + x2 + 8x + 4 = (x3 + 2x + 1)(x2 + 4).

Remark 1.1 It is important to note that, if a polynomial is not of type (l1, l2, . . . ,
lm) ∈ N × · · · × N, the polynomial is not of our interest and we ignore them.

Remark 1.2 Secondly, a polynomial in R[x], if be reducible in to smaller degree
non-constant polynomials in R[x], can be of several types. For example, x4 − 1 is
of type (2, 2) as well as (2, 1, 1) because

x4 − 1 = (x2 + 1)(x + 1)(x − 1).

Similarly, the polynomial p4(x) := x4 + 5x3 + 5x2 − 5x − 6 is of type (3, 1) as
well as of type (2, 2), (2, 1, 1), (1, 1, 1, 1) because

p4(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x3 + 6x2 + 11x + 6)(x − 1)

(x2 − 1)(x2 + 5x + 6)

(x2 − 1)(x + 2)(x + 3)

(x − 1)(x + 1)(x + 2)(x + 3).

Remark 1.3 Thirdly, it is not important in which order the polynomial is being
factored to determine its type. For example, in the above example p4(x) has been
written as (x2 − 1)(x + 2)(x + 3). Note that p4(x) can also be written (x2 + 3x +
2)(x − 1)(x + 3) as well. In either case, p4(x) can be regarded of type (2, 1, 1).
Hence, in general, we just need a particular factorisation of the given polynomial to
be of some specific type and that’s all.

Remark 1.4 Amonic equation is a polynomial equation in which the leading coef-
ficient is 1. Else the equation is referred as non-monic. Every non-monic polynomial
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equation of degree n say, a0xn + a1xn−1 + · · · + an = 0 can be transformed into
a monic equation through the transformation y = a0x . Therefore, without loss of
generality, we consider monic equations only.

Remark 1.5 In this paper, we consider monic bicubic polynomials with real coeffi-
cients. Since factorization of any bicubic polynomials with real coefficients is itself
a difficult task, we focus on a specific case where the coefficients are integers and
the given monic bicubic polynomial is of type (3, 3) such that sum of three roots of
the corresponding bicubic equation is zero.

Remark 1.6 Finally, the main aim of this paper is not to show how to solve a sixth-
degree polynomial equation but, how to factorize in the desired form. Once such
factorization is complete, by solving the equations formed by equating to zero each
of the factors, one can derive the solutions. The solution part is left to the reader. We
rather focus on factorization only.

2 Methodology

Let f6(x) := x6 + ax5 + bx4 + cx3 + dx2 + ex + f ∈ R[x] where e is merely a
real coefficient, not the usual Euler’s exponential real constant “e" and f �= 0 be such
that where f �= 0 be such that the sum of three roots of f6(x) = 0 is 0. We assume
f6(x) can bewritten as product of two cubic polynomials f31(x), f32(x) say, f6(x) =
f31(x) f32(x). We further assume the roots are x = −α,−β,−γ,−δ,−λ,−μ and
δ + λ + μ = 0 where

f31(x) = x3 + (α + β + γ)x2 + (αβ + αγ + βγ)x + αβγ, (2.1)

f32(x) = x3 + (δλ + δμ + λμ)x + δλμ. (2.2)

Since f6(x) = f31(x) f32(x), equating the coefficients of similar terms, we obtain
the following list

a = α + β + γ, (2.3)

b = (αβ + αγ + βγ) + (δλ + δμ + λμ), (2.4)

c = (α + β + γ)(δλ + δμ + λμ) + αβγ + δλμ, (2.5)

d = (α + β + γ)δλμ + (αβ + αγ + βγ)(δλ + δμ + λμ), (2.6)

e = (αβ + αγ + βγ)δλμ + αβγ(δλ + δμ + λμ), (2.7)

f = αβγ × δλμ. (2.8)

For Eq. (2.3), the Eqs. (2.5) and (2.6) reduce to
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c = a(δλ + δμ + λμ) + αβγ + δλμ, (2.9)

d = a(δλμ) + (αβ + αγ + βγ)(δλ + δμ + λμ). (2.10)

For Eq. (2.4) and Eq. (2.5), the Eq. (2.7) becomes

ae = αβγ{a(δλ + δμ + λμ)} + δλμ{a[b − (δλ + δμ + λμ)]}
⇒ ae = u(c − u − v) + v[ab − (c − u − v)]
⇒ u2 − v2 − uc − v(ab − c) + ae = 0, (2.11)

where u = αβγ, v = δλμ. Clearly, uv = f and as f �= 0 so are u, v.
Again from Eq. (2.9), we get

a(δλ + δμ + λμ) = c − u − v. (2.12)

Using Eqs. (2.12), (2.4) becomes

αβ + αγ + βγ = b − (δλ + δμ + λμ)

⇒ a(αβ + αγ + βγ) = (ab − c) + u + v. (2.13)

Multiplying Eqs. (2.12) and (2.13), it follows that

a2(αβ + αγ + βγ)(δλ + δμ + λμ) = (c − u − v)(ab − c + u + v)

⇒ a2(d − av) = c(ab − c) + cu + cv

− (ab − c)u − u2 − uv − (ab − c)v − uv − v2

⇒ u2 + v2 + (ab − 2c)u + (ab − 2c − a3)v − c(ab − c) + 2 f + a2d = 0.
(2.14)

Now adding Eqs. (2.11) and (2.14), we see that

2u2 + (ab − 3c)u + (ab − 2c − a3 − ab + c)
f

u
+ ae + a2d + 2 f − c(ab − c) = 0

⇒ 2u3 + (ab − 3c)u2 + [a2d + ae + 2 f − c(ab − c)]u − (a3 + c) f = 0.
(2.15)

Also, subtracting Eq. (2.11) from Eq. (2.14) and using uv = f , we get

2v2 + (ab − 2c + c)u + (ab − 2c − a3 + ab − c)v

+ 2 f + a2d − c(ab − c) − ae = 0

⇒ (ab − c)u3 + [2 f + a2d − c(ab − c) − ae]u2
+ f (2ab − 3c − a3)u + 2 f 2 = 0. (2.16)
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Here, Eq. (2.16) is a cubic equation in u provided ab − c �= 0. As a consequence,
we have obtain a system of two cubic equations in u:

• 2u3 + (ab − 3c)u2 + [a2d + ae + 2 f − c(ab − c)]u − (a3 + c) f = 0, (2.17)

• (ab − c)u3 + [2 f + a2d − c(ab − c) − ae]u2 + f (2ab − 3c − a3)u + 2 f 2 = 0.
(2.18)

This system will have a common root if the resultant of this system is zero, which is
regarded as required condition that f6(x) can be factored into the desired form stated
in first page.

Example 2.1 Let us consider f6(x) = 0 where

f6(x) := x6 + 5x5 + 9x4 + 26x3 + 38x2 + 45x + 28.

Here, a = 5, b = 9, c = 26, d = 38, e = 45, f = 28. Then A1 = 2, B1 = ab −
3c = −33,C1 = a2d + ae + 2 f − c(ab − c) = 737, D1 = − f (a3 + c) = −4228.

Also, A2 = ab − c = 19, B2 = 2 f + a2d − c(ab − c) − ae = 287,C2= f (2ab
− 3c − a3) = −3164, D2 = 2 f 2 = 1568.

Since ab − c �= 0, Eqs. (2.17) and (2.18) become

2u3 − 33u2 + 737u − 4228 = 0, (2.19)

19u3 + 287u2 − 3164u + 1568 = 0. (2.20)

Here, Eq. (2.19)×19−Eq. (2.20)×2 andEq. (2.19)×19+Eq. (2.20)×2 yield, respec-
tively

−1201u2 + 20331u − 83468 = 0, (2.21)

2981u2 + 41489u − 436492 = 0. (2.22)

Since this system has at least one common solution, using technique of cross-
multiplication, we get

u2

−5411315000
= u

−773045000
= 1

−110435000

⇒ u = u2

u
= u

1
= +

√
u2

1
⇒ u = 7, 7,+7.

Clearly u = c2 = 7. Hence uv = f gives v = 4. But ab2 = c − u − v where b2 =
δλ + δμ + λμ. So b2 = 3 and, therefore, x3 + b2x + c2, i.e., x3 + 3x + 4 is a factor
of f6(x). Dividing f6(x) by x3 + 3x + 4, the other factor x3 + 5x2 + 6x + 7 is
obtained and so



40 A. Debnath

f6(x) = (x3 + 5x2 + 6x + 7)(x3 + 3x + 4).

Clearly solving x3 + 3x + 4 = 0 and x3 + 5x2 + 6x + 7 = 0, one can obtain the
roots of f6(x) = 0.

Remark 2.1 The above process is valid when ab − c �= 0. If ab = c occurs, the
system of equations consisting Eqs. (2.17) and (2.18) reduces to a system in which
Eq. (2.17) is cubic equation and Eq. (2.18) is either a quadratic equation or linear
equation or merely a constant. The last case is impossible except the case 0 = 0. For
the other two cases, it is the best choice to solve Eq. (2.18) directly and check the
valid value of u by substituting in Eq. (2.17).

For example, consider F(x) := x6 + 4x5 + 9x4 + 36x3 + 44x2 + 74x + 60.
Here, a = 4, b = 9, c = 36, d = 44, e = 74, f = 60, and ab − c = 0. Therefore,
we have

2u3 − 72u2 + 1120u − 6000 = 0, (2.23)

528u2 − 6000u + 7200 = 0. (2.24)

Equation (2.24) is not cubic equation but a quadratic equation. Solving we get,
u = 10, 15

11 , of which u = 10 satisfies Eq. (2.23). So the required common root is
u = 10 and consequently one factor x3 + 5x + 6 of F(x) is achieved. The other one
will be x3 + 4x2 + 4x + 10 and so

F(x) = (x3 + 5x + 6)(x3 + 4x2 + 4x + 10).

The roots of F(x) = 0 will be found after solving x3 + 5x + 6 = 0 and x3 +
4x2 + 4x + 10 = 0.

Remark 2.2 We shall refer the system consisting the Eqs. (2.17) and (2.18) as the
system of auxiliary equations and shall useA( f6(x)) to denote this system. At a later
stage, we shall derive more other alternative auxiliary equations.

We have already known the resultant is necessary and sufficient condition of the
auxiliary equations in the system A( f6(x)) which gives us permission to derive the
common root u. Since the resultant of the systemA( f6(x)) is a determinant of order
6 × 6 and might be gigantic from computational point of view, we proceed to search
for alternative criteria in the next section. Let us denote this criteria as C(A) where
A stands for A( f6(x)).

3 Determination of Criteria C(A)

First of all, the system A( f6(x)) is of the form
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A1u
3 + B1u

2 + C1u + D1 = 0, (3.1)

A2u
3 + B2u

2 + C2u + D2 = 0. (3.2)

where A1 �= 0 and Eq. (3.2) is at most a cubic equation. We assume this system
possesses at least one common solution.

Now A2 × Eq. (3.1) −A1 × Eq. (3.2) gives

B12u
2 + C12u + D12 = 0,

where B12 = A2B1 − A1B2,C12 = A2C1 − A1C2, D12 = A2D1 − A1D2.Next,D2 ×
Eq. (3.1) −D1 × Eq. (3.2) gives

Ā12u
3 + B̄12u

2 + C̄12u = 0

⇒ Ā12u
2 + B̄12u + C̄12 = 0

as uv = f and f �= 0 imply u �= 0, v �= 0, where Ā12 = A1D2 − A2D1, B̄12 =
B1D2 − B2D1, C̄12 = C1D2 − C2D1.

Therefore, we now have got the following system

B12u
2 + C12u + D12 = 0, (3.3)

Ā12u
2 + B̄12u + C̄12 = 0. (3.4)

Hence,

u2

C12C̄12 − D12 B̄12
= u

D12 Ā12 − B12C̄12
= 1

B12 B̄12 − C12 Ā12
. (3.5)

Since u = u2

u = u
1 = ±

√
u2
1 where plus or minus sign will be taken according as both

ratios u2

u , u
1 are plus or minus, respectively, therefore

u = �2

�1
= �1

�0
= ±

√
�2

�0

where

�2 =
∣
∣
∣
∣
C12 D12

B̄12 C̄12

∣
∣
∣
∣ ,�1 =

∣
∣
∣
∣
D12 A12

C̄12 Ā12

∣
∣
∣
∣ ,�0 =

∣
∣
∣
∣
B12 C12

Ā12 B̄12

∣
∣
∣
∣ .

Equating the first two ratios, we get the desired condition C(A) as

∣
∣
∣
∣
B12 C12

Ā12 B̄12

∣
∣
∣
∣

∣
∣
∣
∣
C12 D12

B̄12 C̄12

∣
∣
∣
∣ =

∣
∣
∣
∣
B12 D12

Ā12 C̄12

∣
∣
∣
∣

2

, (3.6)
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where

B12 = −
∣
∣
∣
∣
A1 B1

A2 B2

∣
∣
∣
∣ ,C12 = −

∣
∣
∣
∣
A1 C1

A2 C2

∣
∣
∣
∣ , D12 = −

∣
∣
∣
∣
A1 D1

A2 D2

∣
∣
∣
∣ ,

Ā12 =
∣
∣
∣
∣
A1 D1

A2 D2

∣
∣
∣
∣ , B̄12 =

∣
∣
∣
∣
B1 D1

B2 D2

∣
∣
∣
∣ , C̄12 =

∣
∣
∣
∣
C1 D1

C2 D2

∣
∣
∣
∣

with

A1 = 2, A2 = ab − c,
B1 = ab − 3c, B2 = 2 f + a2d − ae − c(ab − c),
C1 = a2d + ae + 2 f − c(ab − c), C2 = f (2ab − 3c − a3),
D1 = − f (a3 + c), D2 = 2 f 2.

In Example 2.1, we found A1 = 2, B1 = −33,C1 = 737, D1 = −4228 and A2 =
19, B2 = 287,C2 = −3164, D2 = 1568. The LHS (3.6) of C(A) is

∣
∣
∣
∣
−1201 20331
83468 1161692

∣
∣
∣
∣

∣
∣
∣
∣
20331 −83468

1161692 −12221776

∣
∣
∣
∣ = 210587413216992,

where RHS (3.6) is

∣
∣
∣
∣
−1201 −83468
83468 −12221776

∣
∣
∣
∣

2

= 468517280467600000000 = 210587413216992.

Thus, C(A) is satisfied. Required common root u is given by

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C12C̄12−D12 B̄12

D12 Ā12−B12C̄12
= 7

D12 Ā12−B12C̄12

B12 B̄12−C12 Ā12
= 7

±
√

C12C̄12−D12 B̄12

B12 B̄12−C12 Ā12
= ±7,

where we chose plus sign.

4 More Auxiliary Equations

4.1. First, we recall the Eqs. (2.11) and (2.14) once again.

u2 − v2 − uc − v(ab − c) + ae = 0, (4.1)

u2 + v2 + (ab − 2c)u + (ab − 2c − a3)v − c(ab − c) + 2 f + a2d = 0. (4.2)
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Since uv = f , i.e., v = f
u , so Eq. (4.1) becomes

u4 − cu3 + aeu2 − f (ab − c)u − f 2 = 0. (4.3)

Similarly, Eq. (4.2) becomes

u4 + (ab − 2c)u3 + [a2d + 2 f − c(ab − c)]u2 + f (ab − 2c − a3)u + f 2 = 0.
(4.4)

4.2. Let us write

∑
α = α + β + γ,

∑
αβ = αβ + αγ + βγ,

∑
δλ = δλ + δμ + λμ.

Then all the equations from Eqs. (2.3) till (2.10) can be rewritten as

a =
∑

α, (4.5)

b =
∑

αβ +
∑

δλ, (4.6)

c =
∑

α
∑

δλ + u + v, (4.7)

d = v
∑

α +
∑

αβ
∑

δλ, (4.8)

e = v
∑

αβ + u
∑

δλ, (4.9)

f = u × v, (4.10)

c − u − v = a
∑

δλ, (4.11)

d − av =
∑

αβ
∑

δλ. (4.12)

From Eq. (4.12), we get

a(d − av) =
∑

αβ × a
∑

δλ

⇒ ad − a2v = (c − u − v)
∑

αβ (4.13)

by Eq. (4.11).
Again, from Eq. (4.9),

e(c − u − v) = v(c − u − v)
∑

αβ + u(c − u − v)
∑

δλ

⇒ ae(c − u − v) = av(ad − a2v) + u(c − u − v) × a
∑

δλ. (4.14)
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Let us simplify Eq. (4.14). Using Eq. (4.7), we see that

av(ad − a2v) + u(c − u − v) × a
∑

δλ

= a2v(d − av) + u(c − u − v) × (c − u − v)

= u3 − 2cu2 − a3v2 + (c2 + 2 f )u + (a2d + f )v − 2c f.

Hence Eq. (4.14) becomes

u3 − 2cu2 − a3v2 + (c2 + 2 f + ae)u + (a2d + f + ae)v − (2 f + ae)c = 0,
(4.15)

⇒ u5 − (2c)u4 + (c2 + 2 f + ae)u3

− c(2 f + ae)u2 + f (a2d + f + ae)u − a3 f 2 = 0 (4.16)

which is another auxiliary equation in u of degree 5.

4.3. Let us reconsider Eq. (4.9). Using Eq. (4.6), we obtain

e = ub + (v − u)
∑

αβ

⇒ e(c − u − v) = ub(c − u − v) + (v − u)(ad − a2v), by Eq(4.13)

⇒ bu2 + a2v2 + (ad − bc − e)u − (ad + e)v + (b f − a2 f + ce) = 0, (4.17)

⇒ bu4 + (ad − bc − e)u3 + (b f − a2 f + ce)u2 − f (ad + e)u + a2 f 2 = 0.
(4.18)

4.4. Furthermore, adding Eqs. (4.8), (4.9) and using Eq. (4.6), we have

a2(d + e) = a2[av + v(b −
∑

δλ) + (u + b −
∑

δλ)
∑

δλ]
⇒ a2(d + e) = a3v + av(ab − c + u + v)

+ (au + ab − c + u + v)(c − u − v)

⇒ (a + 1)u2 − (a − 1)v2 + (ab − 2c − ac)u − (a3 + a2b − ac − ab + 2c)v

+ (a2(d + e) − abc + c2 + 2 f ) = 0, (4.19)

⇒ (a + 1)u4 + (ab − 2c − ac)u3 + [a2(d + e) − abc + c2 + 2 f ]u2
− f (a3 + a2b − ac − ab + 2c)u − f 2(a − 1) = 0. (4.20)

On the other hand, subtracting Eq. (4.9) from Eq. (4.8) and using Eq. (4.6) we get
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d − e = av − v(b −
∑

δλ) + (b −
∑

δλ − u)
∑

δλ,

⇒ a2(d − e) = a3v − av(ab − c + u + v) + (ab − c + u + v − au)(c − u − v)

⇒ a2(d − e) = (a − 1)u2 − (a + 1)v2 − (ab − 2c + ac)u

+ (a3 − a2b + ac − ab + 2c)v + (abc − c2 − 2 f )

⇒ (a − 1)u2 − (a + 1)v2 − (ab + ac − 2c)u + (a3 − a2b + ac − ab + 2c)v

+ [abc − c2 − 2 f − a2(d − e)] = 0, (4.21)

⇒ (a − 1)u4 − (ab + ac − 2c)u3 + [abc − c2 − 2 f − a2(d − e)]u2
+ f (a3 − a2b + ac − ab + 2c)u − f 2(a + 1) = 0.

(4.22)

Compiling together the list of equations involving u and v is shown below.

• u2 − v2 − uc − (ab − c)v + ae = 0, (4.23)

• u2 + v2 + (ab − 2c)u + (ab − 2c − a3)v + a2d + 2 f − c(ab − c) = 0,
(4.24)

• u3 − 2cu2 − a3v2 + (c2 + 2 f + ae)u + (a2d + f + ae)v

− c(2 f + ae) = 0, (4.25)

• bu2 + a2v2 + (ad − bc − e)u − (ad + e)v + (b f − a2 f + ce) = 0, (4.26)

• (a + 1)u2 − (a − 1)v2 + (ab − 2c − ac)u − (a3 + a2b − ac − ab + 2c)v

+ (a2(d + e) − abc + c2 + 2 f ) =, (4.27)

• (a − 1)u2 − (a + 1)v2 − (ab + ac − 2c)u + (a3 − a2b + ac − ab + 2c)v

+ [abc − c2 − 2 f − a2(d − e)] = 0. (4.28)

Eliminating v from the equations enlisted above taken two at a time, one can obtain
more auxiliary equations in u. Interested reader can derive such list.

5 Conclusion

Techniques on the factorization of given monic sixth-degree univariate polynomial
with real coefficients have been shown as was promised. Auxiliary equations involv-
ing u and v have been prepared and shown with examples. Also, demonstration of
factorization through example has been done. The reader can solve the equation
involving the cubic factors and determine the roots of the given equation. In the end,
a list of alternative auxiliary equations has also been included. For future work, the
reader can work the same on C[x]. Since there are several beautiful gems are avail-
able in solving equations of higher degree in literature, interested reader can take
help from them as well. For example, [2–7] can be utilized for this purpose.
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On Determination of ϕ−1 (2a pa1)

Anjan Debnath and Avishek Adhikari

Abstract In this paper, we have considered the set ϕ−1 (2a pa1) where p is an odd
prime, a, a1 ∈ N and have shown how to determine the elements of it. Several impor-
tant results on behalf of this have been discussed.

Keywords Euler’s phi function · Arithmetic function · Number theory

2010 Mathematics Subject Classification: 11A25 · 11A99

1 Introduction

The Euler’s totient function ϕ(n) is a multiplicative function that counts the total
number of positive integers less than or equal to n ∈ N and relatively prime to n. In
other words,

ϕ(n) = #{r ∈ N : 1 � r � n, gcd(r, n) = 1}.

For such given n, the value ϕ(n) is called the totient value of n whereas n is referred
as the pre-totient value of ϕ(n).

In other words, if ϕ(x) = n holds for some x, n ∈ N then x is called pre-totient
of n and n is called the totient of x . When the canonical form of x is known, say x =
pa11 pa22 . . . parr where p1 < p2 < · · · < pr are primes and each ai ∈ N, determination
of ϕ(x) becomes easy because of the working formula ϕ(x) = x

∏r
i=1(1 − 1

pi
). For

example, ϕ(60) = 60(1 − 1
2 )(1 − 1

3 )(1 − 1
5 ) = 16.

However it is comparably a difficult task to move on in the reverse direction. In
other words, when n is given say 16, the determination of x is not at all an easy job.
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In fact, there are multiple pre-images of 16 under ϕ. For example each of 32, 34, 40,
48, 60 has pre-totient value 16 and, ϕ(17) = 16 as well.

In [1, 2] some discoveries have beenmade regarding determination of pre-totients.
However in [2], a predetermined list of smaller pre-totients is needed in order to deal
with bigger cases and in [1], some particular cases have been discussed. However,
in this current paper, we shall consider the case of determination of the pre-totient
values of 2a pa1 , where p is an odd prime and both a, a1 ∈ N. The set of all such
pre-totients will be denoted by ϕ−1 (2a pa1) i.e.,

ϕ−1
(
2a pa1

) = {x ∈ N : ϕ(x) = 2a pa1}.

It is to be noted that, some of these sets might be empty as well. For example,
ϕ−1 (2.7) is an empty set. In fact, 14 is the first even number, of which there is no
pre-totient x at all. This part will be established at a later stage. For now, let us
assume, for a given n = 2a pa1 where p is odd prime and a, a1 ∈ N, the set ϕ−1 (n)
is non-empty, containing at least one element say x ∈ N. Then either x ∈ E(2a pa1)
or x ∈ O(2a pa1) where, for n ∈ N

E(n) = {x ∈ ϕ−1 (n) : x is even}
O(n) = {x ∈ ϕ−1 (n) : x is odd}

Evidently ϕ−1 (n) is disjoint union of E(n) and O(n). In Theorem 5.1 of [1] a very
particular case about set wise equality of E(2s) and O(2s) where s is odd positive
integer greater than 1 is shown. However we shall show much general situation in
the current paper. We start our journey with the first case x ∈ E(n). Before going
into details, let us get introduced with the following definitions which will be used
frequently.

Definition 1.1 For any set S ⊆ N, the cardinality of S is the number of elements of
S and will be denoted by |S| or #S.
Definition 1.2 For m, a, b ∈ N, we define

Nm = {1, 2, . . . ,m},
Wm = {0, 1, 2, . . . ,m},
W = {0, 1, 2, . . .},
mNn = {m,m + 1,m + 2, . . . , n − 1, n},
aN = {x ∈ N : x � a},
P = {p ∈ N : p is prime}

Definition 1.3 The greatest common divisor of two integers a, b (not both zero) is
a common divisor d ∈ N, which is divisible by any common divisor of a and b. It is
denoted by d = (a, b). In case, if d = 1, the integers a, b are called relatively prime
integers.
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2 When x ∈ E(2a Pa1)

Let us first see what can be the upper limit of e if 2e|x as x is assumed to be even,
where e is just a variable, not the usual Euler’s exponential constant e and where by
the symbol a|b we meant that the non-zero integer a divides the integer b.

Theorem 2.1 If x ∈ E(2a pa1) where p is odd prime and a, a1 ∈ N then x cannot
be a multiple of 2a+1.

Proof If possible let x = 2a+1m wherem ∈ N. If (2,m) = 1 thenϕ(x) = 2a pa1 will
give ϕ(2a+1m) = 2a pa1 , i.e.,

ϕ(m) = pa1 (1)

The contradiction is already obtained for m = 1. If m > 2 then in Eq. (1), LHS is
even but RHS is odd, contradiction again.

On the other hand, if (2,m) �= 1 then x = 2a+nm1 where n � 2 and (2,m1) = 1.
Once again, ϕ(x) = 2a pa1 will produce 2n−1ϕ(m1) = pa1 . For n − 1 �= 0, absurdity
is achieved and if n = 1, contradiction is still there as n � 2. �

Deduction 2.1 If x ∈ E(2a pa1) then x will never be a multiple of 2a+2, 2a+3, . . . ,

2a+n, . . . etc. where n � 2.

Deduction 2.2 Let x ∈ E(2a pa1). For each e ∈ Na there is at least one m ∈ N \ 2N
such that

x = 2em ∈ E(2a pa1).

Deduction 2.3 If m0 ∈ O(2a+1−e pa1), e ∈ Na , then 2em0 ∈ E(2a pa1) and vice-
versa.

Theorem 2.2 If m ∈ O(2a pa1) then 2m ∈ E(2a pa1). Conversely, if 2m ∈ E(2a pa1)
where m is odd, then m ∈ O(2a pa1).

Proof Trivial. �

Therefore, whenever we determine the set O(2a pa1) completely, the set E(2a pa1)
will enlist the elements which would be double of the elements of O(2a pa1). We now
see if any odd prime other than p appears in the canonical form of x ∈ ϕ−1 (2a pa1),
what its power could be.

Theorem 2.3 Let x ∈ ϕ−1 (2a pa1). If there be an odd prime q other than p such
that qβ1 | x then β1 = 1.

Proof Let x = 2eqβ1m1 where (2q,m1) = 1 and e ∈ Wa , by deduction 2.2. Then

2a pa1 = ϕ(x) = 2e−1qβ1−1(q − 1)ϕ(m1)

If β1 − 1 ∈ N, the above equality shows LHS�≡RHS(mod q). Hence β1 − 1 = 0, i.e.,
β1 = 1. �
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Definition 2.1 For λ ∈ N and A ⊆ N, we define the set

λA = {λa : a ∈ A}.

Theorem 2.4 2E(2a pa1) = E(2a+1 pa1) \ {2m0 : m0 ∈ O(2a+1 pa1)}.
Proof Let x ∈ E(2a pa1). Then x = 2em where m is odd and e ∈ Na . Therefore,

2a pa1 = ϕ(x) = ϕ(2em)

⇔ 2a+1 pa1 = 2eϕ(m) = ϕ(2e+1m) = ϕ(2x)

Since x ∈ E(2a pa1) and 1 � e � a, 2x ∈ E(2a+1 pa1) implies 2 � e � a + 1. So,
x ∈ E(2a pa1) ⇔ 2x ∈ E(2a+1 pa1) \ {2m0} for each m0 ∈ O(2a+1 pa1). �

Corollary 2.1 |E(2a+1 pa1)| = |O(2a+1 pa1)| + 2|E(2a pa1)| for all a ∈ N.

Proof By using Theorem 2.2, 2m0 ∈ ϕ−1 (2a pa1) iff m0 ∈ ϕ−1 (2a pa1). In other
words, 2m0 ∈ E(2a pa1) iff m0 ∈ O(2a pa1). Theorem 2.4 is now sufficient enough
to finish the proof. �

Remark 2.1 Let us denote |E(2α pβ)| and |O(2α pβ)| by εα,β and θα,β , respectively.
Then Corollary 2.1 states that εa+1,a1 = 2εa,a1 + θa+1,a1 .

Now εa,a1 = θa,a1 + 2εa−1,a1 provided a − 1 ∈ N. Hence

εa+1,a1 = 22εa−1,a1 + 2θa,a1 + θa+1,a1 .

Proceeding similarly, we obtain

εa+1,a1 = 23εa−2,a1 + 22θa−1,a1 + 2θa,a1 + θa+1,a1

provided a − 2 ∈ N and in general, when a − r ∈ N for some r ∈ N, we get the
following deduction.

Deduction 2.4 For a ∈ N, if a − r ∈ N for some r ∈ N,

εa+1 = 2a−rεr+1

+ 2a−r−1θr+2 + · · · + 23θa−2 + 22θa−1 + 2θa + θa+1

where εα and θα are same as εα,β and θα,β , by ignoring β in the indices, respectively.

Deduction 2.5 For a ∈ N,

εa+1 = 2aε1 + 2a−1θ2 + · · · + 22θa−1 + 2θa + θa+1

After this, we nowmove on to the case when x ∈ O(2a pa1) and see the configuration
of the set of odd pre-totient elements of 2a pa1 .
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3 When x ∈ O(2a pa1)

We start this section with the following theorem which estimates the upper limit of
the number of distinct prime divisor of x .

Theorem 3.1 If x ∈ O(2a pa1) then x has at most a number of distinct odd prime
factors.

Proof Let x = m0 ∈ O(2a pa1). Then m0 ∈ 2N \ 2N.
Let ω(m0) = r where ω(n) denotes the total number of prime divisors of n ∈ 2N.

Then we can write the canonical form as

m0 = qa1
1 qa2

2 · · · qar
r .

Hence

2a pa11 = ϕ(m0) =
r∏

i=1

qai−1
i (qi − 1) (2)

shows that each odd prime factor on right-hand side will give at least 2 as a factor
and hence the right side must be divisible by 2r at least. In other words, 2r |2a , i.e.,
r ∈ Na . �

3.1 When r = 1

Since the total number of odd prime factor of x = m0 ∈ O(2a pa1) is 1, x must be
one of the form either pβ or qβ where β ∈ N and q ∈ P \ {2, p}.

Let us start with first possibility. When m0 = pβ then Eq. (2) becomes p − 1 =
2a pa1+1−β .

Here if a1 + 1 − β �= 0, LHS�≡ RHS[p]. So β = a1 + 1 and hence p = 2a + 1.
Which clearly indicates the Fermat’s numbers are defined by p must be a Fermat’s
prime Fα for some a = 2α ∈ N where, for n ∈ W,

Fn := 22
n + 1.

See [3–7] for latest updates on Fermat’s primes in order to utilize them. sOn the
other hand, if x = m0 = qβ , by Theorem 2.3, β = 1 and then Eq. (2) will show

q = (2a pa1 + 1)∗

where the asterisk denotes we shall consider the element once it passes primality
test. As a consequence, we now have the following theorem ready.
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Theorem 3.2 Let x = m0 ∈ O(2a pa1) and ω(x) = 1. Then m0 =
(1) pβ provided β = a1 + 1 and p = Fα for some 2α ∈ N;
(2) qβ where β = 1 and q = (2a pa1 + 1)∗

3.2 When r = 2

Next, let ω(x) = 2. Since exactly two odd primes are to be present as prime divisors
in the canonical form of x , we see that m0 will be one of the form: pβ1qβ2

2 or qβ1
1 qβ2

2 ,
where once again each βi ∈ N and q1, q2 are odd primes other than p.

3.2.1 m0 = pβ1qβ2
2

In this case, first of all, by Theorem 2.3 β2 = 1. Also Eq. (2) gives

2a pa1+1−β1 = (p − 1)(q2 − 1) (3)

Now let

p − 1 =2λ1 (4)

q2 − 1 =2λ2 pμ21 (5)

Therefore, Eq. (3) yields λ1 + λ2 = a,μ21 = a1 + 1 − β1,β1 ∈ Na1+1.

From Eq. (4), it is once again clear that λ1 is a power of 2, say λ = 2α ∈ Na−1

for some α ∈ N and p is nothing but a Fermat’s prime Fα. Hence λ2 = a − 2α and
then Eq. (5) gives q2 = (2a−2α

Fa1+1−β1
α + 1)∗.

3.2.2 m0 = qβ1
1 qβ2

2

By Theorem 2.3, β1 = β2 = 1 and so m = q1q2/ For Eq. (3), we assume q1 − 1 =
2λ1 pμ11 , q2 − 1 = 2λ2 pμ21 so that

a = λ1 + λ2 in N (6)

a1 = μ11 + μ21 inW (7)

where the terms in N mean to solve the Eq. (6) in N and so do in W mean. Hence
m0 = q1q2 ∈ O(2a pa1) provided q1 = (2λ1 pμ11 + 1)∗, q2 = (2a−λ1 pa1−μ11 + 1)∗.

As a consequence we now have established the following theorem.
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Theorem 3.3 Let x = m0 ∈ O(2a pa1) and ω(x) = 2. Then

(1) m0 = pβ1q2 provided

(a) β1 = a1 + 1, a = 2α ∈ Na−1

(b) p = Fα

(c) q2 = (2a pa1 + 1)∗

(2) m0 = q1q2 provided

(a) q1 = (2λ1 pμ11 + 1)∗, q2 = (2a−λ1 pa1−μ11 + 1)∗
(b) λ1 ∈ Na−1,μ11 ∈ Wa1

3.3 When r = 3

This time x = m0 will be one of the forms: pβ1q2q3 or q1q2q3 where β ∈ N and
q1, q2, q3 are odd primes other than p, with 1 as exponent by the aid of Theorem 2.3.

3.3.1 m0 = pβ1q2q3

Equation (2) will reduce now into

2a pa1+1−β1 = (p − 1)(q2 − 1)(q3 − 1) (8)

We assume

p − 1 = 2λ1 (9)

q2 − 1 = 2λ2 pμ21 (10)

q3 − 1 = 2λ3 pμ31 (11)

so that

λ1 + λ2 + λ3 = a in N (12)

μ21 + μ31 = a1 + 1 − β1 inW (13)

Once again, λ1 = 2α ∈ Na−1 and p = Fα.

3.3.2 m0 = q1q2q3

In this case, Eq. (2) reduces to

2a pa11 = (q1 − 1)(q2 − 1)(q3 − 1)
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If we let q1 − 1 = 2λ1 pμ11 , q2 − 1 = 2λ2 pμ21 , q3 − 1 = 2λ3 pμ31 clearly then

λ1 + λ2 + λ3 = a in N

μ11 + μ21 + μ31 = a1 inW

Therefore the proof of the next theorem is done.

Theorem 3.4 Let ω(x) = 3 where x = m0 ∈ O(2a pa1). Then

(1) m0 = pβ1q2q3 provided

(a) p1 = Fα for some 2α ∈ Na−2,β1 ∈ Na1+1

(b) q2 = (2λ2 pμ21 + 1)∗
(c) q3 = (2a−2α−λ2 p(a1+1−β1)−μ21 + 1)∗
(d) λ2 ∈ Na−2α−1,μ21 ∈ Wa1+1−β1

(2) m0 = q − 1q2q3 provided

(a) qi = (2λi pμi1 + 1)∗, i = 1, 2, 3
(b) λ1 + λ2 + λ3 = a in Na−2

(c) μ11 + μ21 + μ31 = a1 inW.

Proceeding in a similar way the further general case when r � 4 occurs can also be
shown. We just provided the statement of that.

Theorem 3.5 Let ω(x) = r � 4 where x ∈ O(2a pa1). Then

(1) x = pβ1q2q3whereqr provided

(a) p = Fα2α ∈ Na,β1 ∈ Na1+1

(b) qi = (2λi pμi + 1)∗, i ∈ 2Nr

(c) λ2 + · · · + λr = a − 2α in N
(d) μ2 + · · · + μr = a1 inW

(2) x = q1q2q3 · · · qr provided
(a) qi = (2λi pμi + 1)∗, i ∈ Nr

(b) λ1 + λ2 + · · · + λr = a − 2α in N
(c) μ1 + μ2 + · · · + μr = a1 inW

Having acquainted with all these, let us look at few examples on construction of
ϕ−1

(
2a pa11

)
for different values of a.

4 Construction of ϕ−1 (
2a pa11

)

4.1 When a = 1

To find ϕ−1 (2pa1) where a1 ∈ N, we see that any element x of it will be of the form
2m0,m0 wherem0 ∈ O(2pa1). Now evidentlyω(m) is only 1 and so by Theorem 3.2,
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m1 =
{
3a1+1 if p = 3

(2pa1 + 1)∗
(14)

Deduction 4.1 If p � 5 be odd prime and ϕ−1 (2pa1) be non-empty then 2pa1 + 1
is a prime.

Proof Hereϕ−1 (2pa1) = {2m,m}wherem = (2pa1 + 1)∗, since p �= 3. If (2pa1 +
1) is not prime, ϕ−1 (2pa1) will become empty, a contradiction. �
Remark 4.1 Here the following conjecture can be made. If |ϕ−1 (n) | = 2 then
n + 1 is prime and n is not divisible by 4. The interested reader can work on it for
further development.

We have seen that ϕ−1 (2pa1) = {2m,m} where m = 3a1+1 if p = 3 and m =
(2pa1 + 1)∗. Let us discuss few interesting cases for different values of a1 ∈ N.

4.1.1 a1 = 1

We consider ϕ−1 (2p). Clearly

O(2p) =
{
32; p = 3

(2p + 1)∗

In other words, p = 3 implies

ϕ−1 (2.3) = ϕ−1 (6) = {2.32, 2.(2.3 + 1)∗, 32, (2.3 + 1)∗} = {18, 14, 9, 7}.

On the other hand, if p > 3 then ϕ−1 (2p) = {2(2p + 1)∗, (2p + 1)∗}.
Deduction 4.2 If p > 3 be odd prime then |ϕ−1 (2p) | is either 0 or 2.

What possible form does 2p + 1 take ? If it is divisible by 3, we must have
p ≡ 1[3]. Also, p ≡ 1[2]. So p ≡ 1[6]. In other words,ϕ−1 (2p) is empty whenever
the odd prime p is of the form 6k + 1 for some positive integer k. The smallest such
prime is 7, and therefore ϕ−1 (14) is the first set in the list of ϕ−1 (2p) which is
empty because

ϕ−1 (2.3) = {7, 9, 14, 18},
ϕ−1 (2.5) = {11, 22},
ϕ−1 (2.7) = ∅,

ϕ−1 (2.11) = {23, 2.23},
ϕ−1 (2.13) = ∅.
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Remark 4.2 If there exists a prime p̄ such that 2p + 1 ≡ 0[ p̄], p ≡ (
p̄−1
2 )[ p̄]. In

this case, ϕ−1 (2p) = ∅.

4.1.2 a1 ≡ 0[2]

Then a1 = 2a′
1 for some a1 ∈ N. Hence 2p2a

′
1 + 1 ≡ 0[3]. On the other hand, m0 =

pβ shows that β = 3 so that ϕ−1
(
2p2a

′
1
) = {2.32a′

1+1, 32a
′
1+1} provided p = 3 and if

p > 3 then ϕ−1
(
2p2a

′
1
) = ∅. Together we thus have established the next theorem.

Theorem 4.1 If a′
1 ∈ N and p > 3 is odd prime then ϕ−1

(
2p2a

′
1
) = ∅.

As a consequence, we now have an alternative primality test.

Deduction 4.3 Let p > 3. If ϕ−1
(
2p2a

′
1
)
is non-empty for some a′

1 ∈ N, then p is
composite.

Theorem 4.2 If a′
1 ∈ N and p > 3 be odd prime such that p ≡ 1[3], the set

ϕ−1
(
2p2a

′
1−1

) = ∅.
Proof Since p > 3 and p ≡ 1[3] therefore 2p2a′

1−1 + 1 ≡ 2.1 + 1 ≡ 0[3]. Thus 3
is a divisor of 2p2a

′
1−1 for all a′

1 ∈ N. Hence ϕ−1
(
2p2a

′
1−1

) = ∅. �

Remark 4.3 The only case that remains is the setϕ−1 (2pa1) provided a1 is odd posi-
tive integer and p ≡ −1[3]. Interested reader canwork on it for further improvement.

4.2 When a = 2

In the set ϕ−1
(
22 pa1

)
, any element x will be of the form 22m0, 2m1,m1 where

m0 ∈ O(2pa1),m1 ∈ O(22 pa1). Proceeding in a similar manner as we did before,
we obtain 22m0 ∈ E(22 pa1) where

m0 =
{
3a1+1, if p = 3

(2pa1 + 1)∗.

On the other hand, 2m1 ∈ E(22 pa1) where

m1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5a1+1 if p = 5,

(22 pa1 + 1)∗,
3β
1 (2.3

a1+1−β1 + 1)∗ if β1 ∈ Na1 ,

(2pγ1 + 1)∗(2pa1−γ1 + 1)∗ if γ ∈ Wa1

For example, let us considerϕ−1
(
223

)
. Herem0 ∈ {33, (2.3 + 1)∗}, i.e.,m0 ∈ {32, 7}

and
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m1 =

⎧
⎪⎨

⎪⎩

13,

3β1(2.32−β1 + 1)∗,β1 ∈ N1,

(2.3γ1 + 1)∗(2.31−γ1 + 1)∗, γ1 ∈ W1.

Now for β1 = 1, we get 2.3 + 1 = 7 which is admissible. But for β1 = 2, we get
2.30 + 1, i.e., 3 which is unacceptable because it is not distinct from 3β1 .

On the other hand, if q1 = (2.3γ1 + 1)∗, q2 = (2.31−γ1 + 1)∗, keeping in mind
that q1 < q2 are distinct odd primes other than 3, we get

γ1 = 0 ⇒ (q1, q2) = (3, 7)

γ1 = 1 ⇒ (q1, q2) = (7, 3)

and hence both results are rejected. As a consequence, now we get m1 ∈ {13, 3.7}
and therefore

ϕ−1
(
223

) = {2232, 227, 2.13, 2.3.7, 13, 3.7}
= {13, 21, 26, 28, 36, 42}

4.3 When a = 3

Following the steps as we did earlier,

ϕ−1
(
23 pa1

) ⊆ {x ∈ N : x = 2em3−e : e ∈ W3}.

• For e = 3, we have

x =
{
233a1+1 if p = 3,

23(2pa1 + 1)∗
.

• For e = 2, we have

x =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

225a1+1 if p = 5,

22(22 pa1 + 1)∗,
223β1(2.3a1+1−β1 + 1)∗,β1 ∈ Na1 , if p = 3,

(2pγ11)∗(2pa1−γ1 + 1)∗, γ1 ∈ Wa1

.

• For e = 0 we have x = 2m0,m0 where
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m0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23 pa1 + 1)∗,
3β1(223a1+1−β1 + 1)∗,β1 ∈ Na1 if p = 3,

5β1(25a1+1−β1 + 1)∗,β1 ∈ Na1 if p = 5,

(2pγ1 + 1)∗(22 pa1−γ1 + 1)∗, γ1 ∈ Wa1 ,

(22 pγ1 + 1)∗(2pa1−γ1 + 1)∗, γ1 ∈ Wa1 ,

3β1(2.3γ1 + 1)∗(2.3a1+1−β1−γ1 + 1)∗,β1 ∈ Na1 , γ1 ∈ Wa1−β1 ,
3∏

i=1
γ1+γ2+γ3=a1

(2pγ1 + 1)∗

Proceeding in similarmanner one can derive the other results corresponding to higher
values of a ∈ 4N.

5 Conclusion

Thus, we have answered the problem of construction of the set ϕ−1
(
2a pa11

)
for dif-

ferent values of a ∈ N. Techniques as well as different types of combination of prime
factors of the elements of the set ϕ−1

(
2a pa11

)
have been discussed. The interested

reader can work on special cases for further improvement. Moreover, special types
of primes in place of p can be considered for deriving interesting results.
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An EOQ Model with Carbon Constraints
Without Loss of Generality
with Uncertain Cost and Uncertain
Carbon Emission Associated with Some
Fuzzy Parameters

Anuradha Sahoo and Arati Nath

Abstract Economic Order Quantity (EOQ) models without loss of generality for
single items andmulti-items are presented to choose an order quantity that minimizes
its cost per unit time subject to the constraint on the amount of carbon emitted. Here,
the proposedmodel is discussed in anuncertain environment. So, theEOQmodelwith
a fixed cost, holding cost, and purchased cost (or produced cost) has been considered
in a fuzzy environment. Also, fixed emitted carbon, holding emitted carbon, and
purchased (or produced) emitted carbon are taken in a fuzzy environment with the
limitation of total carbon emission per unit production time. Here we considered a
fixed cost, holding cost, and purchased cost (or produced cost) as trapezoidal fuzzy
numbers. The computational procedure for the defined EOQ model is carried out by
using the signed-distancemethod and expected value technique.Numerical examples
are also given to exemplify the proposed model.

Keywords Carbon-constrained EOQ · Trapezoidal fuzzy number ·
Signed-distance method · Expected value technique

1 Introduction

In real life, the costs of the items depend upon many factors like item’s quality,
stock level, selling price, the period of storage, etc. In reality, the cost can’t be fixed.
Nowadays almost every single real-world problem comprises the cost in an uncertain
environment. Quite a few investigators have studied the inventory models by taking
different parameters in an uncertain environment in different situations.

By using the GP approach, Kotb et al. [1] proposed a multi-item EOQ model
by considering holding cost to be a continuous function of the order quantity under
varying holding cost. In this paper, a classical EOQ model and an EOQ model by
taking holding costs as constant are derived without any constraint.
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To determine the optimal solution, a hybrid discrete particle swarm algorithm is
developed and tested by Weianyg et al. [2] based on real data collected from the
pharmacological initiative. Their methods focus on local optimization for carbon
emission reduction in enterprises and may require additional time, money, and effort
for satisfactory implementation.

To maximize the total profit and to determine the optimal order size Hung-Chi
Chang [3], proposed a model with a fuzzy defective rate. After that, he presented his
proposed model with defective rate and annual demand in a fuzzy environment. So,
they use a signed-distance method to estimate the total profit in fuzzy environment
per unit production time.

An inventory model without shortage is considered by taking ordering cost and
holding cost in the fuzzy environment by Sayed and Aziz [4]. Triangular fuzzy
numbers are used to obtain the optimum order quantity. Also signed-distancemethod
used for the defuzzification of the discussed fuzzy model.

Sadegheih [5] proposed an optimization model to minimize the total costs and
provides the best solutions under the carbon emission trading program. So, he consid-
ered different types of costs like; the capital investment cost in discrete form, the cost
of transmission losses, the power generation costs, and carbon emission costs as the
cost function in his model.

Dutta and Kumar [6] proposed an inventory model in a fuzzy environment
where shortages are not allowed and determine the optimal total cost and the
optimal order quantity. They use trapezoidal fuzzy numbers. The computation of
economic order quantity is carried out through the defuzzification process by using
the signed-distance method.

A multi-objective optimization technique based on the bacterial colony chemo-
taxis (MOBCC) algorithm proposed by Lu and Pingli [7] to study the constrained
emission or economic dispatch problem involving competing objectives in electric
power systems with carbon capture system (CCS) technology.

Based on the investigation of existing tools and sustainability demands in building,
a new computer calculation system has been established by Fu et al. [8] to compute
the carbon emission for optimizing sustainability during the construction. They also
described the system structure and detailed functions. Lastly, a case study is analyzed
to establish the designed LCA framework and system functions.

Zhang et al. [9] projected amodel tominimize the scheduling cost and greenhouse
gas emission cost which includes both thermal generators and wind farms.

Sahoo and Dash [10] consider purchasing cost as a fuzzy number and demand
as a random variable in a fuzzy environment to formulate a single-period inventory
model for multi-item newsboy problem where there is the occurrence of randomness
and fuzziness. Buckley’s minimization concept is used to obtain the expected profit
and optimum order quantity.

To design a multi-product closed-loop green supply chain network, Talaei et al.
[11] have introduced a mixed-integer linear programming model which is taking
into account and incapable of minimizing total costs. So, they developed a model to
consider such environmental concurs to reduce the amount of CO2 emission in the
environment throughout the network in question.
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Rajalakshmi and Michael Rosario [12] examine an inventory model in a fuzzy
environment with allowable shortage which is fully backlogged. To estimate the
fuzzy total cost, they fuzzify the ordering cost, holding cost, and backorder cost
by using triangular, trapezoidal, pentagonal fuzzy numbers. After that, they use a
signed-distance method for the defuzzification of their proposed fuzzy model.

A multi-item two-warehouse deterministic inventory model described by Garai
et al. [13] for deteriorating itemswith stock-dependent to define possibility, necessity,
and credibility measures of an exponential fuzzy number, and its expected value. So,
they considered different cost values and other parameters in a fuzzy environment.
Solutionmethodology by using the expected value technique of their proposedmodel
also has been discussed.

Sutherland et al. [14] present a methodology to optimize the tool path for high
efficiency, low energy consumption, and carbon footprint in the milling process.
First, they introduced the description and influencing factors of the tool path. After
that, they proposed a multi-objective tool path optimization model with maximum
machining efficiency, minimum energy consumption, and carbon emission.

Taking into consideration the effect of the price of carbon and ecological aware-
ness of consumers, Li et al. [15] explore constructor and seller’s decision under
the centralized and decentralized conclusion. So, they analyze the condition of
whether a constructer transfers the emission reduction task to the seller. Also, they
use computational researches to analyze compassion by changing the cost function.

In this paper, we consider the carbon-constrainedEOQmodel in an uncertain envi-
ronment under the limitation of total carbon emission per unit production time. We
use the signed-distance method and expected value technique to obtain the optimal
solutions of our proposed models. In both methods, first, we defuzzify the fuzzy
inventory model to get the crisp inventory model and then obtain the optimal solution
of that crisp model using LINGO software. So, we considered a fixed cost, holding
cost, and purchased (or produced) cost as trapezoidal fuzzy numbers in objective
function as well as in the carbon constraint to achieve our goal.

2 Mathematical Model

In this paper, the carbon-constrained economic order quantity (EOQ)model is devel-
oped in an uncertain environment with uncertain costs under the limitation of the total
carbon emissions per unit production time. Here, the proposed model is discussed in
two cases by describing the model in an uncertain environment. In case-1, an EOQ
model with fixed cost, holding cost, purchased cost (or produced cost), fixed carbon
emission, holding carbon emission, and purchased (or produced) carbon emission
for the proposed model are taken as trapezoidal fuzzy numbers. The computational
procedure for the defined EOQ model is carried out by using the signed-distance
method. In case 2, an EOQ model with fixed cost, holding cost, purchased cost
(or produced cost), fixed carbon emission, holding carbon emission purchased (or
produced) carbon emission, and the limitation of total carbon emission in a unit
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production time for the proposedmodel are taken as trapezoidal fuzzy numbers.Here,
we use the expected value technique for the defuzzification of the proposed model.
So, we have considered different assumptions and different notations to construct the
carbon-constrained EOQ model in an uncertain environment to minimize the total
annual cost under the limitation of total carbon emission per unit production time.

2.1 General Economic Order Quantity Models

(i) Single-item economic order quantity (SEOQ) model

Assumption:

• Without loss of generality.
• With zero lead time.
• Positive lead time can be included and does not affect the solution to the problem.
• The firm must satisfy all the demands.
• The analysis can be easily extended to the settings with backorders.

Notation:

d = Demand per unit time,
q = Number of order quantity per unit time,
a1 = Fixed cost per order,
h1 = Holding cost per unit item per unit time,
p1 = Purchased cost or produced cost per unit time,
a2 = Fixed amount of emitted carbon associated per order,
h2 = Holding emitted carbon per unit item per unit time,
p2 = Purchased emitted carbon or produced emitted carbon per unit time,
l = Limitation of the total carbon emission per unit time,
c = Total cost per unit time.

Ourmain objective is tominimize the total annual cost. Here, the sumof fixed cost,
holding cost (or carrying cost), and purchase cost (or produced cost) is recognized
as the annual cost.

i.e. Total annual cost = a1d
q + h1q

2 + p1d.

The limitation of the total carbon emission for the proposed inventory model is
given as follows.

Carbon emission constraint: a2d
q + h2q

2 + p2d ≤ l.
Hence, an inventory model with a fixed cost, holding costs, and purchased cost

(or produced cost) corresponding to the carbon emission constraints are given as
follows.

SEOQ : min c = a1d

q
+ h1q

2
+ p1d
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S.t
a2d

q
+ h2q

2
+ p2d ≤ l

q ≥ 0

(ii) Multi-item economic order quantity (MEOQ) model

Assumption:

• Without loss of generality.
• With zero lead time.
• Positive lead time can be included and does not affect the solution to the problem.
• The firm must satisfy all the demands.
• The analysis can be easily extended to the settings with backorders.

Notation:

di = Demand per unit time
qi = Number of order quantity per unit time
a1i = Fixed cost per order
h1i = Holding cost per unit item per unit time
p1i = Purchased cost or produced cost per unit time
a2i = Fixed amount of emitted carbon associated per order
h2i = Holding emitted carbon per unit item per unit time
p2i = Purchased emitted carbon or produced emitted carbon per unit time
l = Limitation of the total carbon emission per unit time
c = Total cost per unit time

Ourmain objective is tominimize the total annual cost. Here, the sumof fixed cost,
holding cost (or carrying cost), and purchase cost (or produced cost) is recognized
as the annual cost.

i.e. Total annual cost = ∑n
i=1

a1i d
qi

+ h1i q
2 + p1i di

The limitation of the total carbon emission for the proposed inventory model is
given as follows.

Carbon emission constraint:
∑n

i=1
a2i di
qi

+ h2i qi
2 + p2i di ≤ l

Hence, an inventory model with fixed cost, holding costs, and purchased cost (or
produced cost) corresponding to the carbon emission constraints is given as follows.

MEOQ : min c =
n∑

i=1

a1i d

qi
+ h1i q

2
+ p1i di

S.t
n∑

i=1

a2i di
qi

+ h2i qi
2

+ p2i di ≤ l

qi ≥ 0; i = 1, 2, 3, . . . , n
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In real-life situations, uncertainty arises. So, we considered parameters as the
trapezoidal fuzzy number to describe an inventory EOQ model for single items and
multi items. In this paper, we described the above model in two cases as follows.

2.2 Fuzzy Economic Order Quantity Models

(i) Fuzzy single-item economic order quantity (FSEOQ) model

Notations:

ã1 = Fuzzy fixed cost per order
h̃1 = Fuzzy holding cost per unit item per unit time
p̃1 = Fuzzy purchased cost or produced cost per unit time
ã2 = Fuzzy fixed amount of emitted carbon associated per order
h̃2 = Fuzzy holding emitted carbon per unit item per unit time
p̃2 = Fuzzy Purchased emitted carbon or produced emitted carbon per unit time
c̃ = Fuzzy total annual cost
l̃ = Limitations of total carbon emission in a unit production time

When uncertainty arises in real-life situations, the previously discussed SEOQ
model becomes FSEOQ. So, the FSEOQ model in an uncertain environment by
considering the fixed cost, holding cost, production cost (or purchased cost), fixed
emitted carbon, holding emitted carbon, and purchased (or produced) emitted as a
trapezoidal fuzzy number can be described as follows.

FSEOQ 1 : min c̃ = ã1d

q
+ h̃1q

2
+ p̃1d

S.t
ã2d

q
+ h̃2q

2
+ p̃2d ≤ l

q ≥ 0

Now considering the total carbon emission in a unit production time in a fuzzy
environment, the above FSEOQ 1 becomes FSEOQ 2 as follows.

FSEOQ 2 : min c̃ = ã1d

q
+ h̃1q

2
+ p̃1d

S.t
ã2d

q
+ h̃2q

2
+ p̃2d ≤ l̃

q ≥ 0

(ii) Fuzzy multi-item economic order quantity (FMEOQ) model
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Notations:

ã1i = Fuzzy fixed cost per order,
h̃1i = Fuzzy holding cost per unit item per unit time,
p̃1i = Fuzzy purchased cost or produced cost per unit time,
ã2i = Fuzzy fixed amount of emitted carbon associated per order,
h̃2i = Fuzzy holding emitted carbon per unit item per unit time,
p̃2i = Fuzzy purchased emitted carbon or produced emitted carbon per unit time,
c̃ = Fuzzy total annual cost,
l̃ = Limitations of total carbon emission in a unit production time.

When uncertainty arises in real-life situations, the previously discussed MEOQ
model becomes FMEOQ. So, the FMEOQ model in an uncertain environment by
considering the fixed cost, holding cost, production cost (or purchased cost), fixed
emitted carbon, holding emitted carbon, and purchased (or produced) emitted carbon
as a trapezoidal fuzzy number can be described as follows.

FMEOQ 1 : min c̃ =
n∑

i=1

ã1i d

qi
+ h̃1i q

2
+ p̃1i di

S.t
n∑

i=1

ã2i di
qi

+ h̃2i qi
2

+ p̃2i di ≤ l

qi ≥ 0; i = 1, 2, 3, . . . , n

Now considering the total carbon emission in a unit production time in a fuzzy
environment, the above FMEOQ 1 becomes FMEOQ 2 as follows.

FMEOQ 2 : min c̃ =
n∑

i=1

ã1i d

qi
+ h̃1i q

2
+ p̃1i di

S.t
n∑

i=1

ã2i di
qi

+ h̃2i qi
2

+ p̃2i di ≤ l̃

qi ≥ 0; i = 1, 2, 3, . . . , n

3 Methodology

3.1 Trapezoidal Fuzzy Number

The trapezoidal fuzzy number represented by four points as follows:

B̃ = (b1, b2, b3, b4
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Membership function of trapezoidal fuzzy number is defined by

Now, α-cut of this trapezoidal fuzzy number is as follows (Fig. 1):

B̃α = [b1 + (b2 − b1)α, b4 − (b4 − b3)α]

Method 1:

Signed-distance Method:

Let, B̃ = (b1, b2, b3, b4) be a trapezoidal fuzzy number. Then the signed distance of
B̃ is defined as follows.

d(B̃, 0) = 1

2

1∫

0

[BL(α) + BR(α)]dα

Fig. 1 Trapezoidal Fuzzy Number
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where, BL(α) = n1 + (n2 − n1)α

BR(α) = n4 − (n4 − n3)α, α ∈ [0, 1]

To defuzzify the fuzzy models FSEOQ 1 and FMEOQ 1, here, we have used the
signed-distancemethod. Here, we considered fixed cost, holding cost, purchased cost
(or produced cost), fixed emitted carbon, holding emitted carbon, and purchased (or
produced) emitted carbon as trapezoidal fuzzy numbers to minimize the total annual
cost under the limitation of total carbon emission per unit production time. By using
the signed-distancemethod, our fuzzymodels FSEOQ1 and FMEOQ1become crisp
models. Then the crisp models can be solved by using an optimization technique.
But here, we have used LINGO software to obtain the optimal solution.

The model FSEOQ 1 can also be written as

FSEOQ′ 1 : min c̃ = (m1,m2,m3,m4)

S.t. (n1, n2, n3, n4) ≤ l

q ≥ 0

The model FMEOQ 1 can also be written as

FMEOQ′ 1 : min c̃ = (m1,m2,m3,m4)

S.t (n1, n2, n3, n4) ≤ l

qi ≥ 0; i = 1, 2, 3, . . . , n

Let, c̃ = (m1,m2,m3,m4) be a trapezoidal fuzzy number. Then the signed
distance of c̃ is defined as follows:

d(c̃(m̃), 0) = 1

2

1∫

0

[BL(α) + BR(α)]dα

where, BL(α) = m1 + (m2 − m1)α

BR(α) = m4 − (m4 − m3)α, α ∈ [0, 1]

Let, ñ = (n1, n2, n3, n4) be a trapezoidal fuzzy number. Then the signed distance
of ñ is defined as follows:

d(ñ, 0) = 1

2

1∫

0

[BL(α) + BR(α)] dα

where, BL(α) = n1 + (n2 − n1)α

BR(α) = n4 − (n4 − n3)α, α ∈ [0, 1]
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Method 2:

Expected value techniques:

Let, X̃ = (x1, x2, x3, x4) be a trapezoidal fuzzy number, then the expected value X̃
is defined as follows:

E(X̃) = (x1 + x2 + x2 + x3)

4

To defuzzify the fuzzy models FSEOQ 2 and FMEOQ 2, here, we have used the
expected value technique. Here, we considered fixed cost, holding cost, purchased
cost (or produced cost), fixed emitted carbon, holding emitted carbon, purchased (or
produced) emitted carbon, and total carbon emission in a unit production time as
trapezoidal fuzzy numbers to minimize the total annual cost under the limitation of
total carbon emission per unit production time. By using the expected value tech-
nique, our fuzzy models FSEOQ 2 and FMEOQ 2 become crisp models as CSEOQ 2
and CMSEOQ 2, respectively. Then the crisp models can be solved by using an opti-
mization technique. But here we have used LINGO software to obtain the optimal
solution.

The fuzzy model FSEOQ 2 converted to crisp model CSEOQ 2 as follows.

CSEOQ 2 : min c̃ = E

(
ã1d

q
+ h̃1q

2
+ p̃1d

)

S.t E

(
ã2d

q
+ h̃2q

2
+ p̃2d

)

≤ E
(
l̃
)

q ≥ 0

The fuzzy model FMEOQ 2 converted to crisp model CMEOQ 2 as follows.

CMEOQ 2 : min c̃ =
n∑

i=1

E

(
ã1i d

qi
+ h̃1i q

2
+ p̃1i di

)

S.t
n∑

i=1

E

(
ã2i di
qi

+ h̃2i qi
2

+ p̃2i di

)

≤ E
(
l̃
)

qi ≥ 0; i = 1, 2, 3, . . . , n

4 Numerical Example

A company uses 600 units of raw materials per unit production time. Holding each
order costs $ 2. Fixed costs and purchased costs are $ 120 and $ 5 per item per
year of the inventory, respectively. Holding emitted carbon, fixed emitted carbon,
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and purchased emitted carbon of the inventory are 3, 2, and 1, respectively. The
limitation of total carbon emission in a unit production time is 50,000. Find the
optimum total annual cost and order quantity for a single item and a multi-item
inventory models.

Solution:

Given, d = 600, a1 = 0.120, h1 = 2, p1 = 5, a2 = 2, h2 = 3, p2 = 1 and l = 50,000
Taking, α = 0

4.1 General Economic Order Quantity Models

(i) Single-item economic order quantity (SEOQ) model

By putting the given data, in SEOQ model under carbon constraint, we have,

SEOQ : min c = 72, 000

q
+ 2q

2
+ 3000

S.t.
1200

q
+ 3q

2
+ 600 ≤ 50, 000

q ≥ 0

By using LINGO software, the optimal solution of the model is as follows:
c = 3536.656, q = 268.3282

(ii) Multi-item economic order quantity (MEOQ) model

Consider,

d1 = Rs. 600, d2 = Rs. 700, d3 = Rs. 800,
a11 = Rs. 120, a12 = Rs. 130, a13 = Rs. 140,
h11 = Rs. 2, h12 = Rs. 3, h13 = Rs. 4,
p11 = Rs. 5, p12 = Rs. 6, p13 = Rs. 7,
a21 = 2, a22 = 3, a23 = 4,
h21 = 3, h22 = 4, h23 = 5,
p21 = 1, p22 = 2, p23 = 3

By putting the given data, in MEOQ model under carbon constraint, we have,

MEOQ : min c =72, 000

q1
+ 2q1

2
+ 3000 + 91, 000

q2
+ 3q2

2

+ 4200 + 112, 000

q3
+ 4q3

2
+ 5600

S.t.
1200

q1
+ 3q1

2
+ 600 + 2100

q2
+ 4q2

2
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+ 1400 + 3200

q3
+ 5q3

2
+ 2400 ≤ 50, 000

qi ≥ 0; i = 1, 2, 3

By using LINGO software, the optimal solution of the model is as follows:
c = 29082.15, q1 = 268.3282, q2 = 246.2060, q3 = 236.6432.

4.2 Fuzzy Economic Order Quantity Models

Method 1 (Signed-distance Method)

(i) Fuzzy single-item economic order quantity (FSEOQ) model

Consider,

ã1 =(120, 120.2, 120.4, 120.6), h̃1 = (2, 2.2, 2, 4, 2.6), p̃1 = (5, 5.2, 5.4, 5.6),

ã2 =(2, 2.2, 2.4, 2.6), h̃2 = (3, 3.2, 3.4, 3.6), p̃2 = (1, 1.2, 1.4, 1.6)

By putting the given data, in FSEOQ 1 model under carbon constraint, we have,

FSEOQ 1 : min c̃ = (120, 120.2, 120.4, 120.6)d

q

+ (2, 2.2, 2, 4, 2.6)q

2
+ (5, 5.2, 5.4, 5.6)d

S.t.
(2, 2.2, 2.4, 2.6)d

q
+ (3, 3.2, 3.4, 3.6)q

2

+ (1, 1.2, 1.4, 1.6)d ≤ 50, 000

q ≥ 0

The abovemodel by using a signed-distancemethod can also bewritten as follows:

FSEOQ′ 1 : min c =(72, 000/q + q + 3000, 72, 120/q + 1.1q + 3120,

72, 240/q + 1.2q + 3240, 72, 360/q + 1.4q + 3360)

S.t. (2/q + 1.5q + 600, 2.2/q + 1.6q + 720,

2.4/q + 1.7q1 + 840, 2.6/q + 1.8q + 960) ≤ 50, 000

q ≥ 0

Now, by using the defuzzification technique, the above model is converted to the
model CSEOQ 1 as follows:
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CSEOQ 1 : min c = 144, 360

q
+ 2.4q + 6360

S.t.
4.6

q
+ 3.3q + 1560 ≤ 50, 000

q ≥ 0

By using LINGO software, the optimal solution of the model is as follows:
c = 7537.224, q = 245.2550.

(ii) Fuzzy multi-item economic order quantity (FMEOQ) model

Consider,

ã11 =(120, 120.2, 120.4, 120.6), ã12 = (130, 130.2, 130.4, 130.6),

ã13 = (140, 140.2, 140.4, 140.6),

h̃11 =(2, 2.2, 2.4, 2.6), h̃12 = (3, 3.2, 3.4, 3.6), h̃13 = (4, 4.2, 4.4, 4.6),

p̃11 =(5, 5.2, 5.4, 5.6), p̃12 = (6, 6.2, 6.4, 6.6), p̃13 = (7, 7.2, 7.4, 7.6),

ã21 =(2, 2.2, 2.4, 2.6), ã22 = (3, 3.2, 3.4, 3.6), ã23 = (4, 4.2, 4.4, 4.6),

h̃21 =(3, 3.2, 3.4, 3.6), h̃22 = (4, 4.2, 4.4, 4.6), h̃23 = (5, 5.2, 5.4, 5.6),

p̃21 =(1, 1.2, 1.4, 1.6), p̃22 = (2, 2.2, 2.4, 2.6), p̃23 = (3, 3.2, 3.4, 3.6)

By putting the given data, in FMEOQ 1 model under carbon constraint, we have,

FMEOQ 1 : min c̃ = (120, 120.2, 120.4, 120.6)d1
q1

+ (2, 2.2, 2.4, 2.6)q1
2

+ (5, 5.2, 5.4, 5.6)d1 + (130, 130.2, 130.4, 130.6)d2
q2

+ (3, 3.2, 3.4, 3.6)q2
2

+ (6, 6.2, 6.4, 6.6)d2

+ (140, 140.2, 140.4, 140.6)d3
q3

+ (4, 4.2, 4.4, 4.6)q3
2

+ (7, 7.2, 7.4, 7.6)d3

S.t.
(2, 2.2, 2.4, 2.6)d1

q1
+ (3, 3.2, 3.4, 3.6)q1

2

+ (1, 1.2, 1.4, 1.6)d2 + (3, 3.2, 3.4, 3.6)d2
q2

+ (4, 4.2, 4.4, 4.6)q2
2

+ (2, 2.2, 2.4, 2.6)d2

+ (4, 4.2, 4.4, 4.6)d3
q3

+ (5, 5.2, 5.4, 5.6)q3
2

+ (3, 3.2, 3.4, 3.6)d3 ≤ 50, 000
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qi ≥ 0; i = 1, 2, 3, . . . , n

The abovemodel by using a signed-distancemethod can also bewritten as follows:

FMEOQ′ 1 : min c =(72, 000/q1 + q1 + 91, 000/q2 + 1.5q2
+ 11, 200/q3 + 2q3 + 12, 800,

72, 120/q1 + 1.1q1 + 91, 140/q2
+ 1.6q2 + 11, 216/q3 + 2.1q313, 220,

72, 240/q1 + 1.2q1 + 91, 280/q2 + 1.7q2
+ 11, 232/q3 + 2.2q3 + 13, 640,

72, 360/q1 + 1.4q1 + 91420/q2 + 1.8q2
+ 11, 248/q3 + 2.3q3 + 14, 060)

S.t. (2/q1 + 1.5q1 + 3/q2 + 2q2 + 4/q3
+ 2.5q3 + 4400, 2.2/q1 + 1.6q1 + 3.2/q2 + 2.1q2
+ 4.2/q3 + 2.6q3 + 4820, 2.4/q1 + 1.7q1 + 3.4/q2
+ 2.2q2 + 4.4/q3 + 2.7q3 + 5240, 2.6/q1 + 1.8q1
+ 3.6/q2 + 2.3q2 + 4.6/q3 + 2.8q3 + 5660) ≤ 50, 000

qi ≥ 0; i = 1, 2, 3

Now, by using the defuzzification technique, the above model converted to the
model CMEOQ 1 as follows:

CMEOQ 1 : min c =144, 360

q1
+ 2.4q1 + 182, 420

q2
+ 3.3q2

+ 224, 480

q3
+ 4.3q3 + 26, 860

S.t.
4.6

q1
+ 3.3q1 + 6.6

q2
+ 4.3q2 + 8.6

q3
+ 5.3q3

+ 10, 060 ≤ 50, 000

qi ≥ 0; i = 1, 2, 3

By using LINGO software, the optimal solution of the model is given as follows:
c = 31553.94, q1 = 245.2550, q2 = 235.1144, q3 = 228.4834

Method 2 (Expected value ETFN technique):

(i) Fuzzy single-item economic order quantity (FSEOQ) model

Consider, l̃ = (50000, 50020, 50040, 50060)
By putting the given data, in FSEOQ 2 model under carbon constraint, we have,
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FSEOQ 2 : min c̃ = (120, 120.2, 120.4, 120.6)d

q
+ (2, 2.2, 2, 4, 2.6)q

2

+ (5, 5.2, 5.4, 5.6)d

S.t.
(2, 2.2, 2.4, 2.6)d

q
+ (3, 3.2, 3.4, 3.6)q

2

+ (1, 1.2, 1.4, 1.6)d ≤ (50, 000, 50, 020, 50, 040, 50, 060)

q ≥ 0

Now, by using the defuzzification technique expected value technique, the above
model FSEOQ 2 can be converted to the model CSEOQ 2 as follows:

CSEOQ 2 : Min c = 72180

q
+1.15q + 3180

S.t.
1380

q
+1.65q + 780 ≤ 50030

q ≥ 0

By using LINGO software, the optimal solution of the model is as follows:
c = 3756.219, q = 250.5299.

(ii) Fuzzy multi-item economic order quantity (FMEOQ) model

Consider, l̃ = (50, 000, 50, 020, 50, 040, 50, 060)
By putting the given data, in FMEOQ 2 model under carbon constraint, we have,

FMEOQ 2 : min c̃ = (120, 120.2, 120.4, 120.6)d1
q1

+ (2, 2.2, 2.4, 2.6)q1
2

+ (5, 5.2, 5.4, 5.6)d1 + (130, 130.2, 130.4, 130.6)d2
q2

+ (3, 3.2, 3.4, 3.6)q2
2

+ (6, 6.2, 6.4, 6.6)d2

+ (140, 140.2, 140.4, 140.6)d3
q3

+ (4, 4.2, 4.4, 4.6)q3
2

+ (7, 7.2, 7.4, 7.6)d3

S.t.
(2, 2.2, 2.4, 2.6)d1

q1
+ (3, 3.2, 3.4, 3.6)q1

2

+ (1, 1.2, 1.4, 1.6)d2

+ (3, 3.2, 3.4, 3.6)d2
q2

+ (4, 4.2, 4.4, 4.6)q2
2

+ (2, 2.2, 2.4, 2.6)d2

+ (4, 4.2, 4.4, 4.6)d3
q3

+ (5, 5.2, 5.4, 5.6)q3
2
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+ (3, 3.2, 3.4, 3.6)d3 ≤ (50, 000, 50, 020, 50, 040, 50, 060)

qi ≥ 0; i = 1, 2, 3, . . . , n

Now, by using the defuzzification technique expected value technique, the above
model FMEOQ 2 can be converted to the model CMEOQ 2 as follows:

CMEOQ 2 : min c =72, 180

q1
+ 1.15q1 + 91, 210

q2
+ 1.65q2

+ 112, 240

q3
+ 2.15q3 + 13, 430

S.t.
1380

q1
+ 1.65q1 + 2310

q2
+ 2.15q2

+ 3440

q3
+ 2.65q3 + 5030 ≤ 50, 030

qi ≥ 0; i = 1, 2, 3

By using LINGO software, the optimal solution of the model is given as follows:
c = 15764.57, q1 = 250.5299, q2 = 235.1144, q3 = 228.4834.

5 Results and Discussion

No. of
items

Deterministic model Fuzzy model

Signed-distance method Expected value ETFN
technique

Cost Order
quantity

Cost Order
quantity

Cost Order
quantity

Single
item
(for one
=
item)

c =
3536.656

q =
268.3282

c =
7537.224

q =
245.2550

c =
3756.219

q =
250.5299

Multi
items
(for three
=
items)

c =
29082.15

q1 =
268.3282
q2 =
246.2060
q3 =
236.6432

c =
31553.94

q1 =
245.2550
q2 =
235.1144
q3 =
228.4834

c =
15764.57

q1 =
250.5299
q2 =
235.1144
q3 =
228.4834
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6 Conclusion

In this paper, we discussed the EOQ models for single item and multi-items in an
uncertain environment. By using the concept of the signed-distance method and
expected value technique, we can obtain the corresponding crisp models to our
proposed fuzzy models. The corresponding deterministic model can be solved by
using an optimization technique. But here, we have used the LINGO software to
obtain the optimal solutions. The defuzzification technique can also be applied to
other fuzzy models.
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Ion Acoustic Solitary Wave Propagation
in Collisional Magnetized Nonthermal
Plasma

B. Boro, A. N. Dev, B. K. Saikia, and N. C. Adhikary

Abstract The ion acoustic (IA) solitary wave (SW) propagation in collisional
plasma is presented, in presence of magnetic field. The considered plasma is
consisting with mobile positive and negative ions and nonthermal electrons. Using
the reductive perturbation technique, the basic set of fluid equations are reduced to
a three-dimensional damped Zakharov–Kuznetsov (DZK) nonlinear wave equation.
The dissipation generated by ion-neutral collision is taken into the consideration. It
is observed that the solitary wave amplitude diminishes with time as the ion-neutral
collision frequency increases. Also, the characteristic features of rarefactive solitary
wave amplitudes are observed for the parameters like negative ion concentration ratio
(μn) and nonthermal electrons (αe). This analysis is suitable for understanding the
astrophysical plasma environments.

1 Introduction

The nonlinear ion acoustic wave (IAW) propagation in plasma has received much
attention of researchers due to its existence in space and laboratory plasmas [1].
Also, the investigation on this area has reached a greater height. The existence of
IAW mode is observed in plasma which is comprised of mainly cold (mobile) ions
and hot electrons. In such plasma, the wave inertia is provided by ions, and restoring
force is generated by hot electrons. The phase velocity of IAW is usually much larger
than ion thermal speed but much smaller than electron thermal speed. Meanwhile,
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depending on different regions of plasma environment, the IAW excitation in plasma
leads to the generations of many nonlinear wave structures such as soliton, shock,
double layers, rouge wave, turbulence, and wave modulations, etc. [2–5], which
mainly depend on the initial perturbations of the wave. These distinct wave modes
propagation in plasma can be distinguished from their frequency range [6]. Consid-
ering the case of collisionless plasma, initially, Washimi and Tanuiti [7] studied the
IAW mode propagation, by solving the one-dimensional Korteweg–de Vries (KdV)
nonlinear wave equation. They revealed that the suitable condition for the generation
of solitary wave is when there is a balance between the wave steepening due to weak
nonlinearity and dispersion effect of the wave. In the year 1973, Ikezi [8] came up
with the experimental poof of the existing IAWmode. Later, in the year 1992, Shukla
and Silin [9] studied the dust ion acoustic wave (DIAW)mode propagation in a dusty
plasma medium. They reported that, in such plasma condition, the number density of
electrons is much smaller than that of ions by following the charge neutrality condi-
tion. Where in usual IAW, the number density of electron is almost equal to that
of ions present in plasma. Meanwhile, in collisionless plasma, many research works
have been carried out to study the IAWpropagation in different plasma environments
[10–12]. However, in real-life situation, the collisional effect generated by colliding
between various plasma constituents such as ion-neutral, ion–dust, electron-neutral,
dust-neutral is very obvious. In such condition, while propagating through a colli-
sional plasma medium, the wave amplitude, width, and speed of the solitary wave
changes due to the dissipation effect generated by collisions and the wave amplitude
can diminish with time [13]. Therefore, the study of dissipative IA solitary wave
propagation in collisional plasma has received great attention from the researchers
due to its real physical situation [13–16].

Moreover, from the study of space and astrophysical plasma, the observed
evidences reveal that particles are usually in high energy state and get accelerated
easily. In such environments, the nonequilibrium state of the system can be achieved
and the energetic particle distribution can be represented by kappa, q-non-extensive,
and Cairns distribution function, which describes the nonthermal state [16]. There-
fore, in the present work, our emphasis is to study the nonlinear IAW propagation
in collisional magnetized plasma by considering pair ion of hydrogen

(
H+, H−)

.
In formulating the mathematical model of the plasma system. Reductive perturba-
tion technique is adopted to solve the damped Zakharov-Kuznetsov (DZK) nonlinear
wave equation. ZK equation is useful in studying the IAWpropagation inmagnetized
plasma.

2 Fluid Model

The collisional magnetized plasma consisting of mobile positive and negative ions,
nonthermal electrons are considered to study the nonlinear IAW propagation in
plasma. It is assumed that the static magnetic field is along z-direction, i.e., B = B0 ẑ.
The three-dimensional DZK nonlinear wave equation is derived by solving the basic
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fluid equations. The normalized set of equations representing the dynamics of mobile
positive and negative ions are given by

Continuity equation for pair ions (i.e., N+ and N−)

∂N±
∂T

+ ∂

∂X
(N±Vx±) + ∂

∂Y

(
N±Vy±

) + ∂

∂Z
(N±Vz±) = 0 (1)

X-, Y-, Z-directions of momentum Eq. for pair ion:

∂(Vx±)

∂T
+ Vx±

∂

∂X
+ Vy±

∂

∂Y
+ Vz±

∂

∂Z
(Vx±) = ∓ ∂ϕ

∂X
+

(−→
Vx± × ΩB+

)
(2)

∂
(
Vy±

)

∂T
+ Vx±

∂

∂X
+ Vy±

∂

∂Y
+ Vz±

∂

∂Z

(
Vy±

) = ∓ ∂ϕ

∂Y
+

(−→
Vy± × ΩB+

)
(3)

∂(Vz±)

∂T
+ Vx±

∂

∂X
+ Vy±

∂

∂Y
+ Vz±

∂

∂Z
(Vz±) = ∓ ∂ϕ

∂Z
+

(−→
Vz± × ΩB+

)
− ν±Vz±

(4)

The number density of nonthermal electron Ne is,

Ne = {
1 − αeϕ + αeϕ

2} exp(ϕ) (5)

where αe = 4βe

(1+3βe)

Poisson’s equation:

∇2ϕ = [
μnN− − N+ + μe{1 − αeϕ + αeϕ} exp(ϕ)

]
(6)

where, N±,e denotes the number density of positive ion, negative ion, and electrons
normalized by the equilibrium value n(±,e), V± is the fluid velocity of positive and

negative ions having x, y, z components and is normalized by cs
(
= κbTe

m+

) 1
2
, time-

variable T is normalized by plasma frequency ωpi

(
= 4πn+0e2

m+

)1/2
, the space variable

X is normalized by cs
ωpi

, whereωpi = cs
λd

givingDebye length λD =
√

κbTe
4πn+0e2

,ϕ is the

wave potential normalized by κbTeψ
e , ΩB+ = Z+eB0

m+ωpi
is the normalized ion cyclotron

frequency, ν± is the collisional frequency of positive and negative ions normalized

by υ± = υ±
0

ωpi
, μn = z−n0−/z+n0+, μe = ne0/z+n0+ are the concentration ratios

of negative ions, electrons, and κb is the Boltzmann constant. The overall charge
neutrality condition at equilibrium is given by: (1 − μn − μe) = 0.

