
Suresh Balusamy · Alexander N. Dudin · 
Manuel Graña · A. Kaja Mohideen · 
N. K. Sreelaja · B. Malar (Eds.)

4th International Conference, ICC3 2019
Coimbatore, India, December 19–21, 2019
Revised Selected Papers

Computational Intelligence, 
Cyber Security and 
Computational Models
Models and Techniques 
for Intelligent Systems and Automation

Communications in Computer and Information Science 1213



Communications
in Computer and Information Science 1213

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974


More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899


Suresh Balusamy • Alexander N. Dudin •

Manuel Graña • A. Kaja Mohideen •

N. K. Sreelaja • B. Malar (Eds.)

Computational Intelligence,
Cyber Security and
Computational Models
Models and Techniques
for Intelligent Systems and Automation

4th International Conference, ICC3 2019
Coimbatore, India, December 19–21, 2019
Revised Selected Papers

123



Editors
Suresh Balusamy
PSG College of Technology
Coimbatore, India

Alexander N. Dudin
Belarusian State University
Minsk, Belarus

Manuel Graña
University of the Basque Country
Leioa, Spain

A. Kaja Mohideen
PSG College of Technology
Coimbatore, India

N. K. Sreelaja
PSG College of Technology
Coimbatore, India

B. Malar
PSG College of Technology
Coimbatore, India

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-15-9699-5 ISBN 978-981-15-9700-8 (eBook)
https://doi.org/10.1007/978-981-15-9700-8

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0003-2881-0227
https://doi.org/10.1007/978-981-15-9700-8


Preface

The contemporary growth in the dynamic realms of software, hardware, and net-
working leads to abundant scope in research and development of computer science and
its thrust areas. To provide a broad spectrum of interdisciplinary research forum, a
biennial International Conference on Computational Intelligence, Cyber Security, and
Computational Models (ICC3 2019) was organized by the Department of Applied
Mathematics and Computational Sciences of PSG College of Technology, India,
during December 19–21, 2019.

The key objective of this conference is to cover the state-of-the-art scientific
approaches, technologies, tools, case studies, and findings to explore the cutting-edge
ideas and to promote collaborative research in the areas of computational intelligence,
cyber security, and computational models to enable establishing research relations
worldwide under the theme of “Contemporary Models and Applications for Compu-
tational Paradigms.”

Computational intelligence encompasses a broad set of techniques such as neural
networks, fuzzy systems, evolutionary computation, and nature-inspired computational
methodologies to address complex real-world problems. This track aims to bring out
novel techniques for computation and visualization, find solutions for computationally
expensive problems, and explore data within them, be it classification, clustering, or
feature engineering.

The increasing use of the internet and social media has made cyber security more
important. Cyber security is of paramount importance for government organizations
and is a vital asset to the nation. Growing cyber threats such as data theft, phishing
scams, and other cyber vulnerabilities demand that users remain vigilant about pro-
tecting their data. The cyber security track in this conference aims to bring together
researchers, practitioners, developers, and users to explore cutting-edge ideas and end
results.

Computational models are mathematical models that are simulated using compu-
tation to study complex systems from the effects of drugs on the body to the interac-
tions of nations in the global economy. This conference provides a window to the novel
endeavors of the research communities by publishing their works and highlighting the
value of computational modeling as a research tool when investigating complex sys-
tems. This track aims at fostering research interactions in all aspects of computational
science and engineering, and focuses on developing computational models needed to
meet the demands of computer systems users, while exploring the new potential of
computation engines.

There has been an increase in submissions to ICC3 2019 over the past few editions.
This year, we received 37 papers in total, and accepted 9 papers (24.32% percent).
Each submitted paper went through a rigorous review process.

We would like to express our sincere gratitude to all the keynote speakers, Inter-
national Advisory Committee, authors, Program Committee, and reviewers for their



invaluable contributions to the success of this conference. We also extend our warmest
gratitude to Springer for their continued support in publishing the ICC3 proceedings on
time and in excellent production quality. The partial support from the sponsors
Cognizant Technologies, Council of Scientific and Industrial Research, 24[7], and
Defense Research and Development Organization (DRDO) is acknowledged.

Being a strong and stimulating event towards a diligent and interdisciplinary
research amidst scholars, we hope this tradition will continue in the future. The next
ICC3 conference will be held at PSG College of Technology, India, in 2021.

September 2020 Suresh Balusamy
Alexander N. Dudin

Manuel Graña
A. Kaja Mohideen

N. K. Sreelaja
B. Malar

vi Preface



Organization

Chief Patron

L. Gopalakrishnan PSG & Sons Charities Trust, India

Patron

K. Prakasan PSG College of Technology, India

Organizing Chair

R. Nadarajan PSG College of Technology, India

Program Chair

Suresh Balusamy PSG College of Technology, India

Computational Intelligence Track Chair

Kaja Mohideen A. PSG College of Technology, India

Cyber Security Track Chair

Sreelaja N. K. PSG College of Technology, India

Computational Models Track Chair

Malar B. PSG College of Technology, India

Advisory Committee Members

Anitha R. PSG College of Technology, India
Sai Sundara Krishnan G. PSG College of Technology, India
Lekshmi R. S. PSG College of Technology, India
Senthil Kumar M. PSG College of Technology, India
Geetha N. PSG College of Technology, India
Bella Bose Oregon State University, USA
Alexander Rumyantsev Petrozavodsk State University, Russia
Rein Nobel Vrije University, The Netherlands



Contents

Computational Intelligence

Comparing Community Detection Methods in Brain Functional
Connectivity Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Reddy Rani Vangimalla and Jaya Sreevalsan-Nair

A Network Embedding Approach for Link Prediction
in Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Aswathy Divakaran and Anuraj Mohan

IDK My Friends: Link Analysis on Social Networks to Mine
Surprise Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Sai Praveen Mylavarapu and Shubhashri Govindarajan

Prediction of Patient Readmission Using Machine Learning Techniques. . . . . 36
V. Diviya Prabha and R. Rathipriya

Cyber Security

An Evaluation of Convolutional Neural Networks for Malware
Family Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Shreya Davis, C. N. Sminesh, K. S. Akshay, T. R. Akshay,
and Anjali Ranjith

An Exploration of Changes Addressed in the Android Malware
Detection Walkways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Rincy Raphael and P. Mathiyalagan

DCNN-IDS: Deep Convolutional Neural Network Based Intrusion
Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

S. Sriram, A. Shashank, R. Vinayakumar, and K. P. Soman

Deep Learning Based Frameworks for Handling Imbalance in DGA, Email,
and URL Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

K. Simran, Prathiksha Balakrishna, Ravi Vinayakumar,
and K. P. Soman



Computational Models

An M/M/1 Queueing Model Subject to Differentiated Working Vacation
and Customer Impatience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

K. V. Vijayashree and K. Ambika

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x Contents



Computational Intelligence



Comparing Community Detection
Methods in Brain Functional

Connectivity Networks

Reddy Rani Vangimalla and Jaya Sreevalsan-Nair(B)

Graphics-Visualization-Computing Lab, E-Health Research Center,
International Institute of Information Technology - Bangalore,

26/C, Electronics City, Bangalore 560100, India
reddyrani.vangimalla@iiitb.org, jnair@iiitb.ac.in

Abstract. Brain functional networks are essential for understanding the
functional connectome. Computing the temporal dependencies between
the regions of brain activities from the functional magnetic resonance
imaging (fMRI) gives us the functional connectivity between the regions.
The pairwise connectivities in matrix form correspond to the functional
network (fNet), also referred to as a functional connectivity network
(FCN). We start with analyzing a correlation matrix, which is an adja-
cency matrix of the FCN. In this work, we perform a case study of com-
parison of different analytical approaches in finding node-communities
of the brain network. We use five different methods of community detec-
tion, out of which two methods are implemented on the network after
filtering out the edges with weight below a predetermined threshold. We
additionally compute and observe the following characteristics of the out-
comes: (i) modularity of the communities, (ii) symmetrical node-partition
between the left and right hemispheres of the brain, i.e., hemispheric
symmetry, and (iii) hierarchical modular organization. Our contribution
is in identifying an appropriate test bed for comparison of outcomes of
approaches using different semantics, such as network science, informa-
tion theory, multivariate analysis, and data mining.

Keywords: Brain functional connectivity · Network analysis ·
Node-community · Community detection · Factor analysis · Infomap ·
Louvain community detection · Hierarchical clustering

1 Introduction

Understanding the connectivities between different regions in the brain has been
a challenge in the area of brain network analysis. Non-invasive and in-vivo imag-
ing techniques are commonly used for brain studies today, attributed to the
advances in neuroimaging domain. fMRI is one of the widely used brain imaging
modalities. Similarly, other modalities such as electroencephalography (EEG)
and magnetoencephalography (MEG) techniques are also used to create func-
c© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 3–17, 2020.
https://doi.org/10.1007/978-981-15-9700-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_1&domain=pdf
http://orcid.org/0000-0003-3472-2901
http://orcid.org/0000-0001-6333-4161
https://doi.org/10.1007/978-981-15-9700-8_1


4 R. R. Vangimalla and J. Sreevalsan-Nair

tional networks (fNet) to analyze the brain activities. The nodes of these net-
works correspond to regions of interest (ROIs) in the brain confirming to a spe-
cific anatomical atlas, e.g., Automated Anatomical Labeling atlas (AAL) [38],
Dosenbach atlas (DOS) [12]. The edges between the nodes are computed based
on the relationships between all these regions of the brain, which encode the
connectivity between the nodes1. Here, we focus on the pairwise correlation
between nodes in networks computed from fMRI at resting state. For exam-
ple, the sample network datasets with Brainnet Viewer [41] are computed as
correlation matrices. Functional connectivity is inferred from the correlation of
the blood-oxygenation level dependent (BOLD) signals of fMRI imaging [28,39]
between nodes, as defined for the brain network [37].

In the conventional workflow of brain functional connectivity network (FCN)
analysis [13,22,40], these connectivity matrices2 are subjected to sparsification
by retaining only edge weights of these networks, which are greater than a thresh-
old value. These sparsified matrices are either used directly as weighted graphs or
binarized to give unweighted graphs. These preprocessed networks are referred
to as edge-filtered networks.

Community3 detection is one of the frequently implemented analysis of FCN.
Sporns [36] has discussed about modularity being used for functional segregation
and integration, for finding communities and hubs. Functional segregation is the
process of identification of ROIs that are related with respect to their neuronal
process and are represented as a module. These modules in the network are also
referred to as communities, where they have dense intra-community links and
sparse inter-community links. Sporns has discussed how functional segregation
has been done using multiple approaches, two of which include performing the
conventional community detection in the network, and identification of “Resting
State Networks” (RSNs), respectively. An RSN is a set of regions in the brain,
which show coherent fluctuations of the BOLD signal. Bullmore et al. [6] have
described how graph-based methods can be used on brain FCN, and explained
the clustering tendency and modular community structure of the brain. In this
work, we systematically compare different community detection procedures using
an appropriate case study, which is a test bed.

As a complex network with small-world behavior, brain FCN exhibits the
property of dense edge connections between nodes of the community and sparse
connections across the communities [2]. Meunier et al. [24] have discussed how
the brain networks, like any other complex networks, have multiple topologi-
cal scales and hence hierarchical node-groupings, along with modularity. Meu-
nier et al. [24] have also explained the existence of both overlapping and non-
overlapping communities that display hierarchical modularity. In this work, we

1 Connectivity matrices of functional networks could be computed using several meth-
ods [13], e.g., correlation, mutual information, phase coherence.

2 Connectivity matrix of a network corresponds to the adjacency matrix of the
graph.

3 We use the terms community, module, cluster, and node-partition interchangeably in
this paper.



Community Detection in Brain Functional Connectivity Networks 5

focus on non-overlapping node-partitions, i.e., each node belongs to only one
module/community. Here, we study the modular behavior of nodes and the hier-
archical organization of these modules.

In the edge-filtered networks, network science approaches are strongly influ-
enced by the threshold value used for filtering edges. Since the network topology
itself changes drastically depending on the choice of the threshold, the choice
has to be carefully made. Jeub et al. [18] have used a range of threshold val-
ues and a consensus method for clustering the nodes in a completely connected
network. Lancichinetti et al. [21] have explained the reasons to consider differ-
ent values of thresholds to get different edge-filtered networks, and then use the
consensus of the outcomes from these networks to determine the clusters of a
complex network. It is also known that applying a single threshold value on net-
work tends to discard weak and/or negative-signed edges, whose relevance has
not been considered [13]. At the same time, finding a threshold interval is also a
difficult problem [13]. Given the essential role of edge filtering in FCN analysis,
we evaluate its role in community detection by comparing the outcomes using
the completely connected brain FCN4, i.e. without applying a threshold, against
the edge-filtered variants of the same network, in a suitable test bed.

Our Contributions: We compare different functional segregation methodolo-
gies on the FCN. The edge-filtered networks reveal the topology of the significant
subnetwork(s). However, applying a threshold on the network may not preserve
the semantics of the entire network, which calls for independently studying the
complete network. We compare the results derived from both edge-filtered and
complete networks to evaluate an ideal node partitioning of the given FCN. The
crucial questions we address here are:

– How do the chosen approaches implemented on the complete network compare
to those on it’s edge-filtered variant?

– Do the different functional segregation methods (tend to) converge at n node-
partitions, i.e., is there a value of n for which the node partitionings tend to
be identical?

– If such a number n exist, then what is it’s biological significance?
– In different functional segregation methodologies, how can we study the hier-

archical organization of the node partitions?

Frequently used notations: Functional Connectivity Network (FCN), Louvain
Method (LM), Infomap (IM), Exploratory Factor Analysis (EFA), Hierarchi-
cal Clustering (h-clust), Hierarchical Consensus Clustering (HC), Automated
Anatomical Labeling atlas (AAL), ground truth (GT).

2 Methods

Our objective is to find the modules in the brain network with maximum mod-
ularity, with a preference for methods which extract hierarchical organization
4 We refer to these networks as the complete network.



6 R. R. Vangimalla and J. Sreevalsan-Nair

Fig. 1. Our proposed workflow for using a test bed for comparing different node par-
titioning techniques in the human functional connectivity network.

within the modules. There are several state-of-the-art approaches for fulfilling
this objective. Our gap analysis shows that a systematic comparison of these
methods with differences in preprocessing the network is essential to understand
the salient aspects of these methods. We select five methods with different under-
lying principles and where not all use edge filtering, and propose a case study
to compare them. Our workflow is given in Fig. 1.

Network Construction: The FCN is generated using fMRI data from multi-
ple subjects in a cohort. First, an FCN is computed per subject, and the net-
work connects different ROIs, which are the parcellations of the entire brain
using a specific atlas, e.g., AAL. The mean time courses (BOLD signal) of the
ROIs are extracted, and Pearson’s correlation coefficients are computed between
the nodes. Further, Fisher’s r-to-z transformation is applied, thus giving z-score
matrices, which are then aggregated across different subjects to get a single
unweighted matrix. Thus, the FCN corresponding to this matrix is a completely
connected graph, with the ROIs as nodes and the correlation between them as
edge weights. In our work, the choice of the dataset is further restricted by the
requirement of positive semi-definiteness of the matrix, so as to make it eligible
for exploratory factor analysis (EFA).

Edge Filtering: Upon filtering out the edges with weights below an appropriate
cutoff value [13], the FCN has been shown to exhibit small-world characteris-
tics [22]. Small-world networks have clustering property, which enables finding
communities using the modularity measure [14]. Hence, filtering edges is one
of the popularly used preprocessing methods in FCN analysis. The threshold
for edge filtering is selected by observing a value at which the network changes
topology. This change can be identified by analysing statistical properties of the
edge weights and their distribution, or by studying the network properties after
applying discrete values of threshold, such as node degree distribution (Fig. 2(i))
and percolation analysis (Fig. 2(ii)).

However, applying edge filtering is fraught with stability issues, i.e., slight
perturbations in the threshold cause observable changes in the network topology
at different threshold values (Fig. 2(iii)). The circular layout places the nodes in
circles, which correspond to communities. We observe that the network filtered



Community Detection in Brain Functional Connectivity Networks 7

using different thresholds show different topology, and hence different modular
organization. The circular layout, which can be stacked horizontally or verti-
cally, is flexible in showing the instability in network depending on the choice of
threshold.

Fig. 2. Case study analysis: (i). The violin plot shows the degree distribution of the
nodes of the network at different thresholds on edge values, and the elbow curve here
is used for finding the optimal threshold for edge-filtering. (ii). The plot of size of giant
components (#nodes) at each threshold of edge weights, using percolation analysis [5] is
used for finding cutoff. (iii). The networks with edges filtered using different thresholds
‘T ’ show different topologies, as shown by their graph layout using the stacked circular
layout of nodes in their communities ‘C ’ extracted using Louvain community detection.
The edge width is proportional to the correlation value. The plot is generated using
Cytoscape, utilizing group attribute layout.

Node Partitioning: Here, we focus on different node-partitioning methods with
non-overlapping communities, which is known as hard clustering. Our objective is
to compare five such methods using an appropriate test bed. We use two commu-
nity detection methods on the edge-filtered network, namely, Louvain community
detection (LM) [4] and Infomap (IM) [31]. The remaining three methods, which
use the entire correlation matrix, i.e., the complete network, include exploratory
factor analysis (EFA) [15], hierarchical clustering (h-clust) [19], and hierarchical
consensus clustering (HC) [18]. For the methods used in edge-filtered networks,
graph-based techniques automatically provide the number of clusters, which can
be used in methods expecting them as inputs.



8 R. R. Vangimalla and J. Sreevalsan-Nair

LM and IM are graph-based methods used for community detection on the
sparsified network. LM is a greedy optimization method that maximizes the
modularity of the network using an iterative method. Every node is initially
considered to be a community, and communities are merged using the nearest
neighbor criterion when the modularity value Q is computed. The algorithm is
iterated until all nodes are grouped with possible maximum modularity value.
An information-theoretic method, IM is one of the fastest and accurate methods
for identifying communities [27] and is widely used in understanding modules
in FCN. It is based on the principle that there is a higher likelihood of a ran-
dom walker most taking steps within a dense community than across commu-
nities. The community detection methods LM and IM, essentially exploit the
network topology to find appropriate cuts in the network to identify densely
connected subnetworks. Thus, the methods that are used on edge-filtered net-
work are semantically different from those using the complete network, such as
EFA, h-clust, and HC.

EFA is known to be an exploratory or experimental method used for corre-
lation analysis, which uses maximum likelihood function [9] to find factors. The
factors determine a causal model based on which the correlations between the
random variables, i.e., nodes in the FCN here, can be explained. Thus, a factor
is an entity to which a group of nodes belong to, and we consider a set of fac-
tors as a node partitioning, modules, or communities, here. h-clust, implemented
using different linkage methods, is a clustering technique used in data mining
to extract hierarchical clusters. We choose to use h-clust owing to the known
structure of hierarchical modularity of the brain FCN [24]. We have experi-
mented with single, complete, average, and ward linkage methods in h-clust.
HC method has been exclusively used on brain networks, where the clusters are
identified using generalized Louvain community detection [20] method with fixed
resolution value (γ = 1). The clusterings are aggregated using consensus. Here,
we implement HC with 100 clusters and α = 0.1 [17], where the parameter α
decides if co-clustering of two nodes is by chance or by their clustering tendency.

Modularity: We choose to use the modularity metric, Q, to measure the effec-
tiveness of node-partitions from each method. The most widely used Newman-
Girvan modularity measure [14,26] is used on both directed and undirected net-
works, where Q measures the difference between the fraction of intra-community
edges and the expected fraction of such edges based on node degrees. Q is in the
range [−1, 1], where positive values indicate clarity in partitioning. As a first-cut,
we do not consider the resolution parameter here.

Q =
1

2m

∑

C∈P

∑

i,j∈C

[
Aij − kikj

2m

]
, and ki =

j≤N∑

j=1j �=i

Aij , (1)

where Aij is the edge weight between nodes i and j, ki and kj are degrees of the
nodes in the network consisting of N vertices, m edges, and C communities.

Comparison Test Bed: We propose appropriate settings for comparing the
five chosen methods, as there are fundamental differences in the semantics of



Community Detection in Brain Functional Connectivity Networks 9

the methods. We need to ensure that the outcomes are generated with certain
fixed settings so that a comparison of the outcomes is scientifically valid. The
edge-filtered network used for LM and IM is ensured to be the same. Even though
LM and IM automatically give the number of communities, the numbers vary
owing to the differences in the methodologies. In EFA, the number of factors nf

is an input. We take the interval we have obtained from np in LM and IM for
nf , so that we can compare the outcomes of EFA with those of LM and IM.
For h-clust and HC, since we can use an interval of np required for different
hierarchical levels, we use the same interval as used for EFA.

Comparative Analysis: We use Q for quantitative, and Sankey dia-
grams for qualitative comparisons. The latter has been used as alluvial dia-
grams [32] for studying changes in compositions of modules in networks.
We additionally perform ground truth analysis, both quantitatively and
qualitatively.

3 Experiments and Results

We use a specific case study to build the test bed for comparison. We choose a
FCN dataset for which we have identified ground truth in literature. We then pre-
pare the edge-filtered variant of the chosen FCN by selecting threshold using dif-
ferent methods. After performing node partitioning using the chosen five meth-
ods (Sect. 2), we perform a comparative analysis of their outcomes.

Test Bed – Dataset and Ground Truth: We have used the FCN dataset
published along with BrainNet Viewer [41], which is generated using the AAL
atlas. There are 90 nodes in the FCN. The edge weights are the correlations com-
puted from the resting-state fMRI data of 198 subjects in the Beijing Normal
University, provided in the 1000 Functional Connectome Project [3], of healthy
right-handed volunteers in the age group of 18–26 years and of which 122 are
female. The fMRI scanning was performed in the eyes-closed (EC) state of sub-
jects in state of wakefulness. The network is generated after removing data of one
subject owing to rotation error. The test bed requires a ground truth (GT) for
this specific dataset, for which we use the findings on a similar dataset used by
He et al. [16]. Even though the fMRI data in our case study and that identified as
GT are different, the demographics of the subjects involved and the processing
done on the two datasets are the same. Hence, we take the result of five func-
tional modules by He et al. [16] to be the GT, i.e. the reference communities.
The module identification for the GT has been done using simulated annealing
approach, thus, avoiding similarity bias with any of our chosen methods.

Community Detection in FCN: We have compared the communities of the
network obtained using five different methods, i.e., LM, IM, EFA, h-clust, and
HC, after preparing the test bed (Sect. 2). We compute an edge-filtered variant of
the FCN by identifying an appropriate threshold using the inferences from elbow
graph for degree distribution at each threshold (Fig. 2(i)) and using percolation
analysis (Fig. 2(ii)). In our case study, we get optimal thresholds as T = 0.4



10 R. R. Vangimalla and J. Sreevalsan-Nair

and T = 0.5, respectively. At T = 0.5, we observe the disintegration of a giant
connected component in the network (Fig. 2(ii)). When T > 0.5, in Fig. 2(i), we
observe that the node degree distribution is uniform, and the network exhibits
uniform topology rather than communities. Overall, at T = 0.4, we observe more
stability in the dataset; hence, we have chosen T = 0.4, as the optimal threshold
for the edge-filtered variant to be used in LM. We have also verified against the
binarized edge-filtered variant of the network that has been published [41], the
threshold used is T = 0.4.

We have also run experiments with threshold T ∈ [0.4, 0.5] to study the
change in topology (Fig. 2(iii)). We have observed that for T = {0.4, 0.45, 0.5},
we get {5, 6, 7} communities using LM, and {7, 9, 12} using IM, respectively. In
our case study, IM leads to over-segmentation. We have also observed that for
T > 0.6 the community detection of the network using LM does not include all
the 90 nodes. We have used the number of partitions as a criterion for comparing
outcomes of community detection between two different methods, in addition to
the strict criterion of T ∈ [0.4, 0.5], in our test bed. Thus, we have compared
results of LM using T = 0.4 with those of EFA using nf = 5, and similarly those
of IM using T = 0.45 with those of EFA using nf = 9, given that the optimal
value is determined using parallel analysis.

Fig. 3. (i). Modularity (Q) values of node partitioning for LM, IM, EFA, h-clust with
average linkage, and HC with α = 0.1, show trends for hierarchical modules, and
high values for LM and IM. (ii). Hemispheric symmetry of nodes or ROIs is observed
in the visualization of modules in FCN using brain-surface visualization [41] (BNV),
implemented using MATLAB.

The methods on complete networks, namely EFA, h-clust, and HC, require
the number of modules as input to give outputs to be compared with those of
LM and IM. The optimal value of nf for EFA is computed using a scree plot [7]
and parallel analysis. In our case study, nf = 9 is the optimal number of factors
according to the parallel analysis scree plot. However, we have empirically chosen
nf = 5, given that modularity score is highest for this value, and also, this is
equivalent to the GT. Figure 3(i) shows us that for all the methods, the highest
Q value is observed when the network has five modules, which confirms with
the GT. For np = 5, LM shows the maximum Q, which can be attributed to



Community Detection in Brain Functional Connectivity Networks 11

its greedy characteristic. At five modules, EFA performs at par with LM. We
have used R packages for implementing node partitioning, [1,10,11,30,34], and
Cytoscape [33] for graph layout.

We have used the BrainNet viewer [41] for visualizing the node-communities
on the brain surface (Fig. 3(ii)) in the spatial context. The axial view of the
brain shows modular organization spatially, i.e., neighboring nodes are grouped
in a module and hemispheric symmetry of the nodes. Hemispheric symmetry
implies that both left and right hemispherical nodes of the same brain region
tend to co-cluster. EFA with nf = 5, LM on the network with edge-filtering
at threshold T = 0.4, and GT demonstrate similar modules, but with modular
organization and hemispheric symmetry. We have additionally implemented each
of our proposed approaches, independently as ensemble runs, i.e. implemented
multiple times with slight changes in parameters, e.g., nf for EFA, and tree-
cut for h-clust and HC. Our motivation is to compare hierarchical modular
organization in FCN.

Comparative Analysis: The Sankey plot [29] or alluvial diagram [32] effec-
tively demonstrates a qualitative comparison of the composition of communities.
Figure 4(i) demonstrates that at np = nf = 5, outputs of LM and EFA are
similar, as 83 out of 90 nodes were grouped similarly in both the methods. At
np = nf = 5, LM and EFA have the highest modularity value Q. The edge cross-
ings in (Fig. 4(i)) between LM and EFA are due to one node in the AF45 cluster,
and six nodes in the AF5 cluster in EFA. We observe a similar degree of mismatch
between EFA with h-clust, at nf = np = 5. However, unlike the mismatch with
LM, the community sizes in h-clust are not uniformly distributed as in EFA and
LM. In h-clust, we use the consensus of the node-groupings with different link-
age methods of hierarchical clustering, namely single, complete, average, and
ward. The tree-cut is the deciding parameter for np, and hierarchy is guaranteed
with all linkage methods, by design. The matching is at 86.67%, i.e., 12 out of
90 nodes showed grouping different from EFA. Except for the cluster AH2, the
other clusters in h-clust have inconsistent mappings with EFA (Fig. 4(i)). When
compared to single, complete, average, and ward linkage methods of h-clust, the
average-linkage method exhibited the highest matching percentage with EFA.

Interestingly, we have observed that implementing IM on the network with
edges filtered at threshold T = 0.45 gives nine communities, and the optimal
nf = 9 for EFA, as per the parallel analysis scree plot. Hence, as discussed earlier,
in our test bed, we compare the outcomes between IM (T = 0.45) and EFA (nf =
9). We observe more edge crossings between IM and EFA, indicating that the
node-groupings failed to display similar correspondence (Fig. 4(ii)). But, interest-
ingly, we observe lesser edge crossings between EFA (nf = 5) and EFA (nf = 9)

5 In Fig. 4, 5, and 6, the communities are named in the format XY where X is {A, B, C,
D}, which corresponds to {5, 6, 7, 9} node-communities, and the value of Y is {L, I,
F, H, HC, He}, which corresponds to {LM, IM, EFA, h-clust, HC, GT}, respectively.
For example, AL4 represents the fourth community out of five communities (A =
5 ) identified using the method LM (L).



