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Abstract. With the rapidly development of social networks and
advances in natural language processing (NLP) techniques, rumors are
extremely common and pose potential threats to community. In recent
years, massive efforts are working on detecting rumors by using various
techniques like simply investigating the content of texts, exploring the
abnormality of propagation. However, these techniques are not ready to
fully tackling this emerging threats due to the dynamic variations of
rumors in a period of time. In this paper, we observed that the user
feedback provides a clean signal for determining the trend of rumors,
thus we combine the text content and the improved representation of
network topology to characterize the dynamic features of rumors in a
period of time. In detection, we employ a deep attention model with
proposed features for spotting the minor differences between legitimate
news and rumors. Experimental results show that our approach give an
accuracy more than 94.7% in detecting rumors and outperforms previ-
ous approaches. Our studies also give a new insight that user interactions
could be working as an important asset in rumor identification.

Keywords: Attention mechanism · Representation learning · Rumor
identification · Multiple Features

1 Introduction

Nowadays, online social networks have greatly promoted the communication
between humans, resulting in an explosive growth of various information.
They have also become important ways for ordinary people to obtain external
knowledge. However, this convenience also promotes the widespread of rumors.
Recently, there is no standard definition of what a rumor is. DiFonzo et al. [8]
define rumor as unverified and instrumentally relevant information statements in
circulation that arise in contexts of ambiguity, danger or potential threat. Gupta
et al. [11] regard rumor as uncertain or deliberately forged information. Matsuta
et al. [19] point that a rumor spreads like an infectious disease. According to
the multiple features we used, a rumor is defined here as the information with
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harmful content, abnormal topology structure of networks, and disparate feed-
back (i.e., inquiry and correction signals by users [31]). Rumors have negative
influence on public security and stability of society. They not only damage the
credibility of social media, but also destroy the orderly development of society.
For example, someone said that high concentration alcohol could prevent coron-
avirus disease outbreaking in 2019 (COVID-19), leading to the death of hundreds
of Iranians. Therefore, effective rumor identification methods are urgently needed
to deal with this issue.

Recently, the majority of rumor identification methods extract features (e.g.,
text content [25], propagation patterns [17], and user profiles [28]) to train
machine learning models to distinguish rumors from non-rumors. However,
rumors can not be described accurately by using one or a few features among
them. Text content-based methods usually ignore the dynamic structure of the
propagation process and highly rely on the characteristics of information con-
tent. Propagation-based methods are limited by the artificially constructed fea-
tures and the learning representation ability of models. The effects are not as
good as expected. User profiles-based methods require high accuracy and a large
amount of training data. They ignore the role of content in propagation, so that
the results may have some deviations.

Fig. 1. Feature representation of an event in the propagation cycle. The propagation
of event i is divided into n time periods. We extract the relevant features in each time
period and splice them to form a feature matrix for training.

To deal with this issue, we use text content, topology structure of networks,
and user feedback signals to represent the characteristics of an event in the
propagation cycle. Then, we introduce the attention mechanism, which can find
the elements closest to detection task from the input sequence to help classify
the text, to a deep learning model for rumor identification. The framework of
our method is shown in Fig. 1, and our contributions are summarized as follows:
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– We combine user feedback signals with text content and topology structure
of networks to characterize the features of an event for rumor identification
task.

– We propose a representation learning method for network nodes based on the
space-time similarity and improve the Struct2vec method to make it more
suitable for the propagation process of events on online social networks.

– Our method achieves a relatively good result with 94.2% accuracy. It also
performs better in the early detection of rumors than some works.

2 Related Works

Rumor identification is a hot research topic in various disciplines, and there exist
a lot of relevant studies. Most of them utilize different features for distinction.
Hence, the selection and extraction of features are significant to rumor identi-
fication. Takahashi et al. [25] found the differences in vocabulary distribution
between rumors and non-rumors and use this feature for detection. Sun et al.
[24] extracted 15 features related to content, users profiles, and multimedia to
identify event rumors. Ma et al. [16] recognized the deficiencies of user profiles,
content and propagation characteristics, and introduced the time series of infor-
mation to improve the detection efficiency. Wu et al. [27] proposed a graph-kernel
based hybrid support vector machine (SVM) classifier to utilize the propagation
structure of the messages, which was ignored in prior works. All these works are
based on traditional machine learning methods, and the features are extracted
manually which are time-consuming and labor-intensive.

