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Abstract. In this paper, we discuss methods of stealing data via
advanced persistent threat (APT) attacks on blockchains. Blockchain
technology is generally used for storing data and digital coins and counts
more than 562 organizations among its users. Smart contracts, as a key
part of blockchain technology, are used for blockchain programmability.
APT attacks are usually launched by government-backed hackers to steal
data. APT attacks build hidden Command and Control (C&C) channels
to steal resources remotely. Smart contracts represent a vulnerability of
blockchain technology to APT attacks because of their sandbox-style
open execution environment. Therefore, we performed several attack
experiments to test methods of abusing smart contracts, including the
remote execution of commands, and the stealing of large amounts of data.
These experiments demonstrated that APT attacks could be successfully
executed on a blockchain platform. In the large-scale data-stealing exper-
iments, we found that the transmission rate for a maximum target data
size of 100 MB can reach 27.771 MB/s, faster than the average rate of
approximately 100 kB/s of a three-layer network proxy. We also investi-
gated APT attacks based on public APT events, which use hidden tech-
niques to steal data as critical APT attack actions. We propose several
attack algorithms that can be applied for APT attacks.
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1 Introduction

A blockchain is essentially a distributed database; each participant keeps a com-
plete copy of the database, or at least a record of a large number of recent
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transactions [1]. With the development of blockchain, smart contract technology
has emerged. Many large banks, internationally notable companies, and gov-
ernments use blockchains to store data and use blockchain smart contracts to
process business data [2].

Advanced persistent threat (APT) attacks are characterized by slow and
small movements of a group of attackers to accomplish a particular goal, which
is usually to steal data from a target without being caught. APT attackers might
use familiar methods to break into their target entity’s network, but the tools
they utilize for penetration may not be familiar [3]. Large banks, internation-
ally notable companies, and governments are often attacked by APT attackers
because of the high value of their data [4].

Blockchain technology is still under development, and security researchers
who study blockchain typically focus only on transaction security; however, this
type of security is less relevant to APT attacks.

In this paper, we attempt to address the above problems by proposing three
algorithms for APT attacks to provide a concrete illustration of the security
threats faced by blockchain users, including the malicious chaincode installation,
the remote execution of commands, and the stealing of large amounts of data.

In our related work, we have found that the smart contracts used in
blockchain frameworks can run any code in the corresponding sandbox environ-
ment. The ability to run arbitrary code in the sandbox is extremely useful for
facilitating APT attacks. We have found that APT attacks can take advantage
of the unique features of smart contracts, including their native encryption for
communication and their unrestricted sandbox environment. This makes smart-
contract-based APT attacks on blockchain technology difficult to distinguish
from legitimate activity. These novel features of smart-contract-based attacks,
which can be used to hide such attacks more effectively, are therefore worthy of
further study.

We design algorithms to demonstrate APT attacks based on smart contracts.
Through these algorithms, we can abuse blockchain technology to quickly break
the security-related restrictions of internal network area boundaries, rapidly
expand the influence of an attack, and construct long-term communication chan-
nels to steal valuable data.

All experiments have succeeded in demonstrating our proposed attack tech-
niques. In large-scale data transfer experiments, we have shown that the trans-
mission rate for a maximum target data size of 100 MB can reach 27.771 MB/s,
faster than the average rate of approximately 100 kB/s for an APT attack via a
three-layer network proxy.

The contributions of this paper are summarized as follows: 1) We propose
a means of launching hidden APT attacks against blockchains. 2) We demon-
strate that the unrestricted smart contract environment of blockchain platforms
is extremely dangerous. 3) We illustrate the security threats faced by blockchain
users through experiments.
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2 Related Works

2.1 Vulnerabilities and Attack Detection in Blockchain Systems

In a review of the related research, we have found that blockchain platforms
have many vulnerabilities.