12 R. R. Vangimalla and J. Sreevalsan-Nair

Fig. 4. The composition of node-communities from multiple methods is compared using
Sankey plot, where the middle vertical bar (in blue) corresponds to the node-IDs, and
LM and IM are computed on the edge-filtered network at a threshold T . (i). Comparison
of LM at T = 0.4, EFA at nf = 5, and h-clust at np = 5 (average linkage) LM and
EFA shows more similarity of composition and sizes of communities than LM and h-
clust. (ii). Comparison of IM with T = 0.45, EFA with nf = 9, and EFA with nf = 5
show differences between IM and EFA, including fragmentation in IM. The naming
convention of the communities is given in the footnote5. (Color figure online)

Fig. 5. Comparative visualization of mapping of nodes between our selected approaches
and ground truth (GT) in [16]. Comparison against GT of (i). EFA (nf = 5) and
LM (T = 0.4), (ii). h-clust and HC, at np = 5, (iii). EFA (nf = 9) and IM (T = 0.45),
(iv). HC and h-Clust at np = 9. The naming convention of the communities is given in
the footnote5.



Community Detection in Brain Functional Connectivity Networks 13

Fig. 6. Visualizing the hierarchical modularity from five to nine modules using a cas-
cading effect in a Sankey plot with communities identified using (i). EFA, (ii). h-clust,
and (iii). HC. The naming convention of the communities is given in the footnote5.

modules Fig. 6(i)). This observation is due to the revelation of the characteristic
of hierarchical modularity in the FCN when progressively increasing nf in EFA.

When comparing against GT [16] using Sankey diagrams as in Fig. 5(i) to
(iv), we observe that the edge-crossings and inconsistent node-groupings are less
in the case of EFA, and more in the case of h-clust. The matching of results with
GT is 90.00%, 88.89%, 85.56%, and 83.34%, for EFA, LM, HC, and h-clust,
respectively. We observe that the edge crossings are least in the case of EFA-
GT-LM, for nf = np = 5 (Fig. 5(i)) and HC-GT-h-clust, for np = 9 (Fig. 5(iv)),
indicating similar grouping. But when we closely observe in the latter, the size
distribution of the communities in HC-GT-h-clust does not match.

Overall, we conclude that when nf = np = 5, EFA and LM, with T = 0.4,
behave similar to each other, and also with GT. Additionally, EFA exhibits
hierarchical modularity in our case study.

Hierarchical Modularity: We know that h-clust and HC show hierarchy in
their community detection or clustering owing to the design of preserving hierar-
chy by performing divisive hierarchical clustering. However, we observe the same
in EFA, when we increase or decrease nf within the range [5, 9]. From Fig. 5,
we have observed how EFAconfirms with the GT, and now we observe the hier-
archical characteristic. Thus, in this case study, we observe that outcomes of



14 R. R. Vangimalla and J. Sreevalsan-Nair

EFA demonstrates a hierarchical modular organization of the functional brain.
In Fig. 6(i), module AF1 is subdivided into BF1 and BF6 when transitioning
from 5 factors or 6 factros; similarly, module BF4 has subdivided into modules,
CF4 and CF7, to grow from 6 factors to 7 factors, and a similar pattern can be
observed when transitioning from 7 to 9 clusters.

We observe the hierarchical modularity of the network when using h-clust,
and HC (Fig. 6(ii) and (iii)), as per design, when using tree-cut for deciding
parameter for module identification. However, both h-clust and HC failed to get
outcomes similar to GT, thus violating the hemispheric symmetry of modules.

Discussions: Our analysis gives results similar to that of Mezer et al. [25],
where node communities exhibited symmetric patterns between left and right
hemispheres. We observe hemispheric symmetry in Fig. 3(ii), and 4(i), where
EFA showed both better symmetry and hierarchical modularity. For example,
sensorimotor and auditory regions of the first group in EFA (nf = 5) are sub-
divided into two different groups as the sensorimotor and auditory regions in
EFA (nf = 6). Similar studies of resting-state fMRI [8,42] have confirmed node-
communities of the functional connectivity network are symmetrically organized
between homotopic regions. Similarly, the modules identified using Newman’s
modularity algorithm in [23] has a similar grouping of nodes, with the commu-
nities we got from LM and EFA. The regions, hippocampus, and thalamus of
sensorimotor system, have always exhibited symmetric patterns between the left
and right hemispheres and are consistently clustered together in the same group
for all values of np and nf .

The biological significance of these five modules is that they correspond to
largest functional modules known to exist in the brain [24] as well as the resting
state networks usually extracted from fMRI data [35]. The five modules are
known to be medial occipital, lateral occipital, central, parieto-frontal and fronto-
temporal systems [24].

Such comparisons would not have been possible without establishing our
proposed test bed. We have demonstrated that an appropriately designed test
bed enables comparison of outcomes of module identification across different
methodologies governed by different semantics. There are shortcomings in our
methodology related to: (i) identification of thresholds for edge filtering, as well
as (ii) comparing properties of the methodologies. While identifying thresholds,
specific discrete values, i.e. {0.4, 0.45, 0.5}, were considered which could have
missed values in the intervals. A better idea would be to use ranking of edge
weights in the network to eliminate one edge at a time, and then analysing
the network. In this work, we have not compared the robustness of our chosen
methods and properties related to reproducibility [16].

4 Conclusions

In this work, we have compared five different approaches for community detection
of functional connectivity network. Firstly, using edge-filtering for topological
analysis of functional brain networks, we have chosen node-community detection



Community Detection in Brain Functional Connectivity Networks 15

as an outcome of our proposed workflow. In lines of node-community detection,
we have proposed the use of graph-based Louvain and information-theoretic
based Infomap methods on edge-filtered weighted networks. Secondly, we have
introduced matrix-based exploratory factor analysis, distance-based hierarchical
clustering and hierarchical consensus clustering for node-community detection,
based on the semantics of the connectivity matrices. Using our proposed test bed,
we can now answer the question: “For the chosen approaches and an appropriate
set of parameters for implementing them, does a number, n, exist for a specific
FCN, such that the node partitionings tend to be identical?”. We have found it
to be five in our case study.

Our work demonstrates how a test bed can be used for systematic comparison
of community detection methods in FCN. We have also shown how an explo-
rative correlation-analysis method, such as EFA, can be used for community
detection. We observe that both Louvain community detection and EFA per-
form equivalently when extracting the optimal number of communities on the
network. EFA additionally showcases hierarchical organization, when changing
nf progressively. We have found that the biological significance of our results
as the five largest functional modules of the brain. Thus, overall, in our case
study, EFA performs well in ground truth analysis, and characteristics of hemi-
spheric symmetry of nodes in FCN and hierarchical organization. In the context
of newer trends in the functional connectivity studies, our study on resting-state
data can be extended to specific cognitive task-based studies. Our study is valu-
able as a first step towards identifying a test bed for the comparative analysis of
node-partitioning in FCNs across networks with different pre-processing steps.

Acknowledgments. This work has been supported by the Visvesvaraya Ph.D.
Scheme for Electronics and IT, Ministry of Electronics and Information Technology,
Government of India.

References

1. Adler, D.: vioplot: Violin plot. R package version 0.2 (2005). http://CRAN.R-
project.org/package=vioplot

2. Bassett, D.S., Bullmore, E.: Small-world brain networks. Neurosci. 12(6), 512–523
(2006)

3. Biswal, B.B., et al.: Toward discovery science of human brain function. Proc. Natl.
Acad. Sci. 107(10), 4734–4739 (2010)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008)

5. Bordier, C., Nicolini, C., Bifone, A.: Graph analysis and modularity of brain func-
tional connectivity networks: searching for the optimal threshold. Front. Neurosci.
11, 441 (2017)

6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

7. Cattell, R.B.: The scree test for the number of factors. Multivar. Behav. Res. 1(2),
245–276 (1966)

http://CRAN.R-project.org/package=vioplot
http://CRAN.R-project.org/package=vioplot


16 R. R. Vangimalla and J. Sreevalsan-Nair

8. Chen, G.: Modular reorganization of brain resting state networks and its inde-
pendent validation in Alzheimer’s disease patients. Front. Hum. Neurosci. 7, 456
(2013)

9. Costello, A.B., Osborne, J.W.: Best practices in exploratory factor analysis: four
recommendations for getting the most from your analysis. Pract. Assess. Res. Eval.
10(7), 1–9 (2005)

10. Couture-Beil, A.: rjson: Json for r. R package version 0.2 13 (2013)
11. Csardi, G., Nepusz, T.: The igraph software package for complex network research.

Int. J. Complex Syst. 1695(5), 1–9 (2006)
12. Dosenbach, N.U., et al.: Prediction of individual brain maturity using fMRI. Sci-

ence 329(5997), 1358–1361 (2010)
13. Fallani, F.D.V., Richiardi, J., Chavez, M., Achard, S.: Graph analysis of functional

brain networks: practical issues in translational neuroscience. Phil. Trans. R. Soc.
B 369(1653), 20130521 (2014)

14. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

15. Harman, H.H.: Modern Factor Analysis. University of Chicago Press, Chicago
(1976)

16. He, Y., et al.: Uncovering intrinsic modular organization of spontaneous brain
activity in humans. PloS ONE 4(4), e5226 (2009)

17. Jeub, L.G., Sporns, O., Fortunato, S.: Hierarchical Consensus clustering imple-
mented in MATLAB (2018). https://github.com/LJeub/HierarchicalConsensus

18. Jeub, L.G., Sporns, O., Fortunato, S.: Multiresolution consensus clustering in net-
works. Sci. Rep. 8(1), 3259 (2018)

19. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

20. Jutla, I.S., Jeub, L.G., Mucha, P.J.: A generalized Louvain method for commu-
nity detection implemented in MATLAB (2011). http://netwiki.amath.unc.edu/
GenLouvain

21. Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Sci.
Rep. 2, 336 (2012)

22. Langer, N., Pedroni, A., Jäncke, L.: The problem of thresholding in small-world
network analysis. PLoS ONE 8(1), e53199 (2013)

23. Liao, W., et al.: Small-world directed networks in the human brain: multivariate
granger causality analysis of resting-state fMRI. Neuroimage 54(4), 2683–2694
(2011)

24. Meunier, D., Lambiotte, R., Fornito, A., Ersche, K., Bullmore, E.T.: Hierarchical
modularity in human brain functional networks. Front. Neuroinform. 3, 37 (2009)

25. Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T., Assaf, Y.: Cluster analysis of
resting-state fMRI time series. Neuroimage 45(4), 1117–1125 (2009)

26. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

27. Orman, G., Labatut, V., Cherifi, H.: On accuracy of community structure discovery
algorithms. J. Converg. Inf. Technol. 6(11), 283–292 (2011)

28. Park, H.J., Friston, K.: Structural and functional brain networks: from connections
to cognition. Science 342(6158), 1238411 (2013)

29. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visual-
izing the evolution of community structures in dynamic social networks. Comput.
Graph. Forum 30(3), 1061–1070 (2011)

30. Revelle, W.R.: psych: Procedures for personality and psychological research (2017)

https://github.com/LJeub/HierarchicalConsensus
http://netwiki.amath.unc.edu/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain


Community Detection in Brain Functional Connectivity Networks 17

31. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

32. Rosvall, M., Bergstrom, C.T.: Mapping change in large networks. PloS ONE 5(1),
e8694 (2010)

33. Shannon, P., et al.: Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

34. Sievert, C., et al.: plotly: Create interactive web graphics via “plotly. js”. r package
version 4.7. 1 (2017)

35. Song, X., Zhou, S., Zhang, Y., Liu, Y., Zhu, H., Gao, J.H.: Frequency-dependent
modulation of regional synchrony in the human brain by eyes open and eyes closed
resting-states. PloS ONE 10(11), e0141507 (2015)

36. Sporns, O.: Network attributes for segregation and integration in the human brain.
Curr. Opin. Neurobiol. 23(2), 162–171 (2013)

37. Stanley, M.L., Moussa, M.N., Paolini, B., Lyday, R.G., Burdette, J.H., Laurienti,
P.J.: Defining nodes in complex brain networks. Front. Comput. Neurosci. 7, 169
(2013)

38. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15(1), 273–289 (2002)

39. Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on
resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8),
519–534 (2010)

40. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., He, Y.: GRETNA: a graph the-
oretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci.
9, 386 (2015)

41. Xia, M., Wang, J., He, Y.: BrainNet viewer: a network visualization tool for human
brain connectomics. PloS ONE 8(7), e68910 (2013)

42. Zuo, X.N., et al.: Growing together and growing apart: regional and sex differences
in the lifespan developmental trajectories of functional homotopy. J. Neurosci.
30(45), 15034–15043 (2010)



A Network Embedding Approach for Link
Prediction in Dynamic Networks

Aswathy Divakaran(B) and Anuraj Mohan

Department of Computer Science and Engineering, NSS College of Engineering, Palakkad, India
aswathydiv36@gmail.com, anurajmohan@gmail.com

Abstract. Dynamic networks and their evolving nature have gained the attention
of researchers with its ubiquitous applications in a variety of real-world scenar-
ios. Learning the evolutionary behavior of such networks is directly related to
link prediction problem as the addition and removal of links or edges over time
leads to the network evolution. With the rise of large-scale dynamic networks like
social networks, link prediction in such networks or otherwise temporal link pre-
diction has become an interesting field of study. Existing techniques for enhancing
the performance of temporal link prediction leverages the notion of matrix fac-
torization, likelihood estimation, deep learning and time series based techniques.
However, building a framework for temporal link prediction that preserves the non-
linear varying temporal properties of dynamic networks is still an open challenge.
Here, we propose a unified framework that incorporates Network Representation
Learning (NRL) and time series analysis for temporal link prediction. Our exper-
imental results on various real-word datasets show that the proposed framework
outperforms the state-of-the-art works.

Keywords: Dynamic networks · Temporal networks · Link prediction · Network
Representation Learning (NRL) · Time series

1 Introduction

In the past fewyears, there have been intensive researches dealingwith the study of highly
dynamic networks or temporal networks [1] whose topologies or characteristics change
as a function of time. Almost all the real-world complex phenomena can be modeled
as dynamic networks since they can model the evolving nature quite efficiently. For
instance, social networks, communication networks, biological networks etc. have an
underlying structure of dynamic networks where entities and relationships are relatively
short and instantaneous. Recently, the evolutionary behavior of such networks gained
the attention of researchers with its ubiquitous applications in a variety of real-world
scenarios. Moreover, learning the evolutionary behavior is directly related to the link
prediction problem [5] as the addition and removal of edges or links over time leads to
the network evolution. With the rise of large-scale dynamic networks, link prediction in
such networks also known as temporal link prediction has become an interesting field of
study. The goal of this task is to predict the links in the network that would appear in its

© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 18–28, 2020.
https://doi.org/10.1007/978-981-15-9700-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_2&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_2


A Network Embedding Approach for Link Prediction 19

future state of time under the assumption that the network is complete. Unlike missing
link prediction in static networks, temporal link prediction is a challenging task driven
by its ubiquitous applications in a variety of scenarios. Recommending new products in
e-bay or amazon, friend suggestions in online social networks are some of the obvious
examples. In biological networks, predicting the interactions between molecules at a
specific time stamp can help us better understand the temporal interaction between them.
This can provide useful temporal information that indicate the stage of a specific disease
such as cancer. Therefore temporal link prediction plays an important role in disease
prediction task. In addition, this task can be used to predict the academic collaborations
in co-authorship and citation networks. Furthermore, temporal link prediction in terrorist
communication networks help us to predict and capture the most important information
related to the issue of national security.

The advancements in deep learning has shown its outstanding performance in var-
ious fields like financial services, health care, etc. to find better and faster decisions in
today’s data-driven world. The rapid growth of deep learning techniques extended its
utility towards the area of social network analysis. Using the deep layers of non-linear
transformation, deep learning integrated this field to better capture the non-linear varying
temporal patterns in dynamic networks. Recent trends in exploring such patterns lever-
ages the notionofNetworkRepresentationLearning (NRL) techniques [2–4] that embeds
nodes in the network into a low-dimensional vector space by preserving structural prox-
imities of the network. The key idea behind this technique is to generate continuous
vector space representations for nodes in the network in such a way that the structural
proximity is preserved. Such representations of real-world networks encode social rela-
tions in a continuous vector space and enables the original network to be exploited
easily for further analysis. This lead to the emergence of various network embedding
approaches for temporal link prediction rather than the computationally intensiveMatrix
Factorization (MF), Maximum Likelihood (ML) approaches. Furthermore, time series
analysis is a well-studied area that aims at revealing significant statistics and character-
istics of data. The key idea is to extract the underlying structure of the observed data.
Time series can best capture the change over time under the assumption that past events
are good starting points for the prediction of future. Time series forecasting aims at
predicting the future scores based on the previously observed time series scores. More-
over, the frequently evolving nature of dynamic networks makes time series a promising
option for temporal link prediction. Several works deployed time series forecasting for
temporal link prediction [6–8].

In general, the movements to enhance the performance of temporal link prediction
depends on the effectiveness in capturing the evolving nature of dynamic networks
and extracting the non-linear varying temporal patterns. However, building a unified
model that preserves all the complex non-linear varying patterns in dynamic networks
is an open challenge. To address this challenge, we propose a unified framework that
incorporates NRL techniques and time series analysis for link prediction in dynamic
networks. Initially,we take snapshots of the network at regular intervals of time to capture
the evolving nature. Inspired by NRL techniques, we extract the complex features in
dynamic networks bypreserving the networkproperties. This information is incorporated



20 A. Divakaran and A. Mohan

into time series analysis where the time series for each node pair is constructed and future
scores are predicted. Link prediction task is performed based on the predicted scores.

2 Problem Definition

This section provides a formal definition for temporal link prediction. “Let G = (V, E)
be a dynamic network, where V is the set of vertices and each edge (u, v) ∈ E represents
a link between u and v. Given the snapshots of G represented as G1, G2,…, Gt from time
step 1 to t, how can we predict the network for a next time step Gt+1?” Fig. 1 depicts an
overview of temporal link prediction.

Fig. 1. Overview of temporal link prediction

3 Related Works

The literature in the field of temporal link prediction can be broadly classified into six
based on the techniques used: Matrix Factorization (MF) models, probabilistic models,
DeepLearning (DL)models, time series basedmodels and others.MFor otherwise called
matrix factorization techniques aims at decomposing amatrix into its factors and thereby
makes complex operations easier. Majority of the works on matrix factorization based
temporal link prediction deploy Non-negative Matrix Factorization (NMF) technique
[13–16]. Probabilistic models deploy maximum likelihood approaches or probability
distributions instead of fixed values. There exists several probabilistic models for tem-
poral link prediction [17, 18]. A few works on temporal link prediction rests on spectral
graph theory, which is the study of properties of a graph in relationship to the eigenvalues
and eigenvectors associated with the graph [9, 10].

Time series based temporal link prediction deploys various time series forecast-
ing models for predicting links in the network for a future time period. Time series
score is constructed by computing various similarity measures between each node pairs
in the network. Time series forecasting aims at predicting the future scores based on
the previously observed time series scores. Time series based temporal link prediction
frameworks take the adjacency and occurrence matrices corresponding to each snapshot
network as input and performs temporal link prediction in three steps: node similarity
score computation, node similarity score prediction and link prediction. Univariate time



A Network Embedding Approach for Link Prediction 21

series based temporal link prediction [6] takes into account node’s local neighborhood
based similarity measures. Unlike univariate time series models, multivariate time series
link prediction models [7, 8] integrate temporal evolution of the network, node similar-
ities and node connectivity information. Deep learning (DL) also called deep structured
learning has shown its outstanding performance in various real-world scenarios. Using
the deep layers of non-linear transformation, deep learning integrated this field to better
capture the non-linear varying temporal patterns in dynamic networks. Recent advance-
ments in DL leverages the notion of NRL for temporal link prediction. NRL or otherwise
graph embedding techniques eliminated the need for painstaking feature engineering.
The goal of this approach is to represent a graph in a low-dimensional vector space by
preserving all the network properties. Different algorithms for graph embedding differs
in the way they preserve all the network properties. A very few works in temporal link
prediction concentrated on modelling an RBM [11].

This study revealed that there exists several NRL techniques which gives the latent
representations for nodes in the network by preserving the local and global properties.
In addition, the frequently changing nature of dynamic networks make time series a
promising option for temporal link prediction. There exists several techniques based on
time series analysis for temporal link prediction. However, all of them deploy neighbor-
hood based similarity measures and thereby ignores the global properties of the network.
Here, we propose a unified framework that incorporates NRL techniques and time series
analysis for temporal link prediction.

4 Proposed Method

In this section, we introduce the proposed network embedding approach for time series
based temporal link prediction. Our framework incorporates NRL based techniques and
time series for temporal link prediction. The general architecture of proposed framework
given in Fig. 2 is composed of four major phases: Network Representation Learning,
Time Series Construction, Time Series Forecasting, Link Prediction. Initially, snapshots
of the evolving network is taken at regular intervals of time. This enables to analyze the
network structure for consecutive time periods.

4.1 Network Representation Learning (NRL)

NRL has been inspired from the language modeling techniques where words are
replaced by nodes in the network. This methodology maps network vertices into a
low-dimensional vector space, where all the network properties are preserved. Given
a network G = (V, E), NRL finds a mapping function �: v ∈ V → R

|V|xD, where
D<< |V|, such that every node v ∈ V is mapped into a D-dimensional vector space by
preserving the structural proximity among nodes. Such latent representations of real-
world networks encode social relations in a continuous vector space. This facilitates the
original network to be easily deployed for further analysis. In the proposed framework,
we deploy the most recent NRL techniques such as Node2Vec [3], SDNE [2] and DNGR
[4]. Figure 3 depicts the latent representation of a network obtained using SDNEmethod.



22 A. Divakaran and A. Mohan

Fig. 2. Architecture diagram

Fig. 3. A network and its latent representation

Node2Vec is an algorithmic framework that leverages the notion of random walks
that preserves the network neighborhood of nodes to learn continuous feature repre-
sentations for nodes in the network. The feature learning framework is introduced by
extending the SkipGram architecture which optimizes the objective function given by



A Network Embedding Approach for Link Prediction 23

Eq. 1, where NS(u) is the neighborhood of node u and f is the feature representation of
the corresponding node.

max
f

∑

u∈V
logPr(NS(u)|f(u)) (1)

SDNE is a semi-supervised framework that captures the highly non-linear structure
of the networks. Inspired from the recent advancements in DL, this framework utilized
deep autoencoders for learning latent representation of the network. Autoencoders have
a deep neural network architecture and is composed of two parts: encoder and decoder.
The encoder module is composed of multiple non-linear functions that maps the input
data into its corresponding representation space. Decoder also consists of multiple non-
linear functions that map the representations into a reconstruction space. SDNE exploits
the first and second order proximities of the network to distinguish between the global
and local network structure. This enables to learn the latent representations by preserving
the structural proximities of the network.

DNGR is also an autoencoder based NRL framework. The model consists of a ran-
dom surfing and context weighting module that generates the probabilistic distribution
of the co-occurrence matrix and Stacked Denoising Autoencoder (SDAE) for dimen-
sionality reduction. Given a network, DNGR performs a random surfing process (similar
to PageRank) to generate a weighted co-occurrence matrix followed by the construction
of Positive Pointwise Mutual Information (PPMI). This matrix contains the structural
information of the network and it is given to SDAE to generate the latent representation
for the network by optimizing the following objective function (see Eq. 2), where xi is
the input data and h(yi; θ) is the reconstructed data.

argminθ

n∑

i=1

||xi − h(yi; θ)|| (2)

4.2 Time Series Construction and Forecasting

Time series construction phase takes as input the node embeddings obtained in the
previous phase. For each pair of nodes, a similarity score is computed based on their
low-dimensional node vectors. Let �t(u) and �t(v) be the embeddings of two nodes u
and v respectively at time t, cosine similarity is defined as:

Cossim = �t(u).�t(v)
|�t(u)||�t(v)| (3)

In addition to the similarity score computation, we analyze the change over time by
modeling a time series for each pair of nodes. The cosine similarity scores of node pairs
over time represented as time series enables to characterize the change in position of
nodes in the embedding space.

The time series thus constructed is taken as input for time series forecasting phase.
In the proposed system, we deploy ARIMAmodel [12] which maximizes the likelihood
function. Once the time series is constructed, the future score values are predicted using



24 A. Divakaran and A. Mohan

ARIMA (p, d, q) model. For a pair of nodes (u, v), the model which is applied to predict
the score for time t by considering p autoregressive terms and q moving average terms
is given by Eq. 4, where �i and θj represents constant terms and ∈t is the white noise.
ARIMA model is applied with different p, d, q values. The parameter values giving
minimum Akaike Information Criteria (AIC) value are utilized for predicting the future
score values for each node pair.

Score(u, v, t) =
p∑

i=1

�iScore(u, v, t − i) +
q∑

j=1

θj ∈t−j + ∈t (4)

4.3 Link Prediction

In this phase, the future time series scores estimated in the previous phase are used to
predict how likely two given nodes are to connect in future. First, each node pair are
sorted based on the predicted similarity score. The sorted list is compared with actual
links in the network for a future time.

5 Experiments

In this section we conduct experiments on several real-world datasets to evaluate the per-
formance of the proposed temporal link prediction framework. Here, we utilize suitable
evaluation measures to compare the accuracy of the method with the baseline methods
under different scenarios. All the experiments were conducted on a machine with 15.6
GiB RAM and hexa-core processor with 3.2 GHz speed.

5.1 Datasets Used

Various standard real-world datasets are available to evaluate the performance of
temporal link prediction. The following datasets were used in our experiments.

1. Enron: This dataset consists of emails between the employees in Enron Inc. from
January 1999 to July 2002. Each node in the network represents a user and a link
represents email communication between them.

2. Haggle: This network describes human contact information where contacts between
people are measured by some wireless devices. Nodes represents users and links
between them indicates a contact.

3. Hep-ph: This a collaboration graph of authors of scientific papers from Hep-Ph
section of arXiv archive. The data covers papers in the period from January 1993 to
April 2003.

4. Radoslaw: This network represents the email communication between employees
in a mid-sized manufacturing company. Nodes in the network represents employees
and edges between them are individual emails.

Table 1 shows the statistics of the datasets used. For Hep-ph dataset, we consider
only the most popular nodes and it consists of 265 nodes and 19,736 edges. All the other
datasets are used as it is.



A Network Embedding Approach for Link Prediction 25

Table 1. Statistics of the datasets used

Dataset #Nodes #Edges #Timestamps

Enron 150 150 27

Haggle 274 274 6

Hep-ph 28,093 28,093 9

Radoslaw 167 167 10

5.2 Results and Analysis

The proposed framework is compared with some of the state-of-the-art works to evaluate
the performance. The evaluation metrics used are Area Under the Curve (AUC) [16, 19]
and Mean Average Precision (MAP) [2]. First, the system is compared with static link
prediction techniques. Second, the evaluation of the proposed framework with state-of-
the-art time series based temporal link prediction techniques is performed. Moreover,
the effect of various network embedding techniques on the proposed framework is also
observed. In this paper, static techniques are denoted as st-cn, st-jc, st-aa and the proposed
time series based framework is denoted as ts-node2vec, ts-sdne and ts-dngr.

Comparison with Static Link Prediction Techniques
On comparing the time series based framework which deploy local similarity indices
and proposed framework on static link prediction techniques, it was found that the time
series based approaches gives a better prediction results. Figure 4(a) shows that time
series based local similarity metrics (ts-aa) for temporal link prediction improves the
AUC scores for static link prediction using local similarity metrics (st-aa) by 14.75%,
29.09%, 18.3% and 32.7% for Enron, Haggle, Hep-ph and Radoslaw datasets respec-
tively. In addition, the proposed framework (ts-node2vec, ts-sdne, ts-dngr) gives better
AUC scores than that for static network embedding techniques (st-node2vec, st-sdne,
st-dngr). The result shows that the time series based temporal link prediction techniques
performs better than static link prediction techniques which depends solely on static
network at a particular time period.

Comparison with Time Series of Neighborhood Based Similarity Metrics
The MAP scores obtained on comparing the proposed framework with state-of-the-art
time series based techniques is shown in Table 2. Better prediction results are obtained
by taking top 20% links as connected and the rest as disconnected links. The observed
results on evaluating the performance of proposed framework in terms of the AUC value
computed is depicted in Fig. 4(b). The proposed system shows better results than time
series based method using neighborhood based similarity measures for all the four real-
world datasets. This confirms that the ability of NRL techniques to generate deep and
latent representations of the network improves the prediction results.