Recently, deep learning (DL) has achieved great performance in various nat-
ural language processing tasks. Therefore, researchers have tried to use DL-
based models to identify rumors and received better results. Ma et al. [15] first
used a recurrent neural network (RNN) to learn the vector representation of
information-related texts over different periods. RNN-based rumor detection is
faster and more accurate than the methods at the time. Chen et al. [6] introduced
a self-attention mechanism based on the work of [15] to capture contextual vari-
ations of relevant posts over time. Yu et al. [29] proposed a novel method based
on convolutional neural network (CNN), which can flexibly extract key features
and shape high-level interactions among them. Yuan et al. [30] extracted the
global structural information and combined with the semantic information for
detection. Huang et al. [12] trained a graph convolutional network with graph
structural information in the user behavior, which was not considered in other
works.

3 Preliminaries

3.1 Description of Rumor Identification

Rumor identification is to determine whether the information of an event trans-
mitted on social networks is a rumor or not. It can be seen as a two-category
problem. The formal definition of this task is as follows:



68 L. Wang et al.

For a given set E = {e1, e2, . . . , ei, . . . , eh} with h events and a label set
L = {l1, l2}, ei stands for a set of messages related to the i-th event in E. Each
event contains n pieces of information mi, timestamp ti and related attributes fi.
Thus, an event is composed of some time-series information, which is symbolized
as ei = {(mi1, ti1, fi1), . . . , (mij , tij , fij), . . . , (min, tin, fin)} (j = 1, 2, . . . , n).
The labels l1 and l2 represent rumor and non-rumor respectively. The rumor
identification task is to map ei into a corresponding category by learning a pre-
trained classification model F , i.e., F : ei → l, l ∈ {l1, l2}. The input of the
model is the event ei, and the output is a discriminant label for the event.

3.2 Division of an Event

Division of the overall propagation phase can be seen as a transformation from
a complete cycle into a series of different periods. For example, the messages in
the set mi of event ei is divided into n intervals according to the timestamp tij ,
where n is the number of intervals, and j ranges from 1 to n. The time-series
division of an event cycle is divided below.

We assume that the earliest timestamp in the event ei is startT imei, and
the latest timestamp is endT imei. ei is divided into n intervals at equal length
as shown in (1).

Tij =
j

n
∗ endT imei +

n − j

n
∗ startT imei (1)

where Tij is the end time of the j-th period in the linear division of ei.
But the distribution of information in an event has a significant long-tail

phenomenon. It indicates that most of the information is concentrated in the
early stage of propagation. Then the number of information about the event
drops sharply with time. To eliminate the long-tail phenomenon, we obtain the
logarithmic intervals by nonlinear division instead of linear division. Hence, the
interval of the latter period becomes larger and larger. The distribution of the
data in each period has a good consistency. The calculation process of nonlinear
division is shown in (2).

tij = (endT imei − startT imei + 1)
Tij−startTimei

endTimei−startTimei

+ startT imei − 1
(2)

where tij is the end time of the j-th period in the logarithmic interval division
of ei.

3.3 Propagation of an Event

Due to the complexity of network topology, the representations of propagation
process in existing methods have two main problems. One is the incomplete use
of propagation features. Existing researches tend to focus on one aspect of the
propagation process, so that the information disseminated throughout its cycle
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is not fully learned. For example, researchers only use the time-series features
[15,16] or content features [9,18]. They intentionally ignore the complexity of
network topology. Thus, the dynamic variability of online social networks is
lack of consideration. The other one is a lack of quantitative expression for user
opinion [14,26]. Because the semantic representation of potential topics is limited
by short text corpus, the feedback information and user opinions of events(i.e.
user feedback signals) in the networks are not well quantified. In response to
the two problems, our method takes better use of the dynamic feature and user
feedback signals to represent the propagation process of an event on online social
networks.

