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Abstract. Penetration semantic knowledge mining plays an important
role in automated penetration testing. The loss of external utility makes
it hard to employ high utility itemset mining algorithms to retrieve the
knowledge. To overcome this problem, this paper proposes an adap-
tive utility quantification strategy which could differentiate and quan-
tify external utility of item effectively. Further, incremental high util-
ity pattern tree structure is adopted to maintain utility information for
incremental database so as to facilitate the calculation of external util-
ity. The experimental result turns out that high utility itemsets mining
algorithms with proposed adaptive utility quantification strategy could
mine penetration testing semantic knowledge from raw penetration test-
ing data effectively and efficiently.

Keywords: Penetration semantic knowledge · High utility itemsets
mining · Automated penetration testing · Frequent itemsets mining

1 Introduction

With the rapid development of computer network, the security problem becomes
much more prominent than ever. Penetration testing shows great advantages
in improving security level. It interleaves scanning and vulnerability exploita-
tion actions where scanning action offers information such as operating systems,
services etc. based on which security experts choose corresponding vulnerabil-
ity exploitation program and correct vulnerability exploitation program could
motivate further information gathering. Figure 1 shows typical penetration test-
ing scenario where attack path is composed of three steps 1© 2© 3©, and each step
is pair of host information and common vulnerability and exposure exploita-
tion(cve), such as <tomcat 7.0.56, cve-2017-12615>, <windows 7 sp1, cve-2018-
0121> etc. The quality or effectiveness of penetration testing depends heavily
on security experts’ experience and it becomes a hot research topic to auto-
mate penetration testing, for which mining penetration semantic knowledge is
an essential prerequisite.
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Fig. 1. Typical penetration testing scenario where attack path is composed of three
steps 1© 2© 3©, and each step is pair of host and vulnerability exploitation information.

Penetration semantic knowledge is a kind of mapping relationship
{software:version → vulnerability} which means that the specific version of
software may cause the vulnerability, based on which we could choose corre-
sponding vulnerability exploitation program when faced with specific version of
software. Existed researches extract semantic knowledge from penetration test-
ing data through transforming specific vulnerability database [1] such as metas-
ploit framework. Taking vulnerability, numbered cve-2019-0708, for example, the
affected platforms include windows 7 sp1, windows server 2003 sp2, windows
server 2008 sp2, so there are three individual penetration semantic knowledge,
namely {windows 7 sp1 → cve-2019-0708}, {windows server 2003 sp2 → cve-
2019-0708}, {windows xp sp3 → cve-2019-0708} meaning that when host owns
one of the above operating systems, there is great possibility that it owns vul-
nerability numbered cve-2019-0708, so that we could use corresponding vulner-
ability exploitation program to control the host. There are two disadvantages
for this kind of approach, one is that the semantic knowledge extracted from
specific vulnerability database could not match information gathered through
scanners, the other is that the penetration semantic knowledge becomes tedious
without considering information gathered through multiple scanners. Table 1
shows an example of application, operating system and vulnerability informa-
tion gathered by Nmap [2] and Shodan [3] scanner. The mapping relationship
{Apache httpd:2.4.29 → cve-2018-7584} is our interested penetration knowledge
which owns high utility because vulnerability numbered cve-2018-7584 is caused
by Apache httpd:2.4.29. The aim of penetration semantic knowledge mining is
to discover all of penetration semantic knowledge which owns high utility from
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raw penetration testing data. High utility itemsets mining algorithms (HUIM)
seem could solve the problem but fail because the loss of external utility for each
item. To solve this problem, we proposed an adaptive utility quantification strat-
egy ARUQ, which could measure importance of item automatically to achieve
penetration semantic knowledge mining.

Table 1. Transactions of application, operating system and vulnerability information
for each individual host.

IP Application Operating system Vulnerability

171.3.13.3 OpenSSH:7.2
Apache httpd:2.4.29

Linux kernel:2.6.32 cve-2018-7584
cve-2018-10547

11.4.1.63 OpenSSH:7.4
BIND:9.11
Apache httpd:2.4.29

Linux kernel:2.6.32 cve-2018-7584
cve-2018-10547

41.3.5.175 MySQL:5.5.55,
Apache httpd:2.4.29

Linux kernel:2.6.32 cve-2018-7584
cve-2018-10547

121.5.7.15 MySQL:5.7 Linux kernel:2.6.32

The remainder of the paper is organized as follows. Section 2 presents back-
ground knowledge of high utility mining and penetration semantic knowledge
mining. Section 3 presents our proposed adaptive utility quantification strategy
for each item in penetration testing transaction. Section 4 analyses details of pen-
etration testing data and compares performance of high utility itemsets mining
algorithms with proposed strategy on these data with frequent itemsets mining
algorithms. Section 5 summarizes our study and points out some future research
issues.