For studying the nonlinear IA wave propagation in a dissipative magnetized
plasma, we adopted reductive perturbation technique (RPT) to obtain the damped
ZK nonlinear wave equation. The two independent, space and time variables are
stretched as



80 B. Boro et al.

ξ = ε
1
2 X, η = ε

1
2 Y, ς = ε

1
2 (z − Mτ), T = ε

3
2 τ (7)

where ε is a small parameter which measures the strength of nonlinearity. It is
assumed that ion plasma frequency is greater than that of ion-neutral collision
frequency and can be expanded as

ν± = υ±
0

ωpi
= ν0ε

1
2 (8)

The expansion of the perturb quantities about the equilibrium point in power of ε

is given by

N± = 1 + εN±1 + ε2N±2 + · · · (9)

V±x,y = ε
3
2 V±x,y1 + ε2V±x,y2 + ε

5
2 V±x,y3 + · · · (10)

V±z = εV±z1 + ε2V±z2 + · · · (11)

ϕ = εϕ1 + ε2ϕ2 + · · · (12)

Now, using the stretched co-ordinates and perturbed quantities in the normalized
set of Eqs. (1)–(6), we equate the lowest power of ε from continuity and X-, Y-,
Z-directions of momentum equations, which are obtained as

⎧
⎨

⎩
N (1)

+ = ϕ1

M2
, N (1)

− = − μ+Zβϕ1

M2
, V (1)

x+ = 1

�B

∂ϕ1

∂η
, V (1)

x− = 1

�B

∂ϕ1

∂η
, V (1)

y+ = 1

�B

∂ϕ1

∂ξ
, V (1)

y−

= 1

�B

∂ϕ1

∂ξ
, V (1)

z+ = ϕ1

M
, V (1)

z+ = − μ+Zβϕ1

M

⎫
⎬

⎭

(13)

From Poissons Eq., we get

0 =
[
μnN

(1)
− − N (1)

+ + μe(1 − αe)ϕ
1
]

(14)

Using Eq. (13) in Eq. (14), we obtained the phase velocity M of IA waves in the
form of

M = ±
[(

μnμ+Zβ + 1
)

μe(1 − αe)
ϕ1

]

(15)

where μ+ = m+
m− is the mass ratio of positive to negative ion, zβ = z−

z+ is the charge
state ratio of negative to positive ions.
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Again, equating the next higher order of ε from the normalized set of Eqs. (1)–(6),
we get

∂N (2)
+

∂ς
= 1

M

∂N (1)
+

∂τ
+ 1

M

∂V (2)
x+

∂ξ
+ 1

M

∂V (2)
y+

∂η
+ 1

M

∂V (2)
z+

∂ς
+ 1

M

∂

∂ς

(
N (1)

+ V (1)
z+

)

(16)

V (2)
y+ = − M

ΩB

∂V (1)
x+

∂ς
(17)

V (2)
x+ = − M

ΩB

∂V (1)
y+

∂ς
(18)

∂V (2)
z+

∂ς
= 1

M

∂V (1)
z+

∂τ
+ 1

M
V (1)
z+

∂V (1)
z+

∂ς
+ 1

M

∂ϕ2

∂ς
+ 1

M
ν0V

(1)
z+ (19)

∂N (2)
−

∂ς
= 1

M

∂N (1)
−

∂τ
+ 1

M

∂V (2)
x−

∂ξ
+ 1

M

∂V (2)
y−

∂η
+ 1

M

∂V (2)
z−

∂ς
+ 1

M

∂

∂ς

(
N (1)

− V (1)
z−

)

(20)

V (2)
y− = − M

μ+ZβΩB

∂V (1)
x−

∂ς
(21)

V (2)
x− = M

μ+ZβΩB

∂V (1)
y−

∂ς
(22)

∂V (2)
z−

∂ς
= 1

M

∂V (1)
z−

∂τ
+ 1

M
V (1)
z−

∂V (1)
z−

∂ς
+ 1

M

∂ϕ2

∂ς
+ 1

M
ν0V

(1)
z− (23)

(
∂2

∂ξ 2
+ ∂2

∂η2
+ ∂2

∂ς2

)
ϕ1 =

[
μnN

(2)
− − N (2)

+ + μe(1 − αe)ϕ
(2) + μe

2
ϕ(1)2

]
(24)

Again, equating the coefficients of next higher order of ε from the Poisson’s Eq. (6)
and differentiating this equation with respect to ς , we get

∂3ϕ1

∂ς3 + ∂

∂ς

(
∂2ϕ1

∂ξ2
+ ∂2ϕ1

∂η2
+

)
=

[

μn
∂N (2)

−
∂ς

− ∂N (2)
+

∂ς
+ μe(1 − αe)

∂ϕ(2)

∂ς
+ μe

2

∂ϕ(1)2

∂ς

]

(25)

Substituting Eqs. (16)–(24) in Eq. (25), we get the DZK equation, which is in the
form of

∂ϕ1

∂τ
+ Aϕ1 ∂ϕ1

∂ς
+ B

∂3ϕ1

∂ς3
+ C

∂

∂ς

(
∂2ϕ1

∂ξ 2
+ ∂2ϕ1

∂η2

)
+ Dϕ1 = 0 (26)
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where

A =
3
(
1 + μ2+Z2

βμn

)
− μeM4

2M
(
1 + μ+Zβμn

)

B = M3

2
(
1 + μ+Zβμn

)

C = M3
(
Zβμ+Ω2

B − (
μn − μ+Zβ

))

2μ+ZβΩ2
B

(
1 + μ+Zβμn

)

D = ν0

2

∇2 =
(

∂2ϕ1

∂ξ 2
+ ∂2ϕ1

∂η2
+ ∂2ϕ1

∂ς2

)

In Eq. (26), A denotes the nonlinear coefficient, B is the dispersion co-efficient.
C denote the transverse co-efficient, and D denotes the dissipative coefficient due to
ion-neutral collision. If D = 0, Eq. (26) simply represents the Zakharov–Kuznetsov
(ZK) nonlinear wave equation.

3 Solution of Damped Zakharov–Kuznetsov (DZK)
Equation

To obtain the solution of the DZK Eq. (26), we used the transformation
χ(ξ, ζ, η, τ ) = ϕ(lξ + mζ + nη −Uτ) moving with velocity U and l,m, n are the
direction cosines along which the wave propagates and

(
l2 + m2 + n2

) = 1. Substi-
tuting ϕ(χ) = ϕ(ξ, ζ, η, τ ) gives ∂

∂ξ
= l d

dχ
, ∂

∂ζ
= m d

dχ
, ∂

∂η
= n d

dχ
, ∂

∂τ
= −U d

dχ
.

Now, Eq. (26) can be rewritten as

−U
dϕ

dχ
+ Anϕ

dϕ

dχ
+ F

d3ϕ

dχ3
− Dϕ = 0 (27)

where F = [
Bn3 + Cn

(
l2 + m2

)]

Integrating Eq. (27) w.r.t χ and putting the integration constant as 0, Eq. (27) can
be transformed as

F
d2ϕ

dχ2
+ An

2
(ϕ)2 −Uϕ − Dϕχ = 0 (28)

Now, using the boundary condition as ϕ → 0 at χ → ∞, the time evolution
equation is in the form of [17]
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ϕ1 = ϕ0Sech
2 χ

�

where ϕ0 = 3U
l A e

(−Dτ), � =
√

4l F
U eDτ are amplitude and width of the solitary wave,

respectively.

4 Results and Discussions

The variation of nonlinear and dispersion coefficients A and Bwith respect to the ion
concentration ratio μn and nonthermal electron parameter αe are shown in Fig. 1a
and Fig. 1b. From Fig. 1a, it is observed that the nonlinear term A is negative and is
decreases gradually with increasing μn value. On the other hand, Fig. 1b represents
that with varying nonthermal electron parameter αe, there is a sharp decrease in the
nonlinear term A from positive to negative value. However, in both cases (Fig. 1a,
b), the dispersion coefficient B is positive and increases with increasing αe and μn

value. Which implies that for the chosen values of plasma parameters, the IA wave
excitations in plasma lead to the evolution of rarefactive solitary wave.

In Fig. 2a, b, the potential profile ϕ of rarefactive solitary wave excitation has
shown with varying time τ (i.e., τ = 0, 1, 2) values and at different values of colli-
sional frequency ν0 (i.e., ν0 = 0, 0.08, 0.16). In Fig. 2a, keeping the fixed value
of ν0 = 0.04, it is observed that when τ = 2, the decrease in the solitary wave
amplitude is more than that of the case when τ = 0. This implies that in a collisional
plasma, the damped in solitary wave amplitude is observed as time passes. While in
Fig. 2b, the solitary wave potential ϕ is plotted at a fixed time value of τ = 1, for
different ν0 values (i.e., ν0 = 0, 0.08, 0.16). It is observed that under the presence of
a strong collisional effect, i.e., at ν0 = 0.16, the prominent decrease in solitary wave
amplitude is observed than that of the case when there is any collision, i.e., at ν0 = 0.
Hence, from Fig. 2a, b, it is observed that in a collisional plasma, the amplitude of

Fig. 1 Variation of nonlinearity and dispersion coefficients (A & B) a with αe b with μn . The
plasma parameters are μe = 0.9, μ+ = 1, αe = 0.5 ΩB = 0.3
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Fig. 2 a Solitary wave potential ϕ at different time τ(0, 1, 2) values. b Solitary wave potential ϕ

at different values of ion-neutral collision frequency ν0(0, 0.08, 0.16). The plasma parameters are
μn = 0.1, μe = 0.9, μ+ = 1, U = 0.1, l = 0.2, m = 0.55, n = 0.25, ΩB = 0.3

solitary wave profile decreases with time and also due to collisional effect generated
by ions. In three-dimensional portraits of Fig. 3a, b, the influence of ν0 is studied to
observe the solitary wave propagation in collisionless plasma medium considering
ν0 = 0 and in case of collisional medium considering ν0 = 0.05. It is observed

(a)

(b) 

0 0

0 0.05

Fig. 3 3D plot of solitary wave potential ϕ at a ν0 = 0 b ν0 = 0.05. The other plasma parameters
are same as Fig. 2
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Fig. 4 Solitary wave potential ϕ at ν0 = 0.08, τ = 1 a for different μn(0.01, 0.05, 0.1) b for
different αe(0.3, 0.5, 0.7). The other plasma parameters are same as Fig. 2

that for the case of ν0 = 0 (Fig. 3a), the solitary wave amplitude remains same as
time passes, however, the change in the width of the solitary wave is observed with
varying time values. On the other hand, when it is considered in a collisional medium
considering the value of ν0 as ν0 = 0.05, it is noticed that the solitary wave ampli-
tude decreases with time and the width of the solitary wave also changes as shown in
Fig. 3b. In Fig. 4a, b, the effect of ion concentration ratioμn and nonthermal electron
parameter αe have shown for the changes in the characteristics features of solitary
wave potential profile ϕ. It is observed that at a fixed value of ν0 = 0.08 and τ = 1,
the increasing value of ion concentration ratio μn increases the wave amplitude of
rarefactive solitary wave. It is because, the nonlinearity in plasma system decreases
with increasing negative ion concentration, which is shown in Fig. 1a. While Fig. 3b
represents that at a fixed value of ν0 = 0.08 and τ = 1, the increase in αe value also
increases the wave amplitude of rarefactive solitary wave. However, at a lower value
of αe, i.e., at αe ≤ 0.3, the rarefactive solitary wave changes to compressive one.
This represents that the chosen αe value has strong influences in the generation of
rarefactive or compressive solitary wave in plasma.

5 Conclusion

We have presented the theoretical study on nonlinear IA solitary wave propagation
in collisional magnetized plasma. It is considered that plasma is consisting of mobile
pair ion of hydrogen

(
H+, H−)

, and Crain’s nonthermal electron distribution. In
this study, the dissipation generated by ion-neutral collision frequency is considered.
By adopting the reductive perturbation technique, three-dimensional DZK nonlinear
wave equation is derived and the time-dependent solution is obtained by using co-
ordinate transformation. It is observed that in collisional plasma, the solitary wave
amplitude diminishes by collisions between different plasma constituents. And with
passing time the decrease in solitary wave amplitude is also observed. Also, it is
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observed that when collision frequency is zero, i.e., ν0 = 0, the amplitude of solitary
wave remains same as time progresses, however, the width of the wave changes. On
the other hand, when ν0 = 0.05, the solitarywave amplitude as well as width changes
with respect to time. And finally, we have shown the effect of ion concentration ratio
μn and nonthermal electron parameter αe, on solitary wave potential profile ϕ. It
is observed that amplitude of the rarefactive solitary wave increases with increase
in negative ion concentrations and with increasing value of nonthermal electron.
However, for lower value of αe, i.e., at αe ≤ 0.3, change in the solitary wave profile
from rarefactive to compressive wave is observed. This investigation is helpful in
studying space plasma environments.
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Particle–Antiparticle Trapping
in a Magnetically Quantized Plasma
and Its Effect on the Evolution of Solitary
Wave

Manoj Kr. Deka and Apul N. Dev

Abstract In an ion beam plasma system, the effect of the magnetically quantized
degenerate trapped electron (Particle) and positron (Antiparticle) on small-amplitude
ion acoustic solitary waves are studied with the help of the Korteweg–de-Vries (K–
dV) equation. Here, the magnetized positive ions and beam ions are considered
as non-degenerate. The effect of magnetic quantization, degenerate temperature,
normalized positron concentration, normalized ion beam concentration along with
other relevant physical plasma parameters of the origin of astrophysical plasma envi-
ronment, on solitary wave propagation is studied, especially in the non-linear regime.
On the other hand, in the linear regime, the dependency of frequency and wave
number on the above-mentioned plasma parameters are discussed. It is found that
both compressive, as well as rarefactive type solitarywaves can exist in such a plasma
environment. Three different modes of propagation, the fast beam and slow beam
mode and the inherent ion acoustic mode co-exist in such plasma system and the role
of different degenerate plasma parameters on these wave modes are also discussed
in detail. The normalized positron concentration and, velocity, as well as normalized
ion beam concentration along with different degenerate plasma parameters, has an
astounding control on the polarity of the solitary wave as well as the amount of
compression and rarefaction, a typical plasma wave mode would undergo. Within
the chosen degenerate and non-degenerate plasma parameters, for a compressive
(rarefactive) fast beam mode, the slow mode appears as rarefactive (compressive).
For some typical combinations of degenerate parameters, the fast mode can propa-
gate with a hypersonic phase velocity which shows distinctive characteristics with
positron density.
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1 Introduction

Due to symmetry and anti-symmetry in the mass and charge of electron and positron,
the characteristics of solitary wave in electron–positron–ion (e–p–i) plasma has been
always dealt with substantial importance than electron–ion (e–i) plasmas. More-
over, due to the abundance of e–p–i plasma in different space plasma environment
such as the early universe [1, 2], centre of our galaxy [3], active galactic nuclei [4],
neutron stars [5] as well as in different laboratory plasma environment [6–10], the
investigations on e–p–i plasmas has been getting boost throughout the world. On the
other hand, from numerous investigations and in situ measurements on space and
laboratory plasma environment, the rampant presence of non-Maxwellian popula-
tions of plasma species has been well established due to the long-range interaction
[11, 12] and the presence of high energetic particles in such plasma environment
[13]. Apart from this, the atoms or molecules undergo a significant change in the
presence of a strong magnetic field. In quantum plasmas, in the presence of strong
magnetic field, the cyclotron orbits of electrons are quantized [14], and as a result,
electrons occupy discrete Landau levels, where, in each level, the number of elec-
trons is directly proportional to the strength of the magnetic field. To produce the
extreme state of matter which exists in space environment like neutron star, white
dwarfs, etc., the intense ion beams are regarded as the indispensable tool [15–23].
Also, these ion beams are quite prevalent in earth magnetosphere, magnetosphere of
different planets [24] in supernova-driven plasma flows [25] in pulsars, blazars, etc.
[26].

Because of its abundance and occurrence in a different laboratory and space
plasma, solitary waves in e–p–i and e–i plasma in degenerate/non-degenerate as well
as in relativistic/ultrarelativistic plasmas has been widely investigated as mentioned
in the above paragraph [27–33]. Shah et al. investigated the properties of solitary
wave in degenerate plasmas in the presence of trapped electrons in relativistic, ultra-
relativistic and non-relativistic regimes and concluded that, in the non-relativistic
regime, the solitarywavepotential has the highest value,whereas, for ultra-relativistic
and relativistic regimes, the wave potential is in the intermediate and in the lowest
level, respectively [34]. Abdikian and Mahmood investigated the properties of
acoustic solitons in a relativistic degenerate e–p–i plasma in the presence ofmagnetic
field and concluded that the width and height of the electron–positron acoustic soli-
tary wave decrease with increasing relativistic effect and they also found that the
potential of the solitary wave increases with increasing positron density and the
width reduces with increasing strength of the magnetic field [35]. Rasheed et al.
studied the propagation of solitary waves in a degenerate electron–positron plasma
and concluded that only compressive solitary structure is obtained in such plasmas
whose amplitudes are drastically reduced by the presence of positrons [36].

Recently, a lot of investigation has been carried out with trapped plasma species
in degenerate plasmas including e–p–i in the presence of Landau quantized magnetic
fields. For example, Tsintsadze et al. studied the properties of ion acoustic waves in a
quantized degenerate plasmawith trapped electron andmagnetic field and concluded
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that singularities occur separating the regions of weak and strong quantization due
to the ambient magnetic field and thereby affecting the solitary wave potential [37].
Irfan et al. considered ion pressure anisotropy and electron trapping in degenerate
plasma to study the features of solitary wave and reported that the thermal correction
for electron and the pressure anisotropy from ions strongly modify the wave ampli-
tudes and width in such plasmas [38]. Arshad et al. studied the properties of solitary
wave in degenerate plasma in the presence of electron trapping in degenerate plasma
considering a modified Hasegawa Mima equation [39]. Masood et al. using the drift
approximation in amagnetically quantized plasmawith electron trapping showed the
occurrence of one- and two-dimensional drift ion solitary structures for such plasma
[40]. On the other hand, Iqbal et al. considered the electron and positron trappingwith
Landau quantized magnetic field to investigate the properties of solitary waves in
linear and non-linear regimes and concluded that the wave characteristics are signif-
icantly modified by the presence of trapped positrons in such plasmas [41]. Shaukat
et al., considering Landau quantized magnetic field and electron temperature effect,
studied the properties of drift solitary wave in degenerate plasmas and concluded
that both compressive and rarefactive solitary structure exists in such plasmas [42].
Shaukat observed drift solitary structures in the presence of Landau quantization in
degenerate e–p–i plasma and observed only compressive solitary structures in such
plasmas [43]. Shan et al. studied the properties of solitary wave in the presence of
cold positron beam and q-distributed trapped electron and concluded that the cold
positron beams can significantly modify the wave propagation characteristics in such
plasmas [44]. Last but not the least, very recently, Iqbal et al. investigated the nature
of ion acoustic waves in degenerate relativistic and ultra-relativistic plasmas in the
presence of Landau diamagnetism and electron trapping and concluded that in both
the regime, only compressive solitary structures are formed [45]. Here in this report,
in the presence of ion and ion beams and magnetically quantized degenerate elec-
trons as well as positrons, the salient features of solitary wave propagation governed
by a K–dV equation is described in detail. We would be happy if our companion
researcher investigates the striking features of such plasma numerically as well as
experimentally though it is beyond the scope of the present Manuscript.

1.1 Theoretical Formulations

The number density of electron and positrons for Fermi–Dirac distribution within
the energy range ε and ε + dε, for all the Landau levels, can be written as [14, 46,
47]

n j = p2Fj
η j

2π2�3

√
m j

2

∞∑
l=0

∞∫
0

ε−1/2
1 + exp

(
ε −U

/
T
)dε (1)
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with U = μ − l�ωcj − q jϕ, where μ is the chemical potential, η = �ωce
/

εFe,

εFe = (
�
2
/
2me

)(
3π2ne0

)2/3, ne0 = (
p3

Fe

/
3π2

�
3
)
, ϕ = eφ

/
εFe is the equilibrium

number density, pFe is the momentum on the Fermi surface, T =
(
πT

/
2
√
2εFe

)
,

quantizing magnetic field is defined by appears through η.
The Fermi integrals are evaluated following the general treatment for such type

of integral and, finally, we derive the expression for degenerate electron density as
[14, 46, 47]

Ne =η

2

(
3 − T 2

) + (1 − η)
3
2 + T 2(1 − η)−

1
2

+ 3φ

2

{
η

2

(
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1
2 − T 2

3
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3
2

}

+ 3φ2

8

{
−η

2

(
1 + 5T 2
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1
2 + T 2(1 − η)−

5
2

}
(2)

Similarly, to obtain positron density, it is clear that U = μ − qpϕ − l � ωc e =
U =

(
1 − φμ

− 2
3

p − l ημ
− 2

3
p

)
εFp, qp = e, So we obtain lmax = 1−φμ

− 2
3

p

ημ
− 2

3
p

so that the

integral of Eq. (1) becomes a real quantity and then following the same procedures
as mentioned in the above references, we obtain the positron density as

np = np0

⎡
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where np0 = p3
Fp

/
3π2

�
3, ηp = ημ

− 2
3

p . On expanding, Eq. (1) becomes

n p
n p0

=Np = ημ
− 2

3
p

2

(
3 − μ

− 4
3

p T 2
)

+
(
1 − μ

− 2
3

p η

) 3
2 + μ

− 4
3

p T 2
(
1 − μ

− 2
3

p η

)− 1
2

+ 3φ

2

⎧⎪⎨
⎪⎩−ημ

− 4
3

p

2

(
1 + μ

− 4
3

p T 2
)

− μ
− 2

3
p

(
1 − μ

− 2
3

p η

) 1
2 + μ−2

p T 2

3

(
1 − μ

− 2
3

p η

)− 3
2

⎫⎪⎬
⎪⎭

+ 3φ2

8

⎧⎨
⎩−ημ−2

p

2

(
1 + 5μ

− 4
3

p T 2
)

+ μ
− 4

3
p

(
1 − μ

− 2
3

p η

)− 1
2 + μ

− 8
3

p T 2
(
1 − μ

− 2
3

p η

)− 5
2

⎫⎬
⎭
(4)

The basic set of equations can be written as follows:
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∂ni
∂t

+ �∇.(ni �vi ) = 0 (5a)

∂nb
∂t

+ �∇.(nb�vb) = 0 (5b)

∂ �vi
∂t

+
(
�vi . �∇

)
�vi = qi

mi

(
−∇φ + �vi × �B0

)
(5c)

∂ �vb
∂t

+
(
�vb. �∇

)
�vb = qb

mb

(
−∇φ + �vb × �B0

)
(5d)

∇2ϕ = 4πe
(
ne − ni − nb − np + Zhnho

)
(5e)

Assume that neo = nio + npo + nbo where ni0, nb0, np0,neo are the unperturbed
number density for ions, ions beams, positrons electrons, respectively.

1.2 Linear Analysis

Adopting the standard procedures for linearization techniques, the above equations,
i.e. (5a)–(5e) reduce to

∂ni1
∂t

+ ni0
∂

∂x
vi1 = 0, ni = ni1 + ni0, vi = vi1 (6a)

mi
∂vi1

∂t
= −e

∂ϕ

∂x
+ vi1 × B (6b)

∂nb1
∂t

+ nb0
∂

∂x
vb1 = 0, nb = nb1 + nb0, vb = vb1 (6c)

mb
∂vb1

∂t
= −e

∂ϕ

∂x
+ vb1 × B (6d)

∂2

∂x2
ϕ = 4πe

(
ne − ni1 − ni0 − nb1 − nb0 − np

)
(6e)

where the subscript “0” stands for the unperturbed part whereas subscript “1” stands
for the perturbed part. Assuming a sinusoidal solution proportional to ei(−wt+kx) for
oscillating quantities, we have ∂

∂x = ik, ∂
∂t = −iw, and then above set of basic

Eqs. (6a)–(6e) becomes

wni1 = ni0kvi1,mswvi1 = ekϕ,wnb1 = nb0kvb1,mbwvb1 = ekϕ (7a)
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−k2ϕ = 4πe
(
ne − ni1 − ni0 − nb1 − nb0 − np

)
(7b)

Evaluating Eqs. (7a) and (7b), we get the dispersion relation as

w

k
= Cs

{ (
α0 − μpΥ0

)
k2λ2

Fe + (
α1 − μpΥ1

)
} 1

2

(8)

1.3 Evolution Equation of Non-linear Wave

The set of Eqs. (5a)–(5e) are normalized using the following normalized parameter
ϕe = εFeφ, t = τω−1

j , x = XλFe, N j = n j
/
n j0, Vj = v j

/
Cs . Thus λFeω j = Cs ,

ω j = (
4πn j0e2

/
m j

)1/2, λFe = (
εFe

/
4πni0e2

)1/2, Cs =
√

εFe
/
mi .

After normalization, the normalized set of equations are obtained as follows:

∂Ni

∂T
+ ∇(NiVi ) = 0 (9a)

∂Nb

∂T
+ ∇(NbVb) = 0 (9b)

∂Vi

∂T
+ (Vi∇)Vi = −∇φ + ViΩBi (9c)

∂Vb

∂T
+ (Vb∇)Vb = −∇φ + VbΩBb (9d)

∇2φ = (
Ne − Nbμb − Npμp − μi Ni + μhn

)
(9e)

whereΩBk = eB0
/

ωkmk , k= (i= ion,b=beam),μi = ni0
ne0

, μb = nb0
ne0

, μp = np0

ne0
.

Adopting the standard reductive perturbation technique and using the following
stretched co-ordinates, we derive the evolution equation of solitary wave in terms of
a K–dV equation.

ξ = ε
1/2

(
Ix x + Iy y + Izz − λT

)
and τ = ε

3/2T (10)

where λ is the Mach Number and Ix , Iy , Iz are the direction cosines for x, y, z axes,
respectively. The physical variables in equations are expanded in a power series in
terms of the expansion parameter ε as
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Nk = 1 + εN (1)
k + ε2N (2)

k + ε3N (3)
k + . . .

Vbx = Vb0 + εV (1)
bx + ε2V (2)

bx + ε3V (3)
bx + . . .

Vkx = εV (1)
kx + ε2V (2)

kx + ε3V (3)
kx + . . .

Vky,z = ε
3
2 V (1)

ky,z + ε2V (2)
ky,z + ε

5
2 V (3)

ky,z + . . .

φ = εφ(1) + ε2φ(2) + ε3φ(3) + . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

Substituting expansions from Eq. (11) and stretching co-ordinates through
Eq. (9a)–(9e) and equating the power of lowest power of ε, we get
V (1)
i x = φ(1)

/
λ, V (1)

iy = Ix
ΩB

∂φ(1)

∂ξ
, V (1)

i z = Ix
ΩB

∂φ(1)

∂ξ
N (1)
i = φ(1)

/
λ2,

V (1)
bx = φ(1)

/
(λ − Vb0), N (1)

b = φ(1)
/

(λ − Vb0)
2, N (1)

e = α1φ
(1),

N (1)
p = Υ1φ

(1), where α1 = 3
2

{
η

2

(
1 + T 2

) + (1 − η)
1
2 − T 2

3 (1 − η)−
3
2

}
,

Υ1 = 3
2

{
− ημ

− 4
3

p

2

(
1 + μ

− 4
3

p T 2
)

− μ
− 2

3
p

(
1 − μ

− 2
3

p η
) 1

2 + μ−2
p T 2

3

(
1 − μ

− 2
3

p η
)− 3

2
}
and

the expression for Mach number or the phase velocity(normalized) of the non-linear
wave is given by

λ2 = [{
μb

/(
α1 − μpΥ1

)
(1 − δ)2

} + (
μi

/
α1 − μpΥ1

)]
, wi th δ = Vb0

/
λ (12)

Similarly, equating the coefficient of higher power of ε from the Eqs. (9a) to (9e),
we get

∂N (1)
i

∂τ
− M

∂N (2)
i

∂ξ
+

∑
l=x,y,z

Il
∂

∂ξ
V (2)
il = 0 (13)

∂V (2)
i x

∂ξ
= 1

λ

∂V (1)
i x

∂τ
+ Ix

λ
V (1)
i x

∂V (1)
i x

∂ξ
+ Ix

λ

∂φ(2)

∂ξ
(14)

∂V (2)
iy

∂ξ
= λIx

Ω2
B

∂3φ(1)

∂ξ 3
and

∂V (2)
i z

∂ξ
= MIx

Ω2
B

∂3φ(1)

∂ξ 3
(15)

∂N (1)
b

∂τ
− (λ − Ix Vb0)

∂N (2)
b

∂ξ
+

∑
l=x,y,z

Il
∂V (2)

bl

∂ξ
= 0 (16)

∂V (1)
bx

∂τ
− (λ − Ix Vb0)

∂V (2)
bx

∂ξ
+ Ix V

(1)
bx

∂V (1)
bx

∂ξ
+ Ix

∂φ(2)

∂ξ
= 0 (17)

∂V (2)
by

∂ξ
= Ix (λ − Ix Vb0)

Ω2
B

∂3φ(1)

∂ξ 3
and

∂V (2)
bz

∂ξ
= Ix (λ − Ix Vb0)

Ω2
B

∂3φ(1)

∂ξ 3
(18)

I 2x
∂3φ(1)

∂ξ 3
= ∂

∂ξ
N (2)
e − μb

∂

∂ξ
N (2)
b − μp

∂

∂ξ
N (2)

p − μi
∂

∂ξ
N (2)
i (19)
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Now solving Eqs. (13)–(19) along with first-order equations, we obtain the
following K–dV equation

p
∂φ(1)

∂τ
+ qφ(1) ∂φ(1)

∂ξ
+ r

∂3φ(1)

∂ξ 3
= 0 (20)

where p = 2μb

(λ−Vb0)
3 + 2μi

λ3

q = μb I 2x
(λ − Ix Vb0)

4 + μi I 2x
λ4

−
(
α2 − μpΥ2

)
I 2x

r = 1 + 2μb
/

Ω2
Bb + 2μi

/
Ω2

Bi

α2 = 3

8

{
−η

2

(
1 + 5T 2

) + (1 − η)−
1
2 + T 2(1 − η)−

5
2

}

Υ2 = 3

8

{
−ημ−2

p

2

(
1 + 5μ

− 4
3

p T 2
)

+ μ
− 4

3
p

(
1 − μ

− 2
3

p η
)− 1

2 + μ
− 8

3
p T 2

(
1 − μ

− 2
3

p η
)− 5

2

}

By using the tanh method [48], the stationary wave solution of Eq. (20) is derived
as

φ(1) = φm sec h2
(χ

ω

)
(21)

where quantities φm = 3u
A andω = 2

(
B
u

)1/2
and A = q

p & B = r
p are the amplitude

and width of the solitary waves, respectively.

2 Results and Discussion

2.1 Including the Effect of Positron

All the results and discussions are basically based on the analysis of Eq. (21) which is
analytically studied to unlock the salient features of the solitary wave propagation in
such plasma. Here, plasma density is considered as 10 cm−3 [26–28], magnetic field
is in the range of 109~1011 G and the Fermi temperature is calculated to be around
3.6277 × 107K [49, 50]. For obvious reasons of its abundance, helium positive ions
are considered for the plasma environment of our interest and also considered ion
beams with some initial beam velocity.

In Fig. 1, we discuss the dependency of non-normalized wave frequency on the
wave number for different degenerate and non-degenerate plasma parameters, and
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Fig. 1 Dispersion relation of ion beam plasma with a magnetic quantization, η, b degenerate
Temperature, T, c positron density and d ion beam density

as seen from the figure, with increasing magnetic quantization (Fig. 1a), the wave
frequency increases. This is because an increase in the magnetic field will always
increase the amount of confinement of the plasma species and with a greater number
of confined plasma species along a particular direction, the number of complete
wave cycles will tend to increase. On the other hand, with increasing degenerate
temperature, initially, the wave frequency increases with increasing wave number
but after a certain wave number, the frequency decreases.

This is because, as the wave number increases, the wavelength will decrease
which means frequency will increase which is also the case initially in Fig. 1b,
but as the wavelength continues to decrease with the increase of wave number, the
increase of temperature which is nothing but the thermal velocity, can result in a
rapid interaction or collision among the charged particle which eventually leads to
the decrease in frequency. On the other hand, as shown in Fig. 1c, with increasing
positron density, the frequency goes down, which is primarily due to the decrease in
the restoring force due to the addition of positron, whereas, as shown in Fig. 1d, the
frequency increases with increasing beam ion density as the addition of ion beams
compensate the loss of positive ions due to addition of positron.

In Fig. 2, we describe the variation in phase velocity with ion beam velocity at
different concentrations of the positron, and as expected the phase velocity goes
down with increasing positron density. Here, we can see the propagation of namely,
the fast beam mode, the slow beam mode and the inherent ion acoustic mode. The
characteristic of these modes under different physical plasma conditions is described
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Fig. 2 Effect of positron density on three different modes of ion beam plasma. Here, the various
plasma parameters considered are η = 0.2, T = 0.2, μb = 0.2

in subsequent figures later on. As already described in different literature, the domi-
nant mode of wave propagation in basically the fast beammode with the background
inherent ion acoustic plasma mode, whereas the slow beam mode will also be there
having some peculiar characteristics which we believe is quite interesting (to be
discussed later on).

Here, in this figure, we can see that the fast beammode and the background plasma
ion acoustic mode almost bears the similar characteristic with increasing positron
density, whereas the slow beam mode shows an increase in the phase velocity with
increasing positron density, this is primarily because as the restoring force decreases,
the slow beammode is free to propagate with more ease than compared to the case of
absence or decrease of positron density. Moreover, with increasing positron density,
the reduction of ions and hence ion beams, will always make the slow beam mode
freer to move since this mode appears only at the expense of ion beams. This is
also evident from Fig. 1d, where, we can see that with increasing ion beam density,
the frequency increases, and also it is very much simple that, as the wave number
increases (i.e. the wavelength decreases), the frequency will increase.

Figure 3a describes the typical conditions under which phase velocity can go up
to the hypersonic range. The typical values of the magnetic quantization parameter,
degenerate temperature, normalized positron, ion and ion beam density under which
theplasma systemsupports fast beammodewith phasevelocity only in thehypersonic
range, are obtainednumerically solving equations of phase velocity for a certain range
of beam velocity. The phase velocity can also reach up to the hypersonic range with
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Fig. 3 a Phase velocity sketched in the hypersonic range for only fast mode solitary wave for
different relevant combination degenerate plasma parameters, positron density, beam density, etc.,
b Phase velocity approaching hypersonic speed for all the plasmamodes for a different combination
of degenerate and non-degenerate plasma parameters

other degenerate plasma parameters, as shown in Fig. 3b, but in that case, the other
two modes also appear for the same beam velocity.

It is clear from Fig. 3a that the phase velocity increases and reaches the highest
value when the quantization, temperature are almost comparable with the highest
value of positron density among the possible parameters which support hypersonic
phase velocity obtained numerically. On the other hand, if the positron density
decreases with increasing either of the degenerate plasma parameters, the phase
velocity decreases and it is the least when the rate of decrease of positron density is
the highest, irrespective of the rate of increase of the degenerate plasma parameter.

Figure 4 shows the variation of the non-linear hypersonic solitary waves for the
range of combinations of plasma parameters considered for the hypersonic wave
propagation. In the non-linear regime, the solitary wave potential reaches the lowest
value for the comparable range of degenerate plasma parameters along with the
highest chosen normalized positron density, whereas the potential of the solitary
wave is the least when the value of degenerate plasma parameter along with positron
density is the lowest among the chosen values. This is primarily due to the change
in the non-linearity of the plasma system under the chosen set of plasma parameters.
Now, if we consider the individual plots of Fig. 4, we see that with decreasing the
restoring force with increasing positron density, the plasma particle can undergo
frequent interaction and this interaction is more effective in the presence of magnetic
quantization which can do this in a more channelized way due to the presence of
strongmagnetic field by confining the plasma particles along the path of themagnetic
field.

Due to this frequent and prolonged interaction among the plasma charged parti-
cles, the plasma system can become more and more non-linear, and thereby the
amplitude of the solitary wave may decrease as it is also evident from the evolution
equation that the maximum amplitude is controlled by the non-linear coefficient.
Now from the variation of the other plots in the same graph can be understood from
the fact that as the degenerate plasma parameters, as well as the positron density
decreases, the wave become free to move and due to this the rate of interaction
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Fig. 4 Characteristic propagation of solitary wave in the hypersonic range of phase speed for the
plasma parameter as shown in Fig. 2a

among the plasma particle decreases which makes the plasma system less non-linear
which in turn helps the solitary wave to propagate with a higher potential.

Figure 5 describes the variation of solitary wave potential with the magnetic
quantization parameter η at three different ion beam to Fermi ion sound velocity
ratio Vb0, where Vb0 = Vb

/
Cs . Here, we have chosen three different regimes of

beam velocity, i.e. when Vb
/
Cs < 1, Vb

/
Cs = 1, and Vb

/
Cs > 1. Here, as seen

from the three plots, the solitary wave potential is the highest when the beam velocity
is equal to the Fermi ion sound velocity and apart from that, it is seen that solitary
wave potential is the lowest when Vb0 = Vb = 2Cs . This may be because when
the ion beam velocity is nearly equal to the Fermi ion sound speed, the beam ions
can couple to the background ions easily and thus can energize the wave which may
allow the wave to propagate with higher amplitude. On the other hand, when the
beam velocity is much greater than Fermi ion sound velocity (=2Cs), the ion beams
can’t couple to the background ions and, with increasing velocity of the beam ions,
the system can behave more non-linearly and hence the amplitude of the solitary
wave decreases. Similar is the reason for Fig. 5a, i.e. the case when Vb

/
Cs < 1.

On the other hand, in all the three cases discussed, we can see that with increasing
quantization parameter, the amplitude of the solitary wave goes down. This may be
because, with increasing magnetic quantization, the interaction among the charged
plasma particle can be more and also, frequent due to the presence of a strong
magnetic field which tends to increase the non-linear behaviour and thus eventually
results in the reduction of the solitary wave potential.
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Fig. 5 Fast mode solitary wave propagation with quantized magnetic field η when
a Vb0 = Vb

/
Cs < 1, b Vb0 = Vb

/
Cs = 1 and c Vb0 = Vb

/
Cs > 1 along with other plasma

parameters considered are η = 0.2, T = 0.2, μb = 0.2, μp = 0.3

Fig. 6 Fast mode solitary wave propagation with degenerate temperature T, at Vb0 = Vb
/
Cs = 1

when a μp = 0.1 and b μp = 0.3 and c Vb0 = Vb
/
Cs > 1 along with other plasma parameters

considered are η = 0.2, μb = 0.2
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Fig. 7 Fast mode solitary wave propagation with ion beam velocity, when a μp = 0.1 and b μp =
0.3 along with other plasma parameters considered are η = 0.2, μb = 0.2, T = 0.2

Figure 6 shows the variation of solitary wave potential with degenerate tempera-
ture. Figure 6a shows the variation of solitary wave potential with degenerate temper-
ature for a lower normalized positron concentration and Fig. 6b shows the variation of
solitary wave potential with degenerate temperature for a higher normalized positron
concentration. As can be seen from Fig. 6a, both compressive as well as a rarefactive
solitary wave can co-exist at a lower concentration of positron, whereas, at a higher
concentration of positrons, only compressive solitary wave exists. It is also seen that
the solitary wave amplitude decreases with increasing degenerate temperature and
positron density. This may be because the positron density increases, the restoring
force decreases which in turn decreases the frequency and if, in this condition, the
degenerate temperature increases, theremay be a rapid interaction among the charged
particles of the plasma and thereby may cause an enhancement in the non-linearity
of the plasma system and thus, we can expect to notice a decrease of the solitary
wave potential with increasing degenerate temperature.

Figure 7 describes the characteristics of solitary wave propagation with the
streaming velocity of ion beams at different positron density.

Figure 7a describes the solitary wave propagation with increasing streaming
velocity of beam ions when the positron density is lower i.e. μp = 0.1 and it is seen
that in the compressive regime the amplitude is the highest when Vb0 = Vb

/
Cs = 1

and with increasing ion beam streaming speed, the amount of rarefaction increases.
This may be because, in the situation Vb0 = 1, the beam ions can undergo an effective
coupling with the background plasma ions, energizing the wave further, whereas, as
the ion beam speed increases, becomes twice of the Fermi ion sound speed, the ion
beams can add to the amount rarefaction suffered by the wave in terms of additional
streaming speed and thus the width as well as the amount of rarefaction increases
as the ion beams can drive the wave further overcoming positron contribution. This
can be better understood in Fig. 7b. As seen from the figure, when the positron
density increases, the solitary wave has the highest amplitude when Vb0 = 1 for
obvious reason as discussed above and further when the beam velocity becomes
twice of the Fermi ion sound speed, the wave amplitude (or amount of compres-
sion) decreases but continues to be compressive may be due to the higher amount of
positron contribution.
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On the other hand, in Figs. 8, 9 and 10, we try to summarize the variation of
solitary wave potential with normalized positron density for three different regimes
of beam velocity, i.e. when Vb

/
Cs < 1, Vb

/
Cs = 1, and Vb

/
Cs > 1 at two

different concentrations of ion beams. For instance, the variation of solitary wave
potential when Vb

/
Cs < 1 at two different ion beam concentration is plotted in

Fig. 8a, b, respectively. As seen from Fig. 8a, b, with an increase in the positron
density, the solitary wave potential increases with lower and higher concentrations
of beam ions.

This increase in the solitary wave potential can be attributed to the fact that as
the positron density increases, a lesser restoring force helps in a better coupling of
the ion beams to the plasma ions thereby energizing the wave potential. However,
keeping the same physical situation intact as shown in Fig. 8a, if we increase the ion
beam density, a slight reduction in the solitary wave potential is seen as depicted in
Fig. 8b. This is primarily because as the beam ions density increases, there may be
an increase in the charged particle collision which eventually decreases the solitary
wave potential.

Fig. 8 Fast mode solitary wave propagation with positron density, when a μb = 0.1 and
Vb0 = Vb

/
Cs < 1, b μb = 0.3 and Vb0 = Vb

/
Cs < 1 along with other plasma parameters

considered are η = 0.2, T = 0.2

Fig. 9 Fast mode solitary wave propagation with positron density, when a μb = 0.1 and
Vb0 = Vb

/
Cs = 1, b μb = 0.3 and Vb0 = Vb

/
Cs = 1 along with other plasma parameters

considered are η = 0.2, T = 0.2
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Fig. 10 Fast mode solitary wave propagation with positron density, when a μb = 0.1 and
Vb0 = Vb

/
Cs > 1, b μb = 0.3 and Vb0 = Vb

/
Cs > 1 along with other plasma parameters

considered are η = 0.2, T = 0.2

In Fig. 9a and b, we describe the solitary wave propagation with positron density
when Vb

/
Cs = 1. As it is already described that when the ion beam velocity and

ion Fermi sound velocity becomes equal, the ion beams can easily couple to the
background plasma ions and primarily due to this reason, we see the highest possible
solitary wave potential with increased positron density for a higher ion beam concen-
tration among all the chosen physical plasma situation. With increased ion beams,
this coupling may be the most effective which is the case portrayed in Fig. 9b.

Also, as seen from Fig. 9a, at lower ion beam concentration, with increasing
positron density, both compressive and rarefactive solitary waves can co-exist. Now
as the positron concentration increases the restoring force increases and as this
increase in restoring force is effective due to better coupling of background ions
and beam ions, due to significant rate of frequency decrease, the amount of rarefac-
tion increases than compression. Again, on the other hand, the rate of decrease of
ions due to positrons can be expected to be compensated by the addition of more
beam ions which in turn helps in the reduction of rarefaction and as a result, the
solitary wave can become compressive again at higher ion beam concentration as
shown in Fig. 9b.

On the other hand, in Fig. 10a and b, the similar plasma parameters are considered
as Figs. 8 and 9 except the case Vb = 2Cs . Now, since in this case, the beam ions
are much more energetic than background plasma ions, the rate of loss of ions with
increasing positron density will take place more quickly and hence the frequency,
and thus the amount of rarefaction will tend to increase even in the lower positron
concentration unlike the case of Fig. 9a. However, as shown in Fig. 10b with the
addition of energetic ion beam density at a faster rate (i.e. with a higher velocity), the
rate of loss of ion due to the addition of positrons will be compensated and again we
can expect a higher amount of compression which is exactly the situation described
in the Figure. In Fig. 11a and b, we discuss the characteristics of ion acoustic mode
which shows more or less similar characteristics of dominant fast mode. Here, we
sketch the nature of propagation of ion acoustic mode with ion beam velocity at
lower and higher positron concentration in Fig. 11a and b, respectively. The wave



Particle–Antiparticle Trapping in a Magnetically Quantized … 103

Fig. 11 Solitary wave of ion acoustic mode with ion beam density at a μp = 0.1 and
Vb0 = Vb

/
Cs > 1, b μp = 0.3 and Vb0 = Vb

/
Cs > 1 along with other plasma parameters

such as η = 0.2, T = 0.2

potential continues to be rarefactive in nature with low positron concentration and
on careful observation, we notice that with increasing ion beam concentration, the
amount of rarefaction decreases which is for obvious reason as discussed above.
On the other hand, for a higher positron concentration, when the ion beam density
increases, which results in compensation of the rate of decrease of ion density, the
amount of compression increases and as a result, the wave continues to propagate in
a compressive mode.

Figure 12a and b demonstrate the features of solitary waves in the slow beam
mode at different ion beam density with increasing positron density. To understand
the nature of the slow mode, we have to correlate Fig. 12 with Fig. 10.

In both cases, the same physical parameter is used to understand the nature of the
two different beam modes. It has been already established that for compressive type
fast mode solitary wave in ion beam plasma, the slow beammode will always appear
bearing the opposite characteristics, i.e. rarefactive type [51]. But, till now, it has
never been demonstrated what would happen if the fast beam mode is originally a

Fig. 12 Solitarywave of slowmodewith positron densitywhen aμb = 0.1 and Vb0 = Vb
/
Cs > 1,

b μb = 0.3 and Vb0 = Vb
/
Cs > 1 along with other plasma parameters considered are η = 0.2, T

= 0.2
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rarefactive type. Here, we have demonstrated that the slow beammode always carries
a distinctive characteristic from that of a compressive type. As seen from both the
figures, for a rarefactive type fast beammode (Fig. 10a), the slow beammode appears
compressive type (Fig. 12a), whereas, for a compressive type fast mode (Fig. 10b),
the slow beam mode appears rarefactive type (Fig. 12b). Interestingly, in both the
figures we see that in the case of a rarefactive type compressive fast mode solitary
wave, the amount of rarefaction decreaseswith increasing positron density (Fig. 10a),
whereas, in the compressive type slow beam mode solitary wave, the amount of
compression increases with increasing positron density (Fig. 12a). On the other
hand, for a compressive type fast beam mode, the amount of compression increases
with increasing positron density (Fig. 10b), while, for a rarefactive type slow beam
mode, the amount of rarefactiondecreaseswith increasingpositrondensity (Fig. 12b).
Thus, we see that the fast beammode and slow beammodewill be always of differing
characteristics, irrespective of any physical plasma situation in ion beam plasma. We
believe that this is the first report where this typical swing between compression and
rarefaction in ion beam-driven ion acoustic plasma is discussed in detail though we
still believe that proper numerical scheme will reveal the exact nature and type of
different modes in such plasma system which is beyond the scope for the present
manuscript.

2.2 Excluding the Effect of Positron

Here in this section, we discuss the evolution of Hypersonic soliton without the effect
of the positron, and it is seen that the requirement of the value of different parameters
such asmagnetic quantization, degenerate temperature, ion beam concentration, etc.,
are quite different in the case of without positron, for the propagation of the solitary
wave with hypersonic velocity.

If we compare Figs. 3 and 13,we see thatwith positron,we can have solitarywaves
whose Mach number may vary from supersonic to hypersonic whereas, without

Fig. 13 a Variation of Mach number with ion beam concentration for the different chosen combi-
nations of the magnetic quantization and temperature. b Variation of Mach number only in the
Hypersonic range
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Fig. 14 a Spatial variation of ion acoustic mode and b slow mode with magnetic quantization

Fig. 15 a Variation of ion acoustic mode and b slow mode with degenerate temperature with η =
0.2, μb = 0.2

Fig. 16 a Variation of ion acoustic mode and b slow mode with ion beam density with T = 0.2, η
= 0.2

positron, we can have Mach number only in the Hypersonic range. Moreover, in
the presence of positrons (Fig. 3), we need higher values of beam velocity to obtain
solitary waves in the hypersonic range than compared to the case of without positrons
(Fig. 13).

On the other hand, the ion acoustic mode (Figs. 14a, 15a, 16a) is always compres-
sive in the absence of positron whereas, we can have compressive, as well as the
rarefactive solitary wave of ion acoustic mode with positrons (Fig. 11). Apart from
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these, the slow mode (Figs. 14b, 15b, 16b) is always rarefactive in the absence of
positrons, whereas the slow mode can be compressive as well as rarefactive in the
presence of positrons (Fig. 12).

3 Conclusion

Here, we have discussed the outstanding characteristics of wave propagation in an
ion beam plasma with and without positron in the presence of magnetic quantiza-
tion and degenerate temperature. Depending on different chosen physical plasma
parameter of magnetic quantization, degenerate temperature, ion beam density and
positron density, we can encounter only hypersonic fast beam mode propagating in
such plasma, whereas, depending on some other physical parameter, we can have
hypersonic fast beam mode along with slow beam mode and ion acoustic mode. All
of these three modes can be either compressive or rarefactive type depending on
ion beam density, velocity, positron density, etc. On the other hand, the ion acoustic
mode, slow mode bears complete opposite characteristics with and without positron.
In the presence of degenerate plasma parameter, the non-degenerate plasma param-
eter such as the beam ion’s concentration as well positron density has a substantial
role in the amount of compression and rarefaction suffered by either fast beam mode
or slow beam mode. The slow beam mode becomes compressive for a rarefactive
type fast beammode, whereas, for a compressive type fast beammode, the slow beam
mode appears rarefactive type. However, the ion acoustic mode which is the integral
background plasma mode continues to follow the same trend of variation with the
dominant plasma mode, i.e. fast mode. The results presented here can be of signifi-
cant importance for different astrophysical plasma environments where such plasma
ingredient has an abundance as discussed in the introduction part of the manuscript.
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Study on Analytical Solutions of K-dV
Equation, Burgers Equation,
and Schamel K-dV Equation
with Different Methods

Sanjaya Kumar Mohanty and Apul N. Dev

Abstract The study on analytical solutions of differential equations is quite useful
in Modeling in fluid dynamics, physics, etc. In this review work we studied the ana-
lytical solutions of Korteweg–de Vries equation (K-dV), Burgers equation, Schamel
equation, and Schamel–Korteweg–de Vries equations by using different analytical

methods such as tanh method, sech method, sine-Gordon equation method,
(
G ′
G

)

expansion method, and tanh–coth methods. The
(
G ′
G

)
method has different types

that are used to solved Schamel equation and Schamel–K-dV equation.

Keywords K-dV equation · Burgers equation · Schamel equation ·
Schamel–K-dV equation · tanh method · coth method · sech method · (

G ′
G

)

methods · Sine-Gordon method · tanh-coth method

1 Introduction

Nonlinear evolution equations are used to describe the physical existence or physical
models. The study of applications study on analytical solutions of the nonlinear
partial differential equations is in fluid dynamics, plasma physics, nonlinear optics,
engineering, mathematical physics and modeling, and so on. The important and
applied nonlinear evolution equations areK-dV equation, Burgers equation, Schamel
equation. Schamel–K-dV equation, and so on. To find out the analytical solutions
of the nonlinear equations, many authors provide many methods and out of those
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methods tanh method, sech method, tanh–coth method, sine–cosine method,
(
G ′
G

)

method, and sine-Gordon method are quite famous.
The tanh method is used to solve different nonlinear evolution equations in

recent years. In 1996, Willy Malfliet solved K-dV Burgers, Dissipative-Dispersion,
combined K-dV-MKdV, and extended MKdV–Bureges equations [1]. In 2000, Fan
explores the solution of K-dV–Burgers–Kuramoto, 2-dimensional K-dV–Burgers
and generalized Burgers–Fisher equations [2]. In 2004, Wazwaz solved general-
ized K-dV, generalized Fishers equations [3]. In 2005, Evans and Raslan studied
the improved K-dV equation, equal width wave equation (EWE), Regularized long
Wave and Coupled Burgers equations [4]. In 2007, Wazwaz studied the analytical
solutions of the fifth-order K-dV equation, Lax equation, Sawada–Kotera (SK) equa-
tions, etc. [5]. In 2009, Sarma solved K-dV equation and MKdV equations [6, 7].
In 2010, Jawad et al. solved Burgers, K-dV–Burgers, Coupled Burgers, generalized
time-delayed Burgers, Perturbed Burgers equations [8]. In 2013, Karimi solved a
modified K-dV equation [9]. In 2016, Zhang and Yin solved Burgers equation [10].
Adem solved Coupled KP equation [11], Tariq and Akram solved Cahn-Allen and
Phi-4 equations [12] and Ralson et al. solved time-fractional EW and MEW equa-
tions [13]. In 2019, Ali et al. solved variable coefficients of Burgers equation [14]
and so on.

The tanh–coth method is used to solve analytical solutions of nonlinear evo-
lutions equations is quite useful. In 2007 and In 2008, Wazwaz solved Fisher,
Newell–Whitehead, Allen–Cahn and Fitz–Hugh–Nagumo, Burgers–Fisher, Burgers,
Kodomtsev–Petviashvili, Pochhammer–Chree equations [15–17]. In 2009, Wazzan
solved K-dV and K-dV Burgers equations [18]. In 2010, Parkes solved the MKdV
equation, Salas and Gomezs solved K-dV equation of sixth order and MKdV equa-
tion of sixth order [19, 20]. In 2013, Jawad solved one-dimensional Burgers equation,
K-dV–Burgers equation, Coupled Burgers equation, and generalized time-delayed
Burgers equation [21]. In 2017 Chukkol et al. solved K-dV–Burgers equation with
forcing term [22]. Asokan and Vinodh solved Sawad–Kotera equation [23]. In 2018,
Asokan and Vinodh solved generalized K-dV–BBM and potential K-dV–BBM equa-
tions [24] and so on.

The sine-Gordonmethod is used to solved nonlinear evolution equations. In 2003,
Yan solved K-dV equation, MKdV equation, and Complex NLS positive equation
[25]. In 2016, Alquran and Krishnan solved generalized Phi-4 equation, general-
ized regularized long-wave equation and equal width equation and regularized long-
wave equations [26]. In 2020, Korkmaz et al. solved conformable time-fractional
RLW equation [27]. Guirao et al. solved (3 + 1)-dimensional B-type Kadomtsev-
Petviashvili–Boussinesq equation [28].

The sine–cosine method is used to get analytical solutions of nonlinear equa-
tions. In 2004 and 2005, Wazwaz solved K-dV equation, generalized K-dV equa-
tion, Boussinesq equation, RLW equation, and Phi-4 equation, complex modified
K-dV equation and complex generalized K-dV equation [29, 30]. In 2014, Bibi and
Mohyudi-Din solved a modified K-dV equation [31]. In 2015, Yang and Tang solved
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the Schamel–K-dV equation [32]. In 2017, Raslan solved coupled general equal
width wave equation [33]and so on.

The sech method is used to solve nonlinear evolution equations. In 2004, Bald-
win et al. solved Hirota Satsuma System of Coupled K-dV equation [34]. In 2007,
Wazwaz solved Jaulent–Miodek equation [35]. In 2008, Ganji and Abdollahzadeh
solved Lax seventh-order K-dV equation [36]. In 2011, Wei and Tang solved cou-
pled ZK equation [37]. In 2016, Jawad solved modified ZK equations, Dubrovsky
equations [38], and so on.(

G ′
G

)
method is used to solve many nonlinear evolution equations out of those

equations such equations are K-dV equation [19, 39, 40], modified-K-dV equation
[41], fifth-order K-dV equation [42], seventh-order K-dV equation [43], ninth-order
K-dV equation [44], K-dV–Burgers equation [45], the 2D-K-dV equation [46], Burg-
ers equation [47, 48], equalwidthBurgers equation [49], K-dV-MKdVequation [50],
coupled MKdV equation [51], Schrodinger–K-dV equation [52], coupled MKdV
equation [53], Schamel–K-dV equation [54], and so on.

2 Solutions of K-dV Equation by tanh Method

Sarma in 2009 [6] evaluated the solutions of the K-dV equations of 3rd order using
tanh method. K-dV equation of third order is of the form

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (1)

where A and B are nonzero constants and u = u(x, t). Nowwe are using wave trans-
formation X = a(x − kt) to convert the partial differential equation into ordinary
differential equation, where a and k are nonzero constants.

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (2)

where u = u(X).Now introducing the independent variable Z=tanhX and u(X) =
ω(Z). Now substituting these values in (2),

Ba2(1 − Z2)(1 − Z2)
d2ω

dZ2
− 2Ba2Z(1 − Z2)

dω

dZ
+ A

ω2

2
− kω = 0 (3)

The above equation has power series solution as it has a singular point +1 and −1.

ω(Z) =
∞∑
r=0

ar Z
ρ+r
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Then Eq. (3) becomes

Ba2(1 − Z2)(1 − Z2)
∞∑
r=0

ar (ρ + r)(ρ + r − 1)Zρ+r−2

−2Ba2Z(1 − Z2)
∞∑
r=0

ar (ρ + r)Zρ+r−1

+ A
2 (

∞∑
r=0

ar Zρ+r )2 − k
∞∑
r=0

ar Zρ+r = 0 (4)

Now equating the highest order derivative and highest power on nonlinear term in
(4) and taking ρ = 0.

Z4+ρ+r−2 = Z (ρ+r)2

⇒ 4 + r − 2 = 2r

⇒ r = 2.

For r = 2, we have

ω(Z) = a0 + a1Z + a2Z
2, a2 �= 0. (5)

Now (3) becomes

2a2Ba
2Z4 + 4Ba2a2Z

4 + A

2
a22 Z

4 + 2Ba2a1Z
3 + Aa1a2Z

3

−4a2Ba
2Z2 − 4Ba2a2Z

2 + A

2
a21 Z

2 + Aa0a2Z
2 − ka2Z

2

−2Ba2a1Z + Aa0a1Z − ka1Z + A

2
a20 − ka0 + 2a2Ba

2 = 0 (6)

Now equating the coefficient of Z4, Z3, Z2, Z and constant terms in (6) to get the
value of a0, a1, a2 and k. Here a0 = 1

A (k + 8Ba2), a1 = 0, a2 = − 1
A12Ba

2 and
k = ±4Ba2. Now substituting the values of a0, a1 and a2 in (5).

Case 1 K = 4Ba2 and Z = tanhX .

⇒ u(X) = 12

A
Ba2(1 − tanh2X)

⇒ u(X) = 12

A
Ba2sech2X

⇒ u(x, t) = 12

A
Ba2sech2[a(x − kt)]

⇒ u(x, t) = 12

A
Ba2sech2[a(x − 4Ba2t)] (7)
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Case 2 K = −4Ba2, Z = tanhX

u(x, t) = 4

A
Ba2(−2 − 3sech2[a(x − kt)]) (8)

Equations (7) and (8) are the required solutions of the K-dV equation (1).

3 Solutions of K-dV Equation by sech Method

Sarma in 2009 [7] evaluated the numerical solution of the K-dV equations of third
order y using tanh method. The well-known K-dV equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (9)

Now using transformation X = a(x − kt).
Equation (9) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (10)

whereu = u(X).Now introducing the independent variable Z = sechX and u(X) =
ω(Z).

Then Eq. (10) can be written as

Ba2Z2(1 − Z2)
d2ω

dZ2 + Ba2(Z − 2Z3)
dω

dZ
+ A

ω2

2
− kω = 0 (11)

Let us assume the power series solution of the Eq. (11) as follows:

ω(Z) =
∞∑
r=0

ar Z
ρ+r .

Now Eq. (11) becomes

Ba2Z2(1 − Z2)

∞∑
r=0

ar (ρ + r)(ρ + r − 1)Zρ+r−2

+Ba2(Z − 2Z3)

∞∑
r=0

ar (ρ + r)Zρ+r−1

+ A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− k
∞∑
r=0

ar Z
ρ+r = 0 (12)
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Now equating the highest order derivative and highest power on nonlinear term in
(12) and taking ρ = 0.

Z4+ρ+r−2 = Z (ρ+r)2

⇒ 4 + r − 2 = 2r

⇒ r = 2.

For r = 2, then

ω(Z) = a0 + a1Z + a2Z
2, a2 �= 0 (13)

Now Eq. (11) becomes

−2Ba2a2Z
4 − 4Ba2a2Z

4 + A

2
a22 Z

4 − 2Ba2a1Z
3 + Aa1a2Z

3

+4Ba2a2Z
2 + A

2
a21 Z

2 + Aa0a2Z
2 − ka2Z

2 + Ba2a1Z

+Aa0a1Z − ka1Z + A

2
a20 − ka0 = 0 (14)

Now equating the coefficient of Z4, Z3, Z2, Z and the constant terms in (14) to get
the value of a0, a1, a2, and k. We have

a0 = − 8

A
Ba2, a1 = 0, a2 = 12

A
Ba2 and k = ±4Ba2 (15)

Now substituting these values in Eq. (13)

Case 1 K = 4Ba2

u(x, t) = 12

A
Ba2sech2[a(x − 4Ba2t)] (16)

Case 2 K = −4Ba2

u(x, t) = 12

A
Ba2sech2[a(x + 4Ba2t)] (17)

Equations (16) and (17) are the required solutions of the K-dV equation (9).

4 Solutions of K-dV Equation by sine−cosine Method

Wazwaz in 2009 [29] solved the solutions of the kdv equation by using sine−cosine
method. The well-known K-dV equation in the simplest form is
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∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (18)

Now using transformation X = a(x − kt).
Equation (18) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (19)

where u = u(X).

Case 1
Let us assume the solutions of the Eq. (19) as follows:

u(X) = λ cosβ(μX),where |X | � π

μ
, (20)

λ, μ are nonzero constants. Now Eq. (19) becomes

−Ba2λμ2β cosβ(μX) − Ba2λμ2β(β − 1) cosβ(μX) − kaλ cosβ(μX)

+Ba2λμ2β(β − 1) cosβ−2(μX) + A

2
aλ2 cos2β(μX) = 0 (21)

Now equating the coefficient of Eq. (21), β = −2, λ = 3k
2A and μ =

√
−k
8Ba , where

k < 0.
Now substituting these values in Eq. (20), it becomes

u(X) = λ cosβ(μX)

= 3k

2A
cos−2(μX)

⇒ u(x, t) = 3k

2A
cos−2{μ[a(x − kt)]} (22)

Case 2
Let us assume the solutions of the Eq. (19) as follows:

u(X) = λ sinβ(μX),where |X | � π

μ
, (23)

λ, μ are nonzero constants. Now Eq. (19) becomes

−Ba2λμ2β sinβ(μX) − Ba2λμ2β(β − 1) sinβ(μX) − kaλ sinβ(μX)

+Ba2λμ2β(β − 1) sinβ−2(μX) + A

2
aλ2 sin2β(μX) = 0 (24)
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Now equating the coefficient of Eq. (24), β = −2, λ = 3k
A and μ =

√
−k
4Ba2 , where

k < 0.
Now substituting these values in Eq. (23), it becomes

u(X) = λ sinβ(μX)

= 3k

A
sin−2 μ(X)

⇒ u(x, t) = 3k

A
sin−2{μ[a(x − kt)]} (25)

Equations (24) and (25) are the required solutions of the K-dV equation (18).

5 Solutions of K-dV Equation by Sine−Gordon Method

Hepson, Korkmaz, Hosseini, Rezazadeh and Eslami together solved the K-dV equa-
tion bu using sine−Gordon method in 2017. The well-known K-dV equation in the
simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (26)

Now using transformation X = a(x − kt).
Equation (26) is of the form

Ba2
d2u

dX2
+ A

u2

2
− ku = 0, (27)

where u = u(X).
The sine-Gordon equation is

∂2u

∂x2
− ∂2u

∂t2
= m2sinu, (28)

where u = u(x, t) and using the transformation X = a(x − ct). Equation (29)
becomes

d2u

dX2
= m2sinu

a2(1 − k2)
(29)

Again introducing the new variable ω(X)=u(X), dω
dX = sinω, sinω(X) = sech(X),

cosω(X) = tanh(X) and using some integral calculation, the predicated solution of
(29) is
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u(ω) = A0 +
n∑
j=1

cos j−1(A j cosω + Bjsinω) (30)

Let us assume the solution of Eq. (27) of type (30). Now taking the derivatives of (30)
and substituting the derivative values in (27). Then in order to balance the two-term
equation it has j = 2.

Then Eq. (30) becomes

u(ω) = A0 + A1 cosω + A2 cos
2 ω + B1 sinω + B2 sinω cosω (31)

Now taking the derivatives of (31) and substituting in (27) then Eq. (27) becomes

sinω(a2BB2 + AA2B2 + AA0B2 + AA1B1 − kB2)

+ sin2 ω(−4a2BB1 + 2AB1B2 − 3AA1A2 − AA0A1 − k A1)

+ sin3 ω(−20a3BB2 − 5AA2B2 − 2AA0B2 − AA1B1 + 2kB2)

+ sin4 ω(4a2BB1 − 3AB1B2 + 3AA1A2 + 2a2BA1)

+ sin5 ω(24a2BB2 + 4AA2B2)

+ cosω(16a2BA2 − AB2
2 − 2AA0A2 + AB2

1 − A2A1 + 2K A2)

+ cos3 ω(−40a2BA2 − 2AA2
2 + 3AB2

2 + 2AA0A2 + AB2
1 − AA2

1 + 2K A2)

+ cos5 ω(24a2BA2 + 2AA2
2 − 2AB2

2 )

+ sinω cosω(AA0B1 − kB1 − 5a2BB1 − 2AA2B1 − 2AA1B2)

+ sinω cos3 ω(6a2BB1 + 3AA1B2 + 3AA2B1) = 0 (32)

Now equating the coefficients of (32) to get the value of A0, A1, A2, B1, B2 and k.
Here

A1 = 0, A2 = −6a2B

A
, B1 = 0, B2 = 0, k = −14a2B + AA0

Then

u(ω) = A0 − 6a2B

A
cos2 ω

u(X) = A0 − 6a2B

A
tanh2(X)

u(x, t) = A0 − 6a2B

A
tanh2[a(x − kt)]

u(x, t) = A0 − 6a2B

A
tanh2[a(x − (−14a2B + AA0)t)]. (33)

Equation (33) is the solution of Eq. (26).
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6 Solutions of K-dV Equation by G′
G Method

Mehdipoor and Neirameh [39] in 2015 studied the analytic solution of K-dV equa-
tions by usingG ′

G method. The well-known K-dV equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (34)

Now using transformation X = (x − kt).
Equation (34) is of the form

B
d2u

dX2
+ A

u2

2
− ku = 0, (35)

where u = u(X).
Now introducing the independent variable Z = G ′(X)

G(X) and u(x) = ω(X), where
G(X) satisfies the second-order differential equation

G ′′ + λG ′ + μG = 0, (36)

where λ and μ are constants. Then Eq. (35) is converted into

B(−μ − λZ − Z2)2
d2ω

dZ2
+ B(−λ − 2Z)(−λZ − μ − Z2)

dω

dZ

+ A

2
ω2 − kω + C1 = 0 (37)

Let us assume the power series solution of the Eq. (37) as follows:

u(Z) = αm1

(
G ′

G

)m1

+ · · · , (38)

where αi ’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. NowEq. (37) becomes

B(−μ − λZ − Z2)2[αm1m1(m1 − 1)Zm1−2 + · · · ]
+B(−λ − 2Z)(−λZ − μ − Z2)[αm1m1Zm1−1 + · · · ]
+ A

2
ω2 − kω + C1 = 0. (39)

Considering the homogeneous balance between u2 and d2u
dx2 in Eq. (39), m1 = 2 then

Eq. (38) becomes and substitute G ′
G = Z .

u(Z) = α0 + α1Z + α2Z
2, α2 �= 0. (40)
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Now by using (40) in (37), it becomes

6Bα2Z
4 + A

2
α2Z

4 + 2Bα1Z
3 + 10Bλα2Z

3 + Aα1α2Z
3

+3Bα1λZ
2 + 4Bα2λ

2Z2 + 8Bα2μZ
2 + A

2
α2
1Z

2

+Aα2α0Z
2 − kα2Z

2 + Bα1λ
2Z + 2Bμα1Z + 6Bλμα2Z + Bλα1μ

+2Bα2μ
2 + A

2
α2
0 − kα0 + C1 = 0 (41)

Now equating the coefficient of Z4, Z3, Z2, Z and the constant terms in (41) to get
the value of α2 = −12B

A , α1 = −12λB
A , k = Aα0 + Bλ2 + 8μB.

Then Eq. (40) becomes

u(Z) = α0 − 12λB

A
Z − 12B

A
Z2, α2 �= 0, (42)

where X = x − (Bλ2 + Aα0 + 8Bμ).
Now considering the general solution of Eq. (36).

Case 1
Hyperbolic function traveling wave solutions when λ2 − 4μ > 0.

G(X) = C2e
( −λ

2 +
√

λ2−4μ
2 )X + C3e

( −λ
2 −

√
λ2−4μ
2 )X (43)

Now by using Eq. (43) in Eq. (42)

u(X) = − 3B

A
(λ2 − 4μ)

d1 sinh
1
2

√
λ2 − 4μX + d2 cosh

1
2

√
λ2 − 4μX

d2 sinh
1
2

√
λ2 − 4μX + d1 cosh

1
2

√
λ2 − 4μX

+ 3Bλ2

A
+ α0 = 0.

(44)

In particular, if d1 �= 0 and d2 = 0 then Eq. (44) becomes

u(X) = 3B

A
(λ2 − 4μ)sech2

(
1

2

√
λ2 − 4μX

)
+ B

12A
μ + α0 (45)

Case 2
Trigonometric function traveling wave solutions when λ2 − 4μ < 0.

G(X) = e(
−λ
2 )X {C2 cos

√
λ2 − 4μ

2
X + C3 sin

√
λ2 − 4μ

2
X} (46)

Now by using Eq. (46) in Eq. (42)

u(X) = − 3B

A
(4μ − λ2)

{ −C2 sinh
1
2

√
λ2 − 4μX + C3 cosh

1
2

√
λ2 − 4μX

C3 sinh
1
2

√
λ2 − 4μX + C2 cosh

1
2

√
λ2 − 4μX

}2

+ 3Bλ2

A
+ α0. (47)
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In particular, if C2 �= 0 and C3 = 0 in Eq. (47), it is

u(X) = −3B

A
(4μ − λ2)tanh2

1

2

√
λ2 − 4μX + 3Bλ2

A
+ α0 (48)

Case 3
Trigonometric function traveling wave solutions when λ2 − 4μ = 0.

G(X) = (C2 + C3X)e
−λ
2 X (49)

Now by using Eq. (49) in Eq. (42)

u(X) = −12B

A
(

C3

C2 + C3X
)2 + 3B

A
λ2 + α0. (50)

Here (44), (47), (50) are the types of solutions of the K-dV equations by using G ′
G

method.

7 Solutions of K-dV Equation by tanh−coth Method

K-dV equation is

∂u

∂t
+ Au

∂u

∂x
+ B

∂3u

∂x3
= 0 (51)

Now using transformation X = (x − kt).
Equation (51) is of the form

B
d2u

dX2
+ A

u2

2
− ku = 0, (52)

where u = u(X).
Let the power series solution of Eq. (52) of the form

u(X) = a0 +
n∑
j=1

[a jY
j (X) + b jY

− j (X)], (53)

Y (X) is the solution of the Riccati equation

Y
′ = A1 + B1Y + C1Y

2, (54)

where A1, B1, C1 are constants.
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Now using Eq. (53) and substituting the values in Eq. (52).

Ba2

⎡
⎣

n∑
j=1

[
a j j ( j − 1)Y j−2(X) + b j ( j)( j + 1)Y− j−2(X)

]
⎤
⎦

+ A

2

⎡
⎣

n∑
j=1

[
a jY

j (X) + b jY
− j (X)

]
⎤
⎦

2

−k

⎡
⎣a0 +

n∑
j=1

[
a jY

j (X) + b jY
− j (X)

]
⎤
⎦ = 0 (55)

The parameter n is the positive constant that can be determined by balancing the
linear highest term of highest order with the nonlinear term, here n = 2. Then Eq.
(53) becomes

u(X) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2. (56)

Now using Eqs. (54) and (58) then Eq. (52) is

Y 4
(
6Ba2a2C

2
1 + A

2
a22

)

+Y 3
(
2Ba2a1C

2
1 + 10Ba2a2B1C1 + Aa1a0

)

+Y 2
(
3Ba2a1B1C1 + 4Ba2a2B

2
1 + 8Ba2a2B1C1 − ka2 + A

2
a21 + Aa0a2

)

+Y
(
Ba2a1B

2
1 + 2Ba2a1A1C1 + 6Ba2a2A1B1 − ka1 + Aa0a1 + Aa0a2

)

+Y−1
(
Ba2b1B

2
1 + 2Ba2b1A1C1 + 6Ba2b2B1C1 − 2Ba2b2B

2
1 − kb1 + Aa0b1 + Aa1b2

)

+Y−2
(
3Ba2b1A1B1 + 6Ba2b2B

2
1 + 8Ba2b2A1C1 − kb2 + A

2
b21 Aa − 0b2

)

+Y−3
(
2Ba2b1 + 10Ba2b2A1B1 + Ab1b2

)

+Y−4
(
6Ba2b2A

2
1 + A

2
b22

)

+Ba2a1A1B1 + 2Ba2a2A
2
1 + Ba2b1B1C1 + 2Ba2b2C

2
1 − ka0 + A

2
a20 + Aa1b1 + Aa2b2 = 0 (57)

Now equating the coefficients of Z4, Z3, Z2, Z , Z−1, Z−2, Z−3, Z−4 and the constant
terms in (57) to get the values of a0, a1, a2, b1, b2.

Thena1 = 60 B
Aa

2B1C1,a2 = −12 B
Aa

2C2
1 ,b1 = 60B2a4A3

1B1

ABa2−6ABa2A2
1
,b2 = −12 B

Aa
2A2

1.
Now substituting the values of the coefficients in

u(X) = a0 + a1Y + a2Y
2 + b1Y

−1 + b2Y
−2, (58)

where Y is the solution of the Riccati equation.



122 S. K. Mohanty and A. N. Dev

8 Solutions of Burgers Equation by tanh Method

Consider the Burgers equation of the form.

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (59)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x − kt) to convert the partial differential equation into ordinary differential equa-
tion, where a and k are nonzero constants.

Here,

X = a(x − kt) ⇒ dX

dx
= a and

dX

dt
= −ka

∂

∂t
= d

dX

dX

dt
= d

dX
(−ka) = −ka

d

dX
∂

∂x
= d

dX

dX

dx
= d

dX
(a) = a

d

dX
∂2

∂x2
= ∂

∂x

∂

∂x
= ∂

∂x

(
a

d

dX

)
= a

d

dX

dX

dx

(
d

dX

)
= a2

d

dX

(
d

dX

)
= a2

d2

dX2

Now substituting these values in (59), we have

−ka
du

dX
+ Aua

du

dX
− Ba2

d2u

dX2
= 0

⇒ −k
du

dX
+ Au

du

dX
− Ba

d2u

dX2
= 0

⇒ −ku + A
u2

2
− Ba

du

dX
= 0, (60)

whereu = u(X).Now introducing the independent variable Z = tanhX and u(X) =
ω(Z)

⇒ dZ

dX
= sech2X and

dω

dX
= dω

dZ

dZ

dX
= dω

dZ
sech2X

Now substituting these values in (60), then

− kω + A
ω2

2
− Ba(1 − Z2)

dω

dZ
= 0 (61)

Let us assume the power series solution of the Eq. (61) as follows:
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ω(Z) =
∞∑
r=0

ar Z
ρ+r

⇒ dω

dZ
=

∞∑
r=0

ar (ρ + r)Zρ+r−1

Now substituting these values in Eq. (61)

− k
∞∑
r=0

ar Z
ρ+r + A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− Ba(1 − Z2)

∞∑
r=0

ar (ρ + r)Zρ+r−1 = 0

(62)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking ρ = 0.

2ρ + 2r = ρ + r + 1

⇒ r = 1.

For r = 1, we have

ω(Z) = a0 + a1Z , a1 �= 0

⇒ dω

dZ
= a1 (63)

Now (61) becomes

A

2
a20 − ka0 − Baa1 + Aa0a1Z − ka1Z + A

2
a21 Z

2 + Baa1Z
2 = 0 (64)

Now equating the coefficient of Z2, Z and the constant terms in (64) to get the value
of a0, a1, and k.

We have a0 = k
A , a1 = − 2Ba

A , k = 2Ba and k = −2Ba.

Case 1 K = 2Ba

u(x, t) = 2Ba

A
(1 −

√
1 − sech2[a(x − 2Bat)]) (65)

Case 2 K = −2Ba

u(x, t) = −2Ba

A
(1 +

√
1 − sech2[a(x + 2Bat)]) (66)

Equations (65) and (66) are the required solutions of the Burgers equation (59).
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9 Solutions of Burgers Equation by sech Method

Consider the Burgers equation of the form.

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (67)

where A, B are constants and u = u(x, t). Now using wave transformation X =
a(x − kt) to convert the partial differential equation in to ordinary differential equa-
tion, where a and k are nonzero constants.

Then Eq. (67) is of the form

− ku + A
u2

2
− Ba

du

dX
= 0, (68)

whereu = u(X).Now introducing the independent variable Z = sechX and u(X) =
ω(Z)

⇒ dZ

dX
= −sechXtanhX and

dω

dX
= dω

dZ

dZ

dX
= −ZtanhX

dω

dZ

Now substituting these values in (68), then

− kω + A
ω2

2
+ Baz

√
1 − Z2

dω

dZ
= 0 (69)

Let us assume the power series solution of the Eq. (69) as follows:

ω(Z) =
∞∑
r=0

ar Z
ρ+r

⇒ dω

dZ
=

∞∑
r=0

ar (ρ + r)Zρ+r−1

Now substituting these values in Eq. (69)

− k
∞∑
r=0

ar Z
ρ+r + A

2

( ∞∑
r=0

ar Z
ρ+r

)2

− Ba(1 − Z2)

∞∑
r=0

ar (ρ + r)Zρ+r−1 = 0 (70)

Now equating the highest order derivative and highest power on nonlinear term in
(62) and taking ρ = 0.

2ρ + 2r = ρ + r − 1 + 2

⇒ r = 1.
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For r = 1, we have

ω(Z) = a0 + a1Z , a1 �= 0

⇒ dω

dZ
= a1 (71)

Now (69) becomes

− ka0 + A

2
a20 − ka1Z + Aa0a1Z + Baa1Z + A

2
a21 Z

2 − 1

2
Baa1Z

3 = 0 (72)

Now equating the coefficient of Z2, Z and the constant terms in (72) to get the value
of a0, a1, and k.

We have a0 = 2k
A , a1 = − Ba

A , k = 2Ba and k = −Ba.

u(x, t) = −Ba

A
(1 − secha(x + Bat)) (73)

Equation (73) is the required solutions of the Burgers equation (67).