4 The Multiple Features

The multiple features consist of text content, network topology, and user feed-
back signals. In this section, we introduce the constructions of network topology
and user feedback signals.

4.1 Text Content

On online social network, text content includes two forms: one is the content
of the message published by the original publisher, and the other is the repost-
ing of the former by some users, i.e., a copy of the original message. There is
no difference in their contents, so that researchers usually regard them as the
same one to study the characteristics of the words, symbols and uncertainties
they contain. In this paper, we convert the text content into a vector accord-
ing to word2vec, and then combine the features of topology feedback signals to
construct a feature matrix for rumor identification.

4.2 Network Topology

Struct2vec [21] is a framework for learning latent representations of network
nodes. Inspired by it, we propose a representation learning method for network
nodes based on the space-time similarity. We have done some improvements on
the Struct2vec. The attributes of node feature, the similarity of ordered degree
sequence and the average passive response time which are not considered in
Struc2vec are used in our method.

4.3 Definition of the Similarity Between Nodes

Figure 2 is a diagram of node similarity on online social networks. We assume
that the thickness of the edge between two nodes in Fig. 2 represents the degree
of influence. The size of a node represents its characteristic properties, such as
the number of fans. Generally, node u and node v are not similar in an open
social network according to the similarity assumption of neighbors. Because they
are not directly connected and do not share any neighbor nodes. In that case, the
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probability that u and v appear in the same walk sequence by the traditional
representation algorithm is almost zero. But u and v will have some similar-
ities from the perspectives of spatial structure, degree of influence and node
attributes. The degrees of u and v are 5 and 4 respectively. They are connected
to other parts of the network through 2 nodes from spatial structure. Both u and
v only have high influence on individual nodes in the view of influence. From
the view of node attributes, the sizes of node u and node v are similar. The
distributions of their neighbor nodes also have some similarities. Hence, it can
be said that u and v are similar.

Fig. 2. Diagram of node similarity on social network. Each icon represents a node and
they are connected by the networks.

Therefore, principles of the similarity between nodes in a directed graph
with node attributes are defined as follows. First, the more similar the feature
attributes of nodes are, the higher the similarity is. If their neighbor nodes
also have similar distributions, the similarity of them will increase. Second, the
closer the degrees of two nodes are, the higher the similarity is. If their neighbor
nodes also have similar degrees, the similarity will increase. Third, the closer the
average passive response time between two nodes is, the higher the similarity
is. The passive response time of a node is better to describe its influence or
similarity on social networks than the response time.

Structural Similarity of Loop Nodes. Given a directed graph G = 〈V,E〉
with node attributes, the directed edge eij represents the forwarding behavior of
node i for node j. Let Rk(u) denote the set of nodes with the shortest distance
k to node u, where R0(u) represents the node u itself. R1(u) represents the
directly connected neighbor set of u. Let Di denote the indegree of node i. The
loop structure refers to the part with a loop in the directed cycle graph(DCG).
The definition of k-hop loop structure similarity fk(u, v) for given nodes u and
v is in (3).

fk(u, v) =fk−1(u, v) + g(S(Rk(u), S(Rk(v))))·
∑

c

αcg(Fc(Rk(u)), Fc(Rk(v))) (3)

where k ≥ 0 and f−1 = 0. αc is the weight of feature c. g(S1, S2) is the sequence
similarity calculated by the dynamic time warping algorithm [4] for sequence S1

and sequence S2. The sequence S(V ) is calculated in (4).
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S(V ) = sort([D1 · e−Δt1 , . . . , Dn · e−Δtn ]) (4)

where e is the natural constant. Δti is the average passive response time of node
i. sort is the function for ascending order according to their values. The ordered
sequence Fc(N) of the feature c in node set N is calculated in (5).