2 Background

As penetration semantic knowledge mining could be transformed into high utility
itemsets mining problem. It is necessary to introduce some preliminaries and
background knowledge of high utility itemsets mining first.

2.1 Preliminaries

Definition 1 (Transaction Database). Given set I, transaction database D
is a set where each item satisfies Ti ⊆ I, Ti ∈ D. For example, the penetration
testing transaction database is composed of all records shown in Table 1. A pos-
itive value p(s) is called external utility for each item s ∈ I, and the number of
s in Ti is called internal utility of item s, represented in q(s, Ti).
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Definition 2 (Utility of item in transaction/database). The utility of item
s in transaction Ti is the product of internal utility and external utility, repre-
sented in u(s, Ti) = p(s) ∗ q(s, Ti), the utility of item s in database D is the sum

of item s in all transactions belonging to D, represented in u(s,D) =
|D|∑

i=1

u(s, Ti).

Definition 3 (Utility of set in transaction/database). The utility of set
X in transaction Ti is the sum of all item utility in the transaction, represented
in u(X,Ti) =

∑

s∈X

p(s) ∗ q(s, Ti), the utility of set X is the sum of all items in

database, represented in u(X,Ti) =
∑

s∈X

|D|∑

i=1

u(s, Ti),X ⊆ Ti.

Definition 4 (High Utility Itemsets Mining). Given a user-specified utility
threshold ξ, high utility itemsets mining aims to discover all itemsets X from
database D which satisfies u(X,D) ≥ ξ. In Table 1, the high utility itemset
is {Apache httpd:2.4.29, cve-2018-7584} because it is the penetration semantic
knowledge we want to mine from transaction database.

Definition 5 (Penetration Semantic Knowledge Mining). Penetration
semantic knowledge is a collection of itemset {itemcausal, itemeffect} where
itemcausal is precondition item and itemeffect is result item. Vividly, we could
regard itemeffect as a bucket and each item appeared together with itemeffect

in a transaction is put into the bucket, and the process of penetration semantic
knowledge mining is to filter all irrelevant items, the left items with itemeffect is
final interested penetration semantic knowledge. {itemcausal, itemeffect} denotes
that when itemcausal occurs, itemeffect occurs with great possibility. We want
to find all itemcausal which could result in itemeffect, and this process could be
formalized as a special kind of high utility itemsets mining problem, which owns
the following characteristics:

– The external utility for each item is unknown.
– The internal utility for each item in each transaction equals 1.
– Items appeared frequently for each bucket contribute to high utility.
– Items appeared frequently for multiple buckets contribute not to high utility.
– The effect item in a transaction must appeared in each individual final high

utility itemset.
– Every itemset without effect item must not be high utility itemset.

Penetration semantic knowledge mining aims to discover all causal related
itemsets within each individual bucket. The transactions with same effect
item are in same bucket, taking Table 1 for example, transactions 1, 2, 3
are in same bucket because all of their effect items include cve-2018-7584.
Items Apache httpd:2.4.29 and linux kernel:2.6.32 appeared frequently in
the bucket, but Apache httpd:2.4.29 contributes more to discover knowledge
{Apache httpd:2.4.29, cve-2018-7584} than linux kernel:2.6.32 because linux
kernel:2.6.32 appeared frequently in other buckets, illustrating that linux ker-
nel:2.4.29 is a common item than causal related item in the knowledge. And
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the result high utility itemset is {Apache httpd:2.4.29, cve-2018-7584}. Penetra-
tion semantic knowledge mining aims to discover all of these causal related high
utility itemsets.

