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Abstract

Autism spectrum disorder (ASD) development is a highly multifaceted process as
evidenced by the complexity of the factors involved in the etiology of ASD,
including genetic and nongenetic factors. Several forms of ASD result from
genetic alterations in genes that regulate the process of protein synthesis. A
growing body of evidence suggests that abnormal synaptic protein synthesis
might contribute to ASD and ASD-like clinical features. Several reports of
different mutated genes responsible for ASD cases and genetic models have
emerged, revealing dysregulation of many crucial signaling pathways. In this
chapter, the authors summarize the various factors described to contribute to
ASD, both genetic and nongenetic, and their association with WNT, SHH, RA,
FGF, and BMP/TGF-f signaling pathways. In addition, the authors discuss the
scope for additional research for a better understanding of the pathophysiology of
ASD in the context of disrupted signaling pathways, which could help open the
doors to identify possible gene targets and novel therapeutic strategies.

Keywords

ASD - Autism - Signaling pathways - Genes - Therapeutic targets - Developmental
mechanisms

1.1 Introduction

Autism spectrum disorder (ASD) encompasses a heterogenous set of multifactorial
challenges in neurodevelopment, classified according to three fundamental features;
compromised social correspondence skills, delayed dialect development, and raised
stereotyped alternately tedium practices (Mohn et al. 2014; Golden et al. 2017,
Abrahams and Geschwind 2008; Geschwind 2008; Sudhof 2008; Zoghbi 2003).
ASD is believed to occur due to the complicated processes that involve numerous
gene-environment interactions, as evidenced by the association of multiple elements
(genetic and nongenetic). People with autism are recognized to have several traits,
such as hampered social interactions, communication impairment, and increased
tedium behaviors, implying that aberrant signaling pathways during brain develop-
ment resulted in the disturbance of specific neural circuits in ASD (Styles et al.
2020; Al-Dewik et al. 2020). The disruption of multiple critical signaling pathways,
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including WNT (Bae and Hong 2018; Kalkman 2012; Mulligan and Cheyette 2017),
BMP (Zhang et al. 2017; Kashima et al. 2016; Li et al. 2016; Sajan et al. 2011), SHH
(Halepoto et al. 2015; Patel et al. 2017), and retinoic acid (RA) (Niculae and Paval
2016), has been discovered in research using genetic models in ASD individuals.
While direct evidence has not been found, indirect evidence of abnormal FGF or
TGF-f signaling in ASD exists (Ansari et al. 2017; Chen et al. 2017; Iwata and
Hevner 2009). The success of therapy treatments is severely constrained due to a
lack of data on the etiology of ASD and the mechanisms involved. In this chapter the
authors aim to summarize current knowledge on the various ASD-associated factors
(genetic and nongenetic), and their interactions with signaling pathways that are
frequently altered in ASD. This chapter also discusses what additional research
could be conducted to gain better insights into altered pathways in ASD.

1.2  Principal Signaling Pathways
1.2.1 Altered WNT Signaling in ASD

WNT signaling involves the secretion of cysteine-rich glycolipoproteins that are
WNT receptors themselves. The WNT signaling pathway controls important devel-
opmental and regulatory processes, including embryonic development and tissue
homeostasis, through regulating receptors, such as frizzled (FZD), when the
receptors interact with the WNT protein. WNT signaling is required for several
developmental and post-developmental neuroscientific processes, including
synaptogenesis and CNS regionalization (Tang 2014; Wada and Okamoto 2009;
Wodarz and Nusse 1998; Rosso and Inestrosa 2013; Bielen and Houart 2014;
Abu-Khalil et al. 2004; Bengoa-Vergniory and Kypta 2015; Burden 2000; Inestrosa
and Varela-Nallar 2015; Onishi et al. 2014). Thus, any disturbance in WNT signal-
ing has the potential to cause the development of CNS-related diseases (Mulligan
and Cheyette 2017; Okerlund and Cheyette 2011).

Investigations of both genetically engineered animal models and Human Induced
Pluripotent Stem Cell (hiPSC) models have shown the critical role of spatiotemporal
WNT signaling throughout animal development (Mulligan and Cheyette 2017). It
has also been shown that irregularities in WNT may cause several types of mental
illnesses, such as autism, schizophrenia, bipolar disorder, and developmental
problems (Kalkman 2012; Mulligan and Cheyette 2017; Okerlund and Cheyette
2011; Oron and Elliott 2017; Kwan et al. 2016a; Martin et al. 2013). Many of the
genes and epigenetic factors involving ASD have been identified as affecting
common biological processes such as epigenetic modification, WNT, and synaptic
transmission (Oron and Elliott 2017; Hormozdiari et al. 2015; Krumm et al. 2014).

The WNT pathway is classified into two major pathways: (1) pf-catenin-depen-
dent (canonical pathways) and (2) B-catenin-independent (noncanonical pathways),
both of which are key players in neural development and related
neurodevelopmental disorders (Grainger and Willert 2018; Komiya and Habas
2008). Several genetic variations associated with and/or documented in ASD cases
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include either fundamental elements of the p-catenin-dependent pathway, such as
CTNNBI (B-catenin) (Kalkman 2012; Mulligan and Cheyette 2017; Krumm et al.
2014; O’Roak et al. 2012a) and adenomatous polyposis coli (APC) (Mohn et al.
2014), or B-catenin-independent pathway, such as PRICKLE2 (Sowers et al. 2013),
implying that these two pathways are key players in ASD etiology. A list of selected
ASD-associated genes that the authors have found to influence ASD-related
pathways is presented in Table 1.1. Possible interactions between the
ASD-associated genes and WNT pathway are illustrated in Fig. 1.1.

1.3  Genetic Etiologies

Core elements of the canonical WNT signaling In humans, the components of the
B-catenin-dependent route includes many WNT ligands, frizzled receptors, LDL
receptor family co-receptors, and intracellular and extracellular modulators (Klaus
and Birchmeier 2008). WNT ligands are modified cysteine-rich proteins, and to
function, they need to be glycosylated and palmitoylated (Komiya and Habas 2008).
WNT1, WNT2, WNT3, and WNT9B are known to be involved with ASD. ASD
individuals usually harbor a unique missense genetic variant in WNTI (S88R,
rs61758378) that has demonstrated higher activation of the WNT/f-catenin pathway
compared to WNT1 wild type i.e. without this variant (Martin et al. 2013). Beyond
that, ASD Individuals have been found to have uncommon pathogenic variants in
WNT2, WNT3, and WNT9B (Wassink et al. 2001; Marui et al. 2010; Lin et al. 2012;
Levy et al. 2011). Therefore, it is surprising that in people with ASD, WNT3
expression in the prefrontal cortex is more pronounced (Chow et al. 2012). The
above finding suggests that WNT signaling is overactive and that overactivation
could play a key role in ASD etiology.