Yamashita et al. [5] reviewed the potential security risks posed by the smart
contracts used in Hyperledger Fabric, a particular blockchain framework. These
security risks can be divided into four types and 16 subtypes. There are four types
of security risks caused by access from outside of the blockchain: web services,
system command execution, external file access, and external library calls. Fur-
thermore, that paper proposed a method of detecting malicious code in a smart
contract based on an abstract syntax tree detection tool. However, this detection
tool cannot detect smart contracts that are used only to establish Command and
Control (C&C) communication channels. Nicola et al. [6] reviewed the methods
of attack related to the smart contracts in Ethereum, another blockchain frame-
work, and discussed external calls for blockchain transaction-related attacks.
Alexander et al. [7] proposed a detection tool for the security vulnerabilities of
Ethereum smart contracts. These authors designed a detection tool that ana-
lyzes smart contracts for malicious code. However, this detection tool is still in
beta, and there are many ways it can be bypassed. Liu et al. [8] proposed the
ReGuard tool to detect bugs in smart contracts. However, only smart contracts
established in the C++ programming environment were discussed. There are
also many ways to bypass detection by this tool. For example, we can execute
the attack code after it has split into multiple smart contracts.

2.2 APT Attacks on Blockchains

In a review of APT attacks, we did not find any discussion of APT attacks
against blockchains.

The construction of a C&C communication channel is a crucial research prob-
lem related to the lateral movement stage of the APT attack cycle. An attacker
can use C&C tools to obtain persistent and covert access to valuable data. Fur-
thermore, attackers can abuse various protocols for C&C communications, such
as the Hypertext Transport Protocol (HTTP), HTTP Secure (HTTPS), Internet
Relay Chat (IRC), and peer-to-peer (P2P). Alshamrani et al. summarized the
C&C tools that can be used to abuse various protocols by generating malicious
traffic that will be confused with general traffic to bypass security infrastruc-
tures [3]. However, these authors did not discuss the APT-attack-based abuse
of blockchain technology. Marchetti et al. [9] proposed a detection framework
that can detect a large number of suspicious host activities at high speed. This
detection framework can identify abnormal encrypted communications without
decrypting them. However, this framework cannot separate abnormal traffic from
encrypted communications involving smart contracts, which are widely used in
typical production environments. McCusker et al. [10] proposed a group-based
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method of detecting abnormal traffic. However, an APT attacker typically con-
structs a C&C communication channel through an ordinary communication traf-
fic device using a smart contract. Consequently, the group-based method of
detecting abnormal traffic is not an effective solution for detecting abnormal
C&C communication.

3 Background Knowledge

This section describes some background knowledge relevant to our research,
including an introduction of the Hyperledger Fabric platform, network manage-
ment techniques, network protection techniques, and APT attack techniques.

3.1 Hyperledger Fabric

Hyperledger Fabric is an open-source project launched by the Linux Foundation
in 2015 to promote digital technology and transaction validation for blockchains.
Hyperledger Fabric uses Docker technology to host smart contracts. The smart
contract applications used in this blockchain system are also known as chain-
codes. In a blockchain, each peer node stores snapshots of the most recent system
state in the form of key-value pairs [11].

Smart Contract: A smart contract is a computer protocol designed to dissem-
inate, validate, or execute a contract. Smart contracts allow the execution of
trusted transactions without supervision by a third party. In general, a smart
contract is a segment of executable code that can deploy unalterable code with-
out any third-party guarantee of trust. The use of smart contracts can signif-
icantly reduce manual participation, guarantee system security and efficiency,
and significantly reduce transaction costs [12].

Chaincode: Chaincodes are the smart contracts of Hyperledger Fabric, which
are instantiated in Docker containers [13]. However, because chaincodes run on
Docker, they provide a highly convenient vector for APT attacks. APT attack-
ers can enhance the effectiveness of their attacks by embedding malicious code
in smart contracts. This malicious code can be used to execute any arbitrary
operation.