Effect of Various Network Embedding Approaches
The performance of the system on three recent network embedding techniques are com-
pared here. The observation of the prediction results on various embedding techniques



26 A. Divakaran and A. Mohan

Fig. 4. Comparison of the proposed system with (a) static link prediction techniques (b) time
series based link prediction techniques

is shown in Fig. 5. Among the three network embedding techniques, SDNE gives better
prediction results for Enron and Haggle datasets. The feature dimension for SDNE is
set as d = 16 for both the datasets. Since SDNE is found to be suitable for capturing
non-linear patterns, it confirms that joint objective function of autoencoder designed for
SDNE better captures the local and global structures in Enron andHaggle networks quite
efficiently. Moreover, Node2Vec framework gives a better prediction result for Hep-ph
and Radoslaw datasets. For this experiment, the feature dimension for Node2Vec is set
as d = 128 for both the datasets. It confirms that the random walk based approach in
Node2Vec better captures the community structure in these networks effectively and
hence gives a better prediction result.



A Network Embedding Approach for Link Prediction 27

Table 2. Comparison of MAP scores of proposed system with baseline methods

Method Enron Haggle Hep-ph Radoslaw

Ts-cn 0.04 0.07 0.03 0.04

Ts-jc 0.06 0.10 0.04 0.03

Ts-aa 0.04 0.06 0.02 0.04

Ts-node2vec 0.09 0.11 0.07 0.09

Ts-sdne 0.08 0.30 0.05 0.08

Ts-dngr 0.12 0.19 0.06 0.17

Fig. 5. Effect of various network embedding approaches

6 Conclusion

In this paper, we proposed a unified framework for temporal link prediction which
incorporated NRL based techniques and time series analysis. One of the key idea of our
framework is to capture the non-linear temporal patterns in dynamic networks using net-
work embedding techniques. Moreover, the framework is extended to incorporate time
series forecasting models for prediction, since time series best captures the change over
time. Experiments conducted on four real-world datasets show that the proposed system
outperforms the state-of-the-art works. In future, the static network embedding tech-
niques can be extended to incorporate dynamic behavior of networks. Dynamic network
embeddings techniques can be deployed to perform the temporal link prediction task.
The strength of dynamic network embedding techniques can be incorporated for time
series construction to yield better prediction results. Moreover, leveraging different neu-
ral network models like LSTM for time series forecasting is also an interesting direction
towards enhancing the performance of time series based temporal link prediction.



28 A. Divakaran and A. Mohan

References

1. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
2. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1225–1234 (2016)

3. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 855–864 (2016)

4. Cao, S., Lu,W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirtieth
AAAI Conference on Artificial Intelligence (2016)

5. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc.
Inf. Sci. Technol. 58(7), 1019–1031 (2007)

6. Güneş, İ., Gündüz-Öğüdücü, Ş., Çataltepe, Z.: Link prediction using time series of
neighborhood-based node similarity scores.DataMin.Knowl.Discov.30(1), 147–180 (2015).
https://doi.org/10.1007/s10618-015-0407-0

7. Özcan, A., Öğüdücü, Ş.G.: Temporal link prediction using time series of quasi-local node
similarity measures. In: 2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 381–386 (2016)

8. Özcan, A., Öğüdücü, Ş.G.: Multivariate temporal link prediction in evolving social networks.
In: 2015 IEEE/ACIS 14th International Conference on Computer and Information Science
(ICIS), pp. 185–190 (2015)

9. Wu, T., Chang, C.S., Liao, W.: Tracking network evolution and their applications in structural
network analysis. IEEE Trans. Netw. Sci. Eng. (2018)

10. Ralescu,A., Kohram,M.: Spectral regressionwith low-rank approximation for dynamic graph
link prediction. IEEE Intell. Syst. 26(4), 48–53 (2011)

11. Li, T., Wang, B., Jiang, Y., Zhang, Y., Yan, Y.: Restricted Boltzmann machine-based
approaches for link prediction in dynamic networks. IEEE Access 6, 29940–29951 (2018)

12. Brockwell, P.J., Davis, R.A., Calder, M.V.: Introduction to Time Series and Forecasting, vol.
2. Springer, New York (2002)

13. Lei, K., Qin, M., Bai, B., Zhang, G.: Adaptive multiple non-negative matrix factorization
for temporal link prediction in dynamic networks. In: Proceedings of the 2018 Workshop on
Network Meets AI & ML, pp. 28–34 (2018)

14. Ma, X., Sun, P., Qin, G.: Nonnegative matrix factorization algorithms for link prediction
temporal networks using graph communicability. Pattern Recognit. 71, 361–374 (2017)

15. Ma, X., Sun, P., Wang, Y.: Graph regularized nonnegative matrix factorization for temporal
link prediction in dynamic networks. Phys. Stat. Mech. Appl. 496, 121–136 (2018)

16. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor
factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 10 (2011)

17. Das, S., Das, S.K.: A probabilistic link prediction model in time-varying social networks. In
2017 IEEE International Conference on Communications (ICC), pp. 1–6 (2017)

18. Ahamed, N.M., Chen, L.: An efficient algorithm for link prediction in temporal uncertain
social networks. Inf. Sci. 331, 120–136 (2016)

19. Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex
networks. Phys. Rev. E 80(4), 046122 (2009)

https://doi.org/10.1007/s10618-015-0407-0


IDK My Friends: Link Analysis on Social
Networks to Mine Surprise Connections

Sai Praveen Mylavarapu and Shubhashri Govindarajan(B)

PSG College of Technology, Coimbatore 641004, India
saipraveenmylavarapu@gmail.com, agshubhashri@gmail.com

Abstract. Social media plays a vital role in connecting people all around the
world through various walks and phases of life, forming clustered meaningful
communities. However, there is more scope for the social media platforms to
mine fine-grained information that can entice and surprise the social media users
based upon their respective egocentric networks. The list of mutual friends in an
individual’s social network might be trivial or obvious most of the time. To up the
game and surprise the individuals, the social media platforms could mine those
mutual connections that are connected across different communities, serving as
inter-cluster crucial edges between communities. As these connections are across
the communities, the user possibly wouldn’t be aware of these connections and
thus would be surprised to know them.

This work contributes along the lines of deploying community detection algo-
rithms like Girvan Newman and graph based modelling techniques to produce the
optimal number of surprise connections. This model was tested on real world
Twitter based egocentric networks of 156 college students with evidence and sur-
vey, showcasing a good performance in surprising users,thereby increasing the
interaction and engaging time of users on the social media platform significantly.

Keywords: Link analysis · Graph modelling · Egocentric network · Community
detection · Social network · Twitter · Data mining · Computational modelling ·
Modularity · Divisive hierarchical clustering

1 Introduction

Social network analysis has witnessed a huge wave of attention and improvement in
recent years. It has become highly competitive for the social media platform to engage
and keep their users excited and involved for more amount of time. To aid and up the
game of these platforms, mining and deriving more knowledge from the egocentric
networks of the individuals is one of the ways to move forward.

This work revolves around the idea of surprising social media users by notifying
them of the connections that are unknown to them in their friends’ circle. In this paper,
we define surprise connections of a person to be two of the person’s friends who belong
to different communities in the person’s egocentric network and are friends with each
other. A community characterizes a set of nodes that are densely connected amongst
themselves and sparsely connected with other nodes in the network.

S. P. Mylavarapu and S. Govindarajan—Both the authors contributed equally to this work.

© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 29–35, 2020.
https://doi.org/10.1007/978-981-15-9700-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_3&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_3


30 S. P. Mylavarapu and S. Govindarajan

Fig. 1. Surprise connections in IDK My Friends

Figure 1 portrays the significance of this research work. Say, B and C were your
school friends. As you moved on to work in another city, A became your good friend at
the workplace. Say, A and B had met at a tech conference and were friends ever since.
Our research work helps you to discover the potential surprise connection that A and B
are friends with each other which you are unaware of. Indeed this a surprise connection
when compared to a trivially known connection that B and C are friends too. Mining
these types of connections from the individual’s egocentric network is the aim of IDK
my friends.

As an example, if a person has 400 friends with 4 communities in his/her network,
the number of connections may be around 19,000 assuming the clusters are highly
connected. Out of all these connections, we aim to mine only those connections that the
user may not be aware of, which could be probably 3 or 4 connections.

To the best of our knowledge, no one has studied techniques to mine connections
that surprise users. We have modeled this problem as a graph and applied community
detection algorithms and its variants to detect the optimum number of inter cluster
edges between dense communities, thus notifying them as the surprise connections.
This work also contributes in obtaining the ideal number of connections that are the only
connections that surprise the user.

2 IDK My Friends

2.1 Dataset Preprocessing

A 1.5 degree egocentric network [1] of a person is a network from that person’s point of
view in which all the people with whom this person is connected are taken and all ties



IDK My Friends: Link Analysis on Social Networks 31

among these people are included. Using the Python library Tweepy [2], Twitter’s API [3]
responses are obtained and a 1.5 degree egocentric network of the user is constructed.
Initially, the information of people that the user is ‘following’ is retrieved. For every
person in the list of ‘following’ people, the ids of the people he/she is ‘following’ is
immediately fetched and returned. These ids are the friends of friends of the user. The
same is done for the followers who follow back the “following” people of the user. An
intersection of these two sets of ids, forms the friendship ties and connections in the
network. On an average, a total of around 925 nodes and 22500 edges were present in
the egocentric graphs of an individual. The node represents the friend of the user and
edges represent connections between friends.

Since the graph represents the connections and ties between the alters, it is an undi-
rected and unweighted graph. Given the fact that the data is from a social media platform,
the network’s nodes cluster around various communities like school, family, work and
from other walks and phases of life.

2.2 Approach

Girvan Newman algorithm [4], a divisive hierarchical clustering based algorithm, with
numerous variations and optimizations was used to detect the ideal number of clustered
communities without the user specified, desirable number of clusters. The complex
network of friends circle was represented as a graph with the people as nodes and edges
connecting friends. Girvan Newman algorithm uses the edge betweenness factor to
iteratively eliminate edges through which the highest number of shortest paths between
nodes in the graph pass through. These edges have high edge betweenness factor that
serve as potential surprise connections.

Theoptimal number of inter cluster edges that have to be considered (surprise connec-
tions) forms the main crux of the problem statement. Instead of using a hyper-parameter
for number of clusters, we employed the concept ofmodularity to aid in producing poten-
tial surprise connections until more fine-grained, communities emerge, still maintaining
a high cohesion within clusters [5].

Modularity,Q =(number of edges within groups)−
(Expectednumberofedgeswithingroups)

Actual number of edges between node i and node j is,

Aij = 1, if there is an edge between node i and node j

= 0, otherwise

Expected number of edges between node i and node j is,
kikj
2m ,where ki is degree of

node i and kj is degree of node j and m is the number of edges in the cluster.
Thus,

Q = 1

4m

⎡
⎣∑

i,j

(
Aij − kikj

2m

)
δ
(
ci, cj

)
⎤
⎦ (1)



32 S. P. Mylavarapu and S. Govindarajan

where ci is group id of Node i and cj is group id of Node j and

δ(a,b) = 1, if a=b

= 0 otherwise.

Q lies in the range [-1, 1] and is calculated for all groups and aggregated. If Q >

0,number of edges within the group exceeds the expected number of edges within the
group. The surprise connections are produced until the optimal Q is reached. In practice,
for networks with strong community structure, Q typically falls in the range of 0.3 to
0.7 [6].

The algorithm’s steps to retrieve surprise connections are listed below:

1. Compute the edge betweeness of all existing edges in the network.
2. Remove the edge with the highest edge betweenness serving as a surprise connection

across communities.
3. Recompute the edge betweeness of edges affected after the removal of this edge.
4. Steps 2 and 3 are repeated until optimal Q is reached.

Unlike the clustering or partitioning algorithms that require a hyper-parameter “k”, to
stop partitioning after user-defined number of communities are obtained, this algorithm
stops when the optimum fine-grained communities are formed. The computing time
efficiency is better off when compared to the naive methods as the edge betweeness of
the affected edges are the only edges for which recomputation occurs and this whole
procedure stops when the optimum “k” is reachedwithout validating on a range of values
to find the optimum number of clusters. In order to improve scalability and compute
time, the fast optimized version of the Girvan Newman algorithm was employed into
the application, as discussed in the next section.

2.3 Variations and Optimizations

The fast optimized version of Girvan Newman algorithm [7] was used to increase the
scalability and computing time efficiency by considering the matrix format of Q as,

Q = 1

4m

∑
i,j

(
Aij − kikj

2m

)
sisj = 1

4m

(
sTBs

)
(2)

where, Nodes i and j are considered from the same group
s is a vector of group memberships such that si E {+1, −1}
B is the modularity matrix,

Bij = Aij − kikj
2m

(3)

Q is maximized to find s, by rewriting Q in terms of eigenvalues of B and dividing the
nodes of the elements of the leading eigenvector of B hierarchically until the proposed
split does not increase modularity [8].

Steps for the fast optimized version to retrieve surprise connections are listed below:



IDK My Friends: Link Analysis on Social Networks 33

1. Finding the leading eigenvector of modularity matrix, B
2. Divide the nodes by the sign of the elements in the leading eigenvector
3. Repeat hierarchically until:

A. If a current proposed split does not cause modularity to increase, declare
community not divisible and revert back to previous state

B. If not A, the inter cluster edges obtained are potential surprise connections.

4. If all communities are indivisible, end.

The eigenvector is computed by using the power method, by initially starting with a
random value until it converges through iterative multiplication and normalization.

3 Experimental Results

A web application using the fast optimized version of Girvan Newman algorithm was
developed using Python, NetworkX library [9] and Twitter APIs to obtain the egocentric
network of the user.

A total of 156 students from a college have used the web application and have taken
up a survey to verify if the surprise connections generated by our application indeed
surprised them or not (the user already knows that they are friends), or the user did
not know much about those connections (befriended casually). The average size of the
individual network contains 925 nodes and 22500 edges. On an average, every person
was given 5 - 6 surprise connections.

Table 1 summarizes the corresponding survey results. Global response row is the
percentage calculated from the total sum of responses by all users. The percentage
of surprise connections is calculated for every user and these individual percentages
are added up to generate an average across all users. Average individual response row
contains these results. This is to evaluate if some users found most results surprising
while others hardly found the connections as surprising. The results didn’t deviate much
showing that this is not the case.

Table 1. Experimental results of the web application, IDK my friends.

Metric # responses Surprised Not surprised Did not know

Global response 860 96.28% 1.63% 2.09%

Avg individual response 5.5 96.58% 2.14% 1.28%

As the results show that 96.28% of the responses are surprising, we infer that the
algorithm stops when the optimal number of clusters are identified.

The sub-figures in Fig. 2 show an example of the visual representation of a user’s
egocentric network from Twitter. There are four distinct communities detected, namely
high school, junior college, college and family which go hand-in-hand with real time



34 S. P. Mylavarapu and S. Govindarajan

Fig. 2. Graph visualization of community detection for a sample user.

data of the user who was an undergraduate student. The surprise connections are the
inter cluster edges that are being removed at each stage.

4 Other Applications

The proposed method in this work has great potential to be applied in different domains.
One such application would be to find out people who work on particular cross-domain
fields on GitHub or other repository hosting service projects (a repository can belong to
multiple domains, for example, medicine, banking, machine learning, etc.). Other appli-
cations may include, anomaly detection in networks,detecting sudden switch between
tasks or user behavior in a network, studying patterns in biochemical networks and
observing movement of people across different groups of companies to understand the
human thought process and psychology in life.

5 Conclusion and Future Work

We conclude that the fast optimization algorithm to find crucial inter cluster edges
as surprise connections performs well to a large extent on large egocentric networks
of common users on social media platforms. The algorithm deployed provides an apt



IDK My Friends: Link Analysis on Social Networks 35

threshold to stop generating surprise connections when an ideal modularity factor is
reached. This serves as an advantage over clustering and partitioning algorithms that rely
upon auser definednumber of clusters. The fast optimization algorithmhas caused a good
amount of speed up in the compute time and has improved the scalability substantially.

The future works include increasing the scalability as millions of users would con-
currently want to access their egocentric networks to figure out the surprise connections.
Possible approaches to tackle this problem would be to execute the deployed code on
the client’s browser rather than on server side, use distributed computing techniques
or consider finding an optimum threshold for the surprise connections with factors,
namely local random walk [10] along with modularity or tackling the problem without
a community detection approach.

References

1. Hogan, B.: Visualizing and interpreting facebook networks. In: Analyzing Social Media
NetworkswithNodeXL, Insights fromaConnectedWorld.Amsterdam,Elsevier, pp. 165–179
(2011) https://doi.org/10.1016/B978-0-12-382229-1.00011-4

2. “API Reference.” API Reference-Tweepy 3.5.0 Documentation. Retrieved from https://docs.
tweepy.org/en/v3.5.0/api.html

3. “Docs-Twitter Developers”. Retrieved from https://developer.twitter.com/en/docs.html
4. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.

Natl. Acad. Sci. 99(12), 7821–7826 (2002)
5. Qi, X., Song,H.,Wu, J., Fuller, E., Luo, R., Zhang, C.Q.: Eb&D: a new clustering approach for

signed social networks based on both edge-betweenness centrality and density of subgraphs.
Elsevier Phys. A. Stat. Mech. Appl. 482, 147–157 (2017)

6. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E, USA, American Physical Society. 69 26–113 (2004)

7. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. In: Physical
Review E, USA, American Physical Society. 69, 66–133(2004)

8. Newman,M.E.J.: Finding community structure in networks using the eigenvectors ofmatrices.
Physical Review E, USA, American Physical Society. 74(3), 36–104 (2006)

9. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function
using NetworkX. In Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), Proceedings
of the 7th Python in Science Conference (SciPy2008). Pasadena, CA USA, pp 11–15 (2008)

10. Liu, D.,Wang, C., Jing, Y.: Estimating the optimal number of communities by cluster analysis.
Int. J. Modern Phys. B, 30, p. 1650037 (2016)

https://doi.org/10.1016/B978-0-12-382229-1.00011-4
https://docs.tweepy.org/en/v3.5.0/api.html
https://developer.twitter.com/en/docs.html


Prediction of Patient Readmission Using
Machine Learning Techniques

V. Diviya Prabha and R. Rathipriya(B)

Department of Computer Science, Periyar University, Salem 11, India
diviyaprabha7@gmail.com, rathipriyar@gmail.com

Abstract. Prediction analysis on hospital readmission has becomeperplexing due
to large volume of data. In today’s world, data generated from hospitals, sensors,
reports from doctor, etc., accurate readmission prediction for large dataset is a
challenging task. The aim of this paper is to develop an accurate prediction model
for readmission to improve healthcare. A new approach called Entropy Based Fea-
ture Selection andEntropyBasedHyper Parameter Tuning for Logistic Regression
is developed for accurate prediction of readmission and enhances machine per-
formance for large dataset. The evaluation shows the proposed model provides
accuracy of 96% comparatively greater than other models and less computation
time.

Keywords: Decision making · Predictive analytics ·Machine learning · Logistic
regression

1 Introduction

Data mining is the process of finding relevant patterns from large size of historical
data. The data mining approach is classified from Artificial Intelligence and machine
learning (Islam et al. 2018) techniques. The main aim of data mining is prediction
it is the most common application used in many areas. It is also process of finding
relationship between variables in order to identify new patterns. Hospital readmission is
turned great attention to patient and doctors. It is defined as return of patient soon after
the discharge less than of 30 days. Survey results 2,599 hospitals (Brindise and Steele,
MachineLearning-based Pre-discharge Prediction ofHospital Readmission, IEEE2018)
will face the problem of readmission rate. Excessive readmission is increasing day-by-
day which leads to negative impact to the healthcare patients. The main causes are
chronic disease, heart attack, hip and knee replacement and pneumonia. As patient data
is increasing there is no predictive analytics for huge volume of data. Predictive analytics
aim to build a model target of learning process. Predictive analytics towards healthcare
is a challenging task in today’s world. The medicinal field has its incredible commitment
in this storm of information on some innovative developments in the field like predictive
analytics which has moved the trial of consideration past history of patients self-care and
observing utilizing straightforward gadgets that convey results on prediction of disease.
It distinguished (Islam et al. 2018) three kinds of investigation in techniques: descriptive

© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 36–48, 2020.
https://doi.org/10.1007/978-981-15-9700-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_4&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_4


Prediction of Patient Readmission Using Machine Learning Techniques 37

is investigation and disclosure of data in the dataset, predictive is used for forecast of
present and future occasions dependent on authentic information and prescriptive use of
situations to give choice help.

Management of large volume of data in healthcare is a difficult task it paves a way
to Big Data Analytics (Wang and Ann 2016). It consist of more than a terabyte of data
(Volume), x-rays, text data (Variety), sensor data like health monitoring for ICU patients
(Velocity), patient care (Veracity) etc., that contains different V’s performing Big Data.
Recently Big Data is misused as volume only that is huge volume of data. It is not only
one V of Volume it includes another V’s also. The modern Big Data with data mining is
used to extract new knowledge from the lots of data at the individual level of patients.
The role of analytics is used to improve patient care, diagnosing disease at the early
stage, reducing cost and easy way to connect doctor and patient continuously. Huge
volume of unstructured data is useful only if it converted into a meaningful way is the
task of analytics. Spark is a cluster technology that is the MapReduce concept in Big
Data. It works on the concept of RDD (Resilient Distributed Dataset) where the element
of dataset works in parallel to reach the solution. Data are useful only if it is proper
format and unstable by human. Analytics is doing better in hospitals and urban patient
care for data management for upcoming patient. It also provides a way to personalized
medicine.

Machine learning is a statistical tool for data analysis for predicting better outcome. It
is also a kind of artificial intelligence techniques allows the model to learn automatically.
This kind of approach provides a great impact for medical research which has huge
amount of data. Diabetes is a high risk disease affecting from just born baby to old age
people by high glucose level. Normally the food and drug taken by human is converted
to glucose or sugar. A person may have high blood sugar if the production of insulin is
insufficient or insulin doesn’t respond to body. The International Diabetes Federation
(Jayanthi et al. 2017) has reported that by 2045 cases of diabetes will rise to 152 million
in India which is regrettable fact. Accurate prediction of readmission is a challenging
task in health care problem. As data in healthcare is increasing as hospital and patient
get increased maintaining data and prediction of future outcome is a difficult task. To
reduce patient readmission and early stage to take care of patient is easy.

The Sect. 2 discusses the review of related work and process of proposed work
in readmission prediction. Section 3 describes the machine learning techniques and
proposed methodology of readmission prediction model. Section 4 concludes the paper.

2 Methods and Materials

Machine learning techniques for hospital readmission prediction using data drivenmodel
is carried out (Lacson et al. 2019) with testing approach was calculated in 5-fold cross
validation, features rankingwas performed by correlation based feature selection. Patient
similarity (Tashkandia et al. 2018) is analyzedwith exploration of big datamachine learn-
ing condition are applied for decision making. 30-day hospital readmission prediction
after acute myocardial infarction it identifies early risk of patient the data are collected
from 6 hospitals from diverse and proposed method is followed. Numerous methods are
tried for readmission prediction but accurate prediction is not an easy task. The machine



38 V. Diviya Prabha and R. Rathipriya

learning application (Brindise and Steele, Machine Learning-based Pre-discharge Pre-
diction of Hospital Readmission, IEEE 2018) are described and pre-discharge prediction
of hospitalreadmission with an accuracy of 71% is obtained. Deep Learning techniques
(Hammoudeh et al. 2018) combination of data engineering and convolution neural net-
work are used for prediction which outperforms well. Diabetic patient readmission pre-
diction is an important research in some cases model is not specific to reach the target the
focus on ensemble (average) methods to reach the target (Mingle, Predicting Diabetic
ReadmissionRates:MovingBeyondHba1c 2017). In this paper (Sneha andGangil 2019)
analyzing diabetic data using machine learning in which navie bayes outperforms the
best accuracy of 82%. It takes the correlation value and generates the value of attributes
as 1 predicting for both diabetic patient and non-diabetic patient. It also summarizes
the importance of optimal features for predictive analytics. The proposed methodology
is this paper uses entropy for variable selection and hyperparameter tuning for logistic
regression. The existing high-dimensional patient data is reduced with optimal vari-
ables. This outperforms better accuracy than the other model. This model also focuses
to implement BigData in pyspark aspects. It also suits for increasing data dynamically
to handle new data for readmission prediction. It helps to reduce the readmission risk
and improves patient care.

3 Machine Learning Techniques

Machine learning is amathematicalmodel used to extract the insights fromdata available.
It aims to solve critical problems and identify health risk to improve patient care.Machine
learning towards healthcare aims to replace doctors andnurse paves away to personalized
prediction. There are different types of machine learningmodels themodel which is high
in accuracy for predicting is chosen as best model for prediction. This paper utilizes
logistic regression to find the variables (features) that determine readmission prediction
accurately.

3.1 Feature Selection

Feature selection also known as variable selection is an important approach for model
prediction. To identify the relevant data (Lacson et al. 2019) is an important task to
improve the accuracy. The basic feature selection method filter and wrapper methods
are already performed (Yifan and Sharma 2014; Cai and Luo 2018). From 36 features
11 features are selected from feature selection method.

Table 1 describes the algorithms such as Principle Component Analysis (PCA),
SelectKbest, Extra tree classifier and Entropy are carried out to select the best features
for readmission prediction. Among the methods Entropy based Feature Selection (EFS)
performs better for readmission prediction.

The Fig. 1 expounds the feature selection using PCA method, the horizontal line
indicate the value of each individual feature for readmission the high values features are
selected for prediction. Similarly methods SelectKbest and Extra tree classifier are eval-
uated discrimination of figure was different feature were attempted from each methods.



Prediction of Patient Readmission Using Machine Learning Techniques 39

Table 1. Feature selection using various methods

Algorithms Features

PCA (1, 3, 4, 5, 7, 10, 11, 12, 22, 24, 30, 31)

SelectKbest (1, 5, 7, 10, 11, 12, 14, 22, 31)

Extra Tree Classifier (1, 3, 6, 8, 12, 14, 30, 31, 35)

EFS (1, 3, 5, 7, 8, 11, 12, 14, 15, 20, 26)

Fig. 1. Feature selection using PCA

Fig. 2. Feature selection using SelectKbest

In EFS significant whose accuracy is high compared to other methods. It was observed
that entropy based feature selection indicate good fit to the prediction model.

The Figs. 2, 3 and 4 epitomizes the feature selection with Principle Component
Analysis (PCA), SelectKbest and EFS features are selected based on the readmission



40 V. Diviya Prabha and R. Rathipriya

Fig. 3. Feature selection using extra tree classifier

Fig. 4. Feature selection using entropy

prediction. The value of each method differs considerably to enhance the best feature.
The value that is greater is taken for the consideration as best features. In the present
study EFS provides high accuracy compared to other methods. From this method the 11
features are taken as best feature for readmission prediction. This method proves that a
good predictive model needs the best features to improve accuracy. Table 2 defines mean
values and Standard Deviation value (S.D). It also mention the estimated S.D and mean
value for each features the values are increasing and decreasing based on the features.

3.2 Decision Tree

It is one of the comprehensible classification techniques and one in every of the foremost
common learning ways. The illustration of decision tree is dividing the attributes of



Prediction of Patient Readmission Using Machine Learning Techniques 41

Table 2. Mean and S.D values of features

Features Estimated mean value S.D Estimated S.D S.D mean

age 65.51 0.040 15.97 0.06

time_in_hospital 4.20 0.070 2.93 0.01

num_procedures 1.42 0.004 1.75 0.06

discharge_id 3.47 0.013 5.22 0.09

number_inpatient 0.17 0.001 0.60 0.01

A1Cresult 0.12 0.008 0.33 0.01

metformin 0.21 0.001 0.40 0.01

insulin 0.51 0.001 0.49 0.01

numchange 0.26 0.001 0.48 0.01

num_medications 15.6 0.022 8.28 0.01

glyburide 0.11 0.001 0.31 0.08

dataset into braches until certain condition is satisfied. The first decision tree algorithm
was proposed by Ross Quinlan in 1986 (Quinlan 1986).

Decision tree are separated root to inner node called leaf. The stopping common
criteria for decision tree are

• The best condition must not overcome a threshold
• The height the tree reached maximum
• The number of nodes is less the minimum value

The instance in Fig. 5 describes if abc is the root of the tree if abc is a1 then it will
point to another subset of root def else it might be b1 or c1 to the value of class yes or no
similar kind of performance in the root def. The decision tree in healthcare bigdata is an
important task such as length of stay in hospital, total cost of hospital etc., (Moon and
Lee 2017) the variables are divided into groups and sub-groups to predictive the output
with many variables.