Several studies have revealed that WNT]1 is crucial for cerebellar and midbrain
development in animal models (Thomas and Capecchi 1990; McMahon and Bradley
1990; McMahon et al. 1992). Furthermore, it has been shown that WNT2 is
necessary for the development of cortical dendrites as well as the production of
dendritic spines. Moreover, it was shown that WNT2 expression could be regulated
by a protein referred to as brain-derived neurotrophic factor (BDNF), which is a key
player in neuron survival and growth (Hiester et al. 2013). It has also been shown
that altered dendritic spines were associated with neurodegenerative and
neurodevelopmental problems (Hiester et al. 2013). In addition, WNT3 has been
shown to be required for gastrulation and for the regulation of hippocampus
neurogenesis (Lie et al. 2005; Liu et al. 1999). Increased inhibitory synaptic density
and decreased excitatory synapse counts have been seen in cortical layer 6 neurons
during late mouse gestation when the function of T-brain-1, a T-box transcription
factor and one of the high-confidence ASD-associated genes, is lost (Fazel Darbandi
et al. 2018). WNTO9b is known to promote lip/palate formation and fusion (Jin et al.
2012; Juriloff et al. 2006), although it is not known what function it plays in
neurodevelopment.
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Fig. 1.1 Plausible interactions between the ASD-related genes and WNT signaling. The majority
of molecules encoded by ASD-related genes either play a key role in WNT signaling pathways or
are modulators. A plus sign signifies upregulation and a negative sign implies downregulation. The
figure was created using BioRender (https://biorender.com/)
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The functions of WNT receptors, in addition to the other WNT ligands (such as
FZD1-FZD10 protein family), in ASD etiology remain poorly understood (Onishi
et al. 2014; MacDonald and He 2012). Research shows that the duplication or
deletion in FZD9 receptors might potentially impair brain development and thus
cause ASD (Kalkman 2012). In addition, the administration of WNT2 has been
found to stimulate the overexpansion of neurons in dopaminergic pathways in the
midbrain of mice, resulting in the mice engaging in repetitive behavior (Sousa et al.
2010).

B-Catenin, an adherent junction component linked to E-cadherin, is an endoge-
nous protein encoded by the gene CTNNBI, a key regulator of the WNT signaling
pathway. p-Catenin is a major intracellular molecule in the classic WNT signaling
pathway that plays essential roles in development and illness (Clevers and Nusse
2012; Grigoryan et al. 2008). High levels of the p-catenin signaling pathway have
been reported to contribute to aberrant brain development in people with ASD. De
novo CTNNBI mutations have been implicated, not only in ASD, but also in
intellectual disabilities, microcephaly, speech impairment, and motor delay
(Krumm et al. 2014; O’Roak et al. 2012a, b; Kuechler et al. 2015; Sanders et al.
2012). In the Simons Foundation Autism Research Initiative (SFARI) database,
CTNNBI has a genetic score of “1,” defined as high confidence, indicating that
there are at least three de novo likely gene-disrupting genetic variants being reported
in association with ASD (Table 1.1). De novo pathogenic variants in this gene were
discovered in two different studies utilizing ASD probands from the Simons Simplex
Collection (Sanders et al. 2012). In both humans and animals, CTNNBI
haploinsufficiency has been linked to neuronal loss, craniofacial deformities, and
hair follicle abnormalities (Dubruc et al. 2014). Conditional p-catenin ablation in
mouse embryo dorsal neural folds represses PAX3 and CDX2 expression at the
dorsal posterior neuropore. Leading to reduced expression of the WNT/B-catenin
signaling target genes 7, 7TBX6, and FGF$ at the tailbud, resulting in spina bifida
aperta, caudal axis bending, and tail truncation (Zhao et al. 2014). Conditional
ablation of catenin in parvalbumin interneurons in mice resulted in poor object
recognition and social interactions, and increased repetitive behaviors, both of
which are essential features of ASD individuals, but they also showed improvement
in spatial memory (Dong et al. 2016). The mice exhibited reduced c-Fos activity in
the cortex but not in the dentate gyrus or the amygdala, suggesting that f-catenin has
a cell type-specific role in the regulation of cognitive and autistic-like behaviors
(Dong et al. 2016).

There are a number of ASD-linked genes, besides CTNNBI, that are believed to
affect p-catenin functions; among them is adenomatous polyposis coli (APC) (Zhou
et al. 2007). APC is a tumor suppressor that functions as a negative regulator of
B-catenin and plays a significant role in the f-catenin-destruction complex
(MacDonald et al. 2009). APC-inactivating gene variations in humans have been
linked to ASD (Zhou et al. 2007; Barber et al. 1994). APC protein deletion mutation
in mice was found to lead to autism-like disabilities, as well as learning and memory
deficits in APC conditional knockout compared to wild-type littermates (Mohn et al.
2014). In addition, APC knockout forebrain neurons had higher levels of B-catenin
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and increased transcript levels of the canonical WNT target genes Dkkl, Sp35,
Neurogl, and SYN2 (Mohn et al. 2014). Furthermore, APC knockout mouse lysates
from the hippocampus, cortical, and striatal areas were shown to have greater
[B-catenin levels than control mice (Mohn et al. 2014), along with seizures, behav-
ioral traits, and cognitive deficits (Pirone et al. 2017). These findings imply that
WNT/B-catenin signaling activity might be associated with ASD. Besides being an
important regulator of the B-catenin level, APC has other roles that are critical for
neurogenesis and function, including its role in regulating microtubule and actin
cytoskeleton dynamics (Zumbrunn et al. 2001; Akiyama and Kawasaki 2006) and as
an mRNA-binding protein with several of its targets involved in brain development
(Preitner et al. 2014).

Another gene that plays an important role in the WNT pathway is the transcrip-
tion factor 7-like 2 (TCF7L2), also known as TCF4. TCF7L2 is one of the
TCF/LEF]1 transcription factors in the WNT/B-catenin signaling pathway that aid
in the initiation of gene transcriptional responses when WNT ligands engage their
receptors on the membrane and the signal is transduced to the nucleus (Grant et al.
2006) (Fig. 1.1). TCF7L2 has been implicated in developmental delays (DDs),
intellectual disabilities (IDs), neurodevelopmental disorders (NDDs), and
attention-deficit hyperactivity disorder (ADHD) (De Rubeis et al. 2014; Iossifov
et al. 2014; Dias et al. 2021).

Recently, two de novo loss-of-function mutations in the TCF7L2 gene have been
identified in ASD cases (De Rubeis et al. 2014; Iossifov et al. 2014). In addition,
11 people with de novo TCF7L2 mutations who had a syndromic
neurodevelopmental condition were identified, four of which had ASD (Dias et al.
2021). It has been shown that TCF7L2, like the key WNT co-receptor Lrp6, is
crucial for the development of thalamocortical axonal projections in mice (Zhou
et al. 2004; Lee et al. 2017) implying that abnormal thalamocortical axonal inputs
might be playing a vital role in the development of the disorder. Nevertheless, there
is still a paucity of knowledge about the connection of other transcription factors
from the TCF/Lef1 family with ASD. Furthermore, the significance of TCF4 in brain
development remains unknown and will need to be investigated further in future
research.

Core elements of the noncanonical WNT signaling Whole-exome sequenc-
ing (WES) conducted on ASD-affected families has identified genetic variations of
the WNT/PCP pathway genes PRICKLE] and PRICKLE2. PRICKLEI acts as a
nuclear receptor that negatively regulates the WNT/B-catenin signaling pathway.
Moreover, it is involved in the planar cell polarity route, which has several roles,
such as convergent extension during gastrulation and neural tube closure, whereas
the function of PRICKLE? remains unclear. Pathogenic variants in PRICKLE]I and
PRICKLE? have previously been linked to epilepsy (EP) (Bosoi et al. 2011; Tao
etal. 2011), a disease that is often associated with ASD (Buckley and Holmes 2016).
According to an in vitro study, PRICKLE] and PRICKLE2 promote neurite
outgrowth through a dishevelled-dependent mechanism (Fujimura et al. 2009).
PRICKLE!] +/— mice were reported to have ASD-like characteristics, such as
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abnormal social interactions and disturbed circadian rhythms. In addition,
PRICKLE] is required for synapsinl (Synl) function in the pre-synapse (Paemka
et al. 2013), while PRICKLE?2 interacts with postsynaptic density protein-95
(PSD95) and NMDA receptors in the postsynapse (Hida et al. 2011). Mice with
disrupted PRICKLE?2 were reported exhibiting impaired social behavior, learning
disabilities, and behavioral rigidity. Moreover, mouse models with ASD were shown
to exhibit behavioral and physiological abnormalities that are similar to those of
PRICKLE2 mice (Sowers et al. 2013). Furthermore, rare on-synonymous
PRICKLE? genetic variants (p.E8Q and p.V153I) have been identified in individuals
with ASD (Sowers et al. 2013). Dendrite branching, synapse number, and PSD size
were all reduced in PRICKLE?2-deficient mice’s hippocampal neurons (Sowers et al.
2013). The discovery of a PRICKLE?2-containing 3p interstitial deletion in identical
twins with ASD adds to the evidence that PRICKLE? plays a role in ASD (Okumura
et al. 2014). PRICKLE?’s interaction with PSD-95 is improved by Vangl2, a key
component in the noncanonical WNT/PCP pathway (Nagaoka et al. 2015). The role
of other PCP genes in ASD etiology, and the signaling interaction between the PCP
and WNT/B-catenin pathways, should be investigated in the future.