2.2 High Utility Itemsets Mining

Enough works have been done to accelerate high utility itemset mining [4,5],
which could be divided into three categories, namely candidate based algo-
rithms, without candidate based algorithms and other algorithms. Two-Phase
algorithm [6] is a famous and classical candidate based high utility itemset min-
ing algorithm which is composed of two phase, the first phase prunes search
space and generates candidates by proposed transaction weight downward clo-
sure property while the second phase scans database to filter high utility item-
sets from high transaction weight utility itemsets identified in phase I. Amhed
et al. proposed IHUPtwu (Incremental High Utility Pattern) tree structure [7]
to maintain information of incremental databases for exact utility calculation
instead of scanning database. Vincent et al. proposed an algorithm named UP-
Growth [8] to mine high utility itemsets, which could construct utility pattern
tree from database based on DGU (Discarding Global Unpromising items), DGN
(Discarding Global Node utility), DLU (Discarding Local Unpromising items),
DLN (Discarding Local Node utility) strategies to prune search space. Even
though lots of tricks are proposed to prune search space, there are still a lot of
candidate itemsets waiting to be tested in phase II which consumes huge mem-
ory and time. To overcome these problems, Liu et al. proposed an algorithm
called HUI-Miner [9] to mine high utility itemsets without generating candi-
dates. HUI-Miner uses a novel structure, called utility-list, to store both utility
information and heuristic information of itemset for pruning search space. Based
on utility-list, the high utility itemsets could be mined by joining utility lists
instead of scanning database, which shrinks much mining time. Further, Krish-
namoorthy et al. proposed an algorithm called HUP-Miner [10] which employs
two novel pruning strategies, namely partitioned utility pruning and lookahead
utility pruning to prune search space. Peng et al. proposed a modified HUI-
Miner(mHUIMiner) [11], which utilizes IHUP tree structure to guide the item-
set expansion process to avoid considering itemsets that are nonexistent in the
database. Liu et al. proposes a novel algorithm d2HUP [12] which could mine
high utility patterns in a single phase without generating candidates, the nov-
elties lies in a lookahead strategy to avoid enumeration and a linear structure
CAUL (Chain of Accurate Utility Lists) for scalable representation of utility
information. Fournier-Viger et al. proposed a utility list based fast high-utility
miner (FHM) [13] algorithm. The algorithm could reduce join action of utility
lists effectively after analyzing co-occurrences property of items. Zida et al. pro-
posed a algorithm named EFIM (Efficient high-utility Itemset Mining) [14] to
mine high utility itemsets effectively. EFIM outperforms both in terms of exe-
cution time and memory through novel database projection and transaction
merging techniques. Considering huge memory consumption problem caused
by utility-list intersection/join operation, Duong et al. proposed an improved
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utility-list structure called utility-list buffer to reduce the memory consump-
tion and speed up the join operation. This structure is integrated into a novel
algorithm named ULB-Miner [15]. Rather than pruning search space by mono-
tonic properties, there are also some works integrating evolutionary computation
algorithms into mining high utility itemsets. Kannimuthu and Premalatha firstly
adopted the genetic algorithm into high utility itemsets mining, proposed two
algorithms HUPEumu-GRAM and HUPEwumu-GRAMs with/without speci-
fied minimum utility threshold separately [16]. Lin et al. adopted particle swarm
optimization to mine high utility itemsets and proposed an algorithm called
HUIM-BPSOsig [17], the algorithm encodes particles as binary variables and
takes utility function as fitness function to achieve evolutionary optimization.
Wu et al. adopted ant colony optimization into high utility itemsets mining and
proposed HUIM-ACS algorithm [18], which could map completed solution space
into routing graph to mine high utility itemsets as well as to avoid generating
unreasonable solutions.

3 Methodology

To Achieve penetration semantic knowledge mining, we proposed an adaptive
utility quantification strategy for individual item whose external utility in bucket
m is calculated as follows:

pm(i) = α
Nm

N
(1)

where Nm is the number of transactions containing item i in bucket m, N is the
number of transactions containing item i in whole database and α is coefficient
to differentiate external utility for item in the bucket. This formula conveys the
idea that the external utility of item gets higher when it appeared frequently
in the bucket and less in whole database, satisfying characteristic 3 and 4 in
Sect. 2.1. After quantifying external utility for each item, all of the classical
high utility itemsets mining algorithms could be adopted to mine penetration
semantic knowledge which owns high utility.