Fc(N) = sort([c1, . . . , cn]) (5)

Construction of Hierarchically Weighted Graph. The distance of the local
loop structure between two nodes is calculated by (3). Then we construct a hier-
archically weighted graph M based on random walk sampling by the method in
[21]. M is made up of (k∗ + 1) layers. Each layer in M is composed of all the
nodes in G = 〈V,E〉. Nodes in the set V are pairwise connected without direc-
tions. The current layer represents the jump probability based on the nearest
k-hop loop distance of the nodes, where k = 0, . . . , k∗. The weights wk(u, v) of
the edge between u and v in the k-th layer are calculated in (6).

wk(u, v) = e−fk(u,v) (6)

Nodes belonging to different levels are connected by directed edges. Hence,
each node is connected with its corresponding upper node and lower node. The
definition of weight on a directed edge connected to the upper node is shown
in (7).

w(uk, uk+1) = log(Γk(u) + e) (7)

The definition of weight connected to the lower node is shown in (8).

w(uk, uk−1) = 1. (8)

where Γk(u) is the number of edges in k-th layer that are connected to the node
u with weights greater than the average. The calculation process is shown in (9):

Γk(u) =
∑

v∈V

1 · bool((wk(u, v) > w̄k)) (9)

bool is the boolean function, and w̄k is the average weight of all edges for the
k-th layer.

Node Sampling Based on the Biased Random Walk. To catch the node
sequences, we sample on the hierarchically weighted graph M using a biased
random walk. Each sampling is decided according to the pre-set probability
walking at the current, upper or lower layer. Each time the sampled nodes are
more inclined to select similar nodes to current ones in local structure, influence,
and other features.

If it walks at the current layer, we assume that it is the k-th layer. The
probability from node u to node v is shown in (10).

pk(u, v) =
e−fk(u,v)

Zk(u)
(10)
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where Zk(u) =
∑

v∈V,v �=u e−fk(u,v). It is the normalization factor for node u in
k-th layer.

If it walks at the upper layer, the (k + 1)-th layer is selected with the prob-
ability shown in (11).

pk(uk, uk+1) =
w(uk, uk+1)

w(uk, uk+1) + w(uk, uk−1)
(11)

If it walks at the lower layer, the (k − 1)-th layer is selected with the proba-
bility shown in (12).

pk(uk, uk−1) = 1 − pk(uk, uk+1) (12)

Representation of Network Topology. The sequence HS for global user
nodes is obtained by biased random walk sampling on the probabilistic jump of
M . The following construction of network topology is shown in Fig. 3. There are
T nodes in the graph G = 〈V,E〉, where T ∈ {u1, u2, . . . , uT }. This model is used
to predict the central nodes for a given node sequence, and then these central
nodes are linked to form the network topology. The optimization objective is
shown in (13).

1
T

T−i∑

t=i

log p(ut | ut−i, . . . , ut+i) (13)

where i represents the size of a sliding window. p(ut | ut−i, . . . , ut+i) is the output
of the model. The prediction result is shown in (14).

p(ut | ut−i, . . . , ut+i,S) =
eyut

∑
j eyj

(14)

yj is the non-normalized likelihood probability of node j calculated in (15).

y = b + Uh(ut−i, . . . , ut+i;H) (15)

U and b are parameters of the output layer. h is averaged by the node vectors
in H.

4.4 Feedback Signals

Feedback signals are the feedback information of users for an event, and they
have an obvious time effect. The information about the same event will lead to
different sub-events which stand for various point of views. The changes of views
are related to the mode of propagation [17]. Hence, feedback information of users
can help us to have a better understanding of the event.

The user feedback signals have achieved significant results on rumor identi-
fication [2,24]. But the usage of this feature often has two problems, which are
incomplete collection [31] and poor scalability. To overcome these problems, we
efficiently use this feature and propose a mining method based on seed words.
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Fig. 3. Training model of network structure vector. Hi represents the node sequence
obtained by sampling the i-th node, where i ranges from 1 to T .

Our approach utilizes the word vectors [23] pre-trained in the external corpus
(e.g., Wikipedia). It extends the scope of semantic sources and ensures the accu-
racy of feedback signals in the overall semantic space. The corresponding algo-
rithm is shown in Algorithm 1.