Security Policy: A security policy is an essential function for smart contracts
in a consortium chain. Through a suitably configured security policy, it is possi-
ble to mitigate attacks and avoid the direct execution of malicious code in smart
contracts. Administrators must configure their security policies in accordance
with the principle of permission minimization. If a security policy is misconfig-
ured, a user can execute code with administrator permission, which can lead to
serious security issues. We have studied the access control list (ACL) method
used to divide user permissions in Hyperledger Fabric. The architecture of the
Hyperledger Fabric security policy is shown in Fig. 1.

MSP: An MSP is a Membership Service Provider. The MSPs in Hyperledger
Fabric provide the definitions for member operation permissions. An MSP
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Fig. 1. Hyperledger fabric policy hierarchy [14]

abstracts the encryption mechanisms and protocols used to issue certificates,
authenticate certificates, and authenticate users. An MSP manages the identi-
ties of members, the rules that govern those identities (including authentication),
and authentication functionalities (including signature generation and authen-
tication). One or more MSPs can simultaneously manage a Hyperledger Fabric
network. The MSPs provide modularity of member operations and interoperabil-
ity across different members [15]. Each MSP maintains cacert, keystore, signcert,
tlscacert, and organization profiles.

3.2 Network Management and Protection Technology

Network management is a necessary responsibility of large enterprises. The secu-
rity of an enterprise network can be enhanced by appropriate network manage-
ment technology and security settings. At the same time, suitable network man-
agement technologies can make the network environment itself more hostile to
attacks.

ACL: An ACL is an access control list. An ACL can be used to provide essential
security control for a network. A device queries the ACL to match a received
Internet Protocol (IP) packet in accordance with specified rules. If a match is
found, the device will either allow or block packet transmission in a rule-based
manner [16].

VLAN: A virtual local area network (VLAN) is formed by logically combining
several physical subnets in different locations to function as a local area network.
VLAN technology can be used to subdivide a network to limit the potential range
of an attack [17].

Firewall/IDS: A firewall or intrusion detection system (IDS) is a device that
APT attackers need to bypass to execute an APT attack successfully. How-
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ever, the communication of smart contracts relies on Transport Layer Security
(TLS), which means that firewall or IDS devices cannot be used to check such
communication. Therefore, there is no inherent requirement to encrypt the con-
tents of smart contract communication for APT attacks. However, when the
victim device has a built-in IDS installed, encryption and code confusion are
required [18].

3.3 APT Attack Technology

Lateral movement is a critical stage of an APT attack. Figure 2 shows the various
stages of the APT attack life cycle as analyzed by FireEye, the world’s leading
anti-APT company. FireEye divides an APT attack into five main stages: initial
reconnaissance, initial compromise, establishment of a foothold, escalation of
privileges, and internal reconnaissance. Lateral movement and maintenance of
presence are necessary when the initial internal reconnaissance does not acquire
the necessary data.

Fig. 2. APT attack life cycle [19]

Lateral Movement: Lateral movement is defined as logging onto other servers
using existing credentials. Lateral movement provides communication chan-
nel support for subsequent attacks by means of remote services on a remote
server [20].

Remote Command Execution: Carefully constructed code can force a victim
node to execute system commands. The Docker container of the victim node
can be made to execute these commands by means of code for remote command
execution, which allows the attacker to control the victim Docker container [21].

4 Theory of APT Attacks Using Smart Contracts

This section describes the theory of how to abuse the smart contracts of Hyper-
ledger Fabric to execute APT attacks. Hyperledger Fabric is a typical blockchain
framework, which means that this attack theory for Hyperledger Fabric can also
be extended to other blockchain systems with similar structures.
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4.1 Preparation for Smart Contracts

Various programming languages can be used for coding in smart contracts.
Hyperledger Fabric supports Go, Java, Node.js, and Python. For other
blockchain frameworks, it would be necessary to use the corresponding software
development kits (SDKs) for smart contract coding.

The coding of a smart contract includes the Init and Invoke functions. The
Init function is used to initialize the smart contract, and the Invoke function is
used for subsequent calls to the smart contract. The Init function is less conve-
nient than the Invoke function for repeated calls. Therefore, we suggest that the
attack code should be introduced into the Invoke method for subsequent query
calls. Moreover, proper debugging and exception handling should be performed
to avoid the remote smart contract container exiting due to abnormal input.