10 Solutions of Burgers Equation by
(
G′
G

)
Method

The well-known Burgers equation in the simplest form is

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (74)

Now using transformation X = a(x − kt). Equation (74) is of the form

− ku + A
u2

2
− Ba

du

dX
= 0, (75)

where u = u(X).
Now introducing the independent variable Z = G ′(X)

G(X) and u(x) = ω(X), where
G(X) satisfies the second-order differential equation

G ′′ + λG ′ + μG = 0, (76)

where λ and μ are constants. Then Eq. (75) is converted into

− kω + A

2
ω2 − Ba(−μ − λZ − Z2)

dω

dZ
= 0 (77)

Let us assume the power series solution of the Eq. (77) as follows:
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ω(Z) = αm1(
G ′

G
)m1 + · · · , (78)

where αi ’s are constant and m1 is the positive integer, which can be determined by
considering the highest order derivatives and nonlinear terms. NowEq. (77) becomes

− k(αm1Z
m1 + · · · ) + A

2
(αm1Z

m1 + · · · )2 − Ba(−μ − λZ2)(αm1m1Z
m1−1 + · · · ) = 0 (79)

Considering the homogeneous balance between u2 and du
dx in Eq. (79), m1 = 1 then

Eq. (78) becomes and substitute G ′
G = Z .

ω(Z) = α0 + α1Z , α1 �= 0.

⇒ dω

dZ
= α1 (80)

Now by using (80) in (77), it becomes

A

2
α2
1Z

2 + Baα1Z
2 − kα1Z + Aα0α1Z + Baα1λZ − kα0 + A

2
α2
0 + Baμα1 = 0. (81)

Now equating the coefficient of Z2, Z and constant terms in (81) to get the value of
α1 = −2Ba

A ,α0 = K
A − Ba

A λ.
Then Eq. (80) becomes

ω(Z) = K

A
− aB

A
λ − 2B

A
aZ , (82)

Now considering the general solution of Eq. (76).

Case 1
Hyperbolic function traveling wave solutions when λ2 − 4μ > 0.

G(X) = C2e

(
−λ
2 +

√
λ2−4μ
2

)
X + C3e

(
−λ
2 −

√
λ2−4μ
2

)
X

(83)

Now by using Eq. (83) in Eq. (82)

u(X) = K

A
− B

A
aλ − B

A
a
√

λ2 − 4μ
d1 sinh

1
2

√
λ2 − 4μX + d2 cosh

1
2

√
λ2 − 4μX

d2 sinh
1
2

√
λ2 − 4μX + d1 cosh

1
2

√
λ2 − 4μX

= 0. (84)

Case 2
Trigonometric function traveling wave solutions when λ2 − 4μ < 0.

G(X) = e(
−λ
2 )X

{
C2 cos

√
λ2 − 4μ

2
X + C3 sin

√
λ2 − 4μ

2
X

}
(85)
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Now by using Eq. (85) in Eq. (82)

u(X) = k

A
− Ba

A

√
4μ − λ2

−C2 sinh 1
2

√
λ2 − 4μX + C3 cosh 1

2

√
λ2 − 4μX

C3 sinh 1
2

√
λ2 − 4μX + C2 cosh 1

2

√
λ2 − 4μX

. (86)

Case 3
Trigonometric function traveling wave solutions when λ2 − 4μ = 0.

G(X) = (C2 + C3X)e
−λ
2 X (87)

Now by using Eq. (87) in Eq. (82)

u(X) = k

A
− 2Ba

A

(
C3

C2 + C3X

)
. (88)

Here (84), (86), (88) are the types of solutions of the Burgers equations by using G ′
G

method.

11 Solutions of Burgers Equation by Sine−Gordon
Method

∂u

∂t
+ Au

∂u

∂x
− B

∂2u

∂x2
= 0 (89)

Now using transformation X = a(x − kt).
Equation (89) is of the form

− Ba
du

dX
+ A

u2

2
− ku = 0, (90)

where u = u(X).
The sine–Gordon equation is

∂2u

∂x2
− ∂2u

∂t2
= m2sinu, (91)

where u = u(x, t) and using the transformation X = a(x − ct). Equation (92)
becomes

d2u

dX2
= m2sinu

a2(1 − k2)
(92)



128 S. K. Mohanty and A. N. Dev

Again introducing thenewvariableω(X) = u(X), dω
dX = sinω, sinω(X) = sech(X),

cosω(X) = tanh(X) and using some integral calculation, the predicated solution of
(92) is

u(ω) = A0 +
n∑
j=1

cos j−1(A j cosω + Bjsinω) (93)

Let as assuming the solution of Eq. (90) of type (93). Now taking the derivatives
of (93) and substituting the derivative values in (90). Then in order to balance the
two-term equation it has j = 1.

Then Eq. (93) becomes

u(ω) = A0 + A1 cosω + B1 sinω (94)

Now taking the derivatives of (94) and substituting in (90) then Eq. (90) becomes

−k A0 + A

2
A2
0 + A

2
A2
1 − k A1 cosω + AA0A1 cosω − kB1 sinω

+AA0B1 sinω − A

2
A2
1 sin

2 ω + A

2
B2
1 sin

2 ω + BA1a sin
2 ω

+AA1B1 cosω sinω − BB1a cosω sinω = 0 (95)

Now equating the coefficients of (95) to get the value of A0, A1, B1 and k. Here

A1 = Ba

A
, B1 = ±i

Ba

A
,

Then

u(x, t) = A0 + aB

A

√
1 − sech2X ± i

Ba

A
sech. (96)

Equation (96) is the solution of Eq. (89).

12 Solutions of Schamel–K-dV Equation by G′
G Method

Consider the simplest form of Schamel–K-dV equation as

∂u

∂t
+ Au

1
2
∂u

∂x
+ B

∂3u

∂x3
= 0, (97)

where A and B are arbitrary coefficients and u = u(x, t).
Now using the wave transformation X = x − kt , where k is constant.
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Then Eq. (97), becomes

− k
dU

dX
+ AU 1/2 + B

d3U

dX3
= 0, (98)

where U = U (X). Now integrating Eq. (98), then we have

− kU + 2

3
AU 3/2 + B

d2U

dX2
+ c = 0, (99)

where c is the integration constant.
Let us consider U 1/2(X) = V (X) Eq. (99) becomes

⇒ −kV 2 + 2

3
AV 3 + 2B

(
dV

dX

)2

+ 2BV
d2V

dX2
+ c = 0 (100)

Let us assume the solution of (100) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

(101)

where G = G(X) satisfies the the second-order differential equation

G ′′ + λG ′ + μG = 0 (102)

where λ and μ are constants.
Now substituting the value of d2V

dX2 , dV
dX , V (X) in Eq. (100) balancing the highest

order nonlinear term with highest order derivative we get n = 2. Then Eq. (101)
becomes

V (X) = a0 + a1

(
G ′

G

)
+ a2

(
G ′

G

)2

(103)

Now substituting the values of V (X), d2V
dX2 , dV

dX in (100) and equating the coefficients

of
(
G ′
G

)i
to get the values of a0, a1, a2, k we have

a0 = a0, a1 = −30
B

A
λ, a2 = −30

B

A
(104)

Substituting these values in the assuming solution and applying the transformation
U = V 2 we have the following different types of solution of the form:

U (X) =
[
a0 − 30

B

A
λ

(
G ′

G

)
− 30

B

A

(
G ′

G

)2
]2

(105)
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where

Case 1 When λ2 − 4μ > 0

(
G ′

G

)
=

√
λ2 − 4μ

2

⎛
⎝d2 cosh

√
λ2−4μ
2 X + d1 sinh

√
λ2−4μ
2 X

d1 cosh
√

λ2−4μ
2 X + d2 sinh

√
λ2−4μ
2 X

⎞
⎠ − λ

2

Case 2 When λ2 − 4μ < 0

(
G ′

G

)
=

√
4m − λ2

2

(
−d1 sin

√
4m−λ2

2 X + d2 cos
√
4m−λ2

2 X
)

(
d1 cos

√
4m−λ2

2 X + d2 sin
√
4m−λ2

2 X
) − λ

2

Case 3 When λ2 − 4μ = 0

(
G ′

G

)
= −λ

2
+ c2X

c1 + c2X

13 Solutions of Schamel–K-dV Equation by Different Form
of G′

G Method

Consider the simplest form of Schamel–K-dV equation as

∂u

∂t
+ Au

1
2
∂u

∂x
+ B

∂3u

∂x3
= 0, (106)

where A and B are arbitrary coefficients and u = u(x, t).
Now using the wave transformation X = x − kt , where k is constant.
Then Eq. (106), becomes

− k
dU

dX
+ AU 1/2 + B

d3U

dX3
= 0, (107)

where U = U (X). Now integrating Eq. (107), then we have

− kU + 2

3
AU 3/2 + B

d2U

dX2
+ c = 0, (108)

where c is the integration constant.
Let us consider U 1/2(X) = V (X) Eq. (108) which becomes
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⇒ −kV 2 + 2

3
AV 3 + 2B

(
dV

dX

)2

+ 2BV
d2V

dX2
+ c = 0 (109)

Let us assume the solution of (109) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

+
n∑

i=1

bi

(
G ′

G

)−i

(110)

where G = G(X) satisfies the the second-order differential equation

G ′′ + μG = 0 (111)

μ is constants.
Now substituting the value of d2V

dX2 , dV
dX , V (X) in Eq. (109) and balancing the

highest order nonlinear term with highest order derivative we get n = 1. Then Eq.
(110) becomes

V (X) = a0 + a1

(
G ′

G

)
+ b1

(
G ′

G

)−1

(112)

Now using Eq. (112) and its derivatives into Eq. (109) and equating the coeffi-

cients of
(
G ′
G

)i
, where i = 0,±1,±2,±3,±4,±5,±6 to find out the values of

a0, a1, b1,μ, b, c. By using Mathematica we got the values as follows

a0 = 3k

2A
, a1 = −6B

A
, a2 = 0, b1 = 0, b2 = 0,μ = −k

4B
, c = 0.

Substituting these values in the assuming solution and applying the transformation
U = V 2, we have the following different types of solution of the form:

U (X) =
[
3k

2A
− 6B

A

(
G ′

G

)]2

(113)

where

Case 1 When −μ > 0

(
G ′

G

)
= √

μ

(
d2 cosh

√−μX + d1 sinh
√−μX

d1 cosh
√−μX + d2 sinh

√−μX

)

Case 2 When −μ < 0

(
G ′

G

)
= √

μ

(−d1 sin
√

μX + d2 cos
√

μX
)

(
d1 cos

√
μX + d2 sin

√
μX

)
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14 Solutions of Coupled Schamel–K-dV Equation
by

(
G′
G

)
Method

Consider the coupled Schamel–K-dV equation of the form

∂u

∂t
+ au

1
2
∂u

∂x
+ bu

du

dx
+ p

∂3u

∂x3
= 0 (114)

where a, b, and p are arbitrary coefficients. Now using the wave transformation
X = x − kt , where k is constant. Then Eq. (114) becomes

p
dU 3

dX
− k

dU

dX
+ aU

1
2
dU

dX
+ bU

dU

dX
= 0 (115)

Integrating Eq. (115), it becomes

p
dU 2

dX2
− kU + 2

3
aU

3
2 + 1

2
bU 2 + c = 0 (116)

where c is the integration constant.
Let U

1
2 = V then Eq. (116) becomes

V
d2V

dX2
+

(
dV

dX

)2

− k

2p
V 2 + a

3p
V 3 + b

4p
V 4 + c

2p
= 0 (117)

Let us assume the solution of (117) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

(118)

where G = G(X) satisfies the the second-order differential equation

G ′′ + λG ′ + μG = 0 (119)

where λ and μ are constants.
Balancing the highest order nonlinear term with highest order derivative of V d2V

dX2

and V 4, then it comes out that n = 1. Then

V (X) = a0 + a1

(
G ′

G

)
(120)

Now using Eq. (120) and its derivatives into Eq. (117) and equating the coefficients

of
(
G ′
G

)i
, where i = 0, 1, 2, 3, 4 to find out the values of a0, a1,λ,μ, b, c. By using
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Mathematica, we got the values as follows:

a0 = 15

8a
(k ± 2λ

√
pk), a1 = ±15

√
pk

2a
,

λ2 − 4μ = k

4p
, b = −16a2

75k
, c = 0. (121)

Substituting these values in the assuming solution and applying the transformation
U = V 2 we have the following different types of solution of the form:

U (X) =
[
15

8a
(k ± 2λ

√
pk) ± 15

√
pk

2a

(
G ′

G

)]2

(122)

where

Case 1 When λ2 − 4μ > 0

(
G ′

G

)
=

√
λ2 − 4μ

2

⎛
⎝d2 cosh

√
λ2−4μ
2 X + d1 sinh

√
λ2−4μ
2 X

d1 cosh
√

λ2−4μ
2 X + d2 sinh

√
λ2−4μ
2 X

⎞
⎠ − λ

2

Case 2 When λ2 − 4μ < 0

(
G ′

G

)
=

√
4m − λ2

2

(
−d1 sin

√
4m−λ2

2 X + d2 cos
√
4m−λ2

2 X
)

(
d1 cos

√
4m−λ2

2 X + d2 sin
√
4m−λ2

2 X
) − λ

2

Case 3 When λ2 − 4μ = 0

(
G ′

G

)
= −λ

2
+ c2X

c1 + c2X

15 Solutions of Coupled Schamel–K-dV Equation
by Different Form of

(
G′
G

)
Method

Consider the Coupled Schamel–K-dV equation of the form

∂u

∂t
+ au

1
2
∂u

∂x
+ bu

du

dx
+ p

∂3u

∂x3
= 0 (123)

where a, b and p are arbitrary coefficients. Now using the wave transformation X =
x − kt , where k is constant. Then Eq. (123) becomes
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p
dU 3

dX
− k

dU

dX
+ aU

1
2
dU

dX
+ bU

dU

dX
= 0 (124)

Integrating Eq. (124), it becomes

p
dU 2

dX2
− kU + 2

3
aU

3
2 + 1

2
bU 2 + c = 0 (125)

where c is the integration constant.
Let U

1
2 = V then Eq. (125) becomes

V
d2V

dX2
+

(
dV

dX

)2

− k

2p
V 2 + a

3p
V 3 + b

4p
V 4 + c

2p
= 0 (126)

Let us assume the solution of (126) of the form

V (X) =
n∑

i=0

ai

(
G ′

G

)i

+
n∑

i=1

bi

(
G ′

G

)−i

(127)

where G = G(X) satisfies the the second-order differential equation

G ′′ + μG = 0 (128)

where μ is constants.
Balancing the highest order nonlinear term with highest order derivative of V d2V

dX2

and V 4, then it comes out that n = 1. Then

V (X) = a0 + a1

(
G ′

G

)
+ b1

(
G ′

G

)−1

(129)

Now using Eq. (129) and its derivatives into Eq. (126) and equating the coefficients

of
(
G ′
G

)i
, where i = 0,±1,±2,±3,±4 to find out the values of a0, a1, b1,μ, b, c.

By using Mathematica, we got the values as follows:

a0 = 15k

8a
, a1 = ±15

√
pk

2a
, b1 = ±15k

√
pk

64ap
,

μ = k

32p
, b = −16a2

75k
, c = 225k3

512a2
(130)

Substituting these values in the assuming solution and applying the transformation
U = V 2, we have the following different types of solution of the form:

U (X) =
[
15k

8a
± 15

√
pk

2a

(
G ′

G

)
± 15k

√
pk

64ap

(
G ′

G

)]2

(131)
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where

Case 1 When −μ > 0

(
G ′

G

)
= √

μ

(
d2 cosh

√−μX + d1 sinh
√−μX

d1 cosh
√−μX + d2 sinh

√−μX

)

Case 2 When −μ < 0

(
G ′

G

)
= √

μ

(−d1 sin
√

μX + d2 cos
√

μX
)

(
d1 cos

√
μX + d2 sin

√
μX

)
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Controllability Study on the Symplectic
Lie Group Sp(2,R)

Archana Tiwari

Abstract Lie groups and control theory are closely related as various engineering
problems have been modelled as a control problem on Lie groups. Lie groups play
a vital role in studying various concepts of control theory. Keeping in view the
contribution of Lie groups in the study of controllability and optimal control, a
control system is designed on the Symplectic Lie group SP(2,R). A brief study
of optimal control by minimizing the cost function is done. The stability of the
system dynamics is thoroughly analysed. And finally, two unconventional numerical
integrators, Kahan and Lie–Trotter, have been applied on the system dynamics to
study some related properties.

Keywords Lie group · Lie algebra · Controllability · Stability

1 Introduction

Lie groups were first introduced into motion control problems by Brockett [2]. The
controllability and observability aspects of Lie groups were focused in his theories.
Jurdjevic and Sussmann [8, 9] further discussed controllability aspects for various
Lie groups. Study of control theory and optimal control problems on Lie groups from
geometric point of view is discussed in detail in [1]. There are various dynamical
systems whose configuration space is Lie groups, few examples are spacecraft atti-
tude control [4], problem of parallel car parking, autonomous underwater vehicle
[12] and switching control problems. One of the significant classes is the control
problem on matrix Lie group, which can be studied from a geometric point of view.
Study of control system on SO(3) was done by Remsing [15]. Pop [3, 14] examined
control problems on SE(3) and H (3) matrix Lie groups. Most of the recent works
in non-linear control theory have emphasized a driftless control system with fewer
control than state variables.
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Table 1 Lie bracket
commutation for Sp(2,R)

[., .] m1 m2 m3

m1 0 4m3 2m1

m2 −4m3 0 2m2

m3 −2m1 2m2 0

The objective of this work is to study an optimal control problem associated
with the Symplectic group Sp(2,R). A left-invariant driftless controllable system
is considered. In particular, stability of the system is studied in detail. Finally, two
unconventional numerical integrators are applied to the system dynamics and few of
the dynamical and geometrical properties are pointed out.

2 Symplectic Group Sp(2,R)

The Symplectic group Sp(2,R) is the group of 2×2matriceswhich preserve a nonde-
generate antisymmetric bilinear form. It consists of the 2 × 2 matrices P satisfying
PT AP = A, where A is a fixed invertible skew-symmetric matrix.

The Symplectic Lie algebra sp(2,R) consists of 2 × 2 matrices of the form

{
X ∈ gl2

∣∣X T A + AX = 0}. (1)

The generators of the Lie algebra sp(2,R) are.

m1 =
(

0 0
−2 0

)
, m2 =

(
0 2
0 0

)
, and m3 =

(
1 0
0 −1

)
.

The Lie bracket commutation of the generators {m1, m2, m3} is presented in Table
1.

3 Driftless Control System on Sp(2,R)

A control system which is drift-free and left-invariant on the dynamics of Sp(2,R)

is defined on a three-dimensional manifold, which, in this case, is the Lie group
Sp(2,R) as [13]

Ẋ = X

(
3∑

i=1

miui

)

, (2)
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where X ε Sp(2,R), for i = 1, 2, 3, mi are the basis elements of Lie algebra sp(2,R)

and ui are the controls.
A control system which is drift-free, on the dynamics of Sp(2,R) with less

controls, is given in the following form:

Ẋ = X (m1u1 + m2u2). (3)

3.1 Controllability

Controllability portrays the ability of a control u(t) which steers the system from an
initial state to a desired final state in finite time. To study the system controllability,
defined on a Lie group, a well-know theorem is discussed.

Chow–Rashevsky Theorem. ‘If M is a connected manifold and the control
distribution � = span{f1, f2, ..., fn} is bracket generating, then the drift-free system

Ẋ = X
n∑

i=1

xifi(x),∀x ∈ M

is controllable [7]’.

Proposition 1 The control system (3) is controllable.

Proof The algebra generated by {m1, m2} under Lie bracket commutation coincides
with sp(2,R). Hence, by Chow’s theorem, the system (3) which has less control
terms is controllable.

3.2 The Optimal Control Problem

When a system is controllable, it ensures that a steering control exists that drives
the system from an initial state X0 to a desired final state Xf . But controllability
analysis fails to address the uniqueness of the input options. There may exist many
control options which can drive the system. Choosing control inputs in an optimizing
manner ensures in improved performance. Minimum effort problem is considered in
this section and the input cost function is designed in a manner that it minimizes the
cost function.

The input cost function considered is

F = 1

2

xf∫

0

(
a1u2

1 + a2u2
2

)
dt, a1, a2 > 0. (4)
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To minimize F , the controlled Hamiltonian is defined as

−
H= x1u1 + x2u2 − 1

2

(
a1u2

1 + a2u2
2

)
. (5)

According to Krishnaprasad’s theorem [11], to obtain the optimized inputs, the

controlled Hamiltonian
−
H is partially differentiatedwith respect to each control input

and equated to zero as given below:

∂
−
H

∂u1
= ∂

−
H

∂u2
= 0.

Hence, the optimized control inputs obtained are

u1 = x1
a1

, u2 = x2
a2

. (6)

Substituting the optimized control inputs obtained from (6) to Eq. (5), the optimal
Hamiltonian is found to be

H(x1, x2, x3) = 1

2

(
x21
a1

+ x22
a2

)
.

The restricted dynamics followed by the system with the optimized input can be
found by Krishnaprasad’s theorem [11], which is

[ẋ1, ẋ2, ẋ3]
t = �− · ∇H. (7)

Here, �− is the minus Lie–Poisson matrix and is defined by

⎡

⎣
0 −4x3 −2x1
4x3 0 2x2
2x1 −2x2 0

⎤

⎦.

Explicitly, (7) can be written as

⎧
⎪⎨

⎪⎩

ẋ1 = − 4
a2

x2x3 − 2
a3

x1x3
ẋ2 = 4

a1
x1x3 + 2

a3
x2x3

ẋ3 = 2
a1

x21 − 2
a2

x22

. (8)
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4 Casimir

Casimir function [5, 16] on the Poisson manifold commutes with every linear func-
tional defined on the manifold. Casimir can be determined by solving a system
of partial differential equation (PDE). The system of PDE for the system under
consideration is

�− · (∇C((x1, x2, x3)))
t = 0. (9)

Simplifying Eq. (9), the following system of PDE is obtained:

− 4x3
∂C

∂x2
− 2x1

∂C

∂x3
= 0

4x3
∂C

∂x1
+ 2x2

∂C

∂x3
= 0

2x1
∂C

∂x1
− 2x2

∂C

∂x2
= 0. (10)

The Casimir is obtained by solving Eq. (10) analytically, which is

C = x1x2 − 2x3. (11)

5 Stability

The stationary states, where the motion of the body freezes while following the
dynamics, are called equilibrium states. For simplicity, all ai’s are replaced with
a. The equilibrium states obtained here are not unique. The set equilibrium states
{en

1, en
2, en

3} are a subset of all equilibrium states of the system.
The system dynamics (8) has the equilibrium states

en
1 = (n, n, 0), n ∈ R;

en
2 = (0, 0, n), n ∈ R;

en
3 = (n,−n, 0), n ∈ R.

The linearized jacobian matrix of the system (8) is

J =
⎡

⎣
− 2

a x3 − 4
a x3 − 2

a x1 − 4
a x2

4
a x3

2
a x3

4
a x1 + 2

a x2
4
a x1 − 4

a x2 0

⎤

⎦.
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The eigenvalues of the linearized matrix around

i. en
1 are

μ1 = 0, μ2 = i4
√
3

n

a
, μ3 = −i4

√
3

n

a
;

ii. en
2 are

μ1 = 0, μ2 = √
20

n

a
, μ3 = −√

20
n

a
;

iii. en
3 are

μ1 = 0, μ2 = i4
n

a
, μ3 = −i4

n

a
.

For n, a �= 0, the following proposition holds.

Proposition 2 The equilibrium states, en
1, en

3, are spectrally stable whereas en
2 are

unstable.

Proof Since none of the eigenvalues around en
1 and en

3 have no positive real part, the
system is spectrally stable. But one of the eigenvalues around en

2 has positive real
part, so the system is unstable.

For n = 0, the stability of the system is inconclusive.

6 Numerical Integration of Dynamics

Equation (8) involves simultaneous nonlinear ordinary differential equations (ODEs),
which makes it difficult to compute the analytic solution. Hence, some unconven-
tional numerical techniques are proposed to solve the nonlinearODEs and subsequent
results are analysed.

Poisson, Casimir and Hamiltonian (Energy) preservation

Let X n = [
xn
1, ..., xn

m

] = y(t), for step lengthh, y(t + h) = X n+1.

An integrator ϕ : Rn → R
n is Poisson preserving when it satisfies the following

condition [6]:

ϕy(y)P(y)ϕt
y(y) = P(ϕ(y), (12)

where P is a Poisson tensor and ϕy(y) denotes the Fréchet derivative.
Hence,
ϕy(y) = ∂(y(t+h))

∂(y(t)) = ∂X n+1

∂X n = P
′
,
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where P
′
is the Jacobian.

Thus, (12) reduces to P
′ · P(X n) · (

P
′)T = P(X n+1).

Further, the Casimir function C and the Hamiltonian H are preserved when

C
(
X n+1) = C

(
X n

)

and

H(
X n+1

) = H(
X n

)
.

6.1 Kahan’s Integrator

This numerical integrator inherits certain integrability properties from Runge–Kutta
method, such as it preserves all affine symmetric integrals.

Kahan’s integrator [10] when applied to the Symplectic Poisson system takes the
following form:

⎧
⎪⎨

⎪⎩

xn+1
1 − xn

1 = − 2h
a2

(
xn+1
2 xn

3 + xn+1
3 xn

2

) − 2h
a3

(
xn+1
1 xn

3 + xn+1
3 xn

1

)

xn+1
2 − xn

2 = 2h
a1

(
xn+1
1 xn

3 + xn+1
3 xn

1

) + h
a3

(
xn+1
2 xn

3 + xn+1
3 xn

2

)

xn+1
3 − xn

3 = h
a1

(
xn+1
1 xn

1

) − h
a2

(
xn+1
2 xn

2

)
.

(13)

Proposition 3 Kahan’s integrator has the following properties:

1. The Poisson structure is not preserved.
2. The Casimir Cof the system is not preserved.
3. The Hamiltonian H of the system is not preserved.

Proof Simultaneous equations in (13) are solved, and it has been explicitly computed
and shown that.

P
′ · P(X n) · (

P
′)T �= P(X n+1).

Hence, Kahan’s integrator is not Poisson preserving.
Also, it is noted that

C
(
X n+1

) �= C
(
X n

)

and

H(
X n+1

) �= H(
X n

)
,

which concludes that the integrator is neither Casimir preserving nor Hamiltonian
preserving.
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6.2 Lie–Trotter Integrator

In this section, another numerical integration has been discussed which is given by
Trotter [17]. As per this integrator, HamiltonianH of the dynamical system has to be
split intoH1,H2, . . . ,Hn in a way that the dynamics generated byH1,H2, . . . ,Hn

can be explicitly found.
The Hamiltonian vector field XH splits as

XH = XH1 + XH2 ,

where

H1 = x21
2a1

,H2 = x22
2a2

.

The corresponding integral curves are given by

⎡

⎢
⎣

x1(t)

x2(t)
x3(t)

⎤

⎥
⎦ = ϒi

⎡

⎢
⎣

x1(0)

x2(0)
x3(0)

⎤

⎥
⎦, i = 1, 2,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϒ1 =
⎡

⎣
1 0 0

4α2t2 1 4at
2at 0 1

⎤

⎦;α = x1(0)
a1

ϒ2 =
⎡

⎣
1 4β2t2 −4βt
0 1 0
0 −2βt 1

⎤

⎦;β = x2(0)
a2

. (14)

The Lie–Trotter integrator is presented as

⎡

⎢⎢
⎣

xn+1
1

xn+1
2

xn+1
3

⎤

⎥⎥
⎦ = ϒ1ϒ2

⎡

⎢⎢
⎣

xn
1

xn
2

xn
3

⎤

⎥⎥
⎦,

i.e.

⎧
⎨

⎩

xn+1
1 = xn

1 + 4β2t2xn
2 − 4βtxn

3

xn+1
2 = 4α2t2x

n
1 + (

16α2β2t4 − 8αβt2 + 1
)
xn
2 + (−16α2βt3 + 4αt

)
xn
3

xn+1
3 = 2αtxn

1 + (
4αβ2t3 − 2βt

)
xn
2 + (

1 − 8αβt2
)
xn
3

. (15)
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Proposition 4 The Lie–Trotter integrator has the following properties:

1. The Poisson structure is preserved.
2. The Casimir Cof the Poisson configuration is preserved.
3. The Hamiltonian Hof the system is not preserved.

Proof The Lie–Trotter integrator preserves the Poisson structure and Casimir
because the flows of the Hamiltonian vector fields XH1 and XH2 are Poisson maps.

It does not preserve the Hamiltonian of the system because of the fact that

{H1,H2}− �= 0.

7 Trajectory of the Dynamical System

In this section, trajectory of the dynamics has been found using the above-mentioned
integrators. For comparison, fourth-step Runge–Kutta integrator has also been
implemented. The intial values for the numerical integrators is given in Table 2.

Figure 1 shows the trajectory for the system described in Eq. (13).
Figure 2 shows the trajectory for the system described in Eq. (15).

Table 2 Initial values for the integrators

Integrator x1 x2 x3 a1 a2 h

Kahan’s integrator 1 1 1 1 1 1

Lie–Trotter integrator 1 1 1 1 1 –

Runge–Kutta integrator 1 1 1 1 1 1

Fig. 1 Trajectory of
Kahan’s integrator
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Fig. 2 Trajectory of
Lie–Trotter integrator
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Fig. 3 Trajectory of RK 4
integrator
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Figure 3 shows the trajectory for the system described in Eq. (8) for Runge–Kutta
integrator.

From the figures, it can deduced that Kahan’s integrator provided a favourable
approximation of the dynamics, when compared with the Runge–Kutta (fourth step)
method. However, Kahan’s integrator has the benefit of easier implementation.

8 Conclusion

In this paper, a controllable driftless system on the Symplectic Lie group Sp(2,R)

is considered. An optimal control problem has been defined. The Casimir function
and stability of the system are discussed in detail. Finally, a comparison is presented
between the unconventional integrators and Runge–Kutta method.
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Pattern Formation from
Reaction–Diffusion Equation Using
Discretization Method

Atanu Maji

Abstract We know that mathematics has wide applications in the areas of envi-
ronmental science, medical science, ecology, biology, etc. One very useful term in
the problem of prey–predator relation is the Lotka–Volterra predator–prey equation.
Especially the differential equation plays a very important role in all areas of science.
But it is also true that maximum biological and chemical problems are defined in
form of some unknown functions. Here, in this paper, an environmental case involv-
ing two related populations of prey and predator species is discussed. As the classic
Lotka–Volterra assumptions are imaginary, it is assumed that there is logistic behav-
ior for both the existing species. We see that the number of two populations are too
much dependent on each other.

Keywords Discretization · Spatiotemporal model · Reaction–diffusion equation ·
Turing pattern

1 Finite Differences

1.1 Introduction

The derivative of a function v(x) or the rate of change of v at x is defined by

v′(x) = lim
δx→0

v(x + δx ) − v(x)

δx

There are variousmethods to solve a differential equation andfinite differencemethod
is one of the simplest and useful methods by approximating them. Sometimes, we
have a differentiable function v(x) for which there is no method to compute v′(x).
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Or perhaps the formula for v′(x) is simply unwieldy or difficult to compute. In this
case one can approximate v′(x) by using finite differences, i.e., we need to accept
discretization of the continuous case [1]. In every discretization step, we will take a
finite set of points and function is defined for every point of the set. Also, function
will have an output corresponding to every point of the discrete set of points. Now
from this discrete grid of the function, we can measure the approximations to the
derivative [5]. Suppose vi = v(xi ) is the value of the function v(x) at the i th grid of
the computational table. Now consider all the equal intervals which will divide the
x-axis and the length of the interval is δxi = xi+1 − xi .

1.2 Taylor’s Series

Let v(n)(x) is continuous on {x : p < x < q} then for p < a, a + h < q

v(a + h) =
n−1∑

k=0

hk

k! v
(k)(a) + Rn, where Rn = hn(1 − θ)n−p

(n − 1)!p v(n)(a + θh)

Here p is a given positive integer and 0 < θ < 1, also we can see Rn = O(hn). That
means, if we have the value of a function v(x) and its first (n − 1) derivatives at an
initial point a, then it is very simple to find the function value at any point a + h by
using above equation. But there is some unknown value O(hn), we can treat as an
error of the approximation to v(a + h).

1.3 Constructing Finite Difference Approximation

Suppose there is a function v of two variables x and t . We approximate partial
derivative of v with respect to x so we have to keep t fixed and the function v(x, t)
can be converted into a single variable function like f (x) [6]. So from the Taylor’s
theorem with the step size δx we can write the expansion:
v(a + δx , t) = v(a, t) + δxvx (a, t) + (δx )

2

2! vxx (a, t) + · · · +
(δx )

(n−1)

(n−1)! v(n−1)(a, t) + O((δx )
n)

Taking up to O(δx
2) we get

v(a + δx , t) = v(a, t) + δxvx (a, t) + O((δx )
2)

⇒ vx (a, t) = v(a + δx , t) − v(a, t)

δx
− O((δx )

2)

O(δx )

⇒ vx (a, t) = v(a + δx , t) − v(a, t)

δx
− O(δx )
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Now when we approximate the solution of a partial differential equation by the
methods of numerical analysis we must consider a grid of discrete x values, namely,
x1, x2, . . . , xn and also values of t as t0 = 0, t1, t2, . . .. We assume that the grid
spacing is constant and it is δx in x such that xi+1 = xi + δx . We use a notation as
V n
i = v(xi , tn). So we will now use

vx (xi , tn) = V n
i+1 − V n

i

δx
− O(δx ).

Similarly, we can use

vx (xi , tn) = V n
i − V n

i−1

δx
− O(δx )

So, from the above two equations we get

vx (xi , tn) ≈ V n
i+1 − V n

i−1

2δx
. (neglecting the error term)

For second-order unmixed partial derivatives,
v(a + δx , t) = v(a, t) + δxvx (a, t) + (δx )

2

2! vxx (a, t) + (δx )
3

3! vxxx (a, t) + O((δx )
4)

and also,

v(a − δx , t) = v(a, t) − δxvx (a, t) + (δx )
2

2! vxx (a, t) − (δx )
3

3! vxxx (a, t) + O((δx )
4)

From the addition of above two equations, we get,

v(a + δx , t) + (a − δx , t) = 2v(a, t) + δx
2vxx (a, t) + O((δx )

4)

If we use the discrete notation and calculate at (xi , tn) we get,

V n
i+1 + V n

i−1 = 2V n
i + δx

2vxx (xi , tn) + O((δx )
4)

neglecting the error term and by rearranging we get

vxx (xi , tn) ≈ V n
i+1 − 2V n

i + V n
i−1

(δx )2

Again if we fix x at x = xi and derive the approximation of vt and vt t we get

vt ≈ V n+1
i − V n

i

δt
and vt t ≈ V n+1

i − 2V n
i + V n−1

i

(δt )2
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1.4 Notation for Function of Several Variables

Let us consider a function v of two independent variables x and t . Also con-
sider the sets of exactly same rectangles with the sides δx = h, δt = k which
can be generated by the equidistant grid lines parallel to y-axis, specified as
xi = ih, i = 0,±1,±2, . . . and the equidistant grid lines parallel to x-axis, speci-
fied as y j = jk, , j = 0, 1, 2, . . .. Now if we use the notation vp = v(ih, jk) = vi, j
for the value of v(x, t) at the mess point p(ih, jk), so we can express [4],

(vxx )p = (vxx )i, j ≈ v((i + 1)h, jk) − 2v(ih, jk) + v((i − 1)h, jk)

h2

i.e.,

vxx = vi+1, j − 2vi, j + vi−1, j

(δx )2

with an approximation error of O((δx )
2). Similarly,

vt t = vi, j+1 − 2vi, j + vi, j−1

(δt )2

with an approximation error of O((δt )
2).

2 Spatiotemporal Model: Pattern Formation

Predator–prey model is one of the backbones of the bio and ecosystem as bio-masses
are grown out of their resource masses. The species fight against themselves, evolve,
and disperse for the purpose of collecting resources for their existence. The popula-
tion density of prey and predator are not uniform all over the world and sometimes
for excessive population densities they shift from one place to another. Their porta-
bility mainly depends on the food chain they are connected [3]. And it is obvious that
predators must move to the locations where the density of prey is maximum. Now if
we consider a particular area and discuss that kind of potency of prey as well as the
predator then a system of equations, namely, reaction–diffusion equations arises as

QT = gQ(1 − Q

k
) − mQR

Q + aR
+ D1∇2Q

RT = sR(1 − h
R

Q
) + D2∇2R

with the initial conditions Q(0) and R(0) both are positive, where Q, R are the
functions of T , which represents the population density of prey and predator, respec-
tively at any immediate time ‘T’ and at any point (X,Y ) ∈ � (� is 2D bounded
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rectangular domain with boundary ∂�). Here g is the inherent growth rate of prey,
k is carrying capacity, m is the capturing rate, q is half-saturation constant, s is the
inherent growth rate of predator, and h is the conversion rate of prey into predator
biomass. Also D1 > 0 and D2 > 0 denotes the constant diffusion coefficients of the
prey N and predator P .

Now we can construct a model belonging to both space and time by using the
transformation of some variables

Q = kq, R = gk

m
r, X = λx, T = t

g
, Y = λy and λ =

√
D1

g

putting these in reaction–diffusion equations [2] we get

qt = q(1 − q) − qr

q + αr
+ ∇2q

rt = δr(β − r

q
) + d∇2r

where qt , rt represents the partial derivative of q, r , respectively, with respect to t ,
α = ga

m (a stands for handling time), β = m
hg , δ = sh

m are the dimensionless parame-

ters, d = D2
D1

and ∇2 is the Laplace operator.
Now we will draw various type of pattern made of strips and spots formed by the

ratio-dependent Holling–Tanner model

qt = q(1 − q) − qr

q + αr
+ ∇2q

rt = δr(β − r

q
) + d∇2r

for different values of δ, where δ = sh
m is a dimensionless system parameter.

If we discretize the above two equations with β = 1 then we get qi, j,k+1−qi, j,k
δt

=
qi, j,k(1 − qi, j,k) − qi, j,kri, j,k

qi, j,k+αri, j,k
+ qi+1, j,k−2qi, j,k+qi−1, j,k

(δx )2
+ qi, j+1,k−2qi, j,k+qi, j−1,k

(δy)2

ri, j,k+1−ri, j,k
δt

= δri, j,k(1 − ri, j,k
qi, j,k

) + d[ ri+1, j,k−2ri, j,k+ri−1, j,k

(δx )2
+ ri, j+1,k−2ri, j,k+ri, j−1,k

(δy)2
] .

For numerical calculation, we take the initial population distribution as qi, j,1 =
q∗ + εξi, j and ri, j,1 = r∗ + εηi, j , where (q∗, r∗) are the interior equilibrium point,
ε = 0.001 and ξi, j , ηi, j are random in space.
For the pattern formation we will use d = 16, α = 0.4, δx = δy = 1, δt = 0.01,
length of each x and y axis is 200, length of t axis is 10000. We will vary the value
of δ as 0.7, 0.9 and 1.1. Then we get the patterns as follows:
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Population distribution of prey (upper row) and predator (lower row) over 2 − D space for three different values of

δ .The first column represents the pattern for δ=0.7 ,second column for δ = 0.9 ,third column for δ = 1.1 at 1000th

time step.

Population distribution of prey (left) and predator (right) tor δ = 1.1 at 45000th time step.

Spatiotemporal model is very popular in the recent days for its huge applications
in the environment and health science and increasing computational power. This is
mainly used for disease mapping, acid rain analysis, sulfate depositions, regional
ozone monitoring, and analysis of satellite data. We can use it to develop a visual
design of population density and population mobility of prey as well as predator. If
we choose a particular region to verify their population density and state of living we
can find out that it depends on various factors of nature. A pure prey–predator relation
appears when a particular predator species is dependent on a particular species of
prey and also the prey species has enough food supply to survive. But there are
very few examples of such a prey–predator relation. Here I have only considered
one factor that is δ. You can see from the visual representation that the pattern is
changing slowly from the stripe pattern to spot pattern for an increasing value of
δ. But it is more clearly visible for the increasing time steps. The differences of
maximum and minimum cluster of both populations increase with the increase of δ,
and the area filled up with higher population density increases gradually. Now if we
consider more values of δ than 1.1 it will affect the homogeneous distribution of the
population of two species at their stable state value over the space. I have used some
algorithm to get a proper visual representation of population distribution. But it took
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too much time for higher time steps. There should be a more appropriate algorithm
to form a pattern with the same model but with less amount of time to be taken.
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Semi-analytical Approach to Solve
the System of Nonlinear Differential
Equations

B. Nayak and R. S. Tripathy

Abstract It is merely encountered that in several branches of sciences, including
physics, chemistry, mathematics, and biology, the appearance of ordinary and partial
differential equations plays an important role. The dynamical behaviors are based on
the physical significance of the problem. Qualitatively, these are the several branches
of physics. Such applications are laid down as population growth, potential field,
electrical circuit, biological behavior of trees, etc. However, differential equations
are obtained from the physical laws. The solution of linear differential equation is
quite easy to handle but though some of the nonlinear differential equation admits
analytical solution, it is difficult for many. Some classical methods are proposed to
get approximate analytical solution. In the present situation, we adopt the Laplace
transformation technique embodies with Adomian decomposition method (ADM).
Validation of the present result is also obtained with earlier published work and
conformity of the solution achieved.

Keywords Nonlinear differential equation · Laplace transform technique ·
Adomian decomposition method (ADM)

1 Introduction

In every area of engineering and physical science, the occurrence of linear and
nonlinear ordinary or partial differential equations plays a vital role. The common
areas are solid-state physics, bioengineering, plasma physics, analytical chemistry,
fluiddynamic,mathematical biology, chemical kinetics, and soon.Basedon thephys-
ical significance, the problem leads to a mathematical model of nonlinear differential
equation. For the solution of these nonlinear differential equations, several authors
have used analytical or semi-analytical methods. Such methods are homotopy anal-
ysis method (HAM), homotopy perturbation method (HPM), variational iteration
method (VIM), etc.

B. Nayak (B) · R. S. Tripathy
Department of Mathematics, Siksha ‘O’Anusandhan Deemed to be University, Khandagiri,
Bhubaneswar 751030, Odisha, India
e-mail: bimaleshnayak@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
S. R. Mishra et al. (eds.), Recent Trends in Applied Mathematics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-15-9817-3_12

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9817-3_12&domain=pdf
mailto:bimaleshnayak@gmail.com
https://doi.org/10.1007/978-981-15-9817-3_12


158 B. Nayak and R. S. Tripathy

Numerical solution of various problems like functional differential equations
(FDEs) is a major challenge in mathematics, in particular, the delayed differen-
tial equations of Cauchy problem. In the last two decades, various methods are
taken care of for the solution of the nonlinear differential equations. These numer-
ical methods are Runge–Kutta fourth-order method associated with shooting tech-
nique, finite difference technique, finite element method, finite volume, etc. More-
over, many researchers have also handled the similar type of complex nonlinear
differential equations by using semi-analytical approach. These are methods such as
variation parameter method, Adomian decomposition method, Laplace transforma-
tion technique, etc.; the basis of many such methods is Taylor series, i.e., polynomial
approximation, Taylor collocation method, and differential transformation method
(DTM); and Pade approximation method have been considered to get approximate
analytical solutions for particular classes of differential equations. In general, every
convergence function within their domain can be expressed as a power series form
with the help of Taylor series and the idea of our Taylor series concept is to combine
general method of steps which is suitable for Cauchy problems. The details of few
methods are described later in the thesis. The said approach tells us to rewrite the
terms containing delay with its initial guess function and its derivatives. However,
the main objective of the methods used is to transform the partial differential equa-
tion to ordinary or to reduce the order of the differential equation. It is necessary
because sometimes the number of initial conditions are also lacking for the solution
of boundary value problems. However, delayed (or neutral) differential equation is
reduced to particularly the type of Cauchy problem for ordinary differential equation.
Moreover, in boundary value problems for the solution while using ADM, HAM,
HPM, and VIM, it requires initial approximation guess from the prescribed initial
conditions and at the time of computation the unknown initial conditions are to be
obtained which satisfy the boundary conditions generally consisting of derivatives.

The Adomian decomposition method (ADM) [1–3] is useful to get an approxi-
mate analytical solution of the various differential equations those are nonlinear. It
is more useful because of its solution procedure where it is not necessary to simplify
the nonlinear differential equations for their solution and the series solutions for the
physical model those are rapid convergence. Since the traditional perturbation or
linearization technique we have to avoid. To get exact approximate analytical solu-
tion for nonlinear differential equation with adequate/inadequate initial conditions,
solitary wave solutions, rational solutions, and few more exact solution described in
[4–8], the method ADM has been applied. Many such techniques are available for
micro- and nano-scale flows including finite element techniques [9] and shooting
quadrature [10]. Another group of semi-numerical methods has in recent years also
become popular. For the numerical computation of higher order approximations,
we have used symbolic software, i.e., MAPLE, MATHEMATICA, and MATLAB.
Many researchers have developed their code for various methods of solutions such
as “homotopy methods” Bég, and his coworkers ([11, 12]) and the “successive Taylor
series linearization method (STSLM)” use “Chebyshev interpolating polynomials”
and “Gauss–Lobatto collocation,” as investigated by Bhatti et al. [13]. An alter-
native approach for the polynomial functions to get much faster convergence than
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that of other is conducted by Adomian [14]. The method called “Adomian decom-
position method (ADM)” has been developed recently in various problems of field
of research, in particular, fluid dynamics problems. These studies are Kezzar and
Sar [15] (nanofluids), Bég et al. [16] (magneto-rheological squeeze films), Ebaid
et al. [17] (nanofluid boundary layers), and Aaboubi et al. [18] (electrochemical
mass transport). There are many advantages of ADM for example, in the solution
of nonlinear differential equation it presents approximate analytical solution without
discretizing the problems.

The assumed initial guess can be obtained for the iterative solutions for the
nonlinear differential equation where the higher order differential term becomes
linear. Depending upon the complementary function and auxiliary equation is chosen
and using the initial conditions initial guess functions is obtained. These guess solu-
tions are used for the developed recursive equation or the iterative scheme for the
rest of the nonlinear term appeared in the governing equations and the computation
is going on for the particular number of steps where the error is optimized.

In the present paper, the governing differential equations or the system of differ-
ential equations are solved using Laplace transform technique and then Adomian
decomposition is used for the rest of the nonlinear terms. Afterward, the inverse
transform is obtained using Laplace inverse method. For few nonlinear problems,
direct ADM is used and for the unknown values we used numerical technique so that
the method is called semi-analytical approach.

To perform a solution by ADM, it is important to create a function in the form
with the terms uk(x, t), k = 0, 1, 2, .... and further the series is used to get the exact
solutions. The nth term approximation uappr = ∑n−1

k=0 uk(x, t) can be referred to find
numerical computation.

Let us consider

dun
dt

= (α − u2n)(un+1 − un−1) (1)

the discretized nonlinear Schrodinger’s equation:

i
dun
dt

= (un+1 + un−1 − 2un) − |un|2(un+1 + un−1) (2)

and the equations

dun
dt

= un(vn − vn−1)

dvn
dt

= vn(un+1 − un)
(3)

where n in Eqs. (1)–(3) represents subscript.
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2 Analysis of the Method

Our objective is to solve nonlinear differential equations by ADM. The considered
nonlinear delay differential equation can be solved by the said method.

First of all, the general form of the differential equation can be written using
particular operators as

Lu = R(u) + N (u) (4)

Here, L indicates the linear operator which is reversible,

R(u) = α(u(n + 1) − u(n − 1)) (5)

is the remainder term and
N (u) = −u(n)2(u(n + 1) − u(n − 1)) is the rest of the nonlinear terms.
The inverse operator is denoted as L−1 and it shows the integral w.r.t t′ from 0 to

t, such that L−1 =
t∫

0
()dt ′.

Afterward, inverse operator is used in Eq. (1) and we get

u = f0 + L−1(R(u) + N (u)) (6)

where the initial guess solution f0 satisfies the condition L f0 = 0.
In ADM, the decomposition is used for the unknown function u and

u =
∞∑

m=0

um(n, t) (7)

In particular, u0 satisfy the initial condition u(n, 0).
The nonlinear term N (u) can be decomposed into

N (u) =
∞∑

m=0

Am(u0, u1, .....um) (8)

where the Adomian’s polynomials are Am(u0, u1, .....um) and defined as

Am = 1

m!
dm

dλm

(

N

( ∞∑

m=0

λi ui

))

(9)

Therefore, the terms of Am are as follows:

A0 = −u0(n)2(u0(n + 1) − u0(n − 1)) (10)
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A1 = −2u0(n)(u0(n + 1) − u0(n − 1))u1(n) − u0(n)2(u1(n + 1) − u1(n − 1))
(11)

and so on.
Hence, the first few terms of the decomposed series um(n, t) can be solved as

u0(n, t) = f0

u1(n, t) = L−1(α(u0(n + 1, t) − u0(n − 1, t)) + A0) (12)

u2(n, t) = L−1(α(u1(n + 1, t) − u1(n − 1, t)) + A1) and so on.
To get the maximum number of term, we use the symbolic software MAPLE.

3 Application of ADM

Example 1 Let us assume.

f ′′′(τ ) − 2 f ′2(τ ) + f (τ ) f ′′(τ ) − M f ′(τ ) = 0 (13)

The corresponding boundary conditions are

f (0) = 0, f ′(0) = 1, f ′(∞) = 0 (14)

The given differential equation is of third-order ordinary differential equation and
two initial conditions with one boundary condition. Therefore, we need one more
initial condition such as

f ′′(0) = α

where the unknown α is to be determined.
Using Laplace transformation of Eq. (13), we get

L
{
f ′′′(τ )

} − L
{
2 f ′2(τ ) − f (τ ) f ′′(τ )

} − ML
{
f ′(τ )

} = 0

⇒ s3 f (s) − s2 f (0) − s f ′(0) − f ′′(0) − M(s f (s) − f (0))

−L
{
2 f ′2(τ ) − f (τ ) f ′′(τ )

} = 0

(15)

Using initial conditions (14)
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⇒ (s3 − Ms) f (s) − s − α − L
{
2 f ′2(τ ) − f (τ ) f ′′(τ )

} = 0

⇒ f (s) = 1

(s3 − Ms)

(
s + α + L

{
2 f ′2(τ ) − f (τ ) f ′′(τ )

}) (16)

Following the standard procedure of ADM,
let us assume

f (τ ) =
∞∑

m=0

fm(τ )

= f0 + f1 + f2.......... + fm + ......

(17)

The nonlinear terms present in Eq. (13) can be defined in the Adomian polynomial
form as

f ′2(τ ) =
∞∑

m=0

Am

f (τ ) f ′′(τ ) =
∞∑

m=0

Bm

f ′(τ ) =
∞∑

m=0

Cm

(18)

By using above relation the components of the Adomian polynomials can be
expressed as

A0(τ ) = f ′2
0 (τ )

A1(τ ) = 2 f ′
0(τ ) f ′

1(τ )

A2(τ ) = f ′2
1 (τ ) + 2 f ′

0(τ ) f ′
2(τ )

...........

...........

(19)

B0(τ ) = f0(τ ) f ′′
0 (τ )

B1(τ ) = f0(τ ) f ′′
1 (τ ) + f1(τ ) f ′′

0 (τ )

B2(τ ) = f0(τ ) f ′′
2 (τ ) + f1(τ ) f ′′

1 (τ ) + f2(τ ) f ′′
0 (τ )

...........

...........

(20)

and
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C0(τ ) = f ′
0(τ )

C1(τ ) = f ′
1(τ )

C2(τ ) = f ′
2(τ )

...........

...........

(21)

The initial guess solution

f (τ ) = f(0) + τ f ′(0) + τ 2

2! f
′′(0)

= 0 + τ + τ 2

2! α

f0(τ ) = τ + τ 2

2
α

(22)

The recursive relation from Eq. (16) becomes

⇒ fm+1(τ ) = L−1

(
1

(s3 − Ms)
(s + α + L{2Am − Bm})

)

(23)

For m = 0, 1, 2, ….

⇒ f1(τ ) = L−1

(
1

(s3 − Ms)
(s + α + L{2A0 − B0})

)

⇒ f1(τ ) = L−1

(
1

(s3 − Ms)

(
s + α + L

{
2 f ′2

0 (τ ) − f0(τ ) f ′′
0 (τ )

})
)

f1(τ ) = (α2 + M2 + M)

M5/2
sinh(

√
Mτ) + 1

M2
α((M + 1) cosh(

√
Mτ) − τα − 1)

− 1

6M

(
α2τ 3 + 3ατ 2 + 6α + 6τ

)

Similarly,

⇒ f2(τ ) = L−1

(
1

(s3 − Ms)
(s + α + L{2A1 − B1})

)

⇒ f2(τ ) = L−1
(

1

(s3 − Ms)

(
s + α + L

{
4 f ′

0(τ ) f ′
1(τ ) − f0(τ ) f ′′

1 (τ ) − f1(τ ) f ′′
0 (τ )

})
)
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f2(τ ) =
(

1

M1/2 sinh(
√
Mτ) + α

M

(
cosh(

√
Mτ) − 1

))

+ 4
(α2 + M2 + M)

M2
(

− 1

M3/2 (3ατ + 2) sinh(
√
Mτ) + −4α + (αMτ2 + 2Mτ + 4α) cosh(

√
Mτ)

M2

)

+

....................

Hence,

f (τ ) = f0(τ ) + f1(τ ) + f2(τ ) + − − − − −

is the complete solution of the assumed boundary value problem.

Example 2 Let us consider the system of nonlinear equations,

f ′′(η) + f ′(η)g′(η) + K f ′(η) + M f (η) = 0

g′′(η) + f ′(η)g′(η) + g′2(η) + Kg(η) = 0

With boundary conditions

f (0) = A, f (∞) = 0

g(0) = B, g(∞) = 0

Applying the standard procedure of Adomian decomposition method (ADM),
next we introduce L1 = d2

dη2 ( ) and its inverse operators L−1
1 ( ) = ∫ η

0

∫ η

0 ()dηdη the
above system can be written as

f (η) = L−1
1

(− f ′(η)g′(η) − K f ′(η) − M f (η)
)

g(η) = L−1
1

(− f ′(η)g′(η) − g′2(η) − Kg(η)
)

The unknown functions f (η), g(η) can be expressed as infinite series of the
following form:

f (η) =
∞∑

m=0

fm, g(η) =
∞∑

m=0

gm,

The linear and nonlinear terms of ()-() can now be decomposed by an infinite
series of polynomials as follows:

∞∑

m=0

Am = f ′g′,
∞∑

m=0

Bm = f ′,
∞∑

m=0

Cm = f,

∞∑

m=0

Dm = g′2,
∞∑

m=0

Em = g

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Invoking the boundary conditions:

f (0) = A, f ′(0) = p ,

g(0) = B, g′(0) = q

}

The unknown values of p and q are to be determined.
The initial guess solutions and the successive order solutions are expressed as

follows:

f0(η) = A + ηp

g0(η) = B + ηq

and

fm+1(η) = L−1
1 (−Am − K Bm − MCm)

gm+1(η) = L−1
1 (−Am − Dm − K Em)

Using m = 0, 1, 2

f1 = T1η
2 + T2η

3

g1 = T3η
2 + T4η

3

f2 = T5η
3 + T6η

4 + T7η
5

g2 = T8η
3 + T9η

4 + T10η
5

f3 = T11η
4 + T12η

5 + T13η
6 + T14η

7

g3 = T15η
4 + T16η

5 + T17η
6 + T18η

7

...................

....................

After getting all the unknowns, the required solution can be written as

f (η =
∞∑

m=0

fm(η)

g(η =
∞∑

m=0

gm(η)

All the T ′
i s, i = 1 − 18 are presented in Appendix 1.



166 B. Nayak and R. S. Tripathy

Example 3 Let us consider the mKdV lattice equation.

dun
dt

= (1 − u2n)(un+1 − un−1)

With initial condition

u0 = tanh(k) tanh(kn)

Using Eqs. (11) and (12), the standard procedure of decomposition method is

u1 = tanh(k)[tanh(k(n + 1)) − tanh(k(n + 1))]t

− tanh(k)2 tanh(kn)2[tanh(k) tanh(k(n + 1)) − tanh(k) tanh(k(n + 1))]t

u2 = 1

2

[
tanh(k) tanh(k(n + 2)) − 2 tanh(k) tanh(kn) − tanh(k)2 tanh(k(n + 1))2(tanh(k) tanh(k(n + 2))

− tanh(k) tanh(kn) + tanh(k) tanh(k(n − 2)) + tanh(k)2 tanh(k(n − 1))2(tanh(k) tanh(kn)

− tanh(k) tanh(k(n − 2))) − 2 tanh(k) tanh(kn)(tanh(k) tanh(k(n + 1))

− tanh(k) tanh(k(n − 1))) − tanh(k) tanh(k(n + 1)) − tanh(k) tanh(k(n − 1))

− tanh(k)2 tanh(kn)2(tanh(k) tanh(k(n + 1)) − tanh(k) tanh(k(n − 1))))

− tanh(k)2 tanh(kn)2(tanh(k) tanh(k(n + 2)) − 2 tanh(k) tanh(kn)

− tanh(k)2 tanh(k(n + 1))2(tanh(k) tanh(k(n + 2)) − tanh(k) tanh(kn))

− tanh(k) tanh(k(n − 2)) + tanh(k)2 tanh(k(n − 1))2(tanh(k) tanh(kn) − tanh(k) tanh(k(n − 2))))
]
t2

Similarly, the other components are obtained using symbolic software MAPLE.
Hence, the approximate solution is

u =
i∑

m=0

um

The exact analytical solution of the considered problem is

u = tanh(k) tanh(kn + 2 tanh(k)t)

However, for the validation of the present solution, the numerical results of the
approximate solution are compared with the exact analytical solution and the error
is calculated and presented in Table 1.

Table 1 The values of
unknown α for various values
of M

M α

0 −1.28271

1 −1.62921

3 −2.15875

5 −2.58115
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4 Results and Discussion

In the present analysis (Example 1), we have considered a nonlinear boundary value
problem where the differential equation is third order and consists of two initial
conditions. Due to lack of initial condition we have assumed one more initial for its
possible solution. At present, instead of using numerical technique, semi-analytical
method like Adomian decomposition method is imposed and the unknown initial
value is obtained for the constant M and presented in Table 1. However, the effect
of the parameter M on the profiles of f ′(η) and f (η) is shown in Figs. 1 and 2,
respectively. It is observed that with an increasing M, the profile of f ′(η) decreases
smoothly to meet the boundary condition which confirms the choice of unknown
initial condition. Also, the profile of f (η) retards but the boundary layer thickness
decreases. In the particular example (Example 2) system, nonlinear differential equa-
tions are considered with appropriate boundary conditions. Due to the lack of initial
conditions we have assumed two more initials and then used ADM for their possible
solution. The unknown initial conditions are obtained numerically and presented in
Table 2. However, the behavior of various parameters M, K, A, and B on f (η) and
g(η) is shown in Figs. 3, 4, 5 and 6.

Fig. 1 Variation of parameter M on f ′(η)
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Fig. 2 Variation of parameter M on f (η)

Table 2 The values of unknown p and q

M K A B p q

0.1 1 1 1 −1.6767 1.641

0.2 −1.4953 1.5045

0.3 −1.3967 1.5661

0.4 −1.6397 2.5303

1 0.1 0.6926 −0.182

0.2 0.6902 −0.0696

0.3 0.6812 0.0601

0.4 0.6645 0.2136

1 0.5 0.1212 0.5216

0.6 0.0238 1.195

0.7 −0.028 0.3987

0.8 −0.0067 1.1996

1 0.5 −0.1957 0.553

0.6 −0.1607 0.8116

0.7 −0.1172 1.4506

0.8 −0.101 0.7494



Semi-analytical Approach to Solve the System … 169

Fig. 3 Variation of parameter M on f (η)

Fig. 4 Variation of parameter K on f (η)
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Fig. 5 Variation of parameter A on f (η)

Fig. 6 Variation of parameter B on g(η)
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Appendix 1

T1 = −1

2
(pq + AM + pK ), T2 = −1

6
MpT3 = −1

2

(
pq + q2 + BK

)
, T4 = −1

6
Kq,

T5 = − 1

6
(2pT3 + 2qT1 + 2KT1), T6 = − 1

12
(3pT4 + 3qT2 + 3KT2 + MT1), T7 = − 1

20
MT2,

T8 = − 1

6
(2pT3 + 2qT1 + 4qT3), T9 = − 1

12
(3pT4 + 3qT2 + 6qT4 + KT3), T10 = − 1

20
KT4,

T11 = − 1

12
(3pT8 + 4T1T3 + 3qT5 + 3KT5), T12

= − 1

20
(4pT9 + 6T1T4 + 6T2T3 + 4qT6 + 4KT6 + MT5),

T13 = − 1

30
(5pT10 + 9T2T4 + 5qT7 + 5KT7 + MT6), T14 = − 1

42
MT7,

T15 = − 1

12

(
3pT8 + 4T1T3 + 3qT5 + 4T 2

3 + 6qT8
)
, T16

= − 1

20
(4pT9 + 6T1T4 + 6T2T3 + 4qT6 + 12T3T4 + 8qT9 + KT8),

T17 = − 1

30

(
5pT10 + 9T2T4 + 5qT7 + 9T 2

4 + 10qT10 + KT9 + MT6
)
, T18 = − 1

42
KT10
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Abstract This present work is concerned with the existence and Ulam stability
criteria for a discrete antiperiodic boundary value problem (BVP) of fractional order
1 < σ ≤ 2 with Caputo fractional difference operator. Finally, some suitable
examples are presented to demonstrate the main results.
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1 Introduction

Fractional order differential equations (FODEs) introduce the notion of a non-integer
order derivative which provides a new modeling approach for systems with extraor-
dinary dynamical properties. Furthermore, since fractional calculus is a concept of
conventional calculus, it has been found especially advantageous in automatic control
and system theory, where FODEs are used to attain more accurate explanations of
the dynamical systems, develop the characteristics of control loops, and enhance
the novel control strategies. Then, during the past few decades, the FODEs found
numerous applications in different types of complex systems in diverse disciplines,
for example, diffusion, relaxation, turbulence, oscillation, and recently in statistical
distribution theory [1, 2]. Moreover, they havemany applications in various branches
of sciences and engineering.

Recently, the exploration on stability theory of FODE has been productive and
rapidly developed and it has drawn the attention of many analysts. A talk presented

A. G. M. Selvam (B)
Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur 635601, Tamil
Nadu, India
e-mail: agmshc@gmail.com

R. Dhineshbabu
Department of Mathematics, Sri Venkateswara College of Engineering and Technology
(Autonomous), Chittoor 517127, Andhra Pradesh, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
S. R. Mishra et al. (eds.), Recent Trends in Applied Mathematics, Lecture Notes
in Mechanical Engineering, https://doi.org/10.1007/978-981-15-9817-3_13

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9817-3_13&domain=pdf
mailto:agmshc@gmail.com
https://doi.org/10.1007/978-981-15-9817-3_13


174 A. G. M. Selvam and R. Dhineshbabu

by Ulam motivated the idea of carrying out the stability analysis of the functional
equations [3] in 1940. Also, Ulam discussed some unsolved problems and one about
the stability of homomorphism’s was answered by Hyers [4] in 1941. Number of
mathematicians was influenced by the concept of stability introduced by Th. M.
Rassias [5]. Ulam’s problem for functional equation is recently generalized with
differential equations replacing functional equations. Obloza came up with idea to
prove Hyers–Ulam (HU) and Hyers–Ulam–Rassias (HUR) stability of differential
equations in [6]. Nowadays, there are many researchers who discussed that the study
of HU stability of the integer order equation was generalized to the FODEs [7].
Further, Wang et al. [3] studied the pioneering work on the solutions of HU stability,
existence and uniqueness results, and data dependence to a class of Cauchy BVPs.

The fractional antiperiodic boundary value problems (FABVPs) are used in
various physical processes of stochastic transport with different boundary condi-
tions (BCs). The study of 2, 3, 4, multipoint and nonlocal BVPs has been examined
by many researchers using different methods which includes fixed point theorems in
cones, Krasnoselskii theorem, degree theory, and Leray–Schauder type [8–10]. Inte-
gralBCs appear in semiconductors, thermal conduction, and hydrodynamic problems
[11]. In recent years, the theory of discrete fractional calculus has been established
by a very few researchers [12–15]. Some important results on fractional order sums
and differences are given by Atici and Eloe [16, 17]. The comparison of the Caputo
and Riemann–Liouville operators was carried out in [18]. However, there is few
research papers published on existence and HU stability for discrete FABVPs with
Caputo difference operator [19, 20]. Inspired by the above discussions, in this paper,
existence and HU stability criteria for discrete FABVP have been investigated of the
following form:

{
C
0 �σ

k v(κ) = φ(κ + σ − 1, v(κ + σ − 1)), κ ∈ [0, q + 1]N0 , σ ∈ (1, 2]
v(σ − 2) = −v(σ + q), �v(σ − 2) = −�v(σ + q)

(1)

where φ : [σ − 1, σ + q]Nσ−1 × R → R is a continuous and C
0 �σ

κ is the Caputo
fractional difference operator (CFDO).

The paper is organized with basic concepts introduced in Sect. 2. Existence and
uniqueness results for discrete FABVP of (1) are established in Sect. 3. In Sect. 4,
we develop conditions for Ulam stability results and suitable examples are presented
as the applications of our results in Sect. 5.

2 Preliminaries

We recollect some well-known useful definitions and lemmas needed in this study.

Definition 2.1 (see [19, 20]) The σ th fractional sum for σ > 0 is defined by
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�−σ
�(κ) = 1

Γ (σ)

κ−σ∑
�=a

(κ − g(�))(σ−1)
�(�),

for all κ ∈ Na+σ , g(�) = � + 1, and κ(σ) := Γ (κ+1)
Γ (κ+1−σ)

.

Definition 2.2 (see [19, 20]) Let σ > 0, n − 1 < σ ≤ n and set α = n − σ . The
σ th CFDO is defined as

C
0 �σ

κ Ψ (κ) = �−α
(
�nΨ (κ)

) = 1

Γ (α)

κ−α∑
�=a

(κ − g(�))(α−1)�nΨ (�),

for all κ ∈ Na+σ , where n = �σ�, �.� ceiling of number.

Lemma 2.1 (see [19, 20]) Suppose that σ > 0 and Ψ is defined on Na. Then

C
0 �σ

κ �−σ φ(κ) = φ(κ) + A0 + A1κ + · · · + An−1κ
(n−1),

for some Ai ∈ R, where 0 ≤ i ≤ n − 1.

Lemma 2.2 [20] One has

1.
κ−σ∑
�=0

(κ − g(�))(σ−1) = Γ (κ + 1)

σ Γ (κ − σ + 1)
.

2.
q∑

�=0
(σ + q − g(�))(σ−1) = 1

σ

Γ (σ+q+1)
Γ (q+1) .

3.
q+1∑
�=0

(σ + q − g(�))(σ−2) = 1
σ−1

Γ (σ+q+1)
Γ (q+2) .

3 Existence and Uniqueness Solutions

In this section, existence and uniqueness solutions of a discrete FABVP (1) are
established, if the solution exists.

Theorem 3.1 Let 1 < σ ≤ 2 and φ : [σ − 1, σ + q]Nσ−1 × R → R be given. Then
the solution of a discrete FABVP

{
C
0 �σ

κ v(κ) = φ(κ + σ − 1), κ ∈ [0, q + 1]N0 ,

v(σ − 2) = −v(σ + q), �v(σ − 2) = −�v(σ + q)
(2)

if v(κ), for κ ∈ [σ − 2, σ + q]Nσ−2 , has the form
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v(κ) = 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)φ(� + σ − 1) − 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)φ(� + σ − 1)

+ [q + 2(σ − 1 − κ)]
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1), (3)

where g(�) = � + 1.

Proof Suppose that v(κ) is a solution of (2). Applying Lemma 2.1, we obtain a
general solution for (2) in the form

v(κ) = 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)φ(� + σ − 1) − A0 − A1κ (4)

for some A0, A1 ∈ R. Applying � operator to (4), we get

�v(κ) = 1

Γ (σ − 1)

κ−σ+1∑
�=0

(κ − g(�))(σ−2)φ(� + σ − 1) − A1. (5)

In view of the boundary conditions v(σ − 2) = −v(σ + q) and v(σ − 2) =
−v(σ + q), we find the value of A0 and A1 as follows:

A0 = 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)φ(� + σ − 1) − (q + 2σ − 2)

4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1) and

A1 = 1

2Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1).

Substituting the value of A0 and A1 in v(k), we obtain (3). Conversely, if (3) has
a solution, it is clear that the solution satisfies the BVP (2). The proof is completed.

Define the operator

(T v)(κ) =
[

1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1) − 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)

]
φ(� + σ − 1, v(� + σ − 1))

+ [q + 2(σ − 1 − κ)]
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1, v(� + σ − 1)) (6)

for κ ∈ [σ − 2, σ + q]Nσ−2 . It is obvious that v(κ) is a solution of (1) if it is a fixed
point of (6).

For computational convenience, let us consider the Banach spaceEwith the norm
‖v‖ = max|v(κ)| for κ ∈ [σ − 2, σ + q]Nσ−2 .

We assume the following:

(H1) Let us have constant η > 0, which satisfies |φ(κ, v) − φ(κ, u)| ≤ η|v − u|,
for all u, v ∈ E and κ ∈ [σ − 2, σ + q]Nσ−2 .
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(H2) There is a bounded function Q : [σ−2, σ+q]Nσ−2 → R such that |φ(κ, v)| ≤
Q(κ)|v| for all v ∈ E.
(H3) For a non-decreasing function Ψ ∈ [σ − 2, σ + q]Nσ−2 → R

+, there exists
λ > 0 such that

ε

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)Ψ (� + σ − 1) ≤ λ ε Ψ (κ + σ − 1), κ ∈ [0, q + 1]N 0 .

Theorem 3.2 Assume that (H1) holds. Then a discrete FABVP (1) has a unique
solution on E provided that

Λ = η
[

3Γ (σ+q+1)
2Γ (σ+1)Γ (q+1) + (q+2)Γ (σ+q+1)

4Γ (σ)Γ (q+2)

]
< 1. (7)

Proof For each κ ∈ [σ − 2, σ + q]Nσ−2 and u, v ∈ E, we have

|(T v)(κ) − (Tu)(κ)| ≤ 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)|φ(� + σ − 1, v(� + σ − 1)) − φ(� + σ − 1, u(� + σ − 1))|

+ 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)|φ(� + σ − 1, v(� + σ − 1)) − φ(� + σ − 1, u(� + σ − 1))|

+ |q + 2σ − 2 − 2κ|
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)|φ(� + σ − 1, v(� + σ − 1)) − φ(� + σ − 1, u(� + σ − 1))|

≤ η

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)|v(� + σ − 1) − u(� + σ − 1)|

+ η

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)|v(� + σ − 1)) − u(� + σ − 1))|

+ η|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)|v(� + σ − 1) − u(� + σ − 1)|

‖T v − Tu‖ ≤ η

Γ (σ)

[
κ−σ∑
�=0

(κ − g(�))(σ−1) + 1

2

q∑
�=0

(σ + q − g(�))(σ−1)

]
‖v − u‖

+ η|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

[
q+1∑
�=0

(σ + q − g(�))(σ−2)

]
‖v − u‖

‖T v − Tu‖ ≤
[

3Γ (σ + q + 1)

2Γ (σ + 1)Γ (q + 1)
+ (q + 2)Γ (σ + q + 1)

4Γ (σ)Γ (q + 2)

]
η‖v − u‖.

Clearly, T is a contraction mapping. It is clear from Lemma (7) in [19] that there
is a fixed point T has a unique. The proof is complete.

Theorem 3.3 Assume that the hypothesis (H2) holds. Then, the FABVP (1) has at
least a solution on E provided that
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Γ (σ + q + 1)[6(q + 1) + σ(q + 2)] ≤ 4Γ (σ+1)Γ (q+2)
Q∗ , (8)

where Q∗ = max
{
Q(κ) : κ ∈ [σ − 2, σ + q]Nσ−2

}
.

Proof Let us define S = {
v(κ)|[σ − 2, σ + q]Nσ−2 → R, ‖v‖ ≤ M

}
, for M > 0.

To prove this theorem, it is enough to show that T : S → S. For v(κ) ∈ S, we have

|(T v)(κ)| ≤
[

1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1) + 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)

]
|φ(� + σ − 1, v(� + σ − 1))|

+ |q + 2σ − 2 − 2κ|
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)|φ(� + σ − 1, v(� + σ − 1))|

≤ Q(κ)

Γ (σ )

[
κ−σ∑
�=0

(κ − g(�))(σ−1) + 1

2

q∑
�=0

(σ + q − g(�))(σ−1)

]
|v(� + σ − 1)|

+ Q(κ)|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

⎡
⎣q+1∑

�=0

(σ + q − g(�))(σ−2)

⎤
⎦|v(� + σ − 1)|

‖T v‖ ≤ Q(κ)

Γ (σ )

[
κ−σ∑
�=0

(κ − g(�))(σ−1) + 1

2

q∑
�=0

(σ + q − g(�))(σ−1)

]
‖v‖

+ Q(κ)|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

⎡
⎣q+1∑

�=0

(σ + q − g(�))(σ−2)

⎤
⎦‖v‖

‖T v‖ ≤ Q(κ)

Γ (σ )

[
Γ (κ + 1)

σ Γ (κ − σ + 1)
+ 1

2
· Γ (σ + q + 1)

σ Γ (q + 1)

]
‖v‖

+ Q(κ)|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

[
Γ (σ + q + 1)

(σ − 1)Γ (q + 2)

]
‖v‖

‖T v‖ ≤
[
Γ (σ + q + 1)[6(q + 1) + σ(q + 2)]

4Γ (σ + 1)Γ (q + 2)

]
Q∗M.

From (8), we get ‖T v‖ ≤ M . Thus, it is clear that T : S → S. According to
Brouwer theorem in [19], Eq. (6) has at least one fixed point which is a solution of
(1). This completes the proof.

4 The Ulam Stability

In this section, stability analysis is presented for the discrete FABVP (1). The
following definitions for FDE are given on the basis of [19, 20].

Definition 4.1 If for every function u(κ) ∈ E of

∣∣C
0 �σ

κ u(κ) − φ(κ + σ − 1, u(κ + σ − 1))
∣∣ ≤ ξ, κ ∈ [0, q + 1]N0 , (9)

where ξ > 0, there is a solutionv ∈ E of (1) and positive constant K > 0such that
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|u(κ) − v(κ)| ≤ K ξ, κ ∈ [σ − 2, σ + q]Nσ−2 . (10)

Then, the FABVP (1) is HU stable.

Definition 4.2 If for every function u(κ) ∈ E of

∣∣C
0 �σ

κ u(κ) − φ(κ + σ − 1, u(κ + σ − 1))
∣∣ ≤ ξ Ψ (κ + σ − 1), k ∈ [0, q + 1]N0 ,

(11)

where ξ > 0, there is a solutionv ∈ E of (1) and positive constant K > 0 such that

|u(κ) − v(κ)| ≤ K ξ Ψ (κ), κ ∈ [σ − 2, σ + q]Nσ−2 . (12)

Then, the FABVP (1) is HUR stable.

Theorem 4.1 Suppose that the hypothesis (H1) together with the inequality (9), then
a discrete FABVP (1) is HU stable provided that

β <
4Γ (σ+1)Γ (q+2)

Γ (σ+q+1)[6(q+1)+σ(q+2)] . (13)

Proof From inequality (9), for κ ∈ [σ − 2, σ + q]Nσ−2 , we can find a function
C
0 �σ

κ u(κ) = φ(κ + σ − 1, u(κ + σ − 1)) + f (κ + σ − 1) and | f (κ + σ − 1)| ≤ ξ .
It follows that∣∣∣∣∣u(κ) − 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)φ(� + σ − 1, u(� + σ − 1))

+ 1

2Γ (σ)

q∑
ξ=0

(σ + q − g(�))(σ−1)φ(� + σ − 1, u(� + σ − 1))

−[q + 2σ − 2 − 2κ]
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1, u(� + σ − 1))

∣∣∣∣∣
≤ ξ

Γ (σ )

κ−σ∑
�=0

(κ − g(�))(σ−1)

≤ ξ Γ (σ + q + 1)

Γ (σ + 1)Γ (q + 1)
. (14)

With the help of solutions (3) and (14), for κ ∈ [σ − 2, σ + q]Nσ−2 , we have

|u(κ) − v(κ)| ≤
∣∣∣∣∣∣u(κ) − 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)φ(� + σ − 1, v(� + σ − 1))

+ 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)φ(� + σ − 1, v(� + σ − 1))
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−[q + 2σ − 2 − 2κ]
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1, v(� + σ − 1))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣u(κ) − 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)φ(� + σ − 1, u(� + σ − 1))

+ 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)φ(� + σ − 1, u(� + σ − 1))

−[q + 2σ − 2 − 2κ]
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)φ(� + σ − 1, u(� + σ − 1))

∣∣∣∣∣∣
+ 1

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)|φ(� + σ − 1, u(� + σ − 1)) − φ(� + α − 1, v(� + α − 1))|

+ 1

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)|φ(� + σ − 1, u(� + σ − 1)) − φ(� + σ − 1, v(� + σ − 1))|

+ |q + 2σ − 2 − 2κ|
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)

× |φ(� + σ − 1, u(� + σ − 1)) − φ(� + σ − 1, v(� + σ − 1))|

|u(κ) − v(κ)| ≤ ξ Γ (σ + q + 1)

Γ (σ + 1)Γ (q + 1)
+ β

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)|u(� + σ − 1) − v(� + σ − 1)|

+ β

2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1)|u(� + σ − 1) − v(� + σ − 1)|

+ β|q + 2σ − 2 − 2κ|
4Γ (σ − 1)

q+1∑
�=0

(σ + q − g(�))(σ−2)|u(� + σ − 1) − v(� + σ − 1)|

≤ ξ Γ (σ + q + 1)

Γ (σ + 1)Γ (q + 1)
+ β‖u − v‖

Γ (σ)

κ−σ∑
�=0

(κ − g(�))(σ−1)

+ β‖u − v‖
2Γ (σ)

q∑
�=0

(σ + q − g(�))(σ−1) + β‖u − v‖|T + 2σ − 2 − 2κ|
4Γ (σ − 1)

L+1∑
�=0

(σ + L − g(�))(σ−2)

‖u − v‖ ≤ ξ Γ (σ + q + 1)

Γ (σ + 1)Γ (q + 1)
+ β

[
3Γ (σ + q + 1)

2Γ (σ + 1)(q + 1)
+ (q + 2)Γ (σ + q + 1)

4Γ (σ)Γ (q + 2)

]
‖u − v‖.

From the above inequality, we have

‖u − v‖ ≤ 4(q+1)Γ (σ+q+1)
4Γ (σ+1)Γ (q+2)−β [6(q+1)+σ(q+2)]Γ (σ+q+1) ξ,

where 4(q+1)Γ (σ+q+1)
4Γ (σ+1)Γ (q+2)−β [6(q+1)+σ(q+2)]Γ (σ+q+1) > 0.

Thus, FABVP (1) is HU stable.

Theorem 4.2 If the hypotheses (H1) and (H3) and the inequality (11) are satisfied,
then a discrete FABVP (1) is HUR stable provided that (13) holds.
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Proof With the argument used in the proof of Theorem 4.1, we obtain

‖u − v‖ ≤ λ
4Γ (σ+1)Γ (q+2)

4Γ (σ+1)Γ (q+2)−β [6(q+1)+σ(q+2)]Γ (σ+q+1) ξ Ψ (κ + σ − 1),

where λ
4Γ (σ+1)Γ (q+2)

4Γ (σ+1)Γ (q+2)−β [6(q+1)+σ(q+2)]Γ (σ+q+1) > 0.

Thus, FABVP (1) is HUR stable.

5 Applications

As the applications of our results, we consider the following examples.

Example 5.1 Suppose that σ = 6
5 and q = 2. Let φ(κ, v(κ)) = sin v(κ)

25+κ2 and η = 1
25 .