1.4  Modulators and Effectors of WNT Signaling in ASD
Etiology

Several genes have been implicated in ASD, such as chromodomain helicase
DNA-binding protein 8 (CHDS8) (Willsey et al. 2013; Cotney et al. 2015),
ankyrin-G (ANK3) (Shi et al. 2013; Igbal et al. 2013; Bi et al. 2012), DIX domain-
containing 1 (DIXDC1) (Kwan et al. 2016b), prostaglandin E2 (PGE2) (Wong et al.
2016), and HECT domain E3 ubiquitin ligase (UBE3A) (Yietal. 2017) (Fig. 1.1). In
addition, recent research finds that neuroligin 3 (NLGN3), an ASD-associated gene,
is a direct downstream target of WNT/p-catenin signaling during synaptogenesis
(Medina et al. 2018) (Fig. 1.1). Furthermore, due to the identification of multiple
people with genetic variants in phosphatase and tensin homolog (PTEN), it has been
described as a high-risk candidate ASD-associated gene that plays a role in WNT
signaling (O’Roak et al. 2012b; Spinelli et al. 2015; Frazier et al. 2015; McBride
et al. 2010).

Canonical WNT signaling is one of the key pathways controlled by CHDS
(Thompson et al. 2008; Nishiyama et al. 2012). CHDS8 acts as a transcription
repressor by altering the structure of chromatin (Kwan et al. 2016a). It binds
B-catenin and inhibits the WNT signaling pathway, which is vital in vertebrates’
early development and morphogenesis. Alternatively, spliced transcript variants
encoding various isoforms have been discovered in CHD8 (Thompson et al.
2008). Due to its presence at active transcription sites with H3K4me3 or H3K27ac
histone modifications, it is believed that CHDS8 directly activates genes by binding to
the transcriptional start site and boosting transcription factor activity or recruitment,
according to the theory. It might also have an indirect effect on transcription by
interacting with altered histone sites and other co-regulators to make chromatin more
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accessible to transcription factors (Barnard et al. 2015; Sugathan et al. 2014;
Wilkinson et al. 2015; Cotney et al. 2015). CHDS binding to p53 causes the
development of a trimeric complex on chromatin with histone H1, which reduces
p53-dependent transactivation and death during early embryogenesis (Nishiyama
et al. 2009). CHDS is also necessary for the expression of E2 adenovirus promoter-
binding factor target genes during the cell cycle’s G1/S transition (Subtil-Rodriguez
etal. 2014). In mice, the CHDS gene deletion causes embryonic lethality (Nishiyama
et al. 2009), whereas its heterozygous loss-of-function variants are associated with
macrocephaly, craniofacial deformities, and behavioral impairments (Platt et al.
2017). Its knockdown in human neural progenitor cells changes the expression of
neuronal development genes (Wilkinson et al. 2015). In the nucleus accumbens
(NAc) region of the brain in CHD8+/— mice, WNT signaling is upregulated,
suggesting the crucial function CHDS8 plays in WNT signaling regulation in the
NAc (Platt et al. 2017).

CHDS is considered the most potential single candidate gene for non-syndromic
ASDs (O’Roak et al. 2012a, b; Barnard et al. 2015; Krumm et al. 2014, 2015;
Sanders 2015; Bernier et al. 2014). Multiple de novo, truncating, or missense
mutations in CHDS8 have been found in people with ASDs (O’Roak et al.
2012a, b; Neale et al. 2012; Sugathan et al. 2014; Bernier et al. 2014; Talkowski
et al. 2012; McCarthy et al. 2014). Novel risk loci as Balanced chromosomal
abnormalities (BCAs) in the CHDS8 was found in people with ASD or other
neurodevelopmental problems (Talkowski et al. 2012). An analysis of rare coding
variation in 3871 ASD cases and 9937 ancestry-matched or paternal controls
identified CHDS as a gene with high statistical significance with an FDR of 0.01,
indicating that this gene had a 99% chance of being a true autism gene (De Rubeis
et al. 2014). The gene CHDS has been identified as an antagonist to the signaling
pathway that regulates canonical WNT signaling. This finding is consistent with the
notion that increased canonical WNT signaling activity causes excessive prolifera-
tion of embryonic neural progenitor cells in the brain, which might help to explain in
part the macrocephaly (or “big brain””) phenotype observed in cases (Bernier et al.
2014). In Bernier and colleagues study (loss of funcation variants in CHD8 was
identified in children with developmental delay and ASD; a phenotypic comparison
of patients with CHDS variants in this report revealed recurrent phenotypes and
dysmorphic facial features suggestive of a syndromic form of ASD (Bernier et al.
2014). According to in vivo research, CHDS loss-of-function pathogenic vari-
ant might activate more canonical WNT signals, resulting in macrocephaly, and
ASD-like symptoms (Platt et al. 2017). In addition, recent research found that
multiple CHDS8-controlled genes were implicated in abnormal head size (Sugathan
etal. 2014; Wang et al. 2015; Merner et al. 2016). It has been revealed that CHDS is
a positive regulator of WNT/f-catenin signaling neural progenitor cells while also
negatively regulating the pathway in non-neuronal cells (Durak et al. 2016). This
finding suggests that CHD8 modulates WNT signaling in a cell-specific manner and
that some CHD8 mutations might not be as straightforward as WNT signaling loss-
of-function mutations. Further studies are needed to understand how CHDS
modulates WNT signaling in diverse brain cell types, and how patients with
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CHDS pathogenic variants develop macrocephaly. It is also worth noting that WNT
signaling is only one of several neurodevelopmental pathways regulated by CHDS,
and recent research has revealed several other mechanisms, such as chromatin
remodeling. Thus, more studies are required to explore the involvement of CHDS
in WNT signaling at various stages in the development of brain. This is critical to
gain deeper insights into how CHDS8 mutations might impair embryonic brain
development.

Another gene that has been implicated in ASD is the ANK3 gene, which encodes a
scaffolding protein referred to as ankyrin-G (Shi et al. 2013; Igbal et al. 2013; Bi
et al. 2012). The protein was first discovered in the axonal initial segment and nodes
of Ranvier of neurons, where it plays a role in axonal initial segment assembly and
neuronal polarity (Hedstrom et al. 2008; Kordeli et al. 1995). In general, the ankyrin
family of proteins are thought to aid in anchoring integral membrane proteins to the
cytoskeleton. Furthermore, they are involved in a wide range of activities, including
cell motility, activation, proliferation, contact, and maintenance of specialized mem-
brane domains, among other things. Ankyrin-G promotes cell-cell contact by bind-
ing to E-cadherin at a conserved location separate from that of p-catenin and
transporting it to the cell adhesion site with 2-spectrin in early embryos and cultured
epithelial cells (Kizhatil et al. 2007). Ankyrin-G is abundant in the embryonic brain’s
ventricular zone, where it governs neural progenitor cell growth (Durak et al. 2015).
Because of alternative splicing and different beginning exons, there are multiple
protein isoforms of ankyrin-G13,17. The isoforms have distinct roles and tissue
distributions, with some being expressed exclusively in the brain. Rare
polymorphisms identified in ASD patients are mostly found in the brain-specific
exons 371, 2, 3,4, 5, 6,7, and 8 (Bi et al. 2012; Ferreira et al. 2008; Schulze et al.
2009; Psychiatric GWAS Consortium Bipolar Disorder Working Group 2011; Tesli
etal. 2011; Baum et al. 2008; Igbal et al. 2013; Kosmicki et al. 2017). In ASD cases,
whole-genome and whole-exome sequencing investigations have documented sev-
eral genetic variants in ANK3 (Shi et al. 2013; Igbal et al. 2013; Bi et al. 2012). Loss
of function in ANK3 promotes neural progenitor cell proliferation and nuclear
B-catenin expression, most likely by disrupting the p-catenin/cadherin connection
(Durak et al. 2015).