3.3 Random Forest

Random Forest algorithm fits several decision tree on dataset and predicts the model
accuracy (Lacson et al. 2019). Training the data while building the trees and for splitting
nodes are taken into consideration some samples are replaced with multiple times. Ran-
domized tree is used for understanding the variable importance for prediction (Louppe
et al. n.d.) pruning the random space is allowed to identify relevant variables. Making
the prediction using random forest is to find the correct relevant features is the impor-
tance of learning algorithm. Random forest is a bootstrapping procedure for selecting
the training samples.



42 V. Diviya Prabha and R. Rathipriya

Fig. 5. Decision tree for training with classes yes and no

3.4 Support Vector Machine

It is a powerful classification algorithm construct a straight line that separates two classes
apart. To construct a hyperplane first we have to transform the dimensional into vec-
tors. The optimal hyperplane is constructed by (Cortes and Vapnik 1995). The hyper-
plane maximizes the features in dataset and identify the possible distance for optimal
hyperplane

W0 · x+ b0 = 0 (1)

The W0 is the normal vector of the hyperplane, b is the scalar and x is the vector of the
input vector. When the optimal hyperplane is found the data line lie in that plane. That
means complexity cannot affect the features and number of training of instances.

3.5 Logistic Regression

It is the statistical technique widely used for analyzing relationship between variables
with categorical outcome. It aimed at finding the best fitting model. Logistic regression
(Diviya Prabha and Ratthipriya 2018) was chosen because the predicted variable is
categorical (either admitted or not admitted). The Logistic regression is given by

=
{
0 Patient is not readmitted
1 Patient is readmitted

i = 1, 2, . . . n

p = 1

1+ e−(β0+β1x1+β2x2...)

Where idpi symbolizes independent variables, signifies dependent variables, p is the
probability of independent variables, is coefficient of constant term, the π(idpi) is the
probability of patient readmitted depends on p-independent variables in the dataset. x1
x2 also represents independent variables.



Prediction of Patient Readmission Using Machine Learning Techniques 43

Table 3. Accuracy prediction for machine learning techniques

S. No Machine learning algorithm Accuracy RMSE

1) Logistic Regression 95% 0.25

2) Decision Tree 93% 0.30

3) Random Forest 92% 0.32

4) SVM 90% 0.40

The above Table 3 describes the machine learning techniques with accuracy score
and root mean square value from the table it justifies that logistic regression provides
high accuracy when compared with other models and similarly the Root Mean Square
Error (RMSE) is minimum for logistic regression. The formula is calculates ads [15]

RMSE =
√√√√1

n

n∑
i=1

(Ci − Ti)
2

Where Ci is the predicted value for readmission and Ti is the target value of readmission.
N represents number of training samples. Hyper parameters is the method of ability to
learn make a model. Choosing the correct parameter is an important task in machine
learning which will avoid over fitting. It is helps to choose the best features that support
for predictability.

The Table 4 describes the logistic regression model to the dependent variable. It
exemplifies true positive rate of themodel, false positive rate, true negative and false neg-
ative rate with classification accuracy of 95%. To improve the accuracy a new approach
ensemble method is carried on tuning the hyperparameter. Three methods are chosen to
optimize the parameter and improve the prediction accuracy. Learning hyperparameter is
difficult than that of training it. The best method is chosen based on prediction accuracy.
The three methods are:

• Randomized
• Correlation
• Entropy

a) Randomized Hyper parameter Tuning Logistic Regression (RHTLR)

Table 4. Classification table for logistic regression

Observed Predicted Accuracy (%)

True False

Positive 21341 1983 95

Negative 226 6716



44 V. Diviya Prabha and R. Rathipriya

Themodel chooses any two parameters randomly and starts to run themodel. Among
the 11 variables any two are features are selected randomly and their parameter are
tuned. It choose the optimal parameter to make the model an efficient one. The main
disadvantage of this method is as the feature is selected randomly the most significant
features for the prediction are missed. So the prediction accuracy is same when the
model is run. The random features are inefficient for target class. While tuning random
numbers there is no difference in prediction value.

a) Correlation Based Hyperparameter Tuning Logistic Regression (CBHTLR)

This model chooses two parameters that have high relationship with the target vari-
able readmitted. It expresses the relationship with the value of the variables and the taken
to the consideration. While tuning the parameter with the correlated value the prediction
value is increased slightly but there is no much effective for prediction.

b) Entropy Based Hyper parameter Tuning Logistic Regression (EBHTLR)

Entropy is the measure of randomness or uncertainty from the features that is to be
processed. The values which are lower those features is taken for parameter tuning. That
is if the entropy value is low then its predictability is high for the occurrence. The aim
is to reduce uncertainty. From the Table 2 the entropy value for least four features are
taken their parameter values are tuned. The formula for entropy is given below

ENTROPY =
n∑

i=1

−pilog2pi

Where the probability for each features is are calculated fromdataset after performing
logistic regression. Those features with low entropy have high accuracy of prediction
for parameter tuning. Figure 6 depicts the plotted graph of entropy and correlation value
for parameter tuning.

Algorithm: BHTLR  
BEGIN D: Features ,S: Data Set 
START 
# Feature Selection 

Best FS_D(S): 
If Features (D) = max (entropy (features (D)) else 
Delete Features_D End If 

  #Readmission Prediction  
Prediction _LR (Features_info): 

For each Features_info in S  
LR= Logistic Regression () 
End For 

  #Parameter Tuning 
Perform Parameter tuning (Random) Calculate 

Entropy: 
For each Features_info in S 
 Entropy = min (Entropy (Features info)) 

End For 
Update Parameter tuning (Entropy)  

   END 



Prediction of Patient Readmission Using Machine Learning Techniques 45

Fig. 6. Entropy and correlation values for features

Fig. 7. Comparative workflow of existing model with proposed model

Figure 7 explains the comparative workflow of existing approach and proposed
approach. The patient data is carried out in two approach exiting approach for feature
selection using the methods PCA, SelectKbest and Extra Tree Classifier. After feature
selection readmission prediction using machine learning techniques such as Decision
Tree, Random Forest and SVM is its evaluation results are calculated using metrics such
as precision, recall and f1 measure. The proposed approach for feature selection using
entropy which is the EFS method and prediction using logistic regression is performed
an ensemble methods are used to improve the prediction accuracy. The three methods



46 V. Diviya Prabha and R. Rathipriya

RHTLR, CBHTL and EBHTL are used for hyper parameter tuning. The prediction
evaluations are carried out for the proposed approach which is comparatively better
accuracy than existing approach. The algorithm describes the prediction model of the
proposed work three steps are followed tomake the algorithm an effective method Step 1
is the feature selection that are performed using entropy. Step 2 is the predictionmodel of
various machine learning techniques the logistic regression techniques that is improved
in accuracy level is taken for hyperparameter tuning to improve the accuracy level. Step 3
describes three methods are followed for tuning randomized method which is the default
method, second is correlation method and entropy method. From these methods three
feature values are taken for tuning the model. The entropy based model improves the
accuracy than the existing method.

4 Results and Discussions

To identify the significant of proposed approach the evaluation is required. The per-
formance of the model is mainly under the perspective of classification accuracy and
running time. Pyspark environment helps the machine to run in parallel.

The Table 5 exemplifies the probability of the predicted values it is shown that the
values of the proposed model are consequently increasing and it is also high when
compared to the other model. Logistic Regression has outperformed well for the parallel
framework and less computation time. The values are calculated for 13 iteration and the
result is obtained to the table.

Table 5. Probability of predicted values

Iteration Decision Tree Random
Forest

GBT EBHTLG

1 0.69 0.92 0.89 0.93

2 0.67 0.92 0.87 0.92

3 0.75 0.79 0.93 0.96

4 0.79 0.87 0.93 0.95

5 0.78 0.84 0.93 0.96

6 0.76 0.8 0.93 0.95

7 0.78 0.84 0.93 0.95

8 0.9 0.88 0.93 0.96

9 0.79 0.88 0.93 0.93

10 0.79 0.88 0.93 0.96

11 0.78 0.84 0.93 0.96

12 0.79 0.88 0.93 0.88

13 0.75 0.83 0.83 0.89



Prediction of Patient Readmission Using Machine Learning Techniques 47

The Table 4 designates the statistics of eachmodel such as precision, recall, F1-Score
and weighted precision, weighted recall, weighted F1-Score. It also illuminates the False
Positive Rate from which concludes that EBHTLR performs the best model among the
other model (Table 6).

Table 6. Performance of each model Statistic

Classification
algorithm

Precision Recall F1-Score w-Precision w-Recall W F1-Score FPR

Decision Tree 0.8963 0.886 0.891 0.92 0.89 0.91 0.04

Random
Forest

0.9043 0.904 0.904 0.90 0.86 0.90 0.04

GBT
Classifier

0.9054 0.905 0.905 0.90 0.90 0.90 0.04

RHTLR 0.9123 0.903 0.907 0.91 0.90 0.91 0.03

CBHTLR 0.9145 0.914 0.914 0.90 0.90 0.90 0.03

EBHTLR 0.9234 0.923 0.923 0.93 0.91 0.92 0.02

Table 7 reveals the accuracy of the model that is chosen for hyper parameter tuning.
Among the three methods EBHTLR performs better accuracy.

Table 7. Accuracy for hyper parameter tuning model

Hyperparameter tuning models Accuracy (%)

RHTLR 95.23

CBHTLR 95.45

EBHTLR 96.42

5 Conclusion

In this proposedwork, an efficient pyspark process EBHTLRapproachwas implemented
for readmission prediction. Feature selection EFS technique was used to identify the best
features. Through, evaluation it is proved that proposed model is scalable for computing
large dataset. The prediction accuracy is also high compared to other models. This model
is effective and improves patient care.



48 V. Diviya Prabha and R. Rathipriya

References

Lacson, R.C., Baker, B., Suresh, H.: Use of machine-learning algorithms to determine features
of systolic blood pressure variability that predict poor outcomes in hypertensive patient. Clin.
Kidney J. 12(2), 206–212 (2019)

Cai, J., Luo, J.: Feature selection in machine learning: a new perspective. J. NeuroComput. 300,
70–79 (2018)

Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 273–297 (1995). https://doi.org/
10.1007/BF00994018

Diviya Prabha, V., Ratthipriya, R.: Prediction of hyperglycemia using binary gravitational logistic
regression (BGLR). J. Pure Appl. Math. 118(16), 105–119 (2018)

Hammoudeh, A., Al-Naymat, G., Ghannam, I., Obied, N.: Predicting hospital readmission among
diabetics using deep learning. Procedia Comput. Sci. 141, 484–489 (2018)

Jayanthi, N., Babu, B.Vijaya, SambasivaRao,N.: Survey on clinical predictionmodels for diabetes
prediction. J. Big Data 4(1), 1–15 (2017). https://doi.org/10.1186/s40537-017-0082-7

Wang, L., Ann, C.: Big data analytics for medication management in diabetes mellitus. Int. J.
Stud. Nurs. 1(1), 42–55 (2016)

Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests
of randomized trees. In: Advances in neural information processing systems (n.d.)

Islam,M.S., Hasan,M.M.,Wang, X., Germack, H.D.: A systematic review on healthcare analytics:
application and theoretical perspective of datamining. In: Healthcare, vol. 6, no (2), p. 54 (2018)

Mingle, D.: Predicting diabetic readmission rates: moving beyond Hba1c. Curr. Trends Biomed.
Eng. Biosci. 7(3), 555707 (2017)

Moon, M., Lee, S.K.: Applying of decision tree analysis to risk factors associated with pressure
ulcers in long-term care facilities. Healthc. Inf. Res. Korean Soc. Med. Inf. 23(1), 43–52 (2017)

Quinlan, J.R.: Induction of decision trees.Mach. Learn. 1, 81–106 (1986). https://doi.org/10.1007/
BF00116251

Brindise, L.R., Steele, R.J.: Machine learning-based pre-discharge prediction of hospital read-
mission. In: 2018 International Conference on Computer, Information and Telecommunication
Systems (CITS), pp. 1–5. IEEE (2018)

Sneha, N., Gangil, T.: Analysis of diabetes mellitus for early prediction using optimal features
selection. J. Big Data 6(1), 1–19 (2019). https://doi.org/10.1186/s40537-019-0175-6

Tashkandia, A., Wiesea, I., Wiese, L.: Efficient in-database patient similarity analysis for
personalized medical decision support systems. Preprint submitted to Elsevier (2018)

Yifan, X., Sharma, J.: Diabetes patient readmission prediction using big data analytic tools, pp. 1–
30 (2014)

https://doi.org/10.1007/BF00994018
https://doi.org/10.1186/s40537-017-0082-7
https://doi.org/10.1007/BF00116251
https://doi.org/10.1186/s40537-019-0175-6


Cyber Security



An Evaluation of Convolutional Neural
Networks for Malware Family

Classification

Shreya Davis(B), C. N. Sminesh(B), K. S. Akshay(B), T. R. Akshay(B),
and Anjali Ranjith(B)

Government Engineering College, Thrissur, India
shreya.davis1996@gmail.com, smineshcn@gectcr.ac.in, akshayks3573@gmail.com,

akshaytrajesh@gmail.com, anjaliranjith97@gmail.com

Abstract. There has been a rapid rise and diversification in the quan-
tity and types of malware that are currently being propagated. Hence, the
need for a proper mechanism to classify these different types of malware
are of paramount importance. Academic researchers have been analysing
malware samples to understand how they behave and they study the
techniques used by malware developers to improve the security of the
existing infrastructure. Malware analysis can be used for both the detec-
tion of malware and malware classification. In this work, modern con-
volutional neural networks (CNN) are evaluated for the task of malware
classification using image data. The networks that are used for testing
are, VGG, ResNet, Inception-V3, and Xception. These networks have
proven to work with high performance on huge ImageNet dataset, but
the possibility of using such CNN’s needs to be checked for the very
specific task of malware classification. Comparing the results, Xception
Network provided the best performance with an accuracy of 99% and
proved to be the fastest network. In terms of training Inception Network
was better. Furthermore, individual precision and recall values were cal-
culated for each family.

Keywords: Malware classification · Convolutional neural network ·
ResNet · Inception-V3 · Xception · VGG

1 Introduction

The Internet has various applications like doing transactions, communication,
entertainment, e-shopping, and various other commercial and non-commercial
activities. Even though it makes our life convenient, the Internet has made us
vulnerable to external threats. Illegitimate users commit financial fraud or steal
private and sensitive information from legitimate users using malware programs.
The number of such reported malware attacks is increasing with every passing
year.

Malware is malevolent software that is intentionally designed to induce a
threat to the security of the system or to infiltrate without the user’s consent.
c© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 51–60, 2020.
https://doi.org/10.1007/978-981-15-9700-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_5&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_5


52 S. Davis et al.

They can be of different forms such as an executable, HTML file, etc. Malware
developers use such illicit programs to do social engineering attacks like phish-
ing, create bots, install backdoors and get root access. Most attacks involve
the implementation of malicious software. The Emotnet attack and WannaCry
Ransomware attack, to name a few. The complexity of these attacks also keeps
increasing with the rise of digital footprint.

Recent advances in parallel processing libraries and hardware design have
made it possible to utilize deep neural networks for real-time image classification.
Convolutional neural networks are a class of deep learning neural networks that
analyze deep visual imagery.

Visualization provides a means of getting a comprehensive view of any system
or data. Images or pictorial representation makes more sense than any other kind
of representation. In this case, visual representation is generated for a binary file
and that generated representation is used to examine the patterns visible in it.
These are then used for the classification of the given malware file to its family.
Classification of malware into its respective family helps an analyst to get a
better understanding of the details regarding the functioning of the malware.
Malware samples with a similar code structure are grouped into one class. This
in turn helps to have an insight on devising sanitation and detection techniques.
This also helps in devising a general idea about the behavior if we know the
family to which the malware belongs.

In the above section, an introduction to malware analysis and classification
is discussed. In Sect. 2, literature survey conducted as part of the experiment is
discussed along with the convolutional neural networks used in the experiment.
In Sect. 3, the proposed method and the obtained results for each model are
discussed. And the conclusion section is given in Sect. 4.

2 Literature Survey

In this work, a detailed literature survey has been conducted on different tech-
niques for malware classification and deep learning. The details are given in the
following section.

2.1 Malware Visualisation Approaches

Helfman [3] applied the dot plot data visualisation technique to software pro-
grams and by his technique, he showed that visualisation helps in the identifi-
cation of software design patterns. In his technique, first, the data is tokenized.
Then the rows and columns are labelled by a sequence of tokens. A Graph is
plotted such that a dot is plotted if the tokens match and a blank is plotted if
they don’t. The graph thus obtained will always be symmetrical.

Conti et al. [4] used an automated binary mapping technique. He used Byte
plot visualisation technique for files with little or no knowledge about the file
format. His work showed that carefully crafted visualizations provide a bigger
picture and facilitate rapid analysis of both medium and large binary files.



Malware Family Classification 53

Nataraj et al. [2] were the first in devising the method for automatic malware
classification using byte plot visualisation. They found that for many malware
families, the images belonging to the same family appear very similar in layout
and texture. In their method, malware samples were converted to greyscale byte
plot representations. The resultant image is then used to extract texture based
features. For computing texture features from images, they used GIST, which is
an abstract representation technique.

Han et al. [5] proposed a method to visually analyze malware by transforming
malware binary information into image matrices. Their method is divided into
three steps. In Step 1, binary information is extracted from binary sample files.
Step 2 involves generation of image matrices in which the binary information is
recorded as RGB colored pixels. In Step 3, the similarities between the image
matrices are calculated through selective area matching.

All the above methods use visualization approaches for malware classifica-
tion. There are also other methods that classify malware using statistical or
dynamic analysis like malware detection using process behaviour [12], using pat-
tern matching techniques [13], using analysis of malware executables [14], and
using malware signatures [15].

2.2 Convolutional Neural Networks

A Convolution Neural Network (CNN) is a feed-forward neural network. CNN is
the current state-of-the-art neural network architecture for image classification
problems. CNN is comprised of neurons with learnable weights and biases. Many
types of CNN’s have been used by researchers in the past (LeNet-5); however,
the recent ones with more efficiency were chosen for the evaluation.

ResNet. For the comparison purpose ResNet50 - ResNet with 50 layers is cho-
sen. The Resnet network [6] has residual building blocks that solve the problem
of training and testing errors in plain networks on going deep. Usually, neural
networks learn features at the end of several layers, but in resnet, we are try-
ing to learn the residues. As we add layers to the neural network it is observed
that the training accuracy goes down, this is known as the degradation prob-
lem. This inability of neural networks stemmed because learning from identity
mapping was becoming laborious. There exists a solution to the deeper model
by adding additional layers called identity mapping and copying the other lay-
ers from the already learned shallower model. This stops the new solution from
having a higher training error than the learned shallower model.

ResNet50 requires only 3.8 billion floating point operations (FLOP).

VGG-19. In 2014, The VGG network went deeper than its competitors and
could have up to 19 layers. The network [7] was invented by Simonyan and
Zisserman and the network could classify images to up to 1000 different object
categories.



54 S. Davis et al.

The network is trained on a huge dataset from the ImageNet database. Owing
to the usage of small receptive fields, the network goes deep, which leads to better
generalization. This network is simple and uses only 3 × 3 convolutional layers
which are stacked on top of each other in increasing depth. For a given receptive
field, which is the effective area size of the input image on which the output
depends, multiple stacked small size kernels are used instead of a large kernel.
Doing so increases the depth of the network and thus the model can learn more
complex features at a lower cost.

Inception. This type of network [8] architecture uses a new approach in which
along with stacked layers like those in traditional neural networks, layers also
run parallel to each other.

The parallel modules are called Inception modules. These Inception modules
helped in limiting the number of parameters and at the same time increase the
total number of layers considerably.

Layer with a 5 × 5 connection can be replaced with two 3 × 3 layers that
help in achieving a small number of parameters. Doing so also reduces the com-
putation necessary as 5 × 5 is more expensive than the 3 × 3 layers.

Further reduction in computation can be achieved by replacing the 3 × 3
layer by 3 3 × 1 output layers. The network thus obtained is the Inception V3
network. The next version Inception V4 has a more simplified architecture with
better performance due to the increased number of inception layers.

Xception. The Xception network [9] is the extreme version of the Inception
network obtained by using convolutions which are depthwise separable by max-
imizing the number of towers in a module. The number of parameters for the
Xception network is the same as the Inception V3 network. But at the same
time, the performance of the Xception network was better than the Inception
network.

3 The Proposed System Architecture

The diagram given below shows the Proposed model used for comparison in this
paper. The reason for selecting this model is its significant accuracy in small
interval of time. Furthermore, there is no need for executing the malware which
reduces the vulnerability of system where analysis is taking place (Fig. 1).



Malware Family Classification 55

Fig. 1. Proposed system architecture

4 Experiments and Results

The dataset used for this paper, the networks used, training the models, the
final results obtained and the observations made are given below.

4.1 DataSet

For the purpose of this paper, a standard dataset comprising grayscale images
of the respective malwares are used. The dataset used is the malimg dataset.
It consists of 9339 samples from 25 malware families, ranging from 80 to 200
samples per family. From the given malware binary which is read as a vector
consisting of 8 bits unsigned integers, a 2D array is obtained. These 8 bit integer
is mapped to a range [0, 255] (0: black, 255: white) and the binary is visualized
as a grayscale image. The image width is fixed to be 256 and image height
vary depending on the malware executable. The following table shows malware
variants.

4.2 Model Training

To evaluate the proposed model performance, stratified 10-fold cross-validation
[10] is used. In this method, the samples are randomly partitioned into ten
disjoint sets of equal size. Each set roughly contains the same proportions of the



56 S. Davis et al.

Family Number of samples

Adialer.C 122

Agent.FYI 116

Allaple.A 2949

Allaple.L 1591

Alueron.gen!J 198

Autorun.K 106

C2LOP.gen!g 200

C2LOP.P 146

Dialplatform.B 177

Dontovo.A 162

Fakerean 381

Instantaccess 431

Lolyda.AA1 213

Lolyda.AA2 184

Lolyda.AA3 123

Lolyda.AT 159

Malex.gen!J 136

Obfuscator.AD 142

Rbot!gen 158

Skintrim.N 80

Swizzor.gen!E 128

Swizzor.gen!I 132

VB.AT 408

Wintrim.BX 97

Yuner.A 800

Fig. 2. Sample grayscale images of different malware families

class labels in each fold. One set is selected as the testing set and all the other
sets as the training set. This process is repeated 10 times selecting each partition
as testing set. The average classification accuracy, loss and execution time are
calculated for each fold (Fig. 2).



Malware Family Classification 57

Training parameters were kept equal and Adam equalizer [11] was used for
all neural networks to compare CNN’s. The number of epochs was set to 10 and
the batch size was given as 64. The data were pre-processed and labeled before
using it to train different models.

4.3 Experimental Results

The four different networks require different training time to train the same
dataset due to the varying complexity of the networks. Training time taken by
each network for a single epoch is given in the table below.

Model Average accuracy Test accuracy

ResNet50 0.9630 0.9947

VGG19 0.2723 0.3189

Inception 0.9637 0.9828

Xception 0.9908 0.9946

Model Time for the first epoch (in s)

ResNet50 8698.0079

VGG19 11513.2786

Inception 6783.2548

Xception 12544.2458

The accuracy was calculated for each model and noted in the table. The
accuracy is calculated using the equation:

accuracy =
TP + TN

P + N
;

where P+N is given by TP+TN+FP+FN TP denotes True Positives, TN true
negatives, FP is false positives and FN is false negatives. Recall and precison are
calculated by the equations:

recall =
TP

TP + FN

precision =
TP

TP + FN

Analyzing the test results, the average accuracy for VGG-19 is 27.23% and
test accuracy of 31.89%. It had a precision of 2% and recall of 4.16% and was
only able to classify two malware families, as vgg-19 requires a lot of sample
data for accurate classification. Only two malware categories had more that



58 S. Davis et al.

1000 samples, Allaple.A and Allaple.L. Hence it showed predictions only for the
above two. Due to its greater depth it is painfully slow to train and apparently
least effective compared to the other models.

The average accuracy for Resnet is 96.30% and test accuracy is 99.47%. It
had a precision of 94.92% and recall of 94%. It turned out to be comparatively
easier to train as it was fast and model size was also smaller.

The average accuracy for Inception is 96.37% and test accuracy of 98.28%.
It had a precision of 90.48% and recall of 92%. The fastest to train with least
size.

The best performance is of the Xception network which gave an average
accuracy of 99.08% and a test accuracy of 99.46%. It had a precision of 97.4%
and recall of 97.6%.

Family Resnet50 VGG19 Inception Xception

Precision Recall Precision Recall Precision Recall Precision Recall

Adialer.C 0.97 1 0 0 0.99 1 1 1

Agent.FYI 1 0.99 0 0 1 1 1 1

Allaple.A 0.99 0.95 0.31 0.7 0.99 0.99 0.99 1

Allaple.L 0.91 1 0.17 0.3 0.99 1 1 1

Alueron.gen!J 1 0.96 0 0 1 0.99 0.99 1

Autorun.K 0.99 0.9 0 0 0 0 1 1

C2LOP.gen!g 0.9 0.9 0 0 0.95 0.89 0.95 0.98

C2LOP.P 0.77 0.84 0 0 0.82 0.9 0.92 0.9

Dialplatform.B 0.98 0.99 0 0 0.99 1 1 1

Dontovo.A 0.99 1 0 0 1 1 1 1

Fakerean 0.97 0.98 0 0 0.78 0.99 0.99 0.99

Instantaccess 1 1 0 0 0.99 1 1 1

Lolyda.AA1 0.97 0.97 0 0 0.95 1 0.98 1

Lolyda.AA2 0.96 0.98 0 0 0.99 0.96 1 0.99

Lolyda.AA3 0.99 0.99 0 0 0.99 0.99 1 0.99

Lolyda.AT 0.97 0.96 0 0 1 0.99 0.99 0.99

Malex.gen!J 0.99 0.88 0 0 0.93 0.99 0.99 0.99

Obfuscator.AD 1 1 0 0 1 0.92 0.99 1

Rbot!gen 0.94 1 0 0 1 0.99 1 1

Skintrim.N 0.98 1 0 0 0.97 0.98 1 1

Swizzor.gen!E 0.81 0.63 0 0 0.8 0.77 0.82 0.78

Swizzor.gen!I 0.68 0.79 0 0 0.75 0.78 0.75 0.8

VB.AT 0.99 0.99 0 0 0.99 1 0.99 0.99

Wintrim.BX 1 0.8 0 0 0.87 0.97 1 1

Yuner.A 0.98 1 0 0 0.88 0.9 1 1



Malware Family Classification 59

5 Conclusion

In this paper, analysis was done on different convolutional neural networks using
malware images and predicting the malware family of a malware file by convert-
ing the executable into an image. The techniques used and findings from each
network were noted. Each network took varying time and showed varying accu-
racy. The Xception network was found best suited for the classification with
an accuracy of 99%.Vgg-19 proved the least efficient with 27 % accuracy as it
required a significant amount of samples for classification and hence was able
to classify only Allaple families which had more than 1500 samples. Resnet and
Inception were easier to train and had comparable accuracies. For future work,
the malware samples in each of the family could be increased for better analysis.