Even though it seems easy to implement the calculation of external util-
ity, it has to rescan whole database again to update utility for each item when
new transactions appear, which consumes huge time. To facilitate high util-
ity mining for incremental database, the IHUParuq tree structure is proposed,
whose construction method is similar to IHUPtwu [19]. IHUParuq is composed
of three parts, namely global header table (GHT), local header table (LHT)
and local IHUParuq tree. Element in GHT is composed of three fields, includ-
ing item name, count, link, where item name is the name of item, count is the
number of item appeared in whole database and link is pointer to link corre-
sponding item in each local table sequentially. Element in LHT is also composed
of three fields, item name, count, and link, where item name is the name of item,
count is the number of item appeared in the bucket and link is pointer to link
corresponding item in IHUParuq tree sequentially. IHUParuq tree is constructed
for each bucket in adaptive utility descending order. The details of constructing
IHUParuq tree is shown in Algorithm 1 described as follows:
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Step1: Scan database to calculate the adaptive external utility for each item
in bucket k. Create local header table for items of the bucket in adaptive
utility descending order and reorganize transactions of each bucket in utility
descending order. Set the count field of each element in LHTk to the number
of item in the bucket. Finally add each item to GHT.
Step2: Create local tree for each individual bucket, the item name of root
node is denoted as effect item. Insert each reorganized transaction into local
IHUParuq tree with prefix share strategy. And increase the number of shared
prefix node by 1 or create new branches to maximal share prefix path with
increasing node in maximal shared prefix path by 1 and setting the count of
items in new branches to 1.
Step3: For each item in GHT, link the pointer field to each LHT with same
item sequentially and set the count field in GHT to the sum of count field
in each linked LHT, finally reorganize GHT in count descending order to
finish the creation of IHUParuq tree. Based on constructed IHUParuq tree for
each bucket, the high utility itemsets could be retrieved by depth first search
method to discover all of those items whose external utility is higher than
user specified threshold.

Further, in order to facilitate high utility mining process for incremental
database, we could adjust IHUParuq tree structure instead of creating new one
as follows:

Algorithm 1. IHUParuq tree construction algorithm
Input: original database db
Output: GHT, LHTs, IHUParuq

1: for transaction ∈ db do
2: m ← check bucket(transaction)
3: bufferm.append(transaction)
4: for item in transaction do
5: LHTm(item) += 1
6: GHT(item) += 1

7: for k = 1, . . . n do
8: for item in bufferk do
9: p(item) = LHTk(item)/GHTk(item)

10: r-bufferk ← reorganize(bufferk, p)
11: IHUPk

aruq ← create tree(r-bufferk)

12: return LHTs, GHT, IHUParuq

Supposing the incremental database for bucket m is denoted as db′
m, and we

could scan db′
m to count the number of each item i as N ′

i , also we could resort to
LHT and GHT for item i appeared in whole database and bucket m represented
as N and Ni respectively. So the new external utility for item i in bucket m
could be updated as follows:
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p′
m(i) = α

Ni + N ′
i

N + N ′
i

(2)

After updating new external utility for each item in bucket m, we could got
new utility descending order, based on which we could compare with the old one
to find those pairs that need to be exchanged through bubble sorting algorithm.
Then we could update information in LHTm, GHT and adjust those exchange
required paths in IHUParuq tree whose pairs need to be exchanged to keep in new
utility descending order. Finally, after updating IHUParuq tree, we could discover
all itemsets whose utility is higher than user specified threshold through depth
first search method, and these itemsets are final penetration semantic knowledge
which owns high utility. The detail of IHUParuq update algorithm is shown in
Algorithm 2.

Algorithm 2. IHUParuq update algorithm

Input: incremental database db+k , LHTk, GHT, IHUPk
aruq

Output: output u-GHT, u-LHTk, u-IHUPk
aruq

1: for item in db+k do
2: Nitem ← count(db+k , item)
3: p′(item) ← (LHT(item) + Nitem)/(GHT(item) + Nitem)
4: GHT(item) ← GHT(item) + count(item)
5: LHTk(item) ← LHTk(item) + count(item)

6: pairs ← exchange(p′, p)
7: r-dbk ← reorganize(dbk, p′)
8: for path in IHUPk

aruq do
9: for < n1, n2 > in pairs do

10: path ← adjust(path,< n1, n2 >)

11: IHUPk
aruq ← update tree(r-dbk)

12: return LHTk, GHT, IHUPk
aruq

4 Experiment

In this section, we verified the effectiveness of our proposed adaptive utility
quantification strategy by comparing high utility itemsets mining algorithms
with three classical frequent itemsets mining algorithms on four datasets. The
experiment aim is to illustrate that our proposed strategy could quantify item
utility effectively to make high utility itemsets mining algorithms available in
mining penetration semantic knowledge.