Generation of Seed Words: The regular expression of inquiry and correction
signals [31] is used as the initial generation method. The information content of
datasets is regularly matched to obtain the initial seed words.

Matching Calculation of Inquiry and Correction Signals: In the process
of finding a match, each seed word is separately calculated to find a word whose
cosine similarity in the pre-trained word vectors P is greater than a threshold.

Construction of Feedback Signals: All the seed words obtained in the pre-
vious steps are seen as the word set Q of feedback signals. The information
sequence of event ei is divided into n periods by the nonlinear segmentation
method. The information text sequence di1, di2, . . . , din from ei in each nonlin-
ear period is obtained. Then matching process between the text sequence dij of
the event ei in the j-th period and the word set of feedback signals is carried
out by Aho-Corasick [1].

5 Model

In this section, we analyze the influence of multiple features on online social net-
works and design an attention model for rumor identification. The basic archi-
tecture of our model is shown in Fig. 4.

Input Layer. The network topology (wi1, wi2, . . . , win), user feedback signal
(si1, si2, . . . , sin) and text content (di1, di2, . . . , din) of event ei in each non-linear
period are used as the input data.
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Algorithm 1. Mining algorithm of user feedback signals
Input: event set E = e1, e2, . . . , em, number of iterations γ, number of event periods

n, similarity threshold t, pre-training word vector set P
Output: feedback signal matrix S for each period of the event
1: Q ← RexMatch(E)
2: for iter← 1, . . . , γ: do
3: L ←| Q |
4: for j ← 1, . . . , L: do
5: Uj ← GetSimilarWords(Q[j], t, P )
6: Q ← AddWord(Q, Uj)
7: end for
8: end for
9: for i ← 1, . . . , m: do

10: di1, di2, . . . , din ← Split(ei, n)
11: for j ← 1, . . . , n: do
12: Sij ← AhoCorasick(dij , Q)
13: end for
14: end for
15: return S

Embedding Layer. The multiple features are structured as input to the embed-
ding layer. Then the heterogeneous features are normalized.

Encoder Layer. The output of the embedding layer is processed by the encod-
ing layer to obtain time-series information of the event.

Attention Layer. The attention layer weights the obtained information from
the encoding layer to get related content of the event in the propagation process.

Output Layer. The output of the attention layer is used as an input of a fully
connected layer for predicting the category of event.

5.1 Embedding Layer

Due to the multiple features of the event come from different feature domains,
they are not suitable as the direct inputs to the model. Therefore, the primary
role of the embedding layer in the network architecture is to transform them
into vectors. Then, these vectors are standardized and aggregated as inputs for
an encoding layer. The input of an embedding layer is the original feature data
xt shown in (16) of the event at period t, including the network topology vector
wt , the user feedback signal vector st and the text vector dt .

xt = aggregate(dt, wt, st) (16)

where aggregate is the function to connect the vectors.
The output of an embedding layer acts as the input ct for the encoding layer

at period t. The calculation process is shown in (17).

ct = tanh(Waxt + ba) (17)

where Wa is the weight matrix and ba is the bias. tanh is the activation function.
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Fig. 4. Basic architecture of the model

5.2 Encoding Layer

To obtain the relationship of response time between the rumor and the event
in general propagation process, the Bi-directional Gated Recurrent Unit [7] (Bi-
GRU) model is adopted in this layer. Bi-GRU can gain long-term dependence
on the data. It also has the flexibility to handle variable-length inputs. Hence,
it is suitable for capturing information about event propagation in time-series
relation. The calculation of the encoding layer is shown in (18):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ht = (
→
ht,

←
ht)

→
ht =

−→
GRU1 (ct), t = 1, . . . , n

←
ht =

←−
GRU1 (ct), t = n, . . . , 1

(18)

where
→
ht represents the output value of the forward part at period t and

←
ht

represents that of the backward part. ht is used as an input to the successor

network.
−→

GRU1 and
←−

GRU1 are the forward and backward propagation process
respectively.