Several missense mutations in DIXDCI have been identified in individuals with
ASD (Kwan et al. 2016b). These mutations hinder DIXDCI1 isoform 1 phosphoryla-
tion, resulting in dendritic and spine development defects (Kwan et al. 2016b).
DIXDCI1 encodes for a protein that acts as a positive regulator of the WNT signaling
pathway that modulates excitatory neuron dendrite formation and synapse function
in the mouse cortex (Kwan et al. 2016b). MARK, which has also been associated
with ASD, phosphorylates DIXDCI to regulate dendritic and spine formation via
isoform-specific cytoskeletal network regulation (Kwan et al. 2016b). DIXDC1-
deficient animals were found to exhibit behavioral abnormalities, including
decreased social interaction, which can be relieved by pharmacological inhibition
of glycogen synthase kinase 3 (GSK3) to increase WNT/B-catenin signaling (Martin
etal. 2018; Kivimae et al. 2011). These findings point to a possible approach to ASD
treatment, including modification of WNT/B-catenin signaling activity. Exome
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sequencing of the DIXDCI gene has shown a higher burden of rare sequencing-
disrupting SNVs among ASD cases in comparison to controls (Martin et al. 2018). In
DIXDCI1 knockout neurons, it has been reported that rare DIXDC1 missense variants
in ASD cases failed to rescue deficits in glutamatergic synapse density and spine
density, with a subset of DIXDCI missense variants displaying hyperactivity in
WNT/B-catenin signaling activity as opposed to dominant-negative effects on spine
density and glutamatergic synapse density in wild-type neurons. The existence of
functionally relevant ASD missense pathogenic variants in controls, on the other
hand, complicates the genetic evidence connecting DIXDCI to ASD, with reports of
high functionally relevant ASD missense variants in controls. Lack of information
regarding the mode of inheritance and segregation of variants in ASD cases, along
with the presence of sequence-disrupting DIXDC] variants in controls, all make it
very challenging to understand the link between DIXDCI and ASD.

PGE?2, an endogenous lipid molecule, has been shown to alter the expression of
downstream WNT pathway genes previously linked to neurodevelopmental
problems (Wong et al. 2016). The primary regulator of PGE2 synthesis is
cyclooxygenase-2 (COX2). COX2/PGE2 signaling abnormalities have been linked
to ASD (Wong et al. 2016). In addition, a growing body of evidence shows that a
variety of environmental risk factors, such as inadequate dietary supplementation,
infections, misoprostol use during pregnancy, air pollutants, or chemicals, can have a
negative effect on PGE2 levels and can be indirectly linked to ASD (Tamiji and
Crawford 2010; Wong et al. 2015; Bandim et al. 2003; Landrigan 2010). Further-
more, PGE2 has been shown to downregulate PTGS2 while upregulating MMP9 and
CCND in undifferentiated stem cells. On the other hand, in differentiating neuronal
cells, it upregulates WNT3, TCF4, and CCND1 expression (Wong et al. 2016).

Another gene that has been implicated in ASD etiology is UBE3A which encodes
an E3 ubiquitin-protein ligase, which is part of the ubiquitin protein degradation
mechanism. This imprinted gene is expressed maternally in the brain and
biallelically in other organs. Several studies have shown genetic associations and
rare polymorphisms in the UBE3A gene that are linked to ASD. A link was
discovered in the collaborative linkage study of autism families and rare variations
were discovered in instances of European ancestry (Nurmi et al. 2001). Another
polymorphism identified in UBE3A was T485A which is a de novo autism-linked
UBE3A pathogenic variants that was reported to be involved in ubiquitinating
numerous proteasome subunits, decreasing their number and activity, stabilizing
nuclear fB-catenin, and activating the canonical WNT pathway more efficiently in
comparison to wild-type UBE3A (Yi et al. 2017). Dysfunction of UBE3A has been
associated with cancer, Angelman syndrome, ADHD, DD/NDD, extrapyramidal
symptoms (EPS), ID, and EP (Yi et al. 2017).

Pathogenic variants in the neurexin and neuroligin families have also been
implicated in the development of autism spectrum disorders (Stidhof 2008).
Neurexins and neuroligins interact cooperatively to regulate the synaptic activity,
both excitatory and inhibitory, in the brain (Knight et al. 2011). NRXNI, NLGNI,
NLGN3, CNTN4, CNTN6, and CNTNAP2 are examples of superfamily genes that
have a function in autism spectrum disorder (Berg and Geschwind 2012). Knockout
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ASD mouse models of genes such as NRXNI, SHANK3, FMRI, and CNTNAP2 were
found to have imbalances in excitation and inhibition in brain regions, and these
knockout models exhibited social interaction deficits and reduced ultrasonic
vocalizations, which overlapped with behavioral endophenotypes relevant to ASD
(Rosti et al. 2014). Imbalances in excitation and inhibition in brain regions were
discovered in knockout ASD mouse models of genes such as NRXNI, CNTNAP2,
FMRI, and SHANK3. It has been shown that ASD-affected individuals have variants
in the neuroligins NLGN3 and NLGN4 (Jamain et al. 2003). These type I transmem-
brane proteins serve as adhesion molecules for brain cells and are required to
establish and develop synaptic connections in the brain (Zhang et al. 2017).
According to chromatin immunoprecipitation and promoter luciferase experiments,
WNT/B-catenin signaling directly controls the production of NLGN3, a transcription
factor (Medina et al. 2018). It would however be essential to establish whether or not
WNT/B-catenin signaling influences the expression of additional ASD-associated
genes. It is noteworthy that neuronal activity is regulated by genes such as GRIN2B,
SCNIA, and SCN2A, and these genes are thought to be involved in the mediation of
synaptic plasticity. In addition, they encode for ion channels (O’Roak et al. 2012a).
It is noteworthy to mention that UBE3A, PCDH10, DIA1, and NHE9/SLC9A9 are
similarly affected by neuronal activity that regulates transcription factors (Morrow
et al. 2008; Flavell et al. 2008).

Given the finding of several individuals with phosphatase and tensin homolog
(PTEN) mutations, PTEN is considered a high-risk autism candidate gene that plays
a role in WNT signaling (O’Roak et al. 2012b; Spinelli et al. 2015; Frazier et al.
2015; McBride et al. 2010). Furthermore, individuals with heterozygous PTEN
pathogenic variants are also at risk of developing macrocephaly, implying that
PTEN regulates brain size, which is thought to affect specific ASD instances (Page
et al. 2009; Kwon et al. 2006; Chen et al. 2015; Vogt et al. 2015; Clipperton-Allen
and Page 2014, 2015; Takeuchi et al. 2013; Tilot et al. 2015; Zhou and Parada 2012).