An MSP is required to certify and authenticate an installation in Hyperledger
Fabric. We can use a smart contract management application to install a smart
contract with the MSP. In Hyperledger Fabric, smart contracts are installed via
the “peer chaincode” command. Next, “peer instantiate” or “peer upgrade” is
used to start the container of a remote smart contract.

A smart contract can be called by means of a query command in the
blockchain system. The blockchain system distributes smart contract operations
via the communication system.

Hyperledger Fabric’s official development documentation shows that the com-
mand “peer chaincode query -n mycc -c‘{“Args”:[“query”, “a”]}’ -C myc” can
be used to execute a smart contract. After the smart contract runs, we can see
that the result is 20 [22].

4.2 Using Smart Contracts for APT Attacks

The official query example clearly illustrates the input and output structure of a
smart contract, which can be widely abused in APT attacks. An APT attacker
will attempt to exploit a target system, which has a controlled input and output.
After the target system is exploited, the attacker will attempt to escalate his or
her privileges to the highest level, which is usually the kernel privilege level for
the operating system. If this privilege escalation fails, the attacker will use the
victim node as a network proxy, meaning that no code is required to be written
to the drive and the attack code can be executed dynamically in the memory
only.

To construct a network proxy, it is necessary to place repeated, high-
frequency calls to the Invoke function. At the same time, another common APT
attack function can be introduced into the Invoke function.

Depending on the attack requirements, malicious code can be embedded into
a smart contract to avoid disruption by the security infrastructure to the greatest
possible extent.
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5 Using Smart Contracts for APT Attacks

In this section, we propose three attack algorithms that abuse smart contracts to
support the postpenetration stage of an APT attack. Specifically, the algorithm
for malicious chaincode installation is a prerequisite for all subsequent attacks,
and the remaining two algorithms will be installed on-demand as modules in the
victim nodes. These two algorithms enable lateral movement or communication
channel construction for subsequent attacks.

5.1 Attack Topology

The attack topology is similar to the typical topology for APT attacks [23–26].
APT attackers commonly select valuable targets, which are usually large and
contain multiple network areas. Regarding the topology design, each network
area should allow the passage of traffic based on certain business requirements.
Additionally, each network area should include one or more network devices
and be related to a defined network security boundary area. Either direct or
indirect communication between the attacker and the victim should be possible
through the network; they should not be entirely physically isolated. Moreover,
the network should contain valuable targets or data. The attacker must be able
to steal either control permission for the victim system or valuable data through
appropriate attack methods.

Crucially, for the scenario of interest in this paper, the network must contain a
blockchain system that can use smart contracts. The blockchain system should
be spread across multiple networks and indirectly allow an attacker to access
multiple networks through the blockchain system.

5.2 Attack Framework Based on Smart Contracts

According to FireEye’s 2019 APT report, the attack group known as APT37
uses lateral movement methods such as the use of compromised user creden-
tials, among others. APT38 uses lateral movement methods such as HOT-
WAX, NACHOCHEESE, REDSHAWL, WORMHOLE, Remote Desktop Pro-
tocol (RDP), ReDuh, TCP Gender Change Daemon, the use of compromised
user and domain credentials, and Windows Group Policy. APT39 uses lateral
movement methods such as BLUETRIP/REDTRIP/PINKTRIP, various pub-
licly available tools (PsExec, RemCom, xCmd, and others), RDP, Server Message
Block (SMB), and Secure Shell (SSH). Furthermore, the report also lists a large
number of other lateral movement methods for APT attacks [27]. In addition,
the papers of Li et al. [27] and Lu et al. [28] address methods of lateral movement
in APT attacks. Overall, lateral movement is an important stage of the APT
attack cycle.