4.1 Metric and Datasets

Experiment datasets are gathered through penetration testing on four common
services, including Apache, IIS, MySQL and nginx. The experiment compares
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performance of four high utility itemsets mining algorithms, Two-Phase, FHM,
EFIM and HUI-Miner with proposed adaptive utility quantification strategy.
Also, there are three frequent itemsets mining algorithms, Apriori [19], LCM-
Freq [20] and PrePost+ [21] are implemented to compare performance. The
threshold of algorithms ranges from 0.1 to 0.9. The metric adopted in the exper-
iment is true positive ratio (TPR) and false positive ratio (FPR) whose calcula-
tion formula is shown as follows:

TPR =
|D ∩ P |

|P | × 100%, FPR =
|D ∩ N |

|N | × 100% (3)

where P is set of correct penetration semantic knowledge, N is set of wrong
knowledge and D is set of discovered knowledge. ROC (Receiver Operating Char-
acteristic curve) is adopted to integrate TPR and FPR metric to describe the
performance of algorithm under different algorithm parameter.

4.2 Result and Analysis

The experiment result is shown in Fig. 2, which describes ROC performance
of algorithms on four datasets, among which (a)(c)(e)(g) are intact picture of
algorithms and (b)(d)(f)(h) are local detail picture (enlargement of black box)
for observing performance of algorithms on datasets. From Fig. 3, we could see
that the high utility itemsets mining algorithms, Two Phase, FHM, EFIM and
HUI Miner with proposed ARUQ strategy outperformed comparative ones, the
area under curve (AUC) is larger than others, proving the effectiveness of our
proposed strategy. Detaily, Fig. 2(a) shows that the high utility itemsets mining
algorithms with ARUQ strategy shares similar performance on Apache dataset
and the highest ratio reaches 85% while Apriori, LCMFreq and PrePost+ algo-
rithms reaches 22.5% at most which is less than those high utility itemsets min-
ing algorithms with our proposed ARUQ strategy. Also, we could conclude from
the performance on the other three datasets that Two Phase algorithm with
ARUQ strategy achieves best performance and the true positive rate of all fre-
quent itemsets mining algorithms are less than 40% on the former three dataset.
Further, we could see from (b)(d)(f)(h) that apriori algorithm shows good per-
formance than other frequent itemsets mining algorithms in mining penetration
semantic knowledge, but still far less than the comparative high utility itemsets
mining algorithms with ARUQ strategy. To sum up, we could conclude from the
experiment result that high utilities itemsets mining algorithms with proposed
ARUQ strategy could mine penetration semantic knowledge from raw dataset
effectively.

To better understand the performance of algorithms in mining penetration
testing knowledge, we compare the CPU and memory consumption performance
of algorithms on Apache dataset, and curves in each subfigure shows the details
of algorithms in mining penetration semantic knowledge from Apache dataset.
“Bottom points” in each curve is used to differentiate algorithm parameter.
From Fig. 3 we could see that high utility itemsets mining algorithms consumes
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Fig. 2. The receiver operating characteristic curve and locally enlarged receiver oper-
ating characteristic curve of algorithms on each experiment dataset.
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much CPU time than frequent itemsets mining algorithms in mining penetra-
tion semantic knowledge. The average CPU consumption ratio for high utility
itemsets mining algorithms with proposed ARUQ strategy is 15000% (overfre-
quency) while those frequent itemsets mining algorithms are all below 10%. This
phenomenon demonstrates that high utility itemsets mining algorithms with pro-
posed ARUQ strategy is much more computation intensive. In contrast, we also
could find from Fig. 3 that those high utility itemsets mining algorithms consume
far less memory than comparative Apriori, LCMFreq and PrePost+ algorithm
because there is no generated candidates for knowledge mining in high utility
itemsets mining algorithms, so that they consume similar less memory. In conclu-
sion, the experiment results tell us that high utility itemsets mining algorithms
with our proposed adaptive utility quantification strategy outperform frequent
itemsets mining algorithm in both accuracy and memory consumption perfor-
mance.

Fig. 3. The comparison of memory and CPU consumption for each data mining algo-
rithm under Apache dataset.

5 Conclusion

In this paper, we have proposed a novel adaptive utility quantification strat-
egy for penetration semantic knowledge mining and construct IHUParuq tree



An Adaptive Utility Quantification Strategy for Semantic Knowledge Mining 665

structure to maintain utility information. Adaptive utility quantification strat-
egy could quantify external utility for each item effectively but avoid rescanning
database which saves a lot of time. Experimental results show that high utility
itemsets mining algorithms with adaptive utility quantification strategy achieve
significant performance improvement over these algorithms in both accuracy and
memory consumption.
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