Then discrete FABVP (1) becomes

C
0 �

6
5
κ v(κ) = sin(v(κ+ 1

5 ))
25+(κ+ 1

5 )
2 , κ ∈ [0, 3], (15)

subject to the conditions

v

(
−4

5

)
= −v

(
16

5

)
, �v

(
−4

5

)
= −�v

(
16

5

)
. (16)

In this case, inequality (7) is

Λ = η

[
3Γ (σ + q + 1)

2Γ (σ + 1)Γ (q + 1)
+ (q + 2)Γ (σ + q + 1)

4Γ (σ)Γ (q + 2)

]
≈ 0.2675 < 1.

Therefore, from Theorem 3.2, we conclude that BVP (15), (16) has a unique
solution.

When σ ∈ (1, 2] with step size 0.2 and varying different Lipschitz constants η,
conditions (7) of Theorem 3.2 are satisfied and BVP (15), (16) has different unique
solutions, see Table 1 and Fig. 1.

Example 5.2 Suppose that σ = 17
10 , q = 5, and M = 1000 with φ(κ, v(κ)) =

1
27κe

− κ
100 |v(κ)|. Then discrete FABVP (1) takes the form

C
0 �

17
10
κ v(κ) = 1

27

(
κ + 7

10

)
e−(κ+ 7

10 )
1

100 |v(κ+ 7
10 )|, κ ∈ [0, 6], (17)

subject to the conditions

v

(
− 3

10

)
= −v

(
67

10

)
, �v

(
− 3

10

)
= −�v

(
67

10

)
. (18)
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Table 1 Illustration of σ ∈ (1, 2] with step size 0.2 and varying η

σ Λ

η = 1
25 η = 1

26 η = 1
29 η = 1

34

1.2 0.2675 0.2572 0.2306 0.1967

1.4 0.3210 0.3086 0.2767 0.2360

1.6 0.3806 0.3660 0.3281 0.2799

1.8 0.4469 0.4297 0.3852 0.3286

2 0.5200 0.5000 0.4483 0.3824

Fig. 1 σ versus Λ

The Banach space is E :=
{
v(κ)|[− 3

10 ,
67
10

]
N −3

10

→ R, ‖v‖ ≤ 1000

}
. We note

that

4Γ (σ + 1)Γ (q + 2)M

Γ (σ + q + 1)[6(q + 1) + σ(q + 2)] = 1000(0.0335) ≈ 33.5308.

It is clear that |φ(κ, v(κ))| ≤ 67
270 < 33.5308, whenever v ∈ [−1000, 1000]. So,

φ satisfies the condition. Therefore, by Theorem 3.3, we conclude that the BVP (17),
(18) has at least one solution.

Example 5.3 Assume that σ = 36
20 and q = 7 with φ(κ, v(κ)) = λv(κ). Then

discrete FABVP (1) becomes

C
0 �

36
20
κ v(κ) = λv

(
κ + 16

20

)
, κ ∈ [0, 8], (19)

with the boundary conditions
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v

(
− 4

20

)
= −v

(
176

20

)
, �v

(
− 4

20

)
= −�v

(
176

20

)
. (20)

Since

4Γ (σ + 1)Γ (q + 2)

[6(q + 1) + σ(q + 2)]Γ (σ + q + 1)
≈ 0.0182.

If λ < 0.0182 and the inequality

∣∣∣∣C0 �
36
20
κ u(κ) − φ

(
κ + 16

20
, u

(
κ + 16

20

))∣∣∣∣ ≤ ξ, κ ∈ [0, 8]N0 ,

holds, then the BVP (19), (20) is HU stable according to Theorem 4.1.
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Effect of Electrification on Boundary
Layer Stagnation Point Flow
of Nanofluid Over a Stretching Sheet

Kamala Kumar Pradhan, Ashok Misra, and Saroj Kumar Mishra

Abstract In this investigation, the stagnation point flow of silver water nanofluid
over a linear stretching sheet using Buongiorno’s two-component non-homogeneous
nanofluid model is studied. The governing equations are reduced to ordinary differ-
ential equations by using similarity transformation and solved numerically by using
bvp4c function of MATLAB package. The impact of electrification in presence of
viscous dissipation on normalized velocity, temperature and nanoparticle concen-
tration is analysed and examined through graphs. The physical parameters like skin
friction coefficient, rate of heat transfer and nanoparticle concentration are derived
and presented by tables. It is found that the higher electrification parameter reduces
the normalized base fluid temperature and enhances the normalized velocity due to
Lorentz force. So, it may be concluded that electrification of particles is an important
and possible mechanism for enhancement of thermal conductivity of base fluid.

Keywords Nanofluids · BVP4C function · Electrification of particle · Viscous
dissipation

1 Introduction

The flow over a stretching surface is an important problem in many engineering
and industrial applications such as hot rolling, wire drawing, paper production,
glass blowing, plastic films drawing, etc. The first investigation on two-dimensional
axisymmetric boundary layer flow over a stretched surface was studied by Sakiadis
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[23]. The similarity solution in analytical form for steady two-dimensional incom-
pressible boundary layer flow caused by the stretching sheet was studied by Crane
[8]. Stagnation-point flow describes the motion of fluid near the stagnation region
of a solid surface. The two-dimensional stagnation-point flow towards a semi-
infinite wall was studied by Hiemenz [11] for first time. This problem was extended
by Homann [12] to the case of axisymmetric stagnation-point flow. The study of
stagnation-point flow over a stretching surface was first investigated by Mahapatra
and Gupta [17]. After this pioneering work, the flow over a stagnation point towards
a stretching/shrinking sheet has been investigated by several authors [2, 3, 13, 16].

The conventional heat transfer fluids like water, ethylene glycol and engine oil
are having limited capacity in terms of thermal properties but the solids metals are
havinghigher thermal conductivity as compared to them.So it canbe expected that the
fluids containing solid particles can increase the thermal conductivity of above-cited
applications. In view of this, Maxwell [18] suggested that the thermal conductivity
of fluids can be enhanced by dispersing tiny-sized solid particles in the conventional
fluids. This leads to the creation of an innovative coolant throughwhich solid particles
are suspended in conventional fluids to change the thermophysical properties of base
fluids. This suspension was coined by Choi [7] and named as nanofluid which is used
to reduce or enhance the thermal conductivity as per the need. These fluids are also
very stable and not having any additional problems like sedimentation, erosion and
additional pressure drop [9]. These suspended nanoparticles can change the thermal
properties of base fluid due to its tiny size and low volume fraction. Khan and Pop
[14] are first to consider the problem of stretching sheet in nanofluids.

Viscous dissipation is a process of converting mechanical energy of downward
flowing fluid into thermal and acoustical energy. The idea of viscous dissipation
was first given by Brinkman [5] and used by Gebhart [10]. Later, many researchers
have extended this work and took this effect in their experiments like Vajravelu and
Hadjinicalaou [27] and Partha et al. [22].

There are several models for nanofluid available to study its flow and heat transfer
characteristics, but among them Buongiorno’s model [6] and Tiwari and Das model
[26] are very popular. As the Tiwari and Das model [26] analyses the behaviour
of nanofluids by solid volume fraction whereas Buongiorno’s model [06] analyses
the combined effects of Brownian motion and thermophoresis on heat transfer char-
acteristics. Recently, Buongiorno’s model [06] has been used by several authors
like Nield and Kuznetsov [20], Kuznetsov and Neild [15], Khan and Pop [14], and
Bachok et al. [1]. Wen [28] investigated that the non-homogeneity of nanofluid is
well justified when the nanoparticle migration phenomena occur. So in our present
investigation we have considered Buongiorno’s two-component non-homogeneous
nanofluid model.

Though the use of nanofluid is highly essential on thermal management, but still
from the above literatures, it reveals that there is no investigation done to study the
flow and heat transfer characteristic of nanofluids with the effect of electrification of
nanoparticle. The static electrification of solid particles within the non-conducting
fluid was investigated by Soo [24]. He suggested that due to the particle–particle
collision and particle–wall interactions, an effective drag force is produced on the
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ions which have a pronounced effect on the boundary layer characteristics of a two-
phase flow. Hence, the present investigation is the extension work of Baker et al. [4]
with the influence of electrification of nanoparticles in presence of viscous dissipation
effect on skin friction, Nusselt number and Sherwood’s number using Buongiorno’s
two-component non-homogeneous model.

2 Mathematical Formulation

The present study considers two-dimensional boundary layer, steady state of stag-
nation point flow of viscous incompressible nanofluid in the region y > 0 driven by
a stretching/shrinking surface located at y = 0 with a fixed stagnation point at x =
0 as shown in Fig. 1.

It is assumed that, the base fluid is pure water, electrically non-conducting copper
nanoparticles are electrified and both base fluids and nanoparticles are in equilib-
rium. The sheet is stretched with velocity Uw(x) = bx , and the ambient velocity
U∞(x) = ax is assumed to vary linearly from the stagnation point ‘O’, where a
and b are constants with a > 0. We note that b > 0 and b < 0 correspond to
the stretching and shrinking sheets, respectively, and x is the coordinate measured
along the stretching/shrinking sheet. It is also assumed that the temperature and
concentration of the surface are TwandCW , respectively, while the temperature
and concentration in the free-stream condition are T∞andC∞, respectively, where
T∞ > Tw. We assume that the nanoparticle concentration is dilute. The simplified

Fig. 1 Physical model and coordinate system
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two-dimensional equations governing the flow in the boundary layer of a steady,
laminar and incompressible nanofluid are derived as given below:

Continuity equation for fluid:

∂u

∂x
+ ∂v

∂y
= 0 (1)

Continuity equation for nanoparticle:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+ DT

T

∂2T

∂y2
+

( q

m

) 1

F

(
∂(CEx)

∂x
+ ∂

(
CEy

)

∂y

)
(2)

Momentum equation in the X-direction:

ρn f

[
u

∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ μn f

∂2u

∂y2
+ Cρs

( q

m

)
Ex (3)

Momentum equation in Y-direction:

∂p

∂y
= O(δ) (4)

Energy equation

(ρc)n f

[
u

∂T

∂x
+ v

∂T

∂y

]
= kn f

[
∂2T

∂y2

]
+ ρscs DB

∂C

∂y

∂T

∂y
+ ρscs DT

T

(
∂T

∂y

)2

+
( q

m

)Ccsρs

F

(
Ex

∂T

∂x
+ Ey

∂T

∂y

)
+μn f

(
∂u

∂y

)2

(5)

The E-field is given by the equation:

∂Ex

∂x
+ ∂Ey

∂y
= ρs

ε0

q

m
where ε0 is the permittivity. (6)

Following Soo [25] neglecting the change in electric field in the x-direction, the
transverse electric field is given by

∂Ey

∂y
= ρs

ε0

q

m
(7)

And Ex in potential flow outside the boundary layer is assumed almost negligible
with the boundary conditions
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u = UW = bx, v = 0, T = TW ,C = Cw at y = 0
u = U∞ = ax, v = 0, T → T∞,C → C∞ as y → ∞

}
(8)

3 Similarity Transformation

The governing partial differential Eqs. (1–7) are transferred into corresponding
ordinary differential equations by introducing the dimensionless variables

η = y
√

a

ν f
, θ = T − T∞

Tw − T∞
, u = ax f

′
, v = −√

aν f f (η), ψ = √
aν f x f (η),

S = C − C∞
Cw − C∞

Since Eq. (1) is satisfied with the above variables, Eqs. (2), (3) and (5) are
transformed into

S" + Sc f S
′ + Nt

Nb
θ " + ScNF

NRe

(
S + NC+ηS

′) = 0 (9)

(
f

′)2 − f f
′ ′ = 1

ϕ1
f

′ ′ ′ + 1 + ϕ2
Sc

NF
MNbS (10)

− f θ
′ = ϕ4ϕ3

Pr
θ" + ϕ3Nbθ

′
S

′ + ϕ3Nt
(
θ

′)2 + NFϕ3Nbηθ
′
Sc(S + Nc)

NRe
+ Ecϕ3ϕ5

(
f "

)2
, (11)

respectively, by considering
(
Tw−T∞
T∞

)
� 1

whereM =
( q

m

) 1

FU
Ex , NF = U

Fx
,

1

NRe
=

(( q

m

)2 ρs x2

U 2ε0

)
,

Nb = τDB(Cw − C∞)

ν f

N t = τDT (Tw − T∞)

ν f T∞
, Pr = ν f

α f
, Sc = ν f

DB
, Nc =

(
C∞

(Cw − C∞)

)
, τ = ρscs

ρ f c f

Using theMaxwellmodel [19] for thermal conductivity,weget the thermophysical
constants ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 as

ϕ1 = 1

(1 − C)2.5
[
(1 − C) + C ρs

ρ f

] , ϕ2 = ρs

ρ f

1[
(1 − C) + C ρs

ρ f

] ,

ϕ3 = 1

(1 − C) + Cτ
,
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ϕ4 = ks + 2k f − 2C(k f − ks)

ks + 2k f + C(k f − ks)
,
ϕ

5

= 1

(1 − C)2.5

subjected to the boundary conditions

η = 0, f (0) = 0, f
′
(0) = ε = b

a , θ(0) = 1, s(0) = 1
η = ∞, f ′(∞) = 1, θ(∞) = 0, s(∞) = 0

}
(12)

4 Result and Discussion

The set of non-linear ordinary differential Eqs. (16–18), with the associated boundary
conditions (19), are solved numerically by using boundary value problem default
solver bvp4c of MATLAB package. The obtained results are presented by tables
and analysed through graphs. In this investigation, we have considered silver (Ag)
nanoparticles with pure water as a base fluid. The nanoparticle volume fraction (ϕ)

is taken as 0.001 to interpret the result and ϕ = 0 represents the regular fluid with
Prandtl number Pr = 6.2. The thermophysical properties of nanofluid (Ag) and base
fluid (water) used in the numerical simulations are given in Table 1.

Extensive calculations have been performed to obtain the velocity, tempera-
ture, concentration profiles as well as skin friction, normalized Nusselt number and
normalized Sherwood number for various values of physical parameters such asε,ϕ,
Ec, Sc, Pr, NF,, Nb, Nt, NRe, Nc, M. To determine the accuracy of our numerical
results, the skin friction coefficient is compared with the published results of Bakar
et al. [4] in Table 2. The calculated values show a favourable agreement for which
we believe that the present results are correct and accurate and Table 3 describes the

Table 1 Thermophysical
properties of base fluid and
nanoparticles [21]

Physical properties Base fluid Nanoparticles

Water Ag

Cp(J/kgK ) 4179 235

ρ(kg/m3) 997.1 10,500

k(W/mK ) 0.613 429

Table 2 Comparison of
f "(0) with different values of
ε when M = Ec = 0, Nb =
NF = Nt = ϕ = 0.1, Sc =
3, Pr = 6.2

ε Bakar et al. [4] Present

f "(0) f "(0)

0.0 1.510003 1.5100

0.5 0.83834 0.8383

1 0 0
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Table 3 Numerical values of f "(0), −θ
′
(0) and −S

′
(0) for various flow parameters

ε Ec ϕ Sc Pr NF Nb Nt NRe Nc M f "(0) −θ
′
(0) −S

′
(0)

0.1 0.14641 1.68587 0.36464

0.5 0.1 0.01 1.5 6.2 0.1 0.1 0.1 2.0 0.1 0.3 1.96994 1.77674 0.49710

0.4 2.79832 1.81253 0.55000

0.0 −0.16405 1.88228 −1.18014

1.5 0.1 0.01 1.5 6.2 0.1 0.05 0.1 2.0 0.1 0.1 0.19873 1.72669 0.15748

0.1 0.48239 1.60555 0.54515

0.05 1.86733 1.32572 0.57079

1.5 0.1 0.01 1.5 6.2 0.1 0.1 0.1 2.0 0.1 0.1 2.01041 1.24399 0.32295

0.15 2.13799 1.16393 0.15257

0.0 2.01041 1.24399 0.32295

1.5 1.0 0.01 2.0 6.2 0.1 0.1 0.1 2.0 0.1 0.1 1.60189 1.01256 1.30803

2.0 1.31973 0.87405 1.91669

3.0 1.11711 0.78381 2.32351

0.5 2.01041 1.24399 0.32295

1.5 0.1 0.01 1.5 6.2 0.1 0.1 0.1 2.0 0.1 0.1 0.19873 1.72669 0.15748

2.0 −0.91422 1.93622 0.09359

numerical results of different flowquantities on the friction factor coefficient ( f "(0)),
the rates of heat transfer (−θ

′
(0)) and nanoparticle concentration coefficient (-S

′
(0)).

From Table 3, it is observed that the increase of electrification parameter (M),
thermophoresis parameter (Nt) and Brownian motion parameter (Nb) increases
the velocity of fluid flow and consecutively the rate of heat and mass transfer is
decreasing. But the increase of Eckert number (Ec) and stretching parameter (ε)
decreases the velocity of fluid flow.

4.1 Effect of Electrification (M)

Figures 2, 3 and 4 describe the impact of electrification parameter (M) on velocity,
temperature and concentration distribution, respectively. It is observed that the fluid
velocity is increasing asM is increasing whereas the temperature and concentration
are decreasing. This is due to the existence of electrification of particles within the
boundary layer which produces a drag force called Lorentz’s force which acts as an
accelerating force on the velocity field. As a result, the velocity increases and the
temperature and concentration decrease. Hence, we concluded that the electrifica-
tion may play an important role to control the velocity and heat transfer in various
conducting fluids.
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Fig. 2 Effect of electrification parameter on f
′
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Fig. 4 Effect of electrification parameter on S(η)
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Fig. 5 Effect of stretching parameter on f
′
(η)
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Fig. 6 Effect of stretching parameter on θ(η)

4.2 Effect of Stretching Parameter (ε)

Here we noticed that ε > 1 represents the free stream is directed towards negative x-
direction and 0 < ε < 1 represents themovement of fluid and plate is in the same direc-
tion, while the plate moves towards the positive x- direction. The increase of ε shows
the increase of velocity and decrease of temperature and concentration (Figs. 5, 6, 7).

4.3 Effect of Viscous Dissipation Parameter (Ec)

Figure 9 represents the impact of Eckert number (Ec) on temperature profiles. It
is found that temperature decreases with the increase of Ec. It may conclude that
the viscous dissipation has contributed to increase in velocity and thermal boundary
layer thicknesses while the local Nusselt number decreases (Figs. 8, 10).
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Fig. 7 Effect of stretching parameter on S(η)
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Fig. 8 Effect of viscous dissipation parameter on f
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Fig. 9 Effect of viscous dissipation parameter on θ(η)

4.4 Effect of Thermophoresis Parameter (Nt)

The impact of thermophoresis parameter (Nt) on temperature and nanoparticle
concentration fields is shown in Figs. 11 and 12, respectively. It is observed that
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the fluid temperature and concentration are increasing due to the increase of ther-
mophoresis. As we know that thermophoresis is a mechanism through which the tiny
particles are dragging away from hot surface to cold surface. So the fluid temperature
and concentration are increasing due to the increase of thermophoresis.
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4.5 Effect of Brownian Diffusion Parameter (Nb)

Figures 13 and 14 display the effect of Brownianmotion on temperature and nanopar-
ticle concentration fields, respectively. It is found that due to the impact of Brownian
motion, the temperature of fluid flow is increasing whereas the nanoparticle concen-
tration is decreasing. Since the larger Nb corresponds to stronger random motion of
nanoparticles within a fluid, the fluid temperature gets enhance.

5 Critical Analysis

5.1 Impact of Electrification in Absence of Viscous
Dissipation

The impacts of electrification in absence of viscous dissipation are shown in Figs. 15,
16 and 17. From Table 4, it is observed that the increase of electrification in absence
of viscous dissipation increases the fluid velocity and decreases the rates of heat
transfer. It occurs due to the Lorentz force.
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Table 4 Values of f "(0), −θ
′
(0) and −S

′
(0) with different values ofM

Pr = 6.2, NRe, = 2.0, Nt = 0.1, NF = 0.1, Nb = 0.1, Sc = 1.5

M f "(0) −θ
′
(0) −S′(0)

0.0 0.73823 1.10181 0.28418

0.1 2.01041 1.24399 0.32295

0.2 3.12693 1.34042 0.35686

0.3 4.15119 1.41546 0.38542

0.4 5.11200 1.47784 0.40992

5.2 Impact of Viscous Dissipation in Absence
of Electrification

The impacts of viscous dissipation in absence of electrification are shown in Figs. 18
and 19. From Table 5, it is observed that the increase of viscous dissipation effect in
absence of electrification increases the rates of heat transfer.
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Fig. 18 Effect of viscous dissipation in absence of electrification on θ(η)
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Table 5 Values of f "(0), −θ
′
(0) and −S

′
(0) with different values ofM

Pr = 6.2, NRe, = 2.0, Nt = 0.1, NF = 0.1, Nb = 0.1, Sc = 1.5

Ec f "(0) −θ
′
(0) −S′(0)

0.0 0.73823 1.10240 0.31316

0.5 0.73823 −0.09896 1.33815

1.0 0.73823 −1.40065 2.45697

1.5 0.73823 −2.81303 3.67969

2.0 0.73823 −4.34760 5.01750

Table 6 shows the computed values of f "(0), −θ
′
(0) and −S

′
(0) in various situa-

tions for the different parametric values of the flow problem. It can be observed that
with electrification and viscous dissipation the value of the Nusselt number with 1%
volume fraction of nanoparticle is greater than that of the nanofluid with 10% volume
fraction. Also, a larger Nusselt number corresponds to more active convection and
the fluid motion enhances heat transfer by advection. Here, it is observed that smaller
values of Schmidt number (increase in mass diffusivity will reduce Schmidt number)
has an impact to increase theNusselt number, i.e. enhances heat transfer by advection.
Thus, electrification of particles in addition to Brownian motion and thermophoresis
may be a potential mechanism for enhancement of thermal conductivity.

6 Conclusion

The flow over a stretching sheet plays an important role in the field of engineering
and science due to its incredible applications. With this view, an attempt was made
to investigate the effects of electrification on boundary layer stagnation-point flow
towards a stretching/shrinking sheet in a nanofluid using Buongiorno’s model. The
impact of various flows of parameters was discussed through graphs and tables.

• The increment of electrification parameter (M) increases the flow of velocity and
decreases the temperature of fluid flow. It is due to the effect of Lorentz’s force.

• The increase in Brownian motion increases the temperature of fluid flow and
decreases the nanoparticle concentration as the larger Nb corresponds to stronger
random motion of nanoparticles within a fluid.

• The increase of thermophoresis increases the fluid temperature and the nanopar-
ticle concentration.

• The large values of Ec cause the increase of nanofluid temperature as it has the
contribution to increase in fluid velocity.

• The increment of velocity ratio parameter (ε) causes the reduction of surface
temperature gradient. Hence, the fluid temperature is enhanced due to the effect
of Lorentz’s force.
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Effect of Variable Viscosity on Slow
Rotation of a Porous Sphere in a Cavity

Madasu Krishna Prasad

Abstract In the limit of lowReynolds number, the effect of variable viscosity engen-
dered by the rotation of a porous sphere in a closed spherical boundary is filled up
with a viscous fluid. The fluid motion is steady and axisymmetric. Stokes equation
holds in the liquid region and porous region obeys the Brinkman equation. The slip
boundary condition is used on the surface of cavity. The continuity of velocity com-
ponents and stress jump boundary condition on the porous-liquid surface are used.
The couple and wall correction factor exerted by the surrounding viscous fluid on a
rotating porous sphere are obtained. The effect of apparent viscosity, permeability
parameter, slip parameter, and stress jump coefficient on the wall correction factor
are discussed. Special cases are recovered.

Keywords Creeping flow · Porous sphere · Variable viscosity · Rotation · Couple

1 Introduction

The flow problems of the slow rotation of a cavity wrapping a concentric porous
particle have attracted the attention of many investigators to examine due to its
various applications in the areas of biomedical, environmental engineering, chemical,
and science. These problems are modeled by using the Stokes version for the flow
inside cavity and Brinkman’s equation holds in the porous region. The objective is
to determine the velocities in both liquid and porous regions. The torque is to be
calculated.

Considerable amount of work has been done on rotation of a rigid sphere, porous
sphere, composite sphere, and approximate sphere in a spherical cavity under slow
motion. One can find useful literature in Happel and Brenner [1] and Kim andKarrila
[2]. Kanwal [3] discussed the incompressible viscous fluid flow of a steadily rotating
a torus, a spindle, and a lens. Keh and Chou [4] and Keh and Lu [5] investigated the
effects of boundary wall that significantly the slowmotion of a porous shell particles.
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Srinivasacharya and Prasad [6–8] extended their work ([4, 5]) by using stress jump
condition [9–13], respectively. Srivastava and Saxena [14] discussed the rotation of
a rigid sphere in a viscous fluid immersed in spherical porous medium.

Ashmawy [15] studied the effect of slip condition for oscillatory rotational motion
of a porous shell bounded by concentric spherical cavity. Prasad et al. [16] presented
an application of steady rotation of solid spheroidal particle enclosed in a concentric
spheroidal container. Awasthi et al. [17] investigated the effect of variable permeabil-
ity on the torque exerted by porous sphere in a spherical container. Recently, Filippov
and Koroleva [18] discussed uniform estimates for flow of porous cylindrical par-
ticles where porous medium is filled by liquid with varying viscosity. Filippov and
Koroleva [19] studied the behavior of the flow velocity by modeling a set of porous
particles immersed into liquid concentric cells. Ryzhikh and Filippov [20] studied
the hydrodynamic permeability of a porous shell with solid impermeable core for
variable viscosity.

In this work, the effect of variable viscosity is investigated for slow and steady
rotation of a porous sphere fill up with a viscous fluid in a spherical cavity having
common center. The flow in the fluid region is modeled by Stokes’ equations and
the flow in porous region obeys Brinkman’s model. The slip condition at the cavity
surface is employed. On the fluid-porous interface, continuity of the velocity and
tangential stress jumpconditions are used.The influences of the geometric parameters
are discussed using graphs.

2 Mathematical Formulation

As depicted in Fig. 1, the problem of an axially symmetric steady rotational flow
caused by a porous sphere of radius a bounded by a Newtonian fluid having viscosity
μ in a concentric spherical cavity of radius b is studied. The inner sphere is rotating
about z-axis with angular velocity Ω . The angular velocity of the outer sphere is
−Ω . Porous region has uniform porosity and variable liquid viscosity. The viscosity
of liquid region μ is constant (a < r < b), and the effective viscosity is assumed to

depend on the viscosity of liquid region by the power law μe = μ
(a
r

)α

, i.e., the μe is

a monotonically along the depth of the porous sphere from the value of μ at the liquid
region and porous region. The parameterα is chosen on the basis of the specific value
of effective viscosity. The fluid dynamic pressure is constant everywhere.

Let us assume the flow outside the porous sphere is ruled by steady Stokes flow

∇ · v (1) = 0, (1)

∇ p(1) + μ∇ × ∇ × v(1) = 0, (2)
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Fig. 1 The physical
situation of the problem

where p(1) is the pressure, μ is the coefficient of viscosity, and v(1) is the velocity.
and the flow inside the porous region is described by Brinkman’s equation [21]

∇ · v (2) = 0, (3)

∇ p(2) + μ

k
v(2) + μe∇ × ∇ × v(2) = 0, (4)

where p(2) is the pressure, k is permeability of the porous medium, μe is the effective
viscosity , and v(2) is the velocity.

According to the geometry of the problem and nature of the flow, the velocity
vectors can be represented as

v(i) = v
(i)
φ (r, θ) eφ, i = 1, 2, (5)

where (er , eθ, eφ) are the unit vectors along the increasing directions of the spherical
coordinate system (r, θ,φ)

The suitable boundary conditions which describe the present problem [6, 7, 15,
16] are given as

v
(1)
φ = v

(2)
φ on r = a, (6)

∂v
(2)
φ

∂r
− ∂v

(1)
φ

∂r
= σ√

k
v

(2)
φ on r = a, (7)
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where σ is the stress jump coefficient. If this parameter σ = 0, the continuity of
tangential stresses occurs at the interface. Experimentally, it has been asserted σ lies
between −1 and 1.

λ1

(
v

(1)
φ + Ω r sin θ

)
= −

(
∂v

(1)
φ

∂r
− v

(1)
φ

r

)
on r = b. (8)

If λ1 → ∞, the special case of slow motion generated by rotation of a no-slip spher-
ical container about a porous sphere is obtained.

The following dimensionless equations are obtained by introducing

non-dimensional variables r = ar̃ ,v(i)
φ = Ωaṽ

(i)
φ , E2 = 1

a2
Ẽ2 in the Eqs. (2) and

(4) and dropping the tildes.

E2 (r sin θ v
(1)
φ ) = 0, (9)

(E2 − rαβ2) (r sin θ v
(2)
φ ) = 0, (10)

where E2 = ∂2

∂r2
+ (1 − ζ2)

r2
∂2

∂ζ2
is the Stokesian operator, ζ = cos θ, and

β2 = a2/k.

3 Solution of the Problem

Assuming the solution of second order partial differential equations (9) and (10) in the
form w(1) = f (r) sin θ and w(2) = g(r) sin θ. The transformed ordinary differential
equations are

r2 f ′′(r) + 2r f ′(r) − 2 f (r) = 0, (11)

v
(1)
φ = (

A r + B r−2
)
sin θ, (12)

r2g′′(r) + 2rg′(r) − (2 + rα+2β2)g(r) = 0, (13)

Let p = α + 2,
r2g′′(r) + 2rg′(r) − (2 + r pβ2)g(r) = 0. (14)

This differential equation of the second order posses two kinds of solutions when
p ≥ 0 and p < 0. For p < 0, this equation shows that two linearly independent
solutions are singular at r = 0. Hence, we discuss cases for p > 0 and p = 0. If
p > 0 [17],
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g(r) = C
1√
r
I 3

p

(
2
√
r pβ

p

)
, (15)

v
(2)
φ = C

1√
r
I 3

p

(
2
√
r pβ

p

)
sin θ. (16)

Applying the boundary conditions (6)–(8), we get

A + B − C I 3
p

(
2β

p

)
= 0, (17)

A − 2B + C

(
(β σ + 2)I 3

p

(
2β

p

)
− β I 3

p −1

(
2β

p

))
= 0, (18)

A + Bη3(1 − 3ηλ−1) + 1 = 0. (19)

The unknowns A, B, and C are given as

A = (W3 − 2W1)λΔ1

, B = −(W3 + W1)λΔ1

,C = −3λΔ1

,

Δ1 = ((
(W3 + W1)η

3 − W3 + 2W1
)
λ − 3(W3 + W1)η

4
)−1

,

W1 = I 3
p

(
2β

p

)

,W2 = I 3
p −1

(
2β

p

)

,W3 = (β σ + 2)W1 − βW2

.

If p = 0(α = −2), we have

v
(2)
φ = (

C r δ + D rχ
)
sin θ, (20)

where

δ = −1 + √
4β2 + 9

2
and χ = −1 − √

4β2 + 9

2
.

As r → 0, v(2)
φ must be finite for that D = 0. Hence,

v
(2)
φ = C r δ sin θ (21)
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the system of equations satisfying the boundary conditions (6)–(8) are

A + B − C = 0, (22)

A − 2B + C(β σ − δ) = 0, (23)

A + Bη3(1 − 3ηλ−1) + 1 = 0. (24)

The constants involved in above system are

A = λ (βσ − δ − 2) Δ2

, B = −λ (βσ − δ + 1) Δ2

,C = −3λΔ2

,

where

Δ2 = (
βσ((η3 − 1)λ − 3η4) + ((1 − δ)η3 + δ + 2)λ + 3(δ − 3)η4

)−1
.

4 Torque

The torque experienced by the fluid on the particle is given by

Tz = 2πa3
∫ π

0
t (1)r φ

∣∣∣
r=1

sin2 θdθ,

where t (1)r φ is the tangential stress tensor of the liquid region.

Tz = −8π a3 μΩ B. (25)

Case p > 0:

Tz = −8π a3 μΩ (W3 + W1)λΔ1. (26)

Case p = 2:

Tz = −8π a3 μΩ (W4σ + W5)λΔ3, (27)

where

W4 = β sinh β − β2 cosh β
W5 = (β2 + 3) sinh β − 3β cosh β

Δ3 = ((
(η3 − 1)λ − 3η4

)
W4σ + W5η

3 (1 − 3λη) − β2λ sinh β
)−1
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Case p = 0:

Tz = −8π a3 μΩ λ (βσ − δ + 1)Δ2. (28)

The torque exerted on the particle in an infinite expense
Case p > 0:

T∞ = −8π a3 μΩ

(
W3 + W1

W3 − 2W1

)
. (29)

Case p = 2:

T∞ = −8π a3 μΩ

[
(3 + β (β + σ)) sinh β − β (3 + β σ) cosh β

β ((β + σ) sinh β − β σ cosh β)

]
.

This result has been obtained previously by Srinivasacharya and Prasad [6, 7].
Case p = 0:

T∞ = −8π a3 μΩ

[
(βσ − δ + 1)

βσ − δ − 2

]
. (30)

The effect of wall can be calculated as the ratio of the torque exerted by the fluid on
the particle in the envelope to the torque experienced by the fluid in an open space.
It is defined as correction factor W . Using Eqs. (26) and (29), this becomes

W = Tz
T∞

.

When σ = 0 and b → ∞ (or η = 0), the torque is

T∞ = −8π a3 μΩ

[
3 + β2 − 3β coth β

β2

]
(31)

this well-known result for porous sphere was found by Keh and Chou [4], and Keh
and Lu [5].

If β → ∞, we get well-known result of the torque exerted by the fluid on a solid
sphere [22]

T∞ = −8π μΩ a3. (32)

The correction factor in case of solid sphere is given by

W = 1

1 − η3
. (33)
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The wall correction parameter W depends on the following parameters :

(i) The separation parameter, η = a

b
.

(ii) The slip parameter λ = λ1a

μ
.

(iii) The stress jump coefficient σ.

(iv) The permeability parameter k1 = 1

β2
.

(v) The parameter p.

The effect of separation parameter η on the correction factor W is plotted in
Figs. 2, 3, 4, and 5. The following observations are found:

(i) Increasing parameter p decreases the W .
(ii) W increases monotonically with an increase in the value of η.

Fig. 2 Variations of Wc
versus η for different values
of the p, λ → ∞, σ = −0.3,
k1 = 2

Fig. 3 Variations of Wc
versus η for different values
of λ, p = 6, σ = −0.3,
k1 = 2
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Fig. 4 Variations of Wc
versus η for different values
of k1, λ = 5, p = 6,
σ = −0.3

Fig. 5 Variations of Wc
versus η for different values
of σ, λ = 5, p = 6,k1 = 2

(iii) W increases with an increase in the value of λ. The value of W is less than 1
for λ = 1 after particular value of η which is not physically possible.

(iv) Increasing permeability k1 decreases the W .
(v) W is monotonically increasing function for non-positive values of σ. For posi-

tive values of σ, W < 1 after particular value of separation parameter η. There
is significant torque or wall correction factor generated by rotation of a spheri-
cal cavity because the shear stress of cavity region is more than that of a inner
region.

(vi) The boundary effect on the correction factor is stronger when the permeabil-
ity k1 is smaller, slip parameter λ → ∞, non-positive value of stress jump
coefficient σ, p = 0.
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(vii) If the parameter α is positive, the effective viscosity decreases in the direction
of viscosity of fluid. Hence, the viscosity inside the porous region is greater than
the viscosity of the fluid. If the effective viscosity is less than the fluid viscosity,
the situation describes the superhydrophobic surface [19]. If the parameter
α = 0, the effective viscosity is equal to fluid viscosity and the results are
reported earlier in Srinivasacharya and Prasad [6, 7].

Hence, the value of parameter p has a significant effect on rotatory motion of a
porous particle.

5 Conclusion

The effect of variable viscosity is examined by providing an analytical solution of
rotational motion of a porous sphere located at a concentric position in a spherical
cavity. The torque exerted by the fluid on particle is calculated. Hence, the effect of
wall is computed as a correction factor. It is seen that the torque decreases for an
increasing value of the permeability parameter or the stress jump coefficient. The
results show that torque exerted by the fluid on the porous sphere of superhydrophobic
surface is less than that of the torque experienced by the fluid on the porous sphere
of variable viscosity α > 0.
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Arbitrary Amplitude Double Layers
in Dust Kinetic Alfvén Wave Plasmas
with κ-Distributed Electrons

Latika Kalita, Ranjit Kumar Kalita, and Jnanjyoti Sarma

Abstract An investigation has been done to study the effects of κ-distributed elec-
trons on the waves with arbitrary amplitude of magnetized plasma in the presence
of warm ions and negatively charged dust particles. The kappa distribution (κ >
3/2), which represents a velocity distribution, contains high energy tail but nears
to the Maxwell–Boltzmann distribution as κ → ∞. In this work, by using the non-
perturbation technique (i.e., Sagdeev pseudopotential analysis), a suitablemathemat-
ical expression for the arbitrary amplitude double layers in dust kinetic Alfvén waves
is formulated. Using the standard numerical values for different plasma parameter
related to it, the Sagdeev Potential (SP) has been calculated for the plasma waves.
It is observed that the spatial index κ plays a substantial role in finding the size
and shape of double layers. Depth of double layers increases with decreasing kz,
keeping ω fixed. For this parameter set, the double layer does not exist when M
≤ 1.1. This theoretical study may be helpful for explaining some of recent in situ
observations (e.g., Freja, Cassini) in space plasmas, where one of its constituents is
kappa distributed electron.
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1 Introduction

The well-known Alfvén waves are a basic physical phenomenon in magnetized
plasma that leads to a different kind of physical process in the space plasmas. For
example, the turbulence, plasma heating, acceleration along the field lines, wave
particle interactions, and generation of geometric perturbations. Many theoretical
studies as well as experimental works have been thus dedicated to the study of
Alfvén waves and brought out many aspects of Alfvén waves [1–4]. The observa-
tional data obtained from the artificial satellites like Freja have showed the formation
and propagation of low-frequency auroral electromagnetic waves similar to Kinetic
Alfvén waves (KAWs) ensuing in density pulses [5]. The structures so obtained,
can be distinguished as Solitary waves (SWs) or Double layers (DLs). These waves
propagate in fluid plasmas and can be studied with the help of Reductive Pertur-
bation Technique (RPT) [6] or Sagdeev’s Pseudopotential method (SP) [7–9]. For
first time, Hasegawa and Mima [10] and Yu and Shukula [11] were studied analyt-
ically to explain their numerical behavior of SKAWs by using Sagdeev’s potential
[7] approach. Double layer [12] is a mechanism which is exclusively responsible for
particles energization both in space plasmas and laboratory plasmas. Double layers
are associated with currents and are of interest in astrophysics as a direct intends to
accelerate the particles. They can hold a local area of parallel electric field leading
to the magneto-hydrodynamic (MHD) relief to a large scale magnetic field. The
studies linked to double layers are becoming impetus due to their contributions in
any system of plasma, which includes discharge tubes, space plasmas, etc. to the
Birkeland currents supplying the Earth’s aurora. Because of the potential drop-down
across a DL, the acceleration of electrons and positive ions take place in opposite
directions (regardless of the width of the DL). The acceleration of charged particles
may result in beams or jets of the charged particles. Investigations as well as studies
on double layers had improved in a big way with the launching of the triple plasma
device [13]. Temerin et al. [14] were observed double layers in space plasma for the
first time. The astrophysical and space plasmas are mostly found as non-Maxwellian
with high energy tail. The measurements of such profiles of electron energy spectra,
done by the spacecraft, have been fruitfully modeled with superthermal electrons.
The kappa (κ) distribution, as it has an empirical fit to the observed particle distribu-
tions, was suggested by Vasyliunas [15] for the first to model solar wind data which
was obtained from OGO 1 and OGO 2 satellites. Kappa distribution is not only
useful to analyze and interpret spacecraft data on the Earth’s magneto-sphere plasma
sheet but also for the solar wind, Jupiter, Saturn, and planetary magnetospheres.
The value of the κ (spectral index) provides the slope of the energy spectrum of the
superthermal particles, which form the tail of the velocity distribution function. Low
values of κ represent distributions with a huge part of superthermal particles which
are generally named as a “hard” spectrum [15]. For very big values of κ (κ → ∞), the
velocity distribution function nears to Maxwellian distribution. Remarkable uses of
the κ distribution function admit, for example, an interpretation of the observations in
foreshock [16] of the Earth (where 3 < κe < 6) and the models for solar wind having
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coronal electrons [17–19] fulfilling the condition 2 < κe < 6. The natures of ion
acoustic solitary waves having arbitrary amplitude, obliquely propagation in magne-
tized plasma with the electrons following κ distribution is investigated by Sultana
et al. [20]. They have considered those plasmas which have two components colli-
sionless but embedded in a uniform magnetic field comprised of cold ions describes
by the fluid moment equations and electrons following κ velocity distribution. Yet,
to the authors’ knowledge, the formation of double layers is not investigated. Data
obtained from Freja satellite [21] depicted that the low-frequency auroral electro-
magnetic fluctuations ensuing on strong electric spikes that show to interpreted as
density pulses displaying kinetic theory study of waves in space plasmas. The signif-
icance of kinetic Alfvén waves for the study of coupling has been seen between the
ionosphere and magnetosphere [22]. An observable fact related to the Alfvén vari-
ation waves in auroral region can also be analyzed by in situ measurements, where
the variation of electric as well as magnetic fields and the correlations between them,
for the propagation of the Alfvén waves can be determined.

Moreover it is observed that in space plasmas, the presence of charged dust parti-
cles is very common with sizes from 10 nm to 10 μm and masses of them can
vary from 10−11 to 10−16 gm in background plasma of neutral gas particles, ions,
electrons, etc. Such plasma is known as dusty plasma, a naturalistic medium in the
studies associated with interplanetary space dust, comets, planetary rings, planetary
magnetospheres, interstellar clouds, etc. A significant phenomenon has been devel-
oped in the process of dust particles’ charging in plasmas and its effects, not only
on dusty plasma dynamics in astrophysical surroundings but also in the processing
of laboratory plasma and semiconductor manufacturing [23]. The charges on the
dust particles may change because of the wave motion-induced electrons and ions
currents flowing onto the grain surface. Consequently the charge of dust grain turns
into a new dynamical variable, passing to certain new results in dusty plasmas, which
are generally missing in the general multicomponent plasmas. Many heuristic works
are found to study salient properties of coherent structures occurring in Earth’s space
region and auororal ionosphere filled up with dusty plasmas.

2 Basic Equations

In the present work, we consider a set of relevant fluid model equations, which
contain relativistic effects as the part of the dynamics of superthermal electron.
For the sake of in-depth investigations of arbitrary amplitude double layers in dust
kinetic Alfven waves in the environment of space and astrophysical plasma, the
universal Newton’s equation for j =i, e, respectively, for the ions and electrons goes

as m jn j
[
∂t �u j + �u j · ∇ �u j + ∇ �p] = q jn j

[ �E + �u j × �B
]
. This equation shows the

variations of relativistic momentum and thermal pressure of the plasma. We take a
plasma model in the presence of uniform external magnetic field B0 =B0ẑ along
z-axis and with β << me/mi , where the fluctuations are presumed in the (x, z) plane.
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The introductory equations governing the dynamics of nonlinear Alfvén waves in
low-β plasma are given by

∂ne
∂t

+ ∂

∂z
(nevez) = 0 (1)

∂ni
∂t

+ ∂

∂x
(nivi x ) + ∂

∂z
(nivi z) = 0 (2)

∂vi x

∂t
+ vi x

∂vi x

∂x
+ vi z

∂vi x

∂z
= β

2

(
−∂φ

∂x
− σ

ni

∂ni
∂x

)
+ viy (3)

∂viy

∂t
+ vi x

∂viy

∂x
+ vi z

∂viy

∂z
= −vi x (4)

∂vi z

∂t
+ vi x

∂vi z

∂x
+ vi z

∂vi z

∂z
= β

2

(
−∂ψ

∂z
− σ

ni

∂ni
∂z

)
(5)

∂4(φ − ψ)

∂x2∂z2
= 2

β

[
∂2

∂t2
(ne) + ∂2

∂t∂z
(nivi z)

]
(6)

The simplest form of electrons having κ distribution is given by

ne =
(

1 − ψ

κ − 3
2

)−κ+ 1
2

(7)

As the dust grains have heavy mass and carry negative charges, so they are static.
In this case we consider the quasi-neutrality condition [24] as

δene + zδd − ni = 0 (8)

And the charge neutrality at equilibrium reads

δd = 1 − δe (9)

where ne and ni represent the densities of electron and ion, respectively. In the deriva-
tion of Eq. (6) we have used continuity equation for the electron (ne), i.e., Eq. (1). The
normalization for densities is done by the equilibrium plasma density n0, distance
by gyroradius ρs = cω−1

pi , the potential by KTe
e , the velocities by Alfvén velocity

vA = cB0

(4πn0mi )
1
2
, and time t by ion gyroperiod Ω−1

i . Here Ωi represent the gyrofre-

quency of ion and Te symbolizes for the electron temperature, σ is the temperature
ratio (ion to electrons) and β = 8πn0Ti

c2B2
0

, (is the ratio of kinetic to the magnetic pres-
sure), is a significant parameter for examining the efficiency of magnetic fields in
close proximity of plasma in tokomak’s investigation. In low-β supposition in case of
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highmagnetic pressure, the electric field can be expressed with the help of two poten-
tial φ and ψ. z (dust charge number), δe = ne0

ni0 , δd = znd0
ni0 , Q = me/mi (mass ratio of

electron to ion), the subscripts i and e represent ions and electrons, respectively. To
obtain a dispersion relation we have utilized Poisson’s equation as

∂2φ

∂x2
+ ∂2ψ

∂z2
= −4πe(ni − ne) (10)

Using linearized Eqs. (1)–(7) and (10) and after some algebraic calculations, by
employing the following variables:

VA = eB0√
4πni0mi

,Ωc = eB0

mi
,C2

s = Ti
mi

, Q = me

mi
, ω2

pi = 4πni0e2

mi
, ω2

pe

=4πne0e2

me
,
ω2

pi

Ω2
c

= c2

V 2
A

,
ω2

pe

ω2
pi

= Q

We have found the dispersion relation as given below:

(

1 + Ω2
c

V 2
A

(
1

k2x k
2
z

+ σk2z C
2
s

ω

)
+ Qω2

pe

C2
s

(
2κ − 1

2κ − 3

)(
1 − ω2

c2

))

(
1 − σk2z C

2
s

ω
− σωC2

s

ω2 − Ω2
c

(
Ω2

c

V 2
A

+ k2x
ω

))

= ω2
pi k

2
z

ω2
+
(
B − σC2

s

)

(
ω2 − Ω2

c

)
k2z

Ω2
c

V 2
A

(
k2x k

2
z + Ω2

c

k2x V
2
A

)
−
(
2κ − 1

2κ − 3

)
ω2Qω2

pe

c2C2
s

(11)

where B = 1
mi c2

, σ = Ti
Te
. From Eq. (11), we notice that the dispersion relation (11)

depends on parameters kx, kz, mi, c,ω,σ and other plasma parameters.
The object of our study is directly concerned to the formation of kinetic Alfvén

waves as in the dispersion curves we find out the wave number kz with larger values
pointing to the dispersion created.

3 Formulation of the Sagdeev Potential Equation

In order to obtain one-dimensional time-stationary planar solutions, the dependence
on the quantity

η = xkx + zkz − Mt (12)
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where M = v
vA

= ratio of wave’s phase velocity in the unit of Alfven velocity which
is also called normalized Mach number and kx, kz are direction cosines related by

k2x + k2z = 1 (13)

Employing the coordinate transformation to the Eqs. (2–6), the set fluid equations
becomes

kxvi x + kzvi z = M

(
1 − 1

ni

)
(14)

−M

ni

∂vi x

∂η
+ σkxβ

2ni

∂ni
∂η

= −kxβ

2

∂φ

∂η
+ viy (15)

M

ni

∂viy

∂η
= vi x (16)

−M

ni

∂vi z

∂η
+ σkzβ

2ni

∂ni
∂η

= −kzβ

2

∂ψ

∂η
(17)

k2xk
2
z

∂4

∂η4
(φ − ψ) = 2

β

[
M2 ∂2ne

∂η2
− kzM

∂2

∂η2
(nivi z)

]
(18)

Now (15) × kx + (17) × kz and using (14) we get

−M2

n3i

∂ni
∂η

+ σβ

2ni

∂ni
∂η

= −β

2

[
k2x

∂φ

∂η
+ k2z

∂ψ

∂η

]
+ kxviy (19)

Diff. w. r. t. “η” we get

∂

∂η

[(
M2

n3i
− β

2

σ

ni

)
∂ni
∂η

]
= β

2

[
k2x

∂2φ

∂η2
+ k2z

∂2ψ

∂η2

]
− ni

M

[
M

(
1 − 1

ni

)
− kzvi z

]

(20)

From Eq. (7)

∂ψ

∂η
=
(

κ − 3
2

κ − 1
2

)

n

κ+ 1
2

−κ+ 1
2

e
∂ne
∂η

(21)

Using (21), (17) becomes

⇒ M

ni

∂vi z

∂η
= σkzβ

2ni

∂ni
∂η

+ kzβ

2

(
κ − 3

2

κ − 1
2

)

n

κ+ 1
2

−κ+ 1
2

e
∂ne
∂η

(22)
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From now we shall employ the following quasi-neutrality condition,

δene + zδd − ni = 0

⇒ ni = δene + zδd and δd = 1 − δe

Equation (22) becomes

vi z = kzσβδe

2ω
(ne − 1) + βkz

2ω

⎡

⎣

⎛

⎝n

3
2 −κ

1
2 −κ

e − 1

⎞

⎠−
(

κ − 3

2

)
z(1 − δe)

(

n
1

1
2 −κ

e − 1

)⎤

⎦

(23)

Using (23) in Eq. (20) we get

⇒ β

2

[
k2x

∂2φ

∂η2
+ k2z

∂2ψ

∂η2

]

= ∂
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[(
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⎡

⎢
⎣
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2
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2

⎡

⎢
⎣

⎛

⎜
⎝n

3
2 −κ

1
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⎞

⎟
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)
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(

n

1
1
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)
⎤

⎥
⎦

⎤

⎥
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Equation (18), integrating twice and using boundary conditions
φ = ψ = vi z → 0 and ne → 1 we get

k2x k
2
z

(
∂2φ

∂η2
− ∂2ψ

∂η2

)
= 2

β

[

M2(ne − 1) − k2z σβδe

2
(δene + z(1 − δe))(ne − 1)−

βk2z (δene + z(1 − δe))

2

⎡

⎣

⎛

⎝n

3
2 −κ

1
2 −κ

e − 1

⎞

⎠−
(

κ − 3

2

)
z(1 − δe)

(

n
1

1
2 −κ

e − 1

)⎤

⎦

⎤

⎦

(25)

Now (24) × k2z− (25) × β

2 and using (21) we get

⇒ ∂

∂η
⎡

⎢
⎣

⎛

⎜
⎝

βk2z
2

(
κ − 3

2

κ − 1
2

)

n

κ+ 1
2

−κ+ 1
2

e − k2z

(
M2δe

(δene + z(1 − δe))3
− σβδe

2(δene + z(1 − δe))

)
⎞

⎟
⎠

∂ne
∂η

⎤

⎥
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= β

2
k2z (δene + z(1 − δe))

(
1 − k2z

M2

)

⎡

⎣

⎛

⎝n

3
2 −κ

1
2 −κ

e − 1

⎞

⎠−
(

κ − 3

2

)
z(1 − δe)

(

n
1

1
2 −κ

e − 1

)⎤

⎦+

σβδe

2
k2z (δene + z(1 − δe))(ne − 1)

(
1 − k2z

M2

)

+ k2z (δene + z(1 − δe) − 1) − M2(ne − 1) (26)

We now multiply both sides of Eq. (26) by the term of the left hand within the
parentheses, which gives

1

2

(
dne
dη

)2

+ K (ne) = 0 (27)

where K (ne) = λ(ne)μ(ne)

λ(ne) = −1
⎡

⎢
⎣ β

2 k
2
z

(
κ− 3

2

κ− 1
2

)
n

1
2 +κ

1
2 −κ

e − k2z
(

M2δe
(δene+z(1−ne))3

− σβδe
2(δene+z(1−ne))

)
⎤

⎥
⎦

2

μ(ne) = − k4z β
2(k2z − M2)

8(−5 + 2κ)M2
[
2(−3 + 2κ)

(
−1 + ne1+

4
1−2κ

)
z(1 − δe) + (−5 + 2κ)

(
−1 + ne2+

4
1−2κ

)
δe
]

+ k4z β
2(M2 − k2z )

8M2

[
(−3 + 2κ)

(
−1 + ne

2
1−2κ

)
z(1 − δe) − 2

(
−1 + ne1+

1
1−2κ

)
δe
]

+ (3 − 2κ)2k4z β2z(k2z − M2)(1 − δe)

32(−5 + 2κ)M2
[

(−5 + 2κ)z(1 − δe) − 4δe + ne
4
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]
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16M2
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(
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2
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(
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1+ 2
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)

δe
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−
k4z β
(
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M2
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4(δene + z(1 − δe))
[
2 − (−1 + 2κ)ne

3−2κ
1−2κ Hypergeometric

2F1
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2
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,
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−1 + 2κ
,

1 + 2κ
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,
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](
neδe

z(1 − δe) + neδe

) 3−2κ
−1+2κ

]

+
k4z β
(
1 − k2z

M2

)
M2

4(δe + z(1 − δe))
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[2 − (−1 + 2κ)Hypergeometric

2F1
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,
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−1 + 2κ
,

1 + 2κ
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,
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2
z − M2)(1 − δe)
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1
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(
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[
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+ k4zσβ
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− k4zσ
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+ k4z
2

[

σβ(Log[z(1 − δe) + δe] − z(1 − δe) − δe) + M2(1 − 2z(1 − δe) − 2δe)

(z(1 − δe) + δe)2
+

σβ(−Log[z(1 − δe) + neδe] + z(1 − δe) + neδe) + M2(−1 + 2z(1 − δe) + 2neδe)

(z(1 − δe) + neδe)2

]

+ k2z M
4δe(−1 + ne)2

2(z(1 − δe) + δe)(z(1 − δe) + neδe)2

− k
2

zσβM2

2δe

[
z(Log[z(1 − δe) + δe] − Log[z(1 − δe) + neδe])(1 − δe)

+ (−1 + ne + Log[z(1 − δe) + δe] − Log[z(1 − δe) + neδe])δe]

Equation (27) can be interpreted as the analog “energy-balance” equation in
mechanics for the different dynamical problem of motion of an unit mass turned
up at “position” ne and developing in “time” η with “velocity” dne

dη
in a potential

K (ne). The hypergeometric 2F1 can be obtained as a solution of linear ordinary

differential equation of the second order, like
(
d2w
dz2 + p dw

dz + qw
)

= 0.

4 Conditions for the Existence of Solitary Waves
and Double Layers

The solutions of the Sagdeev potential equation are generally found with refer-
ence to favored frame of references for investigations of solitary waves as well as
double layers. The Sagdeev method is a general one, for the propagating-wave solu-
tions of arbitrary amplitude are reachable through macroscopic plasma models [25]
for nonlinear waves. Seeking for exact solutions for propagating-wave of nonlinear
plasmawaves is thewidely knownway for theoretical plasma research in recent times
related to contemporaneous laboratory experimental studies of coherent plasma. The
dynamical conditions for propagating SWs and DLs demand a procedure like reflec-
tion of a pseudo particle from a point of maximum n in the potential well. Equa-
tion (27) is the main tool in our research works and it could describe many salient
features of plasma-acoustic mode. For existence of solitary waves, the following
conditions must be satisfied

(i) K(ne) = 0 at ne= 1 and ne= N (maximum variation of ne).

(ii)
(
dK
dne

)

ne=1
= 0 but

(
dK
dne

)

ne=N
	= 0, Additional requirement is that the double

root at ne= 1 is a local maximum, which gives us

(iii)

(
d2K

dn2e

)

ne=1

< 0
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For the double layer K(ne) should have a maximum at ne = N( 	=1) which entails
K(ne) = 0 for ne = N

(
dK

dne

)

ne=N

= 0 and

(
d2K

dn2e

)

ne=N

< 0

5 Results and Discussions

Interpretations of observed results in satellite experiments are often ambiguous and
disputed among researchers. The changes that the space vehicles may miss observa-
tion of vital areas of space, lead to hidden causes of space phenomena. Such are the
situations where mathematical modeling gives a high degree of reliability towards
explaining space phenomena in plasma. Hence consideration of the nonlinearity of
the plasma models is of prime importance. Different types of plasma waves, their
interactions and related formation of leading structures which are basically nonlinear
with coherence to be studied in this pursuit. Alfvén waves in space and astrophysical
dusty plasmas by introducing some basic physical concepts of the dust environments.
It was proven that the dispersion relation of Alfven waves is changed importantly
in the dusty plasma system because the charged grains in a magnetized plasma are
extremely coupled to the waves because of cyclotron resonances. The computations
show the existence of rarefactive DLs under the effect of superthermal electrons.
Here the supersonic propagation of the structures of the dust kinetic Alfvén DLs
under the effect of superthermality of the electrons with spectral index kappa to the
relevant in space plasma and astrophysical plasmas. The energy enhancement can be
encountered by computing the widths of the structures. Use of the charge neutrality
condition Eq. (8) is being made during our mathematical calculation to arrive at
this potential in terms of z = 1 for the appearance of dust particles in the plasma.
Without the effect of dust consideration [18, 19], some results show the formation
of compressive double layers with similar ranges of kappa values between 4 and 6.
We would spotlight our outcomes on the formation of DLs only.

Depth of DLs increases with decreasing kz keeping M fixed (Fig. 1). For this
parameter set, double layer does not exist when M ≤ 1.1. The widths of the double
layers become bigger for higher concentration of dust density δe in the plasma. The
propagation of the electrostatic double layers is found to be directed significantly
close to the direction of the ambient magnetic field. It is comfortably understood that
DLs’ amplitude depends on the external magnetic field. In some events, to obtained
the existence of DLs for various values of M, it is need to exchange kz values also
that can be distinctly observed from Fig. 2 forM = 1.4, kz = 0.2;M = 1.6, kz = 0.3;
M = 1.8, kz = 0.4 and other parameters are z = 1,δe = 0.97, σ= 0.03, β = 0.002,
κ = 4. This depicts the nature of double layers for various set of values of M and
kz. To examine the consequence of κ parameter on the formation of nonlinear wave
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Fig. 1 Variation of K(ne) against density ne showing double layers formation for several values of
kz = 0.1, kz = 0.2, kz = 0.3 and other parameters are, M = 1.2, z = 1, δe = 0.97, σ = 0.03, β =
0.002, κ = 4

Fig. 2 Variation of K(ne) against density ne showing double layers formation for several values
of M = 1.4, kz = 0.2; M = 1.6, kz = 0.3; M = 1.8, kz = 0.4 and other parameters are z = 1, δe =
0.97, σ = 0.03, β = 0.002, κ = 4

structures, we would vary one parameter at a time, where the remaining parameters
remain fixed. A graph for K (ne) is plotted for a bigger value of κ = 50 (i.e.,
Maxwellian) for a comparison with kappa distribution κ = 4. As the spectral index
κ increases it is shows that the curve (κ = 50) stands for neither a solitary wave
nor a double layer (Fig. 3). This is because in presence of magnetic field, the higher
energetic electrons have a tendency to be magnetized easily compared to the lower
energetic electrons. The kappa index of superthermality of the non-Maxwellian elec-
trons is in good agreement with the double layer formations in space and astrophys-
ical plasmas. Because in our computations for double layers kappa values are seen
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Fig. 3 Variation of K(ne) against density ne showing double layers formation for κ = & κ = 50
(Maxwellian) and other parameters are,M = 1.2, z = 1, δe = 0.98, σ = 0.03, β = 0.002, kz = 0.2

ranging between 4 and 5. 3D Variation of K(ne) with density ne and Mach number
M showing double layers formation (Fig. 4). From the study of nonlinear dispersion
relations (Eq. 11), the variation of the wave frequency ω with kz for κ = 5,σ =
0.02 is shown in Fig. 5. The present theoretical outcomes could be of interest and it
is anticipated to describe some of the new in situ observations (e.g., Freja, Viking) as
spiky structures and the upcoming electric signatures as auroral radiation (rarefac-
tive double layer) in space plasma where a kappa distributed electron component is
observed. As the meteoric dust particles are not detected by in situ investigations in

Fig. 4 3D Variation of
K(ne) with density ne and
Mach number M showing
double layers formation for κ

= 4, z = 1, δe = 0.98, σ =
0.03, β = 0.002, kz = 0.2
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Fig. 5 Variation of the wave frequency ω (given in Eq. (11)) with kz for κ = 5, σ = 0.02

the mesosphere, so our findings are relevant to space as well as astrophysical plasmas
in connection to noctilucent clouds (NLC) linked to dusty plasma prevailing in the
mesosphere (~80–110 km attitude, i.e., some part between D and E region of Earth’s
ionosphere).
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Mathematical Modeling for an Optimal
Order Inventory with Demand
Dependent Selling Price, Nonlinear
Stock, and Nonlinear Holding Cost

Mamta Kumari and P. K. De

Abstract In the present paper an EOQ model has been developed with nonlinear
holding cost, where demand is found to be linearly dependent on selling price and
nonlinearly on inventory level. In thismodel the prevailing assumption of zero ending
inventory level has been changed into a nonzero ending inventory level. Here an
inventory model with shortages is analyzed which is partially backlogged. The main
purpose of the inventory model is to find out the optimal order quantity along with
ending inventory level so as to maximize retailer’s total profit per unit time and also
to determine the best-selling price of a given product. The trade credit policy is also
introduced in the model. To demonstrate our model a numerical example has been
presented and a sensitivity analysis is incorporated to highlight the findings of the
suggested inventory model.

Keywords Inventory · Stock dependent demand · Selling price · Shortages ·
Nonlinear holding cost

1 Introduction

From past few years, a lot of attention has been paid towards the inventory manage-
ment policy. Price is an important factor on which the demand of a product depends.
A common question is what should be the selling price of a product? Although the
ability to vary price in an inventory cycle is appreciable but sometimes the retailermay
choose to keep constant price for administrative convenience. A system of inventory
for non-instantaneous deteriorating items with price-dependent demand was formu-
lated. According to many researchers, it has been observed that a display of large
quantities of a product increases the product demand within the customers. Demand
is also found to be dependent on the stock in hand. An inventory production model
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in an imperfect production process where demand rate is dependent on both selling
price aswell as timewas developed by Sarkar et al. [7]. A deteriorating item inventory
model was formulated by Hsieh and Dye [4] considering the displayed stock level
and sales price-dependent demand. Leopoldo Eduardo Cárdenas—Barrón et al. [8]
formulated an EOQ inventory model considering nonlinear demand dependent on
stock level, nonlinear stock dependent holding cost, and trade credit. In this paper, an
inventory model has been proposed taking shortages into consideration. This paper
demonstrates an inventory model where demand is nonlinear with nonlinear holding
cost along with trade credit policy. Demand is considered to be a function of the
amount of stock in hand and price, when the stock is nonzero, whereas demand
is considered constant during the backlog period. A nonzero ending inventory level
instead of zero ending inventory level has been developed. Backlogging gives an idea
about the quantity of product to be ordered. Backlogging is useful for the retailer to
have an idea of the order quantity on one side but it also comes with loss of sales
due to shortage on the other side. In this paper we are calculating the optimal selling
price, order quantity as well as the ending inventory level.

This paper is sorted out as follows. Section 2 states the assumptions and describes
the notations which are necessary to depict the proposed inventory model. Section 3
builds up the inventorymodel considering nonlinear demand, nonlinear holding cost,
along with trade credit policy. Section 4 presents theoretical results and optimization
methods for optimizing the total profit. Section 5 solves few numerical examples.
Section 6 depicts sensitivity analysis as well as discusses few observations. At the
end, Sect. 7 provides future research directions and few conclusions.

2 Notation and Assumptions

The following notations and assumptions have been used as described below.

2.1 Assumptions

Demand is considered to be the function of price and stock level, given by

D(t) = α(a − bp)[q(t)]β when q(t) > 0
= α when q(t) ≤ 0

It is deterministic in nature and a > 0, b > 0.

1. Holding cost of the inventory is considered to be a nonlinear function of stock
level formulated as

H(t) = ch[q(t)]γ where γ > 0
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With the decline of stock level, it is found that holding cost also decreases. For
γ = 1 we obtain an inventory model where holding cost is linearly dependent
on stock.

2. Instantaneous replenishment rate, with negligible lead time.
3. Inventory system planning horizon is considered to be infinite.
4. In this case we have considered a single-level policy of trade credit where the

retailer/manufacturer/supplier grants a credit policy to his or her customers for a
given slot of time with well-defined terms and conditions.

5. Shortages are permitted in this model, and it is partially backlogged with
backlogging parameter δ.

2.2 Notation

Notation Description

Parameters

co Replenishment price per order

c Cost of purchasing per unit

ch Holding cost per unit per unit time

cb Shortage cost per unit per unit time

cl Cost of lost sale per unit

γ Holding cost elasticity; γ > 0

Elasticity of demand; 0 ≤ β < 1

δ Partial backlogging parameter;

Fraction of the demand within the

Stock out period which is backlogged,

ε [0,1]

α Demand rate scale parameter

t1 Time at which inventory level position

Reaches to zero

T Length of the replenishment cycle

M Trade credit period granted by the

Supplier to the retailer

Ie Interest percentage per unit time

Gained by the retailer

Ip Interest percentage per unit time paid

By the retailer

Functions

q(t) Inventory level at a given time t where

0 ≤ t ≤ T

(continued)
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(continued)

Notation Description

TP (Q, B, p) Total profit per unit time

Decision Variables

Q Lot size per cycle

B Ending inventory level at time T

p Selling price per unit

3 Mathematical Modeling of the Inventory Model
with Nonlinear Stock Dependent Holding Cost
and Nonlinear Demand with Trade Credit

Inventory model having a nonzero ending level of inventory has been developed
where holding cost is found to have a nonlinear dependence on stock, demand is a
function of selling price and nonlinear stock level. Initially in the beginning of the
inventory cycle Q units of a product exist. A replenishment order is placed when the
level of inventory reaches to B units, then an order quantity of Q − B units is placed
which brings back the stock level again to the height of Q units at the beginning
of the next cycle. The supplier grants a trade credit period M to his or her retailer
additionally. For the inventory model with shortage (B ≤ 0), the total profit per unit
time has been derived.

3.1 An Inventory Model with Shortage

Initially Q units of an item are purchased by the retailer. After that the lot size of
Q units decreases due to demand during the interval [0, T ]. At t = t1 the level of
inventory reaches to zero. After that shortages occur and it is partially backlogged at
the rate δ, the inventory level drops further down than zero. The inventory situation
can be best explained by the following differential equations:

dq(t)

dt
= −α(a − bp)[q(t)]β, 0 < t ≤ t1 (1)

dq(t)

dt
= −αδ, t1 < t ≤ T (2)

With the following boundary conditions: q(T ) = B ≤ 0, q(0) = Q.
Solving the differential Eqs. (1) and (2) we get
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q(t) = [Q1−β − α(a − bp)(1 − β)t] 1
1−β 0 < t ≤ t1 (3)

q(t) = B + αδ(T − t) t1 < t ≤ T (4)

Using the condition q(t1) = 0 in Eq. (4) we get

t1 = T + B

αδ
(5)

Using the continuity conditions from Eqs. (4) and (3) at the point t = t1, the cycle
time is determined as follows:

T = Q1−β

α(a − bp)(1 − β)
− B

αδ
(6)

Different costs associated with this inventory model with shortage are as follows:

1. Ordering cost of the item per order

= C0 (7)

2. Inventory holding cost per cycle (Chol) = ch
∫ t1
0 [q(t)]γ dt

Chol =
t1∫

0

[Q1−β − α(a − bp)(1 − β)t] γ

1−β dt

Chol = ch
α(a − bp)(γ + 1 − β)
⌈

Qγ+1−β − {Q1−β − α(a − bp)(1 − β)t1
} γ+1−β

1−β

⌉

(8)

Substituting the value of t1 from Eq. (5) into the above expression we get.

Chol = ch
α(a − bp)(γ + 1 − β)

Qγ+1−β (9)

3. Cost of purchasing

= c(Q − B) (10)

4. Revenue collected from sales during the given period (SR)

= p(Q − B) (11)

5. Shortage cost (Csho) during the inventory cycle = cb
∫ T
t1
[−q(t)]dt
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Csho = − cb

T∫

t1

[B + αδ(T − t)]dt

= − cb

[

B(T − t1) + αδ

2
(T − t1)

2

]

(12)

Putting the value of t1 and T in the above expression shortage cost reduces to

Csho = cbB2

2αδ
(13)

6. The opportunity cost (OCls) due to loss of sales during the inventory cycle

= cl

T∫

t1

α(1 − δ)dt

= clα(1 − δ)(T − t1)

Substituting the value of t1 and T from Eqs. (5) and (6) into the above expression,
the cost of opportunity further simplifies to

OCls = −cl(1 − δ)B

δ
(14)

In accordance with the policy of granting trade credit, the manufacturer/supplier
offers a specific time period (M) to his/her retailer. Depending on the trade credit
period the following cases occur:

CASE-1: 0 < M ≤ t1
CASE-2: t1 < M ≤ T
CASE-3: M > T

Case-1:

Trade credit period is less than or equal to the time period when the inventory level
reaches to zero.

Here the supplier provides a trade credit period to his or her retailer but it is less than
or equal to t1. It is to be observed that at the end of credit time M, the retailer faces
interest charges and he or she must pay the interest during the time interval [M,T ].
Therefore, the interest paid is determined as follows:

IP = cIp

[
[Q1−β − α(a − bp)(1 − β)M] 2−β

1−β

α(a − bp)(2 − β)

]

(15)
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Since the retailer has a credit time periodM, the retailer earns interest up to time
t = M. Therefore, the interest earned (IE) is calculated as shown below:

IE =pIe

M∫

0

t∫

0

α(a − bp)[q(u)]βdudt + pIe

M∫

0

[−B]dt

=pIe

[

(Q − B)M + [Q1−β − α(a − bp)(1 − β)M] 2−β

1−β − Q2−β

α(a − bp)(2 − β)

]

(16)

Total profit per unit time,

T P1(Q, B, p) = X1

T
(17)

X1 = revenue collected from sales + interest earned − interest paid−cost of lost
sales − shortage cost − ordering cost − holding cost − cost of purchasing

X1 = SR + IE − c(Q − B) − co − Chol − Csho

− IP − OCls (18)

Problem 1

Maximize T P1(Q, B, p) = X1

T
Subject to 0 < M ≤ t1 (19)

Case-2:

Trade credit time is greater than the time at which inventory level reaches to zero but
it is less than or equal to the cycle length.

In this case, the trade credit time periodM is greater than t1 but less than or equal to
T. Here the retailer does not need to pay interest since the trade credit period M is
found to be greater than t1.

IP = 0 (20)

The retailer does not need to pay interest but earns interest. The interest earned is
calculated as shown below:

IE = pIe

[∫ M

0
−Bdt +

∫ t1

0

∫ t

0
α(a − bp)(q(u))βdudt

]
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+
t1∫

0

(
α(a − bp)(q(t))βdt

)
[M − t1]

= pIe

[

−BM +
[

Q2−β

α(a − bp)(1 − β)(2 − β)

]

+ Q

[

M − Q1−β

α(a − bp)(1 − β)

]]

(21)

The total profit per unit time is given by

T P2(Q, B, p) = X2

T
(22)

X2 = revenue collected from sales+ interest earned− cost of lost sales− ordering
cost − cost of purchasing − shortage cost − holding cost − interest paid

X2 = SR + IE − Chol − co − Csho − IP − OCls

− c(Q − B) (23)

Problem 2

Maximize T P2(Q, B, p) = X2

T
Subject to t1 < M ≤ T (24)

Case-3:
Trade credit time is greater than the cycle time.
Here, the trade credit periodM is greater than T. In this case the retailer does not

need to pay interest since the trade credit periodM is greater than T.

IP = 0 (25)

There is no requirement of paying interest by the retailer but he earns interest in
this phase. The interest earned is given by

IE

= pIe

⎡

⎣
M∫

0

−Bdt +
t1∫

0

t∫

0

α(a − bp)(q(u))βdudt

+
t1∫

0

(
α(a − bp)(q(t))βdt

)
[M − t1]

⎤

⎦
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= pIe

[

−BM +
[

Q2−β

α(a − bp)(1 − β)(2 − β)

]

+ Q

[

M − Q1−β

α(a − bp)(1 − β)

]]

(26)

Total profit per unit time is given by

T P3(Q, B, p) = X3

T
(27)

X3 = interest earned+ revenue collected from sales− cost of lost sales− ordering
cost − cost of purchasing − shortage cost − holding cost − interest paid

X3 = SR + IE − Chol − co − Csho − IP − OCls

− c(Q − B) (28)

Problem 3

Maximize T P3(Q, B, p) = X3

T
Subject to T < M (29)

4 Theoretical Results and Optimization Procedures

The total profit functions formulated below are very complex in nature. It is not
always easy to find out a closed form solution of the decision variables. Additionally,
mathematically sometimes it is hard to present the concavity property of the total
profit gained per unit time. So, in order to optimize the total profit earned per unit
time, a search algorithm is used.

4.1 An Inventory Model with Shortage

Case-1:

T P1(Q, B, p) =
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

]

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)
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+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

(30)

Differentiating partially Eq. (30) with respect to Q we get

H1 = ∂T P1(Q, B, p)

∂Q

=
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

{

(p − c) − chQγ−β

α(a − bp)

−cIpQ−β
{
Q1−β − α(a − bp)(1 − β)M

} 1
1−β

α(a − bp)
+ pIeM

+
pIe
{{

Q−β(Q1−β − α(a − bp)(1 − β)M)
1

1−β

}
− Q1−β

}

α(a − bp)

⎫
⎬

⎭

⎤

⎦

− Q−β

α(a − bp)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

= 0 (31)

Next differentiating Eq. (30) partially with respect to B we get

H2 = ∂T P1(Q, B, p)

∂B

=
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

][

c − p − cbB

αδ
+ Cl(1 − δ)

δ
− pM Ie

]

+ 1

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c)(Q − B) − co − B2cb
2αδ

+cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)
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+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

(32)

Differentiating Eq. (30) with respect to p we get

H3 = ∂T P1(Q, B, p)

∂p

=
⎡

⎣ 1
Q1−β

α(a−bp)(1−β)
− B

αδ

⎡

⎣Q − B − bcIpM(Q1−β − αM(a − bp)(1 − β))
1

1−β

a − bp

+pIe

⎧
⎨

⎩
bM(Q1−β − αM(a − bp)(1 − β))

1
1−β

a − bp

+
b

(

(Q1−β − αM(a − bp)(1 − β))
2−β

1−β − Q2−β

)

α(a − bp)2(1 − β)

⎫
⎪⎪⎬

⎪⎪⎭

+Ie

⎧
⎪⎪⎨

⎪⎪⎩
(Q − B)M +

(

(Q1−β − αM(a − bp)(1 − β))
2−β

1−β − Q2−β

)

α(a − bp)(1 − β)

⎫
⎪⎪⎬

⎪⎪⎭

−
bcIp

(

(Q1−β − αM(a − bp)(1 − β))
2−β

1−β

)

α(a − bp)2(1 − β)
− bchQγ+1−β

α(a − bp)2(γ + 1 − β)

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦

− bQ1−β

α(a − bp)2(1 − β)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

(33)

Differentiating Eq. (31) with respect to Q we get
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∂H1

∂Q
= −2Q−β

α(a − bp))
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c) − co − chQγ−β

α(a − bp)

+pIe

⎡

⎢
⎣M +

[
Q−β

{
Q1−β − α(a − bp)(1 − β)M

} 1
1−β − Q1−β

]

α(a − bp)

⎤

⎥
⎦

− cIP Q−β

α(a − bp)

[
Q1−β − α(a − bp)(1 − β)M

] 1
1−β

]

+
⎡

⎣ 1
Q1−β

α(a−bp)(1−β)
− B

αδ

⎡

⎣−cIp(Q−2β(Q1−β − αM(a − bp)(1 − β))
β

1−β

a − bp

+βQ−1−β(Q1−β − αM(a − bp)(1 − β))
1

1−β

a − bp

+ pIe
α(a − bp)

{

−Q−β(1 − β) + Q−2β(Q1−β − αM(a − bp)(1 − β))
β

1−β

−Q−1−β(Q1−β − αM(a − bp)(1 − β))
1

1−β

}
− bchQγ+1−β

α(a − bp)2(γ + 1 − β)

]]

+
⎡

⎢
⎣

2Q−2β

α2(a − bp)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3 + βQ−1−β

α(a − bp)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

Differentiating Eq. (32) with respect to B we get

∂H2

∂B
=
⎡

⎢
⎣

2

α2δ2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3

⎤

⎥
⎦

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)



Mathematical Modeling for an Optimal Order Inventory … 243

+pIe

⎡

⎢
⎣(Q − B)M +

[{
Q1−β − α(a − bp)(1 − β)M

} 2−β

1−β − Q2−β
]

α(a − bp)(2 − β)

⎤

⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β

1−β

]

− cb

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

) + 2

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

c − p − pM Ie − Bcb
αδ

+ Bcl(1 − δ)

δ

]

(35)

Differentiating Eq. (33) with respect to p, we get

∂H3

∂p
= 2bQ1−β

α(1 − β)(a − bp)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎡

⎣Q − B − bcIpM(Q1−β − αM(a − bp)(1 − β))
1

1−β

α(a − bp)

+pIe

⎡

⎣bM(Q1−β − αM(a − bp)(1 − β))
1

1−β

a − bp

+
b

(

(Q1−β − αM(a − bp)(1 − β))
2−β
1−β − Q2−β

)

α(a − bp)2(1 − β)

⎤

⎥
⎥
⎦

+Ie

⎡

⎢
⎢
⎣M(Q − B) +

(

(Q1−β − αM(a − bp)(1 − β))
2−β
1−β − Q2−β

)

α(a − bp)(1 − β)

⎤

⎥
⎥
⎦

−
bcIP

(

(Q1−β − αM(a − bp)(1 − β))
2−β
1−β

)

α(a − bp)2(1 − β)
− bchQγ+1−β

α(a − bp)2(γ + 1 − β)

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

1
Q1−β

α(a−bp)(1−β)
− B

αδ

⎡

⎢
⎢
⎣−

2b2cIpM

(

(Q1−β − αM(a − bp)(1 − β))
1

1−β

)

(a − bp)2

+pIe

⎡

⎢
⎢
⎣

2b2M

(

(Q1−β − αM(a − bp)(1 − β))
1

1−β

)

α(a − bp)2(1 − β)

+
b2M2α

(

(Q1−β − αM(a − bp)(1 − β))
β

1−β

)

(a − bp)
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+
2b2
(
{
Q1−β − α(a − bp)(1 − β)M

} 2−β
1−β − Q2−β

)

α(a − bp)3(2 − β)

⎤

⎥
⎥
⎦

+2Ie

⎡

⎢
⎢
⎣

bM

(

(Q1−β − αM(a − bp)(1 − β))
β

1−β

)

(a − bp)

+
b

(
{
Q1−β − α(a − bp)(1 − β)M

} 2−β
1−β − Q2−β

)

α(a − bp)2(2 − β)

⎤

⎥
⎥
⎦

−
b2M2αcIp

(

(Q1−β − αM(a − bp)(1 − β))
β

1−β

)

(a − bp)

−
2b2cIp

(
{
Q1−β − α(a − bp)(1 − β)M

} 2−β
1−β

)

α(a − bp)3(2 − β)
− 2b2chQγ+1−β

α(a − bp)3(γ + 1 − β)

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦

−
⎡

⎢
⎣

2b2Q2−2β

α2(a − bp)4(1 − β)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3

− 2b2Q1−β

α(a − bp)3(1 − β)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

⎡

⎢
⎢
⎣(Q − B)M +

[
{
Q1−β − α(a − bp)(1 − β)M

} 2−β
1−β − Q2−β

]

α(a − bp)(2 − β)

⎤

⎥
⎥
⎦

− cIP
α(a − bp)(2 − β)

[
Q1−β − α(a − bp)(1 − β)M

] 2−β
1−β

]

(36)

Case-2:

T P2(Q, B, p)

=
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

]

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)
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+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

(37)

Differentiating partially Eq. (37) with respect to Q we get

G1 = ∂T P2(Q, B, p)

∂Q

=
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

{

(p − c) − chQγ−β

α(a − bp)
+ pIe

(

M − Q1−β

α(a − bp)

)}]

− Q−β

α(a − bp)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

−
[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

= 0 (38)

Next differentiating Eq. (37) partially with respect to B we get

G2 = ∂T P2(Q, B, p)

∂B

=
[

1
Q1−β

α(a−bp)(1−β)
− B

αδ

][

c − p − cbB

αδ
+ Cl(1 − δ)

δ
− pM Ie

]

+ 1

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c)(Q − B) − co − B2cb
2αδ

+cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

= 0 (39)

Differentiating Eq. (37) with respect to p we get
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G3 = ∂T P2(Q, B, p)

∂p

=
⎡

⎣ 1
Q1−β

α(a−bp)(1−β)
− B

αδ

[

Q − B − pIe

(
bQ2−β

α(a − bp)2(1 − β)(2 − β)

)

+Ie

{

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+ Q

(

M − Q1−β

α(a − bp)(1 − β)

)}

− bchQ
γ+1−β

α(a − bp)2(γ + 1 − β)

]]

− bQ1−β

α(a − bp)2(1 − β)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl (1 − δ)B

δ
− chQ

γ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

= 0 (40)

Differentiating Eq. (38) with respect to Q we get

∂G1

∂Q
=
⎡

⎢
⎣

−2Q−β

α(a − bp)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦

[

(p − c) − chQγ−β

α(a − bp)
+ pIe

(

M − Q1−β

α(a − bp)

)]

+
⎡

⎣ 1
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)
[

−pIe

{
(1 − β)Q−β

α(a − bp)

}

− ch(γ − β)Qγ−β

α(a − bp)

]
⎤

⎦

+
⎡

⎢
⎣

2Q−2β

α2(a − bp)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3 + βQ−1−β

α(a − bp)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦

[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

(41)

Differentiating Eq. (39) with respect to B we get
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∂G2

∂B
=
⎡

⎣− cb

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)

⎤

⎦

+ 2

αδ
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

[

c − p − pM Ie − Bcb
αδ

+ cl(1 − δ)

δ

]

+
⎡

⎢
⎣

2

α2δ2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3

⎤

⎥
⎦

[

(p − c)(Q − B) − co − B2cb
2αδ

+cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

(42)

Differentiating Eq. (40) with respect to p we get

∂G3

∂p
=
⎡

⎢
⎣− 2bQ1−β

α(1 − β)(a − bp)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦

[

Q − B − pIe

[
bQ2−β

α(a − bp)2(2 − β)

]

+Ie

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]

− bchQγ+1−β

α(a − bp)2(γ + 1 − β)

]

+
⎡

⎣ 1
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)

[

pIe

[
−2b2Q2−β

α(a − bp)3(2 − β)

]

+2I e

[

− bQ2−β

α(a − bp)2(2 − β)

]

− 2b2chQγ+1−β

α(a − bp)3(γ + 1 − β)

]]

+
⎡

⎢
⎣

2b2Q2−2β

α2(a − bp)4(1 − β)2
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)3

− 2b2Q1−β

α(a − bp)3(1 − β)
(

Q1−β

α(a−bp)(1−β)
− B

αδ

)2

⎤

⎥
⎦
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∗
[

(p − c)(Q − B) − co − B2cb
2αδ

+ cl(1 − δ)B

δ

− chQγ+1−β

α(a − bp)(γ + 1 − β)
+ pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

(43)

Case-3:

T P3(Q, B, p) =
[

(p − c)(Q − B) − co − B2cb
2αδ

+cl(1 − δ)B

δ
− chQγ+1−β

α(a − bp)(γ + 1 − β)

+pIe

[

−BM +
(

Q2−β

α(a − bp)(1 − β)(2 − β)

)

+Q

(

M − Q1−β

α(a − bp)(1 − β)

)]]

(44)

The total profit function is same as Case-2; therefore, all the derivatives and
corresponding results will be the same.