References

1. Singh, A., Handa, A., Kumar, N., Shukla, S.K.: Malware classification using image
representation. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML
2019. LNCS, vol. 11527, pp. 75–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20951-3 6

2. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security (2011). https://doi.org/10.1145/
2016904.2016908

3. Helfman, J.: Dotplot patterns: a literal look at pattern languages. TAPOS 2, 31–41
(1996)

4. Conti, G., Bratus, S., Shubina, A., Sangster, B., Ragsdale, R., Supan, M., Licht-
enberg, A., Perez-Alemany, R.: Automated mapping of large binary objects using
primitive fragmenttype classification. Digital Invest. (2010). https://doi.org/10.
1016/j.diin.2010.05.002

5. Han, K., Lim, J., Im, E.G.: Malware analysis method using visualization of binary
files. In: Proceedings of the 2013 Research in Adaptive and Convergent Systems,
RACS 2013, pp. 317–321 (2013). https://doi.org/10.1145/2513228.2513294

6. Gajic, B., Vazquez, E., Baldrich, R.: Evaluation of deep image descriptors for
texture retrieval. In: Proceedings of the 12th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications -
Volume 5: VISAPP, (VISIGRAPP 2017), pp. 251-257 (2017). https://doi.org/10.
5220/0006129302510257. ISBN 978-989-758-226-4

7. Liu, S., Deng, W.: Very deep convolutional neural network based image classifi-
cation using small training sample size. In: 2015 3rd IAPR Asian Conference on
Pattern Recognition (ACPR), pp. 730–734 (2015)

8. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 1–9 (2015).
https://doi.org/10.1109/CVPR.2015.7298594

9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1800–1807 (2016)

10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection, vol. 14 (2001)

https://doi.org/10.1007/978-3-030-20951-3_6
https://doi.org/10.1007/978-3-030-20951-3_6
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1016/j.diin.2010.05.002
https://doi.org/10.1016/j.diin.2010.05.002
https://doi.org/10.1145/2513228.2513294
https://doi.org/10.5220/0006129302510257
https://doi.org/10.5220/0006129302510257
https://doi.org/10.1109/CVPR.2015.7298594


60 S. Davis et al.

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2014)

12. Tobiyama, S., et al.: Malware detection with deep neural network using process
behavior. In: 2016 IEEE 40th Annual Computer Software and Applications Con-
ference (COMPSAC), vol. 2, pp. 577–582 (2016)

13. Sahu, M.K., Ahirwar, M., Hemlata, A.: A review of malware detection based on
pattern matching technique. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(1), 944–
947 (2014)

14. Masud, M., Khan, L., Thuraisingham, B.: A hybrid model to detect malicious exe-
cutables. In: 2007 IEEE International Conference on Communications, pp. 1443–
1448 (2007). https://doi.org/10.1109/ICC.2007.242

15. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of new malicious
code using N-grams signatures. In: PST, pp. 193–196 (2004)

https://doi.org/10.1109/ICC.2007.242


An Exploration of Changes Addressed
in the Android Malware Detection Walkways

Rincy Raphael1(B) and P. Mathiyalagan2

1 Anna University, Chennai, India
rincyraphael2012@gmail.com

2 Sri Ramakrishna Engineering College, Coimbatore, India
p_mathi2001@yahoo.co.in

Abstract. Smartphone users are increasing rapidly because of the convenience
and flexibility available with smartphones. Most ofthe digital transactions are
performed using this simple hand-held device. Android is the evergreen platform
for mobile operating system. The availability of applications is the main attraction
for both legitimate users aswell as the vulnerability injectors.Malware ismalicious
software perpetrators dispatch to infect individualmobile devices. It exploits target
system vulnerabilities, such as a bug in legitimate android applications that can be
hijacked for malicious activities. Variousmachine learning approaches are applied
to classify the Android Malwares from the goodwares. This paper studied the
existing framework for android malware detection techniques such as signature,
anomaly and topic modelling based. The proposed methods also evaluated with
system accuracy, analysis types and benefits and limitations of each proposed
frameworks.

Keywords: Android malware · Data mining approaches ·Machine learning ·
Topic modeling

1 Introduction

A smartphone is a small mobile device that can do more than other traditional cellular
phones and work as like a computer. The portability, efficiency, accuracy in digitalized
banking transactions and other attractive features in the smartphone are all time steals
the heart of even the normal users. The smartphone user’s number has reached 2.3 bil-
lion at the end of 2017 and now it is reached at 2.7 billion in beginning of 2019 [1].
Android is one of the mobile operating system, based upon a modified version of the
Linux kernel [8]. Most of the smartphone manufacture make use of the android plat-
form which having the feasibility to support different applications that can increase the
functionality of the mobile devices. The smartphone manufacturers have seen Android
as an opportunity to turn the current users keen interest for this open source OS into a
way to win market share. As per the report of Mobile Operating System Market Share
Worldwide, 76.03% of Market Share held by the Android platform [2]. Hence Android
has become one of themost valuable targets for malware developers where aremore than

© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 61–84, 2020.
https://doi.org/10.1007/978-981-15-9700-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_6&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_6


62 R. Raphael and P. Mathiyalagan

500 different Android markets that may contain malicious applications that can infect
the Android platform by propagating through various App-stores as well as Android
devices. Most of the malware writers focus on third party markets to distribute infected
applications to earn profit. It became easy to steal users credential information and make
them to do unnecessary activities. Android malware include Phishing, Banking-Trojans,
Spyware, Bots, Root Exploits, SMS Fraud, Premium Dialers and Fake Installers [3].
These malwares are mainly distributed in markets operated by third parties, but even the
Google AndroidMarket cannot guarantee that all of its listed applications are threat free.
Banking malwares are one of the agitated abuses that can enter our devices by exploiting
known security vulnerabilities. In first quadrant of 2019, Kaspersky Lab products and
technologies detected that 905,174 malicious installation packages, 29,841 new mobile
banking Trojans and 27,928 newmobile ransomware Trojans [5]. The Google play store
contains 2,726,158 android apps where 13% of the considered to be low quality apps in
2019 [6]. The results show that the efficient and effective mechanism is needed to solve
the problem.

The lacks of security features in android platform inspires the 98% of attacker to
steal users credential by launching malicious applications in devices with android based
mobile operating system [7]. Various machine learning techniques [13] are already pro-
posed to mitigate the attacks in the android platform. Signature based methods are failed
in the “zero day attacks” whereas time consumption is a problem in behaviour based
methods. Hence it is need to have access to a scalable solution for quickly analysing
new apps and identifying and isolating malicious applications. This paper is studying
the efficiency and accuracy of existing signature, behavioural as well as the latest topic
model techniques to analysis the android malwares.

2 Android Based Malware Detection Techniques

Malware Detection can be performed by various approaches such as Signature based,
Anomaly or Behavioural based andmostmodern TopicModeling based. After extracting
the features, Machine learning algorithms are applied for filtering the most significant
features to classify the android Apk samples [14] as malware or benign. Naives Bayes
(NB), Decision Tree (DT), RandomForest (RF), J48, Support Vector Machine (SVM),
Multilayer Perceptron (MLP), K-mean, K-Nearest Neighbours (KNN), Artificial Neural
Networks (ANN), Neuro fuzzy etc. are the wide range of supervised and unsupervised
machine learning methods exist for the malware study (Refer Fig. 1).

2.1 Signature Based

Most malware detection methods are based on traditional content signature based
approaches in which they use a list of malware signature definitions, and compare each
application against the database of knownmalware signatures. Signature-basedmalware
detection technology is mainly used in Antivirus programs where the malicious signa-
ture is already known and available in the database. The systematic way of signature
based method is shown in Fig. 2.



An Exploration of Changes Addressed in the Android Malware Detection Walkways 63

Fig. 1. Various malware detection approaches

Fig. 2. Malware detection using signature based approach

The disadvantage of this detection method is that users are only protected from
malware that are detected by most recently updated signatures, but not protected from
new malware (i.e. zero-day attack). Also, it’s very expensive process because it requires
a large collection of dataset with frequently updated malware signature, which leads to
increase in processing time as well as storage space.

2.2 Anomaly Based

Anomaly or Behavioural based malware detection evaluates an object based on its
intended actions before it can actually execute that behaviour. An object’s behaviour, or
in some cases its potential behaviour, is analysed for suspicious activities. Attempts to
perform actions that are clearly abnormal or unauthorized would indicate the object is
malicious, or at least suspicious. There’s a multitude of behaviours that point to poten-
tial danger. Some examples include any attempt to discover a sandbox environment,
disabling security controls, installing rootkits, and registering for auto start. Evaluat-
ing for malicious behaviour as it executes is called dynamic analysis. Threat potential
or malicious intent can also be assessed by static analysis, which looks for dangerous
capabilities within the object’s code and structure [10]. The Fig. 3 explains the Anomaly
based malware detection technique.

Behaviour based approaches also exhibits some disadvantages. Conventional sand-
box technologies have limited visibility and can only evaluate the interaction between
an object and the operating system. By observing 100% of the actions that a malicious
object might take, even when it delegates those actions to the operating system or other



64 R. Raphael and P. Mathiyalagan

Fig. 3. Malware detection anomaly or behavioural based approach

programs, CSOs can evaluate not only the malware communication with the OS, but
each instruction processed by the CPU.

2.3 Topic Modeling Based

Machine Learning approaches are widely accepted for androidmalware detection. At the
same time, the source codes of the android applications are not always compared with
the implemented android app behaviour for malware detection. To effectively solve this
problem, Topic modeling techniques are used to extract the text features from the app
description, reviews and user recommendations. The extracted text feature informations
are used for classifying the malware (Refer Fig. 4).

Fig. 4. Malware detection using topic modeling based approach

3 Review of Literature

The review is conducted on only the selected studies according to existingmethodologies
and discussed the cons and pros for the various proposed systems.

3.1 Signature Based Approaches

Lichao Sun et al. [15] introduced a malware detection system SIGPID to analyse the
significant permissions using the multi-level pruning technique. Dataset is designed by
178 malicious app families and randomly downloaded benign apps from Google play
store as single family. The most relevant 22 permissions out of 135 were identified and
Support Vector Machine (SVM) is used as the classifier. The detection rate of known
and unknown malware is 93.62% and 91.4% respectively. SIGPID achieved detection
accuracy by 90% as well as the runtime performance improved by 85.6%. As compared



An Exploration of Changes Addressed in the Android Malware Detection Walkways 65

with the previous anti-virus systems, the SIGPIG is efficiently classified the known and
unknown malwares in a systematic way - through 3-level pruning approach.

Santos I et al. [16] proposed a signature model based on the frequency of the appear-
ance of opcode sequences and provided an empirical validation that the method is capa-
ble of detecting unknown malware. The 17000 malware samples were taken from the
VxHeavens website and 1000 legitimate executable were from the author’s personal
choice. Top 1000 features were selected, which represents the 0.6% of the total number
of features extracted using Information Gain algorithm. Instance Selection (IS) and Fea-
ture Selection (FS) are very effective at reducing the size of the training set and helping
to filtrate and clean noisy data. Various classifiers are implemented with the help of
machine learning tool WEKA, such as Decision tree, K-nearest neighbour, Bayesian
Networks and SVM with detection rate for opcodes length n = 1 is 91:43, 92:83 90:65
and 92:92 respectively. Similarly, detection rate for an opcode-sequence length of n =
2 is 95:26, 94:83, 93:40 and 95:90 respectively for the same data mining classifiers.

Cui et al. [17] implemented a novel recognition framework of both combining the
cloud environment and packet examination techniques. The proposed framework iden-
tifies the malicious mobile malware behaviour with the utilization of data mining strate-
gies. This approach totally keeps away from the distortion of traditional techniques. The
framework with special governance is arranged and can be sent by portable adminis-
trators to send alertness to clients who have malware on their utensil. The withdrawal
grouping method is suggested to enhance the execution of proposed model. This tech-
nique utilizes earlier learning to lessen dataset measure. Additionally, a multi-module
location plan was acquainted with improve framework precision. The system is incor-
porating the location consequences of a few operations, including Naive Bayes and
Decision Tree, to provide the better results as compare to the customary methods.

Yujie Fan et al. [18] developed a data mining based detection frame work called
Malicious Sequential Pattern based Malware Detection (MSPMD), which is composed
of the proposed sequential pattern mining algorithm (MSPE) and All-Nearest-Neighbor
(ANN) classifier. The use of designed filtering criterion as well as the deployment of
detection module with new nearest classifiers makes the framework more systematic
from conventional models. The recommended model attained accuracy of 93.40% and
95.25% respectively with IntelligenceMalware Detection System (IMDS) andMSPMD
detection systems. Their structure beats other to exchange knowledge mining based
discovery techniques in distinguishing new revengeful attacking executable.

Wu et al. [19] implemented a hybrid approachwith an artificial immune-based smart-
phone malware detection model (SP-MDM). As like the classical artificial immune
model, the proposed framework investigated the malware in the android platform. In the
proposedmodel, the static and dynamic marks of malware are separated and the antigens
are produced by the intelligent venerated vector encoding mechanism. Gene Pool man-
agement used to discover new genes that can be perceived abnormal behaviour whereas
Immature Detector Detect used to convert the memory detector for rapid detection of
malware with the alarm signal and to find the sufficient number of antigens within the
prescribed time else the detector will be erase the data. The artificial immune based
model attained 87.7% detection rate with test set held twenty number malware as well
as benign files.



66 R. Raphael and P. Mathiyalagan

Wang andWang [21] presented a malware recognition framework to ensure an accu-
ray using the speculation capacity of support vectormodels (SVMs) bymachine learning
approach. The developed an automatic malware detection system trained the SVM clas-
sifier based on behavioural patterns of each apk file. The SVMs associated with 60
existent malware families and performed a cross-validation scheme to resolve problems
occurred in classification accuracy. For different sizing (N) of malware samples, the
accuracy of the malware detection system reached up to 98.7% with N value is 100. The
overall accuracy of the SVMs is more than 85% for unspecific multifaceted malware.

3.2 Anomaly or Behavioural Based Approaches

Haipeng Cai [29] implemented DroidCat, a novel dynamic app classification technique
to characterizing system calls which are subject to system-call obfuscation. The 34,343
apps fromvarious sources used for extracting the diverse set of dynamic features based on
method calls and ICC Intents, system call and app resources. The potentially dangerous
program behaviour was captured and analysed by DroidCat to resilient these types of
attacks. The authors identified that method call distribution in libraries and code are
imported rather than simply analysing the sensitive flow of the API. DroidCat achieved
97% F1-measure accuracy with higher robustness in dynamic classification. It showed
16% to 27% of higher performance as compared with the other bas line methods for
detection and malware categorization. for our dynamic classification. We found that
features capturing app execution structure such as the distribution of method calls over
user code and libraries are much more important than typical security features such as
sensitive flows.

Bhattacharya et al. [30] proposed a hybrid technique for permission feature based
detection of malwares through AndroidManifest.xml file using machine learning clas-
sifiers. Dataset contained total 734 applications which having 231 malwares and 504
benign files. The feature vector is generated and six feature reduction techniques are
deployed to identify the most significant feature from the large feature set. Pearson
Coefficient, Information Gain, Gain Ratio, Chi-Square, One R and Relief are the var-
ious feature ranking methods implemented in the system. Weka, the data mining tool
is used to perform the classification algorithms such as Bayesnet, Naive Bayes, SMO,
Decision tree, Random Forest, Random Tree, J48 and MLP. The system showed that
highest TPR rate as 98.01%while accuracy is run up to 87.99% and 0.9189 is the highest
F1 score. The high false alarm and inaccuracy in the detection ratio due to the sparseness
of the feature vector are the main two limitation of the study.

Mohaisen et al. [31] introduced an automatic behaviour based framework called
AMAL, to address the malware classification problems. The proposed system consists
of two subsystems named as AutoMal and MaLabel. AutoMal implemented to capture
all the behaviour characteristics of malicious apks including file system usage, memory,
network and registry and does that by running malware samples in virtualized domain.
The other subsystem called MaLabel used these informations for feature representation
and use them to construct classifiers trained using the manual evaluated training set.
AutoMal is also capable to perform multiple grouping techniques. The recommend
frameworks with two subsystems were evaluated on medium as well as large data sets
contained 4000 and 15000 apks respectively. MaLabel exhibited 99.5% of precision and



An Exploration of Changes Addressed in the Android Malware Detection Walkways 67

Ta
bl
e
1.

St
ud
y
of

si
gn
at
ur
e
ba
se
d
A
nd
ro
id

m
al
w
ar
e
de
te
ct
io
n
on

se
le
ct
ed

ar
tic
le
s

M
et
ho

d
M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go
ri
th
m

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

A
cc
ur
ac
y

M
er
its

D
em

er
its

SO
M
M

[1
7]

Se
rv
ic
e-
or
ie
nt
ed

m
ob

ile
m
al
w
ar
e

de
te
ct
io
n
sy
st
em

D
T,

N
B

H
yb
ri
d

Si
gn
at
ur
e

K
ey

L
ab
or
at
or
y
of

N
et
w
or
k
Se

cu
ri
ty
,

Fu
jia

n
N
or
m
al

U
ni
ve
rs
ity

97
.3

H
ig
h
ac
cu
ra
cy
,

H
ig
h
sc
al
in
g

N
ot

an
al
ys
ed

be
ha
vi
ou

r
of

m
al
w
ar
es

du
e
to

hi
gh

tr
af
fic

SI
G
PI
D
[1
5]

Si
gn

ifi
ca
nt

pe
rm

is
si
on

id
en
tifi

ca
tio

n
an
dr
oi
d
m
al
w
ar
e

de
te
ct
io
n

SV
M

D
yn
am

ic
Si
gn
at
ur
e

G
oo
gl
e
pl
ay

st
or
e

94
L
ow

co
st
,H

ig
h

ac
cu
ra
cy

H
ig
h
tim

e
co
ns
um

pt
io
n

O
pc
od
e
[1
6]

O
pc
od
e

se
qu

en
ce
s

SV
M
,K

N
N

H
yb
ri
d

Si
gn
at
ur
e

V
X
H
ea
ve
ns

w
eb
si
te

92
.9

H
ig
h
un
kn
ow

n
m
al
w
ar
e
de
te
ct
io
n

ra
te

N
ot

an
al
ys
ed

in
st
an
ce

se
le
ct
io
n

SP
M

[1
8]

Se
qu

en
tia

lP
at
te
rn

m
in
in
g

J4
8,
SV

M
,K

N
N
,

A
N
N

H
yb
ri
d

Si
gn
at
ur
e

V
X
H
ea
ve
n
w
eb
si
te

95
.2

H
ig
h
ac
cu
ra
cy
,

L
ow

ov
er
he
ad

Fe
at
ur
e
se
le
ct
io
n

is
no

ta
na
ly
se
d

SP
-M

D
M

[1
9]

Sm
ar
tp
ho
ne

m
al
w
ar
e
de
te
ct
io
n

K
-m

ea
ns

an
d

A
rt
ifi
ci
al
im

m
un

e
sy
st
em

H
yb
ri
d

Si
gn
at
ur
e

A
nd
ro
id

m
al
w
ar
e

da
ta
ba
se

X
V
N
A

89
.8

H
yb

ri
d
an
al
ys
is

us
ed

L
ow

ac
cu
ra
cy
,N

ot
m
ak
e
cl
as
si
fie

r
co
m
pa
ra
tiv

e
st
ud

y

SA
A
M

[2
0]

Sy
m
bo

lic
ag
gr
eg
at
e

ap
pr
ox
im

at
io
n
fo
r

m
al
w
ar
es

SV
M

&
N
B

D
yn
am

ic
Si
gn
at
ur
e

O
ff
en
si
ve

co
m
pu
tin

g
an
d
V
X

he
av
en
s
lib

ra
ry

95
.9

H
ig
h
ac
cu
ra
cy
,

Sp
ac
e
co
m
pl
ex
ity

re
du

ce
d

N
ot

ex
am

in
e
th
e

m
ul
tip

le
pa
ck
in
g

al
go

ri
th
m
s.

M
ob
A
M
D
[2
1]

M
ob
ile

an
dr
oi
d

m
al
w
ar
e
de
te
ct
io
n

SV
M

H
yb
ri
d

Si
gn
at
ur
e

C
on

ta
gi
o
B
lo
gg

er
an
d
V
ir
us
To

ta
l

W
eb
si
te
s

98
.7

G
oo
d
at
tr
ib
ut
e

se
le
ct
io
n,
L
ow

ov
er
he
ad

H
ig
h
co
m
pl
ex
ity
,

C
ou

nt
er
m
ea
su
re
s

no
tc
on

si
de
re
d

D
ro
id
C
la
ss
ifi
er

[2
2]

D
ro
id

m
al
w
ar
e

de
te
ct
io
n

SV
M

D
yn
am

ic
Si
gn
at
ur
e

W
in
do
w
s
A
PI

lib
ra
ry

98
Fa
st
fe
at
ur
e

se
le
ct
io
n

H
ig
h
co
m
pl
ex
ity

(c
on

ti
nu

ed
)



68 R. Raphael and P. Mathiyalagan

Ta
bl
e
1.

(c
on
ti
nu
ed

)

M
et
ho

d
M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go
ri
th
m

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

A
cc
ur
ac
y

M
er
its

D
em

er
its

D
ro
id
N
at
iv
e
[2
3]

A
nd
ro
id

m
al
w
ar
e

de
te
ct
or

w
ith

co
nt
ro
lfl

ow
pa
tte

rn
s

D
ro
id
,C

FG
O
-I
L

St
at
ic

Si
gn
at
ur
e

Se
ve
ra
lw

eb
si
te
s

93
.5
7

H
ig
h
ef
fic

ie
nc
y,

L
ow

tim
e

co
ns
um

pt
io
n

H
ig
h
co
st
,L

ow
sc
al
ab
ili
ty

M
K
L
D
ro
id

[2
4]

A
m
ul
ti-
vi
ew

co
nt
ex
t-
w
ar
e

ap
pr
oa
ch

to
m
al
w
ar
e
de
te
ct
io
n

M
ul
tip

le
K
er
ne
l

L
ea
rn
in
g,
SV

M
St
at
ic

Si
gn
at
ur
e

G
oo
gl
e
Pl
ay
,

A
nd
ro
id
D
ra
w
er
,

an
d
FD

ro
id

98
.0
5

H
ig
h
ef
fic

ie
nc
y

R
un

tim
e

de
te
ct
io
n

H
ig
h
co
m
pl
ex
ity
,

N
ot

an
al
ys
ed

fe
at
ur
e
se
le
ct
io
n

M
D
Sy

C
al
l[
25
]

M
al
w
ar
e

de
te
ct
io
n
us
in
g

sy
st
em

ca
ll
lo
g

N
B
,R

F
St
at
ic

Si
gn
at
ur
e

V
ar
io
us

So
ur
ce
s

98
.5

H
ig
h
ac
cu
ra
cy
,

L
ow

tim
e

co
ns
um

pt
io
n

Sm
al
ld

at
as
et
,

O
nl
y
tw
o

cl
as
si
fie

rs

T
in
yD

ro
id

[2
6]

M
al
w
ar
e

de
te
ct
io
n
an
d

cl
as
si
fic

at
io
n

R
F,
SV

M
,K

N
N
,

N
B

St
at
ic

Si
gn
at
ur
e

D
re
bi
n
da
ta
se
t

98
.2

H
ig
h
ac
cu
ra
cy
,

L
ow

co
st

Sm
al
ld

at
as
et

D
C
SA

[2
7]

D
et
ec
tio

n
an
d

cl
as
si
fy

m
al
w
ar
e

N
B

St
at
ic

Si
gn
at
ur
e

G
oo
gl
e
pl
ay

an
d

va
ri
ou
s
an
dr
oi
d

m
ar
ke
t

98
20

ki
nd
s
of

m
al
w
ar
e
fa
m
ili
es

w
er
e
id
en
tifi

ed

A
PI

ca
lls

ar
e
no

t
co
ns
id
er
ed

O
N
A
M
D
[2
8]

O
nl
in
e
an
dr
oi
d

m
al
w
ar
e
de
te
ct
io
n

SV
M
,R

F
H
yb
ri
d

Si
gn
at
ur
e

C
on

ta
gi
on

m
ob

ile
87
.8
3

L
ow

ac
cu
ra
cy

H
ig
h
tim

e
co
ns
um

pt
io
n



An Exploration of Changes Addressed in the Android Malware Detection Walkways 69

99.6% of recall for classification of malware family whereas unsupervised grouping
resulted more than 98% precision and recall.

Altaher A [32] developed hybrid neuro-fuzzy classifier (EHNFC) for Android
based malware grouping by employing the assent based components. The implemented
EHNFC utilised the fuzzy rules for obfuscated malware detection and the detection
accuracy was increased by learning new malware detection fuzzy rules using the struc-
ture of the obfuscated malware. To this end, employed various clustering techniques for
adapting and fuzzy rules were updated to incorporate an adaptive procedure for upgrade
the radii and centres of clustered permission-based features. The adjustments in the
clustering methods improved the cluster convergence as well as assist to generate the
better rules that are customised to the input data and showed increase in the classifica-
tion accuracy. The system obtained 0.05 rates for both false negative and false positive.
Compare with other neuro-fuzzy framework, the recommended system attained 90%
classification accuracy.

Dali Z. et al. [33] suggested an automatic framework DeepFlow, to eliminate the
problems in the malware classification using the various machine learning methods.
The dataset consists of thousands of both benign and malware apk files from Google
play store as well as virus share. The suggested system directly identified malware from
the data flow in each apk files with taking the advantages of the deep learning-based
approach.DeepFlow achieved high F1 score of 95.05%as comparewith the conventional
machine learning techniques.

Yuan Z. et al. [34] proposed online androidmalware characterisationmodel to couple
the features from the static analysis to dynamic analysis features. The implementedonline
automatic framework calledDroidDetector is investigatedmore than20000 apkfiles used
deep-learning algorithms for Android malware detection. Dataset comprised with 20000
benign apks and 1760 malware apks respectively from Goolge play store and Contagio
Community and Genome Project. DroidDetector detection system utilised the Deep
Belief Networks (DBN) and complicated neural networks for automatically classify the
malware from benign apks. Various deep learning methods deployed to perform a deep
level analysis in each android apps to determine the significant malware characteristics.
Comparing all conventional machine learning algorithms, the DroidDetector obtained
a high detection rate of 96.76%. In addition to this the framework is evaluated the 10
famous antivirus softwares to determine the necessity of android malware identification.

Abhishek Bhattacharya [35] introduced a static and dynamic androidmalware detec-
tion based on data mining techniques named as DMDAM. From different Android mar-
ket, diverse categories of 170 apks samples were collected and which include 100 benign
and 70 malware apps. The proposed a framework extracted the permission features from
each manifest files of apk files and generated feature vectors. Different machine learning
classifiers of a Data Mining Tool, Weka is used to classify android apk files. The system
obtained that 96.70% as highest TPR rate and accuracy achieved up to 77.13% while
highest F1score reached as 0.8583.

Nikolopoulos et al. [36] suggested a graph based model which detect the unknown
malicious apk file and classify to known malware family by employing the relation-
ships between the collections of system calls. The dataset prepared from different of
commodity software types including various editors, media players, office suites etc.



70 R. Raphael and P. Mathiyalagan

Ta
bl
e
2.

St
ud
y
of

an
om

al
y
or

be
ha
vi
or
al
ba
se
d
A
nd
ro
id

m
al
w
ar
e
de
te
ct
io
n
on

se
le
ct
ed

ar
tic
le
s

M
et
ho
d

M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go
ri
th
m

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

A
cc
ur
ac
y

M
er
its

D
em

er
its

D
ro
id
C
at
[2
9]

M
al
w
ar
e

D
et
ec
tio

n
vi
a

A
pp

-L
ev
el

Pr
ofi

lin
g

R
F,
SV

M
,N

B
,

D
T,

K
N
N

H
yb
ri
d

B
eh
av
io
ur
al

V
ar
io
us

So
ur
ce

97
L
ow

ru
n
tim

e,
H
ig
h
ac
cu
ra
cy

Sm
al
ld

at
as
et
,N

ot
ex
pl
ic
itl
y

co
ns
id
er
ed

al
l

at
ta
ck
s

FR
T
M
D
[3
0]

Fe
at
ur
e
R
an
ki
ng

Te
ch
ni
qu
es

fo
r

A
nd
ro
id

M
al
w
ar
e

D
et
ec
tio

n

B
ay
es

ne
t,
N
B
,

SM
O
,D

T,
R
F,

R
an
do
m

T
re
e,

J4
8
an
d
M
L
P

D
yn
am

ic
B
eh
av
io
ur
al

Se
ve
ra
lw

eb
si
te
s

87
.9
9

Id
en
tifi

ed
m
os
t

si
gn
ifi
ca
nt

fe
at
ur
es
,L

ow
co
st

H
ig
h
fa
ls
e
al
ar
m

an
d
sp
ar
se
ne
ss

of
th
e
fe
at
ur
e
ve
ct
or

le
ad
s
to

in
ac
cu
ra
cy

A
M
A
L
[3
1]

A
ut
om

at
ed

m
al
w
ar
e
an
al
ys
is

SV
M
,L

R
,

K
N
N
,

C
la
ss
ifi
ca
tio

n
tr
ee

D
yn
am

ic
B
eh
av
io
ur
al

R
an
do

m
sa
m
pl
e

fr
om

an
tiv

ir
us

co
m
pa
ni
es

98
H
ig
h
le
ve
ls
of

pr
ec
is
io
n,

re
ca
ll,

an
d

ac
cu
ra
cy
,L

ow
co
st

IP
re
pu

ta
tio

n
H
ig
h
ov
er
he
ad

E
H
N
FC

[3
2]

N
eu
ro
-f
uz
zy

cl
as
si
fie

r
fo
r

m
al
w
ar
e

de
te
ct
io
n

E
vo
lv
in
g
ne
ur
o

fu
zz
y
in
fe
re
nc
e

sy
st
em

St
at
ic

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay

an
d

G
en
om

e
Pr
oj
ec
t

90
H
ig
h
ac
cu
ra
cy
,

M
in
im

um
fa
ls
e

po
si
tiv

e
an
d

fa
ls
e
ne
ga
tiv

e

A
nd
ro
id

ap
ps

R
un

-t
im

e
ov
er
he
ad

is
no
t

co
ns
id
er
ed

D
ee
pF

lo
w
[3
3]

D
ee
p
le
ar
ni
ng

m
al
w
ar
e

de
te
ct
io
n

N
B
,P
A
R
T,

L
R
,

SV
M

an
d
M
L
P

H
yb
ri
d

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay
,v

ir
us

sh
ar
e

95
.0
5

D
ir
ec
tly

ca
pt
ur
e
th
e

da
ta
flo

w
of

m
al
w
ar
e

H
ig
h
tim

e
co
ns
um

pt
io
n

(c
on
ti
nu
ed

)



An Exploration of Changes Addressed in the Android Malware Detection Walkways 71

Ta
bl
e
2.