1.5 Altered Sonic Hedgehog (SHH) Signaling in ASD

SHH signaling is one such pathway that regulates neurogenesis and neuronal
processes during CNS development (Choy and Cheng 2012). SMO-SHH signaling
is implicated in various neurological activities, including neuronal cell proliferation
and survival (Alvarez-Buylla and Thrie 2014). While the function of primary neural
cilia in CNS patterning during embryonic development is well understood, their
relevance in adult CNS plasticity has only recently been discovered (Kirschen and
Xiong 2017). SHH signaling at the main cilium has been investigated and defined, as
shown in Fig. 1.2 (Seppala et al. 2017). In the absence of SHH activity, PTCH
suppresses SMO effectively. This causes Gli (glioma-associated oncogene/transcrip-
tion factor) proteins to be phosphorylated, after which they are proteolytically
truncated into repressor forms that inhibit transcriptional activity. SHH binding to
PTCH, on the other hand, induces internalization followed by breakdown, resulting
in SMO buildup and protein phosphorylation. As a consequence, Gli is carried to the



1 Principal Molecular Pathways Affected in Autism Spectrum Disorder 21

cytoplasm and enters the nucleus in its complete form, boosting target transcription
even more. In children with ASD, pathological functions for SHH, Indian hedgehog
(IHH), and BDNF have been proposed (Halepoto et al. 2015). SHH signaling
influences both neurogenesis and neuronal patterning during the development of
the central nervous system during pregnancy. Neurological diseases such as ASD are
caused by an imbalance in SHH signaling in the brain (Patel et al. 2017). In the
context of ASD, SHH has also been linked to oxidative stress (Ghanizadeh 2012).
Autistic children exhibited substantially greater levels of oxygen free radicals (OFR)
and serum SHH protein, suggesting that oxidative stress and SHH play a role in the
development of ASD (Al-Ayadhi 2012). As shown in Fig. 1.2, the connection
between ASD-associated genes and SHH signaling is illustrated.

The SHH pathway has also been implicated in ASD, and several pathogenic
variants in patched domain-containing 1 (PTCHDI) have been identified. A patho-
genic variant in this gene has been found to lead to problems with synaptic
connections and irregularities in neuronal transmissions in male mice, resulting in
hyperactivity and cognitive deficits (Tora et al. 2017; Ung et al. 2018) and behav-
ioral abnormalities (Tora et al. 2017). However, while the PTCHD1 protein does not
seem to play a role in SHH-dependent signaling when tested using a loss-of-function
approach, it does appear to affect synaptic transmission in the mouse dentate gyrus
(Tora et al. 2017). In addition it has been shown that PTCHD1 interacts with PSD95
and SAP102, two postsynaptic proteins (Ung et al. 2018). PTCHDI1 deficiency
(PTCHDI1™) in male mice causes widespread changes in synaptic gene expression,
including changes in the expression of the immediate-early expression genes EGR1
and NPAS4, and disruptions in excitatory synaptic structure and neuronal excitatory
activity in the hippocampus, which results in cognitive dysfunction, motor
impairments, and hyperactivity (Ung et al. 2018).

Pathogenic variants in the 7-dehydrocholesterol reductase (DHCR?7) gene have
also been linked to ASD. Increased cholesterol production was found to have a
negative effect on the activation of the transmembrane protein smoothened (SMO),
which is responsible for transmitting SHH signals, and its localization to the major
cilium (Blassberg et al. 2016). The transcription factor engrailed 2 (EN2) has also
been implicated in the development of ASD (Brune et al. 2008; Sen et al. 2010;
Wang et al. 2008; Yang et al. 2008, 2010). The higher levels of EN2 seen in
individuals with the EN2 ASD-associated haplotype (rs1861972-rs1861973 A-C)
indicated that EN2 is associated with ASD susceptibility (Choi et al. 2014; Bi et al.
2012; Gharani et al. 2004). According to the evidence from postmortem samples,
rising EN2 levels have been associated with increased SHH expression (Choi et al.
2014). During brain development, SHH is one of the genes that coexpress EN2 and
other genes (Wechsler-Reya and Scott 1999; Simon et al. 2005). Furthermore, both
mice with EN2 pathogenic variants and autistic humans had cerebellar structural
abnormalities that were similar (Gharani et al. 2004).



22 S. N. Younes et al.

PTCH

Hhtarget o m

genes on

Fig. 1.2 Possible associations between the ASD-linked genes and SHH signaling. PTCHD1, EN2,
and DHCR?7 genes are all potential ASD-associated genes. A negative sign denotes downregulating
activity. The figure was created using BioRender (https://biorender.com/)

1.6  Altered Retinoic Acid (RA) Signaling in ASD

RA, a functional metabolite of vitamin A, is a necessary morphogen during verte-
brate development (Niederreither and Dollé 2008; Duester 2008). RA can influence
several developmental genes that include RA response elements (RARE) and their
regulatory areas. By binding to nuclear receptors known as retinoic acid receptors
(RARSs) and retinoid X receptors (RXRs), RA mediates both genomic transcriptional
effects and non-genomic effects such as retinoylation (RA acylation), a posttransla-
tional modification of proteins (Rhinn and Dollé 2012; Das et al. 2014). A number of
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co-activators and co-repressors have been identified as modulators of RA signaling
activity (Das et al. 2014). RA is necessary for neural patterning, differentiation,
proliferation, and establishment of neurotransmitter systems in the developing CNS
(Zieger and Schubert 2017). Cortical neuron generation is regulated by RA from the
meninges (Siegenthaler et al. 2009). During embryonic development, RA aids in the
regulation of a group of HOX (homeobox) genes that form the upper-body pattern,
both anteriorly and posteriorly, and are implicated in brain patterning. Dopaminergic
and GABAergic neurons are involved in brain cell development in RA. It is also a
critical inducing factor for the development of motor neurons from pluripotent stem
cells (Faravelli et al. 2014).

Furthermore, RA is necessary for the appropriate functioning of motor neurons.
RA has also been linked to neuronal migration and neurogenesis in the granular zone
of the hippocampus, the sub-ventricular zone, and the olfactory bulb (Ghyselinck
and Duester 2019). The above mentioned functions of RA indicate that
neurodevelopmental diseases and RA signaling pathways are linked.

A sufficient quantity of retinol is required for the regular functioning of the RA
signaling system, assuming that all of the enzymes involved in the RA pathway and
nuclear factors operate properly. One of the key reasons for reduced intracellular RA
signaling is retinol insufficiency. In China, some autistic people had lower levels of
retinol than the normal control group, which might be a synergistic component in the
development of ASD symptoms (Cheng et al. 2021). Retinol supplements have been
shown to increase RAR expression and reduce ASD symptoms. Some investigations
have shown that retinol deficiency in rats during pregnancy reduces RA receptor
expression (RAR, beta isoform) in the hypothalamus, resulting in autistic-like
symptoms in the neonates (Lai et al. 2018). In rats, a lack of vitamin A has been
linked to ASD-like behavior (Lai et al. 2018). It has also been claimed that ASD is
caused by an abnormality in the interaction of RA and sex hormones (Niculae and
Pavil 2016).

The nuclear receptors for RA have also been implicated in the pathophysiology of
ASD. RORs (retinoic acid-related orphan receptors) operate as transcriptional
regulators upon RA binding, triggering transcription of numerous genes. Autistic
people were shown to have reduced protein expression of the RA-related orphan
receptor alpha (RORA) due to hypermethylation (Nguyen et al. 2010), and RORA
mutations have been linked to ASD (Sayad et al. 2017). RORA has been shown to
transcriptionally control numerous ASD-relevant genes, including NLGNI
(Sarachana and Hu 2013). P89L missense variant of NLGNI, identified in ASD
cases, has been linked to alterations in cellular localization, protein degradation, and
spine formation impairment. Mice with heterozygous P§9L in the NLGN1 have also
been found to exhibit aberrant social behavior, which is a crucial hallmark of ASD
(Nakanishi et al. 2017).