5 Numerical Example

The following values has been considered for the input parameters: co = $ 40/order,
c = $ 58/unit, ch = $ 11/unit/year, γ = 1.1, β = 0.4, α = 120, δ = 0.83, Ip =
12%/year, Ie = 10%/year, M = 0.04 year, cb = $ 20/unit/year, cl = $ 6/unit/year, a
= 200, b = 3.

The optimal solution is given by t1* = 0.0324315, T* = 0.985543,Q* = 3.27527,
B* = −65.8583, p* = $66.6564/unit.

It corresponds to case-2, therefore, TP (Q*, B*, p*) = $ 25.184.
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6 Sensitivity Analysis

This section does an analysis of the preceding numerical example to study the effect
of underestimation or overestimation of the input parameters on the optimal values
of Q, p, t1, B, T and the total profit TP (Q, B, p). It is done by varying the parametric
values between 20% and −20%. The following results are drawn from the table
mentioned below:

1. It is clear from the data that with the increasing vales of α, the optimal order
quantity (Q) increases and the ending level of inventory quantity (B) decreases.
The total profit decreases.

2. It is observed that with the increase in value of (co), optimal order quantity
decreases. Optimal ending level of inventory (B), t1, T, and optimal price (p)
increases. Hence, total profit increases.

3. It is to be pointed thatwith the increment in values of holding cost (ch), the optimal
order quantity (Q) decreases whereas the ending inventory level (B) increases.
Optimal price (p) does not vary much but total profit increases.

4. With the increasing values of (cl), it is observed that the optimal order quantity
(Q) increases for some time and then start decreasing. Optimal ending inventory
level (B), optimal price (p), and total profit start decreasing in the beginning and
then start rising up.

5. With the increment in value of γ , ending inventory level (B) increases. Optimal
stock (Q) decreases but total profit increases (Table 1).

7 Conclusion

This paper highlights the following important facts: (i) display of product in large
quantities enhances its demand within the customers, (ii) price is also an important
factor on which demand of a product depends, (iii) holding cost is not always linearly
dependent on stock. The retailer’s optimal strategy is examined in this paper based on
nonlinear demand and nonlinear holding cost of his or her product when the supplier
uses a policy of trade credit for its customers. An inventory model is portrayed
with nonlinear demand as well as nonlinear holding cost relaxing the ending-zero
inventory level condition, in which shortages occur and demand during that time is
partially backlogged which helps the retailer in running his or her business. Themain
objective is to determine the optimal order quantity (Q), ending level of inventory
(B), and optimal rice (p) in order to maximize the total profit earned per unit time by
the retailer.
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An Inventory Model for Seasonal
Deteriorating Items with Price
Dependent Demand and Preservation
Technology Investment in Crisp
and Fuzzy Environments

Swagatika Sahoo and Milu Acharya

Abstract The main objective of this research is to establish an inventory model for
seasonal deteriorating items, in which demand for the product is price dependent
and dealer invests in preservation technology to reduce the rate of deterioration of a
product in crisp and fuzzy environment. So, this work considers both deterioration
and seasonal properties of the inventory simultaneously. Our main aim is to take the
optimal decisions about selling price, preservation technology investment, frequency
of orders and the total profit. A numerical example along with its sensitivity analysis
is included to illustrate the model. This work ends with a conclusion and possible
future directions.

Keywords Inventory · Fuzzy · Triangular fuzzy numbers · Signed distance
method · Preservation technology · Defuzzification

1 Introduction

Over the last few years, inventory problems for deteriorating items have been broadly
investigated. Deterioration is otherwise known as decompose, change, or spoilage
of items that are not in a condition of being used for their actual purpose. Various
researchers have explored this problem over time.

Ghare and Scharder [7] were the first who introduced the idea of deterioration in
their proposed work. Covert and Philip [10] andMishra [11] introduced variable rate
of deterioration in their proposed models. Sana et al. [15] developed a production
inventory model for deteriorating items with shortages. Ghosh et al. [13] explored an
optimal price of a finite production model for perishable products. Sahoo et al. [16]
considered three rates of EOQ/EPQ model for deteriorating items under shortages.
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An inventory model to minimize the deterioration rate with the expenditure on
preservation technology was demonstrated by Hsu et al. [8]. Dye and Hsieh [2]
extended the work of Hsu et al. by incorporating a time varying rate of deterioration.
Dye [1] studied on a non-instantaneous deteriorating inventory model with preser-
vation technology investment. Again, increase in preservation cost leads to decrease
in the rate of deterioration of an inventory model was discussed in [5].

Shah et al. [6] discussed on the inventorymodel for fashion goods with a quadratic
time-dependent demand. He and Huang [17] proposed on pricing strategies of a
seasonal model by including preservation technology investment.

In crispmodels, someof the parameters are knownandhave definite values. In case
of rapidly changing market scenario, mostly the parameters involved in inventory
problems cannot have known and definite values. In such cases the models might be
formulated either in fuzzy or in probabilistic considerations.

To meet the unstable market situations, researchers have proposed different fuzzy
inventory models, which is just one part of the problem. In case of crisp models,
different types of cost parameters or coefficients associated in demand function,
deterioration function, are assumed either constants or time dependent. However,
these assumptions create problems while taking decisions. Therefore, formulations
of inventorymodelswith different fuzzy parameterswere become the prime objective
of researchers. Researchers related to this area are Zimmermann [3, 4], Bellman and
Zadeh [9], etc. The other part of the problem is to defuzzify and get the result in
crisp sense. In defuzzification analysis, particularly on ranking fuzzy numbers, the
benefaction of Yager [12] put up conclusive termination. After some years, a good
number of researchers took initiative to study on the ranking methods and finally
derived many simulated formulae on the subject.

Novelty behind the formulation of this production inventorymodel: (i) production
model for deteriorating items; (ii) demand is taken as linearly price dependent; (iii)
fuzzy model is presented using triangular fuzzy for the disposal cost; (iv) fuzzy
total cost is defuzzified by using signed distance method via Yager’s ranking index
method.

The research work is organized in the following order: Sect. 1 establishes intro-
duction and literature review. Section 2 presents preliminary discussion and Sect. 3
illustrates the notations and assumptions. Section 4 presents model formulation in
both crisp and fuzzy sense. Section 5 describes numerical examples and sensitivity
analysis and managerial insights. Conclusion and future work are given in Sect. 6.
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2 Preliminaries

2.1 Normalized General Triangular Fuzzy Number
(NGTFN) [12]

LetD be a NGTFN having the form D̃ = (a1, a2, a3). Then its membership function
is defined by

μ
(
D̃

)
=

⎧⎪⎨
⎪⎩

D−a1
a2−a1

i f a1 ≤ D ≤ a2
a3−D
a3−a2

i f a2 ≤ D ≤ a3
0 i f D < a1 and D > a2

(1)

Now, the left and right cuts of μ
(
D̃

)
are given by

L(α) = a1 + α(a2 − a1) and R(α) = a3 − α(a3 − a2) (2)

Yager’s Ranking Index [12]

If Lα and Rα are the left and rightα-cuts of a fuzzy number then D̃ the defuzzification
rule under Yager’s ranking index is given by

I
(
D̃

)
= 1

2

1∫

0

[L(α) + R(α)]dα = 1

4
[a1 + 2a2 + a3].

3 Notations and Assumptions

The following are the subsections meant for the notations and the required
assumptions for the model problem:

3.1 Notations

Decision Variables:

• n1: frequency of orders
• β: Unit wise preservation technology cost
• p: Selling price.
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Parameters:

• B1: Unit wise buying cost
• hc: Unit wise inventory holding cost in per unit time
• Oc: Unit wise ordering cost per order
• Dc: Unit wise disposal cost for the deteriorated items
• Md : Deteriorated items (cycle wise)
• D1(p): Price dependent demand
• TAP(n1, β, p): Total profit (per unit) in per unit time.

Notations for Fuzzy Model

• T̃AP(n1, β, p): Fuzzy total profit in per unit time
• D̃c: Disposal cost per unit time.

3.2 Assumptions

(1) D1(p) = l − mp (l = scale factor, m = index of price elasticity).
(2) D1(p) is considered in a limited time horizon T.
(3) Shortages are not allowed.
(4) Lead time is zero.
(5) Disposal cost, denoted by Dc, is added to the total cost incurred due to the

disposal of deteriorating products.

For the present problem, there is an interdependence between deterioration
rate (μ(β)) and preservation technology investment (β) and which satisfies
∂μ(β)

∂β
< 0, ∂2μ(β)

∂2β
> 0. In the present research,μ(β) = μ0e−τβ where μ0 is the

deterioration rate without preservation technology and the small change takes place
for deterioration due to β is denoted as τ .

4 Mathematical Model Formulation

4.1 Model 1(Crisp)

(1) Deterioration rate is reduced with the application of preservation technology.
(2) Here, there are two arrangements; (i) with the increase in n1, there can be a

decrease in the deterioration cost and the ordering cost increases, (ii) with the
increase in β, the deterioration cost decreases.

(3) The purchasedmaterials are sent to the production center to produce the required
product.

(4) To fulfill the demand of customers the product is stored as inventory.
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Fig. 1 The inventory systems

(5) Stored items from the inventory start deteriorating at a certain rate and are
transferred to the disposal centers.

(6) Here for all the ordering periods the time length is equal. So we study on the
first period (Fig. 1).

The rate of change of inventory at any instant of time t is mentioned as follows:

∂ Il(t)

∂t
= −μ(β)Il(t) − D1(p),

(
t ∈

[
0,

T

n1

])
(3)

The boundary condition is

Il

(
T

n

)
= 0 (4)

By solving (1) we have

Il(t) = D1(p)

μ(β)

(
eμ(β)(T/n1−t) − 1

)
(5)

1. Sales revenue
The total sales revenue in time T is calculated as

Rs = p.D1(p).T (6)

2. Buying cost
The total buying cost can be calculated as

Pc = n1.B1.q = n1.B1.
D1(p)

μ(β)

(
eμ(β)(T/n1−t) − 1

)
(7)
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3. Holding cost
The total inventory holding cost can be calculated as

CH = hc.n1.D1(p).
∫ T

n

0
Il(t)dt = hc.n1.

D1(p).
(
eμ(β)(T/n1) − μ(β)(T/n) − 1

)

μ2(β)

(8)

4. Ordering cost
The total ordering cost can be calculated as

C0 = n1.oc (9)

5. Cost for Preservation Technology
Preservation technology cost can be calculated as

Cp = β.T (10)

6. Disposal cost

The disposal cost incurred due to the deterioration of products in spite of the
application of preservation technology is calculated as follows:

Md =
T
n1∫

0

μ0.Il(t)dt =
(
μ0.T 2.D1(p)

)

2n

The disposal cost per cycle is calculated as

DcMd = Dc.
(
μ0.T 2.D1(p)

)

2n
(11)

So the profit function is defined as

TAP(n1, β, p) = Rs − Pc − CH − C0 − Cp − DcMd (12)

TAP (n1, β, p) = Rs − Pc − CH − C0 − Cp − DcMd

= p.D1(p).T − n1.B1.
D1(p)

μ(β)

(
eμ(β)(T/n1−t) − 1

)

−hc.n1.
D1(p).

(
eμ(β)(T/n1) − μ(β)(T/n) − 1

)

μ2(β)
− n1.oc − β.T −

Dc.
(
μ0.T

2.D1(p)
)

2n

(13)

From Taylor’s series we know that for small value of μ and T/n

eμT/n1 ≈ 1 + μT

n1
+

(
μT

n1

)2

/2. (14)
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Substituting Eq. (14) in Eq. (13) we get

TAP (n1, β, p) = p.D1(p).T − B1.D1(p)

(
T + T 2

2n1
μ(β)

)
− hc.D1(p).

T 2

2n
− n1.oc

−β.T − Dc.μ0.T
2.D1(p)

2n
.

(15)

4.2 Model 2(Fuzzy)

Here the disposal cost Dc follows the fuzzy extensibility for the inventory runtime.
Using (1)–(2) the index values of fuzzy total profit is given by

T̃AP (n1, β, p) = p.D1(p).T − B1.D1(p)

(
T + T 2

2n1
μ(β)

)
− hc.D1(p).

T 2

2n
− n1.oc

−β.T −
(Dc1 + Dc2 + Dc3 ).

(
μ0.T

2.D1(p)
)

8n

(16)

5 Numerical Examples

This section includes a numerical study to show the applicability of the suggested
model (Tables 1, 2 and 3).

Table 1 Values taken for different parameters

μ0 β hc Oc l m B1 Dc Dc1 Dc2 Dc3 τ

0.02 10 1 10 0.2 10 10 0.1 0.1 0.2 0.3 0.5
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Table 2 Optimum solution of the present Crisp model for Dc = 0.1 and 0.5

Dc = 0.1 Dc = 0.5

n1 β p μ TAP (n1, β, p) n1 β p μ TAP (n1, β, p)

3 2.63 38.78 0.0053 687.09 3 2.63 38.78 0.0053 417.81

4 2.63 38.78 0.0053 1149.85 4 2.63 38.78 0.0053 790.81

5 2.63 38.78 0.0053 1218.54 5 2.63 38.78 0.0053 769.81

6 2.63 38.78 0.0053 1090.18 4 2.45 38.78 0.0058 794.63

5 2.45 38.78 0.0058 1225.19 4 2.25 38.78 0.0064 797.30

5 2.25 38.78 0.0064 1231.32 4 2.05 38.78 0.0071 798.14

5 2.05 38.78 0.0071 1236.04 4 1.85 38.78 0.0079 796.97

5 1.85 38.78 0.0079 1239.06 4 2.05 36.78 0.0071 804.66

5 1.25 38.78 0.0107 1236.80 4 2.05 34.78 0.0071 651.87

5 1.85 36.78 0.0079 1409.74

5 1.85 34.78 0.0079 1420.42

5 1.85 32.78 0.0079 1271.10

Table 3 Optimum solution for the problem in fuzzy sense

n1 β p μ TAP (n1, β, p)

3 2.63 38.78 0.0053 653.43

4 2.63 38.78 0.0053 1149.77

5 2.63 38.78 0.0053 1162.44

6 2.63 38.78 0.0053 1022.86

5 2.45 38.78 0.0058 1169.09

5 2.25 38.78 0.0064 1175.22

5 2.05 38.78 0.0071 1179.99

5 1.85 38.78 0.0079 1182.69

5 1.65 38.78 0.0087 1184.25

5 1.45 38.78 0.0096 1183.35

5 1.65 36.78 0.0087 1341.59

5 1.65 34.78 0.0087 1338.93
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5.1 Inputs for the Numerical Study

5.1.1 Solutions and Discussions

5.2 Sensitivity Analysis

Table 4 presents the sensitivity analysis of μ(β) and TAP(n1, β, p) by changing the
values of the parameters in a range from −50 to + 50%, taking one parameter at a
time keeping the other parameters to be constant.

In model 1, TAP(n1, β, p) first increases and then decreases with the increase in
B1/hc and decreases in Oc/Dc/μ0.

Table 4 Sensitivity test in Crisp and Fuzzy sense respectively

Para-meter Changes
(%)

μ TAP (n1, β, p) Para-meter Changes
(%)

μ TAP (n1, β, p)

B1 −50 0.0079 2454.32 B1 −50 0.0087 2779.46

−25 0.0079 3275.67 −25 0.0087 2060.52

+25 0.0079 −9728.40 +25 0.0087 6226.58

+50 0.0079 −8310.80 +50 0.0087 −96.27

Oc −50 0.0079 2016.60 Oc −50 0.0087 2591.59

−25 0.0079 1436.62 −25 0.0087 1966.59

+25 0.0079 1866.23 +25 0.0087 7165.93

+50 0.0079 −438.37 +50 0.0087 91.59

hc −50 0.0079 2333.62 hc −50 0.0087 2663.59

−25 0.0079 3094.62 −25 0.0087 2002.59

+25 0.0079 50.623 +25 0.0087 6805.93

+50 0.0079 −710.37 +50 0.0087 19.59

Dc −50 0.0079 1192.12 μ0 −50 0.0043 1556.61

−25 0.0079 1001.87 −25 0.0065 1449.10

+25 0.0079 621.37 +25 0.0109 1234.08

+50 0.0079 431.12 +50 0.0131 1226.57

μ0 −50 0.0039 1312.82 τ −50 0.0132 1223.26

−25 0.0059 1062.22 −25 0.0107 1288.51

+25 0.0099 561.02 +25 0.0071 1384.78

+50 0.0118 310.41 +50 0.0058 1419.92

τ −50 0.0125 669.66

−25 0.0099 748.81

+25 0.0062 861.46

+50 0.0049 901.01
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In model 2, TAP(n1, β, p) first increases and then decreases with respect to the
increase in Oc/B1/μ0/τ.

6 Conclusion

This model built up the connection between seasonal deteriorating products and the
cost of the preservation technology through the cleaning of the environment with a
disposal cost under price dependent demand. It is established that by applying β,
reducing the deterioration rate.

Sensitivity test was exhibited to observe the effects of variations of the Parameters
μ(β) and TAP(n1, β, p). This work can still be studied by introducing shortages and
backlogging of items.
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A Study of Propagation of Love Waves
in an Anisotropic Porous Layer Under
Initial Stresss

Pankaj, P. K. De, and Alok Singh

Abstract The objective of this paper is to study the propagation of Love waves in a
pre-stressed anisotropic porous layer which is a sandwich between a rigid layer and
a non-homogeneous elastic half-space. Dynamical equations of motion are based
on Biot’s incremental deformation theory. Dispersion equations of phase velocity of
Love waves have been derived. The impact of anisotropy, pre-stresses, and porosity
on the phase velocity are examined in details. It has been observed that the velocity
of Love waves increases when the porosity of the layer decreases. Also, velocity of
Love waves increases when anisotropy in the layer and compressive initial stresses
both are increased. Numerical computations for the velocity of Love waves have
been carried out and the results are plotted in different graphs.

1 Introduction

In both practical applications and theory, the Earth is supposed to be isotropic or
consists of isotropic layers. However, some studies show the presence of anisotropy.
Also, Earth is an initially stressed medium. The term “Initial Stress” is defined as
stresses that exist in a medium due to its internal properties not subjected to the
action of exterior forces. It is also called pre-stress. These initial stresses may be
developed in a medium by any artificial process or due to natural phenomena. Due to
the variation of temperature, pressure, external loading, inelastic deformations, etc.,
a huge quantity of stresses stored inside a mediumwhich is called initial stress. In the
recent years, the study of wave propagation has gained attention of the researchers
due to its practical importance in underground water, geophysics, and exploration of
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oil. Love waves travel in the sub-crustal and crustal layers which are near to the earth
surface. This crust and sub-crust of the earth may be anisotropic in nature. Several
authors have discussedwave propagation through porousmediumby using the theory
given by Biot [1]. Dey and De [2] in 1984 discussed Love wave propagation in a
non-homogenous anisotropic layer lying over a pre-stressed orthotropic medium.
Dey et al. [3] in 1987 studied propagation of Love waves in an initially stressed
anisotropic porous layer which is sandwiched between a non-homogenous elastic
half-space and a rigid layer. Gupta et al. [4] studied the effect of pre-stress on the
propagation of Love waves in an anisotropic porous layer. By using the theory given
by Biot [1], several authors, viz., Khurana and Vashisth [5], Gupta et al. [6], Vaishnav
et al. [7], and others have been discussed problems of propagation of Love waves in
porous and pre-stressed medium. It has been observed that the presence of pre-stress,
porosity, and irregularity affect the Love wave propagation.

In this paper, it is assumed that the layer is anisotropic, water saturated, and
porous in nature. The attention has been paid to the effect of pre-stress, porosity,
and non-homogeneity on the propagation of Love waves, and velocity equation is
derived in a simplified form. In half-space, the inhomogeneity has been presumed
to be ρ = ρ0ebz and μ = μ0ebz where b is a positive constant and z is depth. The
phase velocity of Love waves has been obtained by using the values of material
constants given by Biot [8]. It has been observed that the velocity of Love waves is
affected by anisotropy, inhomogeneity, and porosity. All the graphs that are shown
in this paper are generated by using MATLAB software. Full views of the graphs are
plotted which are not shown by the Dey et al. [3]. There are many uses of the study
of propagation of seismic waves like it provides guidance to the civil engineers in the
construction of a building and it also helps in analysing the earthquake in the hilly
areas.

2 Formulation and Geometry of the Problem

We consider a sandwiched earth model with a half space at the bottom and a rigid
layer at the top. It is assume that the layer is anisotropic, water saturated, and porous
in nature which is under compressive pre-stress P ′ = −S

′
11 along the direction of

x. The lower half space is non-homogeneous and elastic in nature which is under
compressive pre-stress P = −S11 in the direction of x. The plane of contact between
the porous layer and half space is at z = 0 and z = −H is the plane of contact
between rigid boundary and porous layer. Z-axis directing vertically downwards.
The wave propagation is performed along the direction of x (Fig. 1).
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Fig. 1 Geometry of the problem

3 Porous Layer

Neglecting the body forces and viscosity of water, the equations of motions in the
porous layer under pre-stress can be written as (Biot [1, 9])

∂s
′
11

∂x + ∂s
′
12

∂y + ∂s
′
13

∂z − P
′ ∂w

′
z

∂y + P
′ ∂w

′
y

∂z = ∂2

∂t2
(
ρ11u

′
x + ρ12Ux

)

∂s
′
21

∂x + ∂s
′
22

∂y + ∂s
′
23

∂z − P
′ ∂w

′
z

∂x = ∂2

∂t2
(
ρ11v

′
y + ρ12Vy

)
,

∂s
′
31

∂x + ∂s
′
32

∂y + ∂s
′
33

∂z − P
′ ∂w

′
y

∂x = ∂2

∂t2
(
ρ11w

′
z + ρ12Wz

)
,

∂S
∂x = ∂2

∂t2
(
ρ12u

′
x + ρ22Ux

)
, ∂S

∂y = ∂2

∂t2
(
ρ12v

′
y + ρ22Vy

)
, ∂S

∂z = ∂2

∂t2
(
ρ12w

′
z + ρ22Wz

)
,

(1)

where s
′
i j (i, j = 1, 2, 3) = incremental stress components,

(
u

′
x , v

′
y,w

′
z

) = Vector
form of displacement components for the solid,

(
Ux ,Uy,Uz

) = Vector form of
displacement components for the liquid,

S = Vector form of stress due to the liquid

ω
′
x = 1

2

(
∂w

′
z

∂y
− ∂v

′
y

∂z

)

, ω
′
y = 1

2

(
∂u

′
x

∂z
− ∂w

′
z

∂x

)

, ω
′
z = 1

2

(
∂v

′
y

∂x
− ∂u

′
x

∂y

)

(2)

where ω
′
x , ω

′
y, andω

′
z are the rotational vector (ω

′
) components.

Stress–strain relations for the upper layer are

s
′
11 = (

D + P ′)exx + (
D − 2N + P ′)eyy + (

G + P ′)ezz + Qε,
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s
′
22 = (D − 2N )exx + Deyy + Gezz + Qε,

s
′
33 = Gexx + Geyy + Hezz + Qε,

s
′
12 = 2Nexy, s

′
23 = 2Leyz, s

′
13 = 2Lezx (3)

where H,G, D, L , and N represent the elastic constants of the medium. L and N
are the shear moduli of the layer which is anisotropic in nature along the direction
of z and x, respectively, and

ei j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, ε = ∂Ux

∂x
+ ∂Uy

∂y
+ ∂Uz

∂z
(4)

Here, Q is the measure of coupling between the change in volume of the liquid
and solid, p is the Fluid pressure, f = porosity of the layer and ρ ′, ρw, ρs are the
densities of layer, water, and solid,

ρ11, ρ12, and ρ22 are the mass coefficients related to ρ ′, ρs, ρw

−S = f p,

ρ11 + ρ12 = (1 − f )ρs,

ρ12 + ρ22 = fρw (5)

Aggregate mass density is

ρ ′ = ρ11 + 2ρ12 + ρ22 = ρs + f (ρw − ρs) (6)

The following inequalities also obey these mass coefficients:

ρ11 > 0, ρ22 > 0, ρ12 < 0, ρ11ρ22 − ρ2
12 > 0 (7)

4 Solution of the Upper Layer

The propagation of Love waves along x-axis, having themovement of particles along
y-axis, we have

u
′
x = 0,w

′
z = 0, v

′
y = v′(x, z, t)

Ux = 0,Wz = 0, Vy = V (x, z, t) (8)

Only eyz and exy strain components will be produced by the above displace-
ments and the remaining strain componentswill become zero. Hence the strain–stress
relations which are helpful in the problem are
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s
′
23 = 2Leyz and s

′
12 = 2Nexy (9)

Using Eq. (9) in Eq. (1), the equations of motion which are not automatically
satisfied are

∂s
′
21

∂x
+ ∂s

′
22

∂y
+ ∂s

′
23

∂z
− P ′ ∂w

′
z

∂x
= ∂2

∂t2

(
ρ11v

′
y + ρ12Vy

)
,

∂S

∂y
= ∂2

∂t2

(
ρ12v

′
y + ρ22Vy

)
(10)

Using Eqs. (8) and (9), we get

(
N − P ′

2

)
∂2v′

∂x2
+ L

∂2v′

∂z2
= ∂2

∂t2
(
ρ11v

′ + ρ12V
)

(11)

∂2

∂t2
(
ρ11v

′ + ρ12V
) = 0 (12)

Eliminating V from the Eq. (11) with the help of Eq. (12)

(
N − P ′

2

)
∂2v′

∂x2
+ L

∂2v′

∂z2
= d ′ ∂

2v′

∂t2
(13)

where d ′ = ρ11 − ρ2
12

ρ22
, from Eq. (13) it is clear that

√
N− P′

2
d ′ is the velocity of the shear

wave along the direction of x,
√

L
d ′ is the shear wave velocity in a permeable layer

along the direction of z.
The shear wave velocity in a permeable medium in the direction of x-axis can be

expressed as

β ′ = βa .

√
1 − ξ ′

d
(14)

where d = r11 − r212
r22
, βa =

√
N
ρ ′ is the shear wave velocity in the non-porous, elastic,

pre-stress free, anisotropic medium in the direction of x-axis under rigid boundary,
ξ ′ = P ′

2N is the dimensionless parameter because of the pre-stress P ′

r11 = ρ11

ρ ′ , r12 = ρ12

ρ ′ , r22 = ρ22

ρ ′ (15)

where r11,r12,r22 = dimensionless parameters for the porous layer.
The propagation of Love wave along x-axis, the solution of the Eq. (13) is taken

as
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v′(x, z, t) = V (z)eik(x−ct)

Using this in Eq. (13)

∂2V

∂z2
+ q

′2V = 0 where q
′2 = k2

L

[
c2d ′ −

(
N − P ′

2

)]

Solution of this equation is

V (z) = Aeiq
′z + Be−iq ′z

Hence the solution is

v
′ =

(
Aeiq

′z + Be−iq ′z
)
eik(x−ct),−H ≤ z ≤ 0, (16)

where q ′ = k

√
rd

(
c2
β2
a

− (1−ξ ′)
d

)
, k = wave number, r = N

L .

5 Solution of the Half-Space

The equations of motion for the lower medium can be written as (Biot [9])

∂s21
∂x

+ ∂s23
∂z

− P

2

(
∂2v

∂x2

)
= ∂2

∂t2
(ρv) (17)

where P = initial compressive stress in the direction of x-axis, si j are the components
of the incremental stress in half-space, ρ = density for the half-space.

For the medium, the non-homogeneity is defined as

μ = μ0e
bz

ρ = ρ0e
bz (18)

where μ0 is the value of μ at z = 0, ρ0 is the value of ρ at z = 0 and b is constant.
By the strain–stress relations, we have

s21 = 2μexy, s23 = 2μeyz (19)

using the relation (18) in the equation of motion (17) gives
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(1 − ξ)
∂2v

∂x2
+ ∂2v

∂z2
+ b

∂v

∂z
= 1

β2
0

∂2v

∂t2
(20)

where ξ = P
2μ andβ0 =

√
μ0

ρ0

Let the solution of Eq. (20) be

v = g(z)eik(x−ct)

where g(z) satisfies

∂2g(z)

∂z2
+ b

∂g(z)

∂z
+ k2

(
c2

β2
0

− (1 − ξ)

)
g(z) = 0 (21)

Let q = k

√

(1 − ξ) − c2

β2
0

∂2g(z)

∂z2
+ b

∂g(z)

∂z
− q2g(z) = 0

The above equation has solution

g(z) = Ceηz + Deη′z (22)

where

η = −b + √
b2 + 4q2

2
, η′ = −b − √

b2 + 4q2

2
(23)

and q = k
√

(1 − ξ) − c2

β2
0
.

As the solution (22) is bounded when z → ∞, the solution for the half-space may
become

v = Ceηzeik(x−ct), 0 ≤ z ≤ ∞ (24)

6 Boundary Conditions and Dispersive Equation

According to the formulation of the problem, the suitable boundary conditions are
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v′ = 0 at z = −H
L ∂v′

∂z = μ∂v
∂z at z = 0

v′ = v at z = 0
(25)

Now, using Eqs. (16) and (24) in the above boundary equations, we get

v′ = 0 =
(
Ae−iq ′H + Beiq

′H
)
eik(x−ct) = 0when z = −H

Ae−iq ′H + Beiq
′H = 0 (a)

L
∂v′

∂z
= μ

∂v

∂z
at z = 0

L
(
Aiq ′ − Biq ′) = μ0Cη

iq ′L(A − B) = μ0Cη (b)

v′ = v at z = 0 = (A + B)eik(x−ct) = Ceik(x−ct)

A + B = C (c)

Using the solutions (16) and (24) and the boundary conditions (25) give three
homogenous equations in three unknowns A, B, andC

Ae−iq ′H + Beiq
′H = 0

iq ′L(A − B) = μ0Cη

A + B = C

(26)

Eliminating the unknown constants A, B, andC from Eq. (26) the following
velocity equation of Love wave is derived.

∣∣∣
∣∣∣

e−iq ′H eiq
′H 0

iq ′L −iq ′L −μ0η

1 1 −1

∣∣∣
∣∣∣
= 0 (27)

which on simplification gives the following result

tan

{√

rd

[
c2

β2
a

− (1 − ξ ′)
d

]}

kH =
2L

√
rd

[
c2
β2
a

− (1−ξ ′)
d

]

μ0

(
−b
k +

√
b2
k2 + 4

[
(1 − ξ) − c2

β2
0

]) (28)
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where c = phase velocity of Love wave.
The above equation is called the dispersive equation of Love wave in pre-stressed,

anisotropic, water saturated, permeable layer above the elastic half-space which is
pre-stressed and non-homogeneous.

Condition Value of d

Layer is non-porous d → 1

Layer tends to be fluid d → 0

Layer is porous 0 < d < 1

7 Particular Cases

Case 1

Consider both the medium are free from pre-stresses,

i.e., ξ ′ = ξ = 0

Then, Eq. (28) becomes

tan

{√

rd

[
c2

β2
a

− 1

d

]}

.kH =
2L

√
rd

[
c2
β2
a

− 1
d

]

μ0

(
−b
k +

√
b2
k2 + 4

[
1 − c2

β2
0

]) (29)

Case 2

Consider the upper layer as non-porous.
i.e, f = 0, then d = 1
Then, Eq. (28) becomes

tan

{√

r

[
c2

β2
a

− (1 − ξ ′)
]}

.kH =
2L

√
r
[
c2
β2
a

− (1 − ξ ′)
]

μ0

(
−b
k +

√
b2
k2 + 4

[
(1 − ξ) − c2

β2
0

]) (30)

The above Eq. (30) involving pre-stressed parameter ξ and ξ ′ represents the
dispersive equation of Love wave in a medium which is anisotropic.

Case 3

The Eq. (30) reduces to Eq. (31), when the half-space is homogenous i.e., b = 0
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tan

{√

r

[
c2

β2
a

− (1 − ξ ′)
]}

.kH =
L

√
r
[
c2
β2
a

− (1 − ξ ′)
]

μ0

(√[
(1 − ξ) − c2

β2
0

]) (31)

Case 4

Further, if we consider both the medium are isotropic, homogenous, and free from
pre-stress, i.e., ξ ′ = 0, r = 1, L = N = μ′ and b = 0

Then the Eq. (30) changes to

tan

{√[
c2

β2
a

− 1

]}

.kH =
μ′

√[
c2
β2
a

− 1
]

μ0

(√[
1 − c2

β2
0

]) (32)

The equation matches with the standard equation of Love wave.

8 Observations

By Eq. (28) we can say that Love waves can propagate in the permeable layer under
rigid boundary, if

√
(1 − ξ ′)

d
βa < c < β0

√
b2

4k2
+ (1 − ξ) (33)

Following observations are obtained from the condition (33)

Observation 1

When the pre-stresses in the half-space and in the layer are zero,

i.e., ξ ′ = ξ = 0

Then, Eq. (33) becomes

√
1

d
βa < c < β0

√
b2

4k2
+ 1

which is written as

1

d
<

c2

β2
a

<
β2
0

β2
a

(
b2

4k2
+ 1

)
(34)
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The above results indicate that Love wave propagation depends on both the
porosity of the medium and the ratio of shear velocities in the half-space and the
layer.

From the above equation, we conclude that the phase velocity increases when
the value of ‘d’ decreases, i.e., the porosity of layer increases. As to b

k there is no
limitation. The estimation of b/k might be taken positive or negative or zero.

Observation 2

When the porosity and βa

β0
are taken as constant and b

k = 0. The Eq. (33) becomes

(
1 − ξ ′)

d
<

c2

β2
a

<
β2
0

β2
a

(1 − ξ) (35)

When βa

β0
= 0.7 and d = 0.6154 are taken as a particular case, the above Eq. (35)

changes to

(
1 − ξ ′)1.625 <

c2

β2
a

< 2.041(1 − ξ) (36)

Consequently the propagation is supported by positive value of ξ ′ and negative
value of ξ, i.e., compressive pre-stress in the porous layer and tensile pre-stress in
the half-space.

Observation 3

When we take ξ ′ = 0, ξ = 0, d = 1, and b = 0 then Eq. (33) becomes

βa < c < β0 (37)

9 Numerical Calculations and Discussion

In this section, the graphical representation is provided to reflect the effect of porosity,
pre-stress, non-homogeneity, and anisotropy on Love waves propagation under rigid
boundary. In all these calculations the values of μ0

L and βa

β0
have been taken as 2.5

and 0.7, respectively.
Figure 2 manifest the effect of porosity in a homogenous, isotropic, pre-stress free

medium below rigid boundary. This figure shows that when the porosity decreases,

i.e., the value of d
[
r11 −

(
r212
r22

)]
increases, the velocity of Love waves increases for

the same value of kH.
Figure 3 manifests the effect of rigidity and density in the half-space. The curves

show that if the rigidity and density decreases with depth ( bk = −1), the Love wave
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Fig. 2 Love wave dispersion curves in the porous layer for various porosity in terms of d

propagates in a small range of kH and when the rigidity and density increases Love
wave propagates in a large range of kH.

Figure 4 manifests the effect of anisotropy in a porous medium. The figure shows
when the anisotropy increases, the velocity of Love waves decreases but after a
particular value it increases and when layer is non-porous (d = 1), the velocity of
Love waves increases when the anisotropy increases.

Figure 5manifests the effect of compressive pre-stresses (ξ ′) present in the perme-
able layer when half-space is free from pre-stress, i.e., ξ = 0. This figure shows that
when the compressive initial stresses are increased in the porous layer, the velocity
of Love waves is also increased for the same value of kH.

Figure 6 manifests the effect of tensile pre-stresses (ξ ≤ 0) in half-space, when
the pre-stress is absent in the permeable layer, i.e., ξ ′ = 0. It is analysed that as
the magnitude of tensile initial stresses increases in half-space, the velocity of Love
waves increases for the same value of kH.
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Fig. 3 Effect of non-homogeneity
( b
k

)
present in the half-space on the propagation of Love waves

in the porous layer

Fig. 4 Effect of anisotropy (r) in the porous layer on the propagation of Love waves
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Fig. 5 Love wave dispersion curves when only the porous layer is pre-stressed

Fig. 6 Love waves dispersion curves when only the half space is under tensile initial stresses(−0.8 ≤ ξ ≤ 0, ξ ′ = 0
)
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10 Conclusion

A scientific method is used to examine Love wave propagation in a porous layer
under pre-stress which is anisotropic in nature with a half-space at the bottom and
a rigid layer at the top. The impact of anisotropy, porosity, and pre-stresses on the
wave velocity is examined. It has been examined that when the porosity of the layer
decreases, velocity of Love wave increases. The velocity increases with increases in
the value of anisotropy and when the compressive pre-stresses increase in the layer
the velocity of Love waves increases. As the effect of pre-stresses is concerned, it has
been discovered that as the magnitude of tensile pre-stresses increases in half-space
then the velocity of Love waves increases.
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Deformation of an Elastic-Layer
Overlying an Elastic Half-Space Caused
by a Finite, Buried, Inclined, Locked
Strike-Slip Fault

Piu Kundu and Seema Sarkar (Mondal)

Abstract The process of stress accumulation near earthquake faults during the
aseismic period has become a subject of research during the last few decades. It is
noted that seismic waves, generated by an earthquake, result in a considerable distur-
bance in a seismic region causing amovement of the free surface. Such groundmove-
ments are not observed during the aseismic period. But a slow quasi-static aseismic
surface displacement of the order of few cms. per year or less can be observed during
the aseismic period which indicates a slow subsurface process of stress–strain accu-
mulation. Keeping this in viewwe here consider an aseismically locked, buried, finite
strike-slip fault inclined to the vertical at an arbitrary angle. The fault is situated in
an elastic layer over an elastic half-space representing the lithosphere-asthenosphere
system. An analytical study for displacement, stress, and strain has been carried out
for a buried, finite, inclined fault. The solutions for displacement, stress, and strain are
then found before the onset of fault movement and then superpose the effect of fault
movement using Laplace transform and suitable mathematical techniques of Green’s
function. The model is validated by numerical examples employing MATLAB. It is
observed that the inclination of the fault and velocity of the fault movement has a
noticeable effect on displacements, stresses, and strains.

Keywords Finite strike-slip fault · Locked · Aseismic period · Green’s function
technique · Laplace transform

1 Introduction

Study of dynamic process leading to an earthquake is one of the main concerns
of seismologists. About 90% of all earthquakes which are the results of tectonic
events are natural primarily due to movement across the fault. An earthquake of
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magnitude 7.0 occurred on October 10, 2018 in the east of Kimbe, Papua New
Guinea was the result of thrust faulting on or near the plate boundary interface
between the subducting Australia and overriding Pacific plates. Due to horizontal
movement between the North Americal plate and Pacific plate, an earthquake of
magnitude 6 occurred on August 24, 2014 in California. These are caused by the
release of elastic strain energy accumulated over a long period of time within the
subsurface rocks in the region. This stress and strain accumulate in the region due
to various tectonic processes, such as mantle convection and plate movement. These
tectonic processes ultimately lead to movements across the fault. The quasi-static
period in between two seismic events is called aseismic period which may last for
years or even for centuries. Though this period apparently seems to be static but
a slow and continuous aseismic surface movements were observed with the help
of sophisticated measuring instruments. Such aseismic surface movements indicate
that slow aseismic change of stress and strain are occurring in the region. It may
eventually lead to sudden or creeping movements across the seismic faults situated
in the region. It, therefore, seems to be an essential feature to identify the nature
of the stress and strain accumulation in the vicinity of seismic faults situated in the
region by studying the observed ground deformations during the aseismic period.
Such study and its analysis may give us some precursory information with respect
to the impending earthquakes.

2 Literature Review

A pioneering work including static ground deformation in elastic media was started
by Steketee [36, 37]. Chinnery [5–7] compared the theoretically calculated surface
displacements due to static dislocation across plane faults with the observed residual
surface displacements near the San Andreas fault due to the San Francisco earth-
quake of 1906. Maruyama [19, 20] considered both strike-slip and dip-slip faults
to calculate displacements and stresses due to prescribed static dislocations char-
acterized by a prescribed discontinuity of the displacement across the faults using
Green’s function technique. Chinnery et al. [8] discussed the displacement fields of
a very long vertical strike-slip fault model consisting of two layers over a half-space.
Later some hypothetical models towards this path were produced by various authors
namely Rybicki [29, 30], Sato [31], Rosenman [28], Sen [35], Mukhopadhyay et al.
[22–25]. Savage and Prescott [32] described a review of geodimeter measurements
made along the “big-bend” section of the San Andreas fault in southern California
and this indicates no significant increment in strain during the period of major uplift
(late 1959 to mid-1963). Savage [33] predicted vertical displacements in a subsiding
elastic layer. Matsu’ura and Sato [18] have constructed a kinematic model for the
earthquake cycle at convergent plate boundaries on the basis of dislocation theory.
Okada [26] presented an analytical expression for the surface displacements, strains,
and tilts due to inclined shear and tensile faults in a half-space for both point and finite
rectangular source. Further Okada [27] calculated the internal displacements, strains
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and tilts for the same model (1986). Debnath and Sen [9, 10] developed models of
finite strike-slip fault and long dip-slip fault in viscoelastic half-space. Debnath and
Sen [11, 14] have developed movement of different types of long dip-sip fault situ-
ated in a viscoelastic layer and in an elastic layer over a viscoelastic half-space. In
another paper, Debnath [15] calculated displacements, stresses and strains due to a
buried, vertical rectangular strike-slip fault in a viscoelastic layer over a viscoelastic
half-space. He also described ground deformation due to movement of finite rect-
angular fault in an elastic layer over a viscoelastic half-space in [12, 13, 16]. The
earthquake deformation has been described in Segall [34].

In most of these works, the medium was taken to be elastic and/or viscoelastic
half-space or layer. The faults are taken to be too long compared to their depth so
that the problem reduces to a two-dimensional model. For instance, the famous San
Andreas Fault is very long, while the faults like Calaveras, Hayward, San Jacinmto
are not so long compared to their depth. The faults comparatively short in length are
called finite faults and a three-dimensional model is imminent for them. Keeping this
in view, in the present paper we have considered a finite fault. This fault is situated in
an elastic layer over an elastic half-space representing the lithosphere-asthenosphere.
The fault undergoes a slippingmovementwhen the stress in the region exceeds certain
threshold values.

3 Formulation

We consider a locked, buried, rectangular strike-slip fault F of length 2L (L-finite)
and width D. The fault is locked that is located at a particular position at time t =
0 and then suddenly displaced by an amount but thereafter locked. The inclination
of the fault plane with the free surface is θ and the thickness of the elastic layer is
h1.The depth of the fault from the free surface is r1.

A three-dimensional Cartesian co-ordinate system (y1, y2, y3) is introduced with
y1 axis parallel to the strike of the fault, y3 axis is pointing downwards, and y2 axis
is perpendicular to y1 − y3 plane. The free surface is given by y3 = 0. The elastic
layer is represented by 0 ≤ y3 ≤ h1, in which the entire fault is situated and y3 ≥ h1
represents the elastic half-space. Since depth of the fault is r1 from the free surface
and the fault makes an angle θ with the horizontal, we take another Cartesian co-
ordinate system (y′

1, y
′
2, y

′
3), the origin of which is at O

′(Fig. 1). y′
1 is along the strike

of the fault and is parallel to y1 axis, y′
3 axis is on the fault plane perpendicular to y1

axis making an angle θ with the plane free surface and y′
2 axis is perpendicular to

the fault plane. Then the fault is given by F:−L ≤ y′
1 ≤ L , y′

2 = 0, 0 ≤ y′
3 ≤ D as

shown in Fig. 1. The relation between (y1, y2, y3) and (y′
1, y

′
2, y

′
3) are given by

y′
1 = y1
y′
2 = y2 sin θ − (y3 − r1) cos θ

y′
3 = y2 cos θ + (y3 − r1) sin θ (1)
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Fig. 1 A finite, buried, inclined, strike-slip fault in elastic layer over an elastic half-space

Let (u1, u2, u3) be the components of the displacement and τi j (i, j = 1, 2, 3),
ei j (i, j = 1, 2, 3) are, respectively, stress and strain components in the elastic
layer 0 ≤ y3 ≤ h1. Also let

(
u′
1, u

′
2, u

′
3

)
be the components of displace-

ment, τ ′
i j (i, j = 1, 2, 3) and e′

i j (i, j = 1, 2, 3) be stress and strain components,
respectively, in the elastic half-space (y3 ≥ h1).

3.1 Constitutive Equations

Isotropic form of Hook’s Law for homogeneous isotropic elastic material is

τi j = λeppδi j + 2μei j

where ei j = 1
2

(
∂ui
∂x j

+ ∂u j

∂x j

)
, λ and μ are Lame’s constants, μ is shear modulus. For

simple shear strain ei j is non zero. Then Hooke’s Law states

τi j = 2μei j

So, the constitutive equations that relate the stresses acting on a material element
to the resultant strains and/or rate of strain will be as follows:

For elastic layer (0 ≤ y3 ≤ h1, |y2| ≤ ∞):
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τ11 = 2μ1
∂u1
∂y1

τ12 = μ1

(
∂u1
∂y2

+ ∂u2
∂y1

)

τ13 = μ1

(
∂u1
∂y3

+ ∂u3
∂y1

)

τ22 = 2μ1
∂u2
∂y2

τ23 = μ1

(
∂u2
∂y3

+ ∂u3
∂y2

)

τ33 = 2μ1
∂u3
∂y3

(2)

For elastic half-space (y3 ≥ h1, |y2| < ∞):

τ ′
11 = 2μ2

∂u′
1

∂y1

τ ′
12 = μ2

(
∂u′

1

∂y2
+ ∂u′

2

∂y1

)

τ ′
13 = μ2

(
∂u′

1

∂y3
+ ∂u′

3

∂y1

)

τ ′
22 = 2μ2

∂u′
2

∂y2

τ ′
23 = μ2

(
∂u′

2

∂y3
+ ∂u′

3

∂y2

)

τ ′
33 = 2μ2

∂u′
3

∂y3
(3)

where μ1 and μ2 are the rigidities of the elastic layer and elastic half-space,
respectively.

3.2 Stress Equations of Motion

For a slow, aseismic, quasi-static deformation, the inertial terms are very small and
can be neglected as explained by Mukhopadhyay et al. [24]. Then stress equations
for elastic layer (0 ≤ y3 ≤ h1, |y2| < ∞) are
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∂

∂y1
(τ11) + ∂

∂y2
(τ12) + ∂

∂y3
(τ13) = 0

∂

∂y1
(τ21) + ∂

∂y2
(τ22) + ∂

∂y3
(τ23) = 0

∂

∂y1
(τ31) + ∂

∂y2
(τ32) + ∂

∂y3
(τ33) = 0

(4)

and for elastic half-space (y3 ≥ h1, |y2| < ∞) are

∂

∂y1

(
τ ′

11
) + ∂

∂y2

(
τ ′

12
) + ∂

∂y3

(
τ ′

13
) = 0

∂

∂y1

(
τ ′

21
) + ∂

∂y2

(
τ ′

22
) + ∂

∂y3

(
τ ′

23
) = 0

∂

∂y1

(
τ ′

31
) + ∂

∂y2

(
τ ′

32
) + ∂

∂y3

(
τ ′

33
) = 0

(5)

3.3 Boundary Conditions

The boundary conditions near the tips of the fault at time t = 0 that is at an instant
when there is no fault movement are taken as.

lim
y′
1→L−

τ11(y1, y2, y3, t) = lim
y′
1→L+

τ11(y1, y2, y3, t) = τL(say)

y′
2 = 0, 0 ≤ y′

3 ≤ D, t ≥ 0
(6)

and lim
y′
1→(−L)−

τ11(y1, y2, y3, t) = lim
y′
1→(−L)−

τ11(y1, y2, y3, t) = τ−L(say)

y′
2 = 0, 0 ≤ y′

3 ≤ D, t ≥ 0 (7)

assuming that the stresses maintain constant values τL and τ−L at the tips of the fault
along y′

1 axis [the value of this constant stress is likely to be small enough so that no
further extension is possible along y′

1 axis].

Also lim|y2|→∞
τ12(y1, y2, y3, t) → τ∞(t) (8)

for −L ≤ y1 ≤ L , 0 ≤ y3 ≤ h1, t ≥ 0, where τ∞(t) is the shear stress. This
is maintained by tectonic forces which arises due to mantle convection and other
tectonic phenomena.
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On the free surface y3 = 0, (−L ≤ y1 ≤ L , 0 ≤ y3 ≤ h1, t ≥ 0).

τ13 = τ23 = τ22 = τ33 = 0 (9)

Also as y3 → ∞ (−L ≤ y1 ≤ L , 0 ≤ y3 ≤ h1, t ≥ 0).

τ
′
13 = τ

′
23 = τ

′
22 = τ

′
33 = 0 (10)

On the interface y3 = h1 (−L ≤ y1 ≤ L , 0 ≤ y3 ≤ h1, t ≥ 0), since the layer
and half-space are in welded contact, therefore, we have

u1 = u′
1

u2 = u′
2

u3 = u′
3

τ13 = τ ′
13

τ23 = τ ′
23

τ33 = τ ′
33 (11)

3.4 Initial Conditions and Conditions at Infinity

(ui )0,
(
u′
i

)
0(i = 1, 2, 3),

(
τi j

)
0,

(
ei j

)
0,

(
τ ′
i j

)

0
,
(
e′
i j

)

0
(i, j = 1, 2, 3) are the values

of ui , u′
i , τi j , ei j , τ

′
i j , e

′
i j (i, j = 1, 2, 3), respectively, at t = 0. We assume that

tectonic forces result in a shear strain far away from the fault which may change
with time. Then the following conditions are satisfied

e12 → (e12)0,∞ + g(t) + h(t)

e′
12 → (

e′
12

)
0,∞ + g(t) + h(t)

(12)

where (e12)0,∞ = lim|y2|→∞(e12)0,
(
e′

12
)
0,∞ = lim|y2|→∞

(
e′

12
)
0 and (e12)0,

(
e′
12

)
0 are the

values of e12, e′
12 at t = 0. g(t), h(t) are gradually increasing continuous function of

t with g(0) = 0, h(0) = 0 at t = 0. Same g(t) and h(t) are taken since the layer and
half-space are in welded contact and the strains are continuous in the boundary.

4 Method of Solution

From Eq. (2), we find
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τ11 = 2μ1
∂u1
∂y1

, τ12 = 2μ1
∂u1
∂y2

, τ13 = 2μ1
∂u1
∂y3

τ21 = 2μ1
∂u2
∂y1

, τ22 = 2μ1
∂u2
∂y2

, τ23 = 2μ1
∂u2
∂y3

τ31 = 2μ1
∂u3
∂y1

, τ32 = 2μ1
∂u3
∂y2

, τ33 = 2μ1
∂u3
∂y3

By using Eq. (4) we get, ∇2ui = 0 where i = 1, 2, 3
Similarly from Eqs. (3) and (5) we get

∇2 u′
i = 0where i = 1, 2, 3

These are the general solutions.
For the model considered above, the solutions for displacements, stresses, and

strains in the absence of fault movement and after the fault movement have been
discussed in the Sects. 4.1 and 4.2.

4.1 Displacements, Stresses, and Strains in the Absence
of Fault Movement

The boundary value problem given by (1)–(12) can be solved by taking Laplace
transform with respect to time “t” of all the constitutive equations and the boundary
conditions. On taking inverse Laplace transform we get solutions for displacements,
stresses, and strains as follows:

For elastic layer (0 ≤ y3 ≤ h1, |y2| < ∞)

u1 = (u1)0 + 2h(t)y2

u2 = (u2)0 + 1

μ1
[τ∞(t) − τ∞(0)]y1 − 2h(t)y1

u3 = (u3)0
τ11 = (τ11)0

τ12 = (τ12)0 + [τ∞(t) − τ∞(0)]

τ13 = (τ13)0

τ23 = (τ23)0

τ22 = (τ22)0

τ33 = (τ33)0

e12 = (e12)0 + 1

2μ1
[τ∞(t) − τ∞(0)] (13)
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For elastic half-space (y3 ≥ h1, |y2| < ∞).

u′
1 = (

u′
1
)
0 + 2h(t)y2

u′
2 = (

u′
2
)
0 + 1

μ1
[τ∞(t) − τ∞(0)]y1 − 2h(t)y1

u′
3 = (

u′
3
)
0

τ ′
11 = (

τ ′
11

)
0

τ ′
12 = (

τ ′
12

)
0 + [τ∞(t) − τ∞(0)]

τ ′
13 = (

τ ′
13

)
0

τ ′
23 = (

τ ′
23

)
0

τ ′
22 = (

τ ′
22

)
0

τ ′
33 = (

τ ′
33

)
0

e′
12 = (

e′
12

)
0 + 1

2μ1
[τ∞(t) − τ∞(0)] (14)

Here the solutions in the Eqs. (13) and (14) are trivial, this indicates that there are
no effect on displacement, stress, and strain components before the fault movements
for both the layer and half-space.

τ ′′
12 = Stress component which tends to cause

strike - slip movement across the fault F

= τ12 sin θ − τ13 cos θ

τ ′′
12 = (

τ ′′
12

)
0 + [τ∞(t) − τ∞(0)] sin θ (15)

where
(
τ ′′
12

)
0 = (τ12)0 sin θ − (τ13)0 cos θ .

If τ∞(t) does not have a constant value and it is a time-dependent function, then
we assume that τ∞(t) = τ∞(0)(1 + k1t). Here k1 is a constant and is taken as 10−9

and τ∞(0) = 5 × 106 N/m2.
From the above solution it is clear that for the fault F τ ′′

12 increase with time.
The characteristic of the fault is such that the fault moves when the magnitude
of stress τ ′′

12 reaches some critical value τc. Here we consider τc = 210 bar, i.e.,
21 × 106N/m2(Pascal). From Fig. 2, it is found that τ ′′

12 reaches the value 210 bar
after time T = 149 years for θ = 60°.



292 P. Kundu and S. Sarkar (Mondal)

Fig. 2 Critical stress with time

4.2 Displacements, Stresses, Strains After
the Commencement of Fault Movement

We consider that for a period t1 = t − T ≥ 0 (which now corresponds to the new
phase of aseismic state of the model re-established after the sudden fault move-
ment), the inertial forces again become very small and are therefore neglected. The
displacements, stresses, and strains are continuous everywhere in the model except
for the fault F across which the displacement component u1 has a discontinuity which
characterizes the sudden fault movement across the fault F given by the following
conditions:

[(u1)]F = U1 f
(
y′
1, y

′
3

)
H(t1) (16)

where U1 is constant independence of y′
1, y

′
3, f

(
y′
1, y

′
3

)
is a continuous function of

y′
1, y

′
3 giving the dependence of the relative displacement across the fault F on the

depth along the fault, H(t1) is the Heaviside function and t1 = t − T .

[(u1)]F = The discontinuity ofacross F is given by

[(u1)]F = lim
y′
2→0+

(u1) − lim
y′
2→0−

(u1)
[−L ≤ y′

1 ≤ L , 0 ≤ y′
3 ≤ D

]
(17)

Taking Laplace transform on (16) we get [(u1)]F = U1
p f

(
y′
1, y

′
3

)
.

After time T the fault F is locked, we try to obtain the displacements, stresses,
and strains for t ≥ 0 (with respect to new time origin, i.e., the instant at which
this aseismic state has been restored in the system after the fault movement) in the
following form:

For elastic layer (0 ≤ y3 ≤ h1, |y2| < ∞)

u1 = (u1)1 + (u1)2
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u2 = (u2)1 + (u2)2
u3 = (u3)1 + (u3)2
τ11 = (τ11)1 + (τ11)2

τ12 = (τ12)1 + (τ12)2

τ13 = (τ13)1 + (τ13)2

τ22 = (τ22)1 + (τ22)2

τ23 = (τ23)1 + (τ23)2

τ33 = (τ33)1 + (τ33)2 (18)

For the half-space (y3 ≥ h1, |y2| < ∞).

u′
1 = (

u′
1
)
1 + (

u′
1
)
2

u′
2 = (

u′
2
)
1 + (

u′
2
)
2

u′
3 = (

u′
3
)
1 + (

u′
3
)
2

τ ′
11 = (

τ ′
11

)
1 + (

τ ′
11

)
2

τ ′
12 = (

τ ′
12

)
1 + (

τ ′
12

)
2

τ ′
13 = (

τ ′
13

)
1 + (

τ ′
13

)
2

τ ′
22 = (

τ ′
22

)
1 + (

τ ′
22

)
2

τ ′
23 = (

τ ′
23

)
1 + (

τ ′
23

)
2

τ ′
33 = (

τ ′
33

)
1 + (

τ ′
33

)
2 (19)

where (ui )1,
(
τi j

)
1, (e12)1,

(
u′
i

)
1,

(
τ ′
i j

)

1
,
(
e′
12

)
1 (i, j = 1, 2, 3) are

continuous everywhere in the model and given in Eqs. (13) and (14).

(ui )2,
(
τi j

)
2, (e12)2,

(
u′
i

)
2,

(
τ ′
i j

)

2
,
(
e′
12

)
2(i, j = 1, 2, 3) are satisfied all the condi-

tions from (2) to (12). These are obtained by using a modified form of Green’s
function technique developed by Maruyama [20] and Rybicki [29] explained in
Appendix 1. We note that (u2)2, (u3)2,

(
u′
2

)
2,

(
u′
3

)
2 are continuous even after the

fault movement, so that [(u2)]2 = 0, [(u3)]2 = 0,
[(
u′
2

)]
2 = 0,

[(
u′
3

)]
2 = 0, while

(u1)2 satisfy the dislocation condition (17).

We get (u1)2 = U1

2π
H(t1)φ(y1, y2, y3)

(
u′
2

)
2 = U1

2π
H(t1)ψ(y1, y2, y3) (20)

φ and ψ are described in Appendix 1.
Now for elastic layer (0 ≤ y3 ≤ h1, |y2| < ∞)
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(τ11)2 = 2μ1H(t1)
U1

2π
φ1

(τ12)2 = μ1H(t1)
U1

2π
φ2

(τ13)2 = μ1H(t1)
U1

2π
φ3

(τ23)2 = 0

(τ22)2 = 0

(τ33)2 = 0

(e12)2 = H(t1)
U1

4π
φ2 (21)

where φ1 = ∂φ

∂y1
, φ1 = ∂φ

∂y2
, φ1 = ∂φ

∂y3
and t1 = t − T .

For the half-space (y3 ≥ h1, |y2| < ∞)

(
τ ′

11
)
2 = 2μ2H(t1)

U1

2π
ψ1

(
τ ′

12
)
2 = μ2H(t1)

U1

2π
ψ2

(
τ ′

13
)
2 = μ2H(t1)

U1

2π
ψ3

(
τ ′

23
)
2 = 0

(
τ ′

22
)
2 = 0

(
τ ′

33
)
2 = 0

(
e′

12
)
2 = H(t1)

U1

4π
ψ2 (22)

where ψ1 = ∂ψ

∂y1
, ψ2 = ∂ψ

∂y2
, ψ3 = ∂ψ

∂y3
and t1 = t − T .

Finally the solutions for displacement, stress, and strain are obtained as follows:
for elastic layer (0 ≤ y3 ≤ h1, |y2| < ∞).

u1 = (u1)0 + 2h(t)y2 + U1

2π
H(t1)φ(y1, y2, y3)

u2 = (u2)0 + 1

μ1
[τ∞(t) − τ∞(0)]y1 − 2h(t)y1

u3 = (u3)0

τ11 = (τ11)0 + 2μ1H(t1)
U1

2π
φ1

τ12 = (τ12)0 + [τ∞(t) − τ∞(0)] + μ1H(t1)
U1

2π
φ2
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τ13 = (τ13)0 + μ1H(t1)
U1

2π
φ3

τ23 = (τ23)0

τ22 = (τ22)0

τ33 = (τ33)0

e12 = (e12)0 + 1

2μ1
[τ∞(t) − τ∞(0)] + H(t1)

U1

4π
φ2 (23)

For elastic half-space (y3 ≥ h1, |y2| < ∞).

u′
1 = (

u′
1
)
0 + 2h(t)y2 + U1

2π
H(t1)ψ(y1, y2, y3)

u′
2 = (

u′
2
)
0 + 1

μ1
[τ∞(t) − τ∞(0)]y1 − 2h(t)y1

u′
3 = (

u′
3
)
0

τ ′
11 = (τ′11)0 + 2μ2H(t1)

U1

2π
ψ1

τ ′
12 = (

τ ′
12

)
0 + [τ∞(t) − τ∞(0)] + μ2H(t1)

U1

2π
ψ2

τ ′
13 = (

τ ′
13

)
0 + μ2H(t1)

U1

2π
ψ3

τ ′
23 = (

τ ′
23

)
0

τ ′
22 = (

τ ′
22

)
0

τ ′
33 = (

τ ′
33

)
0

e′
12 = (

e′
12

)
0 + 1

2μ1
[τ∞(t) − τ∞(0)] + H(t1)

U1

4π
ψ2 (24)

T ′′
12 = Stress component which tends to cause strike − slip

movement across the fault F

= τ12 sin θ − τ13 cos θ

= (
T ′′
12

)
0 + [τ∞(t) − τ∞(0)] sin θ

+ μ1H(t1)U1

2π
[φ2 sin θ − φ3 cos θ ] (25)

where
(
T ′′
12

)
0 = (τ12)0 sin θ − (τ13)0 cos θ .
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5 Numerical Computations

In order to study in greater details, the nature of surface displacement, shear strain,
and accumulation of shear stress near the fault due to the movement across the
fault, we analyze the solution by assigning suitable numerical values to the model
parameters involved.

It is assumed that as a result of some structural reason there is a slow but steady
accumulation of shear strain at a distance far away from the fault. Keeping this in view
we take g(t) and h(t) to be linearly increasing function with time and g(0)= 0, h(0)=
0 at t = 0. With this assumption we take h(t) = kt. We assume k = 3.2× 10−14 [21],
noting also that during the aseismic period the rate of strain accumulation observed
in the seismically active region is of the order of 10−6 to 10−8 per year.

The rigidities μ1, μ2 of the layer and half-space, respectively, are taken as μ1 =
3 × 1010 N/m2 and μ2 = 3.5 × 1010 N/m2 as suggested by Aki [1], Bullen [2],
Cathles [3], Chift [4], Karato [17] for lithosphere-asthenosphere system.

We denote γ1 = μ2

μ1
= 1.667.

λ = Lame’s constant = 2.7290 × 1010N/m2.
h1 = thickness of the layer = 20 km.

Then we define �1 = 1 − 1−γ1
1+γ1

e−2λh1 = 1.

T = 150 years.
t1 = 1 year.

The slip of fault U1 is taken as constant, since the fault is locked.

U1 = 0.01

We consider θ as the angle of inclination of the fault plane to the horizon. Noting
that for values of θ > π

2 , say θ = π − θ
(
0 ≤ θ1 < π

2

)
, the nature of displacements,

stresses, and strains in the medium will be similar to the case for which θ = θ1. So
in our model, the results are shown for θ = 30

◦
, 45

◦
, 60

◦
, 90

◦
.

From Debnath [15] the values of the model parameters are taken as below:
The width of the fault D = 10 km = 104 m, noting that the San Andreas fault in

North America, the value of D has been estimated to be in the range 5–15 km.
Length of the fault 2L = 20 km = 2 × 104 m.

τ∞(t) = 2 × 107 N/m2

(τ12)0 = 2 × 106 N/m2

(τ13)0 = 2 × 106 N/m2
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Fig. 3 Slip function

(e12)0 = 5

(u1)0 = 5m

Slip function is f
(
x ′
1, x

′
3

) = U
(
1 − x ′

1
2

L2 − x ′
2
2

D2

)
, U = 1 cm in Fig. 3.

6 Result and Discussion

We have calculated the displacement, stress, and strain components of the fault
movement. The results of the effect of this faultmovement on displacements, stresses,
and strains have been discussed below:

(a) Effect of displacement:

Let us consider the change of displacement on the free surface y3 = 0 near the strike
of the fault. The rate of surface displacement depends on the inclination of the fault
and depth of the fault from the free surface. RD = change of the displacement in the
layer due to fault movement after restoration of aseismic state = [u1 − 2h(t)y2] =
U1
2π H(t1)φ.In Fig. 4, RD has been plotted against y2 for y1 = 10 km (representing the
distance of the point at the tip along the strike of the fault) and y3 = 0.

The maximum value of residual surface displacement is attained near the fault
for both y2 > 0 and y2 < 0. This falls off rapidly as we move away from the fault
on the free surface and becomes very small for |y2| 	 D. For y2 > 0 and y2 < 0, it
is in opposite directions. RD depends on the inclination of the fault. For y2 > 0, RD

attains its maximum value as y2 → 0+ and this depends on θ . The higher values of θ
give rise to higher magnitude of rate of displacement for y2 > 0. For higher θ , lower
value attains for y2 < 0. It has been observed that residual surface displacement
attains maximum and minimum value near y2 = 0 at θ = 90

◦
, i.e., for vertical fault.

The maximum value of RD is 1.2298 × 109 m and the minimum value is −9.45 ×
108 m. For vertical fault change of displacement is symmetric w.r.t y2 = 0.
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Fig. 4 Change of surface displacement with y2 for different values of inclination θ

In Fig. 5, residual surface displacement has been plotted against y2 for different
values of depth of the fault (r1) form the free surface. RD attains maximum value
near the fault for r1 = 0, i.e., for surface breaking fault. It attains minimum value
for r1 = 10 km near the fault. It is in the opposite direction for y2 > 0 and y2 < 0.
It falls off rapidly for |y2| > 0. For y2 > 0, surface displacement increases for r1
decreases and for y2 < 0, it increases with decreasing values of r1.

(b) Effect of stress: In Fig. 6, changes of stress component which tend to cause
strike-slip movement across the fault F

(
T ′′
12

)
has been plotted against time t.

T ′′
12 given in Eq. (25). Figure 6 has explained the changes in T

′′
12 before the fault

movement for different inclination of the fault. It shows that T ′′
12 increases with

θ increase and attains maximum value at θ = 90
◦
. The maximum value attains

for different inclinations at t= 149 years, where T ′′
12 reaches some critical value.

After attains critical value, the fault movement occurs.

T ′′
12 has been plotted against t for the different inclination of the fault after the

fault movement in Fig. 7. It shows that after the fault movement T ′′
12 attains negative

constant value. This shows that before the fault movement stress increases with time,

Fig. 5 Change of surface displacement with y2 for different depth of the fault from the free surface
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i.e., stress accumulates. After attaining maximum value the fault movement occurs
and after the fault movement all the stress release with time. The maximum stress
accumulates before the fault movement for θ = 90

◦
which is clear from Fig. 6 and

maximum stress releases after the fault movement at θ = 90
◦
, which is clear from

Fig. 7.

(c) Effect of shear strain: Surface shear strain due to fault movement
near the fault at the time of restoration of aseismic state is Rw =[
e12 − (e12)0 − 1

2μ1
(τ∞(t) − τ∞(0))

]
= H(t1)U1

4π φ2.

Figure 8 shows the changes of residual surface shear strain with depth y3 from
the free surface for different inclination θ of the fault. For all different values of θ ,
shear strain increases with depth increase, i.e., shear strain accumulates with depth.
After attaining maximum value it decreases. After releases a small amount of strain
it again increases with depth. Maximum shear strain attains at θ = 30

◦
and its value

is 1.522 × 104.

Fig. 6 T ′′
12 with t before the fault movement for different values of inclination θ

Fig. 7 T ′′
12 with t after the fault movement for different values of inclination θ
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Fig. 8 Change of shear strain with y3 for inclination a θ = 30
◦
, b θ = 45

◦
, c θ = 60

◦
, d θ = 90

◦

In Fig. 9, shear strain has been plotted against y3 for different values of thickness
of the elastic layer, i.e., h1. From this figure, it is clear that for all values of h1, shear
strain increases with depth, i.e., it accumulates with depth up to h1 equal to near
16 km. Then stress releases a small amount and then further accumulates.

For the buried fault, the changes of strain with depth depending on the depth of
the fault from the free surface, which shows in Fig. 10. When the fault is surface
breaking, then the shear strain accumulates maximum value near y3 = 20 km. For

Fig. 9 Change of shear strain with y3 for different thickness of the layer (h1)
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Fig. 10 Change of shear strain with y3 for values of r1

Fig. 11 Change of shear strain with y3 for different values of U1

r1 = 2, 5, 10 km, respectively, then shear strain accumulates maximum value near
depth 15, 18, 10 km, respectively. That is for a buried fault, shear strain attains
maximum value on the fault always for all values of r1..

Figure 11 shows the changes of shear strainwith depth y3 for different values of slip
function U1. Strain accumulation increases with depth increases. For y3 < 5 km, it
attains some negative value and then increases with depth. At y3 = 5 km all the stress
releases that is earthquake occurs and after that stress accumulates with depth. For
y3 > 5 km, shear strain accumulation increases withU1 increases and for y3 < 5 km,
it increases with U1 decreases.

7 Conclusion

This model of the lithosphere-asthenosphere system is represented by a buried,
inclined, locked, finite strike-slip fault. The model is validated by numerical results
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which are computed using suitable values of model parameters. The nature of
displacements, stresses, and strains are analyzed by considering their graphical
representation. It is observed that there are certain regions of strain accumulation
in the elastic layer and other regions of strain release. The rate of strain accumula-
tion/release in the layer near the fault depends on the various inclination of the fault,
depth of the fault, and thickness of the layer. The analysis of accumulation/release
of shear stress may help in making earthquake prediction program.

Appendix 1

The displacements, stresses, and strains after the commencement of fault move-

ment are (ui )2,
(
u′
i

)
2,

(
τi j

)
2,

(
τ ′
i j

)

2
, (e12)2,

(
e′
12

)
2(i, j = 1, 2, 3). This satisfies all

the Eqs. (2)–(12). This boundary value problem can be solved by using modified
Green’s function technique developed by Maruyama [20] and Rybicki [29] and
correspondence principle. According to them we get

(u1)2(Q1) = ˜
F

[
(u1)2(p)

]
G(P, Q1)dx3dx1 in the layer.(

u1
′)
2(Q1) = ˜

F

[
(u1)2(p)

]
G ′(P, Q2)dx3dx1 in the half-space.

where Q1(y1, y2, y3) and Q2(y1, y2, y3) are field points in the layer and half-space,
respectively, and P(x1, x2, x3) is any point on the fault F and

[
(u1)2(p)

]
is the

magnitude of discontinuity of u1 across F and G, G ′ are Green’s function.

where G(P, Q1) = ∂
∂x2

[
G12(1)(P, Q1) − G13(1)(P, Q1)

]

G(P, Q2) = ∂

∂x2

[
G12(2)(P, Q2) − G13(2)(P, Q2)

]

Here G12(1)(P, Q1) =
∫ ∞

0

[
A1(λ)e−λ(y3−y1) + B1(λ)eλ(y3−y1)

]
sin[λ(x2 − y2)]

dλ − 1
[
(y1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
] 1

2

G13(1)(P, Q1) =
∫ ∞

0

[
C1(λ)e−λ(y3−y1) + D1(λ)eλ(y3−y1)

]
cos[λ(x2 − y2)]

dλ − 1
[
(y1 + x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
] 1

2

G12(2)(P, Q2) =
∫ ∞

0
A2(λ)e−λ(y3−y1) sin[λ(x2 − y2)]dλ

G13(2)(P, Q2) =
∫ ∞

0
C2(λ)e−λ(y3−y1) cos[λ(x2 − y2)]dλ
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where A1 = − 1
2π�1

[
e−λ(x3+x1) + 1−γ1

1+γ1
e−λ(2h1−x3+x1)

]

B1 = − 1

2π�1

1 − γ1

1 + γ1
[e−λ(2h1+x3−x1) + e−λ(2h1−x3−x1)]

C1 = − 1

2π�1

[
e−λ(x3−x1) − 1 − γ1

1 + γ1
e−λ(2h1−x3−x1)

]

D1 = − 1

2π�1

1 − γ1

1 + γ1

[
e−λ(2h1+x3+x1) − e−λ(2h1−x3+x1)

]

A2 = − 1

π(γ1 + 1)�1

[
eλ(x3−x1) + e−λ(x3+x1)

]

C2 = 1

π(γ1 + 1)�1

[
eλ(x3+x1) − e−λ(x3−x1)

]

where γ1 = μ1

μ2
, μ1, μ2 are rigidity of elastic layer and half-space, λ is Lame’s

constant and h1 is the thickness of the layer.

�1 = 1 − 1 − γ1

1 + γ1
e−2λh1

P (x1, x2, x3) being a point on the fault F. Since the fault inclined at an angle θ

and depth is r1 from the free surface, then 0 ≤ x2 ≤ D cos θ, 0 ≤ x3 ≤ D sin θ and
x2 = x3 cot θ . A change in co-ordinate from (x1, x2, x3) to

(
x ′
1, x

′
2, x

′
3

)
connected by

the relations:

x1 = x ′
1, x2 = x ′

2 sin θ + x ′
3 cos θ, x3 = −x ′

2 cos θ + x ′
3 sin θ + r1

From x2 = x3 cot θ we get x ′
2 = 0.

Then x1 = x ′
1, x2 = x ′

3 cos θ, x3 = x ′
3 sin θ + r1 and dx1 = dx ′

1, dx
′
2 = 0, dx3 =

sin θdx ′
3

(u1)2(Q1) =
¨

F
(u1)2(p)G(P, Q1)dx3dx1

=
∫ L

−L

∫ D

0
U1 f

(
x ′
1, x

′
3

)
G(P, Q1) sin θd x ′

1 d x ′
1

= U1φ(y1, y2, y3)

Taking inverse Laplace transform
(u1)2(Q1) = U1

2π φ(y1, y2, y3)H(t1), where H(t1) is the Heaviside function, t1 =
t − T and
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φ =
∫ L

−L

∫ D

0
f
(
x ′
1, x

′
3

)
G(P, Q1) sin θd x ′

3 d x ′
1

=
∫ L

−L

∫ D

0
f
(
x ′
1, x

′
3

)( λ

2π�1

[
−A11 − 1 − γ1

1 + γ1
A12 − 1 − γ1

1 + γ1
A13 − 1 − γ1

1 + γ1
A14

− B11 + 1 − γ1

1 + γ1
B12 − 1 − γ1

1 + γ1
B13 + 1 − γ1

1 + γ1
B14

]
+ A15 − B15) sin θdx ′

3dx
′
1

where A11 = (y3−y1+x ′
3 sin θ+r1+x ′

1)

(y3−y1+x ′
3 sin θ+r1+x ′

1)
2+(x ′

3 cos θ−y2)
2

A12 = (2h1 + y3 − y1 − x ′
3 sin θ − r1 + x ′

1)(
2h1 + y3 − y1 − x ′

3 sin θ − r1 + x ′
1

)2 + (
x ′
3 cos θ − y2

)2

A13 = (2h1 − y3 + y1 + x ′
3 sin θ + r1 − x ′

1)(
2h1 − y3 + y1 + x ′

3 sin θ + r1 − x ′
1

)2 + (
x ′
3 cos θ − y2

)2

A14 = (2h1 − y3 + y1 − x ′
3 sin θ − r1 − x ′

1)(
2h1 − y3 + y1 − x ′

3 sin θ − r1 − x ′
1

)2 + (
x ′
3 cos θ − y2

)2

A15 = (x ′
3 cos θ − y2)

((
x ′
1 − y1

)2 + (
x ′
3 cos θ − y2

)2 + (
x ′
3 sin θ + r1 − y3

)2) 3
2

B11 = (x ′
3 cos θ − y2)

(
x ′
3 cos θ − y2

)2 + (
x ′
3 sin θ + r1 + y3 − x ′

1 − y1
)2

B12 = (x ′
3 cos θ − y2)

(
x ′
3 cos θ − y2

)2 + (
2h1 − x ′

3 sin θ − r1 + y3 − x ′
1 − y1

)2

B13 = (x ′
3 cos θ − y2)

(
x ′
3 cos θ − y2

)2 + (
2h1 + x ′

3 sin θ + r1 − y3 + x ′
1 + y1

)2

B14 = (x ′
3 cos θ − y2)

(
x ′
3 cos θ − y2

)2 + (
2h1 − x ′

3 sin θ − r1 − y3 + x ′
1 + y1

)2

B15 = (x ′
3 cos θ − y2)

((
x ′
1 + y1

)2 + (
x ′
3 cos θ − y2

)2 + (
x ′
3 sin θ + r1 − y3

)2) 3
2

Similarly
(
u′
1

)

2
(Q2) = U1ψ(y1, y2, y3).