(c
on
ti
nu
ed

)

M
et
ho
d

M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go
ri
th
m

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

A
cc
ur
ac
y

M
er
its

D
em

er
its

D
ro
id
D
et
ec
to
r

[3
4]

A
nd
ro
id

M
al
w
ar
e

C
ha
ra
ct
er
iz
at
io
n

an
d
D
et
ec
tio

n

D
ee
p
be
lie
f

ne
tw
or
ks

&
co
m
pl
ic
at
ed

ne
ur
al
ne
tw
or
ks

H
yb
ri
d

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay

an
d

C
on

ta
gi
o

C
om

m
un

ity
an
d

G
en
om

e
Pr
oj
ec
t.

96
.7
6

D
ep
lo
ye
d

on
lin

e
te
st
in
g

fo
r

D
ro
id
de
te
ct
or

H
ig
h
co
st
,H

ig
h

ov
er
he
ad

on
A
PI

ca
lls

D
M
D
A
M

[3
5]

A
nd
ro
id

m
al
w
ar
e

de
te
ct
io
n

B
ay
es

ne
t,
N
B
,

SM
O
,D

T,
J4
8,

M
L
P,
R
F
an
d

R
an
do
m

T
re
e

D
yn
am

ic
B
eh
av
io
ur
al

Se
ve
ra
lA

nd
ro
id

ap
pl
ic
at
io
ns

77
.1
3

R
ed
uc
in
g

co
nc
ep
ts
fo
r

in
cr
ea
si
ng

fe
at
ur
e

se
le
ct
io
n

H
ig
h
co
m
pl
ex
ity

R
un

-t
im

e
ov
er
he
ad

Sy
C
M

[3
6]

Sy
st
em

-c
al
l

m
al
w
ar
e

Sa
M
e-
N
P

D
yn
am

ic
B
eh
av
io
ur
al

V
ar
ie
ty

of
co
m
m
od
ity

so
ft
w
ar
e

95
.9

H
ig
h
ac
cu
ra
cy
,

H
ig
h

de
pe
nd
en
cy

an
al
ys
is
fo
r

sy
st
em

ca
lls

T
im

e
co
ns
um

pt
io
n

in
cr
ea
se
d

D
FA

M
D
[3
7]

D
at
a
flo

w
an
dr
oi
d
m
al
w
ar
e

de
te
ct
io
n

K
N
N
,L

R
,N

B
St
at
ic

B
eh
av
io
ur
al

V
X
H
ea
ve
ns

w
eb
si
te
an
d

G
oo
gl
e
pl
ay

97
.6
6

H
ig
h
ef
fic
ie
nc
y,

L
ow

ov
er
he
ad
,

L
ow

tim
e

H
ig
h
co
m
pl
ex
ity
,

H
ig
h
de
pe
nd
en
cy

R
an
D
ro
id

[3
8]

A
nd
ro
id

m
al
w
ar
e

de
te
ct
io
n
us
in
g

ra
nd
om

m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie

rs

L
on

g
Sh

or
t-
Te
rm

M
em

or
y

(L
ST

M
)

H
yb
ri
d

B
eh
av
io
ur
al

B
en
ig
n

A
nd
ro
Z
oo

an
d

M
al
w
ar
e
fr
om

A
M
D

98
.9
8

H
ig
h
A
cc
ur
ac
y,

Fi
rs
tu

se
d

ch
ro
no
lo
gi
ca
l

da
ta
se
t

H
ig
h
tim

e
co
ns
um

pt
io
n

(c
on
ti
nu
ed

)



72 R. Raphael and P. Mathiyalagan

Ta
bl
e
2.

(c
on
ti
nu
ed

)

M
et
ho
d

M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go
ri
th
m

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

A
cc
ur
ac
y

M
er
its

D
em

er
its

D
N
N
M
D
[3
9]

D
ee
p
N
eu
ra
l

N
et
w
or
ks

fo
r

A
nd
ro
id

M
al
w
ar
e

D
et
ec
tio

n

C
N
N
an
d

L
ST

M
St
at
ic

B
eh
av
io
ur
al

D
re
bi
n
D
at
as
et
,

Fd
ro
id
G
oo
gl
eP
la
y

an
d
A
nd

ro
Z
oo

95
.3

L
ar
ge

D
at
as
et

N
o
dy
na
m
ic

im
pl
em

en
ta
tio

n

D
R
A
I
[4
0]

D
et
ec
tin

g
D
at
a

R
es
id
ue

in
A
nd
ro
id

Im
ag
es

C
FG

St
at
ic

B
eh
av
io
ur
al

V
ar
io
us

so
ur
ce
s

86
.5
3

Id
en
tifi

ed
ne
w

da
ta
re
si
du

e
in
st
an
ce
s

L
ow

ac
cu
ra
cy

E
nD

ro
id

[4
1]

M
al
w
ar
e

de
te
ct
io
n
w
ith

en
se
m
bl
e

le
ar
ni
ng

SV
M
,N

B
,

K
N
N
,D

T,
R
F,

X
gb

oo
st
,

D
yn
am

ic
B
eh
av
io
ur
al

G
oo

gl
e
Pl
ay
s
st
or
e

an
d
D
er
bi
n
da
ta
se
t

97
.1
7

H
ig
h
ac
cu
ra
cy

Sm
al
ld

at
as
et

D
B
A
A
[4
2]

D
yn
am

ic
be
ha
vi
ou
r
of

an
dr
oi
d
A
pp
s

D
T,

R
F,
K
N
N
,

A
N
N
,S

V
M

D
yn
am

ic
B
eh
av
io
ur
al

G
oo
gl
e
Pl
ay

St
or
e

97
.1
6

Id
en
tifi

ed
la
rg
e

se
to

f
m
al
ic
io
us

sy
st
em

ca
lls

Sm
al
la
pk

sa
m
pl
es

se
t



An Exploration of Changes Addressed in the Android Malware Detection Walkways 73

and contained 2667 apk files. With the help of the System-call Dependency Graphs (or,
for short, ScD-graphs) is obtained by traces captured through dynamic taint analysis.
The Authors have implemented strong modifications in detection as well as classifica-
tion methods on a weighted directed graph, namely Group Relation Graph, or Gr-graph
for short, outcome from ScD-graph after grouping disjoint subsets of its vertices. The
�-similarity metric proposed for detection process whereas SaMe-similarity and NP-
similarity metrics consisting the SaMe-NP similarity presented for classification. The
proposed system exhibited 95.9% classification accuracy.

Wu S. et al. [37] implemented a novel automatic system to detect malicious behavior
in the apk files based on the data flow application program interfaces (APIs). The dataset
contained more than two thousands apks from the Google play store and various third-
party stores.Dataflow-relatedAPI featureswere extracted and the list is further optimised
to find the most significant features by utilizing the various machine learning techniques.
The k-nearest neighbour implemented as classification model. The proposed framework
exhibited 97.66% accuracy in detecting unknown Android malware. More than that,
Static dataflow analysis resulted more than 85% of sensitive data transmission paths can
be identified with the assist of the refined API subset.

J. D. Koli [38] presented an integrated machine learning approach for android mal-
ware detection. The experimental dataset included with 10010 benign apps from Andro-
Zoo and 10683 malwares from AMD. In addition to this, the author evaluated the accu-
racy of malware and benign apksby sent some of the samples to the popular 4 anti-virus
scanners such as Kingsoft Antivirus, McAfee, Norton, 360 Security Guard. The author
flagged the apps as malware when it is detected by one or more of these scanners. The
API informations were obtained by the control flow graph (CFG) of each apk file and
three different datasets were built by utilizing the API informations such as Boolean,
frequency and chronological data sets. The three detection systems were deployed from
these three data sets to identify malware characteristic based on API calls, API fre-
quency, and API sequence. The ensemble detection model achieved 98.98% detection
accuracy. The API Usage Detection Model detects 95% of the malware samples with
a false-positive rate of 6.2%. The API Frequency Detection Model identified 97% of
the malware samples with a false-positive rate of 9.1%. The 2.9% false positive rate
was exhibited by the API Sequence Detection Model with detection rate 99%. The pro-
posed statistical detection system was the first to construct chronological datasets of the
Android application and constructed the detection model based on the Long Short-Term
Memory (LSTM) algorithm.

AbhilashHota and Paul Irolla [39] implemented deep neural network based android
malware detection system. The proposed framework evaluated for two different data sets.
The first contained 3500malware from the Drebin Dataset and 2700 benign from Fdroid.
The second dataset contained 7,412,461 apk samples taken from Google play store as
well as the AndroZoo. The four different models were generated such as Convolutional
neural networks (CNN) with three 2D convolutional layers model, CNN with 10000
length document vector model, MalConv architecture based model and finally LSTM
model. Each models where evaluated with these two different datasets and the LSTM
model with dataset 2 have achieved 95.3% detection rate.



74 R. Raphael and P. Mathiyalagan

Y. Zhou et al. [40] suggested a statistical model an ANdroidREsidue Detector
(ANRED) to analyse the bytecode and automatically evaluate the risk for each deter-
mined data reside instance. ANRED dataset consists of 606 android images collected
from different sources and implemented in WALA. The system took the input as the
entire android image and extracted the features as apps bytecode. The framework imple-
mented with two operations such as Saving and Deleting operations as well as the result
generated two different graph as Saving graph and Deleting graph. All the data saved
inside the frameworkwere expressed in saving graphwhereas the deleting graph depicted
the removed data when app uninstallation. From the traditional systems, the accuracy
and efficiency are increased in ANRED and identified 5 new residue vulnerabilities.

3.3 Topic Modeling Approaches

A. Gorla [43] proposed a system for checking app behaviour against app descriptions
named as CHABADA. The system compared the implemented app behavior with the
app description using 22521 free android apps from Google play store. The Natural
Language Processing technique is used for filtering and stemming, for that Google’s
Compact Language Detector is used. The output of NLP [12] pre-processing (i.e., the
English text without stop words, and after stemming) fed into the Mallet framework.
The LDA [11] used on the app description to generate topic model. Apps were clustered
with K means algorithm and 32 clusters were formed, that an app would belongs to 4
topics. The unsupervised One-Class SVM anomaly classification method is performed
on the system. CHABADA identified outliers with respect to API usage and used set of
sensitive APIs derived from STOWAWAY. CHABADA flagged 56% of known malware
as such, without requiring any training on malware patterns. The Static analysis was
conducted down on the Dalvikbyte code and not on native code.

Chengpeng Zhang [44] conducted study on CHABADA and designed Re-checking
App Behavior against App Description. Around 400,000 free android apps were down-
loaded from Google play store and analysed the impact of third-party libraries (TPLs)
separate TPLs from app custom code and determine whether the sensitive behaviors are
introduced by custom code. The authors crawled the metadata of these apps, including
the app names, app categories, app ratings, the number of installs, etc. along with the
apk files of these apps. The system takes the advantage of Mallet for building a list to
filter out stop-words. Then Snowball used to turn the words into stem form. A list of
permission-related APIs was collected from PScout [41], which contains 680 sensitive
APIs. At last, there are only 428 APIs left to apply Genetic Algorithm (GA) combined
with K-means ++ to determine the best number of clusters and 30 topic clusters identi-
fied. As per the outlier detection using Isolation Forest algorithm with and without TPLs
is resulted respectively as 46.5% and 49.9% whereas the detection results of VirusTotal
in false positive and false negative apps are 24.7% and 49.65% respectively.

R. Pandita [45] proposed a system WHYPER for automating the risk assessment of
mobile applications with a dataset contained top 500 free applications in each category
of the Google Play Store (16,001 total unique applications). The framework consists of
five components such as a pre-processor, an NLP Parser, an intermediate representation
generator, a semantic engine (SE), and an analyser. The pre-processor accepts applica-
tion descriptions and pre-processes the sentences in the descriptions, such as annotating



An Exploration of Changes Addressed in the Android Malware Detection Walkways 75

sentence boundaries and reducing lexical tokens. The intermediate representation gen-
erator accepts the pre-processed sentences and parses them using an NLP parser. The
parsed sentences are then transformed into the first-order-logic (FOL) representation.
SE accepts the FOL representation of a sentence and annotates the sentence based on the
semantic graphs of permissions. WHYPER effectively identifies permission sentences
with the average precision, recall, F-score, and accuracy of 80.1%, 78.6%, 79.3%, and
97.3% respectively. WHYPER performs better than keyword-based search with an aver-
age increase in precision of 40%with a relatively small decrease in average recall (1.2%).
The semantic information, associated APIs and automation are limited in the proposed
static model.

Z. Qu [46] presented a systemAutoCog thatmeasures the description-to-permissions
fidelity in Android, i.e., whether the permissions requested by Android applications
match or can be inferred from the applications’ descriptions. The dataset contained the
declared permissions and descriptions of 37,845Android applications fromGoogle Play.
The use of a novel learning-based algorithm and advanced NLP techniques allows us to
mine relationships between textual patterns and permissions. AutoCog matches human
in inferring 11 permissions with the average precision, recall, F-score, and accuracy as
92.6%, 92.0%, 92.3%, and 93.2% respectively. Permission is used as an only feature
where manual reading is subjective and the results may be biased. However, given that
the authors have a technical background, they may be able to discover many implicit
relationships that average users ignore, thus putting up greater challenges for AutoCog.

Eric Medvet [47] explored the usage of topic modeling methods in android malware
static analysis. Dataset contains 900 Android malware applications which obtained from
Drebin Dataset with 49 malware families. LDA is applied to Android applications rather
than to texts. In particular, considered an application as a sequence of opcodes, hence
topics are distributions of opcodes rather the distributions of words. Then clustered
applications based on their coordinates in the topics space, that is, a low dimension space
where each coordinate represents a topic. The five different clustering techniques were
applied on the model. The cumulative percent of variance explained is 57:9%, 21:2%,
and 21:4% respectively for the features, opcode frequencies, and topics spaces. Higher
level features deriving from the topic space may help in improving the effectiveness of
fully-automatic detection techniques based on opcodes.

Mayank Garg [48] classified the apps effectively and identified outlier apps with the
help of app behavior analysis. Crawler is used to extract app content such as App title
and App description from the 600 apps of 10 categories from Google play store with
description word length is 404 and NLP is applied for text pre-processing. Then first
performed the Non negative matrix factorization topic modeling technique to generate
feature vector list on the basis of App description and used probabilistic approach Latent
Dirichlet Allocation (LDA) which helps in upgrading, associating feature vector list
and further assign probability to features available in feature vector list. The clusters
have been formed according to features based classification using K nearest neighbour
algorithm which will place all the classified Apps in suitable clusters based on features
similarity measure. If features shown to users in description are not similar to accessed
or mentioned in manifest file it will treat such apps as outlier app or malevolent App.
According to the classification results, the Music cluster contains 12.1% apps, from



76 R. Raphael and P. Mathiyalagan

Ta
bl
e
3.

St
ud
y
of

to
pi
c
m
od
el
in
g
ba
se
d
A
nd
ro
id

m
al
w
ar
e
de
te
ct
io
n
on

se
le
ct
ed

ar
tic
le
s

M
et
ho

d
M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go

ri
th
m

To
pi
c

m
od

el
in
g

m
et
ho

d

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

R
es
ul
t

M
er
its

D
em

er
its

C
H
A
B
A
D
A

[4
3]

C
he
ck
in
g
ap
p

be
ha
vi
ou

r
ag
ai
ns
ta
pp

de
sc
ri
pt
io
ns

K
-m

ea
ns
,S

V
M

L
D
A

St
at
ic

Si
gn

at
ur
e
&

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay

st
or
e

54
Id
en
tifi

ed
ou
tli
er

ap
ps

w
ith

A
PI
s

N
at
iv
e
co
de

no
t

an
al
ys
ed

R
eC

H
A
B
A
D
A

[4
4]

R
e-
ch
ec
ki
ng

ap
p

be
ha
vi
ou

r
ag
ai
ns
ta
pp

de
sc
ri
pt
io
n

K
-m

ea
ns
+
+

L
D
A

St
at
ic

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay

st
or
e

60
.1
9

Im
pa
ct
of

th
ir
d-
pa
rt
y
lib

ra
ri
es

(T
PL

s)
co
ns
id
er
ed

C
om

pl
ex
ity

is
hi
gh

W
H
Y
PE

R
[4
5]

A
ut
om

at
in
g
R
is
k

A
ss
es
sm

en
ta
pk
s

St
at
is
tic
al

C
la
ss
ifi
er

L
SA

H
yb
ri
d

B
eh
av
io
ur
al

G
oo
gl
e
Pl
ay

St
or
e

97
.3

H
ig
h
A
cc
ur
ac
y

T
he

se
m
an
tic

in
fo
rm

at
io
n,

as
so
ci
at
ed

A
PI
s

an
d
au
to
m
at
io
n

ar
e
lim

ite
d

A
ut
oC

og
[4
6]

D
es
cr
ip
tio

n
to

pe
rm

is
si
on
s

fid
el
ity

in
A
nd

ro
id

–
L
SA

H
yb
ri
d

Si
gn

at
ur
e

G
oo
gl
e
Pl
ay

St
or
e

93
.2

H
ig
h
A
cc
ur
ac
y,

E
xt
ra
ct
ed

im
pl
ic
it

re
la
tio

ns
hi
ps

D
if
fic
ul
ti
n

id
en
tifi

ca
tio

n
of

im
pl
ic
it

re
la
tio

ns
hi
ps
.

T
M
A
W

[4
7]

To
pi
c
m
od

el
in
g

m
et
ho

ds
in

an
dr
oi
d
m
al
w
ar
e

K
-M

ea
ns

L
D
A

St
at
ic

Si
gn

at
ur
e

D
re
bi
n

D
at
as
et
,

G
oo
gl
e
Pl
ay

St
or
e

57
.9

cu
m
ul
at
iv
e

pe
rc
en
to

f
va
ri
an
ce

M
al
w
ar
e

ch
ar
ac
te
ri
st
ic
s
an
d

si
m
ila
ri
tie
s

id
en
tifi

ed

N
ot

au
to
m
at
ic

de
te
ct
io
n

te
ch
ni
qu

es

(c
on

ti
nu

ed
)



An Exploration of Changes Addressed in the Android Malware Detection Walkways 77

Ta
bl
e
3.

(c
on
ti
nu
ed

)

M
et
ho

d
M
ot
iv
e

C
la
ss
ifi
ca
tio

n
al
go

ri
th
m

To
pi
c

m
od

el
in
g

m
et
ho

d

Ty
pe

of
an
al
ys
is

Ty
pe

of
de
te
ct
io
n

D
at
as
et

R
es
ul
t

M
er
its

D
em

er
its

IO
PB

[4
8]

Id
en
tifi

ed
ou
tli
er

ap
ps

w
ith

pe
rm

is
si
on

be
ha
vi
or

K
-N

ea
re
st

N
ei
gh

bo
ur
,K

m
ea
n

N
M
F

(N
on
ne
ga
tiv

e
m
at
ri
x

fa
ct
or
iz
at
io
n)
,

L
D
A

St
at
ic

B
eh
av
io
ur
al

G
oo
gl
e
pl
ay

st
or
e

95
Id
en
tifi

ed
5%

of
ou

tli
er

ap
ks

E
xt
ra
ct
ed

Fe
at
ur
e
ve
ct
or

no
te
no

ug
h
to

id
en
tif
y
an
dr
oi
d

be
ha
vi
ou

r

A
ct
SS

B
[4
9]

A
ct
iv
e

se
m
i-
su
pe
rv
is
ed

ap
pr
oa
ch

fo
r

ch
ec
ki
ng

ap
p

be
ha
vi
or

ag
ai
ns
t

its
de
sc
ri
pt
io
n

Se
m
i-
Su

pe
rv
is
ed

L
ab
el
in
g

(E
C
A
SS

L
)

al
go
ri
th
m
,S

V
M

L
D
A
-G

A
St
at
ic

B
eh
av
io
ur
al

V
ar
io
us

So
ur
ce
s

96
.0
2

H
ig
h
A
cc
ur
ac
y

E
xt
er
na
lv

al
id
ity

no
tc
on

si
de
re
d

A
pp

L
ib
R
ec

[5
0]

R
ec
om

m
en
d

th
ir
d
pa
rt
y

lib
ra
ri
es

fo
r

m
ob

ile
ap
ps

St
at
is
tic
al

C
la
ss
ifi
er

L
D
A

H
yb
ri
d

B
eh
av
io
ur
al

R
an
do

m
ly

fr
om

G
itH

ub
43

.4
6

pr
ec
is
io
n

T
hi
rd

pa
rt
y

lib
ra
ri
es

ar
e

an
al
ys
ed

N
ot

co
nt
ai
n
th
e

su
ffi
ci
en
t

co
-o
cc
ur
re
nc
e
of

th
ir
d
pa
rt
y

lib
ra
ri
es
.

T
D
FS

[5
1]

To
pi
c
sp
ec
ifi
c

da
ta
flo

w
si
gn
at
ur
es

–
L
D
A
,

L
D
A
-G

D
St
at
ic

Si
gn

at
ur
e

G
oo
gl
e
Pl
ay

an
d
B
es
t

A
pp
s
M
ar
ke
t

Se
ns
iti
ve

da
ta
flo

w
an
al
yz
ed

Se
ns
iti
ve

da
ta
flo

w
si
gn

at
ur
es

is
us
ed

Sm
al
ld

at
as
et

R
eL

D
A
[5
2]

To
pi
cs

of
ea
ch

m
ob

ile
ap
p

–
L
D
A
,

C
om

bi
ne
L
D
A

St
at
ic

Si
gn

at
ur
e

G
oo
gl
e
Pl
ay

st
or
e

56
F

M
ea
su
re

U
se
rs

R
ec
om

m
en
da
tio

ns
w
er
e
an
al
ys
ed

A
nd

ro
id

ap
k
fil
e

is
no

te
ve
n

co
ns
id
er
ed



78 R. Raphael and P. Mathiyalagan

that 5% app in the cluster are detected as outlier apps. The study limited in the static
analysiswhereas proposed system is not robust enough to reflect android behaviour. Each
permission governs several APIs using permission alone would give too few features.
Therefore instead of just using manifest file, the sensitive API can be used to get more
fine grained permission.

Siqi Ma [49] implemented an active semi-supervised approach for checking app
behavior against its description. The dataset contained 22,555 apps with 172 malicious
and 22,383 benign android apps. The stop-word removal and stemming are performed
with the help of NLP techniques. The LDA-GA (Latent Dirichlet Allocation-Genetic
Algorithm) algorithm combines LDA algorithm with genetic algorithm (GA) applied to
generated topic models. App feature are extracted with the help of Apktool and collected
304 sensitiveAPImethods. The feature vector is analysedwith theEnsuredCollaborative
Active and Semi-Supervised Labeling (ECASSL) algorithm, which combines semi-
supervised learning (SSL) and active learning (AL) and is built on top of SVM. When
using 10% of the entire data as training data, the system achieved as a precision of 100%,
recall of 91.23%, and F-measure of 95.41%.

Huan Yu [50] proposed an automated hybrid approach AppLibRec that combines
topic model and collaborative filtering to recommend third party libraries for mobile
apps. The dataset contains randomly downloaded 3,117 mobile applications from
GitHub. The proposed system performed two kinds of analysis such as based on textual
description and library. AppLibRec approach extracted topics from the textual descrip-
tion of app and given new app, as well as recommends libraries based on the libraries
used by the apps which has similar topic distributions. The system outperformed the
state-of-the-art approach by a substantial margin. Experiments results show that the
precision and recall of LibRec by 38% and 35%, respectively.

Xinli Yang [51] characterized malicious android apps by mining topic-specific
dataflow signatures. Dataset contains 3691 benign and 1612 malicious apps and crawled
descriptions of apps from Google Play Store and Best Apps Market for benign and
malicious apps respectively. NLTK used for extract the app description features with the
representative terms and used their term frequency as features. A topic model is built
with the extracted features using adaptive LDA with Genetic Algorithm (GA). GA is
used to determine the optimal number of topics and each topic-specific signature will
include fewer, specific, data flow patterns each data-flow signature contains more dis-
criminative information to identify malicious apps in a specific topic. Each data flow
signature characterizes more fine-grained behavior of malicious apps in this topic by
highlighting the specific data-flow patterns that they are prone to exhibit.

Tianho Pan [52] presented a CombineLDA to analyse different topics of each mobile
app and calculate the similarity and user comments with high similarity apps. Top 5
Mobile Phone applications are taken for the experiment. Android recommendation result
shows that precision and recall as 0.41 and 0.15 respectively. LDAwith user comments is
resulted as 0.36 as precision and 0.13 as recall. Finally combineLDA precision and recall
as 0.47 and 0.19 respectively. The analysis conducted only on android recommendation
and User comments where android apk file is not even considered.



An Exploration of Changes Addressed in the Android Malware Detection Walkways 79

4 Evaluation of Selected Articles

The investigation is conducted on the different malware detection approaches namely
signature based, anomaly or behavioural based and topic modelling based. The diverse
frameworks were evaluated across their motives, classification algorithms used, analysis
types, detection types, dataset source, accuracy and finally the merits and demerits of
the implemented system (Refer Table 1, 2 and 3). The table informations are again
evaluated by the pictorial representations. The Fig. 5 depicts the accuracy achieved by
the various systems in the selected study based on the detection approaches. In signature
based approach, MDSyCall [25] showed highest accuracy as 98.5% with Naive Bayes
and Random Forest classifiers. But the disadvantage of this static system is the small
sample set. ONAMD [28] system got the lowest accuracy as 87.83%with support vector
machine and random forest classifiers. This hybrid method exhibited low accuracy may
be the limitations of online validation approache.

RanDroid [38] system obtained 98.98% high detection rate in the case of behavioural
based systems. But the time consumption is a demerit for this hybrid framework. In the
same time, it contained a large collection of apk files and it made use of the advantages
of the LSTM technique. The authors proposed a dynamic system called DMDAM [35]
shows very low accuracy rate as 77.13%. The system utilising different classifiers to
analyse the best detection rate but also it failed to improve the run time overheads in
anomaly based analysis. In the case of topic modelling based approaches the WHYPER
[45] framework exhibits a high accuracy as 97.3% and the sematic informations were
associated with the APIs to classify the malware in the behaviour based hybrid system.
The topic modelling based studies are concentrated on the test feature analysis from the
user reviews, recommendations and comments etc. There extracted feature were further
classified to analyses the malware apk files. The term “topic” is somewhat ambigious,
and topic models will not produce highly nuanced classification of texts. This is a major
disadvantage in the topic modeling technique.