Furthermore, an immunohistochemical examination of the postmortem brains of
autistic people revealed a reduced quantity of ROR alpha protein (Nguyen et al.
2010). Disruption of the retinoic acid enzymatic production pathway was found to be
associated with ASD phenotypes and retinoic acid nuclear receptors, which have
also been implicated in the pathophysiology of ASD. Therefore, more research is
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needed to establish a link between ASD pathogenesis and involvement of RAR and
ROR agonists in autism treatment.

Another approach for detecting ASD signals is quantitative electroencephalogra-
phy (EEG) analysis. Details of individual characterization of EEG fluctuations in
ASD subjects could aid in examining brain issues, which would be helpful in
observing automatic groupings and random draws of the patient population when
analyzing sensory-processing issues of the brain and peripheral system (Ryu et al.
2021).

The conversion of retinol to RA with the aid of the enzyme (ALDH)
retinaldehyde dehydrogenase, which assures the concentration of RA in the cell, is
an essential metabolic step in the RA pathway. In vitro, over-ubiquitinoylation by
UBE3A has been shown to increase the breakdown rate of this enzyme’s isoform
aldehyde dehydrogenase 1 family member A2 (ALDH 1A2). Autistic characteristics
were detected in mice with UBE3A overexpression (Xu et al. 2017). In addition,
loss-of-function pathogenic variants in the UBE3A have been linked to Angelman
syndrome, demonstrating the role of UBE3A in brain development (Khatri and Man
2019). Surprisingly, UBE3A overexpression suppresses ALDH1A2 and inhibits
RA-mediated synaptic plasticity in ASD, which might be improved with RA sup-
plementation (Xu et al. 2018). All-trans-RA can increase CD38 expression in ASD
lymphoblastoid cell lines, but CD38-deficient animals display ASD-like behavior
(Riebold et al. 2011; Kim et al. 2016). In BTBR mice, beta-carotene, a precursor of
vitamin A, is a viable therapy for autistic-like behavior (Avraham et al. 2019). In a
mouse model, a synthetic RORA/G agonist was investigated for its ability to
ameliorate autistic symptoms (Wang et al. 2016). A South American cohort’s
WES has revealed a link between RA signaling genes, including a
RA-synthesizing gene ALDHIA3 and the RORA-regulated FOXNI, and ASD
(Moreno-Ramos et al. 2015). A subpopulation of autistic people were shown to
have low levels of ALDHIAI (Paval et al. 2017). ASD and other abnormalities
linked with proximal 1p36 deletions might be caused by de novo variants in
arginine-glutamic acid dipeptide repeats (RERE) that encode a nuclear receptor
coregulator for RA signaling (Fregeau et al. 2016). These findings point to potential
pharmacological methods for ASD treatment that include targeting RA and
associated signaling pathways. Figure 1.3 depicts the potential connections between
ASD-associated genes and RA signaling.

1.7 Altered Fibroblast Growth Factor (FGF) Signaling in ASD

FGF signaling is critical in brain patterning, and its disruption might result in a
variety of neurological disorders (Turner et al. 2016). In the mammalian FGF family,
there are 18 secreted FGFs and 4 tyrosine kinase FGF receptors (FGFRs) whose
interaction is controlled by cofactors and external binding proteins (Ornitz and Itoh
2015). When FGFRs are activated, tyrosine residues are phosphorylated, resulting in
interactions between cytosolic adaptor proteins and RAS-MAPK, PI3K-AKT, PLC,
and STAT intracellular signaling pathways (Ornitz and Itoh 2015). It has been
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Fig. 1.3 Possible interactions between ASD-associated genes and RA signaling. UBE3A
influences ALDHI1A expression, which in turn affects the RA signaling pathway. RORA is linked
to ASD, which impacts NLGN1. ASD is also linked to the RA signaling coregulator RERE. The
figure was created using BioRender (https://biorender.com/)

proposed that dysregulation of FGF signaling plays a role in the etiology of ASD
(Iwata and Hevner 2009). Cortical abnormalities in autistic brains, for example, have
been linked to faulty FGF signaling (Turner et al. 2016; Amaral et al. 2008). ASD is
thought to be caused by a disruption in the number of excitatory and inhibitory
synapses (Terauchi et al. 2010). Mutant mice FGF22 or FGF7 knockout
(KO) showed defective synapse formation in hippocampal CA3 pyramidal neurons
(Terauchi et al. 2010), indicating the pathogenic significance of dysregulated FGF
signaling in ASD. The metabotropic glutamate receptor 5 (mGluRS5) loss-of-func-
tion pathogenic variant causes abnormal dendritogenesis in cortical neurons, which
is one of the traits identified in autistic brains, by raising nerve growth factor (NGF)
and FGF10 mRNA levels (Huang and Lu 2017). Although several members of FGF
gene subfamilies have been linked to CNS development and/or function, many of
their roles remain largely unknown, and no direct evidence of altered FGF signaling
in ASD has been reported. Nevertheless, it has been well documented that epigenetic
mechanisms (Zhu et al. 2007), and posttranslational modifications of FGFs and
FGFRs (Sarabipour and Hristova 2016; Triantis et al. 2010; Wheeler and
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Fig. 1.4 Possible mechanisms of FGF signaling. A simplified depiction of the possible
mechanisms through which an FGF signal might be modulated to influence cell fate. The figure
was created using BioRender (https://biorender.com/)

Clinkenbeard 2019; Kucinska et al. 2019; Porebska et al. 2018), are involved in the
regulation of the expressions of FGF/FGFR signaling (Xie et al. 2020). Figure 1.4
summarizes the plausible mechanisms by which FGF signaling modulates cell fate.

1.8  Altered TGF-3/BMP Signaling in ASD

TGF-p/activin and bone morphogenetic protein (BMP)/growth and differentiation
factor (GDF) are the two subcategories of the TGF-f superfamily (Zi et al. 2012).
BMPs are the most abundant in the TGF-f superfamily (Lory and Rosen 2018), and
they play an essential role in nervous system development (Bond et al. 2012). Their
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signaling has been demonstrated to be dysregulated in ASD. BMPs influence gene
expression via both canonical (Smad-dependent) and noncanonical pathways (such
as the MAPK cascade) (Wang et al. 2014). The binding of BMPs to type I or type II
serine/threonine kinase receptors results in a heterotetrameric complex in the canon-
ical pathway. The type II receptor then transphosphorylates the type I receptor,
following which the type I receptor phosphorylates the R-Smads (Smad1/5/8).
Phosphorylated Smad1/5/8 and the co-Smad (Smad4) translocate to the nucleus
and regulate gene expression. BMP signaling is modulated by various factors,
including plasma membrane co-receptors and external and intracellular factors
(Wang et al. 2014). The BTBR T + Itpr3tf/J] (BTBR) mice are commonly utilized
in ASD studies (Ansari et al. 2017). TGF-f levels have been found to be lower in
BTBR mice than in B6 mice (Ansari et al. 2017). TGF-f expression levels in the
spleen and brain tissues of BTBR mice were found to be significantly higher than in
adenosine A2A receptor (A2AR) agonist CGS 21680 (CGS)-treated mice (Ansari
et al. 2017). Components of the TGF-p pathway were identified as novel
hyperserotonemia-related ASD genes in a network-based gene set enrichment anal-
ysis (NGSEA) based on loss-of-function and missense de novo variants (Chen et al.
2017). Figure 1.5 summarizes the interactions between ASD-associated genes and
TGF-f/BMP signaling.

Fragile X syndrome (FXS) is the most frequent heritable form of ASD and
intellectual impairment caused by FMR/ silencing (Kashima et al. 2016). Depletion
of the FMRI protein (FMRP) leads to increased bone morphogenetic protein type II
receptor (BMPR2) and activation of a noncanonical BMP signaling component,
LIM domain kinase 1 (LIMK1), which stimulates actin rearrangement to promote
neurite outgrowth and synapse formation (Kashima et al. 2016). Increased BMPR2
and LIMKI activity has been observed in the prefrontal cortex of FXS patients
compared to healthy participants (Kashima et al. 2016).