Taking inverse Laplace transform
(
u′
1

)
2(Q2) = U1

2π ψH(t1).

where H(t1) is Heaviside step function, t1 = t − T and

ψ =
∫ L

−L

∫ D

0
f
(
x ′
1, x

′
3

)( λ

π(γ1 + 1)�1

[−A′
11 − A′

12 + B ′
11 − B ′

12

])
sin θdx ′

3dx
′
1
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where

A′
11 = (y3 − y1 − x ′

3 sin θ − r1 + x ′
1)(

y3 − y1 − x ′
3 sin θ − r1 + x ′

1

)2 + (
x ′
3 cos θ − y2

)2

A′
12 = (y3 − y1 + x ′

3 sin θ + r1 + x ′
1)(

y3 − y1 + x ′
3 sin θ + r1 + x ′

1

)2 + (
x ′
3 cos θ − y2

)2

B ′
11 = (x ′

3 cos θ − y2)
(
x ′
3 cos θ − y2

)2 + (
x ′
3 sin θ + r1 − y3 + x ′

1 + y1
)2

B ′
12 = (x ′

3 cos θ − y2)
(
x ′
3 cos θ − y2

)2 + (
x ′
3 sin θ + r1 + y3 − x ′

1 − y1
)2
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Influence of Velocity Slip on the MHD
Flow of a Micropolar Fluid Over
a Stretching Surface

P. K. Pattnaik, D. K. Moapatra, and S. R. Mishra

Abstract Free convection of an electrically conducting micropolar fluid past a
permeable stretching surface is considered in the present analysis. The crux of the
investigation is the study of velocity slip boundary condition that affects the flow
behavior. In addition to that the temperature profile enhances with the inclusion of
dissipative heat energy, thermal radiation and the heat generation/absorption param-
eter. Employing suitable similarity variables, the governing equations are trans-
formed to nonlinear ODEs and numerical treatment such as fourth-order Runge-
Kutta method in conjunction with shooting technique. Physical behavior of several
contributing parameters for the flow phenomena, local skin-friction coefficient, the
wall couple stress, and the local Nusselt number are presented via graphs and further
described in the results and discussion section.

Keywords MHD · Micropolar fluid · Slip velocity · Stretching surface · Heat
generation

Nomenclature

a, b Constants
B0 External uniform magnetic field
C f x Local skin friction coefficient
Cp Specific heat at constant pressure
Ec Eckert number
f Dimensionless stream function
fw Suction/injection parameter
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g Acceleration due to gravity
G Micro-rotation parameter
G1 Micro-rotation constant
j Micro-inertia density
k Thermal conductivity
K Material parameter
M Magnetic parameter
m Heat flux exponent
mw Wall couple stress
Mx Dimensionless wall couple stress
N Micro-rotation/angular velocity
n Micro-rotation boundary condition
Nux Local Nusselt number
Pr Prandtl number
Q0 Heat generation/absorption constant
qr Radiative heat flux
qs Variable surface heat flux
qw Heat transfer rate
R Radiation absorption parameter
Rex Reynold’s number
S Heat generation/absorption parameter
T Temperature of the fluid
T∞ Onset temperature
(u, v) Velocity components along x-, y-axes
vw Suction/injection velocity
(x, y) Horizontal and vertical co-ordinate axes

Greek Symbols

μ Dynamic viscosity
ρ Fluid density
βT Coefficient of thermal expansion
σ Electrical conductivity
γ Spin gradient parameter
α Velocity slip parameter
α∗ Velocity slip coefficient
ω Dimensionless micro-rotation velocity
η Scaled boundary layer coordinate
θ Dimensionless temperature
λ Thermal buoyancy parameter
τw Local wall shear stress
υ Kinematic viscosity
ψ Stream function
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1 Introduction

In recent days, a considerable interest among the researchers is found for the study
of flow phenomena through a stretching sheet. The fact is the extensive application
in both engineering and industries. As a pioneer work, Crane [1] presented his study
for the laminar boundary flow of an incompressible, time-independent flow through
a stretching surface. Further, Gupta and Gupta [2] extended the work of [1] for
the influence of suction/injection in the boundary layer over a stretching surface.
Vajravelu and Rollins [3] and Pavlov [4] have investigated the heat transfer properties
in an electrically conducting fluid in conjunction with internal heat generation or
absorption. Baag et al. [5] studied numerically by using the fourth-order Runge-
Kutta method with shooting technique to compare their result with previous study.
They confirmed the accuracy of their study. Ayano et al. [6] reported that the flow of
micro-rotation components will be in opposite direction and one of these components
is not rotating.

Das [7] investigated the chemical reaction and thermal radiation effect of MHD
micropolar fluid by considering a rotating frame of reference. An analytical treatment
by using least square method (LSM) has been carried out to investigate the effects
of Reynolds number and Peclet number on a micropolar fluid flow by Fakour et al.
[8]. Shamshuddin and Narayana [9] have considered an unsteady case of MHD
micropolar fluidwhose flow past an inclined plate with reference to a rotating system.
They observed the regular behavior of micropolar fluid in their study. Ishak et al.
[10] considered the MHD micropolar fluid flow in presence of magnetic field which
is applied normal to the plate and thermal buouyancy in their study. They observed
the dual behavior of solutions which exist for the assisting flow. Nazeer et al. [11]
have considered a micropolar fluid in porous mediumwith uniform and non-uniform
heated bottom wall. A study of micropolar fluid flow in porous medium over a
stretchable disk by considering all the profiles like axial velocity, radial velocity,
micro-rotation, temperature, and concentrations profiles have been carried out by
Rauf et al. [12]. Sheikholeslami et al. [13] in their study of micropolar fluid used
an analytical method (Homotopy Analysis Method) to investigate the behavior of
Reynolds number and Pecelet number on all the used profiles. They observed the
inter link of both these said numbers with Nusselt and Sherwood numbers.Viscous
dissipation taken into consideration on the study of a MHD micropolar fluid flow is
to investigate the behavior of translation velocity, micro-rotation, and temperature
profiles. It has been observed that all these profiles showed the decreasing behavior
for increasing values of viscous dissipation (see [14]). Srivastava [15] in his research
paper considered the flow of MHD micropolar fluid in between two eccentrically
rotating disks to study the effects of the micropolar parameter and Hartmann number
on the velocity and micro-rotation profiles. Mishra et al. [16, 17] used the uniform
magnetic field strengths along the flow direction to check the behavior of all the
profiles considered in the work in presence of heat source and radiation parameter.
Ashmawy [18] considered a convective micropolar fluid in between two vertical
uniformly heated channels with velocity slip condition applied. Ferdows and Liu
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[19] used magnetic field and thermal buoyancy parameters in momentum equation,
non-uniform heat source parameter in energy equation to investigate the behavior of
magneto-micropolar fluid flow in a vertical plate.

In view of aforesaid discussion it is important to describe the physical signifi-
cance of heat generation and absorption. Though it is difficult to model the exact
internal heat generation or absorption, a mathematical model, following Foraboschi

and Federico [20], can be expressed as S =
{
Q0(T − T∞), T ≥ T∞
0, T < T∞

which is

valid for the state of some exothermic processes. We have extended the work of
Mahmoud et al. [21] by incorporating thermal buoyancy parameter in momentum
equation, thermal radiation, and viscous dissipation term in energy equation and also
boundary condition of micropolar profile has been modified.

2 Mathematical Formulation

Two-dimensional free convective flow of an electrically conducting micropolar fluid
past a porous stretching surface is considered in the present investigation. The plate
is along the plane y = 0, the flow takes place in the region y > 0. Applied uniform
magnetic field of strength B0 is imposed along the normal direction of the flow.
Variable surface heat flux qs(x) = bxm (where b, m are constants) as well as
the slip velocity boundary conditions are also assumed. Based upon the aforesaid
assumptions the basic governing equations for the flow are

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
=

(
μ + k

ρ

)
∂2u

∂y2
+ k

ρ

∂N

∂y
+ gβT (T − T∞) − σ B2

0

ρ
u (2)

u
∂N

∂x
+ v

∂N

∂y
= γ

ρ j

∂2N

∂y2
− k

ρ j

(
2N + ∂u

∂y

)
(3)

u
∂T

∂x
+ v

∂T

∂y
= k

ρCp

∂2T

∂y2
+ Q0

ρCp
(T − T∞) − 1

ρCp

∂qr
∂y

+ μ

ρCp

(
∂u

∂y

)2

(4)

The boundary conditions are

u = ax + α∗
[
(μ + k)

∂u

∂y
+ kN

]
, v = vw, N = −n

∂u

∂y
,

∂T

∂y
= −bxm

k
, at y = 0

u → 0, N → 0, T → T∞ as y → ∞

⎫⎪⎬
⎪⎭ (5)
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Jena and Matkur [22] considered the case (n = 0) of concentrated particle flows
in which they observed that micro-elements close to the wall are unable to rotate. But
Ahmadi [23] examined the case (n = 1/2) of weak concentrations and indicates the
vanishing of antisymmetric part where as the case for (n = 1) turbulent boundary
layer flows suggested by Peddieson [24]. The radiative heat flux term by using the
Rosseland approximation [25] is given by

qr = −4σ ∗

3k∗
∂T 4

∂y
(6)

where σ ∗ Stefan–Boltzmann constant and k∗ mean absorption coefficient. We have
assumed that the temperature differences are very small within the fluid. We have
expanded T 4 by Taylor series expansion about T∞ and neglecting higher order terms
to express as a linear function. So qr can be written as

qr = −16σ ∗T 3∞
3k∗

∂T

∂y

Equation (4) takes the form:

u
∂T

∂x
+ v

∂T

∂y
=

(
k

ρCp
+ 1

ρCp

16σ ∗T 3∞
3k∗

)
∂2T

∂y2
+ Q0

ρCp
(T − T∞) + μ

ρCp

(
∂u

∂y

)2

(7)

3 Method of Solution

The equation of continuity (1) is satisfied by introducing the stream function ψ such
that

u = ∂ψ

∂y
, v = −∂ψ

∂x
(8)

and with the following dimensionless variables:

η =
√
a

υ
y, ψ = √

aυ x f (η), N = ax

√
a

υ
ω(η), T = T∞ + qs(x)

k

√
υ

a
θ(η) (9)

So the modified equations of the flow can be written as

(1 + K ) f ′′′ + f f ′′ − (
f ′)2 + Kω′ − M f ′ + λθ = 0 (10)
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Gω′′ + f ω′ − f ′ω − K
(
2ω + f ′′) = 0 (11)

1

Pr

(
1 + 4

3
R

)
θ ′′ + f θ ′ − m f ′θ + Sθ + Ec ( f ′′)2 = 0 (12)

f = fw, f ′ = 1 + α(1 + K ) f ′′ , ω = −n f ′′, θ ′ = −1 at η = 0

f ′ → 0, ω → 0, θ → 0 as η → ∞

}
(13)

K = k

μ
, M = σ B2

0

aρ
, λ = gβT qs

√
υ

ka3/2
,G = γ

jμ
, j = υ

a
,Pr = μcp

k

R = 4σ ∗T 3∞
kk∗ , S = Q0

aρcp
, Ec =

√
υka3/2x2

cpqs
, α = μα∗

√
a

υ

(14)

The physical quantities of interest are the local skin-friction coefficient C f x , the
dimensionless wall couple stress Mx , and the local Nusselt number Nux , which are
defined as

C f x = 2τw

ρ(ax)2
, Mx = mw

ρaυx3
, Nux = xqw

κ(Tw − T∞)
(15)

where the local wall shear stress τW , the wall couple stress mw, and the heat transfer
from the plate qw are defined by

τW =
[
(μ + k)

∂u

∂y
+ kN

]
y=0

,mw = γ0

[
∂N

∂y

]
y=0

, qw = −k

(
∂T

∂y

)
y=0

(16)

Using the similarity variables (10), we get

C f xRe
1/2
x = −2(1 + K ) f ′′(0), MxRex = KGω′(0), NuxRe

−1/2
x = −θ ′(0) (17)

where Rex = ax2

υ
is the local Reynolds number.

4 Results and Discussion

Free convection of an electrically conducting micropolar fluid past a stretching
surface is considered in the current investigation. The characteristics of the energy
equation are enhanced by incorporating the heat generation/absorption parameter as
well as the viscous dissipation. In an addition, the slip boundary condition for the
velocity is considered which affects the flow phenomena. The physical significance
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Fig. 1 Validation of stream function f (η), Velocity f ′(η), Micro-rotation ω(η), and Temperature
θ(η) profile

of the contributing parameters are obtained and presented via graphs. The rate coef-
ficients for all the profiles are also displayed through graphs. The variation of several
parameters on the profiles is presented in the corresponding figures. Figure 1 depicts
the validation of the transverse velocity, longitudinal velocity, micro-rotation, and
the temperature profiles in the absence of magnetic field, thermal buoyancy, and the
thermal radiation. However, the result coincides with the work of Mahmoud et al.
[21] showing the conformity of the convergence procedure of the current method-
ology. Figure 2 exhibits the behavior of the suction/injection parameter for various
values of slip factor on the velocity distribution. The partial vacuum exerts upon a
liquid is caused by the suction. Reduction in pressure is marked due to the removal
of air from the space resulted to enter the fluid into the space. Therefore, the fluid
exerts from the higher pressure region to lower pressure region. In comparison to
suction and injection, it is seen that the suction lowers down the velocity profiles
irrespective of the slip or no slip region. However, in case of no slip condition,
the maximum velocity is rendered within the boundary layer and reduction in the
profile is observed with increasing slip. Pick in the micro-rotation profiles is marked
near the surface up to the region η ≤ 1 and afterwards sudden fall is marked in
Fig. 3. Moreover, suction produces higher pressure to reduce the profiles than that
of injection. Similar observation is rendered in case of slip parameter as described
in the Fig. 2. Figure 4 exhibits the distribution of temperature profiles for the vari-
ation of the suction/injection and slip parameters. It is observed that increasing slip
enhances the fluid temperature in the entire region of the thermal boundary layer
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and injection also favorable to increase the temperature as well. The values of the
material parameter (K ) indicates the Newtonian and non-Newtonian characteris-
tics of the fluid. K = 0 represents the Newtonian case and the K 	= 0 shows the
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non-Newtonian nature. However, in the present case we have considered the non-
Newtonian behavior of the fluid. Figure 5 illustrates the profiles of micro-rotation in
conjunction with suction/injection. An increase in the material parameter enhances
the micro-rotation profiles with pick near the surface and further it decelerates. The
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case of injection is also favorable to enhance it significantly. Figure 6 portrays the
wall surface condition parameter (n) with suction/injection parameter on the micro-
rotation distribution. The micro-rotation profile enhances rapidly near the surface
with increasing the wall surface condition parameter. However, the injection is now
favorable to enhance the profile for lower values of n but effect is reversed for higher
values. Irrespective of values of suction/injection parameter, buoyancy parameter
enriches the velocity profiles that exhibit in Fig. 7. The pressure difference results in
a net upward force on the object. Figures 8 and 9 describe the impact of thermal radia-
tion and heat source on the temperature profiles in conjunction with suction/injection
parameter. Thermal radiation is one of the characteristics that depends on the various
properties of the surface. Thermal enhancement occurs in the entire domain due to
increase in the thermal radiation and heat source parameter. The coupling of temper-
ature and velocity profile occurs due to the inclusion of coupling parameter, i.e.,
the Eckert number. Figure 10 describes the temperature distribution for the various
values of Eckert number. From the mathematical definition, it is clear that increasing
Eckert number enhances the fluid temperature. Finally, Figs. 11, 12, 13 display the
computational results of shear stress, rate of heat transfer, and the couple stress
for various values of suction/injection versus the slip parameter. The trend of the
graph shows the decelerating effect, whereas increasing suction increases the rate
coefficients with increasing slip.
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5 Conclusive Remarks

Free convection of micropolar fluid in conjunction with slip parameter and the effect
of heat source are exhibited in the present investigation. The behavior of character-
izing parameter on the flow phenomena is displayed and discussed. However, the
major contributions are laid down as

• The validation of present result with earlier established result shows the
conformity of the convergence procedure of the methodology employed.

• Retardation in the velocity profiles is marked due to increase in suction regardless
with the increase of slip parameter.

• The rate coefficients enhance with increasing suction with respect to the slip
parameter.
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Abstract This study presents a spatially dependent vaccination model considering
therapeutic impact with non-linear incidence rate where the spatial habitat is a subset
ofR

n with smooth boundary. Auxiliary results such as disease-free and disease equi-
librium states’ basic reproduction number are calculated. This study also includes
both local and global stability constraints, uniform persistence condition and exis-
tence of the unique solution of the model. Our study showed that the global stability
of the model depends on the threshold level R0 in the way that R0 ≤ 1 refers to
disease-free equilibrium E0 whereR0 > 1 indicates unique disease equilibrium E∗.
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1 Introduction

The terms “Vaccine” and “vaccinology” came into use soon after Edward Jenner
discovered the smallpox vaccine called “variola vaccinae”. The word “vaccine” orig-
inated from vacca, a Latin term for the cow. The credit for the first use of the term
“vaccine” goes to Swiss physician Louis Odier (1748–1817), and the terms “vacci-
nation” and “to vaccinate” were first used by Richard Dunning (1710–1797) [1].

Physicians from the times of Hippocrates (460–370 BC) tried to understand the
pattern of diseases in the community, though the word “epidemiology” was first used
in 1802 to describe the study of epidemics by Villalba, a Spanish physician, in the
Epidemiologìa Española [2]. In modern times, John Snow (1813–1858) andWilliam
Farr (1807–1883) pioneered the work on epidemiology [3]. Epidemiology, though
practiced from earlier times than vaccinology, gained attention and prominence in
the nineteenth century. Now, the practice of vaccinology has become closely linked
with that of epidemiology.

As most of the diseases have a recovered/immune stage for which vaccination is
successful and some other bacteria can remain in host without causing any disease
results in carriage, an SISmodel is popular in epidemiology to observe the dynamical
behaviors of the infectious disease. Amodel where recovery is short lived, i.e., brings
the populations return to the compartment of susceptiblity is considerable in this
action with vaccination as an SIS model [4].

Periodic fluctuations in abundance are common issues inmany infectious diseases.
Such periodicities may be shifted by outer factors, as contemplated in repeated trans-
mission defeats, e.g., seasonality [5–7], or may be caused by time delays [8], age
structure [9], or non-linearity of incidence rates.

The incidence rate means, the measure of the probability of occurrence of a given
medical circumstancewithin a specific time period or in brief, the number of renewed
briefs within a specific time period divided by the initial risk population size, i.e.,

Incidence rate = New cases

Population at risk
.

It also can be explained as the inverse of waiting time for an individual to be infected
in a specific disease condition as

Incidence rate = 1

Waiting time
.

Wilson and Worcester [10] were the first who introduced the general incidence
rate Sp. They underlined that they did so primarily “to investigate the consequences
of various assumptions when the laws are not known”. For their motivations, it is
also recognized that the suggested model does not fit the data well. In 1969, Severo
[11] considered the incidence rate of the form k I pSq while q < 1; but the details of
investigationwas not considered in the study. Capasso and Serio [12] updated another
incidence rate function such as kh(I )S and again the study was conditional; the term
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h′(0) must be finite and positive. If p �= 1 then the form k I pS excludes the previous
pattern. Later, Wangersky and Cunningham [13] noted that periodic solutions in
a model may exist with an incidence rate k(I S)p, provided p > 1. In 1986 and
1987, Liu et al. [14, 15] took some general incidence rates. They also established the
conditions forwhich adurable periodic solution is possible in case ofHopf bifurcation
and discussed feasible appointments underlying incidence rates H(I ), which is non-
linear. They also declared that it yet remained to consider two important factors:
various form of incidence rate and the outcomes of disease-persuaded mortality.

Since then, a lot of mathematical models have been studied with different types
of interesting incidence rates. In 2003, Gumel and Moghadas’ [16] introduced the
non-linear incidence rate H(I ) = I

1+I and the proposed mathematical epidemic is
defined as
⎧
⎪⎨

⎪⎩

St (t) = a − bq1H(I )S − (m + n)S + r I for t ∈ (0,∞), with S(0) = S0;
Vt (t) = nS − bq2H(I )V − mV for t ∈ (0,∞), with V (0) = V0;
It (t) = b(q1S + q2V )H(I ) − (m + r)I for t ∈ (0,∞), with I (0) = I0.

(1.1)

where S, V, I are the number of individuals in susceptible, vaccinated, and infectious
compartments at time t , respectively. The susceptible individuals recruitment rate is
a, q1 and q2 are the probabilities that the susceptible and vaccinated individuals will
be transmitted. The average number of contact partners is notified by the parameter
b, n is defined for vaccination coverage of susceptible populations, and m is the rate
of natural death. Since system (1.1) monitors the dynamics of population with spatial
heterogeneity, it concludes that all the parameters and variables are assumed to be
non-negative. Further, it is assumed that the prevalent disease does not kill infected
individuals and treatment does not offer permanent immunity.

They also added r as the therapeutic treatment coverage parameter of infected
individuals I (t) removed to S(t) compartment. Since, it is an SIS model, it refers
that the effectively treated infected individuals return to the susceptible compartments
and behaves the same and as vaccination therapy can either diminish or eliminate
the incidence of disease transmission, realistically it is observed that q2 ≤ q1.

Gumel and Moghadas [16] analyzed the characteristic equation of the model
and studied locally, its disease and disease-free equilibria and the optimal vaccine
coverage threshold needed for disease control and eradication analytically. Lately,
Buonomo et al. [17] constructed suitable Lyapunov functions and established global
results of both disease and disease-free steady state of system (1.1) by using LaSalle’s
invariance principle [18]. It is also remark that in this study they also considered the
treatment strategies and optimal vaccination tominimize the intervention and disease
compulsion.

It has been established that a more realistic biological–mathematical model
includes spatial variation as one of the principal factors that affect the spatial spread-
ing of disease [19, 20]. Considering the individual movements, we are interested
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here to consider diffusive version of the deterministic model (1.1) and improving the
incidence rate to a more general one.

We introduce α as the multiplicity of new cases of infection and β as the risk
factor coefficient, where α,β > 0 and surely α ≤ β. Then we form the incidence
rate function as following:

f (I ) = αI

1 + β I
(1.2)

We see here, f (I ) coincides with H(I ) when α = β = 1. And f (I ) gives a bilinear
incidence when β = 0.

Before considering the spatially dependent vaccination model, for simplicity let
us define the notations as A = � × (0,∞) and ∂A = ∂� × (0,∞). Now, in this
study, we propose the following spatially dependent vaccination problemwith amore
general incidence function (1.2) as

⎧
⎪⎨

⎪⎩

St (x, t) = ν�S + a − bq1 f (I (x, t))S(x, t) − (m + n) S(x, t) + r I (x, t) in A,

Vt (x, t) = υ�V + nS(x, t) − bq2 f (I (x, t))V (x, t) − mV (x, t) in A,

It (x, t) = ϑ�I + b (q1S(x, t) + q2V (x, t)) f (I (x, t)) − (m + r)I (x, t) in A.

where S(x, t), V (x, t), I (x, t) are the number of individuals in the susceptible, vac-
cinated, and infectious compartments at any time t > 0 and in location x ∈ �, respec-
tively, and the other parameters are same as in system (1.1). The symbolic notion
� is a spatial niche/domain in R

n with a respective smooth boundary ∂�, and the
well-known Laplacian Operator�, and ν, υ and ϑ are the diffusion rates. The model
represents the dynamical behaviors of population, all of its parametric values and
variables, for example, a, b,m, n, q1, q2 and r must be non-negative as in the non-
spatial model (1.1).

We know that in epidemiology, one of the fundamental issue is to find the stability
of the two constant steady states, i.e., disease-free equilibrium and disease equilib-
rium. Considering all notations, we have studied the model briefly and presenting
the results in this paper.

We have organized this paper with our results in the following manner.
In the primary phase, we check the well-posedness of the model verifying the

model flow scheme and the mathematical reasoning of the model system in Sect. 2.
Here, we calculated the analytic expressions for disease-free and disease equi-

librium positions in the Sect. 3.1 in Sect. 3. We also found the basic reproduction
number in a subsection of this Sect. 3.2.

The must proving theorems such as existence and uniqueness of the solution of
the model system is proved in Sect. 4.

Then in two Sects. 5.1 and 5.2 of Sect. 5, we showed the local and global steady
states along with responsible constraints.

Uniform persistence theorems for the model are also highlighted as an interplay
of our study in Sect. 6.

Finally, Sect. 7 discloses the summary of the results.
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2 The Well-Posedness

We proposed the model system of partial differential equation for this manuscript as

⎧
⎪⎨

⎪⎩

St (x, t) = ν�S + a − bq1 f (I (x, t))S(x, t) − (m + n) S(x, t) + r I (x, t) in A,

Vt (x, t) = υ�V + nS(x, t) − bq2 f (I (x, t))V (x, t) − mV (x, t) in A,

It (x, t) = ϑ�I + b (q1S(x, t) + q2V (x, t)) f (I (x, t)) − (m + r)I (x, t) in A.

(2.1)

along with the initial values,

⎧
⎪⎨

⎪⎩

S(x, 0) = S0(x) ≥ 0 in �,

V (x, 0) = V 0(x) ≥ 0 in �,

I (x, 0) = I 0(x) ≥ 0 in �.

(2.2)

and the zero-flux Neumann boundary conditions,

∂S

∂ω
(x, t) = ∂V

∂ω
(x, t) = ∂ I

∂ω
(x, t) = 0 on ∂A. (2.3)

where the operator
∂

∂ω
is the outward normal to the boundary, ∂�. The homogeneous

Neumann boundary conditions indicate that there is no movement of populations on
the boundary ∂� or the population going out and coming in are equal in number on
the boundary.

A schematic representation of the model (2.1) is shown in Fig. 1.

S(x, t)

I(x, t)

V(x, t)

Death

a

f(I) =
αI

1 + βI

n

bq1f(I(x, t))

bq2f(I(x, t))

r
m

m

m

Fig. 1 Modeling scheme
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3 Auxiliary Results

3.1 Disease-Free and Disease Equilibrium

To define the disease-free equilibrium (S0, V0, I0) of system (2.1), we write ν = υ =
ϑ = 0, since at equilibrium state diffusion is always absent; then

⎧
⎪⎨

⎪⎩

a − bq1 f (I0)S0 − (m + n) S0 + r I0 = 0,

nS0 − bq2 f (I0)V0 − mV0 = 0,

b (q1S0 + q2V0) f (I0) − (m + r)I0 = 0.

(3.1)

It is noted that for the disease-free equilibrium, we consider the count of compart-
ments of infectious individuals I0 = 0. Then we find,

⎧
⎪⎨

⎪⎩

a − (m + n)S0 = 0,

nS0 − mV0 = 0,

I0 = 0.

This gives the disease-free equilibrium as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0 = a

m + n
,

V0 = an

m(m + n)
,

I0 = 0.

(3.2)

Now, in the case of disease equilibrium (S∗, V ∗, I ∗), we write (2.1) as
⎧
⎪⎨

⎪⎩

a − bq1 f (I ∗)S∗ − (m + n)S∗ + r I ∗ = 0,

nS∗ − bq2 f (I ∗)V ∗ − mV ∗ = 0,

b (q1S∗ + q2V ∗) f (I ∗) − (m + r)I ∗ = 0.

(3.3)

Here, the number of compartments of infectious individuals I ∗ �= 0. Then, we find
the count of susceptible individuals in the form

S∗ = (a + r I ∗)(1 + β I ∗)
bq1αI ∗ + (m + n)(1 + β I ∗)

, (3.4)

and the vaccinated individuals

V ∗ = n(1 + β I ∗)2(a + r I ∗)
(bq1αI ∗ + (m + n)(1 + β I ∗))(bq2αI ∗ + m(1 + β I ∗))

. (3.5)
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Then, for the count of infectious individuals, we get the following polynomial of
degree two

α2(I
∗)2 + α1 I

∗ + α0 = 0, (3.6)

where

α2 = (ab2q1q2 − m(m + bq2)(m + n + bq1)),

α1 = (b(nq2 + amq1 + abq1q2) − m2(m + n + bq1) − m(m + n)(m + bq2)),

α0 = b(a + nq2 + amq1) − m2(m + n).

The real positive roots of (3.6) define the count of infectious individuals I ∗.
Thereby, we get the disease steady state E∗(S∗, V ∗, I ∗) of the model (2.1).

Now, from (3.4) and (3.5) we claim that

0 < S∗ <
a

m + n
, 0 < V ∗ <

an

m(m + n)
,

and similarly for I ∗

0 < I ∗ <
abα

(m + n)(m + r)

(
mq1 + nq2

m

)

.

3.2 Basic Reproduction Number

The basic reproduction number of a model, the expected number of secondary cases
reproduced by one infected individual during its entire infectious life, plays a numer-
ous role in epidemiology.

The Jacobian matrix of the linearized model (2.1) at E0 is

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(m + n) 0 −abq1α

m + n
+ r

n −m − abnq2α

m(m + n)

0 0
abα(mq1 + nq2)

m(m + n)
− (m + r)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

with eigenvalues λ1 = −(m + n),λ2 = −m and λ3 = abq1α

m + n
+ abnq2α

m(m + n)
−

(m + r). Since all the model parameters are positive, it can be easily observed that
λ1,λ2 < 0. Thus, the equilibrium E0 that is locally asymptotically stable provides
λ3 < 0. Hence, by the definition of basic reproduction number [21],R0 of (2.1) is
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R0 = abα(mq1 + nq2)

m(m + n)(m + r)
. (3.7)

4 Existence and Uniqueness of the Solution

Now, we are going to prove the existence and uniqueness of the solution of system
(2.1) by learning the algorithm from a similar study of Xu et al. [22].

Let us denote the subset ofR3 with vectors x ≥ 0 asR
3+ and supposeX := C(�, R)

is aBanach spacewith the supremumnorm‖ · ‖X.Alsowe considerX+ := C(�, R
3+)

then (X, X
+) as a stronglyordered space. Suppose that (T1(t), T2(t), T3(t)) : C(�, R)

→ C(�, R) is the C0 semigroups associated with ν� − (m + n), υ� − m and
ϑ� − (m + r) subject to the respective boundary conditions, respectively; no-flux
boundary conditions. It then follows that for any ρ ∈ C(�, R) and t ≥ 0

(T1(t)ρ(x)) = e−(m+n)t
∫

�

�1(x̄, t)ρ(y)dx

(T2(t)ρ(x)) = e−mt
∫

�

�2(x̄, t)ρ(y)dx

(T3(t)ρ(x)) = e−(m+r)t
∫

�

�3(x̄, t)ρ(y)dx,

where x̄ = (x, y); �i , i = 1, 2, 3are theGreen functions associatedwithν, υ, and ϑ,
subject to the Neumann boundary conditions, respectively. It then follows from [23]
that the function

Ti (t) : C(�, R) → C(�, R), i = 1, 2, 3, for all t > 0

is strongly positive and compact. Particularly,

T (t) = (T1(t), T2(t), T3(t)) : C(�, R) → C(�, R),∀ t ≥ 0

is a strongly continuous semigroup.
If Ai : G(Ai ) → X is the generated operator of Ti , i = 1, 2, 3, then T (t) =

(T1(t), T2(t), T3(t)) : X → X is a semigroup with operator A = (A1, A2, A3)which
is defined on G(A) := G(A1) × G(A2) × G(A3). Now for any ρ = (ρ1, ρ2, ρ3) ∈ X,
let us define F = (F1,F2,F3) : X

+ → X by

F1(ρ)(x) = a − bq1 f (ρ3)ρ1(x) − (m + n)ρ1(x) + rρ3(x), ∀ x ∈ �

F2(ρ)(x) = nρ1(x) − bq2 f (ρ3)ρ2(x) − mρ1(x), ∀ x ∈ �

F3(ρ)(x) = bq1 f (ρ3)ρ1(x) + bq2 f (ρ3)ρ2(x) − (m + r)ρ3(x), ∀ x ∈ �.

Using these operators, we can write (2.1)–(2.3) as the following integral equation
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u(t) = T (t)ρ +
∫ t

0
T (t − s)F(u(s))ds,

where

u(t) =
⎛

⎝
S(t)
V (t)
I (t)

⎞

⎠ , T (t) =
⎛

⎝
T1(t) 0 0
0 T2(t) 0
0 0 T3(t)

⎞

⎠ .

Bywritingu = (S, V, I ) and ρ = (S0, V0, I0) it can also be rewritten as the following
abstract differential equation

{
ut = Au + F(u), t > 0,

u0 = ρ ∈ X
+,

(4.1)

As long as F(ρ) is Lipschitz continuous locally onX
+, then for any ρ ∈ X

+, (4.1)
obeys a unique non-continuous mild function u(·, t, ρ) for which u(·, t, ρ) ∈ X for
every t in its maximummedium of existence. In addition, u(·, t, ρ) is a class of solu-
tion of (2.1) with Neumann boundary conditions (2.3) for all t > 0 as followed from
([24], Corollary 2.2.5). Moreover, using the maximum principle of scalar parabolic,
it is observed from (2.1) that all compartments S(x, t), V (x, t), and I (x, t) are non-
negative. Consequently, we get the basic result on solution of the governing Eqs.
(2.1)–(2.3).

Lemma 1 Define the initial value function ρ = (ρ1, ρ2, ρ3) ∈ X
+. Then for any ρ,

system (2.1)–(2.3) has a unique solution u(x, t, ρ) on [0,σρ) with u(x, t, ρ) = ρ and
u(·, t, ρ) ∈ X

+, ∀ t ∈ [0,σρ), while σρ ≤ ∞.

Now its time to show that the solution of the problem (2.1)–(2.3) indeed exists
globally with the initial function ρ ∈ X

+, that is, σ = ∞. To this conclusion, we
need Lemma 1 as prescribed in ([25]).

Consider the single variable reaction-diffusion equation

⎧
⎨

⎩

vt (x, t) = D�v(x, t) + A − dv(x, t), in A,

∂v

∂ω
(x, t) = 0, on ∂A,

(4.2)

where D, A, and d are all strictly positive and constants.

Lemma 2 Eq. (4.2) has a unique positive equilibrium v∗ = A
d which is globally

attractive in C(�, R).

Now we are ready to produce the proof of the following theorem

Theorem 1 Forany initial valueρ ∈ X
+, Eqs. (2.1)–(2.3) has a unique positive solu-

tion u(·, t, ρ) on [0,∞). In addition, the solution semiflow �(t) := u(·, t) : X
+ →

X
+, t ≥ 0 has an attractor in X

+ which is globally compact.
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Proof By Lemma 1, system (2.1)–(2.3) has a solution u(·, t, ρ) which is unique on
[0,σρ) and u(x, t, ρ) ≥ 0 for any x ∈ � while t ∈ [0,σρ). It is seen from Lemma 2
that the global attractor is a

m+n for the following spatial equation

⎧
⎨

⎩

vt (x, t) = ν�v(x, t) + a − (m + n)v(x, t) + rv(x, t), in A,

∂v

∂ω
(x, t) = 0, on ∂A.

It is noted that since

St (x, t) ≤ ν�S(x, t) + a − (m + n)v(x, t) + rv(x, t), ∀ t ∈ [0,σρ), x ∈ �,

(4.3)
for parabolic equation, the standard comparison theorem [23] implies that S(·, t, ρ)

is bounded on [0,σρ); so, there exist S0 > 0 such that S(·, t, ρ) ≤ S0,∀ t ∈ [0,σρ).
Thus we obtain the following inequalities from the second equation of (2.1) and
hence

Vt (x, t) ≤ υ�V (x, t) + nS0 − mV (x, t), ∀ t ∈ [0,σρ), x ∈ �.

Again, V (·, t, ρ) is bounded on [0,σρ) using the comparison theorem and
Lemma 2, that is, there is a V0 > 0 such that V (·, t, ρ) ≤ V0 for all t ∈ [0,σρ).
Therefore, the third equation of (2.1) due to

It (x, t) ≤ ϑ�I (x, t) + bq1S0 + bq2V0 − (m + r)I (x, t), ∀ t ∈ [0,σρ), x ∈ �.

As a consequence, we have a bounded solution u(·, t, ρ) on [0, ρ) and hence σρ = ∞
for each ρ ∈ X

+.
By theorem (4.3), for any ρ ∈ X

+, it is clear that there exist some t1 = t1(ρ) > 0
such that

S(x, t) ≤ a

m + n
+ 1 := M1, ∀ t ≥ t1, x ∈ �.

Using the similar arguments as mentioned above, it can be shown that there are
Mi > 0, independent of the choice of ρ ∈ X

+ and ti = ti (ρ) > 0, (i = 1, 2, 3), such
that

V (x, t) ≤ M2, I (x, t) ≤ M3; ∀ t ≥ t1, x ∈ �.

As a result, the non-negative solution of (2.1)–(2.3) are finally bounded in case
of maximum norm. This influence the semiflow of solution �(t) : X

+ → X
+ as

designed by (�(t)ρ)(x) = u(x, t, ρ), x ∈ �, is point dissipative. However, �(t) is
compact in view of [24] for any t > 0. Therefore, the solution�(t) : X

+ → X
+, t ≥

0, has a global compact attractor in X
+ [26]. Hence the proof. �
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5 Analysis of Steady States

5.1 Local Steady States

In this subsection, the local stability of the steady states for system (2.1) is explained.
Thus we consider the proof of our second result:

Theorem 2 The disease-free equilibrium E0 of system (2.1) is locally asymptotically
stable when R0 < 1.

Proof By linearizing system (2.1) at E0, we get

ut = δ�u(x, t) + �1u(x, t),

where

δ =
⎛

⎝
ν 0 0
0 υ 0
0 0 ϑ

⎞

⎠ ,

�1 =
⎛

⎝
−(m + n) 0 −bq1S0 + r

n −m −bq2V0

0 0 bq1S0 + bq2V0 − (m + r)

⎞

⎠ .

Then, one can find the characteristic polynomial, and they are defined as follows:

|λI + δL2 − �1| = 0,

where the eigenvalue, λ, determines temporal growth, L is the wave-number and
identity matrix is I with size 3 × 3 [20]. Then, we get

(λ + νL2 + m + n)(λ + υL2 + m)(λ + ϑL2 + m + r − bq1S0 − bq2V0) = 0.
(5.1)

Now, it is clear that

λ1 = −(νL2 + m + n) < 0,

λ2 = −(νL3 + m) < 0,

and λ3 = −(ϑL2 + m + r − bq1S0 − bq2V0)

= −(ϑL2 + (m + r)(1 − R0)).

It follows fromR0 < 1 that E0 is locally asymptotically stable. �

Theorem 3 When R0 > 1, the disease equilibrium E∗ of system (2.1) is locally
asymptotically stable.
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Proof Linearizing system (2.1) at E∗, we obtain

ut = δ�u(x, t) + �2u(x, t),

where

�2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

m + n + bq1αI∗
1 + β I∗

)

0 − bq1αS
∗

(1 + β I∗)2
+ r

n −
(

m + bq2αI∗
1 + β I∗

)

− bq2αV
∗

(1 + β I∗)2

bq1αI∗
1 + β I∗

bq2αI∗
1 + β I∗

b(q1S
∗ + q2V

∗)α

(1 + β I∗)2
− (m + r)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, we obtain the following characteristic equation

λ3 + G1(L2)λ2 + G2(L2)λ + G3(L2) = 0 (5.2)

where

G1(L2) = νL2 + m + n + bq1 f (I
∗) + υL2 + m + bq2 f (I

∗)
+ ϑL2 + m + r − b

(
q1S

∗ + q2V
∗) f (I ∗),

G2(L2) =
(
υL2 + m + bq2 f (I

∗)
) (

ϑL2 + m + r
)

+ bq1S
∗ α

(1 + β I ∗)2
bq1 f (I

∗)

+
(
νL2 + m + n + bq1 f (I

∗)
) (

υL2 + m + bq2 f (I
∗) + ϑL2 + m + r

)

+ bq2V
∗ α

(1 + β I ∗)2
bq2 f (I

∗) −
(
νL2 + υL2 + 2m + n + b(q1 + q2) f (I

∗)
)

×
(

bq1S
∗ α

(1 + β I ∗)2
+ bq2V

∗ α

(1 + β I ∗)2

)

,

G3(L2) =
(
νL2 + m + n + bq1 f (I

∗)
) (

υL2 + m + bq2 f (I
∗)

) (
ϑL2 + m + r

)

+ bq2V
∗ α

(1 + β I ∗)2
bq2 f (I

∗)(ϑL2 + m + r) + nbq1S
∗ α

(1 + β I ∗)2
bq2 f (I

∗)

+ bq1S
∗ α

(1 + β I ∗)2
bq1 f (I

∗)
(
υL2 + m + bq2 f (I

∗)
)

−
(
νL2 + m + n + bq1 f (I

∗)
) (

υL2 + m + bq2 f (I
∗)

)

×
(

bq1S
∗ α

(1 + β I ∗)2
+ bq2V

∗ α

(1 + β I ∗)2

)

− bq2 f (I
∗)bq2

α

(1 + β I ∗)2

(

bq1S
∗ α

(1 + β I ∗)2
+ bq2V

∗ α

(1 + β I ∗)2

)

.

Now, let us take

bq1S
∗ α

(1 + β I ∗)2
+ bq2V

∗ α

(1 + β I ∗)2
≤ b(q1S

∗ + q2V
∗)

α

1 + β I ∗ = m + r ,

then we can get



A Spatially Dependent Vaccination Model … 335

G1(L2) ≥ νL2 + m + n + bq1 f (I
∗) + υL2 + m + bq2 f (I

∗) + ϑL2 > 0 ,

G2(L2) > ϑL2 (
υL2 + m + bq2 f (I

∗)
)

> 0 ,

G3(L2) >
(
νL2 + m + n + bq1 f (I

∗)
) (

υL2 + m + bq2 f (I
∗)

)
ϑL2 > 0 .

These lead us to the following conclusion:

G1(L2)G2(L2) − G3(L2) > bq2 f (I
∗)bq2V ∗ α

(1 + β I ∗)2
b(q1S

∗ + q2V
∗) α

(1 + β I ∗)2
> 0 .

Introducing the Routh–Hurwitz criterion, it is known that all eigenvalues of (5.2)
have negative real parts. It concludes that as long asR0 > 1, the disease equilibrium
E∗ of (5.2) is locally asymptotically stable. �

5.2 Global Steady States

In this section, we investigate the global stability of the two constant equilibria
E0 and E∗ in the case of a boundeddomain� inwhich E≡(S(x, t), V (x, t), I (x, t))
is an arbitrary solution of (2.1) and is positive. For convenience, let us first consider
the following shortcuts:

S ≡ S(x, t), V ≡ V (x, t), I ≡ I (x, t).

(h1) Let, Q(x, t, S) = ∫

�

(
S0
S

− 1

)

dx and Q(x, t, S) is monotonically increasing

in S.

In case of global analysis, we consider a Lyapunov function and the results varies
with basic reproduction number.

At this phase, we are in stable setting to establish the global stability theorems as
the following:

Theorem 4 IfR0 ≤ 1 andQ(x, t, S) satisfies 5.2 then the disease-free equilibrium
E0(S0, V0, I0) of system (2.1) is globally asymptotically stable.

Proof Let define a Lyapunov function as

L1(t) =
∫

�

W1(x, t)dx,

where

W1(x, t) = S0

(
S

S0
− 1 − ln

S

S0

)

+ V0

(
V

V0
− 1 − ln

V

V0

)

+ I.

Differentiating W1(x, t) with respect to time, t , along the solution of (2.1) gives



336 M. S. Mahmud et al.

∂W1

∂t
=

(

1 − S0
S

)

St (x, t) +
(

1 − V0

V

)

Vt (x, t) + It (x, t).

Then from (2.1), we can write

∂W1

∂t
=

(

1 − S0
S

)

(ν�S + a − bq1 f (I )S − (m + n)S + r I )

+
(

1 − V0

V

)

(υ�V + nS − bq2 f (I )V − mV )

+ (ϑ�I + bq1 f (I )S + bq2 f (I )V − (m + r)I ).

But, as a = (m + n)S0 and mV0 = nS0, we can write

∂W1

∂t
=

(

1 − S0
S

)

ν�S +
(

1 − V0
V

)

υ�V + ϑ�I + mS0

(

2 − S

S0
− S0

S

)

+ nS0

(

3 − S0
S

− V

V0
− S

S0

V0
V

)

− (m + r)(1 + β I − R0)
I

1 + β I
+

(

1 − S0
S

)

r I.

Applying Green’s formula and no-flux boundary conditions (2.3), we have

∫

�

�Sdx =
∫

∂�

∂S

∂ω
dS = 0. (5.3)

Similarly, ∫

�

�V dx =
∫

�

�Idx = 0. (5.4)

Again, by homogeneous Neumann boundary conditions (2.3) and Green’s formula,
we get the Green’s first identity as

∫

�

(
�S

S
− ‖∇S‖2

S2

)

dx =
∫

∂�

1

S
(∇S · ω)dS = 0,

which implies
∫

�

�S

S
dx =

∫

�

‖∇S‖2
S2

dx . (5.5)

By the same arguments, we also can write

∫

�

�V

V
dx =

∫

�

‖∇V ‖2
V 2

dx, (5.6)

and
∫

�

�I

I
dx =

∫

�

‖∇ I‖2
I 2

dx . (5.7)
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Then using the above arguments, we have

dL1

dt
= − νS0

∫

�

‖∇S‖2
S2

dx − υV0

∫

�

‖∇V ‖2
V 2 dx + mS0

∫

�

(

2 − S

S0
− S0

S

)

dx

+ nS0

∫

�

(

3 − S0
S

− V

V0
− S

S0

V0
V

)

dx − (m + r)
∫

�

(

(1 + β I − R0)
I

1 + β I

)

dx

+ r
∫

�

I

(

1 − S0
S

)

dx,

= − νS0

∫

�

‖∇S‖2
S2

dx − υV0

∫

�

‖∇V ‖2
V 2 dx − mS0

∫

�

(S − S0)2

S0S
dx

− nS0

∫

�

(
S0
S

+ V

V0
+ S

S0

V0
V

− 3

)

dx − (m + r)
∫

�

(

(1 + β I − R0)
I

1 + β I

)

dx

− r
∫

�

I

(
S0
S

− 1

)

dx .

≤ − νS0

∫

�

‖∇S‖2
S2

dx − υV0

∫

�

‖∇V ‖2
V 2 dx − mS0

∫

�

(S − S0)2

S0S
dx

− nS0

∫

�

(
S0
S

+ V

V0
+ S

S0

V0
V

− 3

)

dx − (m + r)
∫

�

(

(1 + β I − R0)
I

1 + β I

)

dx

− r min
x∈�

IQ(x, t, S)

where Q(x, t, S) = ∫

�

(
S0
S

− 1

)

dx . Thus, using the property (h1) and whenever

R0 ≤ 1, we get dL1
dt ≤ 0.

When S = S0, V = V0, I = 0; we calculate, dL1
dt = 0 and vice-versa. Conse-

quently, the singleton E0 is the greatest compact invariant set in {(S, V, I ) ∈
C(�, R

3+) : dL1
dt = 0}. Then,LaSalle’s invarianceprinciple [27] refers to lim

t→∞(S, V, I )

→ E0;whichmeans,wheneverR0 ≤ 1, the disease-free equilibrium E0 = (S0, V0, 0)
is globally asymptotically stable. This establishes Theorem 4. �

In a similar manner, the disease equilibrium of (2.1) is globally asymptotically
stable and the proof is prescribed as follows:

Theorem 5 The disease equilibrium E∗(S∗, V ∗, I ∗) of (2.1) is globally asymptoti-
cally stable whileR0 > 1.

Proof Let us define a Lyapunov function as

L2(t) =
∫

�

W2(x, t)dx,

where

W2(x, t) = S∗
(

S

S∗ − 1 − ln
S

S∗

)

+ V ∗
(

V

V ∗ − 1 − ln
V

V ∗

)

+ I ∗
(

I

I ∗ − 1 − ln
I

I ∗

)

.
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Calculating W2(x, t) with respect to the time derivative and the solution of (2.1)
gives

∂W2

∂t
=

(

1 − S∗

S

)

St (x, t) +
(

1 − V ∗

V

)

Vt (x, t) +
(

1 − I ∗

I

)

It (x, t).

Then from (2.1), it can be written as

∂W2

∂t
=

(

1 − S∗

S

)

(ν�S + a − bq1 f (I )S − (m + n)S + r I )

+
(

1 − V ∗

V

)

(υ�V + nS − bq2 f (I )V − mV )

+ (
I − I ∗)

(
ϑ�I

I
+ bq1

α

1 + β I
S + bq2

α

1 + β I
V − (m + r)

)

. (5.8)

Note that from (3.3), we have

a = bq1 f (I
∗)S∗ + (m + n)S∗ − r I ∗,

nS∗ = bq2 f (I
∗)V ∗ + mV ∗,

(m + r)I ∗ = b(q1S
∗ + q2V

∗) f (I ∗).

and by substituting these in (5.8) yields

∂W2

∂t
=

(

1 − S∗
S

)

ν�S +
(

1 − V ∗
V

)

υ�V +
(

1 − I∗
I

)

ϑ�I

+
(

1 − S∗
S

)

(bq1 f (I
∗)S∗ + (m + n)S∗ − r I∗ − bq1 f (I )S − (m + n)S + r I )

+
(

1 − V ∗
V

)

(nS∗
(

S

S∗ − V

V ∗
)

+ nS∗ V

V ∗ − bq2 f (I )V − mV )

+
(

I

I∗ − 1

)

(bq1
αI∗

1 + β I
S + bq2

αI∗
1 + β I

V − (m + r)I∗),

=
(

1 − S∗
S

)

ν�S +
(

1 − V ∗
V

)

υ�V +
(

1 − I∗
I

)

ϑ�I

+
(

1 − S∗
S

)(

(m + n)S∗
(

1 − S

S∗
)

+ bq1 f (I
∗)S∗

(

1 − S

S∗
f (I )

f (I∗)

)

− r I∗
(

1 − I

I∗
))

+
(

1 − V ∗
V

)

(nS∗
(

S

S∗ − V

V ∗
)

+ (bq2 f (I
∗)V ∗ + mV ∗)

V

V ∗ − bq2 f (I )V − mV )

+
(

I

I∗ − 1

)

(bq1
αI∗

1 + β I
S + bq2

αI∗
1 + β I

V − b(q1S
∗ + q2V

∗) f (I∗)),

=
(

1 − S∗
S

)

ν�S +
(

1 − V ∗
V

)

υ�V +
(

1 − I∗
I

)

ϑ�I

+
(

1 − S∗
S

)(

(m + n)S∗
(

1 − S

S∗
)

+ bq1 f (I )S
∗

(

1 − S

S∗
f (I )

f (I∗)

))

+
(

1 − V ∗
V

) (

nS∗
(

S

S∗ − V

V ∗
)

+ bq2 f (I
∗)V

(

1 − f (I )

f (I∗)

))
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+
(

I

I∗ − 1

)(

bq1 f (I
∗)S∗

(
S

S∗
1 + β I∗
1 + β I

− 1

)

+ bq2 f (I
∗)V ∗

(
V

V ∗
1 + β I∗
1 + β I

− 1

))

−
(

1 − S∗
S

)

r I∗
(

1 − I

I∗
)

,

=
(

1 − S∗
S

)

ν�S +
(

1 − V ∗
V

)

υ�V +
(

1 − I∗
I

)

ϑ�I

+ mS∗
(

2 − S

S∗ − S∗
S

)

+ mV ∗
(

3 − S∗
S

− V

V ∗ − S

S∗
V ∗
V

)

+ bq1 f (I
∗)S∗

(

3 − S∗
S

− S

S∗
1 + β I∗
1 + β I

− 1 + β I

1 + β I∗
)

−b(q1S
∗ + q2V

∗)
αβ(I − I∗)2

(1 + β I )(1 + β I∗)2

+ bq2 f (I
∗)V ∗

(

4 − S∗
S

− S

S∗
V ∗
V

− 1 + β I

1 + β I∗ − V

V ∗
1 + β I∗
1 + β I

)

−
(

1 − S∗
S

)

r I∗
(

1 − I

I∗
)

.

Applying the Green’s formula and no-flux (natural) boundary conditions, we obtain

dL2

dt
= − νS∗

∫

�

‖∇S‖2
S2

dx − υV ∗
∫

�

‖∇V ‖2
V 2

dx − ϑI ∗
∫

�

‖∇ I‖2
I 2

dx

+ mS∗
∫

�

(

2 − S

S∗ − S∗

S

)

dx + mV ∗
∫

�

(

3 − S∗

S
− V

V ∗ − S

S∗
V ∗

V

)

dx

+ bq1 f (I
∗)S∗

∫

�

(

3 − S∗

S
− S

S∗
1 + β I ∗

1 + β I
− 1 + β I

1 + β I ∗

)

dx

− b(q1S
∗ + q2V

∗)αβ

∫

�

(I − I ∗)2

(1 + β I )(1 + β I ∗)2
dx

+ bq2 f (I
∗)V ∗

∫

�

(

4 − S∗

S
− S

S∗
V ∗

V
− 1 + β I

1 + β I ∗ − V

V ∗
1 + β I ∗

1 + β I

)

dx

+ r I ∗
∫

�

(
S∗

S
+ I

I ∗ − S∗

S

I

I ∗ − 1

)

dx . (5.9)

We know that the geometric mean is less than or equal to the arithmetic mean.
Consequently, for all strictly positive S, V and I , we find

2 − S

S∗ − S∗

S
≤ 0,

3 − S∗

S
− V

V ∗ − S

S∗
V ∗

V
≤ 0,

3 − S∗

S
− S

S∗
1 + β I ∗

1 + β I
− 1 + β I

1 + β I ∗ ≤ 0,

and 4 − S∗

S
− S

S∗
V ∗

V
− 1 + β I

1 + β I ∗ − V

V ∗
1 + β I ∗

1 + β I
≤ 0.
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Let,

Zsup = r I ∗
∫

�

(
S∗

S
+ I

I ∗ − S∗

S

I

I ∗ − 1

)

dx .

Now, we need Zsup to be zero or negative.
If either r = 0 or S = S∗ and I = I ∗ then Zsup = 0.
But, if r is positive, then we can find a simply connected and positively invariant

set containing no closed orbits by Bendixon’s negative criterion, and the integralZsup

is dominated by the negativity of other integrals in (5.9).
Thus, Eq. (5.9) reveals that dL2

dt ≤ 0 for S, V, I > 0. Since the above inequalities
become equalities whenever S ≡ S∗, V ≡ V ∗ and I ≡ I ∗ and hence dL2

dt = 0 for
(S, V, I ) = (S∗, V ∗, I ∗). Now, LaSalle’s invariance principle [27] refers to

lim
t→∞(S(x, t), V (x, t), I (x, t)) → E∗;

which means, when R0 > 1, the disease equilibrium E∗ = (S∗, V ∗, I ∗) is globally
asymptotically stable.

This concludes the proof. �

6 Uniform Persistence

We first linearize the last equation of system (2.1) at the disease-free equilibrium E0

and get the following:

⎧
⎨

⎩

It (x, t) = ϑ�I + b(q1S0 + q2V0)I − (m + r)I in A,

∂ I

∂ω
= 0 in ∂A.

(6.1)

Then referring the strategy followed in ([19], Theorem 2.2), ([20], Theorem 2), ([22],
Theorem 3.2), ([23], Theorem 4.2), ([25], Theorem 2.11), ([27], Theorem 4.2), ([28],
Theorem 3.4); Y. Yang et al. [29] established the uniform persistence result for their
respective system through the following procedure.

Setting I (x, t) = eλt ρ̂(x), we get

⎧
⎨

⎩

λρ̂(x) = ϑ�ρ̂(x) + (bq1S0 + bq2V0)ρ̂(x) − (m + r)ρ̂(x) for x ∈ �,

∂ρ̂(x)

∂ω
= 0 for x ∈ ∂�.

(6.2)

Nowsubstituting ρ̂(x) ≡ 1 and the values of S0, V0 into (6.2), the principal eigenvalue
of (6.1) is

λ(S0, V0) = b(q1S0 + q2V0) − (m + r) = (m + r)(R0 − 1).
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Corresponding to this eigenvalue, there is the unique positive eigenfunction ρ̂(x) ≡ 1.
Thus, observing this equation we can claim the following lemma:

Lemma 3 The principal eigenvalue, λ(S0, V0) has the same sign as (R0 − 1).

To claim the uniform persistence of (2.1)–(2.3), we now establish the following
lemma and theorem using the similar arguments from [29].

Lemma 4 If u(x, t, ρ) is the solution of (2.1)–(2.3) such that u(·, 0, ρ) = ρ ∈ X+,
then

(i) for any ρ ∈ X+, always there exist S(x, t, ρ) > 0 and V (x, t, ρ) > 0 in A.
Furthermore, we have

lim
t→∞ inf S(x, t) ≥ a

m + n + bq1
, uniformly for x ∈ �,

and

lim
t→∞ inf V (x, t) ≥ an

2(m + n + bq1)(m + bq2)
, uniformly for x ∈ �,

(ii) if there exists some t0 ≥ 0 such that I (·, t0, ρ) �≡ 0 is not true, then I (x, t, ρ) >

0, ∀ x ∈ �, t > t0.

Proof From the system of equations in (2.1), clearly it concludes that S(x, t, ρ) > 0
and V (x, t, ρ) > 0 in A for any ρ ∈ X

+. Then,

St (x, t) ≥ ν�S + a − (bq1 + m + n − r)S in A.

Now applying (Lemma 1, [25]) and the comparison principle, we get

lim
t→∞ inf S(x, t) ≥ a

m + n + bq1
, uniformly for x ∈ �.

Then there exists a t1 > 0 such that

S(x, t) ≥ 1

2

a

m + n + bq1
, ∀ t ≥ t1.

Consequently, the second equation of (2.1) follows that

lim
t→∞ inf V (x, t) ≥ an

2(m + n + bq1)(m + bq2)
,

uniformly for x ∈ �. Finally, from the third equation of system (2.1), we can write

⎧
⎨

⎩

It (x, t) ≥ ϑ�I − (m + r)I in A,

∂ I

∂ω
= 0 in ∂A.
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By the strong maximum principle and the Hopf boundary Lemma [30], this result is
valid. �

After the completion of the above arguments, we get the solutions for disease
persistence as described in the following theorem:

Theorem 6 If R0 > 1 then a constant η > 0 exists such that for any ρ ∈ X
+ with

ρ3(·) �≡ 0, we obtain the following inequalities

lim
t→∞ inf S(x, t) ≥ η, lim

t→∞ inf V (x, t) ≥ η, lim
t→∞ inf I (x, t) ≥ η, uniformly for x ∈ �.

Proof Let
X0 := {ρ ∈ X

+ : ρ3(·) �= 0},

and
∂X0 := X

+ \ X0 = {ρ ∈ X
+ : ρ3(·) = 0},

By Lemma 4 and for any ρ ∈ X0, we get I (x, t, ρ) > 0, in A, that is, �tX0 ⊆
X0, ∀ t ≥ 0.

Let define R∂ := {θ ∈ X0 : �t (θ) ∈ ∂X0, ∀ t ≥ 0}, and ω(θ) be the omega limit
set of the orbit O+(θ) := {�t (θ) : t ≥ 0}. Now, first, let us claim that ω(ρ) =
{(S0, V0, 0)}, ∀ θ ∈ R∂ .

Since ρ ∈ R∂ , we have �t (ρ) ∈ ∂X0, ∀ t ≥ 0. Hence, I (·, t, ρ) ≡ 0. From the
first equation of (2.1), it is clear that lim

t→∞ S(x, t, ρ) = S0 uniformly for x ∈ �. Hence

ω(ρ) = {(S0, V0, 0)}, ∀ ρ ∈ R∂ . It follows from Lemma 3 that λ(S0, V0) > 0 when
R0 > 1. By the continuity of λ(S0, V0), there exists a sufficiently small positive

number δ0 > 0 such that λ
(

S0−αδ0
1+βδ0

, V0−αδ0
1+βδ0

)
> 0.

Let us now claim that (S0, V0, 0) is a uniform weak repeller for X0 in the sense
that

lim
t→∞ sup |�t (ρ) − (S0, V0, 0)| ≥ δ0, ∀ ρ ∈ X0.

Suppose, by contradiction, there exists ρ0 ∈ X0 such that

lim
t→∞ sup |�t (ρ0) − (S0, V0, 0)| < δ0.

Then there exists t2 > 0 such that S(x, t, ρ0) > S0 − δ0, V (x, t, ρ0) > V0 − δ0 and
0 < I (x, t, ρ0) < δ0, for all x ∈ � and t ≥ t2. Therefore, I (x, t, ρ0) satisfies

⎧
⎪⎨

⎪⎩

It (x, t) ≥ ϑ�I + b(q1(S0 − αδ0) + q2(V0 − αδ0))

1 + βδ0
I − (m + r)I for x ∈ � and t ≥ t2,

∂ I

∂ω
= 0 for x ∈ ∂� and t ≥ t2.

By Lemma 3, it is noted that the eigenfunction ρ̂ is strongly positive correspond-

ing to the eigenvalue λ
(

S0−αδ0
1+βδ0

, V0−αδ0
1+βδ0

)
. For all x ∈ � and t > 0, the positive
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function I (x, t, ρ0) > 0 ensures that there exists ε > 0 such that I (x, t, ρ0) ≥ ερ̂.

Clearly, u(x, t) = ε exp
(
λ

(
S0−αδ0
1+βδ0

, V0−αδ0
1+βδ0

)
(t − t2)

)
ρ̂ is a solution of the system

as described

⎧
⎪⎨

⎪⎩

ut ≥ ϑ�u + b(q1(S0 − αδ0) + q2(V0 − αδ0))

1 + βδ0
u − (m + r)u for x ∈ � and t ≥ t2,

∂u

∂ω
= 0 for x ∈ ∂� and t ≥ t2.

Thus the comparison principle yields

I (x, t, ρ0) ≥ ε exp

(

λ

(
S0 − αδ0
1 + βδ0

,
V0 − αδ0
1 + βδ0

)

(t − t2)

)

ρ̂, for x ∈ � and t ≥ t2.

This concludes that I (x, t, ρ0) is bounded, a contradiction.
Define a map P : X

+ → [0,∞) by

P(ρ) = min
x∈�

ρ3(x), ∀ ρ ∈ X
+.

From this continuous function, it is clear that P−1(0,∞) ⊆ X0. Additionally, it is
derived that if P(ρ) > 0 or P(ρ) = 0 and ρ ∈ X0, then P(�t (ρ)) > 0 for all t > 0.
Therefore, for the semiflow �t : X

+ → X
+, the distance function P is generalized.

By observing the above discussion it is remarked that any forward orbit of �t in R∂

converges to {(S0, V0, 0)}. Also it is explicitly obvious that {(S0, V0, 0)} is far away in
X

+ and Ws(S0, V0, 0) ∩ X0 = ∅. Further, there is no cycle in R∂ from {(S0, V0, 0)}
to {(S0, V0, 0)}. Applying the result (Theorem 3) as prescribed in [31] that there
exists a � > 0 such that

min
ψ∈ω(ρ)

P(ψ) > �, ∀ ρ ∈ X0.

Thus,
lim
t→∞ inf I (·, t, ρ) ≥ �, ∀ ρ ∈ X0.

Then by Lemma 4(i), the result is established. �

7 Conclusion

In this paper, a spatially dependent vaccination model considering a general non-
linear incidence rate in epidemiology is established with all its perspective aspects
such as, analytic inter-locution of disease-free equilibrium, disease equilibrium, basic
reproduction number, existence and uniqueness of the solution of the corresponding
system, stability of local and global steady states and uniform persistence theorem
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for the system. Our study indicate that the dynamics of the model whether local
or global is completely determined by the threshold value R0. This study will help
to predict the upcoming probable results of treatments via vaccination and therapy
against malignant diseases considering general incidence cases.
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Robust Approach for Uncertain Portfolio
Allocation Problems Under Box
Uncertainty

Pulak Swain and A. K. Ojha

Abstract Portfolio Optimization is the process of investing the total wealth among
different assets to get maximum return out of it with a least possible risk. Several
risk-return optimization models can be used to determine the weights which should
be given to each asset for the optimal profit. But there is a high possibility of the
results being affected by the uncertainty in input parameters, namely, expected return
and risk. A small perturbation in the input parameters can mislead the investor to
invest in an inefficient portfolio. In uncertainty-based optimization problems, the
uncertain parameters are assumed to lie in some specific uncertainty structure like
box, ellipsoidal, polyhedral, etc. In the last two decades such problems are dealt with
Robust Optimization approach, where the worst-case scenario problem is solved
to get “immunized against uncertainty” solutions. This paper provides a discus-
sion on robust mean–variance and robust mean-semi-variance problems under box
uncertainty.

Keywords Portfolio optimization · Robust optimization · Box uncertainty

1 Introduction

Markowitz in 1952 formed an optimization model to solve investment related prob-
lems [1, 2]. His model is based on taking mean and variance of return as the input
parameters for reward and risk, respectively.However, hismean–variancemodel does
not seem to be appropriate when the return distribution is asymmetrical. Therefore,
in many studies alternative measures of risk such as semi-variance, semi-absolute
deviation, value at risk, and conditional value at risk have been used [3–5]. These
measures are called downside risk measures as they consider only the lower side
of variation from mean. By solving these portfolio models, we can get the optimal
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weights for allocating the assets. However, these models are very much sensitive
to uncertainty in the input parameters. The uncertainty is due to the estimation of
expected return and the covariance of return from the past historical return data.

Since the last two decades, the uncertainty-based optimization problems are being
handled well by Robust Optimization approach. In this approach, we optimize the
worst-case scenario problem to get a robust solution. Ben-Tal and Nemirovski [6]
first introduced robust optimization for linear optimization problems and later it was
applied in several other types of optimization problems. Robust optimization got
tremendous success because of its diverse application in several fields [7, 8]. There
have been many studies on the robust approach for portfolio optimization problems
[9–11].

The goal of this paper is

(i) To derive the robust counterpart of uncertain mean–variance and mean-semi-
variance models under box uncertainty.

(ii) To solve a portfolio problem with different orders of perturbation for input
parameters in box uncertainty.

(iii) To compare the results of both mean–variance andmean-semi-variance models
and to analyze which model can be more affected by uncertainty.

The organization of the paper is as follows: Sect. 2 presents a preliminary discus-
sion on mean–variance and mean-semi-variance models and box uncertainty. In
Sect. 3, we derive the robust counterpart of both the portfolio models for box uncer-
tainty. In Sect. 4, a portfolio problem has been solved for both the models under box
uncertainty and the result has been analyzed for different orders of perturbation. And
finally, some concluding remarks have been incorporated in Sect. 5.

2 Preliminaries

2.1 Mean–Variance and Mean-Semi-variance Portfolio
Optimization

Suppose a portfolio contains n number of assets with their returns at time t are given
by rit (i = 1, . . . , n). Markowitz portfolio model was based by taking mean of return
as the reward and the variance of portfolio return as the risk factor. To calculate these,
first we need to find expected return of each asset and covariance of return between
each pair of assets, which are given by

μi = E(ri ) = 1

T

T∑

t=1

rit for i = 1, . . . , n

σ i j =E[(ri − μi )
(
r j − μ j

)]



Robust Approach for Uncertain Portfolio Allocation … 349

= 1

T

T∑

t=1

(rit − μi )
(
r jt − μ j

)
for i = 1, . . . , n and j = 1, . . . , n.

The aim is to form a portfolio which will give our desired return with a minimum
risk associated with it. Let the weight given to i th asset be xi . Then the expected
return and variance of return for the resulting portfolio are, respectively, given by

μP =
∑

i

μi xi , σ
2
P =

∑

i, j

σ i j xi x j

Markowitz Mean–Variance Model can be formulated as

min
1

2

∑

i,j

σ ijxixj

s.t.
∑

i

μi xi ≥ τ,
∑

i

xi = 1, xi ≥ 0 (1)

This model minimizes the variance of portfolio return at a fixed lower level of
expected return (say τ ). But variance measures the variation in both the sides of the
mean which includes the potential losses as well as the gains. So this may not be a
true representative of risk when the return distribution is not symmetric. In regard
to that many downside risk measures have been proposed in the literature. Semi-
variance is such a downside measure which takes the lower partial side of variance.
This measure of risk gives more sense as it does not include the upside variation. So
we do not have to minimize the potential gain.

To use semi-variance, first we have to calculate semi-covariance between each
pair of assets which is defined by [4, 5] as

σ−
i j = E

[
min{ri − B, 0} · min

{
rj − B, 0

}]

= 1

T

T∑

t=1

[
min{ri − B, 0} · min

{
rj − B, 0

}]

where B is any benchmark return chosen by the investor. Let it be equal to the
expected portfolio return, i.e., B = μP .

Now the Mean-Semi-variance model can be formulated as

min
1

2

∑

i,j

σ−
ij xixj

s.t. :
∑

i

μi xi ≥ τ,
∑

i

xi = 1, xi ≥ 0 (2)
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2.2 Uncertainty in Optimization Problems and the Robust
Counterpart

Suppose an optimization problem is given by

min f(x, u)

s.t. : c(x, u) ≤ 0

where x ∈ R
n is a vector of decision variables and the elements of the vector u ∈ R

n

are some input parameters whose values are not known precisely at the time of
decision-making. So they are called uncertain parameters and their values perturb
around some approximated nominal values. Let U(x) = {u : g(x, u) ≤ 0} be the
uncertainty set containing those uncertain parameters. So the general form of an
uncertain optimization problem can be written as

min f(x, u)

s.t. : c(x, u) ≤ 0, ∀u ∈ U(x) = {u : g(x, u) ≤ 0} (3)

Let u0 be the vector of nominal values of the uncertain parameters. Then the box
uncertainty set can be mathematically interpreted as

Ubox = {u : ‖u − u0‖∞ ≤ δ}

where ‖ · ‖∞ is the supremum norm and δ is the maximum perturbation of the
uncertain parameters.

In Robust Optimization approach, we get the solutions which are completely
“immunized against uncertainty”. That means here we solve the problem for the
worst-case realization of the uncertain parameters, so that the solutionwill be feasible
for any realization of the uncertain parameters, so that the solutionwill be feasible for
any realization of uncertain parameters. Then the robust counterpart of the problem
(3) is given by

min
x

{
max
u∈U(x)

f (x, u)

}

s.t. :
{
max
u∈U(x)

c(x, u)

}
≤ 0 (4)

Here, since it is a minimization problem, so the worst-case scenario can be
obtained by taking those parameters from the uncertainty set which will give
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maximum values for the constraints. Similarly, for a maximization problem, we
would have taken the minimum value parameter in the problem.

Now robust counterpart of the problem for box uncertainty can be written as

min
x

{
max
u∈U(x)

f (x, u)

}

s.t. :
{
max
u

c(x, u) : ‖u − u0‖∞ ≤ δ
}

≤ 0. (5)

3 Robust Counterparts of Uncertain Mean–Variance
and Mean-Semi-variance Models Under Box Uncertainty

As in portfolio optimization, a small perturbation in data can mislead the investor to
invest in an inefficient portfolio. So the uncertainty factor needs to be taken care in
portfolio models.

3.1 Uncertain Mean–Variance Model

In mean–variance optimization, the perturbation may occur either in the mean return
data or in the covariance matrix of the asset returns. The uncertain mean–variance
portfolio problem is defined as

min
1

2

∑

i,j

σ ijxixj

s.t. :
∑

i

μi xi ≥ τ,
∑

i

xi = 1, xi ≥ 0

∀μi ∈ Uμ and σ ij ∈ Uσ (6)

where Uμ and Uσ are the uncertain sets associated with mean and covariance terms,
respectively.

The robust counterpart of the above problem is given by taking the worst-case
realization of the uncertainty set,

min
xi

⎧
⎨

⎩ max
σ i j∈Uσ

∑

i, j

1

2
σ
i j
xi x j

⎫
⎬

⎭
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s.t. :
{
min

μi∈Uμ

∑

i

μi xi

}
≥ τ,

∑

i

xi = 1, xi ≥ 0 (7)

Now the box uncertainty set associated with the mean return can be represented
by

Uμ = {μi : |μi − μi
0| ≤ δi , i = 1, 2, · · ·, n}

where μi
0 is the nominal expected return of ith asset.

That means the exact value of each componentμi can be anyone from the interval
[μi

0 − δi , μi
0 + δi ].

Since all the xi ’s are non-negative so the robust counterpart for the expected
portfolio return is

min
μi∈Uμ

∑

i

μi xi =
∑

i

(μi
0 − δi )xi

Now let the box uncertainty set associated with covariance terms of return is given
by

Uσ = {σ i j : |σ i j − σ i j
0| ≤ δi j , i = 1, 2, · · ·, n, j = 1, 2, · · ·, n}

where, σ i j
0 is the nominal covariance of return between i th and j th asset. So the

worst-case variance of the portfolio is given by,

max
σ i j∈Uσ

∑

i

σ i j xi x j =
∑

i

∑

j

(σ i j
0 + δi j )xi x j

Then the robust counterpart of the mean–variance problem under box uncertainty
can be written as

min
xi

1

2

∑

i

∑

j

(σ i j
0 + δi j )xi x j

s.t. :
∑

i

(μi
0 − δi )xi ≥ τ,

∑

i

xi = 1, xi ≥ 0 (8)

3.2 Uncertain Mean-Semi-variance Model

The uncertain mean-semi-variance model can be defined as
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min
1

2

∑

i,j

σ−
ij xixj

s.t. :
∑

i

μi xi ≥ τ,
∑

i

xi = 1, xi ≥ 0

∀μi ∈ Uμ and σ−
i j ∈ Uσ− (9)

where Uμ and Uσ− are the uncertain sets associated with mean and semi-covariance
terms, respectively.

Let the box uncertainty set associated with semi-covariance of return is given by

Uσ− = {σ−
i j : |σ−

i j − σ−
i j
0| ≤ δ−

i j , i = 1, 2, . . . , n, j = 1, 2, . . . , n}

Then the robust counterpart of the mean-semi-variance model can be written as

min
xi

1

2

∑

i

∑

j

(σ−
i j
0 + δ−

i j )xi x j

s.t. :
∑

i

(μi
0 − δi )xi ≥ τ,

∑

i

xi = 1, xi ≥ 0. (10)

4 Numerical Example

To understand how robust optimization approach works for portfolio problems, we
solve a practical problem. The quarterly return data is taken for four assets: AMZN,
DPZ, BTC, and NFLX from July 2013 to May 2019. We calculate the expected
returns of each asset and the covariance and semi-covariance of return between each
pair of assets. Since we have to deal with uncertainty, so those values of expected
return, covariance, and semi-covariance returns are termed as nominal values. Now
those nominal values are given in matrix form as

Expected Returns =

⎡

⎢⎢⎣

0.09034
0.07334
0.49579
0.12463

⎤

⎥⎥⎦,

Covariance Returns =

⎡

⎢⎢⎣

0.019172
0.001483
0.060955
0.013882

0.001483
0.011865

−0.042816
0.005672

0.060955
−0.042816
1.787858
0.003736

0.013882
0.005672
0.003736
0.047606

⎤

⎥⎥⎦,
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Semi-covariance Returns =

⎡

⎢⎢⎣

0.007831
0.001610
0.009943
0.006050

0.001610
0.003719

−0.003172
0.001324

0.009943
−0.003172
0.127163
0.012444

0.006050
0.001324
0.012444
0.013372

⎤

⎥⎥⎦

Let our target rate of return be τ = 0.25. Our aim is to find the optimal weight
of each asset and the optimal risk associated with the whole portfolio to achieve the
given target rate of return.

Now the nominal mean–variance model is formulated as

min
1

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.019172x21 + 0.011865x22 + 1.787858x23 + 0.047606x24
+2 · 0.001483x

1
x
2

+ 2 · 0.060955x
1
x
3

+ 2 · 0.013882x
1
x
4

+2 · (−0.042816)x
2
x
3

+ 2 · 0.005672x
2
x
4

+ 2 · 0.003736x
3
x
4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

s.t. : 0.09034x1 + 0.07334x2 + 0.49579x3 + 0.12463x4 ≥ 0.25,

x1 + x2 + x3 + x4 = 1, x1, x2, x3, x4 ≥ 0

On solving this problem we get the optimal weights of the four assets as x1 =
0, x2 = 0, x3 = 0.337779, x4 = 0.662221. And the optimal risk is obtained as
0.1132666.

Similarly, the nominal mean-semi-variance model is formulated as

min
1

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.007831x21 + 0.003719x22 + 0.127163x23 + 0.013372x24
+2 · 0.001610x

1
x
2

+ 2 · 0.009943x
1
x
3

+ 2 · 0.006050x
1
x
4

+2 · (−0.003172)x
2
x
3

+ 2 · 0.001324x
2
x
4

+ 2 · 0.012444x
3
x
4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

s.t. : 0.09034x1 + 0.07334x2 + 0.49579x3 + 0.12463x4 ≥ 0.25,

x1 + x2 + x3 + x4 = 1, x1, x2, x3, x4 ≥ 0

The optimal weights of the assets for this model are x1 = 0, x2 = 0.509621, x3 =
0.408203, x4 = 0.082176 and the optimal risk is obtained as 0.0109356.

Now taking uncertainty into account, the values of expected returns, covariance,
and semi-covariance terms can perturb around the nominal values, so that the optimal
weights and optimal risks can be influenced. Here we assume the uncertainty set to
be a box and for different orders of perturbation, we form the robust counterparts
of both the models as given in Eqs. (8) and (10). For simplicity, we assume each
δi , δi j , δ

−
i j to be equal. We solve the robust counterpart problems of both the models

for different orders of perturbation. The results showing optimal weight vectors and
the optimal portfolio risk for both themodels are incorporated in Table 1. As in robust
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Table 1 Robust solutions under box uncertainty for different orders of perturbation

Perturbation Optimal attribute Robust mean–variance model Robust mean-semi-variance
model

10−7 Weight vector [0.000000 0.000000 0.337779
0.662221]

[0.000000 0.509621 0.408203
0.082176]

Portfolio risk 0.1132668 0.0109357

10−6 Weight vector [0.000000 0.000000 0.337782
0.662218]

[0.000000 0.509619 0.408205
0.082176]

Portfolio risk 0.1132682 0.0109358

10−5 Weight vector [0.000000 0.000000 0.337806
0.662194]

[0.000000 0.509600 0.408227
0.082173]

Portfolio risk 0.1132821 0.0109368

10−4 Weight vector [0.000000 0.000000 0.338048
0.661952]

[0.000000 0.509408 0.408443
0.082150]

Portfolio risk 0.1134212 0.0109476

10−3 Weight vector [0.000000 0.000000 0.340473
0.659527]

[0.000000 0.507486 0.410602
0.081912]

Portfolio risk 0.1148186 0.0110558

10−2 Weight vector [0.000000 0.000000 0.364721
0.635278]

[0.000000 0.477357 0.430687
0.091956]

Portfolio risk 0.1293840 0.0138994

approach, we take the worst-case parameters, so we get higher optimal portfolio risk
in comparison to the optimal portfolio risk for nominal problem. The percentage
difference of robust portfolio risks from the nominal portfolio risk is given in
Table 2.

Table 2 Relative increase in robust portfolio risk than nominal portfolio risk for both the models
at different orders of perturbation

Perturbation Relative increase in robust portfolio risk than nominal portfolio risk

Mean–variance model (%) Mean-semi-variance model (%)

10−7 0.0002 0.0009

10−6 0.0014 0.0018

10−5 0.0137 0.0110

10−4 0.1365 0.1097

10−3 1.3702 1.0992

10−2 14.2296 27.1023
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5 Concluding Remarks

The results given in Table 1 show that with increase in order of perturbation, the
optimal robust portfolio risk increases. That means if the perturbation is higher,
we have to take more risk to make sure of getting the target rate of return. From
Table 2 we get that at some orders of perturbation the relative increase in robust
portfolio risks is higher for mean–variance model and in other cases it is higher for
mean-semi-variance model. So we cannot say particularly which model can be more
affected by uncertainty.
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with Fractional Order
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Abstract With the application of an inequality and generalized Riccati technique,
we arrive at certain oscillatory behavior of a discrete fractional order nonlinear
equations

�{ρ(�)[�(γ (�)�(�μx(�)))]η} + q(�)F(G(�)) = 0, � ∈ N�0 ,

where G(�) =
�−1+μ∑

v=�0

(� − v − 1)(−μ)x(v) and η ≥ 1 is a quotient of two odd

positive integers, 0 < μ ≤ 1 is a constant, �μ denotes the RL fractional difference
operator of order μ and N�0 = {�0, �0 + 1, �0 + 2, · · ·}. Numerical example verify
the theoretical result.
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1 Introduction

The fundamental concept of fractional calculus is widely believed to originate from
a question raised by Marquis to Leibniz in the year 1695. A mathematical discipline
dealingwith integrals and derivatives of a fractional order is called fractional calculus.
Nowadays, various types of methods are applied to estimate fractional integrals and
derivative. In the past few decades, many authors have been concernedwith existence
and uniqueness and stability of solutions of fractional differential equations (FDE).
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Recently, some papers examined oscillatory theorems for nonlinear FDE, [21, 23]
and there are books by Miller and Ross, Podlubny and Kilbas et al. [16, 20, 22].