There are many specific methods of lateral movement to support subsequent
APT attacks for stealing data from other networks. The attacker does not need
the highest level of privilege on the victim device to steal data. Instead, the
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attacker can use the victim device to access additional network resources, exe-
cute a lateral movement, find valuable resources, and steal data. In practice,
if a lateral movement can provide access to more resources, then that lateral
movement is meaningful.

In this section, we propose an algorithm for the remote execution of com-
mands on a victim device that uses a remote service by means of a malicious
chaincode in Hyperledger Fabric. Additionally, we review various APT events in
which APT organizations such as Group 72, Unit42, APT39, APT40, and Triton
have used remote service methods to attack target networks and steal data [29].

The construction of a stable communication channel is a crucial problem for
lateral movement. We propose the chaincode attack execution flow chart shown
in Fig. 3, which is divided into eight steps:

Fig. 3. Chaincode attack execution flow chart

Step 1: An attacker sends a request to install a chaincode via a controlled node.
In this way, the attacker can construct an attack environment for subsequent
lateral movement or other attacks.
Step 2: The results of the chaincode installation are returned.
Step 3: This step will be executed only if the returned result indicates successful
chaincode installation. In this step, the attacker sends the chaincode “instan-
tiate” or “upgrade” command to the victim node. If the chaincode is the first
version, the chaincode needs to be instantiated. If the chaincode is not the first
version, the chaincode needs to be upgraded. The victim node will start the
Docker container of this chaincode for chaincode execution.
Step 4: The victim node returns the result of the “instantiate” or “upgrade”
command.
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Step 5: This step will be executed only if the returned result indicates that the
chaincode on the victim node has been instantiated or upgraded successfully.
In this step, the attacker executes a chaincode query command to execute sys-
tem commands on the victim node through Docker remotely. Additionally, the
attacker can resend attack commands or request resources from the victim node
to access another victim node until the final victim node is reached. Through this
step, the attacker can access multiple networks, representing lateral movement.
Step 6: This step will be executed if the attacker indirectly requests resources
to access an intermediate victim node. In this step, the attacker sends a com-
mand from the current victim node to the next victim node, a process that is
repeated until the final victim node is reached. Moreover, the attack payload has
a multilevel embedded structure, which enables data embedding during lateral
movement.
Step 7: If the final victim node is successfully accessed, the desired data will be
recursively returned from the final victim node to the initial victim node. This
step is complete when the initial victim node receives the data.
Step 8: The initial victim node encapsulates the data to ensure the complete
transmission of the desired data to the attack node.

5.3 Attacks Based on Smart Contracts

The attacker needs to prepare a chaincode to execute remote commands
or request remote resources. In this section, we propose two algorithms for

Algorithm 1. Malicious Chaincode Installation
Input: Victim Organization Administrator MSP f , Victim Peer Address a, Chaincode

d, Chaincode Name n,Version v
Output: Installation Result s
1: function MaliciousChaincodeInstallation(f ,a,d,n,v)
2: isConnected := Connect(f ,a)
3: if isConnected then
4: CurrentV ersion:=ChaincodeVersion(f ,a,n)
5: if v > CurrentV ersion then
6: chaincodeInstallV ersion:= ChaincodeInstall(f ,a,d,n,v)
7: if chaincodeInstallV ersion == FirstVersion then
8: s := ChaincodeInstantiate(f ,a,d,n,v)
9: else

10: s := ChaincodeUpgrade(f ,a,d,n,v)
11: end if
12: end if
13: else
14: s := ErrorMessage
15: end if
16: return s
17: end function
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implementing commonly used attack types, namely, remote command execution,
and large-scale resource transfer.

Preparation for Attack. The attacker must first prepare the attack envi-
ronment for subsequent attacks, which requires several steps. The installation
of malicious chaincode requires the MSP of the victim organization’s adminis-
trator, the peer node address of the victim, the malicious chaincode itself, the
chaincode name, and the chaincode version number. The algorithm for malicious
chaincode installation is shown in Algorithm1.