Similarly, Fig. 6 depicts that the 38.4% of static and hybrid approaches were applied
on the selected signature based articles whereas the dynamic analysis got only 23%.
This is because of the zero day attacks are failed on the signature based method. In the
behavioural based approach, the execution of the android application is closely watched
with the help of the special sandbox approached. Hence the dynamic based analysis is
always preferred in the behavioural system to investigate the delvik code and native code.
Figure 6 is also resulting that 42.8% of dynamic analysis in implemented in behavioural
models. The topic based systems repeatedly utilized both static as well as the dynamic
methods for malware analysis. This shows 70% of the studied papers were contributing
the hybrid approach.

In addition to this, various classifiers were used in the selected study papers. The
Fig. 7 explains the percentages of each classifiers used in all the selected articles. The
Support Vector Machine (SVM) is the most widely used grouping techniques because
it is a supervised machine learning algorithm which can be used for both classification
and regression applications. The second place 12% occupied by the Naive Bayes (NB)
classifier which works based on Bayes’ Theorem with an assumption of independence
among predictors. In simple terms, a Naive Bayes classifier assumes that the presence
of a particular feature in a class is unrelated to the presence of any other feature. The



80 R. Raphael and P. Mathiyalagan

Fig. 5. Accuracy of the selected frameworks based on the detection methods

Fig. 6. Percentage of different analysis types used with malware detection approaches

K- Nearest Neighbours (KNN) got the next position with 11%. The KNN algorithm is
supervised; it takes a bunch of labelled points and uses them to learn how to label other
points. RandomForest (RF) andDecision Tree (DT) are shared 10% and 7% respectively.
Decision Tree builds classification or regression models in the form of a tree structure.
It breaks down a data set into smaller and smaller subsets while at the same time an
associated decision tree is incrementally developed. Random decision forests correct



An Exploration of Changes Addressed in the Android Malware Detection Walkways 81

for decision trees’ habit of over fitting to their training set. The other grouping methods
come below 5% for rest of the article selected for the evaluation.

Fig. 7. Percentage of various classifiers usage in the selected articles

5 Conclusion

This paper analysed the various android malware detection approaches and analysis
types. The selected articles are inspected to determine the utilisation of each malware
detection methods. Signature based method is always failed to address the zero-day
attacks. Hence the behavioural based approached are preferred always. Topic modeling
is an emerging technique to classify the android malware based on their description, user
reviews and commands etc. The text features are extracted and evaluated to conduct the
grouping operations. Topic modelling approached are combined with the signature or
anomaly based method to achieve a good results. In addition to this, static analysis is
considering patters or signature of the apk sample for investigations which not focuses to
code level analysis. Dynamic solutions produce the best results in the android malware
detection especially in the code obfuscation attacks. Most of the proposed frameworks
are implemented with hybrid approaches by make use of the static and dynamic merits.
Machine learning techniques were deployed for grouping and SVM classifier showed
high detection rate in android malware classification.

References

1. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide.
Accessed June 2019

2. http://gs.statcounter.com/os-market-share/mobile/worldwide. Accessed May 2019

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide


82 R. Raphael and P. Mathiyalagan

3. https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf.
Accessed April 2019

4. https://www.kaspersky.co.in/resource-center/threats/mobile. Accessed July 2019
5. https://securelist.com/it-threat-evolution-q1-2019-statistics/90916/. Accessed May 2019
6. https://www.appbrain.com/stats/number-of-android-apps. Accessed July 2019
7. Mobile Banking Trojans on Android OS. https://www.computerworld.com/article/2475964/

98–of-mobile-malware-targets-android-platform.html. Accessed 27 Nov 2018
8. Peng, S., Yu, S., Yang, A.: Smartphonemalware and its propagationmodeling: a survey. IEEE

Commun. Surv. Tutor. 16(2), 925–941 (2014). https://doi.org/10.1109/SURV.2013.070813.
00214

9. Sabillon, R., Cavaller, V., Cano, J., Serra-Ruiz, J.: Cybercriminals, cyberattacks and cyber-
crime. In: 2016 IEEE International Conference on Cybercrime and Computer Forensic
(ICCCF), Vancouver, BC, pp. 1–9 (2016). https://doi.org/10.1109/icccf.2016.7740434

10. Qu, Z., Alam, S., Chen, Y., Zhou, X., Hong, W., Riley, R.: DyDroid: measuring dynamic
code loading and its security implications in android applications. In: 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Denver,
CO, pp. 415–426 (2017). https://doi.org/10.1109/dsn.2017.14

11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–
1022 (2003)

12. Gelbukh, A.: Natural language processing. In: Fifth International Conference on Hybrid
Intelligent Systems (HIS 2005), Rio de Janeiro, Brazil, pp. 1–pp (2005). https://doi.org/10.
1109/ichis.2005.79

13. Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., State, R., Le Traon, Y.: Empirical assessment
of machine learning-based malware detectors for Android. Empirical Softw. Eng. 21(1),
183–211 (2014). https://doi.org/10.1007/s10664-014-9352-6

14. Winsniewski, R.: Android–Apktool: a tool for reverse engineering Android APK files.
Technical report (2012)

15. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., Ye, H.: Significant permission identification
for machine-learning-based Android malware detection. IEEE Trans. Ind. Inform. 14(7),
3216–3225 (2018). https://doi.org/10.1109/TII.2017.2789219

16. Santos, I., Brezo, F., Ugarte-Pedrero, X.: Opcode sequences as representation of executables
for data mining-based unknown malware detection. Inf. Sci. 231, 64–82 (2013). https://doi.
org/10.1016/j.ins.2011.08.020

17. Cui, B., Jin, H., Carullo, G., Liu, Z.: Service-oriented mobile malware detection system based
on mining strategies. Pervasive Mob. Comput. 24, 101–116 (2015). https://doi.org/10.1016/
j.pmcj.2015.06.006

18. Fan,Y.,Ye,Y.,Chen, L.:Malicious sequential patternmining for automaticmalware detection.
Expert Syst. Appl. 52, 16–25 (2016). https://doi.org/10.1016/j.eswa.2016.01.002

19. Wu, B., Lu, T., Zheng, K., Zhang, D., Lin, X.: Smartphone malware detection model based
on artificial immune system. China Commun. 11, 86–92 (2014). https://doi.org/10.1109/CC.
2014.7022530

20. Bat-Erdene, M., Park, H., Li, H., Lee, H., Choi, M.-S.: Entropy analysis to classify unknown
packing algorithms for malware detection. Int. J. Inf. Secur. 16(3), 227–248 (2016). https://
doi.org/10.1007/s10207-016-0330-4

21. Wang, P., Wang, Y.-S.: Malware behavioural detection and vaccine development by using a
support vector model classifier. J. Comput. Syst. Sci. 81, 1012–1026 (2015). https://doi.org/
10.1016/j.jcss.2014.12.014

22. Li, Z., Sun, L., Yan, Q., Srisa-an, W., Chen, Z.: DroidClassifier: efficient adaptive mining of
application-layer header for classifying Android malware. In: Deng, R., Weng, J., Ren, K.,
Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 597–616. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59608-2_33

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.kaspersky.co.in/resource-center/threats/mobile
https://securelist.com/it-threat-evolution-q1-2019-statistics/90916/
https://www.appbrain.com/stats/number-of-android-apps
https://www.computerworld.com/article/2475964/98%e2%80%93of-mobile-malware-targets-android-platform.html
https://doi.org/10.1109/SURV.2013.070813.00214
https://doi.org/10.1109/icccf.2016.7740434
https://doi.org/10.1109/dsn.2017.14
https://doi.org/10.1109/ichis.2005.79
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1016/j.pmcj.2015.06.006
https://doi.org/10.1016/j.eswa.2016.01.002
https://doi.org/10.1109/CC.2014.7022530
https://doi.org/10.1007/s10207-016-0330-4
https://doi.org/10.1016/j.jcss.2014.12.014
https://doi.org/10.1007/978-3-319-59608-2_33


An Exploration of Changes Addressed in the Android Malware Detection Walkways 83

23. Alam, S., Qu, Z., Riley, R., Chen, Y., Rastogi, V.: DroidNative: automating and optimizing
detection of Android native code malware variants. Comput. Secur. 65, 230–246 (2017).
https://doi.org/10.1016/j.cose.2016.11.011

24. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: A multi-view context-aware approach
to Android malware detection and malicious code localization. Empirical Softw. Eng. 23(3),
1222–1274 (2017). https://doi.org/10.1007/s10664-017-9539-8

25. Chaba, S., Kumar, R., Pant, R., Dave, M.: Malware detection approach for android systems
using system call logs. Cryptography and Security. arXiv:1709.08805

26. Chen, T., Mao, Q., Yang, Y., Lv, M., Zhu, J.: TinyDroid: a lightweight and efficient model
for Android malware detection and classification. Mob. Inf. Syst. 2018, 9 (2018). https://doi.
org/10.1155/2018/4157156. Article ID 4157156

27. Kang,H., Jang, J.,Mohaisen,A.,Kim,H.K.:Detecting and classifyingAndroidmalware using
static analysis along with creator information. Int. J. Distrib. Sens. Netw. (2015). https://doi.
org/10.1155/2015/479174

28. Riasat, R., Sakeena, M.: Onamd: an online Android malware detection approach. In: Inter-
national Conference on Machine Learning and Cybernetics (ICMLC), July 2018. https://doi.
org/10.1109/icmlc.2018.8526997

29. Cai, H., Meng, N., Ryder, B., Yao, D.: DroidCat: effective Android malware detection and
categorization via app-level profiling. IEEE Trans. Inf. Forensics Secur. 14(6), 1455–1470
(2018). https://doi.org/10.1109/TIFS.2018.2879302

30. Bhattacharya, A., Goswami, R.T.: Comparative analysis of different feature ranking tech-
niques in data mining-based Android malware detection. In: Satapathy, S.C., Bhateja, V.,
Udgata, S.K., Pattnaik, P.K. (eds.) Proceedings of the 5th International Conference on Fron-
tiers in Intelligent Computing: Theory and Applications. AISC, vol. 515, pp. 39–49. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-3153-3_5

31. Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity, behavior-based automated
malware analysis and classification. Comput. Secur. 52, 251–266 (2015). https://doi.org/10.
1016/j.cose.2015.04.001

32. Altaher, A.: An improved Android malware detection scheme based on an evolving hybrid
neuro-fuzzy classifier (EHNFC) and permission-based features. Neural Comput. Appl.
28(12), 4147–4157 (2016). https://doi.org/10.1007/s00521-016-2708-7

33. Dali, Z., Hao, J., Ying, Y., Wu, D., Weiyi, C.: DeepFlow: deep learning-based malware
detection by mining Android application for abnormal usage of sensitive data. In: 2017 IEEE
Symposium on Computers and Communications (ISCC), pp 438–443 (2017)

34. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: Android malware characterization and detection
using deep learning. Tsinghua Sci. Technol. 21, 114–123 (2016). https://doi.org/10.1109/
TST.2016.7399288

35. Bhattacharya, A., Goswami, R.T.: DMDAM: data mining based detection of Android mal-
ware. In: Mandal, J., Satapathy, S., Sanyal, M., Bhateja, V. (eds.) Proceedings of the First
International Conference on Intelligent Computing and Communication. AISC, vol. 458,
pp. 187–194. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2035-3_20

36. Nikolopoulos, S.D., Polenakis, I.: A graph-based model for malware detection and classifica-
tion using system-call groups. J. Comput. Virol. Hacking Tech. 13(1), 29–46 (2016). https://
doi.org/10.1007/s11416-016-0267-1

37. Wu, S., Wang, P., Li, X., Zhang, Y.: Effective detection of Android malware based on the
usage of data flow APIs and machine learning. Inf. Softw. Technol. 75, 17–25 (2016). https://
doi.org/10.1016/j.infsof.2016.03.004

38. Koli, J.D.: RanDroid: Android malware detection using random machine learning classifiers.
In: IEEE Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar,
pp. 1–6 (2018). https://doi.org/10.1109/icsesp.2018.8376705

https://doi.org/10.1016/j.cose.2016.11.011
https://doi.org/10.1007/s10664-017-9539-8
http://arxiv.org/abs/1709.08805
https://doi.org/10.1155/2018/4157156
https://doi.org/10.1155/2015/479174
https://doi.org/10.1109/icmlc.2018.8526997
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1007/978-981-10-3153-3_5
https://doi.org/10.1016/j.cose.2015.04.001
https://doi.org/10.1007/s00521-016-2708-7
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1007/978-981-10-2035-3_20
https://doi.org/10.1007/s11416-016-0267-1
https://doi.org/10.1016/j.infsof.2016.03.004
https://doi.org/10.1109/icsesp.2018.8376705


84 R. Raphael and P. Mathiyalagan

39. Hota, A., Irolla, P.: Deep neural networks for Android malware detection
40. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey you get off of my market: detecting malicious

apps in official and alternative Android markets. In: Proceedings of the Annual Network and
Distributed System Security Symposium, vol. 25, no. 4, pp. 50–52 (2012)

41. Feng, P., Ma, J., Sun, C., Xu, X., Ma, Y.: A novel dynamic Android malware detection system
with ensemble learning. IEEE Access 6, 30996–31011 (2018). https://doi.org/10.1109/ACC
ESS.2018.2844349

42. Singh, L., Hofmann, M.: Dynamic behavior analysis of Android applications for malware
detection. In: 2017 International Conference on Intelligent Communication and Computa-
tional Techniques (ICCT), Jaipur, pp. 1–7 (2017). https://doi.org/10.1109/intelcct.2017.832
4010

43. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app descriptions.
In: ICSE 2014 Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India, 31 May–07 June 2014, pp. 1025–1035. ACM, New York (2014). https://
doi.org/10.1145/2568225.2568276

44. Zhang, C., Wang, H., Wang, R., Guo, Y., Xu, G.: Re-checking app behavior against app
description in the context of third-party libraries. In: SEKE 2018 (2018). https://doi.org/10.
18293/seke2018-180

45. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: WHYPER: towards automating risk
assessment of mobile applications. In: USENIX Security 2013, pp. 527–542 (2013)

46. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: measuring the
description-to-permission fidelity in Android applications. In: ICCS 2014, pp. 1354–1365
(2014)

47. Medvet, E., Mercaldo, F.: Exploring the usage of topic modeling for Android malware static
analysis. In: 2016 11th International Conference on Availability, Reliability and Security
(ARES), Salzburg, pp. 609–617 (2016). https://doi.org/10.1109/ares.2016.10

48. Garg, M., Monga, A., Bhatt, P., Arora, A.: Android app behaviour classification using topic
modeling techniques and outlier detection using app permissions. In: 2016 Fourth Inter-
national Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat,
pp. 500–506 (2016). https://doi.org/10.1109/pdgc.2016.7913246

49. Ma, S., Wang, S., Lo, D., Deng, R.H., Sun, C.: Active semi-supervised approach for check-
ing app behavior against its description. In: 2015 IEEE 39th Annual Computer Software
and Applications Conference, Taichung, pp. 179–184 (2015). https://doi.org/10.1109/COM
PSAC.2015.93

50. Yu, H., Xia, X., Zhao, X., Qiu, W.: Combining collaborative filtering and topic modeling for
more accurate Android mobile app library recommendation. In: Internetware 2017 Proceed-
ings of the 9th Asia-Pacific Symposium on Internetware, Shanghai, China, 23 September
2017. ACM, New York (2017). Article no. 17. https://doi.org/10.1145/3131704.3131721

51. Yang, X., Lo, D., Li, L., Xia, X., Bissyandé, T.F., Klein, J.: Characterizing malicious Android
apps by mining topic-specific data flow signatures. Inf. Softw. Technol. 90, 27–39 (2017).
https://doi.org/10.1016/j.infsof.2017.04.007

52. Pan, T., Zhang,W.,Wang,Z.,Xu,L.:Recommendations based onLDA topicmodel inAndroid
applications. In: 2016 IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Vienna, pp. 151–158 (2016). https://doi.org/10.1109/qrs-c.
2016.24

https://doi.org/10.1109/ACCESS.2018.2844349
https://doi.org/10.1109/intelcct.2017.8324010
https://doi.org/10.1145/2568225.2568276
https://doi.org/10.18293/seke2018-180
https://doi.org/10.1109/ares.2016.10
https://doi.org/10.1109/pdgc.2016.7913246
https://doi.org/10.1109/COMPSAC.2015.93
https://doi.org/10.1145/3131704.3131721
https://doi.org/10.1016/j.infsof.2017.04.007
https://doi.org/10.1109/qrs-c.2016.24


DCNN-IDS: Deep Convolutional Neural
Network Based Intrusion Detection

System

S. Sriram1(B), A. Shashank1, R. Vinayakumar1,2, and K. P. Soman1

1 Center for Computational Engineering and Networking,
Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

sri27395ram@gmail.com, vinayakumarr77@gmail.com
2 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Centre,

Cincinnati, OH, USA
Vinayakumar.Ravi@cchmc.org

Abstract. In the present era, cyberspace is growing tremendously and
the intrusion detection system (IDS) plays a key role in it to ensure infor-
mation security. The IDS, which works in network and host level, should
be capable of identifying various malicious attacks. The job of network-
based IDS is to differentiate between normal and malicious traffic data
and raise an alert in case of an attack. Apart from the traditional sig-
nature and anomaly-based approaches, many researchers have employed
various deep learning (DL) techniques for detecting intrusion as DL mod-
els are capable of extracting salient features automatically from the input
data. The application of deep convolutional neural network (DCNN),
which is utilized quite often for solving research problems in image pro-
cessing and vision fields, is not explored much for IDS. In this paper, a
DCNN architecture for IDS which is trained on KDDCUP 99 data set
is proposed. This work also shows that the DCNN-IDS model performs
superior when compared with other existing works.

Keywords: Intrusion detection · Deep learning · Convolutional neural
network · Cyber security

1 Introduction

Information Technology (IT) systems play a key role in handling several sensitive
user data that are prone to several external and internal intruder attacks [1].
Every day, the attackers are coming up with new sophisticated attacks and the
attacks against IT systems are growing as the internet grows. As a result, a
novel, reliable and flexible IDS is necessary to handle the security threats like
malware attacks which could compromise a network of systems that can be used
by the attackers to perform various attacks using command and control servers.
Though there are various other security systems like firewall, IDS plays a major
role in defending the network from all kinds of cyberattacks. IDS is divided into
c© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 85–92, 2020.
https://doi.org/10.1007/978-981-15-9700-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_7&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_7


86 S. Sriram et al.

two categories. The first one is network IDS (NIDS) which monitors the network
traffic and raises alerts when it detects any kind of attack. The second one is
host-based IDS (HIDS) which detects both internal and external intrusion and
misuse by monitoring the system in which it is installed. It constantly records
the user activities and alerts the designated authority in case of an attack. Both
IDS are represented in Fig. 1.

Fig. 1. Model of IDS

The job of NIDS is to monitor the network traffic and to identify whether the
network traffic records as either malicious or normal (benign). Several machine
learning (ML) and deep learning (DL) classifiers are widely employed for the
detection of intrusion as it is a classification problem. DL models like autoen-
coders (AE), recurrent structures, deep neural network (DNN), etc. are used
for IDS by many researchers. The convolutional neural network (CNN) model is
quite often utilized for solving research problems in fields like computer vision,
image processing, etc. due to its capability to extract location invariant features
automatically. The application of CNN for IDS is not explored much. Therefore,
in this paper, deep CNN (DCNN) is trained on the most popular benchmark
data set called KDDCup 99 which has more than 8,00,000 data points. It is also
shown that the DCNN-IDS gives superior outcomes when compared to previous
works. Further, this paper is arranged as follows. Sections 2 and 3 includes the
related works and data set description. Sections 4 and 5 describes the statisti-
cal measures and the proposed model respectively. Sections 6 and 7 covers the
results and conclusion.



DCNN-IDS: Deep Convolutional Neural Network 87

2 Related Works

Several ML based approaches are proposed for IDS. [2] analyses several ML based
approaches for intrusion detection for identifying various issues. Issues related
to the detection of low-frequency attacks are discussed with possible solutions
to improve the performance further. The disadvantage of ML based approach
is that ML models operate on manual features extracted by the domain expert.
Since DL models can extract relevant features automatically without human
intervention, many researchers propose various DL based solution for IDS. Self-
Taught learning based NIDS is proposed in [3], where a sparse autoencoder and
softmax regression is used. The proposed model is trained on the NSLKDD data
set and it achieves an accuracy around 79.10% for 5-class classification which
is very close to the performance of existing models. Apart from this, 23-class
and 2-class classification also achieved good performance. A recent study [4]
claims that the deep networks perform better than shallow networks for IDS as
the deep network is capable of learning salient features by mapping the input
through various layers. In [5], the performance of RNN based NIDS is studied.
The model is trained on the NSL-KDD data set and both multi-class and binary
classification are performed. The performance of RNN based IDS is far superior
in both classification when compared to other traditional approaches and the
author claims that RNN based IDS has strong modeling capabilities for IDS.
Similarly in [6] and [7], various recurrent structures are proposed for IDS.

In [8], a new stacked non-symmetric deep autoencoder (NDAE) based NIDS
is proposed. The model is trained on both KDDCUP and NSLKDD bench-
mark data sets and its performance is compared with DBN based model. It
can be observed from the experimental analysis that the NDAE based approach
improves the accuracy up to 5% with 98.8% training time reduction when com-
pared to DBN based approach. In [9], the effectiveness of CNN and hybrid CNN
recurrent structures are studied and it can be observed that CNN based model
outperforms hybrid CNN-RNN models. In [10], the authors have claimed that
analyzing the traffic features from the network as a time series improves the
performance of IDS. They substantiate the claim by training long short-term
memory (LSTM) models with KDDCUP data set with a full and minimal fea-
ture set for 1000 epochs and have obtained a maximum accuracy of 93.82%. In
[11], a scalable DL framework is proposed for intrusion detection at both the net-
work and host levels. various ML and DNN models are trained on data sets such
as KDDCUP, NSLKDD, WSN-DS, UNSW-NB15, CICIDS 2017, ADFA-LD and
ADFA-WD and their performance are compared. In this work, the effectiveness
of the proposed model is evaluated using standard performance metrics and it
is compared with other works such as [10] and [11].

3 Data Set Description

The tcpdump data of the 1998 DARPA intrusion detection evaluation data set
is pre-processed to build KDDCUP 99 data set. The feature extraction from



88 S. Sriram et al.

tcpdump data is facilitated by the MADMAID data mining framework [11].
Table 1 represents the statistical information about the data set. This data set
was built by capturing network traffic for ten weeks from thousands of UNIX
systems and hundreds of users accessing those systems in the MIT Lincon lab-
oratory. The data captured during the first 7 weeks were utilized for training
purpose and the last 3 weeks data were utilized for testing purposes.

This data set has a total of 5 classes and 41 features. The first one is the
normal class which denotes benign network traffic records. The second one is
DoS. It is a kind of attack that works against resource availability. The third
one is the probing attack. This class represents all attacks that are used by
the attackers to obtain detailed information about the system and its security
structures and configurations. This kind of attack is performed by the attacks
initially in order to gain insights about the network so that they could perform
many critical attacks later. The next one is R2L which denotes root to local
attacks. This kind of attack is performed in order to acquire illegal remote access
to any system in a network. The last one is U2R which is user to root attacks.
It represents attacks that are using to gain root-level access to a system.

Table 1. Statistics of KDDCUP 99 data set

Attack types Description KDDCUP 99 (10% of Data)

Train Test

Normal It denotes normal traffic
records

97,278 60,593

DoS Attacker works against the
resource availability

3,91,458 2,29,853

Probe Obtaining detailed statistics
of system and network
configuration details

4,107 4,166

R2L Illegal access originated from
remote computer

1,126 16,189

U2R Obtaining root or superuser
level permissions illegally on
a particular system

52 228

Total 4,94,021 3,11,029

4 Statistical Measures

The proposed DCNN-IDS model is evaluated using some of the most commonly
used metrics such as recall, precision, f1-score, and accuracy. The Error matrix
gives an overall idea about the performance of the model and These metrics are
computed using terms that can be found in the error matrix. The first one is
True Positive (TP) which indicates the count of malicious traffic data points



DCNN-IDS: Deep Convolutional Neural Network 89

that are rightly considered as malicious by the model. The second one is False
Positive (FP) which indicates the count of benign traffic data points that are
wrongly considered as malicious by the model. Similarly, True Negative (TN)
indicates the count of benign traffic data points that are rightly considered as
benign by the model. False Negative (FN) is the final term that indicates the
count of malicious traffic data points that are wrongly considered as benign by
the model. Based on these four terms, we can define a number of metrics:

– Accuracy: This term denotes the total count of right predictions (TP and
TN) made by the model over total count of all predictions.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

– Precision: This term denotes the count of right positive results over the
amount of all positive results predicted by the model.

Precision =
TP

TP + FP
(2)

– Recall: This term points to the total count of right positive results over the
total count of all samples that are relevant.

Recall =
TP

TP + FN
(3)

– F1-score: This term represents both recall and precision by taking subcon-
trary mean between them.

F1 − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

5 Proposed Model

The DCNN-IDS architecture is represented by the Fig. 2 The structure of the
DCNN-IDS model is shown in Table 2. The proposed architecture is composed
of the following sections

– Pre-processing of network connection records: the symbolic data in
the connection records are transformed into numeric and normalized the data
using L2 normalization.

– Feature generation: The optimal features are extracted using the proposed
CNN model. The CNN model contains the convolution 1D layer which uses
a one-dimensional filter that slides over the connection record in order to
form a feature map. This feature map, in turn, is passed into a max-pooling
layer which facilitates the dimensionality reduction. The batch normalization
process is employed between the convolution and max-pooling layer to speeds
up the training process and also for performance enhancement. Dropout is



90 S. Sriram et al.

Fig. 2. Architecture of DCNN-IDS

placed after the max-pooling layer which acts as a regularization term. Since
CNN has parameters, the hyperparameter tuning approach is followed to
identify the optimal parameters. The value 0.01 is assigned as the learning rate
and adam optimizer is utilized. The number of filters is 32 in the initial CNN
layer, 64 in the next CNN layer and 128 in the final CNN layer. The parameter
max-pooling length is set to 2 in all the max-pooling layers and dropout to
0.01. When the number of CNN layers increased from 3 to 4, the performance
decreased and hence 3 level CNN is used. Finally, two dense layers are included
along with the CNN layer and the first dense layer composed of 512 neurons
and the second one is composed of 128 neurons. These layers use ReLU as
the activation function.

– Classification: The classification is done using the fully connected layer
which composed of 5 neurons with a softmax activation function.

6 Results

The proposed CNN model is designed and trained using one of the most com-
monly used python 3 library called Keras1 with tensorflow2. The model per-
formance is tested on the KDDCup 99 data set and the obtained results are
tabulated in Table 3. The proposed CNN model outperforms than the existing
LSTM [10] and DNN [11] based intrusion detection models.
1 https://keras.io.
2 https://www.tensorflow.org.

https://keras.io
https://www.tensorflow.org


DCNN-IDS: Deep Convolutional Neural Network 91

Table 2. Details about the structure proposed model

Layer type Output shape Parameters #

1D Convolution ( – , 41, 32) 128

Batch normalization ( – , 41, 32) 128

Max Pooling ( – , 21, 32) –

Dropout ( – , 20, 32) –

1D Convolution ( – , 20, 64) 6,208

Batch normalization ( – , 20, 64) 256

Max Pooling ( – , 10, 64) –

Dropout ( – , 10, 64) –

1D Convolution ( – , 10, 128) 24,704

Batch normalization ( – , 10, 128) 512

Max Pooling ( – , 5, 128) –

Dropout ( – , 5, 128) –

Flatten ( – , 640) –

Dense ( – , 512) 3,28,192

Dropout ( – , 512) –

Dense ( – , 128) 65,664

Dropout ( – , 128) –

Dense ( – , 5) 645

Total parameters: 426,437

Table 3. Evaluation of DL models on test set

Architecture Accuracy Precision Recall F1-score

LSTM [10] 93.82 82.8 58.3 68.4

DNN [11] 93.5 92 93.5 92.5

CNN (Proposed method) 94.1 92.4 94.1 93

7 Conclusion

In this paper, the effectiveness of the deep CNN model is studied for intrusion
detection by modeling the network traffic data. The proposed 1D-CNN outper-
forms the other relevant approaches where models like DNN and LSTM are used.
The proposed model uses only 425,989 parameters and does not incorporate any
complicated prepossessing techniques. Therefore, it has the potential to be used
in various low-powered IoT devices which has a very limited computation power.
In the future, hybrid models can be used where the features are extracted from
hidden layers of DL models and fed into other ML or DL models for further
improvement of performance.