The qualitative study of the differential equations of fractional order has hit bull’s
eye among mathematicians and researchers with its applications in varied areas,
namely, fluid flow, control theory of dynamical systems, electrical networks, chem-
ical reaction, economics, statistics, etc. FDE are apt to model physical processes
which vary with time and space, and its non-local property enables model systems
with memory effect. Fractional calculus endorses integration and differentiation to
a fractional order whose values could be real and be extended to imaginary.

The discrete version of FDE is the fractional difference equations with frac-
tional order sum and difference operators as basic notions. Ever since, Kuttner [18]
mentioned for the first time the fractional order differences in 1956, the theory of
difference equations of fractional order has systematically evolved over the past
decades [2, 7–9, 15]. The study of the qualitative analysis of these equations has
gained momentum in recent years with numerous publications investigate existences
of solutions, uniqueness of solutions,monotonicity behavior and asymptotic behavior
of these equations [3, 4, 11, 14].

2 Some Significant Previous Works

Of late, the learning of the oscillatory and non-oscillatory solutions of discrete frac-
tional order equations has accelerated with new findings [12, 13, 17, 26]. Hakan
Adiguzel in [1] investigated the oscillation theorems for a class of discrete nonlinear
fractional order equation

�(r(�)�(ρ(�)�(γ (�)�μx(�)))) + q(�)G(�) = 0.

A. Secer and H. Adiguzel in [25] studied and obtained some oscillatory criteria for
the given below discrete fractional order equation of μ(0 < μ ≤ 1)

�(γ (�)[�(ρ(�)(�μx(�))η1 )]η2 ) + q(�) f

⎛

⎝
�−1+μ∑

v=�0

(� − v − 1)(−μ)x(v)

⎞

⎠

= 0, � ∈ N�0+1−μ.

In [6], Chatzarakis et al. provided conditions for oscillation of discrete fractional
order equations of the form

�(�μy(�))λ + q(�)g(y(�)) = 0, � ∈ N�0+1−μ.

Li [19] established the oscillation theorems for a discrete nonlinear fractional
order equations
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(1 + ρ(�))�(�μx(�)) + ρ(�)�μx(�) + g(�, x(�)) = e(�), � ∈ N0.

The asymptotic behavior of solutions for a class of discrete damped nonlinear
fractional order equations

�
[
r(�)[�(γ (�)�μx(�))]η] + ρ(�)[�(γ (�)�μx(�))]η

+ q(�) f

⎛

⎝
�−1+μ∑

v=�0

(� − v − 1)(−μ)x(v)

⎞

⎠ = 0, k ∈ N�0

was presented by Bai and Xu [5]. Motivated by the above work, in this present work,
we aim at obtaining the criteria for the oscillatory behavior of the solutions for the
following nonlinear discrete equation with fractional order,

�{ρ(�)[�(γ (�)�(�μx(�)))]η} + q(�) f (G(�)) = 0, � ∈ N�0 , (1)

where G(�) =
�−1+μ∑

v=�0

(� − v − 1)(−μ)x(v) and η ≥ 1 is a quotient of two odd positive

integers, 0 < μ ≤ 1 is a constant,�μ denotes theRLdifference operator of fractional
order μ and N�0 = {�0, �0+1, �0+2, . . .}.

The following conditions hold throughout this work:
(H1). γ (�), ρ(�), and q(�) are sequences of positive real numbers.
(H2). � is a function which is an odd monotonically increasing and there exists

a constant m(positive) such that x
�(x)

≥ m > 0 for x�(x) �= 0, �−1 ∈ C(R, R)

is a continuous function with x�−1(x) > 0 for x �= 0 and there exists a constant
θ1(positive) such that �−1(uv) ≥ θ1u�−1(v) for uv �= 0.

(H3). F is a monotone decreasing function satisfying x F(x) > 0 such that F(x)

xη ≥
B > 0 for x �= 0.

By a solution of Eq. (1), we mean a sequence x(�) ∈ (R+; R) that satisfies Eq. (1)
for � ∈ N0. If a solution x(�) of (1) has arbitrarily large zeros, then it is called
oscillatory, otherwise the solution x(�) of (1) is called non-oscillatory. Equation (1)
is called oscillatory if all its solutions are oscillatory.

3 Basic Lemmas and Preliminaries

In this work, the following definitions, notations, and properties of fractional
difference operator will contribute in proving the main results.

Definition 1 For any μ ≥ 0, the falling factorial is defined by

s(μ) = 
(s + 1)


(s + 1 − μ)
. (2)
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Definition 2 Reference [2] The μth fractional sum for μ > 0 is defined by

�−μ f (ν) = 1


(μ)

ν−μ∑

v=a

(ν − v − 1)(μ−1) f (v). (3)

The fractional sum �−μ is mapped from Na to Na+μ, where N� =
{�, � + 1, � + 2, . . .}.
Definition 3 Reference [2] Let μ > 0 and n − 1 < μ < n, where n denotes a
positive integer, n = �μ�. Set ν = n − μ, then μth fractional difference is defined
as

�μ f (�) = �n−ν f (�) = �n�−ν f (�). (4)

Lemma 1 Reference [12] Let x(�) be a solution of (1), G(�) =
�−1+μ∑

v=�0

(� − v −
1)(−μ)x(v), Then

�G(�) = 
(1 − μ)�μx(�). (5)

Lemma 2 Reference [10] The product and quotient rules of the difference operator
� are as follows:

�[x(�)y(�)] = x(� + 1)�y(�) + �x(�)y(�) (6)

�

[
x(�)

y(�)

]

= �x(�)y(�) − x(�)�y(�)

y(�)y(� + 1)
, (7)

where �x(�) = x(� + 1) − x(�).

Lemma 3 Reference [5] If η ≥ 1 is a quotient of two odd positive integers, then the
following two inequalities are established:

if G(� + 1) > G(�) > 0, then

�Gη(�) ≥ (�G(�))η, (8)

if G(� + 1) < G(�) < 0, then

�Gη(�) ≤ (�G(�))η. (9)
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4 Main Results

In this section, the oscillation theorems for the solutions of nonlinear discrete frac-
tional order Eqs. (1) are established using the properties of R-L sum, difference
operators, and generalized Riccati technique.

Lemma 4. Assume that (H1)–(H3) hold and x(�) is eventually positive solution of
(1). If

lim
�→∞

�−1∑

v=�0

1

[ρ(v)]
1
η

= ∞, (10)

lim
�→∞

�−1∑

v=�0

�−1

(
1

γ (v)

)

= ∞, (11)

lim
�→∞

�−1∑

ξ=�0

�−1

⎡

⎣ 1

γ (ξ)

∞∑

τ=ξ

[
1

ρ(τ)

∞∑

v=τ

q(v)

] 1
η

⎤

⎦ = ∞, (12)

then, there exists a sufficiently large L ∈ N�0 such that �(γ (�)�(�μx(�))) > 0 on
[L ,∞) and one of the following two conditions hold: (i) �μx(�) > 0 on [L ,∞)

and (i i) �μx(�) < 0 on [L ,∞) and lim
�→∞ G(�) = 0.

Proof From the assumption, as x(�) is an eventually positive solution of (1), there
exists a sufficiently large �1,�1 ≥ �0 such that x(�) > 0 on [�1,∞) so that G(�) > 0
on [�1,∞) Therefore, from (H3) and (1) we obtain

�
{
ρ(�)[�(γ (�)�(�μx(�)))]η} = −q(�)F(G(�)) ≤ −Bq(�)Gη(�) < 0, � ∈ [�1,∞).

(13)

Hence {ρ(�)[�(γ (�)�(�μx(�)))]η} is strictly decreasing on [�1,∞) and
�(γ (�)�(�μx(�))) is eventually of one sign. For ν2 > ν1 is sufficiently large,
we claim that �(γ (�)�(�μx(�))) > 0 on [�2,∞). If not, assume that there exists
a sufficiently large �3 > �2 such that �(γ (�3)�(�μx(�3))) < 0 for � ∈ [�3,∞).
Then we arrive at

�−1∑

v=�3

�{ρ(v)[�(γ (v)�(�μx(v)))]η} < 0

{ρ(�)[�(γ (�)�(�μx(�)))]η} < {ρ(�3)[�(γ (�3)�(�μx(�3)))]η} = D < 0, � ∈ [�3, ∞),

(14)

which implies
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�(γ (�)�(�μx(�))) <

[
D

ρ(�)

] 1
η

< 0, � ∈ [�3,∞). (15)

Summing both sides of (15) from �3 to � − 1, we get

(γ (�)�(�μx(�))) − (γ (�3)�(�μx(�))) < D
1
η

�−1∑

v=�3

1

ρ
1
η (v)

, (16)

From (10), we obtain, lim
�→∞ γ (�)�(�μx(�)) = −∞ which suggests that for a

certain �4 > �3, γ (�)�(�μx(�)) < 0, for � ∈ [�4,∞). Hence

�−1∑

v=�4

�
[
γ (v)�(�μx(v)))

]
< 0

γ (�)�(�μx(�)) < γ (�4)�(�μx(�4)) = c > 0, � ∈ [�4,∞). (17)

From (H2), we obtain

�G(�)


(1 − μ)
= �μx(�) < �−1

[
c

γ (�)

]

≤ cθ1�
−1

[
1

γ (�)

]

, � ∈ [�4,∞). (18)

Now summing the above inequality from �4 to � − 1,

G(�) < G(�4) + 
(1 − μ)cθ1

�−1∑

v=�4

�−1

[
1

γ (v)

]

. (19)

Then allowing � → ∞ and using (11), we arrive at lim
�→∞ G(�) = −∞, which

contradicts the fact thatG(�) > 0 on [�1,∞). Accordingly�
[
γ (�)�(�μx(�))

]
> 0,

� ∈ [�2,∞). Then from (H2) we get that �μx(�) is eventually of one sign, with two
possibilities: (i) �μx(�) > 0 on [L ,∞), (i i) �μx(�) < 0 where L is sufficiently
large.

Now assume that �μx(�) < 0, � ∈ [�5,∞) where �5 > �4 is sufficiently large.
Then by Lemma 1, we have �G(�) = 
(1 − μ)�μx(�) < 0, � ∈ [�5,∞). Since
G(�) > 0, � ∈ [�1,∞), we have lim

�→∞ G(�) = λ ≥ 0, we claim λ = 0. On the

contrary assume that λ > 0, then G(�) ≥ λ on [�5,∞). By (13), we have

�{ρ(�)[�(γ (�)�(�μx(�)))]η} ≤ −Bq(�)Gη(�) ≤ −Bq(�)λη. (20)

Summing up (20) with respect to k from � to ∞ leads to
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lim
�→∞ ρ(v)[�(γ (v)�(�μx(v)))]η − ρ(�)[�(γ (�)�(�μx(�)))]η ≤ −Bλη

∞∑

v=�

q(v).

(21)

Hence,

�(γ (�)�(�μx(�))) ≥ B
1
η λ

[
1

ρ(�)

∞∑

v=�

q(v)

] 1
η

. (22)

Summing (22) with respect to τ from � to ∞ yields,

∞∑

τ=t

�(γ (�)�(�μx(�))) ≥ B
1
η λ

∞∑

τ=�

[
1

ρ(τ)

∞∑

v=�

q(v)

] 1
η

, (23)

−(γ (�)�(�μx(�))) ≥ − lim
τ→∞ γ (τ)�(�μx(τ )) + B

1
η λ

∞∑

τ=�

[
1

ρ(τ)

∞∑

v=�

q(v)

] 1
η

−(γ (�)�(�μx(�))) ≥ B
1
η λ

∞∑

τ=�

[
1

ρ(τ)

∞∑

v=�

q(v)

] 1
η

, (24)

or

�μx(�) < −�−1

⎡

⎣ 1

γ (�)
B

1
η λ

∞∑

τ=�

[
1

ρ(τ)

∞∑

v=�

q(v)

] 1
η

⎤

⎦, (25)

which in turn yields

�G(�) ≤ −
(1 − μ)θ1B
1
η λ�−1

⎡

⎣ 1

γ (�)

∞∑

τ=�

[
1

ρ(τ)

∞∑

v=τ

q(v)

] 1
η

⎤

⎦. (26)

Summing both sides of (26),

G(�) < G(�5) − 
(1 − μ)θ1B
1
η λ

�∑

ξ=�5

�−1

⎡

⎣ 1

γ (ξ)

∞∑

τ=ξ

[
1

ρ(τ)

∞∑

v=τ

q(v)

] 1
η

⎤

⎦. (27)

Therefore, from (12), we arrive at lim
�→∞ G(�) = −∞ which contradicts the fact

that G(�) > 0, � ∈ [�1,∞). Hence, we get λ = 0, which is lim
�→∞ G(�) = 0. The

proof is complete.
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In the case, when x(�) is an eventually negative solution of (1), proceeding as in
the above discussion we arrive at �ρ(�)[�(γ (�)�(�μx(�)))]η < 0 and one of the
following two conditions hold: (i)�μx(�) > 0 on [L ,∞) and (i i)�μx(�) < 0 on
[L ,∞) and lim

�→∞ G(�) = 0.

Lemma 5 Assume that x(�) is an eventually positive solution of Eq. (1) such that
�(γ (�)�(�μx(�))) > 0, �μx(�) > 0 on [�1,∞) where �1 ≥ �0 is sufficiently
large, then we have

�G(�) ≥ m
(1 − μ)ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

]

γ (�)
E1(�, �1), (28)

where E1(�, �1) =
�−1∑

v=�1

1

ρ
1
η (v)

.

Proof From (13) we deduce that ρ(�)[�(γ (�)�(�μx(�)))]η is strictly decreasing
on [�1,∞), so we get

�(�μx(�))γ (�) ≥ �(�μx(�))γ (�) − �(�μx(�1))γ (�1)

=
�−1∑

v=�1

ρ
1
η (v)

[
�(γ (v)�(�μx(v)))

]

ρ
1
η (v)

≥ ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

] �−1∑

v=�1

1

ρ
1
η (v)

= E1(�, �1)ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

]
.

From (H2) and Lemma (1)

1

m
γ (�)�μx(�) ≥ γ (�)�(�μx(�)) ≥ E1(�, �1)ρ

1
η (�)

[
�(γ (�)�(�μx(�)))

]
,

which leads to

�G(�) ≥ m
(1 − μ)ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

]

γ (�)
E1(�, �1). (29)

Following the proof of Lemma (1), if x(�) is eventually negative solution of (1)
such that �(γ (�)�(�μx(�))) < 0, �μx(�) < 0 on [�1,∞), where �1 is sufficiently
large and �1 ≥ �0 then

�G(�) ≤ m
(1 − μ)ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

]

γ (�)
E1(�, �1).
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Theorem 1 Assume that (10)–(12) hold. If there exists a positive function φ(�), such
that

lim
�→∞ sup

�−1∑

v=�2

(

Bφ(v)q(v) − [�φ(v)]2
4u(v)φ(v)

)

= ∞, (30)

for all sufficiently large �2, where E1(�, �1) =
�−1∑

v=�1

1

ρ
1
η (v)

and u(�) =
[

m
(1−μ)

γ (�)
E1(�, �1)

]η

then every solution of Eq. (1) is oscillatory or satisfies

lim
�→∞ G(�) = 0.

Proof Suppose that Eq. (1) has a non-oscillatory solution x(�) on [�0,∞) without
loss of generality assume that x(�) > 0 on [�1,∞) where �1 > �0. By Lemma 4,
[�(γ (�)�(�μx(�)))] > 0, � ∈ [�2,∞) where �2 > �1 is sufficiently large and
either �μx(�) > 0 on [�2,∞) or lim

�→∞ G(�) = 0. If �μx(�) > 0 on [�2,∞). Define

the generalized Riccati function as

w(�) = φ(�)

{−ρ(�)[�(γ (�)�(�μx(�)))]η
Gη(�)

}

, � ∈ [�2,∞). (31)

Then it is clear that w(�) is well defined. Hence by Lemma 2 on � ∈ [�2,∞), we
get

�w(�) = −φ(� + 1)
[

Gη(�)�ρ(�)[�(γ (�)�(�μx(�)))]η − ρ(�)[�(γ (�)�(�μx(�)))]η�Gη(�)

Gη(�)Gη(� + 1)

]

− �φ(�)
ρ(�)[�(γ (�)�(�μx(�)))]η

Gη(�)
.

From (13), (31) and Lemma 4, we obtain

w(�) = φ(� + 1)q(�)F(G(�))

Gη(� + 1)
+ φ(� + 1)

�Gη(�)ρ(�)[�(γ (�)�(�μx(�)))]η
Gη(�)Gη(� + 1)

+ �φ(�)

[
w(�)

φ(�)

]

>
φ(� + 1)q(�)F(G(�))

Gη(�)

+ φ(� + 1)
(�G(�))ηρ(�)[�(γ (�)�(�μx(�)))]η

[Gη(�)]2
+ �φ(�)

[
w(�)

φ(�)

]

> Bφ(� + 1)q(�) + �φ(�)

[
w(�)

φ(�)

]

+ φ(� + 1)
ρ(�)[�(γ (�)�(�μx(�)))]η

G2η(�)
[

m
(1 − μ)E1(�, �1)ρ
1
η (�)

[
�(γ (�)�(�μx(�)))

]

γ (�)

]η
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> Bφ(� + 1)q(�) + φ(�)u(�)

[
w(�)

φ(�)

]2

+ �φ(�)

[
w(�)

φ(�)

]

i.e.,

�w(�) ≥ Bφ(�)q(�) + u(�)
w2(�)

φ(�)
+ �φ(�)

[
w(�)

φ(�)

]

. (32)

From (31), we arrive at

�w(�) > Bφ(�)q(�) +
[

w(�)

{
u(�)

φ(�)

} 1
2

+ �φ(�)

[4φ(�)u(�)]
1
2

]

− [�φ(�)]2

4φ(�)u(�)

�w(�) > Bφ(�)q(�) − [�φ(�)]2

4φ(�)u(�)
.

Summing the above the inequality from �2 to � − 1

�−1∑

v=�2

�w(v) ≥
�−1∑

v=�2

z(v)

�−1∑

v=�2

z(v) ≤ w(�) − w(�2) ≤ w(�2).

Letting � → ∞, we get a contradiction to (30), where u(�) =
[

m
(1−μ)E1(�,�1)

γ (�)

]η

and z(v) =
[

Bφ(v)q(v) − (�φ(v))2

4φ(v)u(v)

]
.

The proof is similar if x(�) is eventually negative, which concludes the proof.
Notation Through the proofs of the theorems that follow, [24] we use H(�, k) :

�, k ∈ N , � ≥ k ≥ 0 to denote the double sequence satisfying

H(�, �) = 0 for � ≥ �0; H(�, v) > 0 for � > v ≥ �0;
�v H(�, v) = H(�, v + 1) − H(�, v) < 0 for � > v ≥ �0.

Theorem 2 Assume that (10)–(12) hold. If

lim
�→∞ sup

1

H(�, �0)

�−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

= ∞ (33)

where h+(�, v) = �v H(�, v)+�φ(v) H(�,v)
φ(v) and u(�) is same as in Theorem 1, then

(1) is oscillatory or satisfies lim
�→∞ G(�) = 0.
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Proof Suppose on the contrary that x(�) is a non-oscillatory solution of (1). Then
x(�) is either eventually positive or eventually negative. In the case when x(�) is
eventually positive, we assume that x(�) > 0 on [�1,∞) where �1 ∈ N�0 is suffi-
ciently large. Then from the proof of Theorem 1 if �μx(�) > 0 on [�2,∞), then
(32) holds. Multiplying both sides of (32) by H(�, v) and summing from �2 to � − 1
yields,

�−1∑

v=�2

B H(�, v)φ(v)q(v) <

�−1∑

v=�2

H(�, v)�w(v) −
�−1∑

v=�2

H(�, v)u(v)
w2(v)

φ(v)

−
�−1∑

v=�2

H(�, v)�φ(v)

[
w(v)

φ(v)

]

(34)

Now applying summation by parts formula, we obtain

�−1∑

v=�2

�w(v)H(�, v) = −w(�2)H(�, �2) −
�−1∑

v=�2

�v H(�, v)w(v + 1). (35)

Now substitute (35) in (34)

�−1∑

v=�2

Bφ(v)q(v)H(�, v) < −w(�2)H(�, �2) −
�−1∑

v=�2

�v H(�, v)w(v + 1) −
�−1∑

v=�2

u(v)
H(�, v)

φ(v)
w2(v)

−
�−1∑

v=�2

�φ(v)

[
H(�, v)

φ(v)

]

w(v) −
�−1∑

v=�2

Bφ(v)q(v)H(�, v) > w(�2)H(�, �2)

+
�−1∑

v=�2

[

w(v + 1)h+(�, v) + u(v)
H(�, v)

φ(v)
w2(v + 1)

]

−
�−1∑

v=�2

Bφ(v)q(v)H(�, v) > w(�2)H(�, �2) −
�−1∑

v=�2

h2+(�, v)φ(v)

4u(v)H(�, v)

+
�−1∑

v=�2

⎡

⎢
⎣

[
u(v)H(�, v)

φ(v)

] 1
2

w(v + 1) + h+(�, v)

2
[

u(v)H(�,v)
φ(v)

] 1
2

⎤

⎥
⎦

2

�−1∑

v=�2

Bφ(v)q(v)H(�, v) < −w(�2)H(�, �2) +
�−1∑

v=�2

h2+(�, v)φ(v)

4u(v)H(�, v)

�−1∑

v=�2

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

< −w(�2)H(�, �2)

�−1∑

v=�2

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

< −w(�2)H(�, �0), (36)
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for � > �2 > �1 > �0,

�−1∑

v=�0

[

B�(v)q(v)H(�, v) − h2+(�, v)�(v)

4u(v)H(�, v)

]

=
�2−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

+
�−1∑

v=�2

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

From (36)

�−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

<

�2−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

−H(�, �0)w(�2) < H(�, �0)

�2−1∑

v=�0

Bφ(v)q(v)

−H(�, �0)w(�2),

which means

1

H(�, �0)

�−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

<

�2−1∑

v=�0

Bφ(v)q(v) − w(�2).

Taking limit sup as � → ∞, we get,

lim
�→∞ sup

1

H(�, �0)

�−1∑

v=�0

[

Bφ(v)q(v)H(�, v) − h2+(�, v)φ(v)

4u(v)H(�, v)

]

<

�−1∑

v=�0

Bφ(v)q(v) − w(�2) < ∞,

which is a contradiction to (33).
In the casewhen x(�) is eventually negative, it can be proved in the similarmanner.

Hence the proof is complete.

5 Application

In this section, we present an example to validate the theoretical results. Consider
the following equation
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�

{
1

�3

[
�

{
�2�μx(�)

}]5
}

+ 1

�

(
�−1+μ∑

v=1

(� − v − 1)(−μ)x(v)

)−3

= 0, � ≥ 1, (37)

where μ ∈ (0, 1]. Comparing (37) with Eq. (1), we have η = 5, �0 = 1, ρ(�) = �−3,
γ (�) = �2, q(�) = �−1, F(x) = x−3, �(x) = x , F(x)

xη = 1
x8 > δ = B > 0,

x
�(x)

≥ m = 1, φ(�) = �2 where δ ∈ (0,∞). Hence we observe that assumptions
(H1) − (H3) hold and also

∞∑

v=�0

1

ρ
1
η (v)

=
∞∑

v=1

1
[
v−3

] 1
5

=
∞∑

v=1

v
3
5 = ∞,

∞∑

v=�0

�−1

(
1

γ (v)

)

=
∞∑

v=1

1

γ (v)
=

∞∑

v=1

1

v2
= ∞,

∞∑

ξ=t0

�−1

⎡

⎣ 1

γ (ξ)

∞∑

τ=ξ

[
1

ρ(τ)

∞∑

v=τ

q(v)

] 1
η

⎤

⎦ =
∞∑

ξ=1

1

ξ 2

∞∑

τ=ξ

[

τ 3
∞∑

v=τ

1

v

] 1
5

= ∞,

which implies that (10), (11), (12) hold. For sufficiently large �1,

E1(�, �1) =
�−1∑

v=�1

1

[ρ(v)]
1
η

=
�−1∑

v=�1

v
3
5 ,

and

u(�) =
[

m
(1 − μ)

γ (�)
E1(�, �1)

]η

=
[

m
(1 − μ)

�2

�−1∑

v=�1

v
3
5

]5

,

also for �2 > �1,

�−1∑

v=�2

[

Bφ(v)q(v) − [�φ(v)]2
4u(v)φ(v)

]

=
�−1∑

v=�2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

δv2
1

v
− (2v + 1)2

4v2

[

m
(1−μ)

v2

v−1∑

ξ=�1

ξ
3
5

]5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

>

�−1∑

v=�2

[

δv − (2v + 1)2v8

4�31[m
(1 − μ)]5

]

.

Therefore,
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lim
�→∞ sup

�−1∑

v=�2

[

Bφ(v)q(v) − [�φ(v)]2
4u(v)φ(v)

]

≥ lim
�→∞ sup

�−1∑

v=�2

[

δv − (2v + 1)2v8

4�31[m
(1 − μ)]5

]

= ∞,

which indicates that (30) is satisfied. Hence in accordance with Theorem 1, we
conclude that every solution of (37) is oscillatory or the condition lim

�→∞ G(�) = 0 is

satisfied.
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Numerical Treatment on the Analysis
of Heat Transfer
of a Magneto-micropolar Fluid
over a Continuously Moving Surface
with Heat Source/Sink

R. S. Tripathy and B. Nayak

Abstract We analyze the heat transfer effect of an electrically conducting microp-
olar fluid on a boundary layer flow past, a moving plate depending on a transverse
magnetic field in the incidence of uniform heat source/sink. The thermal buoyancy
effect is also discussed in this study. The involved partial differential equations are
altered into ordinary nonlinear differential equations using a similarity variable.
Fourth-fifth ranked Runge–Kutta method associated by means of shooting technique
is used to obtain a numerical solution. Graphical representation of the solutions is
aimed at dimensionless velocity and temperature profiles, whereas numerical charac-
teristics of the Nusselt number and skin friction are obtainable in the form of a table
by considering numerous values of pertinent parameters affecting the movement and
heat transfer phenomena.

Keywords Buoyancy induced flow · Magnetofluid · Micropolar · Uniform heat
source/sink · Runge–Kutta · Shooting technique

Nomenclature

u x-components vector
υ Kinematic viscosity
v y-components vector
S Heat generation/absorption parameter
T Temperature of the fluid
T∞ Plate temperature at the boundary
Tw Plate temperature at the result boundary
Gr Thermal Grashof number
R Radiation parameter
Pr Prandtl number
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b Rate constant
α Thermal diffusivity
Ec Eckert number,
fw Suction parameer,
μ Dynamic viscosity,
ρ Fluid density
g Gravitational acceleration
σ Fluid electrical conductivity
B0 Magnetic induction
cp Specific heat at constant pressure
Q Dimensional heat source coefficient
K1 Coupling parameter

1 Review and Introduction

In the current years, the concept of micropolar fluid is of extensive consideration to
the investigators as the old-style Newtonian fluids are not capable to exactly describe
the property of fluid consisting of adjourned particles. These micro fluids are the
specific form of the non-Newtonian fluid comprising of stiff and small fundamen-
tals of cylinder shape called dumb-bell molecules. For example, polymers, animal
body fluid, and fluids deferments. These fluids are used to model the existence
of smoke or dust, mainly in a gas. Moreover, Micropolar fluids are of substantial
consideration to study the thermal boundary layer movements through affecting
boundaries [1]. Boundary layer regulator and thermal shield in a flow produced by
high energy through wall velocity and mass transfer are some practical examples of
such phenomena. Micropolar fluid possesses a microstructure and is an element of a
specific type of fluids that have a nonsymmetrical stress tensor. The involved particles
possess random orientation adjourned in a sticky medium and classified as Microp-
olar. The convection produced by revolving a cone inmicropolar fluidswith a random
change in surface temperature is measured by Gorla and Nakamura [2]. Takhar
et al. [3] observed the springy effects by considering an incompressible micropolar
fluid forced flow of three-dimensional nonsteady motion in the neighborhood of the
onward sluggishness point of a rounded nosed body.

The analysis of convective transference in a porous medium is of notable concern
in the literature because of its massive usages in thermal engineering associated
with insulation, packed bed catalytic reactors, and geothermal pools. When the
fluid transfers through twisting paths in porous media, then it produces recircula-
tion and mixing of already present fluid streams. This hydrodynamic mingling of
fluid on the pore level becomes a source of thermal, as well as solutal diffusion
in an absorbent medium. The model of varying mixed convection movement with
constant surface suction or injection in an isothermal vertical plate in porous media
is discussed by Hopper et al. [4]. In view of their model, the complete picture of



Numerical Treatment on the Analysis of Heat Transfer … 375

the domain of free-forced-mixed convection is obtainable by using one parameter.
The outcomes of three-dimensional electroosmotic movements inside the charged
micro and nanoscale arbitrary porousmedia of homogeneous nature are modeled and
analyzed numerically by Wang and Chen [5]. The electroosmotic flows over elec-
tric anisotropic porous media in view of the lattice Poisson–Boltzmann technique is
studied by Wang et al. [6]. These types of problems can be investigated more accu-
rately with the manifestation of magnetic field and thermal energy for micropolar
fluid. The movement field in diverse convection boundary layer through an upright
surface fixed in a porous medium is strongly inclined with Soret and Dufour effects.
These effects are measured with the commencement of convection in an upright
porous layer in view of unvarying heat flux by Bourich et al. [7]. They computed
the solutions by using both the analytical and numerical approaches. Mishra et al.
[8] investigated unrestricted convective movement in the viscoelastic fluid using an
upright channel considering the occurrence of the Dufour effect. Postelnicu [9] have
investigated the results by considering the flow in unrestricted convection outer sheet
of an upright surface fixed in a porous medium. They also assumed the existence of
Soret and Dufour.

The usual convection movement of micropolar fluid around a sphere by means
of puffing and pressure is investigated by Lien et al. [10]. Mohanty and coauthors
[11] considered the mathematical exploration for temperature and mass transmission
outcome of micropolar fluid beyond an extending sheet. Lien and his collaborators
[12] surveyed the unrestricted convection movement of micropolar fluid in view of
a flat holey cylinder with a varying thermal state. Takhar and coauthors [13] calcu-
lated the diverse convection movement of a micropolar fluid through an enlarging
layer. Mishra and his collaborators [14] observed the stream of temperature andmass
transmission in a micropolar fluid due to heat medium. Dash and his collaborators
[15] discussed the numerical method to boundary layer delay-point stream passing
through a reduction sheet. Further, Tripathy and coauthors [16] studied hydromag-
neticmicropolar fluid beside an extending sheet using chemical response and nonuni-
form heat medium. Cheng [17] observed the unrestricted convection ofmass and heat
transmission adjacent to elliptical cylinders inside the micropolar fluid. Lately, some
researchers have considered several physical characteristics of the combination of
mass and heat transmission problem. Tripathy and collaborators [18] considered the
impact of the chemical response for unrestricted MHD convective boundary beyond
a moving upright plane inside the porous medium. Muthukumaraswamy and coau-
thors [19] have considered perpendicular plate by heat and mass transmission and
observed the short-term free-convection movement. The results of mutual buoyancy
forces in the presence of natural convection movement from a vertical wavy surface
are investigated byHossain andRees [20]. They got results by using numerical calcu-
lations and illustrated the development of the shear stress, amount of heat transfer, and
absorption gradient for the involved surface. Chamkha and Khaled [21] explored the
formulation of joined mass and heat transmission in view of unrestricted magneto-
hydrodynamic convection using an inclined plate by considering the existence of
internal heat engagement. Furthermore, Cortell [22], Bataller [23], Ishak [24], and
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Aliakbar et al. [25] have done further analysis to investigate the consequences of
thermal radiation.

Lately, Seddeek et al. [26] explored an exact solution involving the significance
of energy for a magneto-micropolar fluid passing through a moving vertical plate by
means of blowing and suction. In their study, they have not discussed the role of buoy-
ancy on themagneto-micropolar fluid.Hence our aim is to investigate the significance
of thermal buoyancy present in the momentum equation and the result of unchanging
heat cause in the energy equation, respectively. The nonlinear nonhomogenous ordi-
nary differential equalities are converted to the set of first order differential equa-
tions. We solve these equations by using the efficient Ruuge–Kutta fourth-fifth order
scheme tracked by shooting procedure. The current results are compared with the
previously established results of Seddeek et al. [26] as a specific situation by with-
drawing the thermal buoyancy and heat cause parameter. For further related studies,
we refer the interested reader to [27–33].

2 Formulation of the Problem

Consider a stable, laminar edge layer movement and heat transmission of viscous
incompressible and electrically conducting fluid through a continuously moving
plate. As usual, the horizontal path is directed along the x-axis and the vertical path
along the y-axis. It is presumed that a creek of cold fluid is at temperature T∞. An
unchanging transverse magnetic field with strength B0 is operational along y-axis
perpendicular to the main direction of the flow. We neglect the Hall effect and Joule
heating in the nonappearance of the applied electric field. The converted magnetic
field and the electric field are presumed to be negligible because of the polarization
of charges. Under Boussinesq estimate, the key outer layer mathematical expressions
for this formulation are given as follows [26] (Fig. 1):

Fig. 1 Flow geometry
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∂u

∂x
+ ∂v

∂y
= 0 (1)

(
u

∂u

∂x
+ v

∂u

∂y

)
ρ = ∂2u

∂y2
μ + k1ρ

∂N

∂y
− σ B2

0u + gρβ(T − T∞) (2)

G1
∂2N

∂y2
− 2N − ∂u

∂y
= 0 (3)

ρcp

(
u

∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+ ∂qr

∂y
+ μ

(
∂u

∂y

)2

+ Q(T − T∞) (4)

The settings for the outer layer (boundary) are

u = bx v = vw N = 0 T = Tw at y = 0
u → 0 N → 0 T → T∞ as y → ∞ (5)

where k1 = a/ρ, the coupling constant (k1 > 0), a, the constant characteristics of
the fluid, G1, the microrotation constant.

The radiative heat fluctuation is denoted by qr

qr = −4σ ∗

3k∗
∂T 4

∂y
, (6)

and measured in view of Rosseland diffusion approximation (Hossain and Rees [20]
and Raptis [27]), where

k∗ → Rosseland mean absorption coefficient; σ ∗ → Stefan − Boltzman constant.

By considering the appropriately slight changes in the temperature of inside flow
wherever the terms involving the higher powers of T can be neglected and the factor
T 4 is stated as the function of temperature

T 4 ∼= 4T 3
∞T − 3T 4

∞. (7)

Introducing flow function, ψ(x, y) the statement numbered as (1) is satisfied by
using the following functions

u = ∂ψ

∂y
, v = −∂ψ

∂x
(8)

With the purpose of conversion of the Eqs. (2–5) into a system of equa-
tions involving the ordinary derivative, the ensuing similarity conversions and
nondimensional variables are declared here as follows:
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η =
√
b

ν
y, ψ = √

bνx f (η),

N =
(
b3

ν

) 1
2

xg(η), θ(η) = T − T∞
Tw − T∞

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

Substituting the value of Eq. (9) in Eqs. (2–4), and the boundary condition (5),
we get

f ′′′ + f f ′′ − ( f ′)2 − M f ′ + K g′ + Gr θ = 0 (10)

G g′′ − f ′′ − 2g = 0 (11)

(
1 + R

R Pr

)
θ ′′ + f θ ′ − γ f ′θ + Ecf ′′2 + Sθ = 0 (12)

f (0) = fw, f ′(0) = 1, g(0) = 0, θ(0) = 1

f ′(∞) = 0, g(∞) = 0, θ(∞) = 0

}
(13)

Here, M = σ B2
0

bρ , the magnetic parameter, Pr = ρcpν
κ

, the Prandtl number, R =
3κk∗

16σ ∗T 3∞
, the radiation parameter, K = k1

ν
, the coupling constant parameter, Ec =

b2x2

cp(Tw−T∞)
, the Eckert number, and G = G1b

ν
, the microrotation parameter.

3 Physical Quantities of Interest

The wall shear stress, τw, the skin friction coefficient c f , Reynolds number, Re, heat
flux, qw at the wall, Nusselt number, Nu are defined as

τw = −μw

(
∂u

∂y

)
y=0

= −μwuw

√
uw
vx

f ′′(0) (14)

c f = τw

ρu2w
= −(Re)−

1
2 f ′′(0) (15)

where, the Reynolds number, Re = uwx
υ
.

qw = −κ

(
∂T

∂y

)
y=0

= −κ(Tw − T∞)

√
uw
vx

θ ′(0) (16)

Nu = xqw
κ(Tw − T∞)

= −(Re)
1
2 θ ′(0) (17)



Numerical Treatment on the Analysis of Heat Transfer … 379

4 Numerical Method

The solution of leading boundary layer Eqs. (10), (11), and (12) with respect to
boundary settings (13) are determined by using the numerical shootingmethod. In the
first step, we convert the differential Eqs. (10)–(12) into linear differential equations
of the first order. In the second step, we transform these equations in the form of
initial value problem by using the shooting numerical method. The temperature of
the plate surface, coefficient of the local skin friction, and the local Nusselt numeral
are investigated and their numerical values are listed in the form of a table by using
the involved numerical computationalmethod. Newton shooting approach associated
with Runge–Kutta fourth-order methods are described as follows:

f = y1, f ′ = y2, f ′′ = y3, g = y4, g
′ = y5, θ = y6, θ

′ = y7

f ′′′ = −(
f f ′′ − ( f ′)2 − M f ′ + K g′ + Gr θ

)

⇒ y′
3 = −y1y3 + y22 + My2 − Ky5 − Gry6

g′′ = 1

G

(
f ′′ + 2g

)

⇒ y′
5 = 1

G
(y3 + 2y4)

θ ′′ = R Pr

1 + R

(
− f θ ′ + γ f ′θ − Ecf ′′2 − Sθ

)

⇒ y′
7 = R Pr

1 + R
− y1y7 + γ y2y6 − Ecy23 − Sy6

y1(0) = fw, y2(0) = 1, y3(0) = s1, y4(0) = 0, y5(0) = s2, y6(0) = 1, y7(0) = s3

where s1, s2, and s3 are initial guesses. The inner iteration is then counted until the
nonlinear solution converges with a convergence criterion of 10−6 in all cases.

5 Consequences and Discussion

Considered the natural convection movement for a micropolar fluid passing through
a porous plate with unvarying heat source/sink. We solved the problem numerically
in the presence of electrical conduction. Also, the heat and mass transmission impact
on an edge layer radiative MHD flow subject to a transverse magnetic field has been
analyzed. Computations are performed for an extensive range of physical parameters
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of the problem and discussed through Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 and the
numerical results are presented through Tables 1 and 2 to illustrate the consequences
of various controlling parameters for the shear stress, couple stress, and proportion
of heat transmission. The high value Prandtl number (Pr = 10) is considered for

Fig. 2 Comparison plot of velocity for the influence of K , M and Gr = 0

Fig. 3 Influence of Gr and S on velocity profiles
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Fig. 4 Influence of fw on the velocity profiles

Fig. 5 Comparison plot of microrotation for the influence of K , M and Gr = 0

water at low temperature. Consideration is concentrated on the positive value of the
buoyancy parameter, i.e., thermal Grashof number,Gr > 0. From Eq. (12) it is clear
that S > 0 indicates the heat source and S < 0 indicates the contribution of heat sink
in the heat transfer phenomena. Validation with the earlier published work is given
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Fig. 6 Influence of Gr and S on microrotation velocity profiles

Fig. 7 Influence of fw on the microrotation profiles

by discussing the particular cases Gr = 0,S = 0 and other parameters are taken to
be fixed.

Figure 2 Shows the variation of K and M for the velocity function in the nonap-
pearance of thermal buoyancyparameterGr (Gr = 0) and suction parameter fw = 0.
For K = 1, M = 2 (Curve-I), the current outcomes are consistent with the results of
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Fig. 8 Influence of K and M on the temperature profiles

Fig. 9 Influence of Gr and S on the temperature profiles
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Fig. 10 Influence of fw on the temperature profiles

Fig. 11 Influence of Pr and S on the temperature profiles
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[26]. It is observed that the variation is insignificant for the increasing value of K up
to a certain region, i.e., η < 1. Soon after this, the velocity profile reduces asymptot-
ically to meet the boundary conditions (Curve-I and II). Further, the velocity profile
slows down as the value of the magnetic parameter increases. It is because a resis-
tive force namely the Lorentz force gives rise to an electromagnetic origin, in the
form of magnetic parameter, cause retardation in the velocity distribution. However,
maximum retardation is found in the nonappearance of K that means K = 0.

Figures 3 and 6 exhibit the deduction of thermal buoyancy parameter in the
absence/presence of heat source/sink for the velocity and microrotation profiles with
the fixed values of other physical parameters depicting the flowphenomena.Note that
a rise in buoyancy enhances the velocity and microrotation boundary layer signif-
icantly. Further, high value of Gr (Gr = 10), enhancement is maximum near the
boundary layer and then decreases smoothly. This is because of the association of
magnetic parameters. Another interesting result is observed in the incidence of heat
source/sink. By increasing the heat source, both profiles increase but the opposite
effect is encountered in case of sink, i.e., sink gives rise to a retardation in the profiles
on every point in the velocity outer layer.

Figures 4 and 10 illustrate the corporeal consequence of the suction/injection
for velocity and temperature profiles. In comparison, together the injection ( fw <

0)/suction ( fw > 0) are related to the resistant situation ( fw = 0). One can observe
that suction retards together the velocity and temperature profiles, whereas injection
enhances the profiles meaningfully.

The effects of K and M on the microrotation profile in the nonappearance of
thermal buoyancy and suction are obvious in Fig. 5. The current findings are consis-
tent with the earlier results of [26] for K = 1, M = 2 (Curve-I). The variation is
insignificant near the boundary layer, i.e., η < 0.5. It is seen that two-layer char-
acteristics are exhibited for the variation of K in the microrotation profiles. Also,
the effect of K is reverse as compared to Fig. 2 for velocity profile, i.e., with the
growth in K , the microrotation profile rises within the middle of the region and then
it reduces. Further, the microrotation profile reduces with the intensification in the
magnetic parameter as revealed in the velocity profile, Fig. 2.

Figure 7 shows the variation of suction/injection for the microrotation profile
having static values of the related parameters. Further, it is exciting to notice that
near the boundary layer, i.e., for η < 1 microrotation profile develops with the
increasing value of suction, whereas injection decelerates it, but the reverse effect is
reported for η > 1. As compared to that of the impermeable region, fw = 0 suction
retards the profile, whereas injection is favorable to enhance themicrorotation profile
significantly.

Figure 8 demonstrates the result of K and M for the temperature profile. The
enhancement in the fluid temperature intensifies the thermal boundary layer as both
K and M grow further. The non-Newtonian parameter K > 0 in the manifestation of
magnetic parameter improves the temperature for every point in the corresponding
outer sheet. Variation of the temperature profile is insignificant due to high Prandtl
fluid. Thus, it is to conclude that interaction of high Prandtl number with magnetic
parameter the temperature profile is thinner. It is also interesting to remark that the
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current outcome is consistent with the previously computed results of [26] in the
nonexistence of thermal cause and buoyancy.

The temperature profile variation for some values of thermal buoyancy param-
eter and nondimensional heat source/sink is exhibited in Fig. 9. The comparison is
displayed for the absence of buoyancy parameter Gr (Gr = 0) and source parame-
ters S (S = 0) (Curve-I). Further to this, we make an observation that an increase in
Gr reduces the temperature in the thermal boundary layer with the nonappearance
of basic parameter (Curve-II), whereas the presence of source enhances it (Curve-
IV). Further, the temperature of the fluid grows with the occurrence of heat source,
whereas sink reduces it significantly.

Figure 11 reveals the effect of Prandtl number and thermal radiation on tempera-
ture profiles. In the present discussion, different values of the involvedPrandtl number
are considered such as Pr = 0.71 (air) and Pr = 10 (water). It is clear to note that
the temperature is linear in case of low Prandtl fluid, Pr = 0.71 and in the absence
of radiation. Also, in the presence of a radiation parameter R (R = 3), the fluid
temperature reduces. An increase in Prandtl number also reduces the temperature for
each point in the thermal boundary sheet.

Table 1 presents the coefficient of couple stress (g′(0)), skin friction ( f ′′(0)), and
proportion of heat transmission (θ ′(0)) for the various values of K and M in the
absence/presence of thermal buoyancy and heat source parameters. It is observed
that growth in K reduces the skin friction, whereas couple stress and percentage
of heat transmission continue to increase in the absence of heat source and pres-
ence/absence of thermal buoyancy. It is interesting to note that enhancement in heat
source with an increase in K decreases for all the coefficients. Also, a decrease in
thermal buoyancy decreases the couple stress and skin friction, but the rate of heat
transmission increases. Further, an increase in magnetic parameter increases the skin
friction and couple stress, nevertheless, the degree of heat transmission decreases in
the presence/absence of Gr and S.

Table 2 illustrates the influence of Prandtl number and suction on couple stress,
skin friction, and degree of heat transfer. Degree of heat transmission reduces by the
increase in Prandtl number Gr and S are vague but suction increases it. Further, in
the presence of Gr and S, as Pr increases skin friction, couple stress and proportion
of heat transmission upsurges.

Table 1 Coefficient of skin friction ( f ′′(0)), couple stress (g′(0)), Nusselt Number (−θ ′(0))
K Gr S f ′′(0) g′(0) θ ′(0) M Gr S f ′′(0) g′(0) θ ′(0)
1 0 0 1.676335 0.317929 2.93282 1 0 0 1.358266 0.294829 3.034388

1 1 0 1.478569 0.310327 2.981009 1 1 0 1.157684 0.286946 3.078478

1 1 1 1.268082 0.284662 0.263141 1 1 1 1.041472 0.275089 1.176399

4 0 0 1.494735 0.321982 2.965145 2 0 0 1.676335 0.317929 2.93282

4 1 0 1.294381 0.314305 3.013458 2 1 0 1.478569 0.310327 2.981009

4 1 1 1.014493 0.273598 0.127768 2 1 1 1.268082 0.284662 0.263141
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Table 2 Coefficient of skin friction ( f ′′(0)), couple stress (g′(0)), Nusselt Number (−θ ′(0))
Pr Gr S f ′′(0) g′(0) θ ′(0) fw Gr S f ′′(0) g′(0) θ ′(0)
0.71 0 0 1.676335 0.317929 0.541513 0.5 0 0 1.946083 0.334816 5.527683

0.71 1 0 1.244556 0.266479 0.645027 0.5 1 0 1.811721 0.331856 5.547313

0.71 1 1 1.064772 0.212745 0.156912 0.5 1 1 1.786446 0.330616 4.324762

10 0 0 1.676335 0.317929 2.93282 0 0 0 1.676335 0.317929 2.93282

10 1 0 1.478569 0.310327 2.981009 0 1 0 1.478569 0.310327 2.981009

10 1 1 1.26808 0.284662 0.263141 0 1 1 1.268082 0.284662 0.263141

6 Conclusions

The numerical computation has been used to study the consequence of uniform
heat source/sink on unrestricted convective outer layer movement of an electrically
conducting micropolar fluid depending on the transverse magnetic field through
porous medium passing through a moving plate. The main partial differential equa-
tions are changed in the form of ordinary differential equations by using similarity
variables and transformation. After that, we found a numerical solution by making
use of Runge–Kutta technique along with the shooting procedure. Some motivating
and useful observations are obtained graphically for these pertinent parameters. The
numerical computations for the amount of shear stress, couple stress, and proportion
of heat transmission are accessed by means of tables, which are summarized below:

1. Retardation in the velocity distribution occurs due to the interaction of Lorentz
force.

2. Increase in thermal buoyancy enhances the velocity and microrotation boundary
layer significantly.

3. For η < 1 microrotation profile enhances with the increasing value of suction,
whereas injection decelerates it.

4. Temperature profile is thinner due to highPrandtl number and radiation parameter
inclusion with the magnetic parameter.

5. Rise in material parameter decays the skin friction, whereas couple stress and
proportion of heat transmission continues to increase in the presence/absence of
thermal buoyancy and the absence of heat source.
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A Two Level Supply Chain Model Where
Demand Is Stochastic Additive Under
Buyback Policy

Rubi Das and P. K. De

Abstract In this paper, attention has been paid to the study of a supply chain model
consisting of one manufacturer and two retailers where buyback policy has been
incorporated. We have modeled the manufacturer and retailers optimality system
as a profit maximization problem to determine the stochastic order quantity and
selling price of the retailers. The demand focused by the manufacturer and retailers
is stochastic additive in nature which is also price sensitive and also it depends on the
preference of the number of customers to the retailers. Both centralized and decentral-
ized cases of the supply chain have been analyzed by using the normal distribution.
One numerical example is provided to illustrate and demonstrate the proposedmodel.
A comprehensive sensitivity analysis with respect to major parameters is carried out
and some managerial inferences are obtained.

1 Introduction

Profit of a supply chain depends on various parameters like market demand, stock
of inventory, holding cost, cost of transportation, and many others. Further market
demand depends on some other vital factors selling price of the product, market
availability of the product, quality of the product, and lead time. This paper presents
a supply chain model with one manufacturer and two retailers where demand is
stochastic additive in nature. Due to the competitive environment created in the
multichannel supply chain model, a huge number of customers are benefitted by it.

In this paper, we have incorporated the newsboy problem, which is referred to
Porteus and Cachon and Netessine [2] for a detailed survey and extension. The
problem is designed in the form of a mathematical model to optimize the expected
profit functions to determine the optimal order quantity. We have incorporated
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buyback policy in our model and buyback policy is extensively applied in a brief
lifecycle product of industries like books, fashion apparel, computers, toys, etc.
According to buyback policy, unsold products are taken back from the retailers, and
instead of that manufacturer provide some credit to the retailers for those return prod-
ucts. The main objective of the buyback policy in this supply chain is to minimize
the risk of overstocking of the retailers. Generally in a manufacturer-Stackelberg
system, a manufacturer is considered as the Stackelberg leader and the retailers are
considered as the followers. Ertek andGriffin [3] developed amodel by incorporating
pricing scheme to the concept of manufacturer-Stackelberg and retailer-Stackelberg
system.

2 Literature Review

In day to day, many concepts have been used in the newsboy problem. Minimization
of the value-at-risk (CVaR) in a single period newsboy problem has been developed
byGotoh and Takano [4]. Arcelus et al. [1] solved the problem by the development of
reordering points distinguished by the random length of time interval and of uncertain
period within the temporary price discount problem. He et al. [5] studied a supply
chain model with a random demand depending on the price and sales effort of the
retailer by assembling the chain with supplier and retailer. They have paid attention
to left over inventory and buyback policy. Game theory has an important role in the
supply chain. Wang [15] studied a multiple newsvendor problem. Huang et al. [6]
analyze the disordering of demand for dual-channel supply chain. Panda et al. [12]
analysis displayed the outcome of product compatibility on the noteworthy work of
the dual-channel supply chain. We considered the influence of product compatibility
(transfer rate of customers from one retailer to another). In product compatibility,
noteworthy works of Xiao and Shi, Yan et al. [16] should be mentioned.

Roy et al. [13] studied one supply chain model where retailers are considered in a
competitive environment and buyback policy has been incorporated. Also they have
considered demand in an uncertain environment. In the present paper the concept
of Roy et al. has been extended. Authors have also not incorporated holding costs
in their model and cross-price effect in their demand function. These short comings
have been addressed in our model and the demand functions have been formulated
accordingly. In our paper, we also consider the gaming structure retailer-Stackelberg
approach. Modak and Kelle [8] analyzed a supply chain model where they have
considered an online channel or offline channel simultaneously. They have consid-
ered random demand which is sensitive to both selling price and lead time. Further,
they have considered their model with both distribution-free and known distribution
approaches. The authors have not included the buyback policy.We have extended the
work of Modak and Kelle [8] by using the Cournat–Bertrand approach for normal
distribution case and included the buyback policy. We developed a mathematical
model by combining some extra issues in existing literature for the result of profit
maximization. A numerical example is also discussed for theoretical illustration.
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The rest part of the work is categorized as Sect. 3 introduces the assumptions
and notations considering for introducing the model. In Sect. 4 the formulation and
analysis of the model have been evaluated. In Sect. 5, we have demonstrated the
model with one numerical example and the results have been analyzed. A sensitivity
analysis has been shown in this section. Section 6 provides some conclusions and
future research directions.

3 Assumptions and Notations

The following assumptions and notations are adopted to develop the model.

3.1 Assumptions

(a) The supply chain consists of a manufacturer and two retailers.
(b) In this chain, a single product is produced by the manufacturer.
(c) Uncertain demand depends on selling prices of the items fixed by the retailers.
(d) Our model considered the return policy.
(e) The lead time is not considered.
(f) Shortages at the manufacturer are not allowed but at the retailers are permitted.
(g) Replenishment rate is instaneously infinite in our model but its size is finite.

3.2 Notations

For (i = 1, 2) the parameters and decision variables that are required for
mathematical formulation are given below

Parameters

c = Manufacturer production cost
w = Manufacturer wholesale price to the retailer (per unit)
h = Retailers holding cost per unit
si = Salvage value of unsold items of retailers
ri = Retailer’s shortage cost
di = Deterministic demand rate
bi = Number of customers prefer the retailers
γi = Retailer’s price sensitivity
δ = Rate of transfer of customers (number of customers switching from retailer
1 to retailer 2 per unit increase in price difference between p1 and p2)
xi = A part of demand quantity during a period, which is a random variable
following probability distribution (units/month)
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fi (x) = Probability density distribution function of xi
Fi (x) = Cumulative distribution function of xi
F−1
i (x) = Inverse function of Fi .

Decision variables

qi = Order quantity of retailers to satisfy the stochastic portion of demand
pi = Selling price of retailers
ψm = Profit function of manufacturer
ψri = Profit function of retailers
ψeip = Integrated profit function.

4 Model Framework

According to the references [7], Modak and Kelle [8] both the retailers are facing
the following demand functions in the model:

d1 = b1 − γ1 p1 − δ(p1 − p2)

d2 = b2 − γ2 p2 + δ(p1 − p2)

where d1 and d2 are, respectively, the demand functions of retailer 1 and retailer 2.
Changeability in demand can be attained in either by multiplicative form or addi-

tive form [9, 11]. As the additive case is more submissive than multiplicative, we
add a different random variable for both the retailers demand. The form of stochastic
demand is given as follows:

d1s + ξ1 = d1 + ξ1 = b1 − γ1 p1 − δ(p1 − p2) + ξ1

d2s + ξ2 = d2 + ξ2 = b2 − γ2 p2 + δ(p1 − p2) + ξ2

where ξ1 is a random variable with range [a1, b1] which has mean μ1 and standard
deviation σ1 and ξ2 is a random variable with range [a2, b2] which has mean μ2 and
standard deviation σ2.

Profit functions of manufacturer and retailers are

ψm = (w − c)(d1 + q1 + d2 + q2) − s1E(q1 − x1)
+ − s2E(q2 − x2)

+ (1)

ψr1 = (p1 − w)(d1 + μ1) − hΛ1 + s1E(q1 − x1)
+ − r1Θ1 (2)

ψr2 = (p2 − w)(d2 + μ2) − hΛ2 + s2E(q2 − x2)
+ − r2Θ2 (3)
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where

Λ1 =
q1∫

a1

(q1 − u) f (u)d(u), Λ2 =
q2∫

a2

(q2−v) f (v)dv, expected values of random

demand for both the retailers

Θ1 =
b1∫

q1

(u − q1) f (u)d(u), Θ2 =
b2∫

q2

(v − q2) f (v)dv, expected values of random

demand lost in both the retailers

E(qi − xi )
+ =

qi∫

−∞
(qi − xi ) fi (xi )dxi ,

∞∫

−∞
fi (xi )dxi = 1, Fi (qi ) =

qi∫

−∞
fi (xi )dxi

4.1 Centralized Decision Model Through Normal
Distribution

Under the centralized situation, all decisions are controlled by a central department.
The decision is maximized by the total profit of the whole supply chain. The relevant
function is as follows:

Max[ψeip] =Max[ψm + ψr1 + ψr2 ]
= (w − c)(d1 + q1 + d2 + q2) + (p1 − w)(d1 + μ1)

+ (p2 − w)(d2 + μ2) − hΛ1 − r1Θ1 − hΛ2 − r2Θ2 (4)

Now differentiating ψeip with respect to p1, p2, q1, q2 we get

∂ψeip

∂p1
= b1 + γ1c − 2γ1 p1 − 2δp1 + 2δp2 + μ1 (5)

∂ψeip

∂p2
= b2 + γ2c − 2γ2 p2 + 2δp1 − 2δp2 + μ2 (6)

∂ψeip

∂q1
= (w − c) − hF1(q1) + r1[1 − F1(q1)] (7)

∂ψeip

∂q2
= (w − c) − hF2(q2) + r2[1 − F2(q2)] (8)

∂2ψeip

∂p21
= −2γ1 − 2δ < 0 (9)

∂2ψeip

∂p22
= −2γ2 − 2δ < 0 (10)



396 R. Das and P. K. De

∂2ψeip

∂q2
1

= −(h + r1) f1(q1) < 0 (11)

∂2ψeip

∂q2
2

= −(h + r2) f2(q2) < 0 (12)

∂2ψeip

∂p1∂p2
= 2δ (13)

∂2ψeip

∂q1∂q2
= 0 (14)

∂2ψeip

∂p1∂q1
= 0 (15)

∂2ψeip

∂p2∂q1
= 0 (16)

∂2ψeip

∂p1∂q2
= 0 (17)

∂2ψeip

∂p2∂q2
= 0 (18)

By solving Eqs. (5)–(8) we obtained the optimum values. Equations (5), (6)
provide

pC∗
1 = δb2 + δγ1c + δμ2 + γ2b1 + γ1γ2c + γ2μ1 + δb1 + δγ1c + δμ1

2(γ1γ2 + γ1δ + γ2δ)
(19)

pC∗
2 = γ1b2 + δb2 + δμ1 + δγ2c + γ1γ2c + γ 1μ2 + δμ2 + δγ1c + δb1

2(γ1γ2 + γ1δ + γ2δ)
(20)

Equations (7), (8) provide

qC∗
1 = F−1

1

(
r1 + w − c

h + r1

)

(21)

qC∗
2 = F−1

2

(
r2 + w − c

h + r2

)

(22)

From Eq. (4) Hessian matrix for p1, p2, q1, q2 is established
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Hψeip =

⎛

⎜
⎜
⎝

−(h + r1) f1(q1) 0 0 0
0 −(h + r2) f2(q2) 0 0
0 0 −2γ1 − 2δ 2δ
0 0 2δ −2γ2 − 2δ

⎞

⎟
⎟
⎠

If 
m (mth order principal minor) satisfies the sign (−1)m then ψeip is a concave
function, i.e., it becomes optimum at (pC∗

1 , pC∗
2 , qC∗

1 , qC∗
2 )


1 = −(h + r1) f1(q1) < 0


2 = (h + r1)(h + r2) f1 f2 > 0


3 = −2(h + r1)(h + r2)(γ + δ) f1 f2 < 0


4 = 4(h + r1)(h + r2)(γ1γ2 + γ1δ + γ2δ) f1 f2 > 0

4.2 Decentralized Decision Model Through Normal
Distribution (DCS)

In this system, manufacturer and both the retailers purchase materials individually
and separately and they mainly focused on maximizing their own expected profit
without considering the profit of the whole chain.

4.2.1 DCS Through Cournot–Bertrand Approach

In this case, manufacturer is new to the market, and he does not have much more
idea about the market condition. Retailers face directly to the customers so they have
knowledge about the demand trend of market. For maximizing their own profits,
retailers decided their own optimal order quantities and sales price. Therefore partial
derivatives of ψr1 and ψr2 are

∂ψr1

∂p1
= b1 − 2γ1 p1 − 2δp1 + δp2 + μ1 + γ1w + δw (23)

∂ψr2

∂p2
= b2 − 2γ2 p2 − 2δp2 + δp1 + μ2 + γ2w + δw (24)

∂ψr1

∂q1
= −hF1(q1) + s1F1(q1) + r1[1 − F1(q1)] (25)



398 R. Das and P. K. De

∂ψr2

∂q2
= −hF2(q2) + s2F2(q2) + r2[1 − F2(q2)] (26)

∂2ψr1

∂p21
= −2γ1 − 2δ < 0 (27)

∂2ψr2

∂p22
= −2γ2 − 2δ < 0 (28)

∂2ψr1

∂q2
1

= −(h + r1) f1(q1) + s1 f1(q1) < 0 as(h + r1) > s1 (29)

∂2ψr2

∂q2
2

= −(h + r2) f2(q2) + s2 f2(q2) < 0 as(h + r2) > s2 (30)

∂2ψr1

∂p1∂q1
= 0 (31)

∂2ψr1

∂p1∂q1
= 0 (32)

∂2ψr2

∂p2∂q2
= 0 (33)

By solving Eqs. (23)–(26) we obtained the optimum values. Equations (23), (24)
provide

pDC∗
1 = 2γ2b1 + 2δb1 + 2γ2μ1 + 2δμ1 + 2γ1γ2w + 2δγ1w + 3δγ2w + 3δ2w + δb2 + δμ2

4γ1γ2 + 4γ1δ + 4γ2δ + 3δ2

(34)

pDC∗
2 = 2γ1b2 + 2δb2 + 2γ1γ2w + 2γ2δw + 3γ1δw + 2γ1μ2 + 2δμ2 + 3δ2w + δb1 + δμ1

4γ1γ2 + 4γ1δ + 4γ2δ + 3δ2

(35)

Equations (25) and (26) provide

qDC∗
1 = F−1

1

(
r1

h + r1 − s1

)

(36)

qDC∗
2 = F−1

2

(
r2

h + r2 − s2

)

(37)
(

∂2ψr1

∂p21

)(
∂2ψr1

∂q21

)

−
(

∂2ψr1

∂p1∂q1

)

= (2γ + 2δ) f1(q1)(h + r1 − s1) > 0 as(h + r1) > s1

(38)
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Table 1 Optimal result of the proposed model

Optimal values p∗
1 p∗

2 q∗
1 q∗

2 ψ∗
m ψ∗

r1 ψ∗
r2 ψ∗

eip

Centralized 190 177.5 35.97 29.66 1484.49 8481.66 6583.54 16549.69

Decentralized 184.04 170.9 39.09 30.86 1556.13 8406.32 6545.13 16507.58

(
∂2ψr1

∂p22

)(
∂2ψr2

∂q2
2

)

−
(

∂2ψr2

∂p2∂q2

)

= (2γ + 2δ) f2(q2)(h + r2 − s2) > 0 as(h + r2) > s2 (39)

So, ψr1 and ψr2 are strictly concave functions.

5 Analysis of an Example

We consider the following values of the key parameters in appropriate units in both
centralized and decentralized cases and optimal results are shown in Table 1.

{

f (x) = 1

σ
√
2π

e
− 1

2

(
x−μi

σi

)2

,∀ − ∞ ≤ x ≤ ∞
}

w = $90, b1 = 200 units, b2 = 190 units, γ1 = .75, γ2 = .8, δ = .2, h = $15,
r1 = $28,

r2 = $26, μ1 = 30 units, μ2 = 25 units, σ1 = 5 units, σ2 = 4 units, c = $80,
s1 = $14, s2 = $13.

6 Sensitivity Analysis and Discussion

To analyze the effect of different parameters on the optimal values (p1, p2, q1, q2),
sensitivity analysis is conducted for the above numerical example. The results of the
sensitivity analysis are presented in Tables 2, 3.

By increasing and decreasing the values of the key parameters (γ1, γ2, δ) the
variations in the optimal solutions of p1, p2, ψm , ψr1 , ψr2 within the range −10% to
+10%, are listed in the following tables. In both the cases, since the formulation of
q1, q2 are independent of (γ1, γ2, δ) so the optimal solutions q1, q2 are insensitive
to the changes in those parameters. On the other hand, the expected profit function
of manufacturer and both the retailers changes remarkably with the changes of (p1,
p2).

For centralized case
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Table 2 Sensitivity analysis for Centralized case

Percentage
change of
parameters

p1 p2 q1 q2 ψm ψr1 ψr2 ψeip

−10% 202.99 180.19 35.97 29.66 1517.73 10049.6 6778.34 18345.67

−5% 195.99 178.79 35.97 29.66 1502.76 9271.11 6672.75 17446.62

{γ1 = 0.75} 190 177.5 35.97 29.66 1484.49 8481.66 6583.54 16549.69

+5% 183.64 176.31 35.97 29.66 1472.82 7916.85 6486.59 15876.26

+10% 178.17 175.22 35.97 29.66 1457.84 7325.61 6404.16 15187.61

−10% 185.44 190.03 35.97 29.66 1570.45 8823.79 7705.72 18099.96

−5% 184.38 183.49 35.97 29.66 1552.09 8698.07 7056.86 17307.03

{γ2 = 0.8} 190 177.5 35.97 29.66 1484.49 8481.66 6583.54 16549.69

+5% 182.51 171.99 35.97 29.66 1515.96 8478.39 5932.45 15926.8

+10% 181.68 166.9 35.97 29.66 1498.13 8381.88 5443.69 15323.7

−10% 190.23 177.29 35.97 29.66 1484.49 8578.11 6567.43 16630.03

−5% 190.11 177.39 35.97 29.66 1484.49 8568.26 6575.63 16628.39

{δ = 0.2} 190 177.5 35.97 29.66 1484.49 8481.66 6583.54 16549.69

+5% 189.89 177.6 35.97 29.66 1484.49 8549.58 6591.19 16625.27

+10% 189.79 177.69 35.97 29.66 1484.49 8540.70 6598.59 16623.78

Table 3 Sensitivity analysis for decentralized case

Percentage change of
parameters

p1 p2 q1 q2 ψm ψr1 ψr2

−10% 196.09 172.11 39.09 30.86 1603.19 9854.51 6730.02

−5% 182.34 171.48 39.09 30.86 1632.69 9045.92 6505.42

{γ1 = 0.75} 184.04 170.9 39.09 30.86 1556.13 8406.32 6545.13

+5% 178.71 171.14 39.09 30.86 1557.58 8057.84 6446.88

+10% 173.77. 169.88 39.09 30.86 1511.13 7197.37 6368.31

−10% 185.21 181.98 39.09 30.86 1604.42 8616.18 7771.35

−5% 185.01 176.6 39.09 30.86 1573.99 8513.93 7129.57

{γ2 = 0.8} 184.04 170.9 39.09 30.86 1556.13 8406.32 6545.13

+5% 183.53 166.01 39.09 30.86 1532.77 8314.82 5996.98

+10% 183.05 161.49 39.09 30.86 1509.77 8230.38 5507.09

−10% 185.27 171.71 39.09 30.86 1540.51 8446.31 6530.79

−5% 184.65 171.31 39.09 30.86 1548.39 8426.46 6532.41

{δ = 0.2} 184.04 170.9 39.09 30.86 1556.13 8406.32 6545.13

+5% 183.44 171.29 39.09 30.86 1557.61 8402.06 6533.44

+10% 182.85 170.11 39.09 30.86 1571.48 8366.84 6534.13
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• When price sensitivity of retailer 1, i.e., γ1 and price sensitivity of retailer 2, i.e.,
γ2 increases then prices of both the retailers decreases.

• When γ1 decreases then prices of both the retailers increases.
• But when γ2 decreases then price of retailer 1 first decreases and then increases

whereas opposite phenomenon is observed in case of retailer 2 where price
increases constantly.

• It is observed that the expected profits of the manufacturer, both the retailers and
integrated profit increases simultaneously as γ1 decreases. Opposite phenomenon
is noticed, i.e., all the above profits decreases simultaneously with the increasing
values of γ1.

• Similarly the above four profits increases with the decreasing values of γ2. And
further decreaseswith the increasing values of γ2 except profit of themanufacturer.
The profit of the manufacturer first increases and then decreases for increasing
value of γ2.

• A different phenomenon is observed in case of parameter δ. Price of retailer
1 decreases and price of retailer 2 increases for increasing value of δ. Opposite
phenomenon is observed for decreasing value of δ, i.e., price of retailer 1 increases
and price of retailer 2 decreases.

• It is noticed that the expected profit of manufacturer is independent with the
changes of parameter δ.

• Expected profit of retailer 1 increaseswith the decrease and increases of the param-
eter δ. Whereas the expected profit of retailer 2 decreases with the decreasing
values of the parameter δ. And expected profit of retailer 2 increases with the
increasing values of δ. From this phenomenon, we can infer that expected profit
of retailer 2 changes proportionally with δ.

• Like expected profit of retailer 1, a similar phenomenon is observed for the inte-
grated profit. That means integrated profit changes proportionally with parameter
δ.

For decentralized case

• For increasing values of γ1, prices of retailer 1 decreasing and prices of retailer 2
first increases and then decreases.

• It is noticed that expected profits of both the retailers decreases simultaneously
for increasing value of γ1. Expected profit of the manufacturer first increases and
then decreases for the increasing values of γ1.

• For decreasing value of γ1 expected profit of the manufacturer and retailer 1
increases simultaneously. But expected profit of retailer 2 first decreases and then
increases.

• For decreasing values of γ2, prices of both the retailers, expected profit of the
manufacturer and both the retailers are increasing. And for increasing values of
γ2, prices of both the retailers and all these profits are decreasing simultaneously.

• For decreasing value of δ prices of both the retailers increases. And for increasing
value of δ prices of retailer 1 decreases and prices of retailer 2 first increases and
then decreases.
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• It is observed that expected profit of both the retailers decreasing simultaneously
and expected profit of the manufacturer increases for increasing value of δ. An
opposite phenomenon is observed for decreasing value of δ.

7 Conclusion

This paper has introduced a two-layered supply chain model with buyback policy
under demand uncertainty by considering a game-theoretic approach. Our two-
echelon supply chainmodel is developed under a normal distribution approachwhere
demand is stochastic additive. We have proposed this model with price and prefer-
ence of the number of customers-dependent demand. The objective of this paper is to
find the optimal order quantity for a single product for a stochastic additive demand
pattern which maximizes the expected profit of all the channels. For uncertainty
of demand, retailers have to pay holding costs and shortage cost for unsold prod-
ucts. Our model is examined under Cournot–Bertrand and centralized approaches
for normal distribution case. According to the results, the centralized system has a
better performance solution compared to a decentralized system.
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Analytical Study of MHD Free
Convective Flow in a Composite Medium
Between Coaxial Vertical Cylinders
Partially Filled with Porous Material

M. Senapati, S. K. Parida, and G. C. Dash

Abstract The natural convective flow between two coaxial vertical cylinders
partially filled with a porous material has been studied. The surface of the inner
cylinder is subject to the constant heat flux and the outer cylinder is maintained at
a constant temperature. The Brinkman extended Darcy model has been applied to
porous media flow. The interface of the two regions is subjected to shear stress jump
and continuity of the velocity. The analytical solutions of the physical model are
carried out with the help of the modified Bessel function. The important findings
are: the permeability of the medium and interface condition plays a vital role for the
output of the desired flow rate and consistency of flow, the heat transfer enhances
with another gap of the cylinders, i.e. the squeezing of the annular gap produces
a cooling effect on/in cylinder surfaces. Some interesting outcomes of the analysis
are: the noticeable momentum transport occurs in the region close to the interface
of fluid and porous region. The consistency of flow pattern and fluidity of the fluid
model depends on the permeability of the porous region. The adjustable magnetic
field (force-act-at-a distance) and stress jump condition (act-at-the contact) are to be
simulated for obtaining the desired smooth flow pattern.

Keywords Brinkman extended Darcy model · Free convection · Heat flux · Stress
jump · Magnetic field

Nomenclature

Da Darcy number
T ′
0 Temperature of the outer cylinder

d ′ Radial distance of interface
u′ Velocity along the axis of cylinder
D Radial distance of interface in non-dimensional form
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U Velocity along the axis of cylinder in non-dimensional form
g Acceleration due to gravity
Q Rate of heat transfer
R∗ Radius of the outer cylinder
β Coefficient of thermal expansion
γ Ratio of dynamic viscosity
T ′
f Temperature of the fluid layer

μ Dynamic viscosity of the fluid
T ′
p Temperature of the porous layer

θ Temperature in non-dimensional form
K ′ Permeability of the porous medium
R Radius of the inner cylinder
α Adjustable coefficient in the stress jump condition

1 Introduction

The fluid flow and heat transfer in a composite system, partially filled with a porous
material, find numerous applications in thermal engineering, pertaining to heat and
mass transfer processes, oil extraction and heat exchangers, etc. Many researchers
Singh et al. [1], Ramanaiah et al. [2], Pop et al. [3], Lesinigo et al. [4] contributed
significantly using different fluid models of the flow through porous media using
Darcy and Brinkmanmodels for different thermal conditions and geometrical config-
urations. Further, Paul and Singh [5] studied fully developed free convection between
two coaxial vertical cylinders. Free convective flow for low-Prandtl-number fluid
(0.2 < Pr < 1) in a horizontal annular region has been studied by Yoo [6]. Their
study leads to dual steady solutions when the Rayleigh number exceeds a critical
value.

Though the above investigations on free convective flow are theoretical in nature,
still then some experimental studies support some of the theoretical predictions. For
example, a study on flow through vertical and inclined elliptical tubes with constant
heat flux studied by Elshazly [7]. Further, experimental studies carried out by Seghir-
Quali et al. [8] on an axial air flow pertaining to convective heat transfer inside a
rotating cylinder and convective flow in a vertical circular cylinder with constant heat
flux by Mohammed and Salman [9] are of great interest.

A numerical study of buoyancy-driven unsteady natural convection boundary
layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime
with a transverse magnetic field is considered by Prakash et al. [10]. The transient
fully developed free convective flow of viscous incompressible fluid between two
concentric vertical cylinders filled with a porous material and saturated with the
same fluid has been analyzed when the outer surface of the inner cylinder is subject
to isothermal or isoflux heating by Jha et al. [11]. Steady two-dimensional MHD
laminar free convective boundary layer flows of an electrically conductingNewtonian
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nanofluid over a solid stationary vertical plate in a quiescent fluid is investigated
numerically by Uddin et al. [12] when the bounding surface is subject to Newtonian
heating.

The captivating attributes of carbon nanotubes (CNT) comprising chemical and
mechanical steadiness, outstanding electrical and thermal conductivities, feather-
weight, and physiochemical consistency make them useful in the manufacturing of
electrochemical devices. Keeping in view such exciting features of carbon nanotubes,
our objective in the present study is to examine the flow of aqueous-based nanofluid
comprising single and multi-wall carbon nanotubes (CNTs) past a vertical cone
encapsulated in a permeable medium with convective heat and solutal stratification
by Ramzan et al. [13]. The MHD flow of an incompressible viscous electrically
conducting fluid past a porous plate through porous medium rotating with uniform
angular velocity about an axis normal to the plate and the fluid at infinity rotates with
the same angular velocity about a non coincident parallel axis. The governing equa-
tions of motion and heat transfer are investigated by Parida et al. [14] using a special
technique. A finite element study of combined heat and mass transfer flow through
a porous medium in a circular cylindrical annulus with Soret and Dufour effects in
the presence of heat sources has been analyzed by Gnaneswar [15]. In this paper, the
heat andmass transfer characteristics ofmixed convection about a circular cylindrical
annulus in a porous medium, by taking into account the Thermo-Diffusion (Soret)
and Diffusion–Thermo (Dufour) effects have been analyzed by Reddy et al. [16].

The novelty of the present study rests upon the flow of electrically conducting
fluid subject to an externally applied magnetic field producing a body force act at a
distance and a stress jump condition act at the contact of the compositemedium along
with constant heat flux at the surface of the inner cylinder. Further, the flow through
a saturated porous medium with uniform permeability has also been analyzed by
applying Brinkman extended Darcy model. Many industrial fluids and biological
fluids are electrically conducting in nature. Therefore, an electrically conducting
fluid subject to a transverse magnetic field has been considered in the present study.
Consequently, additional electromagnetic force in the form of body force (Lorentz
force) comes into play and modifies the momentum equation.

The analytical solution with the help of modified Bessel function provides an
edge over the error bound numerical solution and ensures the reliability. The present
analysis is more realistic and compatible with real-world problems than the constant
surface heat flux assumptions.

2 Formulation of the Problem

Consider the problem of free convective flow in an annular region between two
coaxial vertical cylinders in a compositemedium, i.e. clear fluid region and a saturated
porous region. The flow is generated due to the difference in the temperature of the
outer cylinder maintained at constant temperature and the inner cylinder subjected
to heat flux. The direction of the flow is along the axis of the cylinder, while another
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Fig. 1 Flow geometry of the
problem

axis is along the radius of the cylinder. At the interface of the porous medium and
clear fluid zone, the continuity of the flow and heat transfer is assured (Fig. 1).

Under the usual Boussinesq’s approximation, the governing equations related to
the problem are as follows:

Fluid region:

μ f

d2u′
f

dr ′2 + μ′
f

r ′
du′

f

dr ′ − σ f B
2
0u

′
f + ρgβ

(
T ′
f − T ′

c

) = 0 (1)

d2T ′
f

dr ′2 + 1

r ′
dT ′

f

dr ′ = 0 (2)

Porous region:

μP
d2u′

P

dr ′2 + μ′
P

r ′
du′

P

dr ′ − σp B
2
0u p − μ f

K ′
p

u′
P + ρgβ

(
T ′
p − T ′

c

) = 0 (3)

d2T ′
P

dr ′2 + 1

r ′
dT ′

P

dr ′ = 0 (4)

The corresponding boundary conditions are
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u′
f = 0, q ′ = −k

dT ′
f

dr ′ at r ′ = R

u′
P = 0, T ′

P = T ′
c at r ′ = R∗

u′
f = u′

P , μP
du′

P

dr ′ − μ′
f

du′
f

dr ′ = γ
μ f√
K ′ u

′
P

T ′
f = T ′

P ,
dT ′

f

dr ′ = dT ′
P

dr ′

⎞

⎟⎟
⎠ at r ′ = d ′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Using the following non-dimensional quantities

Da = K ′
p

R2
, r = r ′

R
, d = d ′

R
, λ = R∗

R
, u f = u′

f υ f K

gβqR3
,

u p = u′
pυpK

gβqR3
, θ f =

(
T ′
f − T ′

c

)
K

Rq
, θp =

(
T ′
p − T ′

c

)
K

Rq
(6)

the Eqs. (1)–(4) become

d2u f

dr2
+ 1

r

du f

dr
− M2

f u f + θ f = 0 (7)

and

d2θ f

dr2
+ 1

r

dθ f

dr
= 0 (For fluid region) (8)

Rv
d2u p

dr2
+ Rv

r

du p

dr
− 1

Da
up − M2

pu p + θp = 0 (9)

and

d2θp

dr2
+ 1

r

dθp

dr
= 0 (For porous region) (10)

The boundary and matching conditions in dimensionless form are

u f = 0,
dθ f

dr
= −1 at r = 1

u p = 0, θp = 0 at r = λ

u f = u p, Rv
du p

dr
− du f

dr
= γ√

Da
up

θ f = θp,
dθ f

dr
= dθp

dr

⎫
⎪⎪⎬

⎪⎪⎭
at r = d

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

The solutions of Eqs. (7)–(10) with boundary conditions (11) are given by
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u f = C1 + C2 log r + r2

4
(log r − log λ − 1) (12)

uP = C3 I0

(
r√

Rv Da

)
+ C4 K0

(
r√

Rv Da

)
+ Da (log λ − log r) (13)

θ f = θP = log λ − log r (14)

where I0, K0, I1 and K1 are the modified Bessel functions of the first kind and
second kind of order zero and one, respectively.

Using Eqs. (12) and (13), the skin friction on the walls at r = 1 and λ is calculated
as

τ1 = −
(
du f

dr

)

r=1

= −C2 + 1

2
(log λ + 1) − 1

4
(15)

τ2 = −
(
du f

dr

)

r=λ

= − 1√
RvDa

C3 I1

(
λ√

RvDa

)
+ 1√

RvDa
C4K1

(
λ√

RvDa

)
+ Da

λ
(16)

3 Results and Discussion

The exact analytical solutions are obtained for the flow through a composite medium
under the boundary and interface conditions and are presented through graphs. The
effect of an applied transverse magnetic field producing a body force acting at a
distance on the flow through an annular region is of special interest which has not
been taken care of in the earlier studies.