UBES3A has been associated with the regulation of synapse growth and endocyto-
sis by inhibiting BMP signaling (Li et al. 2016). The ubiquitin-proteasome pathway
degrades the BMP receptor Tkv, a direct substrate of UBE3A (Li et al. 2016).
Through the BMP signaling pathway, Drosophila UBE3A is known to modulate neu-
romuscular junction (NMJ) development in presynaptic neurons (Li et al. 2016).
Drosophila UBE3A mutants have been found to be viable and productive. Neverthe-
less, they have been demonstrated to have impaired endocytosis in the NMJs and
upregulated BMP signaling in the nervous system, owing to an increase in Tkv
(Li et al. 2016).

The DLX genes, which encode homeodomain transcription factors, have also
been linked to ASD (Liu et al. 2009; Hamilton et al. 2005; Rubenstein and
Merzenich 2003). These genes regulate craniofacial patterning, differentiation, and
survival of forebrain inhibitory neurons (Hamilton et al. 2005). The BMP-binding
endothelial regulator (Bmper) is upregulated in a cell line overexpressing DLX5
(Sajan et al. 2011), indicating that dysregulated DLX activity in individuals with
ASD might lead to aberrant BMP signaling.
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Fig. 1.5 Possible interactions between ASD-associated genes and TGF-f/BMP signaling.
ASD-associated gene-encoded proteins, such as NLGN3/4, FMR1, DLX, and UBE3A, interact
with BMP signaling. Plus sign indicates upregulation; minus sign indicates downregulation. The
figure was created using BioRender (https://biorender.com/)

1.9 Signaling Crosstalk in ASD

While it is known that crosstalk occurs across signaling pathways in many develop-
mental stages and illnesses, availability of evidence on autistic models is limited.
Research has shown that the WNT signaling proteins might affect both developmen-
tal and inflammatory processes. It was shown that WNT signaling and SHH signal-
ing are connected and influence each other at the transcriptional level (Chatterjee and
Sil 2019). Cell-line studies have shown that Gli stimulates p-catenin nuclear translo-
cation by E-cadherin and Snail (Li et al. 2007). Gli regulates WNT5a and WNT2b to
elevate WNT signaling (Katoh and Katoh 2009). Casein kinase 1 (CK1), p53,
PTEN, and GSK3 are protein modulators in these signaling pathways, and each
serves a different purpose. They collaborate to boost p-catenin and Gli signaling
(Song et al. 2014). Due to evidence of cross talk between WNT and SHH/Gli
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signaling in colon cancer, this signaling pathway is now a possible candidate for
colon cancer therapy (Song et al. 2015). CK1 and GSK3 are known to have
antagonistic functions in regulating -catenin and Glil (Wang and Li 2006; Tempé
et al. 2006; Hart et al. 1999), and a detrimental impact on TCF and downstream
genes of metastatic colon cancer. Also, they were shown to have opposing roles
(Varnat et al. 2010). Another problem is that the gene for a kinase inhibitor (Sufu),
which represses Glil activity, has been shown to change the distribution of f-catenin
between the nucleus and cytoplasm (Meng et al. 2001; Dunaeva et al. 2003;
Tukachinsky et al. 2010). Loss of p53 or PTEN causes Glil and p-catenin to activate
in colon cancer (Varnat et al. 2010; Rychahou et al. 2008). The authors have seen
that the use of SMO inhibitors keeps Glil, an upstream effector, from becoming
active, which prevents the amount of active B-catenin from rising and increases the
nuclear exclusion of p-catenin (Arimura et al. 2009). Furthermore, Glil prevents
Gli3R, whereas GIi3R stops Glil (Varnat et al. 2010). Additionally, p-catenin
activity has been shown to reduce with Gli3R (Ulloa et al. 2007). There is evidence
that Glil boosts the expression of WNT4, WNT2b, and WNT7b (Li et al. 2007).

Research on the embryonic development of WNT signaling, TGF-, RA signal-
ing, and BMP revealed that interactions exist among them (Hayward et al. 2008;
Boyle et al. 2011; Pelullo et al. 2019). There are a number of ways that WNT
signaling might also interact with cytokine signaling and NF-B to support inflam-
matory responses (Koopmans et al. 2017).

The development of the zebrafish tailbud (Stulberg et al. 2012) and the mouse
craniofacial area are thought to be influenced by the crosstalk between the FGF and
WNT pathways (Wang et al. 2011). Researchers have shown that increased FGF and
WNT signaling is positive (Stulberg et al. 2012). The gene Fgf8 was shown to play a
key role in the induction of neural tissues in the face. It is particularly active in the
anterior neural ridge and face ectoderm, with WNT/B-catenin signaling enhancing its
role and fB-catenin mutation leading to aberrant levels of Fgf8 expression in the face
ectoderm (Glinka et al. 2011). WNT boosts FGF signaling by boosting Erk phos-
phorylation in the MAPK branch (Stulberg et al. 2012). FGF blocks WNT
antagonists dkkl and notumla, which results in WNT signaling being raised
(Stulberg et al. 2012). A mutated UBE3A gene, linked to ASD, affects both the
WNT and BMP signaling pathways, indicating their possible connection (Li et al.
2016; Yi et al. 2017). Xu and her colleagues observed UBE3A as negatively
regulating ALDHIA2, which means that this gene makes RA formation more
difficult (Xu et al. 2018). The ASD-associated gene might additionally influence
BMP signaling, even though it has been suggested that it was likely to be a direct
target of WNT/B-catenin signaling (Medina et al. 2018). The above results indicate
that ASD-connected genes enhance the signaling of cross talk via morphogenetic
pathways, emphasizing the necessity for further study into the interconnections
between signals in normal physiological and pathological circumstances. WNT
and BMP signaling cross talk seems to be the result of a tissue-specific process
(Itasaki and Hoppler 2010). Signaling interactions occur contextually in the eye,
because WNT signaling positively controls RA signaling in the dorsal optic cup but
suppresses RA signaling during orofacial development (Itasaki and Hoppler 2010).
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Cyclosporine-enhanced cell proliferation has also been seen in human gingival
fibroblasts (Chung and Fu 2013). In addition, interactions between TGF-f3 and SHH
pathways have been found in cancer (Javelaud et al. 2012). TGF-f, a growth factor,
binds to receptors found on cancer cell membranes, including the neuropilin-1
(NRP1). NRP1 has been demonstrated to promote the canonical SMAD2/3 signaling
in response to TGF-f (Glinka et al. 2011). Also, NRP1 transduction is strengthened
by HH signaling, and NRP1 has been shown to increase HH target gene activation
by assisting the SMO/SUFU interconnection (Hillman et al. 2011; Hochman et al.
2006). While it is essential in the growth of SMO-associated cancers (Fan et al.
2010), it has been shown that TGF-f might increase GLI2 and GLII expression by
blocking PKA activity (Pierrat et al. 2012). According to the hierarchical structure of
cross talk, TGF-p upregulates SHH, resulting in increased SHH synthesis and cell
proliferation in gingival fibroblasts. This occurs through cyclosporine, which
enhances SHH production (Chung and Fu 2013).

1.10 Nongenetic ASD Etiologies

With ASD susceptibility estimated to be 40-80% hereditary, the risk is probably
driven by environmental variables, which are most likely involved in ASD etiology
via epigenetic regulation as the primary mechanism.

Hundreds of plausible environmental risk variables have been identified, includ-
ing increased parental age, viral infections, and prenatal exposure to anticonvulsants,
such as valproic acid (VPA). All the proposed risk factors can cause various
neurodevelopmental diseases with disrupted WNT signaling (O’Roak et al. 2012a;
Rasalam et al. 2005; Kong et al. 2012; Ohkawara et al. 2015).