5.3 Attention Layer

This layer introduces the attention mechanism [3] by adding different weights to
the output sequence (h1, h2, . . . , hn). By weighting the output of the encoding
layer, more context information of the original data can be utilized while aligning
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the input and output. The input of attention layer is ht and the output ve is
calculated in (19): ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = tanh(Wcht + bc)

at =
euT

t uc

∑
j euT

j uc

ve =
∑

j

ajhj

(19)

where Wc is the weight matrix and bc is the bias. uc represents the initial random
weight of the attention layer. at represents the attention weight of the potential
information in Bi-GRU. The attention module in the network structure is used
for automatically learning the attention weight at. It can capture the correlation
between ht and the hidden state of the decoder. Then, these attention weights
are used to construct the content vector ve. The output of an attention layer is
used as the input of a fully connected layer for the final rumor discrimination.
In addition, it can also be used as an independent analysis of events.

5.4 Output Layer

The final output discrimination of the output layer is shown in (20).

L̂e = σ(Weve + be) (20)

where L̂e represents the predicted category of the event. σ is the activation
function. We is the weight matrix and be is the bias. We use the cross-entropy
loss function to measure the difference between the predicted category and the
ground-truth category. The Adam optimization algorithm [13] is used for training
iteration as shown in (21).

Loss = − 1
N

N∑

j=1

[Lj ln L̂j + (1 − Lj) ln(1 − L̂j)] +
λ

2
||θ||22 (21)

where N represents the total number of samples in the training set and Lj

represents the ground-truth category of the j-th event. θ is a set of parameters
for the model. λ is a hyper-parameter.

6 Experiments

6.1 Dataset

We use the classic dataset which has been applied in the work of [15,17,22,29]
on the rumor detection. It is divided into Weibo data and Twitter data. But the
Twitter data only provides the ID of each event, and the contents need to be
obtained through the official interface. Some of them can not be obtained due to
access rights or non-existence. After statistics, about fifteen percent of Twitter



Deep Attention Model with Multiple Features for Rumor Identification 77

data has lost. To carry out a complete experimental comparison on the same
dataset, we use Weibo data to conduct experiments. The entire dataset has a
total of 2313 rumors and 2351 non-rumor samples, and each of them contains a
number of information.

6.2 Baselines

In order to verify the effectiveness of our method, we compare with some bench-
mark models on the same dataset. They are described as follows:

DT-Rank [31]: This method obtains feature information by regular matching
and text clustering. The clusters of samples are sorted by various statistical
features.

SVM-TS [16]: This method uses the support vector machine (SVM) as a clas-
sification model. It utilizes time-dependent propagation features which are con-
nected with event features as inputs of the model.

DTC [5]: This method uses the decision tree as the classification model. The
characteristics they used are the number of microblog posts, the average number
of followers, and so on.

GRU-2 [15]: This method uses term frequency–inverse document frequency
(TF-IDF) to represent text information of each period. The classification model
is the Bi-GRU.

CAMI [29]: This method is different from GRU-2. It uses segment vectors to
represent text information. The model it used is a convolutional neural network
(CNN).

6.3 Experiment of Representation Learning Method for Network
Nodes

To verify the validity of the representation learning method for network nodes
proposed in this paper, we analyze the existing methods and compare the perfor-
mance of them with the same training model. We extract the vectors of network
nodes by representation learning methods as the training data. Then we train
an extra DNN model to evaluate the effectiveness of these methods. The exper-
imental results are shown in Table 1.

From Table 1, we can see that the Struc2vec model performs better than
Deepwork and Node2vec. Struc2vec is not based on the hypothesis of neighbor
similarity but the spatial structure similarity. However, it is still not as effective
as our representation learning method of network nodes on the training model.
Besides, the models [10,20,21] are not well applied to directed graphs with node
attributes and edge weights. They are designed without considering the charac-
teristic attributes of user nodes and the time attributes of events on online social
networks.
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Table 1. Experiments on representation methods of network nodes