First, the attacker needs to establish a connection to the victim’s peer node,
for which the MSP of the victim organization’s administrator and the peer node
address of the victim must be provided. Second, if the connection is success-
fully established, the attacker should check the latest chaincode version in the
blockchain system. Third, if the version number of the malicious chaincode to
be installed is higher than the version number in the blockchain system, the
chaincode in the blockchain system needs to be instantiated or updated. Then,
once the chaincode installation is completed, the attacker will obtain the latest
version of the current chaincode in the blockchain system. Fourth, if the latest
version number is the first version, the chaincode should be instantiated. If the
latest version number is not the first version, the chaincode should be upgraded.
Finally, the result of malicious chaincode installation is returned.

Time complexity analysis of Algorithm 1: There is no loop and nested execu-
tion in the malicious code installation algorithm. Therefore, the time complexity
of the malicious code installation algorithm is O(1).

Remote Command Execution. The attacker achieves Remote command exe-
cution (RCE) via abuse or exploitation of a vulnerability of the victim system.
The chaincode for RCE requires the MSP of the victim organization’s admin-
istrator, the peer node address of the victim, the command that needs to be

Algorithm 2. Remote Command Execution
Input: Victim Organization Administrator MSP f , Victim Peer Address a, Command

to be Executed c, Chaincode Name n
Output: Execution Result s
1: function RunRemoteCommand(f ,a,n,d)
2: isConnected := Connect(f ,a)
3: if isConnected then
4: Request(a,n,c)
5: a.return :=a.RunCommand(c)
6: s :=a.Response(a.return)
7: else
8: s := ErrorMessage
9: end if

10: return s
11: end function
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executed remotely, and the chaincode name. The smart-contract-based RCE
algorithm is shown in Algorithm2.

Once malicious chaincode installation is complete, the RCE algorithm can
be executed. For RCE, the MSP of the victim organization’s administrator is
needed to connect to the victim peer node. Once the connection is established,
the attacker sends the chaincode name and the command to be remotely executed
to the victim peer node. Once the victim peer node receives the request, it will
execute the command and return the execution results to the attacker. If an
error occurs during the RCE operation, the error message will be thrown back
to the attacker.

Time complexity analysis of Algorithm 2: The RCE algorithm can call the
RCE algorithm again for recursive execution. Therefore, the time complexity of
the RCE algorithm is O(n).

Large-Scale Resource Transfer. In Hyperledger Fabric, the maximum length
of the information that can be sent in response to a single request is 104857600
bytes (100 MB) by default. We propose a large-scale resource request algorithm
to solve the problem of large-scale resource transfer. The data block length for
a single transport is defined here as 50,000,000 by default. In practice, we have
found that the data length tends to be doubled; therefore, we select 104857600/2
≈ 50000000. The large-scale resource transfer algorithm is shown in Algorithm 3.

Algorithm 3. Large-Scale Resource Transfer
Input: Request URI u
Output: URI Data s
1: function Request(u)
2: dataLength := GetDataLength(u)
3: splitBlockLength:=50000000
4: s:=InitReturn()
5: if dataLength >= splitBlockLength then
6: for startIndex=0 ; startIndex<dateLength ;

startIndex+ =splitBlockLength do
7: getLength:=splitBlockLength
8: if getLength>dateLength−splitBlockLength then
9: getLength=dateLength-splitBlockLength

10: end if
11: s+= GetDataByChunk(u,startIndex,getLength)
12: end for
13: else
14: s:= GetData(u)
15: end if
16: return s
17: end function

First, the attacker needs to obtain the length of the file to be transferred.
If the length of the file is less than the chunk length, the file will be returned
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directly. If the length of the file exceeds the chunk length, then the chunking
step will be executed. In the algorithm for data block chunking, each data read
operation requires the current length of the data to be transferred and the cur-
rent transfer offset. Then, the data will be transferred to the attacker, who will
cyclically execute the transfer operation until the end of the transferred data
block is read.