1.11 Advancing Paternal Age

Since the 1970s, there has been speculation about a connection between paternal age
and ASD (Allen et al. 1971; Treffert 1970). A study has reported that increasing
paternal age was significantly associated with the susceptibility to ASD, even after
adjusting for confounding factors, such as maternal age (Reichenberg et al. 2006).
De novo germline pathogenic variants or changes in genomic imprinting might have
arole, or at least in part, in the observed association. Nevertheless, further research is
needed to validate these findings.

1.12 Viral Infection

New research suggests a link between viral infections and neurodegenerative and
neurobehavioral disorders such as autism. Infection with a virus at key stages of
early in utero neurodevelopment might increase the chance of autism in the child.
Clinical and epidemiological research has revealed associations between congenital
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CMYV infection and autistic symptoms (Stubbs 1978; Stubbs et al. 1984; Markowitz
1983). An antibody response to the virus, positive viral culture from the urine,
decreased hearing, and retinal inflammation revealed evidence of congenital CMV
infection. During pregnancy or at birth, CMV infection is a significant cause of
sensorineural hearing loss (Grosse et al. 2008; Fowler et al. 1999) and other
neurological impairments (Dollard et al. 2007; Townsend et al. 2013). Earlier case
studies found that children with congenital CMV infection had typical autistic traits
such as inability to build strong interpersonal relationships, poor eye contact,
delayed use of language, and nonthematic usage of items.

In 1990, there were numerous reports of severely impaired children with autism
who also had congenital CMV infection (Ivarsson et al. 1990). Yamashita and
colleagues (Sarabipour and Hristova 2016) demonstrated positive serum
CMV-specific IgM antibodies and CMV-DNA in the urine of children with typical
autistic disorders. The brain magnetic resonance imaging (MRI) findings indicated
an unusually intense region in the periventricular white matter, indicating disrupted
myelination. Seten et al. (Seten et al. 2004) discussed the potential function of
congenital and perinatal CMV infection in inducing an altered immune response
or autoimmune process. The infection or the resulting immune response might
impair the development of brain regions or structures, leading to autism. Engman
et al. (Engman et al. 2015) also examined the frequency of congenital CMV
infection in a representative sample of children with ASD. Congenital CMV infec-
tion was found in 1 of the 33 infants with autistic disorder and intellectual deficits,
corresponding to a 0.2% prevalence in the general Swedish newborn population.
Sakamoto et al. (Sakamoto et al. 2015) hypothesized that congenital CMV infection
was involved in a subset of children with ASD since the rate of CMV infection was
greater than the incidence of congenital CMV infection in Nagasaki, Japan.

There has been growing evidence describing a connection between rubella
infection in early pregnancy and ASD (Chess 1971). Recent studies have
demonstrated that in utero viral immune activation results in persistent hyper- and
hypomethylated CpGs at WNT signaling genomic regions (WNT3, WNT7B,
WNT8A) (Richetto et al. 2017), leading to the disruption of the transcription of
downstream target genes, which is thought to have a role in the development of
ASD. Other viral infections that have been implicated in ASD include Zika (Nielsen-
Saines et al. 2019; Abtibol-Bernardino et al. 2020), cytomegalovirus, and seasonal
and pandemic influenza infections (Atladéttir et al. 2012; Deykin and Macmahon
1979).

1.13 Valproic Acid (VPA)

VPA is a medication used to treat EP and bipolar disorder. VPA usage during early
pregnancy has been associated with ASD and autistic features in children (Moore
et al. 2000). Prenatal VPA exposure in rats has been reported to be related to autism-
like phenotypes (Zhang et al. 2012). Prenatally VPA treatment in rats has been
shown to cause an imbalance in oxidative homeostasis, which increases vulnerability
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to autism (Zhang et al. 2012; Qin and Dai 2015). In addition, VPA-administered rats
demonstrated reduced social contact, among other autism-like behavioral features.
Sulindac, a small-molecule inhibitor of the WNT/p-catenin signaling pathway
(Zhang et al. 2012; Qin and Dai 2015), has been reported to be capable of reversal
of the VPA-induced autistic-like behaviors. It also caused a decrease in p-GSK3f
expression and an increase in f-catenin expression in the hippocampus, prefrontal
lobe, and cerebellum (Qin and Dai 2015).

In addition, GATA-3 is a transcription factor that is required for brain develop-
ment (Tsarovina et al. 2010). It is implicated in the WNT (Notani et al. 2010) and
TGF-p/BMP (Kim et al. 2018; Forsman et al. 2013) signaling pathways. It has been
shown to be associated with ASD, after exposure to valproate, thalidomide, and
alcohol, which might contribute to the development of ASD (Rout and Clausen
2009).

1.14 Precision Medicine Approaches in ASD

Various pathophysiological processes and etiologies characterize ASD and therefore
precision medicine seems to be the most promising way of finding treatment options
for ASD (Uddin et al. 2019; Al-Dewik and Alsharshani 2020; Styles et al. 2020).
The field of precision medicine attempts to mix groundbreaking
pathophysiologically based treatments (biomarker stratification) with testing to
determine which therapeutic course of action might assist a particular person (Loth
et al. 2016). Understanding the molecular and cellular pathways associated with
ASD might enable the development of more effective treatment options. The current
approach has more significant information about the molecular and cellular pro-
cesses involved in ASD (Loth et al. 2016). However, following recent therapeutic
research failures involving monogenic ASD variants, new challenges have emerged
which include conceptual and methodological problems (i.e., the difficulty of trans-
lating from animal models to humans and then conducting suitable clinical trials).
Other issues are the impact of placebo effects, clinical trial design, and the need to
identify mechanistically plausible, measurable outcomes (Loth et al. 2016). Addi-
tionally, as many as 70% of individuals with ASD are likely to have a psychiatric or
physical co-condition (Simonoff et al. 2008), which might complicate treatment,
which could cause an impairment that will last far into adulthood (Shaltout et al.
2020). A transdisciplinary, multidisciplinary, and collaborative approach would be
required to deal with the many issues that future research projects must cover.

1.15 Future Perspectives and Conclusions

Research and knowledge of ASD are growing, thanks to many efforts that have been
rigorous and comprehensive. Nonetheless, a multi-domain expert collaboration is
required to have a cohesive picture of ASD and adequately evaluate its increasing
genetic, epidemiological, and environmental components. During embryogenesis,
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dysregulation of various signaling neurodevelopmental pathways such as WNT,
BMP/TGF, SHH, FGF, or RA seems to induce ASD and alter neurogenesis. The
signaling pathways might function upstream or downstream of ASD causative
genes. Several studies have revealed that the pathways mentioned above play
important roles in developing targeted therapies for ASD. However, comprehensive
developmental investigations are needed to determine the time window during
which disruption of these signals has the most significant impact on brain structure
and function, and the subsequent impairment in behavior.

Furthermore, such research might aid in the understanding of the processes
involved in ASD etiology, and the upstream and downstream signaling pathways
involved. The interaction between different signaling pathways in neuronal and glial
cells for ASD should be explored, as this might aid in devising therapy and
addressing the disturbed signaling in a cell-specific manner. Only a few ASD risk
genes have been investigated in the context of disrupted signaling pathways so far.
The exploration of functions of additional ASD genes in neurodevelopment and the
control of other signaling pathways might improve the existing knowledge of the
processes underlying ASD etiology. Early identification is necessary for a successful
therapy that treats the symptoms while reversing neurons to normal circumstances.
In addition to the clinical value of a genetic diagnosis, early diagnosis has also been
proven to enhance the understanding, give a feeling of empowerment, and improve
the quality of life of the affected child and the parents. As a result, additional
investigations are needed to comprehend the mechanistic picture of signaling
pathways, communication in ASD, and causative gene interaction with these
pathways.
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