Fig. 2 Velocity profile for
various values of M f andMp
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Figure 2 shows the velocity profiles for different values of the magnetic param-
eter, a representative of electromagnetic force generated due to interaction of the
electric current and magnetic field assuming the magnetic Reynolds number which
determines the diffusion of the magnetic field along the streamlines analogous to the
ordinary Reynolds number for the diffusion of vorticity along the streamline, is small
compared to the unity. The magnetic nature is very small compared to the unity, the
magnetic field is not distorted by the flow.When it is very large, on the other hand, the
magnetic field moves with the flow and is called frozen-in. In engineering problems,
it is rare to obtain a magnetic Reynolds number greater than unity because of the low
electrical conductivity of the useful fluids. From Fig. 2, it is seen that due to resistive
force, the fluid velocity reduces in both fluid and porous regions. In this figure, the
position of the interface is at d = 1.5. In the porous region (d > 1.5), the velocity
falls rapidly to attend the prescribed value. The maximum value of the profile occurs
in the fluid region just before the transition zone.

Figure 3 depicts the velocity profile for the various values of the viscosity ratio
Rv. It is observed that an increase in Rv decreases the velocity throughout the flow
domain. Thus, it is concluded that under the influence of the dominating effect of
viscosity in the fluid layer,momentum transport decreases and the decrease ofmagni-
tude is significant in the adjacent layers of the interface (d = 1.5). The velocity
becomes maximum when Rv = 1, i.e. both the viscosities are of the same order
magnitude.

Figure 4 shows the velocity profiles for different values of the Darcy number,
characterizing the permeability of the porous medium. It is seen that as Da increases
the velocity of the fluid flow increases under the influence of the dominatingmagnetic
field parameter of the porous region over the fluid region (Mp = 4 and M f = 2).
On careful observation of curve II

(
Da = 10−2

)
, it is seen that at the interface, the

fluidity of flow is detracted. Such an effect is also marked in small measure when
Da = 0.2 and Da = 0.5. Therefore, it is concluded that for maintaining smooth

Fig. 3 Velocity profile for
various values of Rv
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Fig. 4 Velocity profile for
various values of Da

flow, the permeability of the medium plays a vital role in the output of the desired
flow rate.

From Fig. 5, it is seen that as γ increases the velocity increases, whereas the
effect of Rv is to decrease the velocity. The parameter γ represents the adjustable
coefficient of stress jump. The higher stress jump leads to a greater deformation,
consequently the velocity increases.

Figure 6 shows the velocity distribution for different positions of the interface of
fluid and porous regions. This shows that the onset of flow behaviour in the respective
region recedes as per the position of the interface. Further, it is seen that an increase in
spatial distance of the interface enhances the velocity distribution in both the regions.

The temperature distribution is almost linear and increases with the annular gap
λ which is evident from the Eq. (14) also.

Fig. 5 Velocity profile for
various values of γ and Rv
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Fig. 6 Velocity profile for
various values of d

4 Conclusion

• The significant momentum transport occurs in the region close to the interface of
two zones.

• For maintaining smooth flow the permeability of the porous region plays a vital
role.

• The strength of the external applied magnetic field is to be regulated to obtain the
desired flow rate.

• Higher the stress jump leads to greater deformation so the velocity distribu-
tion increases.

• The temperature distribution is almost linear across the flow domain and it
increases with the spatial distance of the annular region. Also the velocity
distribution both the region increases as increase in spatial distance.
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Effects of Dissipative Heat Energy
and Chemical Reaction on MHD
Nanofluid Flow Over a Nonlinearly
Stretching Sheet
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Abstract The present investigation is intended to study the effects of heat source
and chemical reaction of viscous MHD nanofluid flow over a nonlinearly stretching
sheet with viscous dissipation. Similarity transformation is used to transform the
governing equations of the problem into nonlinear ordinary differential equations.
The transformedODEs are solved numerically by employing the fourth orderRunge–
Kutta method associated with the shooting technique. The effect of various physical
parameters on the velocity, temperature, and concentration are presented graphi-
cally and numerical results for local skin friction, local Nusselt number, and Sher-
wood number are tabulated for various physical parameters. For validation, the
present result is compared with the earlier published result in a particular case.
The boundary layer thickness decreases with an increase in magnetic parameters
for both the absence/presence of a porous matrix. The temperature of the nanofluid
and dimensionless concentration increases with increasing values of thermophoretic
parameter, whereas the Brownian motion parameter retards the nanoparticle volume
fraction. Increase in Lewis number both the temperature and nanoparticle concen-
tration decreases. Brownian motion parameter and thermophoresis parameter have
an opposite effect on Nusselt and Sherwood number.
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1 Introduction

Due to the various practical and real-life applications, the investigation of influences
of the thermal radiation and external heat source for the magnetohydrodynamic flow
of viscous fluid over the nonlinear stretching sheet creates a significant challenge
among the young researchers and scientists. In particular, the polymer extrusion in
a dying process, metallic plate condensation in a cooling bath, etc., are the basic
examples from industrial applications. Sakiadis [1] performed his pioneering work
on the study of stretching surfaces. However, for the production of several mate-
rials in industrial manufacturing processes, the inclusion of additional effects and
contribution of these effects on the stretching problems have many physical aspects.
Metallurgical processing is a new application in the research area of magnetohy-
drodynamics (MHD) flow phenomena. Exchange of the knowledge on the study
of various flow over an exponentially stretching sheet is also limited (Magyari and
Kellar [2], Elbashbeshy [3], Vajravelu [4], Vajravelu and Cannon [5], and Cortell
[6]). In space technology applications, the role of thermal radiation is important. In
some industrial applications (propulsion systems, aerodynamics rocket, etc.) due to
the requirement of high temperatures at the time of operating the system, the use of
thermal radiation is important. Cortell [7], Hady et al. [8], and Vajravelu and Rollins
[9] have investigated the flow phenomena in an electrically conducting fluid over a
stretching surface.

Ellahi and his co-workers [10–14] have proposed their study for the behavior of
dissipative heat energy in various types of viscous as well as nanofluids. They have
employed both analytical and numerical techniques alongwith approximatemethods
for the solution of complex nonlinear problemswith several slip boundary conditions.
Bhukta et al. [15] made an attempt to understand the heat and mass transfer effects
in the boundary layer flow using a porous medium and used Kummer’s functions
to solve the transfer functions. Similar attempt was made by Mohanty et al. using
micropolar fluid over a stretching sheet in a uniform magnetic field [16]. However,
Dash et al. [17] studied themagnetohydrodynamics flow for heat andmass diffusions
in the case of electrically conducting stagnation.

In sighting the aforesaid studies, the aim of our work is to investigate the effects
of heat source/sink and chemical reaction of MHD nanofluid flow over a nonlinearly
stretching sheet through porous medium with viscous dissipation. The transformed
nonlinear ODEs are solved by using the numerical method. For the conformity,
the numerical validation is obtained with the earlier published results of Mahbood
et al. [18].

2 Mathematical Formulation

Two-dimensional steady, incompressible viscous flow of a water-based electrically
conducting nanofluid past over a nonlinear stretching sheet through porous medium
is considered in this present investigation. The flow is along the x-direction and
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B(x) 
n

wu ax=
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Fig. 1 Flow configuration

the velocity of the sheet stretched with uw = axn , where n is the nonlinear
stretching parameter and a is constant. y-coordinate is normal to the flow direction.
The conducting fluid imposed with the magnetic field B(x) = B0x (n−1)/2 applied
normal to the sheet (Fig. 1). In addition, heat source/sink and the reactant species
are also considered. Tw and Cw are assumed as the wall temperature and nanopar-
ticle concentration, respectively, whereas T∞ and C∞ are ambient temperature and
nanoparticle concentration. It is important to note that Tw > T∞ and Cw > C∞. The
governing equations of continuity equations, momentum equation, energy equation,
and concentration equations with the boundary conditions are given below.

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ∂2u

∂y2
− σ B2(x)

ρ f
u − υ

Kp
u (2)

u
∂T

∂x
+ v

∂T

∂y
= κ

ρ f cp

∂2T

∂y2
+ μ

ρ f cp

(
∂u

∂x

)2
+ τ

(
Dm

∂C

∂y

∂T

∂y
+ DT

T∞

(
∂T

∂y

)2
)

+ Q

ρ f cp
(T − T∞)

(3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+ DT

T∞
∂2T

∂y2
− Kc∗(C − C∞) (4)

y = 0 ,Uw = axn, V = 0, T = Tw , C = Cw

Y = ∞,U = 0 , V = 0, T = T∞, C = C∞ (5)

Following similarity variables and transformations are used to convert the PDEs
to ODEs.

η = y
√

a(n+1)
2v x

(n−1)
2 , u = axn f ′(η), v = −

√
a(n+1)

2 x
(n−1)

2 ( f (η) + n−1
n+1η f

′(η) ),
θ(η) = (T − T∞)/(TW − T∞), φ(η) = (C − C∞)/(CW − C∞)
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where ψ represents stream functions and is defined as u = ∂ψ

∂y , v = −∂ψ

∂y so that
Eq. (1) is satisfied identical. The governing Eqs. (2)–(4) and the boundary condition
(4) are reduced to

f ′′′ + f f ′′ −
(

2n

n + 1

)
f ′2 −

(
M + 1

Kp

)
f ′ = 0 (6)

1

Pr
θ ′′ + f θ ′ + Nbφ′θ ′ + Ntθ ′2 + Ecf ′′2 + Sθ = 0 (7)

φ′′ + Le f φ′ + Nt

Nb
θ ′′ − Leγφ = 0 (8)

f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0 (9)

Here, Pr = v
a , the Pradtl number, M = 2σ B2

0
aρ f (n+1) , the magnetic parameter, Ec =

u2w
cρ(Tw−T∞)

, the Eckert number and the other parameters are described in the results
and discussion section.

3 Physical Quantities of Interest

The practical interest of the quantities like the local skin frictionC f x , Nusselt number
Nux which is defined as

C f x = μ f

ρu2w

(
∂u

∂y

)
y=0

, Nux = xqw
k(Tw − T∞)

(11)

where k, the nanofluid thermal conductivity and the heat flux qw near the surface is
given by

qw = −
[
∂T

∂y

]
y=0

, (12)

Substituting the similarity forms into Eqs. (11)–(12), we get

Re
1/2
x C f x =

√
n+1
2 f ′′(0), Re−1/2

x Nux = −
√

n+1
2 θ ′(0),

where Rex = uw
x
v
is the local Reynolds number.
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4 Results and Discussion

Magnetohydrodynamics flow of steady, incompressible, viscous, and electrically
conducting water-based nanofluid past over a nonlinear stretching surface through a
porousmedium is considered in the present paper. Internal heat generation/absorption
and first order chemical reaction are also taken into account in the energy and
mass transfer equation, respectively. The transformed governing nonlinear ordinary
equations are solved numerically employing Runge–Kutta fourth order along with
shooting technique. The physical significance of pertinent parameters that character-
izes the flow phenomena are presented in Figs. 2, 3, 4, 5, 6, 7, 8 and 9 and discussed.
Also, the numerical computation for the rate of shear stress, Nusset number, and
Sherwood number are presented in Table 1.

Figure 2 presents the comparison plot visa-a-vis the variation of magnetic param-
eter (M) and nonlinear stretching parameter (n) in both the presence/absence of
porous matrix and fixed values of other physical parameters shown in the figure
caption. To validate the present solution, comparisons have been made with the
earlier published result of Mahmood et al. [18] in a particular case by taking M = 0
(dotted line) and M = 1 (bold line) and are found to be an excellent agreement. Also,
it is observed that the velocity of nanofluid reduces with an increase in the magnetic
parameter and nonlinear stretching parameter for both the absence of porous matrix,
Kp (Kp = 100)/the presence of porous matrix, Kp (Kp = 0.5). It is due to the
fact that the body force, magnetic field acts transversely to the main direction of
the flow, has retards the velocity profile for which the boundary layer thickness is

Fig. 2 Effects of M, Kp and n on velocity profiles for Pr = 6.2, Le = 5, Nt = Nb = Ec = 0.1
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Fig. 3 Effects of M, Kp and n on temperature profiles for Pr = 6.2, Le = 5, Nt = Nb = Ec =
0.1

Fig. 4 Effects of Pr and S on temperature profiles for M = 1, Kp = 0.5, Le = 5, Nt = Nb =
Ec = 0.1
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Fig. 5 Effects of Nt and Nb on temperature profiles for M = 1, Kp = 0.5, Le = 5, Ec =
0.1, n = 2

Fig. 6 Effects of Nt and Nb on concentration profiles for M = 1, Kp = 0.5, Le = 5, Ec =
0.1, n = 2
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Fig. 7 Effects of Ec and Le on temperature profiles forM = 1, Kp = 0.5, Nt = Nb = 0.1, n = 2

Fig. 8 Effects of Ec and Le on concentration profiles forM = 1, Kp = 0.5, Nt = Nb = 0.1, n =
2
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Fig. 9 Effect of γ on concentration profiles for M = 1, Kp = 0.5, Nt = Nb = 0.1, Ec =
0.1, n = 2

Table 1 Skin friction coefficient ( f ′′(0)), Nusselt number (−θ ′(0)) and Sherwood number(−φ′(0))
n M Kp Nb Nt S γ f ′′(0) −θ ′(0) −φ′(0)
0 0 100 0.5 0.1 0 0 −0.63698 0.524741 0.920767

0.2 0 100 −0.77492 0.513748 0.899625

1 −1.25605 0.461033 0.79604

2 −1.60402 0.424222 0.72809

1 0.5 −1.88701 0.396327 0.679353

0.3 −1.88701 0.498033 0.619042

0.1 – 0.617811 0.300959

0.3 – 0.548483 −0.36844

0.5 – 0.486782 −0.82737

0.1 −0.5 – 1.17046 −0.18712

0.5 – 0.50351 0.343971

−0.5 – 0.642853 1.782863

0.5 – 0.474407 1.340238

also decreases. Similarly, Fig. 3 also exhibits the comparison plot of the temperature
profile in a particular case for the absence of heat generation parameter S(S = 0)
along with the effects of M and n in both the absence/presence of porous matrix
on the dimensionless temperature of the nanofluid. In the absence of S, the present
result is in good agreement with the result of Mahmood et al. [18] when M = 0,
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n = 0 and Kp = 100. It is clear to note that, the effect of all these parameters is
reversed as that of Fig. 2 discussed earlier. That is, an increase in M and n in both
the absence/presence of porous matrix enhances the temperature profile at all points
in the thermal boundary layer. Since, Lorentz force, a resistive force, opposes the
fluid motion, and then heat is produced and as a result temperature of the nanofluid
increases.

Figure 4 exhibits the effects of Prandtl number and heat absorption/generation
parameter on the temperature profile in the presence of magnetic and porous matrix
and other fixed parameters presented in the figure caption. It is clear to note that
the higher value of Prandtl number decelerates the temperature of nanofluid as a
result thermal boundary layer thickness also decreases, whereas heat generation
(S = 1) is favorable to enhance the profile. Further, the impact is opposite in the
case of heat absorption (S = 0.5), i.e., heat absorption parameter retards the profile
asymptotically.

Figures 5 and6 illustrate the effects of thermophoresis parameter Nt andBrownian
motion parameter Nb on the temperature and concentration profile, respectively, for
fixed values of the other physical parameters. It is seen that both temperatures of the
nanofluid and dimensionless concentration increases with the increasing values of
the thermophoretic parameter significantly. Thermophoretic parameter generated by
the temperature gradient, intended to flow away from the stretching sheet leading to
an increase in temperature and concentration of the nanofluid. Further, the increase in
Brownianmotion parameter retards the nanoparticle volume fraction leads to thicken
the concentration boundary layer whereas temperature profile enhances.

Figures 7 and 8 present the effects of Eckert number, Ec and Lewis number,
Le on the temperature and concentration profiles, respectively. It is observed that
with an increase in Lewis number, both the temperature and nanoparticle concen-
tration decreases and this decrease is insignificant. Reduction in thermal boundary
layer thickness is marked with an increase in Lewis number resulted in decrease
in temperature and this also clear from the definition of Lewis number. Larger Le
will also suppress concentration values. Further, an increase in Eckert number, the
temperature of the nanofluid increases. Concentration fluctuation is remarked in the
concentration boundary layer with a decrease in nanoparticle concentration. Absence
of Ec corresponds to no viscous dissipation.

Figure 9 illustrates the effect of chemical reaction parameter on the concentration
profile. The absence of chemical reaction parameter, γ (γ = 0) corresponds to no
chemical reaction and it is found that the present result coincides with the works
of Mahbood et al. [18]. Further, with an increase in chemical reaction parameter,
the nanoparticle concentration decreases significantly, as well as the concentration
boundary layer thickness also decreases. It is clear to mark that, higher value of
γ (γ = 1) the minimum value of concentration is rendered near the plate.

Finally, Table 1 presents the rate of shear stress, rate of heat, and mass transfer for
different physical parameters. To validate the present result, comparisons have been
madewith earlier published result of Rana andBhargava [19] andMahbood et al. [18]
in a particular case for n = 0,M = Ec = 0, Pr = Le = 2 and absence of heat source
(S = 0) and chemical reaction parameter (γ = 0). It is seen that the present result is
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in good agreement. FromTable 1, it is clear to observe that with an increase in surface
parameter n andmagnetic parameter (M), the rate of shear stress increases but both the
rate of heat andmass transfer decreases for both absence or presence of porousmatrix.
It is interesting to note that the Brownian motion parameter and thermophoresis
parameter have an opposite effect on Nusselt and Sherwood number. An increase in
NbNusselt number decreases andSherwoodnumber increaseswhereas reverse effect
is encountered as Nt increases. When we increase the values of S (sink to source),
the chemical reaction (constructive to destructive) rate of heat transfer decreases,
whereas the rate of mass transfer increases. Hence, it is to conclude that heat sink
favors into generate heat near the plate and destructive chemical reaction is account
for to increase the rate of mass transfer in a nanofluid.

5 Conclusive Remarks

The study concludes with the following results:

• The boundary layer thickness decreases with an increase in magnetic parameter
for both the absence/presence of the porous matrix.

• Temperature of the nanofluid and dimensionless concentration increases with
increasing values of the thermophoretic parameter, whereas the Brownian motion
parameter retards the nanoparticle volume fraction.

• Increase in Lewis number both the temperature and nanoparticle concentration
decreases.

• Brownianmotionparameter and thermophoresis parameter have anopposite effect
on Nusselt and Sherwood number.
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An Overview of Transverse Vibration
of Axially Travelling String

Shashendra Kumar Sahoo, H. C. Das, and L. N. Panda

Abstract The paper presents a comprehensive review of transverse vibration of
axially travelling string. Axially travelling string includes many mechanical systems
such as conveyor belt, aerial tramways, magnetic tapes, textile fibres, band-saw
blades, thread lines and pipe conveying fluid. The analysis of transverse vibration
of axially travelling string has theoretical as well as industrial significance because
it is the simplest representation of the gyroscopic system. In the paper, the major
emphasis is given on different types of modelling, the governing equations and the
method of analysis of axially travelling string. In the discussion of linear model of
axially travelling string, the paper describes about governing equation, modal anal-
ysis and response solution. In the discussion of non-linear model of axially travelling
string, the paper discusses about governing equation, the method of analysis using
direct perturbation method and the discretised perturbation method and numerical
methods based onGalerkin discretization.A discussion is alsomade on themodelling
of the dissipative mechanism by considering string as viscoelastic material based on
Kelvin viscoelastic model. The paper also describes about linear and non-linear para-
metric excitation of axially travelling string which occurs due to tension and velocity
fluctuation.

1 Introduction

Axially travelling strings include many mechanical systems such as conveyor belt,
aerial tramways, magnetic tapes, textile fibres, band-saw blades, thread lines and
pipe conveying fluid The study of transverse vibration of axially travelling string has
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theoretical aswell as industrial significancebecause it is the simplest representationof
the gyroscopic system. The gyroscopic system includes both translation and rotation.
Mote et al. [1–5] and Wickert et al. [6–8] made extensive research on linear and
non-linear analysis of axially translating string. Pakdemirli et al. [9, 10] studied the
vibration analysis of axially travelling string using both Galerkin’s discretization and
perturbation method and made the stability analysis using Floquet theory.

Chen et al. [11–15] analysed the stability analysis of axially accelerating
viscoelastic string with two-to-one parametric resonance. Zhang et al. [16–19] inves-
tigated the non-linear analysis of axially translating string and studied the stability
analysis using the method of multiple scales, a direct perturbation method. Oz
et al. [20–22] studied both linear and non-linear vibration analysis of travelling
tensioned beam. Panda and Kar [23, 24] studied the combination and principal para-
metric resonance with 3:1 internal resonance of pipe transporting pulsatile fluid.
Zhou et al. [25] studied the dynamics of pipes transporting fluid considering super-
harmonic resonance of the secondmodewith 1:2 internal resonance. Javadi et al. [26]
studied the divergence and flutter instabilities of pipes transporting fluid assuming
Euler–Bernoulli beam theory and viscoelastic damping.

In the paper, a comprehensive review on the vibration analysis of axially travelling
string is presented. The emphasis is given on the recent developments on the vibra-
tion analysis of axially travelling string with earlier studies taken for reference. The
organisation of the paper is as such: Sect. 2 discusses about the governing equation
and the dynamic analysis of linear vibration of axially travelling string. Section 3
discusses about the governing equation and the dynamic analysis of non-linear vibra-
tion of axially travelling string. Section 4 represents the governing equation and the
dynamic analysis of linear parametric vibration of axially travelling string. Section 5
discusses about the governing equation and the dynamic analysis of non-linear para-
metric vibration of travelling string. Section 6 discusses about the conclusion and
future research to be carried out.

2 Linear Vibration

2.1 Axially Travelling String with Constant Transport
Velocity

2.1.1 Governing Equation

Swope and Ames [27] derived the equation of motion of axially travelling string
using Newton’s second law. A continuous string of length L, having mass density ρ,
tension P and moving with axial transport velocity v between two fixed eyelets is
considered as shown in Fig. 1.

The governing equation ofmotion for transverse vibration of travelling stringwith
boundary condition is given as
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Fig. 1 An axially travelling
string subjected to
distributed loading

U 
v 

x

F(X, T)

L 

ρ(UTT + 2VUXT + V 2UXX ) − PUXX = F (1)

U (0, T ) = 0,U (L , T ) = 0 (2)

where U(X, T ) represents the displacement of the string in transverse direction and
F(X, T ) represents distributed loading.

UTT , 2VUXT and V 2UXX represent local acceleration, coriolis acceleration and
centripetal acceleration, respectively.

Using the dimensionless variables

x = X

L
u = U

L
t = T (P/ρL2)1/2 f = FL/P v = V (ρ/P)1/2 (3)

The dimensionless form of the equation becomes

Mutt + Gut + ku = f (4)

where the mass, gyral and stiffness operators are as follows:

M = I G = 2ν
∂

∂x
k = −(1 − v2)

∂2

∂x2
(5)

I is the identity operator.

2.1.2 Method of Analysis

Wickert and Mote carried out the dynamic analysis of the transverse vibration of
travelling string using modal analysis [28, 29]. The natural frequencies for nth mode
for fixed end boundary conditions were calculated as follows:

ωn = nπ(1 − v2) (6)

The real and imaginary components of eigenfunctions were obtained as

ψ R
n (χ) = 1

nπ

√
2

1 − v2
sin(nπx) cos(nπvx) (7)
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ψ I
n (χ) = 1

nπ

√
2

1 − v2
sin(nπx)sin(nπvx) (8)

The response solution is given as

u(x, t) =
∞∑
n=1

1

nπ

√
2

1 − v2
(
ξ R
n (t) sin(nπx) cos(nπvx)

+ ξ I
n (t) sin(nπx) sin(nπvx) (9)

where ξ R
n (t) and ξ I

n (t) are the components of the generalised coordinates.

2.2 Axially Travelling String Over Elastic Foundation

2.2.1 Governing Equation

Wickert [8] considered an elastic supported axially travelling string with elastic
foundation modulus k and with transport velocity v between two fixed supports as
shown in Fig. 2.

The governing equation of motion in non-dimensional form with boundary
conditions is given as

utt + 2vu,xt + (v2 − 1)u,xx + ku = f (x, t) (10)

u(0, t) = u(1, t) = 0 (11)

where u(x, t) is the non-dimensional displacement in transverse direction for x ∈
(0, 1) and f (x,t) is the exciting force.

2.2.2 Method of Analysis

Using modal analysis [28, 29], the natural frequencies for nth mode were obtained
as

Fig. 2 An axially travelling
string over an elastic
foundation

k

v 

f(x,t)
u 

0 1

x
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ωn = nπ(1 − v2)

√
1 + k

(nπ)2(1 − v2)
f or n = 1, 2, . . . (12)

The real and imaginary components of eigenfunctions are

ψ R
n =

(
1

nπ

√
2

1 − v2

)⎛
⎝ 1√

1 + k
(nπ2)(1−v2)

⎞
⎠ sin(nπx)

× cos

(√
1 + k

(nπ)2(1 − v2)
nπvx

)

ψ I
n =

(
1

nπ

√
2

1 − v2

)⎛
⎝ 1√

1 + k
(nπ2)(1−v2)

⎞
⎠ sin(nπx)

× sin

(√
1 + k

(nπ)2(1 − v2)
nπvx

)
(13)

The general solution for nth mode (normalised) considering free vibration is

u(x, t) =
(

1

nπ

√
2

1 − v2

)⎛
⎝ 1√

1 + k
(nπ2)(1−v2)

⎞
⎠ sin(nπx)

× cos

(√
1 + k

(nπ)2(1 − v2)
(nπ(1 − v2)t + nπvx)

)
(14)

Perkins [30] examined the dynamic response of an axially travelling string over
an elastic foundation. Exact solutions were obtained for travelling string across a
discrete foundation and a uniform step foundation. He concluded that the critical
speed is not affected by the elastic foundations. The presence of a continuous elastic
foundation makes the string dispersive and creates three distinct modes of vibration.

Parker [31] investigated the stability analysis of an axially travelling string over
discrete elastic foundation and distributed elastic foundation. He concluded that any
elastic supported string gives rise to multiple critical speeds, whereas an unsupported
string has a single critical speed and stable at all supercritical speeds. A single region
of divergence instability occurs above the first critical speed in case of an elastically
supported string.
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Fig. 3 An axially travelling
string under boundary
damping

w

V V

η

X = L
X = 0

w=0

L

2.3 Axially Travelling String Under Boundary Damping

2.3.1 Governing Equation

Malookani et al. [32] analysed an axially travelling string with one end fixed and the
other end tied to the spring-dashpot system as shown in Fig. 3.

The transverse equation of motion for the travelling string with boundary
conditions is

ρ
(
wtt + 2Vwxt + V 2wxx

) − T0wxx = 0, 0 < x < L , t ≥ 0 (15)

w(0, t) = 0, t ≥ 0 (16)

ηwt (L , t) + T0wx (L , t) − ρVwt (L , t) − ρV 2wx (L , t) = 0, t ≥ 0 (17)

where T0 the tension of the string, η the boundary damping parameter, ρ the mass
density and V is the transport velocity of the string.

2.3.2 Method of Analysis

Approximate solutions of the homogenous linear partial differential equations were
obtained by two time scales perturbation [33] and characteristic coordinate method
[26]. The vertical displacement of the system was obtained under two particular
initial conditions. It was concluded that the motion of the travelling string in terms
of vertical displacement is damped out by increasing the damping in the system.
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Fig. 4 An axially travelling string with a stationary load system

2.4 Axially Travelling String in Contact with a Stationary
Load System

2.4.1 Governing Equation

Chen [34] considered a flexible string that slides between guides that are elastically
supported as shown in Fig. 4. The upper and lower parts of the guide are identical
and are modelled as spring-mass-dashpot system. A constant tension P is applied to
the right of the string at X = X0 and P−Fθ to the left of the string.

The governing equation of motion considering transverse vibration is given as

ρ(WTT + 2VWXT + V 2WXX ) − FWXX

= −(KZW + CZWT + MZWTT − FθWX )δ∗(X − X0) (18)

where

F =
{

P,

P − Fθ

,
X0 < X < L
0 < X < X0

(19)

δ∗(:) is the Dirac delta function.

2.4.2 Method of Analysis

Using eigenfunction expansionmethod [28, 29], the eigenvalues are calculated. Itwas
found that the natural frequencies of the travelling string increases with the stiffness
of the load system and decreases with the inertia element of the load system. The
damping of the load system brings about the stability in the system in the subcritical
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speed range. It was observed that flutter instability occurs in the high speed range
due to dry friction in the load system.

2.5 Axially Travelling String with a Viscous Fluid Layer

2.5.1 Governing Equation

Huang and Mote [35] considered a thin viscous fluid that acts as a damping between
translating string and a translating rigid surface.

The governing equation of motion for transverse vibration is

L

(
M

∂2v

∂t2
+ G

∂v

∂t
+ Kv

)
+ C

(
v
∂v

∂x
+ ∂v

∂t

)
= 0 (20)

where L is a symmetric operator describing fluid coupling. The second term in the
equation represents viscous damping translatingwith speed v.M,G,K in the equation
represent mass, gyral and stiffness operators, respectively, in the translating elastic
medium.

2.5.2 Method of Analysis

The method of the slowly varying parameter was used to calculate the wave modes
near the boundary separating stability and instability zones. It was noticed that the
unstable modes propagate at speeds close to mean flow speed near the stability
boundary when the damping force is predominant.

3 Non-linear Vibration

The linear vibration analysis is applicable to small-amplitude transverse vibration.
The string is considered to be of linear material. But in the non-linear vibration
analysis, the geometric non-linearity, non-linearity due to damping, material non-
linearity are taken into account. The non-linear dynamics of the axially travelling
string is being studied extensively in recent years because of the complex dynamical
behaviours exhibited by the system.
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3.1 Axial Travelling String with Geometric Non-linearity

3.1.1 Governing Equation

Mote [2] applied the Hamilton’s principle to derive the governing equation of
axially travelling string considering geometric non-linearity. The governing equation
considering transverse vibration is given by

ρAvtt + 2ρAcvxt + (ρAc2 − P)vxx + 3

2
vxxv

2
x (p − AE) = 0 (21)

where v is the transverse displacement, A is the cross-sectional area of the string, c
is the constant axial velocity, E is the elastic modulus, P is the initial tension in the
string.

Thurman andMote [4] derived the transverse and longitudinal equation of motion
of axially moving strip using Hamilton’s principle.

ρAvtt + 2ρAcvxt + (ρAc2 − E A)vxx + E Ivxxxx

+(E A − R0)
(1 + ux )

2vxx − (1 + ux )vxuxx

[(1 + ux )2 + v2x ]3/2
= 0 (22)

ρAutt + 2ρAcuxt + (ρAc2 − E A)uxx

+(E A − R0)
(1 + ux )vxvxx − v2xuxx

[(1 + ux )2 + v2x ]3/2
= 0 (23)

where v(x, t) is the transverse displacement andu(x, t) is the longitudinal displacement
and all other notations have the usual meaning.

3.1.2 Method of Analysis

Mote used the method of characteristics [26] to calculate the fundamental period
of oscillation of axially travelling string. Thurman and Mote used a perturbation
technique combining Lindstedt and Krylov-Bogoliubov methods [25] to calculate
the non-linear fundamental period of transverse oscillation. The results indicate that
axial transport velocity decreases the fundamental period of oscillation and increases
the effect of non-linear terms in the equation of motion.
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3.2 Axially Travelling String with Viscoelastic Damping

3.2.1 Governing Equation

Zhang and Zu [15] derived the equation of motion for non-linear free vibration
of viscoelastic moving belt with geometric non-linearities. The kelvin viscoelastic
model composed of linear spring and linear dashpot in parallel is considered to
describe the material property of the belt material. The Kelvin viscoelastic model is
expressed by the linear differential operator E∗

E∗ = E0 + η
∂

∂t
(24)

where E0 is the spring stiffness constant and η is the dashpot dynamic viscosity.
The non-linear equation of motion governing transverse vibration is given as

ρ
∂2V

∂t2
+ 2ρc

∂2V

∂t∂x
+

(
ρc2 − T

A

)
∂V

∂x2
= E∗(

1

2
V 2
x )Vxx + Vx

{
E∗

(
1

2
V 2
x

)}
x
(25)

where V is the transverse displacement of the belt, c is the axial velocity of the belt,
ρ is the mass density and A is the cross-sectional area of the belt and T is the initial
Tension.

3.2.2 Method of Analysis

Using the method of multiple scales [33], the non-linear frequencies and the ampli-
tude of response were calculated. It was concluded that the amplitude of the response
is affected by the damping of the system, whereas the non-linear natural frequencies
are not affected. The non-linear natural frequencies decrease with an increase in the
axial velocity of the string.

4 Linear Parametric Vibration

Large transverse vibration occurs in the axially travelling string due to periodical
fluctuation of their parameters. A parametric excitation gives rise to large instability
even if the frequency of the fluctuation is away from linear natural frequencies of the
system. The major two factors contributing towards parametric vibration of axially
travelling string are the tension fluctuation and the velocity fluctuation.
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Fig. 5 Schematic diagram
of an axially travelling string
on pulley mounting system
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x
k 

v(t) 
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4.1 Parametric Vibration of Travelling String Due to Velocity
Fluctuation

4.1.1 Governing Equation

Pakdermili et al. [9] studied the parametric excitation of an axially travelling string
passing over two pulleys at a transport velocity v(t) which is a function of time as
shown in Fig. 5.

The governing equation of motion was derived using Hamilton’s principle as

ρA(ÿ + v̇y′ + 2vẏ′) + (ρAv2 − P)y′′ = 0 (26)

where y is the transverse displacement of the string,P is the tension force in the string
given as P = P0 + ηρAv2 where 0 ≤ η ≤ 1. The pulley support parameter is given
as κ = 1 − η. The transport velocity v is a periodical function of time expressed as
v(t) = v0 sinω0t where v0 is the axial velocity amplitude and ω0 is the frequency of
axial velocity variation.

4.1.2 Method of Analysis

Galerkin’s method [36] was used to solve the partial differential equation.
The trial function taken is

y(x, t) =
n∑

i=1

qi (t) sin(iπx/L) (27)

where sin(iπx/L) is the ith eigenfunction of the simply supported stationary string
and qi (t) is the generalised displacement.

Applying Galerkin’s method, the discretised governing equation obtained is

M
..
q +C

.
q +K

.
q = 0 (28)
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where the elements in the matrices are defined as

mi j =
L∫

0

(
sin

iπx

L
sin

jπx

L

)
dx =

{
L/2, i = j

0, i �= j
(29)

ci j =
⎛
⎝

L∫
0

2π iv

L
cos

iπx

L
sin

jπx

L

⎞
⎠dx =

⎧⎪⎨
⎪⎩

0, i = j

0, i �= j, i + j = 2n

4i jv/( j2 − i2), i �= j, i + j = 2n + 1
(30)

ki j =
L∫

0

{(
p

ρA
− v2

)(
iπ

L

)2

sin
iπx

L
sin

jπx

L
+

.
v

.

π i

L
cos

iπx

L
sin

jπx

L

}
dx

(31)

Taking the one term approximation in the series solution yields theMathieu equa-
tion whose solution gives the transition curves separating stability and instability
zones. Taking two term approximation in the series solution leads to gyroscopically
coupled equation. The stability analysis was obtained using Floquet theory. The two
term approximation represents the system behaviour better.

Pakdermili and Ulsoy [10] found an approximate analytical solution using the
method of multiple scales [33] applied directly to the partial differential equation.
Principal parametric resonance is investigated and transition curves showing stable
and unstable zones are calculated for a band-saw vibration. Taking numerical values
P0 = 76.22 N, ρ = 7754 kg/m3, A = 0.5201 × 10−5m2, k = 0.22 and L = 0.3681 m,
the stability boundaries for first five natural frequencies were plotted as shown in
Fig. 6. It was observed that the instability zone for the fifth natural frequency appears
as a line. They concluded that instability occurs when the fluctuation frequency of the
velocity is nearly equal to two times the natural frequency and no instability occurs
when changing frequency is close to zero.

4.2 Parametric Vibration of Travelling String Over Elastic
Foundation

4.2.1 Governing Equation

Ghayesh [37] studied the parametric vibration analysis of an axially travelling string
over a partial elastic foundation. The string is divided into three segments. The
segment in the span a < x* < (a + b) is supported by elastic foundation and other
segments 0 < x* < a and (a + b) < x* < (a + b + c) are free to vibrate.
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Fig. 6 Stability boundaries for the first five natural frequencies for a band-saw with pulley support
parameter (k = 0.22) and dimensionless mean speed (v0 = 1.15011)

For the sement in the spans 0 < x* < a and (a + b) < x* < (a + b + c), the
non-dimensional equation of motion is given as

∂2u

∂t2
+ dcv

dt

∂u

∂x
+ 2cv

∂2u

∂x∂t
+ (c2v − 1)

∂2u

∂x2
= 0 (32)

for

u = u∗/(a + b + c),

x = x∗/(a + b + c),

t = t∗
√
T/ρA(a + b + c)2

cv(t) = v
√

ρA/T , (33)

where T is the tension in the string, ρ is the density and A is the cross-sectional area
of the string.

Taking k as the stiffness coefficient per unit length of the foundation, the non-
dimensional equation of motion for the span a < x* < (a + b) takes the form

∂2u

∂t2
+ dcv

dt

∂u

∂x
+ 2cv

∂2u

∂x∂t
+ (c2v − 1)

∂2u

∂x2
+ κ2u = 0 (34)

k = √
k(a + b + c)/T (35)
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4.2.2 Method of Analysis

Using the method of multiple scales [33], mode shapes and natural frequencies of
the system were determined. Stability analysis was carried out for principal and
combination parametric resonance. The increase in the axial mean velocity tends to
decrease the natural frequency of the system, whereas an increase in the stiffness
factor and foundation length increases the natural frequency of the system.

4.3 Parametric Vibration of Travelling String Due to Tension
Fluctuation

4.3.1 Governing Equation

Mahalingam [38] considered a travelling chain as a uniform axially travelling string.
The travelling chain is having m as the mass of chain per unit length, T as the

chain tension, V as the speed of chain. The tension in the chain due to longitudinal
excitation at any instant is given as T (t) = T + �T cosωt where ω is the circular
frequency of exciting force. The governing equation of motion for travelling chain
becomes

(
V 2
0 + �V 2

0 cosωt
)∂2y

∂x2
= V 2 ∂2y

∂x2
+ 2V

∂2y

∂x∂t
+ ∂2y

∂t2
(36)

where V0 = √
(T/m) is the velocity of propagation of transverse waves.

4.3.2 Method of Analysis

Substituting

y = eiμx y0(t) and ωt = 2z (37)

We get

ÿ0 + 2iVμẏ0 + [μ2(V 2
0 − V 2 + �V 2

0 cos 2z)]y0 = 0 (38)

Let

y0 = e−iVμzu(z) (39)

Substituting Eq. (38) in Eq. (37), we get Mathieu equation in the form

ü + (α + 2q cos 2z)u = 0 (40)
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α = μ2V 2
0 (41)

2q = μ2�V 2
0 (42)

The solution of Mathieu equation leads to transition curves separating stability
and instability regions.

Mote [3] studied the parametric excitation of an axially translating string with a
periodic tension component. The Galerkin’s method was used to reduce the equa-
tion of motion to a set of coupled Mathieu equation. The transition curves showing
stability-instability zones were calculated by the application of numerical method.

Naguleswaran and Williams [39] examined the parametric excitation of axially
translating string due to periodic variation in the band tension caused due to wheel
eccentricity and joints. They used theGalerkinmethod up to four term approximation
to study the stability analysis similar to the solution of Mathieu equation separating
stability and instability zones.

Rhodes [40] investigated the parametric self-excitation of a belt due to periodic
variations in belt tension. When the belt is in transverse vibration, the length of the
vibrating span varies at twice the frequency of the belt vibration and the belt tension
will have an alternating component at twice the natural frequency of transverse
vibration. Varying tension on the belt is recorded as stress or strain pattern when the
belt winds onto the pulley.

5 Non-linear Parametric Vibration

Non-linear parametric excitation in axially travelling string gives rise to complicated
dynamic behaviours such as bifurcation and chaos which occur due to tension or
velocity fluctuation.

5.1 Non-linear Parametric Vibration of Axially Travelling
Viscoelastic String

Chen et al. [13] considered the transverse vibration of an axially accelerating
viscoelastic string with geometric non-linearity. A uniform viscoelastic string having
mass density ρ, cross-sectional area A, initial tension P and travelling with speed
harmonically varying about an average speed is considered.
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5.1.1 Governing Equation

The non-dimensional equation of motion governing the transverse vibration of
viscoelastic string with boundary conditions is given as

∂2u

∂τ 2
+ 2(γ + γ1 cosωτ)

∂2u

∂ξ∂τ
+

(
γ 2 + γ 2

1

2
+ 2γ γ1 cosωτ + γ 2

1

2
cos 2ωτ − 1

)

∂2u

∂ξ 2
− ωγ1 sinωτ

∂u

∂ξ
= ∂

∂ξ

(
ες(ξ, τ )

∂u(ξ, τ )

∂ξ

)
, (43)

u(0, t) = 0, u(1, t) = 0 (44)

ς(ξ, τ ) = Ee

2

(
∂v(ξ, τ )

∂ξ

)2

+ Ev

2

∂

∂τ

(
∂v(ξ, τ )

∂ξ

)2

, (45)

u = U

l
, ξ = x

l
, τ = t

l

√
p

ρA
, ω = Ωl

√
ρA

P
, Ee = E0A

P
,

Ev = ηb

l

√
p

ρA
, γ = c0

√
ρA

P
, γ1 = c1

√
ρA

P
, ες(ξ, τ ) = Aσ(x, t)

P
, (46)

where U(x, t) the transverse displacement, σ(x, t) is the stress in the axial direction,
εL(x, t) is the Lagrangian strain, E0 is the stiffness constant of the string and η is the
dynamic viscosity.

5.1.2 Method of Analysis

Using the method of multiple scales [33], the amplitude of steady state response
in two-to-one parametric resonance is investigated. Lyapunov’s linearized stability
theory is used to study the stability analysis of trivial and nontrivial solutions.

Yang et al. [41] used a novel procedure to analyse the non-linear vibration analysis
of axially travelling string. Galerkin method and subsequently the invariant manifold
method are applied to the differential equation ofmotion to derive descretised system.
The method of multi-timescale is applied to analyse 1:3 internal resonance in the
system.

Mockensturm et al. [42] analysed the weakly non-linear equation of motion
derived by Thurman andMote. Galerkin’s discretization method was applied to eval-
uate the response near the principal parametric instability regions for nontrivial limit
cycle motions. It is concluded that the amplitude of nontrivial limit cycles reduces
with an increase in the axial speed and ultimately vanishes for large speeds.
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5.2 Non-linear Parametric Vibration of Multi-supported
Axially Travelling String

5.2.1 Governing Equation

Kesimli et al. [43] studied the non-linear parametric excitation of multi-supported
axially travelling string considering geometric non-linearity. The axial velocity of
the string is periodically varying about an average value (Fig. 7).

The dimensionless equation of motion governing transverse vibration between
any two successive supports is given as

(
ẅm+1 + 2ẇ′

m+1v + w′
m+1v̇

) + (
v2 − 1

)
w′′
m+1 = 1

2
v2b

⎛
⎝ n∑

r=0

ηr+1∫
ηr

w′2
r+1dx

⎞
⎠w′′

m+1

(47)

where the dimensionless parameters are

wm+1 = w∗
m+1

L
, η = x∗

m+1

L
, t = t∗

√
p

ρAL2
, v = v∗√

p/ρA
, v2b = E A

p
, vk = kL

p

where m = 0,1,2…n, and n is the number of supports.
x∗
m+1 is the position of any support from the origin.
x0 = 0, xn+1 = L the total length of the string.
xp is the location of multiple supports.
vb represents longitudinal rigidity and vk represents the effect of rigidity of spring

coefficient. The axial velocity is made dimensionless by dividing with the critical
velocity.

η0 = 0, ηn+1 = 1

With boundary conditions

w1(0, t) = 0,wn+1(1, t) = 0 (48)

Fig. 7 Axially travelling
string on multi-supported
springs

w* 

w*(x*,t*)
v*(t*)

x*p

x*



444 S. K. Sahoo et al.

wp(ηp, t) = wp+1(ηp, t), (49)

vkpwp(ηp, t) =
⎡
⎣1 + 1

2
v2b

⎛
⎝ n∑

r=0

ηr+1∫
ηr

w′2
r+1dx

⎞
⎠

⎤
⎦

× (
w′

p+1(ηp, t) − w′
p(ηp,t)

)
(p = 0, 1, 2 . . . n) (50)

ẅm+1 is the local acceleration, 2ẇ′
m+1v is the coriolis acceleration, v

2
bw

′′
m+1 is the

centripetal acceleration, ηp represents the locations of intermediate springs.

5.2.2 Method of Analysis

Approximate solutions were found using multiple scale method [33]. In case of
parametric resonance, two solutions are obtained namely simple and complex. For
the simple solution, amplitude is zero and for the complex solution the amplitude
increases depending on the fluctuation frequency. Non-linear terms affect the natural
frequency values and increase the frequency values. The increase varies depending
on the spring constant, axial speed and the number of supports.

6 Conclusions

The researches activities presented in the paper show vast progress in the analysis
of transverse vibration of axially travelling string. Different types of modelling,
dynamic analysis, stability analysis based on linear and non-linear vibration have
been discussed.Alsomodelling, dynamic analysis of linear and non-linear parametric
vibration has been reviewed. The research activities in this area are important because
axially travelling string is the simplest representation of the gyroscopic system. The
future research requires an understanding of complicated dynamical behaviours such
as bifurcation, chaos, patterns in transverse vibration of axially travelling string and
experimental investigation on various devices that model axially travelling string as
a mechanical system.

Acknowledgements The author expresses his deep gratitude to Professor Dr. L. N. Panda (C. E.
T. Biju Pattnaik University of Technology) who guided him in the preparation of the paper.
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A New Iterative Methods for a Nonlinear
System of Equations with Third and
Fifth-Order Convergence

Bijaya Mishra, Ambit Kumar Pany, and Salila Dutta

Abstract In this paper, we present a pair of iterative methods for solving a system of
nonlinear equations. Both methods are constructed without using the second-order
derivative. It is further shown that these iterativemethods possess third and fifth order
convergence respectively. Finally, some numerical experiments are given to confirm
our theoretical findings.

Keywords Iterative method · Order of convergence · Nonlinear system of
equations · Root-finding

1 Introduction

Solution of nonlinear equations and system of nonlinear equations using iterative
methods are the most attractive fields in numerical analysis. There are good amounts
of research contributions toward these areas but still there is some space for modifi-
cation. The quadratically convergent Newton’s approximation method [1, 2, 14] is
a classic work in this regard.

Let the system of nonlinear equations be

F(x) = ( f1(x), f2(x), . . . , fn(x))
T = 0. (1)
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where each function fi maps a vector x = (x1, x2, . . . , xn)T of n-dimensional space
IRn into the real line IR. System (1) involves n nonlinear equations and n unknowns.

We need to find a vector α = (α1,α2, . . . ,αn)
T such that F(α) = 0. Newton’s

method to solve (1) involves the scheme

xn+1 = xn − F(xn)

F ′(xn)
n = 0, 1, 2, . . . , (2)

where F ′(xn) is the first Frechet derivative of F(xn).
Subsequently, many Newton type iterative methods have been developed by using

different quadrature rules to solve the system of nonlinear equations with third-order
convergence, see [3–10]. To discuss a few of them, we have

Noor and Waseem [4] have established two cubically convergent methods using
open quadrature formula.

xn+1 = xn −
[
F ′(xn) + 3F ′

(
xn + 2yn

3

)]−1

4F(xn), n = 0, 1, 2, . . . (3)

and

xn+1 = xn −
[
3F ′

(
2xn + yn

3

)
+ F ′(yn)

]−1

4F(xn), n = 0, 1, 2, . . . (4)

where yn = xn − F(xn)
F ′(xn) , n = 0, 1, 2, . . .

Further, Liu et al. [3] have developed a cubically convergent method using two-
point Gauss quadrature formula.

xn+1 = xn − 2F(xn)[
F ′( xn+yn

2 − yn−xn
2
√
3
) + F ′( xn+yn

2 + yn−xn
2
√
3
)

] , n = 0, 1, 2, . . . (5)

where yn = xn − F(xn)
F ′(xn) , n = 0, 1, 2, . . .

Also they have constructed a fifth-order convergentmethod using two-pointGauss
quadrature formula.

zn = xn − 2F(xn)[
F ′( xn+yn

2 − yn−xn
2
√
3
) + F ′( xn+yn

2 + yn−xn
2
√
3
)

] , (6)

xn+1 = zn − F(zn)

F ′(yn)
, n = 0, 1, 2, . . . (7)

where yn = xn − F(xn)
F ′(xn) , n = 0, 1, 2, . . ..
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Somemulti-step iterative methods with fith-order convegence has been developed
by using quadrature rule. For detail see [11–13].

In this paper, we develop a couple of new iterative schemes to solve the system
of nonlinear equations. These schemes posses third- and fifth-order convergence,
respectively. Further, we estimate the Efficiency Index E .I = p1/w, where p is the
order of convergence and w is the sum of the number of functional evaluations
and derivative evaluations per iteration. Additionally the computational order of
convergence has been established.

This paper is organized as follows. Section 2 deals with development of new
methods. In Sect. 3 the convergence of these methods are established. Finally in
Sect. 4, several numerical examples are tested to find the solution of nonlinear equa-
tions and boundary value problems of nonlinear ODEs, affirming the consistency of
the numerical results with the theoretical findings, and also a comparison is done
corresponding to some existing results of some rules of the same class.

2 Development of the Methods

Modified Newton’s method—(I)
we have proposed the new Newton type iterative method as

xn+1 = xn − NF(xn)

∑N
k=1 F

′
[
xn + (yn−xn)(k−0.5)

N

] , n = 0, 1, 2, . . . (8)

where yn = xn − F(xn)
F ′(xn) , n = 0, 1, 2, . . .

In particular choosing M = 1, i.e., N = 2, we have

xn+1 = xn − 2F(xn)[
F ′( 3xn+yn

4 ) + F ′( xn+3yn
4 )

] , n = 0, 1, 2, . . . (9)

where yn = xn − F(xn)
F ′(xn) , n = 0, 1, 2, . . .

The scheme (9) is named as NH-1 method.
Modified Newton’s method—(II)
Let

yn = xn − F(xn)

F ′(xn)
, n = 0, 1, 2, . . . (10)

be the nth iterate in the Newton’s method. And let sn be the (n+1)th iterate in gener-
alized NH-1 method, i.e.,
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sn = xn − NF(xn)

∑N
k=1 F

′
[
xn + (yn−xn)(k−0.5)

N

] . (11)

We can use the iterative values from (10) and (11) to construct a new method with
higher order convergence.

⎧⎪⎪⎨
⎪⎪⎩
sn = xn − NF(xn)

∑N
k=1 F

′

[
xn+ (yn−xn )(k−0.5)

N

] ;

xn+1 = sn − F(sn)
F ′(yn) n = 0, 1, 2, . . . .

(12)

The scheme (12) is named as generalized NH-2 method.
In particular choosing M = 1, i.e., N = 2, we have

⎧⎪⎪⎨
⎪⎪⎩
sn = xn − 2F(xn)[

F ′( 3xn+yn
4 )+F ′( xn+3yn

4 )

] ;

xn+1 = sn − F(sn)
F ′(yn) n = 0, 1, 2, . . . .

(13)

The scheme (13) is named as NH-2 method.

3 Convergence Analysis

Lemma 3.1 Let F : A ⊂ IRn → IRn be sufficientlyFrechet differentiable in a convex
set A. For any x0, t ∈ A, the Taylor’s expansion is as follows

F(x0 + t) = F(x0) + t F ′(x0) + t2

2! F
′′(x0) + t3

3! F
′′′(x0) + · · · tm−1

m − 1! F
m−1(x0) + Rm , (14)

where ‖Rm‖ ≤ 1
m! sup ‖Fm(x0 + βt)‖‖t‖m and 0 ≤ β ≤ 1.

Theorem 3.1 Let F : A ⊂ IRn → IRn be sufficiently Frechet differentiable in a con-
vex set A. Let F(α) = 0 and α ∈ D. If the initial guess x0 is close to α then the
iterative method NH-1 converges cubically to α and the error equation is

en+1 = (c2
2 − c3

4N 2
)en

3 + (c2
3 + 3c2c3 + 3c2c3

4N 2
− 2c4

N 2
− 3c4

2N 3
)en

4 + O(‖en‖5),
(15)

where en = xn − α and ck = ( 1
k! ) × F (k)(α)

F ′(α) .

Proof Using Taylor’s series expansion for F(x) at x = x0 and taking F(α) = 0 and
en = xn − α, we get
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F(xn) = F ′(α)(xn − α), F ′′(α)(xn − α)2, F ′′′(α)(xn − α)3, Fiv(α)(xn − α)4 + O(‖xn − α‖5)

= F ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + O(‖en‖5)

]
. (16)

Expanding F ′(x) at x = xn , we get

F ′(xn) = F ′(α)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + O(‖en‖5)

]
. (17)

From the above two equations

F(xn)

F ′(xn)
= en − c2e

2
n + 2(c22 − c3)e

3
n + (7c2c3 − 3c4 − 4c32)e

4
n + O(‖en‖5). (18)

Again, taking Pk = k−0.5
N

xn −
[
(k − 0.5)

N
× F(xn)

F ′(xn)

]
= xn − Pk [en − c2en

2 + 2(c22 − c3)e
3
n + (7c2c3 − 3c4 − 4c32)e

4
n

+ O(‖en‖5]
= xn + (−1 + (1 − pk))en + C2Pke

2
n − 2C2

2 Pke
3
n + 2C3Pke

3
n −

− (7c2c3 − 3c4 − 4c32)e
4
n + O(‖en‖5)

= α + (1 − Pk)en + C2Pke
2
n − 2C2

2 Pke
3
n + 2C3Pke

3
n

− (7c2c3 − 3c4 − 4c32)e
4
n + O(‖en‖5). (19)

Then

F ′(xn −
[
(k − 0.5)

N
× F(xn)

F ′(xn)

]
= F ′(α)[1 + (2C2 − 2C2Pk)en + (2C2

2 Pk + 3c3 + 3c3Pk − 6c3 pk )e
2
n

+ (−4c32 pk + 10c2c3 pk − 6c2c3 p
2
k + 4c4 − 12c4 pk + 12c4 p

2
k − 4c4 p

3
k )e

3
n

+ (−26c22c3 pk + 6C2c4 pk + 8c42 pk + 18c22c3 p
2
k + 12c2c4 pk + 12c2c4 p

3
k

− 24c2c4 p
2
k + 5c5 − 20c5 pk + 30c5 p

2
k − 20c5 p

3
k + 5c5 p

4
k )e

4
n

+ O(‖en‖5]. (20)

Now using (16) and (20) in (8), we get

xn+1 = xn − N × F(xn)

∑N
k=1 F

′
[
xn −

[
(k−0.5)

N × F(xn)
F ′(xn)

]]

= xn − [en + (−c22 + c3
4N 2

)e3n + (−c32 − 3c2c3 − 3c2c3
4n2

+ 2c4
N 2

+ 3c4
2N 3

)e4n

+ O(‖en‖5)]. (21)

en+1 = (c22 − c3
4N 2

)e3n + (c32 − 3c2c3 − 3c2c3
4n2

+ 2c4
N 2

+ 3c4
2N 2

)e4n + O(‖en‖5).
(22)
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Thus, (22) shows that the iterative scheme NH-1 is cubically convergent. This com-
pletes the rest of the proof. �

Theorem 3.2 Let the vector function F(x) = 0 satisfies all the conditions of
theorem-1. Then the iterative scheme NH-2 posses fifth-order convergence. More
over the error equation will be

en+1 =
[
2

[
c42 − c22c3

4N 2

]
e5n

]
+ O(‖en‖6), (23)

where en = xn − α and ck = ( 1
k! ) × F (k)(α)

F ′(α) .

Proof Using third-order convergence formula

en+1 = (c22 − c3
4N 2

)e3n + (c32 + 3c2c3 + 3c2c3
4n2

− 2c4
N 2

− 3c4
2N 2

)e4n + O(‖en‖5)

that is

xn+1 = α + (c22 − c3
4N 2

)e3n + (c32 + 3c2c3 + 3c2c3
4n2

− 2c4
N 2

− 3c4
2N 2

)e4n + O(‖en‖5)
(24)

Replacing xn+1 by sn in (24), we have

sn = α + (c22 − c3
4N 2

)e3n + (c32 − 3c2c3 + 3c2c3
4n2

− 2c4
N 2

− 3c4
2N 2

)e4n + O(‖en‖5)
= α + hn, (25)

where hn = (c22 − c3
4N 2 )e3n + (c32 + 3c2c3 + 3c2c3

4n2 − 2c4
N 2 − 3c4

2N 2 )e4n + O(‖en‖5).
Now

F(sn) = F(α) + F ′(α)hn + F ′′(α)
2! h2n + F ′′′(α)

3! h3n + O(‖hn‖4)
= F ′(α)[hn + c2h

2
n + c3h

3
n + O(‖hn‖4)]

= F ′(α)[(c22 − c3
4N 2 )e

3
n + (c32 − 3c2c3 + 3c2c3

4n2
− 2c4

N 2 − 3c4
2N 2 )e

4
n + O(‖en‖5)]. (26)

Again yn = xn − F(xn)
F ′(xn) .

So by using (18), we obtain

yn = xn − [en − c2e
2
n + 2(c22 − c3)e

3
n + (7c2c3 − 3c4 − 4c32)e

4
n + O(‖en‖5)]

= α + c2e
2
n − 2(c22 − c3)e

3
n − (7c2c3 − 3c4 − 4c32)e

4
n + O(‖en‖5). (27)
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And

F ′(yn) = F ′[α + c2e
2
n − 2(c22 − c3)e

3
n − (7c2c3 − 3c4 − 4c32)e

4
n + O(‖en‖5)]

= F ′(α) + F ′′(α)[c2e2n − 2(c22 − c3)e
3
n − (7c2c3 − 3c4 − 4c32)e

4
n + O(‖en‖5)]

= F ′(α)[1 + 2c22 + 4(c2c3 − c32)e
3
n + O(‖en‖4]. (28)

From (11), we get

(xn+1 − α) = (sn − α) − F(sn)

F ′(yn)

and
(xn+1 − α)F ′(yn) = (sn − α)(F ′(yn)) − F(sn). (29)

Using (26) and (28) in (29) yields

KUL = KUV − KV, (30)

where K = F ′(α), L = en+1,
U = [1 + 2c22 + 4(c2c3 − c32)e

3
n + O(‖en‖4)], and

V = [(c22 − c3
4N 2 )e3n + (c32 − 3c2c3 + 3c2c3

4n2 − 2c4
N 2 − 3c4

2N 2 )e4n + O(‖en‖5)].
Simplifying (30), we obtain

UL =
[
2(c42 − c22c3

4N 2
)e5n

]

and

L =
[
2(c42 − c22c3

4N 2
)e5n

]
[U ]−1

=
[
2(c42 − c22c3

4N 2
)e5n

]
[1 − {2c22 + 4(c2c3 − c32)e

3
n} + · · · ]. (31)

Further

en+1 =
[
2(c42 − c22c3

4N 2
)e5n

]
O(‖en‖6). (32)

Hence, from (32) it is seen that the iterative scheme NH-2 posses fifth-order conver-
gence. This completes the rest of the proof. �
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4 Numerical Examples

Efficiency index We see that in each of the same class of methods, the functional
values as well as derivatives are evaluated in each iteration. The efficiency index as
E .I = p1/w, where p is the order of convergence and w is the sum of the number of
functional evaluations and derivative evaluations per iteration in the method. For a
system of nonlinear equations with n equations and n unknowns, evaluating the func-
tion F is to calculate n functional values fi = 1, 2, . . . , n and evaluating a derivative
F ′ is to calculate n2 derivative values ∂ fi

∂x j
, i = 1, 2, . . . , n and j = 1, 2, . . . , n. It

is seen that efficiency index of various convergent methods as follows:

NR-1: E .I. = 3
1

n+2n2 , NR-2: E .I. = 3
1

n+3n2 , NGM: E .I. = 3
1

n+3n2 and M: E .I. =
5

1
2n+4n2 and the efficiency index of the proposed methods are as follows:

NH-1: E .I. = 3
1

n+3n2 and NH-2: E .I. = 5
1

n+4n2

We have taken some examples to examine the convergence of our constructed
methods.We have also compared this result with the same class ofmethods discussed
earlier, namely, NR-1 [4], NR-2 [4], NGM [3] andM [3].We have evaluated the num-
ber of iterations k, the error of the approximate solution x(k), the computational order
of convergence (COC1/COC2), the computational asymptotic convergence constant
(CACC), approximate value of the function Fx(k) for our constructedmethods NH-1,
NH-2 and are compared with some of the same class of methods. The comparison is
shown in respective tables.

To compute the computational order of convergence (COC), we have used the
following formulae:

For the nonlinear system with unknown exact solution (α)

COC1 = log(‖x(k+2) − x(k+1)‖/‖x(k+1) − x(k)‖)
log(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖) .

For the nonlinear system with known exact solution (α)

COC2 = log(‖x(k+2) − α‖/‖x(k+1) − α‖)
log(‖x(k+1) − c‖/‖x(k) − α‖)

For the computation of the above factor, we have used the last three approximations
of the corresponding iterations.

Additionally, we have evaluated the computational asymptotic convergence con-
stant (CACC) for pth order convergence as defined below

CACC = ‖x(k+1) − α‖
‖x(k) − α‖p

.
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Example 4.1 Consider the following systemwith five equations andfive unknowns:

4(x1 − x22 ) + x2 − x23 = 0.

x2(x
2
2 − x1) − 2(1 − x2) + 4(x2 − x23 ) + x3 − x24 = 0.

x3(x
2
3 − x2) − 2(1 − x3) + 4(x3 − x24 ) + x22 − x1 + x4 − x25 = 0.

x4(x
2
4 − x3) − 2(1 − x4) + 4(x4 − x25 ) + x23 − x2 = 0.

x5(x
2
5 − x4) − 2(1 − x5) + x24 − x3 = 0. (33)

where x(0) = (1.5, 1.5, 1.5, 1.5, 1.5)T is the initial trial solution andα=(1, 1, 1, 1, 1)T

is the exact solution. The numerical comparison of the results of the system (33) is
shown in Table 1.

Example 4.2 Consider the following systemwith two equations and twounknowns:

(x1 − 1)4 + e−x2 − x22 + 3x2 + 1 = 0.

4sin(x1 − 1) − ln(x21 − x1 + 1) − x22 = 0, (34)

where x(0) = (0.5,−0.5)T is the initial trial solution, and the approximate
numerical solution of the above nonlinear system is (1.271384307950132,−
0.880819073102661)T . The numerical comparison of the results of the system (34)
is shown in Table 2.

Table 1 Comparison of various methods for the system (33)

Method NR1 NR2 NG-M M NH1 NH2

k 4 4 4 2 4 2

‖x (k) − α‖2 7.0286e−15 6.9048e−15 6.9048e−15 2.0109e−12 4.6311e−15 1.8054e−12

COC1 2.7937 2.7959 2.7959 4.6774 2.7863 4.5104

CACC 0.0433 0.0436 0.0436 0.0056 0.0341 0.0048

‖Fx (k)‖2 3.3887e−14 3.3769e−14 3.3769e−14 1.0260e−11 2.4330e−14 8.9097e−12

Table 2 Comparison of various methods for the system (34)

Method NR1 NR2 NG-M M NH1 NH2

k 3 3 3 2 3 2

‖x (k) − α‖2 0.8200 0.8312 0.8249 0.8571 0.8293 0.8576

COC2 2.7711 2.7548 2.7571 4.7250 2.6761 4.7241

‖Fx (k)‖2 0.0814 0.0886 0.0847 0.0066 0.0863 0.0054
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Table 3 Comparison of various methods for the system (35)

Method NR1 NR2 NG-M M NH1 NH2

k 4 4 4 2 4 3

‖x (k) − α‖2 3.5527e−15 4.4408e−16 2.2204e−15 3.6592e−13 6.6613e−15 7.1320e−13

COC1 2.9695 2.9590 2.9209 4.1680 2.9695 4.1613

CACC 0.0897 0.0886 0.0789 3.8162e−04 0.0949 4.3310e−04

‖Fx (k)‖2 1.0658e−14 3.5527e−15 7.1054e−15 1.0977e−12 1.7763e−14 2.1387e−12

Example 4.3 Consider the following nonlinear equation:

2ex−4 − 5x + 18 = 0, (35)

where x(0) = 2 is the initial trial solution and α = 4 is the exact solution. The numer-
ical comparison of the results of the Eq. (35) is shown in Table 3.

Example 4.4 Consider the following nonlinear equation:

y′′(t) + y1+p(t) = 0, t ∈ [0, 1], (p > 0)

y(0) = 0, y(1) = 1. (36)

Let the interval [0, 1] be partitioned as t0 = 0 < t1 < t2 < · · · < tn−1 < tn, ti = t0 +
ih and h = 1/n.

Let y0 = y(t0) = y(0) = 0, y1 = y(t1), . . . yn−1 = y(tn−1) and yn = y(tn) =
y(1) = 1. Now using numerical defferential formula, we have y′′

i = yi−1−2yi+yi+1

h2 ,

i = 1, 2, . . . (n − 1). Choosing p = √
3 and n = 10, we obtain the following sys-

tem of nonlinear equation involving nine variables.

2y1 − h2y
√
3+1

1 − y2 = 0.

−yi−1 + 2yi − h2y
√
3+1

i − yi+1 = 0.i = 2, 3, . . . , 8.

−y8 + 2y9 − h2y
√
3+1

9 − 1 = 0, (37)

where y(0) = (1, 1, 1, 1, 1, 1, 1, 1, 1) is the initial trial solution and the
approximate numerical solution of the above nonlinear system is
(0.10630974179490, 0.21259757834295, 0.31873991751981, 0.42444234737133,
0.52918276231997, 0.63216575267634, 0.73229207302272, 0.82814954506063,
0.91803296518217)T . The numerical comparison of the results of the system (37)
is shown in Table 4.
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Table 4 Comparison of various methods for the system (36)

Method NR1 NR2 NG-M M NH1 NH2

k 3 3 3 2 3 2

‖x (k) − α‖2 1.6182 1.6192 1.6186 1.6363 1.6156 1.6362

COC2 3.0651 3.0498 3.0589 4.9999 3.0580 4.9999

‖Fx (k)‖2 0.0814 0.0886 0.0847 0.0066 0.0863 0.0054

Table 5 Comparison of various methods for the system (37)

Method NR1 NR2 NG-M M NH1 NH2

k 5 5 5 3 5 3

‖x (k) − α‖2 2.5355e−04 2.5355e−04 2.5355e−04 0.0019 2.5355e−04 0.0019

COC1 2.9756 2.9756 2.9756 4.7451 2.9756 4.7451

CACC 0.1634 0.1634 0.1634 0.0177 0.1634 0.0177

‖Fx (k)‖2 0.0010 0.0010 0.0010 0.0078 0.0010 0.0078

Example 4.5 Consider the following system of nonlinear equations:

n∑
j=1, j 	=i

x j − (n − 1)xi
2 = 0, 1 ≤ i ≤ n, n = 5, (38)

where x(0) = (3.5, 3.5, 3.5, 3.5, 3.5)T is the initial trial solution andα=(1, 1, 1, 1, 1)T

is the exact solution. The numerical comparison of the results of the system (38) is
shown in Table 5.

5 Conclusion

Wehave constructed a pair of iterativemethods for the solution of nonlinear systemof
equations with third- and fifth-order convergence, respectively. The computational
order of convergence (COC1/COC2), the computational asymptotic convergence
constant (CACC), and the efficiency index (E.I) for these methods are equivalent to
those of the same class of discussed methods. The numerical results also agree to
the theoretical claim. Above all, these methods are very handy in solving the system
of nonlinear equations as well as boundary value nonlinear ordinary differential
equations. The proposed methods can be seen as alternatives to the existing methods
of the same class.
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Analytical Solution of Trapped Burgers’
Equation with Tan-hyperbolicMethod

Apul N. Dev and Manoj Kr. Deka

Abstract The features of the well-known tanh method and its detailed mechanism
is discussedwhich is basically used to derive shock and solitons solutions of different
non-linear trapped Burgers’, non-linear Burgers’ equation and different non-linear
trapped K-P equation, as well as non-linear K-P equation. All the necessary mecha-
nisms along with their procedures are discussed. We expect this article to be suitable
for the targeted audience.

1 Introduction

The appearance of the non-linear phenomenon in different regime of fluid dynamics
[1], wave interaction in plasma physics [2, 3], kinetic theory of chemistry [4], as well
as mathematical application of biological phenomenon [5], is inevitable. As a result,
different methodologies such as Painlev analysis [6], Hirota’s bilinear technique [7],
inverse scattering transform [8] have been widely developed and tested. Even based
on these tools, numerical methods have been developed. But owing to the difficulty
in handling these analytical methods, one has to dig into the thorough knowledge
of the properties and possibilities of these methodologies in order to apply them for
one’s interest.

Here, based on some of our research works, we aim to develop an overview
of the scope of the application of Tan-Hyperbolic method. We discuss basically a
stationary solution of solitary and shockwave in both one and three dimensions using
this technique. We expect this would be helpful to our targeted audience working in
this domain of non-linear wave theories.
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2 The Tan-Hyperbolic Method

A partial differential equation of the type

P(u, ux , uxx , uxxx , ........) = 0 (1)

is normally converted to an ordinary differential equation

Q(u, u′, u′′, u′′′, ........) = 0 (2)

Now using a wave transformation χ = (ξ −Uτ), Eq. (2) is then integrated,
provided all the terms contain derivatives and integration constants are considered
as zeros. Introducing the new independent variable z = tanh(χ),

then dz
dχ

= sec h2(χ) = 1 − z2,
dW
dχ

= dz
dχ

dW
dz = (

1 − z2
)
dW
dz ,

d2W
dχ2 = d

dχ
dW
dχ

= d
dχ

(
1 − z2

)
dW
dz = (

1 − z2
)2 d2W

dz2 − 2z
(
1 − z2

)
dW
dz .

We assume for tan-hyperbolic expansion,

W (z) =
m∑

r=0

ar z
δ+r . (3)

Substituting (3) into theOrdinary differential Eq. (2),wefind an algebraic equation
in powers of z. To find m, we generally balance the highest order of linear terms and
non-linear terms. As a result, we get a system of equations involving the parameters
ar (r = 0, 1, …m), U and c. From the resulting equation, all coefficients of powers
of z are collected. On determining these parameters, we obtain an analytic solution
u(x, t) in a closed form. In the following subsections, we describe the solution of
different non-linear equations involving this Tan-Hyperbolic method.

3 Trapped Burgers’ Equation with Its Solution

The Trapped Burgers’ equation is

∂

∂ξ

(
∂φ(1)

∂τ
+ A

(
φ(1)

)1/2 ∂

∂ξ
φ(1) − B

∂2φ(1)

∂ξ 2

)

+ C

(
∂2φ(1)

∂η2
+ ∂2φ(1)

∂ζ 2

)
= 0 (4)

where the non-linear coefficient A, the dispersion coefficient B and the
transverse coefficient C, respectively. Now using the transformation χ =
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c(ξ l + ηm + ζn −Uτ), χ is reduced to a single parameter, where l, m, n repre-

sents the direction cosines along the x, y, z-axes and let
(
φ(1)

) 1
2 (ξ, η, ζ, τ ) = ψ(χ)

i.e. φ(1)(ξ, η, ζ, τ ) = ψ2(χ) Thus, from Eq. (20), one obtains

−Bcl3
dψ2

dχ
+ Al2

2
(
ψ2

)3/2

3
−Ulψ2 + C

(
m2 + n2

)
ψ2 = 0

−2cBl3ψ
dψ

dχ
+ Al2

2ψ3

3
−Ulψ2 + C

(
m2 + n2

)
ψ2 = 0

−2cBl3
dψ

dχ
+ Al2

2ψ2

3
−Ulψ + C

(
m2 + n2

)
ψ = 0. (5)

To find the solution of modified 3D Burgers’ Eq., we now apply the tanh method
where we define z = tanh(χ), ψ(χ) = W (z) where

dz

dχ
= sec h2(χ) = 1 − z2

dW

dχ
= dz

dχ

dW

dz
= (

1 − z2
)dW
dz

,

Then Eq. (5) becomes

2Al2

3
W 2 − 2Bcl3

(
1 − z2

)dW
dZ

+ C
(
m2 + n2 −Ul

)
W = 0 (6)

We assume W (x) =
m∑

r=0
ar xδ+r to obtain the series solution of Eq. (6) and then

the leading order analysis of finite terms gives r = 1 and δ = 0 because 2+r −1 =
2r ⇒ r = 1 so that W (x) becomes W (x) = a0 + a1z. Now putting the value of
W (x) and dW

dZ in Eq. (3)

{
C

(
m2 + n2 −Ul

)
(a0 + a1z) + 2A

3
(a0 + a1z)

2 − Bc2a1
(
1 − z2

)}
= 0

{
C

(
m2 + n2 −Ul

)
(a0 + a1z) + 2A

3

(
a20 + 2a0a1z + a21 z

2
)

− Bc2a1
(
1 − z2

)}
= 0

C
(
m2 + n2 −Ul

)
a0 + 2A

3
a20 − Bc2a1 = 0 (i)

C
(
m2 + n2 −Ul

)
a1 + 4A

3
a0a1 = 0 (i i)

2A

3
a21 + Bc2a1 = 0 (i i i)
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(i i i) ⇒ a1 = −3Bc

A
,

(i i) ⇒ a0 = 3C
(
m2 + n2 −Ul

)

4A
,

(i) ⇒ −C
(
m2 + n2 −Ul

)
a0 + 2A

3
a20 − B2a1 c = 0

⇒ −3C
(
m2 + n2 −Ul

)
a0 + 2Aa20 − B6a1c = 0

⇒ −4Aa20 + 2Aa20 − Bc6a1 = 0,

⇒ −2Aa20 + B6c
3B

A
c = 0

⇒ − 9

8A

(
C

(
m2 + n2 −Ul

))2 + B2 18

A
c2 = 0

⇒ −1

8

(
C

(
m2 + n2 −Ul

))2 + 2B2c2 = 0

⇒ 1

16B2

(
C

(
m2 + n2 −Ul

))2 = c2

⇒ C
(
m2 + n2 −Ul

)

4B
= c

∴ a1 = − 3C
(
m2 + n2 −Ul

)

4A
= − a0

∴ W (χ) = a0 − a0z = a0(1 − z)

we can obtain the values of a0 = φm and W (z) = φm

{
1 − tanh

(
χ

ω1

)}
.

The required stationary solution of Trapped Burgers’ Eq. (4) is

φ(1) = φ2
m

{
1 − tanh

(χ

ω

)}2
(7)

where φm = 3
4

[{
U l − C

(
m2 + n2

)}/
A1 l2

]
and ω = 4Bl3

/{
U l − C

(
m2 + n2

)}
.

4 Burgers’ equation and its solution:

The Burgers’ equation

∂

∂ξ

(
∂φ(1)

∂τ
+ A φ(1) ∂φ(1)

∂ξ
− B

∂2φ(1)

∂ξ 2

)
+ C

(
∂2φ(1)

∂η2
+ ∂2φ(1)

∂ζ 2

)
= 0 (8)

where A, B and C are Non-linear, dissipative and transverse coefficients, respec-
tively. The non-linear coefficient A can be positive, negative or zero. Now to solve
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Eq. (8), the following transformation is used χ = (ξ l + ηm + ζn −Uτ) to a single
parameter χ and considering φ(1)(ξ, η, ζ, τ ) = ψ(χ) which gives

−B2cl
3 dψ

dχ
+ A2l

2 ψ2

2
+ {

C2
(
m2 + n2

) −Ul
}
ψ = 0 (9)

To study the solution Eq. (8), tanh method is used and for that the transformation
z = tanh(χ) and ψ(χ) = W (z) is used, where

dz

dχ
= sec h2(χ) = 1 − z2

dW

dχ
= dz

dχ

dW

dz
= (

1 − z2
)dW
dz

,

Then the Eq. (9) becomes

A1

2
W 2l2 − Bcl3

(
1 − z2

)dW
dZ

+ {
C

(
m2 + n2

) −Ul
}
W = 0 (10)

Now substituting W (z) =
∞∑

r=0
ar zρ+r the series solution of Eq. (10) is sought

and for leading order analysis of finite terms gives r = 1 and ρ = 0 because
2 + r − 1 = 2r ⇒ r = 1 and then the W (z) becomes W (z) = a0 + a1z and
dW
dZ = a1 Now putting the value of W (z) and dW

dZ in Eq. (10), we get the stationary
solution of 3D Burgers Eq. (8) as

φ(1) = φm

{
1 − tanh

(χ

w

)}
(11)

where φm = {
U l − C

(
m2 + n2

)}/
A l2 and w = 2Bl3

/{
U l − C

(
m2 + n2

)}
are

the height and thickness of the shockwave, respectively, with l,m, n, being the direc-
tion cosine along x-axis, y-axis and z-axis, respectively, and U is the velocity. The
solution describes a negative (positive) shock wave for A < 0 (A > 0), respectively.

When A = 0 then φm → ∞, from Eq. (11), the formation of shock wave is not
possible, then we move to another equation with different values of n.

∂

∂ξ

(
∂φ(1)

∂τ
+ An

(
φ(1)

) n
2
∂φ(1)

∂ξ
− B

∂2φ(1)

∂ξ 2

)
+ C

(
∂2φ(1)

∂η2
+ ∂2φ(1)

∂ζ 2

)
= 0 (12)

where n = 1, 2, 3, …, and the non-linear coefficient An have different values for
different equations and the coefficient dissipative B, transverse coefficient C are as
before. Now to solve the nth- 3D Burgers Eq. (12), we used the transformation χ =
(ξ l + ηm + ζn −Uτ) to a single parameter χ , then the above equation becomes
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{
−Ulφ(1) + 2An

n + 2

(
φ(1)

) n+2
2 l2 − Bcl3

dφ(1)

dχ

}
+ C

(
m2 + n2

)
φ(1) = 0 (13)

We considering
(
φ(1)

) n
2 (ξ, η, ζ, τ ) = ψ(χ), i.e. φ(1)(ξ, η, ζ, τ ) = ψ

2
n (χ)which

gives

{
−Ulψ

2
n + 2An

n + 2

(
ψ

2+n
n

)
l2 − Bcl3

2

n
ψ

2−n
n

d

dx
ψ

}
+ C

(
m2 + n2

)
ψ

2
n = 0

{
−Ul + 2An

n + 2
ψl2 − Bcl3

2

n
ψ−1 d

dx
ψ

}
+ C

(
m2 + n2

) = 0

−Bcl3
1

n

dψ

dχ
+ Anl

2 ψ2

n + 2
+ {

C
(
m2 + n2

) −Ul
}
ψ = 0 (14)

Again, after using the transformation z = tanh(χ) and
(
φ(1)

) n
2 (ξ, η, ζ, τ ) =

ψ(χ) = W (z) the Eq. (14) becomes

dz

dχ
= sec h2(χ) = 1 − z2

dW

dχ
= dz

dχ

dW

dz
= (

1 − z2
)dW
dz

,

An

n + 1
W 2l2 − Bcl3

(
1 − z2

)

n

dW

dZ
+ {

C
(
m2 + n2

) −Ul
}
W = 0 (15)

Now we substitute W (z) =
∞∑

r=0
ar zρ+r to find the series solution of Eq. (15) and

for leading order analysis of finite terms gives r = 1 and ρ = 0 and we obtain
W (z) as equal to W (z) = (a0 + a1z) ⇒ (

φ(1)
)
(ξ, η, ζ, τ ) = {a0(1 − z)} 2

n . Now
introducing the value of W (z), the stationary shock solution of nth degree modified
3D Burgers Eq. (12) as

φ(1) =
[
φmn

{
1 − tanh

(
χ

wn

)}] 2
n

(16)

where φmn = (
n+2
4

){
U l − C

(
m2 + n2

)}/
An l2 and w2 =

2Bl3
/
n
{
U l − C

(
m2 + n2

)}
are the amplitude and width of the shock wave,

respectively, with l,m, n, representing the direction cosines for x-axis, y-axis and
z-axis, respectively, and U is the velocity.
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5 Conclusion

With the help of some well-established examples, the effectiveness, as well as appli-
cability of the Tan Hyperbolic method, is discussed in detail. We believe, based on
the analytical analysis of the solution, the exact nature of solitary and shock wave can
be revealed, which is really very important from the viewpoint of non-linear plasma
physics theory.
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