6 Experiments

APT attackers typically use a multilevel network proxy for their attacks. In prac-
tice, the data rates of multilevel network proxies are extremely low, and network
performance generally does not need to be considered. Additionally, the trans-
fer rate can be varied by modifying the code. This section presents experiments
performed from two perspectives, namely, remote command execution, and large-
scale data transfer, to experimentally demonstrate the requirements for attacks
using smart contracts. By default, we first executed the attack preparation algo-
rithm in all of the following experiments.

In the following experiments, we used Hyperledger Fabric version 1.4.4 for
testing. To simulate real-world APT attacks, we designed an experimental envi-
ronment consisting of two organizations (Org1 and Org2) and one orderer, with
two peer nodes per organization and a Web server in the Org2 region to enable
lateral movement experiments. The Web server can be accessed only from an
Org2 device. We added settings for the router’s ACL and for server access con-
trol to block the Org1 region from accessing the Org2-Server region and the
Internet region. Our design goal in these experiments was to construct a stable
communication channel by abusing a smart contract. We used a peer node of
Org1 to initiate the attack. The graph presented in Fig. 4 shows the experimental
topology diagram for an attack.

Fig. 4. Experimental topology
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The configuration used for the experimental equipment is summarized in
Table 1. The laboratory environment was built using the VMware ESXi virtual-
ization platform.

Table 1. Experimental platform

Host name CPU RAM NIC Operating system

Orderer.example.com Intel Xeon 6128
@ 3.40GHz x4

8G vmnic ne1000
100Mbps

Ubuntu 18.04.3 LTS

Peer0.org1.example.com Intel Xeon 6128
@ 3.40GHz x4

8G vmnic ne1000
100Mbps

Ubuntu 18.04.3 LTS

Peer1.org1.example.com Intel Xeon 6128
@ 3.40GHz x4

8G vmnic ne1000
100Mbps

Ubuntu 18.04.3 LTS

Peer0.org2.example.com Intel Xeon 6128
@ 3.40GHz x4

8G vmnic ne1000
100Mbps

Ubuntu 18.04.3 LTS

Peer1.org2.example.com Intel Xeon 6128
@ 3.40GHz x4

8G vmnic ne1000
100Mbps

Ubuntu 18.04.3 LTS

Web.org2.example.com Intel Xeon 6128
@ 3.40GHz x4

4G vmnic ne1000
100Mbps

Windows Server 2019

6.1 Remote Command Execution (RCE)

RCE operations require the MSP of the victim organization’s administrator and
the peer node address of the victim.

Fig. 5. Direct access is forbidden by server access control
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Fig. 6. Access target data via chaincode RCE

We used Hyperledger Fabric’s peer application for the RCE operation. We
used malicious chaincode to read out the result of a remote command executed
in accordance with an input command. In this experiment, we controlled the
Docker container with ID “d029bb21e7e3”. Initially, we sought direct access to
web.org2.example.com/test.aspx, which the flag returned by the page indicated
was forbidden, as shown in Fig. 5. However, when we used RCE with the “curl”
remotely command via a peer node of Org2, access to the page was granted, as
shown in Fig. 6. This experiment shows that the RCE algorithm is workable. We
can do the lateral movement via the RCE algorithm.

6.2 Large-Scale Data Transfer

An APT attacker usually steals data that are not fixed in size. We have proposed
an algorithm for large-scale data transfer that can transfer data with no fixed
size. A performance graph for the proposed large-scale data transfer algorithm
is shown in Fig. 7. We used a maximum data length of 100 MB for performance
testing and executed the test 1000 times with data transfer lengths varying from
small to large.

We used Base64 to encode the data to ensure the correct transmission of
the binary data, which increased the data length by approximately 33.3%. We
defined a data limit of 50 MB for a single transfer, which should include the
increase in length caused by Base64 encoding. Therefore, we chose a data length
limit of 37 MB.

We found that the transmission time jitter increases as the data length
increases, which indicates that larger-scale transmission has a greater effect on
node performance. The proposed large-scale data transfer algorithm uses a cache
to prepare the next data block for transmission, which will cost some time. We
found the cache cost time to be approximately 150 ms, depending on the node
performance.