Method Category Accuracy Precision Recall rate F1 score

Struct2vec [21] R 0.785 0.762 0.823 0.791

N 0.811 0.747 0.777

Deepwalk [20] R 0.618 0.671 0.699 0.685

N 0.691 0.662 0.676

Node2vec [10] R 0.723 0.702 0.766 0.733

N 0.747 0.679 0.712

Ours R 0.828 0.802 0.865 0.833

N 0.857 0.790 0.822

6.4 Experiment of Rumor Identification

In order to verify the effectiveness of our method, we compare with some bench-
mark models on the same dataset. The experimental results are shown in Table 2.
From Table 2, we can see that our method perform better than these state-of-
art works in rumor identification task. We also compare the effect of feedback
signals, which show a difference of nearly 3% points.

The rumor identification task not only needs to have the judgment after
overall propagation cycle of an event, but also needs to verify the authenticity
of the information in the early stage. Accurate discrimination during the early
period of an event plays an extremely important role in warning, containment,
and blocking of rumors on social networks. Hence, experiments are conducted
to verify if our method works in the early propagation of rumors.

The average time for the official media of Sina Weibo to refute rumors is 72
h [15,16,29]. Hence, we select 9 time points within 72 h and train the discrim-
inant models respectively. The experimental results of our method are shown
in Table 3. We can see that our method achieves a high accuracy in the early
detection of rumors. As the propagation of events, the accuracy of rumor iden-
tification is gradually increased and it tends to be stable around the point of
24 h.

Figure 5 is a performance comparison between the proposed method and the
existing methods at different time points in the early detection of rumors. The
experimental results show that our method is better than others in the early
detection of rumors. Even though the CAMI has a high detection rate in the
initial stage of the event, but its effect is not as good as our method with the
time changes.
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Table 2. Experiments on rumor identification by different methods

Method Category Accuracy Precision Recall rate F1 score

DT-Rank [31] R 0.732 0.738 0.715 0.726

N 0.726 0.749 0.737

SVM-TS [16] R 0.857 0.839 0.885 0.861

N 0.878 0.830 0.857

DTC [5] R 0.831 0.847 0.815 0.831

N 0.815 0.847 0.830

GRU-2 [15] R 0.910 0.876 0.956 0.914

N 0.952 0.864 0.906

CAMI [29] R 0.933 0.921 0.945 0.933

N 0.945 0.921 0.932

Ours (except feedback) R 0.915 0.902 0.913 0.922

N 0.887 0.907 0.936

Ours (all features) R 0.947 0.944 0.927 0.935

N 0.930 0.945 0.938

Table 3. Early detection of rumors

Deadline Category Accuracy Precision Recall rate F1 score

1 h R 0.821 0.816 0.823 0.820

N 0.825 0.818 0.821

3 h R 0.873 0.882 0.857 0.869

N 0.863 0.887 0.875

6 h R 0.905 0.880 0.934 0.906

N 0.931 0.875 0.902

12 h R 0.924 0.908 0.941 0.924

N 0.940 0.906 0.923

24 h R 0.934 0.928 0.939 0.933

N 0.939 0.928 0.934

36 h R 0.933 0.936 0.927 0.932

N 0.929 0.937 0.933

48 h R 0.938 0.929 0.946 0.937

N 0.946 0.929 0.937

72 h R 0.940 0.933 0.941 0.937

N 0.941 0.934 0.938

96 h R 0.938 0.953 0.917 0.935

N 0.922 0.955 0.940
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Fig. 5. Comparisons in the early detection of rumors

7 Conclusion and Future Work

In this paper, we creatively propose a new point of view based on the multiple
features for rumor identification task and achieve a relatively good result. Our
method also performs better in the early detection of rumors than some works.
Besides, we propose a representation learning method for network nodes based
on the space-time similarity. This method can also be used for other time-series
tasks on social networks like public opinion monitoring and influence analysis
of user. But there exists some shortcomings. Our method is slightly better than
the best one for rumor identification in the propagation cycle of an event. The
time for training and testing needs several days. In the future, we will do some
improvements to the model for optimizing the performance of our model and
reducing training time. At the same time, the loss of spatial information in
network topology and the representation method of network nodes can also be
optimized.
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