Evil Chaincode: APT Attacks Based on Smart Contract 193

Fig. 7. Large-scale data transfer performance testing

7 Discussion

7.1 Mitigation Suggestions

Here, we propose some guidelines for attack mitigation to increase the difficulty
of APT attacks and reduce the security risk posed by using blockchain smart
contracts.

Keep the MSP Secure: An attacker can use the MSP of the victim organi-
zation to cause a victim node to perform any arbitrary tasks. The administra-
tor may incorrectly certify network management actions, including copying the
MSP to another computer, which would allow the administrator certificate to
be stolen. An APT attacker who has stolen the MSP of a victim organization’s
administrator can control all nodes of the victim organization. We propose that
administrators should avoid copying the MSP to any other device and should
ensure that the MSP is used only on necessary nodes.

Split Large Organizations into Smaller Organizations: If the MSP of a
large organization’s administrator is stolen, this will place many nodes under
the control of hackers. We propose splitting large organizations into smaller
organizations to reduce the potential scope of the damage.

Check Smart Contract Code for Safety: Endpoint protection software can
be used to monitor smart contracts in real-time, thus enabling the prompt detec-
tion of attack behavior.

Restrict the Node Communication Range: The access range of each node
should be minimized, and nonessential access should be blocked.

Update the Blockchain System Version: If a new version fixes vulnerabili-
ties, the blockchain system version should be updated.
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7.2 Attack Supported Platforms

The key element of using smart contracts for APT attacks is that smart contracts
can interact with outside the blockchain system for network transmission, system
command execution, and other attack operation. For the programming language
and remote deployment of smart contracts, we compared smart contracts in
well-known blockchains, which shown in Table 2.

Table 2. Comparison of smart contracts in well-known blockchains

Platform Hyperledger Fabric Corda Ethereum

Programming Language Go, Java, etc. [30] Kotlin, Java, etc. [31] Solidity [32]

Remote Deployment Yes [34] Limited [35] Yes [36]

Possibility to APT attack High Middle Low

According to the survey, Hyperledger Fabric and Corda support general pro-
gramming languages such as Java. Therefore, we can use general programming
languages to call the operating system to implement APT attacks.

However, Ethereum uses its custom language, namely, Solidity. We can com-
pile the Solidity program through a private compiler of Ethereum to gener-
ate Ethereum-based special machine code, which runs on the Ethereum Virtual
Machine (EVM) [33]. Therefore, it is almost impossible for us to use Ethereum
for APT attacks. At most, we can only use Ethereum’s smart contracts to trans-
fer data.

7.3 Next Research Plan

In the next research plan, we will try to use Corda’s smart contract for APT
attacks. Moreover, we will try to find an exploit to the machine code of
Ethereum’s smart contract, which can be further used to implement more kinds
of APT attacks.

APT attacks have a variety of attack methods. We not only use smart con-
tracts for the APT attack, but we can also insert malicious code into the source
code of open-source blockchain to achieve APT attacks. According to Murphy’s
law, all of this is possible, and this is our motivation for further research.

8 Conclusion

APT attacks are a major concern in global cybersecurity, and corresponding
advances in both attack theory and defense theory are urgently needed. Exist-
ing APT attack and defense mechanisms focus on typical protocols and ser-
vices, whereas security against blockchain-related APT attacks is less often dis-
cussed. Moreover, most research on blockchain-related attacks and protection
has focused on transactions.
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This paper proposes ways to abuse blind spots in research on the smart
contracts used in blockchains, addressing both attack and defense. We imple-
mented remote command execution and large-scale data transfer by abusing a
smart contract. We tested whether the data transmission rate for 100 MB of
data can reach the average speed of three-level network proxies across multiple
continents [37], which can fully support the maximum link rate required for an
attack. The results demonstrate the necessity of defining a strict security policy
for attack mitigation to reduce the associated losses.
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