92 S. Sriram et al.

Acknowledgement. This work was in part supported by Paramount Computer Sys-
tems and Lakhshya Cyber Security Labs. We are grateful to NVIDIA India, for the
GPU hardware support to the research grant. We are also grateful to the center of
Computational Engineering and Networking, Amrita School of Engineering, Amrita
Vishwa Vidyapeetham, Coimbatore for encouraging the research.

References

1. Mukherjee, B., Heberlein, L.T., Levitt, K.N.: Network intrusion detection. IEEE
Netw. 8(3), 26–41 (1994)

2. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation
and analysis of using machine learning techniques for intrusion detection. IEEE
Commun. Surv. Tutorials 21(1), 686–728 (2018)

3. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network
intrusion detection system. In Proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technologies (formerly BIO-
NETICS), pp. 21–26. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering) (2016)

4. Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., Atkinson, R.: Shallow and
deep networks intrusion detection system: a taxonomy and survey. arXiv preprint
arXiv:1701.02145 (2017)

5. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection
using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)

6. Vinayakumar, R., Soman, K.P., Poornachandran, P.: A comparative analysis of
deep learning approaches for network intrusion detection systems (N-IDSs): deep
learning for N-IDSs. Int. J. Digit. Crime Forensics (IJDCF) 11(3), 65–89 (2019)

7. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluation of recurrent neural
network and its variants for intrusion detection system (IDS). Int. J. Inf. Syst.
Model. Des. (IJISMD) 8(3), 43–63 (2017)

8. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network
intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

9. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Applying convolutional neu-
ral network for network intrusion detection. In: 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pp. 1222–
1228. IEEE (2017)

10. Staudemeyer, R.C.: Applying long short-term memory recurrent neural networks
to intrusion detection. S. Afr. Comput. J. 56(1), 136–154 (2015)

11. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A.,
Venkatraman, S.: Deep learning approach for intelligent intrusion detection system.
IEEE Access 7, 41525–41550 (2019)

12. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluating effectiveness
of shallow and deep networks to intrusion detection system. In 2017 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 1282–1289. IEEE (2017)

http://arxiv.org/abs/1701.02145


Deep Learning Based Frameworks for
Handling Imbalance in DGA, Email, and

URL Data Analysis

K. Simran1(B), Prathiksha Balakrishna2, Ravi Vinayakumar3,
and K. P. Soman1

1 Center for Computational Engineering and Networking,
Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

simiketha19@gmail.com
2 Graduate School, Computer Science Department, Texas State University,

San Marcos, USA
prathi.93april8@gmail.com

3 Center for Artificial Intelligence, Prince Mohammad Bin Fahd University,
Khobar, Saudi Arabia

vinayakumarr77@gmail.com

Abstract. Deep learning is a state of the art method for a lot of appli-
cations. The main issue is that most of the real-time data is highly imbal-
anced in nature. In order to avoid bias in training, cost-sensitive app-
roach can be used. In this paper, we propose cost-sensitive deep learn-
ing based frameworks and the performance of the frameworks is eval-
uated on three different Cyber Security use cases which are Domain
Generation Algorithm (DGA), Electronic mail (Email), and Uniform
Resource Locator (URL). Various experiments were performed using
cost-insensitive as well as cost-sensitive methods and parameters for both
of these methods are set based on hyperparameter tuning. In all exper-
iments, the cost-sensitive deep learning methods performed better than
the cost-insensitive approaches. This is mainly due to the reason that
cost-sensitive approach gives importance to the classes which have a
very less number of samples during training and this helps to learn all
the classes in a more efficient manner.

Keywords: Cyber Security · Deep learning · Cost-sensitive learning ·
Imbalanced data

1 Introduction

Cyber Security is an area which deals with techniques related to protecting data,
programs, devices, and networks from any attack, damage, and unauthorized
access [1]. There are various methods in Cyber Security to secure systems as
well as networks. The classical method is a signature-based system. A signature-
based system relies on regular expressions which give domain-level knowledge.
c© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 93–104, 2020.
https://doi.org/10.1007/978-981-15-9700-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_8&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_8


94 K. Simran et al.

The main issue is that these signature-based systems can identify only described
malware and cannot detect novel types of attacks and even existing variant types
of attacks. In order to detect “0-day” malware, the researchers have followed the
application of machine learning [2].

Recently, the application of deep learning architectures are employed in
Cyber Security use cases and these models can extract features implicitly
whereas machine learning algorithms require manual feature engineering [3–6].
To classify DGA generated domains, different deep learning approaches were pro-
posed in [1,7], and [2]. The real-time datasets are highly imbalanced in nature
and in order to handle it properly the concept of data mining approaches can
be used. In this direction, numerous amount of research is being performed. In
[9], an LSTM based model is proposed to handle multiclass imbalanced data
for detection of DGA botnet. In this work, the LSTM model is adapted to be
cost-sensitive and performed better than other cost-insensitive approaches. The
main objectives of this paper are:

1. This work proposes a cost-sensitive deep learning based framework for Cyber
Security.

2. The performance of cost-sensitive approaches are evaluated on three different
use cases in security namely, DGA, Email, and URL.

3. The performance of cost-sensitive models are compared with cost-insensitive
models.

4. Various hyperparameter tuning methods are employed to identify the optimal
network parameters and network structures.

The remaining of this paper is arranged in the following order: Sect. 2 doc-
uments a survey of the literature related to DGA, URL, and Email followed
by background related to NLP, deep learning, and cost-sensitive concepts in
Sect. 3. Section 4 provides a description of cyber-related tweets dataset. Section 5
describes the details of the proposed architecture. Section 6 reports the exper-
iments, results, and observations made by the proposed architecture. Section 7
concludes the paper with remakes on future work of research.

2 Literature Survey on Deep Learning Based DGA,
URL, and Email Data Analysis

2.1 Domain Generation Algorithms (DGAs)

In [8], an LSTM network was proposed for real-time prediction of DGA generated
domains. This work implemented binary as well as multiclass classification of
DGA. This network has a detection rate of 90% and a false positive (FP) rate of
1:10000. In [10], convolutional neural network (CNN) and LSTM deep learning
models were utilized to classify large amounts of real traffic. Simple steps were
followed to obtain pure DGA and non-DGA samples from real DNS traffic and
achieved a false positive rate of 0.01%. In [11], deep learning based approach
was proposed to classify domain name as malicious or benign. Performance of



Cost-Sensitive Deep learning based Framework for Cyber Security 95

various deep learning techniques like recurrent neural network (RNN), LSTM,
and classical machine learning approaches were compared. A highly scalable
framework was proposed by [12] for situational awareness of Cyber Security
threats. This framework analyses domain name system event data. Deep learning
approaches for detection and classification of pseudo-random domain names were
proposed in [13]. Comparison between different deep learning approaches like
LSTM, RNN, I-RNN, CNN, and CNN-LSTM was performed. RNN and CNN-
LSTM performed significantly better than other models and got a detection rate
of 0.99 and 0.98 respectively. A data-driven approach was utilized in [14] to detect
malware-generated domain names. This approach uses RNN and has achieved
an F1-score of 0.971. A combined binary and multiclass classification model was
proposed in [9] to detect DGA botnet. This model uses LSTM network and has
the capability to handle imbalanced multiclass data. A comprehensive survey on
detection of malicious domain using DNS data was performed by [15].

2.2 Uniform Resource Locator (URL)

A comprehensive and systematic survey to detect malicious URL using machine
learning methodologies was conducted by [16]. URLNet was proposed in [17]
which is an end-to-end system to detect malicious URL. This deep learning
framework contains word CNNs as well as character CNNs and has the capabil-
ity to learn nonlinear URL embedding directly from the URL. In [18], various
deep learning frameworks such as RNN, I-RNN, LSTM, CNN, CNN-LSTM were
utilized to classify real URL’s into malicious and benign at the character level.
LSTM and CNN-LSTM performed significantly better than other models and
achieved an accuracy of 0.9996 and 0.9995 respectively. A comparative study
using shallow and deep networks was performed by [19] for malicious URL’s
detection. In this work, CNN-LSTM network outperformed other networks by
achieving an accuracy of 98%. In [20], three models namely, support vector
machine (SVM) algorithm based on term frequency - inverse document fre-
quency (TF-IDF), logistic regression algorithm and CNN based on the word2vec
features were used to detect and predict malicious URLs. An online deep learn-
ing framework was proposed in [21] for detecting malicious DNS and URL. The
framework utilized character-level word embedding and CNN. In this work, a
real-world data set was utilized and the models performed better than state-of-
art baseline methods. URLDeep was proposed in [22] to detect malicious URL’s.
This deep learning framework based on dynamic CNN can learn a non-linear
URL address. A cost-sensitive framework firstfilter was proposed in [23] to detect
malicious URL. This network can handle large-scale imbalanced network data.

2.3 Electronic Mail (Email)

A complete review for filtering of email spam was proposed in [24]. Machine
learning based techniques and trends for email spam filtering were also dis-
cussed in this work. In [25], a machine learning based approach was proposed to
classify email space. This framework basically classifies an email into spam and



96 K. Simran et al.

non-spam. This work also proposed a platform-independent progressive web app
(PWA). In [26], deep learning based frameworks were proposed for email clas-
sification. This work proposed LSTMs and CNNs network which outperformed
baseline architectures. CNN performed better than LSTM and achieved an F1
score of 84.0%. [27] proposed a multi-modal framework based on model fusion
(MMA-MF) to classify email. This model fuses CNN and LSTM model. Image
part of the email is processed by the CNN model whereas the text part of the
email is sent to the LSTM model separately. Accuracy with a range between
92.64% to 98.48% is achieved by this method.

3 Background

This section discusses the details behind the text representation, deep learning
architectures and the concept of cost-sensitive model.

3.1 Text Representation

Keras Embedding: Word embedding takes sequence and similarities into
account to convert words into dense vectors of real numbers. Keras provides an
embedding layer with few parameters such as dictionary size, embedding size,
length of the input sequence and so on. These parameters are hyperparameters
and can have an impact on the performance. The weights are taken randomly
at first. These weights are tuned during backpropagation with respect to other
deep learning layers. Generally, Keras embedding learns embedding of all the
words or characters in the training set but the input word or character should
be represented by a unique integer. Keras1 is neural network library available for
the public which has different neural network building blocks like RNN, CNN,
etc. and also other common layers like dropout, pooling, etc.

N-gram: From a given sequence of text, the continuous sequences of N items
are called are N-gram. N-gram with N = 1 is known as a unigram and it takes
one word/character at once. N = 2 and N = 3 are called bigram and tri-
gram respectively and will take two and three words/characters at a time. If n
words/characters are to be taken at once then N will be equal to n.

3.2 Machine Learning

Naive Bayes: is a simple but surprisingly powerful algorithm which is based
on Bayes theorem principle. Given the prior information of conditions that may
be related with the occasion, it finds the probability of occurrence of an event.

1 https://keras.io/.

https://keras.io/


Cost-Sensitive Deep learning based Framework for Cyber Security 97

Decision Tree: is another supervised machine learning algorithm. The deci-
sion tree is constructed by continuously splitting the data-dependent on cer-
tain parameters. Decision trees consist of leaves and nodes where leaves are
the results of each decision made and nodes are the decision processes. Itera-
tive Dichotomiser 3 (ID3) algorithm is the most commonly used algorithm to
produce these trees. Using Decision Trees both classification and regression are
possible for discrete and continuous data.

AdaBoost: is an ensemble machine learning classifier like random forest which
utilizes a number of weak classifiers to make a strong classifier. Many machine
learning algorithms performance can be boosted using AdaBoost. Training set
which is used to iteratively retrain the algorithm is chosen based on the accuracy
of previous training. At every iteration, there is a weight given to every trained
classifier which is dependent on the accuracy achieved by the classifier. The items
that were not correctly classified are given higher weights which makes them have
a higher probability in next classifier. Classifier which has an accuracy of 50%
or more are given zero weight whereas negative weights are given to classifier
which has accuracy less the 50%. As the number of iterations is increased, the
accuracy of the classifier is improved.

Random Forest (RF): At first, random forest delivers multiple decision trees.
These different decision trees are then merged to get the correct classification.
The accuracy of this algorithm is directly proportional to the number of decision
trees. Without hyperparameter tuning, random forest gives a very good perfor-
mance. To reduce overfitting, it utilizes the ensemble learning method while
making the decision trees. Different types of data such as binary, numerical or
categorical can be given as input to this algorithm.

Support Vector Machine (SVM): is another supervised machine learning
algorithm which creates a hyperplane to split the data attributes between at
least two classes. Every data attribute is projected onto an n-dimensional space.
The hyperplane is created in a way such that the distance between the most
nearby point of each class and the hyperplane is maximized. Hard margin SVM
and soft margin SVM are the two type of SVM where hard margin SVM is the
SVM which draws a hyperplane in linear manner whereas soft margin SVM is
the SVM which draws the hyperplane in non-linear manner.

3.3 Deep Learning Architectures

Deep Neural Network (DNN): is an advanced model of classical feed-
forward network (FNN). As the name indicates the DNN contains many hid-
den layers along with the input and output layer. When the number of layer
increases in FFN causes the vanishing and exploding gradient issue. To handle
these issues, the ReLU non-linear activation was introduced. ReLU helps to



98 K. Simran et al.

protect weights from vanishing by the gradient error. Compared to other non-
linear functions, ReLU is more robust to the first-order derivative function since
it does not become zero for high positive as well as high negative values.

Convolutional Neural Network (CNN): is the most commonly used deep
learning architecture in computer vision applications as it has the capability to
extract spatial features. The three layers in CNN are convolution layer, pooling
layer, and fully connected layer. Convolution layer contains filters that slide
over the data to capture the optimal features and these features collectively are
termed as a feature map. The dimension of the feature map is high and to reduce
the dimension pooling layer is used. Min, max or average are the three pooling
operations. Finally, the pooling features are passed into a fully connected layer
for classification. For binary classification, sigmoid activation function is used
whereas for multiclass classification, softmax activation function is used.

Long Short-Term Memory (LSTM): is a special type of recurrent neural
network. It takes care of the issue of exploding and vanishing gradient. A cell
of LSTM comprises of four major parts namely, input, state cell, three gates
and output. The concatenation of the previous output and present input is the
input of this LSTM cell. The focal piece of the LSTM cell is called as a state cell
which holds the information about the previous sequences. The three gates in
an LSTM cell are forget gate, input gate, and output gate. Which information
to be remembered or which information to forget is decided by the forget gate.
The information relevant to the present input is taken to the cell state by the
input gate. What information should be passed as the output of the LSTM cell
is decided by the output gate. The output of the present cell gets concatenated
with the input of the next cell.

CNN - LSTM: CNN - LSTM architecture was developed for spatial time series
prediction problems as LSTM alone cannot handle inputs with spatial structure
like images. It consists of CNN layers to exact the features of the input data and
LSTM for supporting sequence predictions. In the end, it is connected to a fully
connected layer to get the classified output.

3.4 Cost-Sensitive Model

Models normally treat all samples equally which makes them sensitive to the
class imbalance problem. Class imbalance problem arises when there are classes
which have very small samples in comparison to other classes in the training data.
This problem can be handled using cost-sensitive models. The cost-sensitive
deep learning architectures consider all the samples equally. These models give
importance to the classes that have more number of samples during training
and limits the learning capability to the classes that have very less number of
samples. Cost-sensitive learning served as an important method in real-world



Cost-Sensitive Deep learning based Framework for Cyber Security 99

data mining applications and provides an approach to carefully handle the class
imbalance problem. Let’s assume that the samples have equal cost at first. C[i, i]
indicates the misclassification cost of the class i, which is generated using the
class distribution as

C[i, i] =
(

1
ni

)γ

(1)

Where γ ∈ [0, 1]. 0 indicates that cost-sensitive deep learning architectures
are diminished to cost-insensitive and 1 indicates that C[i, i] is inversely propor-
tional to the class size nj .

4 Description of the Data Set

In this work, three different data sets were utilized for the three use cases. For
DGA, domain names have to be classified as legitimate or malicious. For Email,
classification result should be either legitimate or spam. For URL, URL should
be classified as legitimate or malicious. The data set is divided into train data
and test data. The train data set was used to train the models whereas the test
data set was used to test the trained models. The train and test dataset of DGA
composed of 38,276 legitimate, 53,052 malicious and 12,753 legitimate, 17,690
malicious domain name samples respectively. The legitimate domain names are
collected from Alexa2 and OpenDNS3 and DGA generated domain names are
collected from OSINT Feeds4. The train dataset is collected from November,
2017 to December 2017 and the test dataset is collected from January 2018 to
February 2018. The train and test dataset of email composed of 19,337 legitimate,
24,665 spam and 8,153 legitimate, 10,706 email samples respectively. The train
and test dataset of email are collected from Enron5 and PU6. The train and
test dataset of URL composed of 233,74 legitimate, 11,116 malicious and 11,42
legitimate, 578 malicious samples respectively. The legitimate URLs are collected
from Alexa.com and DMOZ directory7 and malicious URLs are collected from
malwareurl.com, Phishtank.com, OpenPhish.org, malwaredomainlist.com, and
malwaredomains.com. The train dataset is collected from March, 2018 to April
2018 and the test dataset is collected from September, 2018 to October, 2018.
All the datasets are unique as well as the train and test datasets are disjoint to
each other.

5 Proposed Architecture

The proposed architecture is shown in Fig. 1. The diagram located in top shows
the training process involved in cost-insensitive deep learning model. The other
2 https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-

its-top-ranked-websites.
3 https://www.opendns.com/.
4 https://osint.bambenekconsulting.com/feeds/.
5 https://www.cs.cmu.edu/∼enron/.
6 http://www.aueb.gr/users/ion/data/PU123ACorpora.tar.gz.
7 https://dmoz-odp.org/.

https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
https://www.opendns.com/
https://osint.bambenekconsulting.com/feeds/
https://www.cs.cmu.edu/~enron/
http://www.aueb.gr/users/ion/data/PU123ACorpora.tar.gz
https://dmoz-odp.org/


100 K. Simran et al.

diagram shows the training process involved in the cost-sensitive deep learning
model. In the cost-sensitive deep learning model, we introduce cost-weights to
make the classifier to give importance to the classes which have very less number
of samples and give less importance to the classes which have more number of
samples. This enables to avoid imbalanced problems in classification.

Fig. 1. Cost-insensitive and cost-sensitive deep learning based architectures.

6 Experiments, Results, and Observations

All the classical machine learning algorithms are implemented using Scikit-learn8

and the deep learning models are implemented using TensorFlow9 with Keras
(See footnote 1) framework. All the models are trained on GPU enabled Ten-
sorFlow. Various statistical measures are utilized in order to evaluate the per-
formance of the proposed classical machine learning and deep learning models.

We have trained various classical machine learning and deep learning model
which can be cost-sensitive or cost-insensitive using the trained datasets. The
performance of the trained models is evaluated on test data.

All the models are parameterized as optimal parameters play a significant role
in obtaining better performance. For machine learning algorithms, we have not
done any hyperparameter tuning. We have used the default parameters of Scikit-
learn. To convert text into numerical values, Keras embedding was used with an
embedding dimension of 128. Different architectures namely, DNN, CNN, LSTM,
and CNN-LSTM are used. For DNN, 4 hidden layers with units 512, 384, 256,
128 and a finally dense layer with 1 hidden unit. In between the hidden layer
dropout of 0.01 and batch normalization are used. Dropout was used to reduce
overfitting and batch normalization was used to increase the speed. In CNN,
64 filters with filter length 3 and followed by maxpooling with pooling length 2
are used. Followed by a dense layer with 128 hidden units and dropout of 0.3.
Finally a dense layer with one hidden unit. LSTM contains 128 memory blocks

8 https://scikit-learn.org/.
9 https://www.tensorflow.org/.

https://scikit-learn.org/
https://www.tensorflow.org/


Cost-Sensitive Deep learning based Framework for Cyber Security 101

Table 1. Results for DGA analysis.

Model Accuracy Precision Recall F1-score TN FP FN TP

Naive Bayes 68.1 99.3 45.5 64.4 12,700 53 9,653 8037

Decision Tree 79.7 76.5 93.8 84.3 7,654 5,099 1091 16,599

AdaBoost 82.8 79.2 95.6 86.6 8,300 4,453 770 16,920

RF 84.1 80.5 95.8 87.5 8,651 4,102 736 16,954

SVM 85.2 81.7 96.2 88.3 8,932 3,821 680 17,010

DNN 86.8 83.7 96.1 89.5 9,434 3,319 688 17,002

CNN 94.3 92.1 98.7 95.3 11,263 1,490 233 17,457

LSTM 94.4 93.0 97.6 95.3 11,457 1,296 421 17,269

CNN-LSTM 95.2 93.2 99.0 96.0 11,478 1,275 174 15,716

Cost-sensitive models

CNN 95.4 93.2 99.5 96.2 11,464 1,289 97 17,593

LSTM 95.5 93.2 99.6 96.3 11,470 1,283 74 17,616

CNN-LSTM 95.6 93.2 99.7 96.3 11,467 1,286 59 17,631

Table 2. Results for Email analysis.

Model Accuracy Precision Recall F1-score TN FP FN TP

Naive Bayes 68.8 99.4 45.3 62.2 8,122 31 5,855 4,851

Decision Tree 82.9 80.0 95.4 87.1 4,521 2,527 487 10,138

AdaBoost 91.3 88.6 97.1 92.7 6,815 1,338 310 10,396

RF 92.0 89.9 96.7 93.2 6,984 1,169 349 10,357

SVM 92.3 92.3 94.4 93.3 7,304 849 599 10,107

DNN 93.0 90.0 98.6 94.1 6,980 1,173 145 10,561

CNN 93.6 92.6 96.4 94.5 7,326 827 382 10,324

LSTM 93.7 91.9 97.5 94.6 7,239 914 270 10,436

CNN-LSTM 94.0 92.2 97.6 94.8 7,270 883 253 10,453

Cost-sensitive models

CNN 94.2 92.7 97.4 95.0 7,334 819 276 10,430

LSTM 94.3 92.7 97.6 95.1 7,333 820 254 10,452

CNN-LSTM 94.7 92.8 98.3 95.5 7,341 812 187 10,519

followed by dropout of 0.3 and finally dense layer with one hidden unit. In CNN-
LSTM architecture, we connected CNN network with LSTM network. CNN has
64 filters with filter length 3, followed by a maxpooling layer having pooling
length 2. Followed by LSTM network having 50 memory blocks and finally a
dense layer with one hidden unit is added. All the experiments are run till 100
epochs with a learning rate of 0.01, and adam optimizer.



102 K. Simran et al.

Table 3. Results for URL analysis.

Model Accuracy Precision Recall F1-score TN FP FN TP

Naive Bayes 45.1 37.9 98.8 54.7 205 937 7 571

Decision Tree 81.8 73.3 72.1 72.7 990 152 161 417

AdaBoost 87.1 83.8 76.3 79.9 1,057 85 137 441

RF 90.0 90.6 78.4 84.0 1,095 47 125 453

SVM 81.0 88.4 50.0 63.9 1,104 38 289 289

DNN 90.8 92.5 79.1 85.3 1,105 37 121 457

CNN 92.9 91.9 86.5 89.1 1,098 44 78 500

LSTM 93.4 97.2 82.7 89.3 1,128 14 100 478

CNN-LSTM 94.4 96.5 86.5 91.2 1,124 18 78 500

Cost-sensitive models

CNN 93.4 96.0 83.7 89.5 1,122 20 94 484

LSTM 94.5 93.7 89.8 91.7 1,107 35 59 519

CNN-LSTM 94.7 93.1 91.0 92.0 1,103 39 52 526

The detailed performance analysis of all the models are reported in Table 1
for DGA analysis, Table 2 for Email analysis, and Table 3 for URL analysis. As
shown in the tables, the performance of deep learning models is better than the
machine learning models. More importantly, the performance of cost-sensitive
deep learning models is better than the cost-insensitive models. This is primarily
because cost-sensitive models can give certain weights to the classes which helps
to reduced overfitting and underfitting during training. We can see in all the
three Tables that the cost-sensitive hybrid network of CNN-LSTM performed
better than the other network like CNN and LSTM.

7 Conclusion and Future Work

This paper proposes a generalized cost-sensitive deep learning model for Cyber
Security use cases such as DGA, Email, and URL. However, the model can be
applied on other Cyber Security use cases also. The cost-sensitive hybrid model
composed of CNN and LSTM can extract spatial and temporal features and
can obtain better perform on any type of data sets. Implementing this model in
real time data analysis with Big data and Streaming can be considered a good
direction for future work.

Acknowledgements. This research was supported in part by Paramount Computer
Systems and Lakhshya Cyber Security Labs. We are grateful to NVIDIA India, for
the GPU hardware support to research grant. We are also grateful to Computational
Engineering and Networking (CEN) department for encouraging the research.



Cost-Sensitive Deep learning based Framework for Cyber Security 103

References

1. Mahdavifar, S., Ghorbani, A.A.: Application of deep learning to cybersecurity: a
survey. Neurocomputing 347, 149–176 (2019)

2. Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., Marchetti, M.: On the effec-
tiveness of machine and deep learning for cyber security. In 2018 10th International
Conference on Cyber Conflict (CyCon), pp. 371–390. IEEE (2018)

3. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A.,
Venkatraman, S.: Deep learning approach for intelligent intrusion detection system.
IEEE Access 7, 41525–41550 (2019)

4. Vinayakumar, R., Soman, K. P., Poornachandran, P., Menon, P.: A deep-dive on
machine learning for cybersecurity use cases. In: Machine Learning for Computer
and Cyber Security: Principle, Algorithms, and Practices. CRC Press (2019)

5. Vinayakumar, R., Soman, K.P.: DeepMalNet: evaluating shallow and deep net-
works for static PE malware detection. ICT Express 4(4), 255–258 (2018)

6. Vinayakumar, R., Soman, K.P., Poornachandran, P.: A comparative analysis of
deep learning approaches for network intrusion detection systems (N-IDSs): deep
learning for N-IDSs. Int. J. Digit. Crime Forensics (IJDCF) 11(3), 65–89 (2019)

7. Berman, D.S., Buczak, A.L., Chavis, J.S., Corbett, C.L.: A survey of deep learning
methods for cyber security. Information 10(4), 122 (2019)

8. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain
generation algorithms with long short-term memory networks. arXiv preprint
arXiv:1611.00791 (2016)

9. Tran, D., Mac, H., Tong, V., Tran, H.A., Nguyen, L.G.: A LSTM based framework
for handling multiclass imbalance in DGA botnet detection. Neurocomputing 275,
2401–2413 (2018)

10. Yu, B., Gray, D.L., Pan, J., De Cock, M., Nascimento, A.C.: Inline DGA detec-
tion with deep networks. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 683–692. IEEE (2017)

11. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Detecting malicious domain
names using deep learning approaches at scale. J. Intell. Fuzzy Syst. 34(3), 1355–
1367 (2018)

12. Vinayakumar, R., Poornachandran, P., Soman, K.P.: Scalable framework for cyber
threat situational awareness based on domain name systems data analysis. In:
Roy, S.S., Samui, P., Deo, R., Ntalampiras, S. (eds.) Big Data in Engineering
Applications. SBD, vol. 44, pp. 113–142. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-8476-8 6

13. Vinayakumar, R., Soman, K.P., Poornachandran, P., Sachin Kumar, S.: Evaluating
deep learning approaches to characterize and classify the DGAs at scale. J. Intell.
Fuzzy Syst. 34(3), 1265–1276 (2018)

14. Lison, P., Mavroeidis, V.: Automatic detection of malware-generated domains with
recurrent neural models. arXiv preprint arXiv:1709.07102 (2017)

15. Zhauniarovich, Y., Khalil, I., Yu, T., Dacier, M.: A survey on malicious domains
detection through DNS data analysis. ACM Comput. Surv. (CSUR) 51(4), 67
(2018)

16. Sahoo, D., Liu, C., Hoi, S.C.: Malicious URL detection using machine learning: a
survey. arXiv preprint arXiv:1701.07179 (2017)

17. Le, H., Pham, Q., Sahoo, D., Hoi, S.C.: URLnet: learning a URL representation
with deep learning for malicious URL detection. arXiv preprint arXiv:1802.03162
(2018)

http://arxiv.org/abs/1611.00791
https://doi.org/10.1007/978-981-10-8476-8_6
https://doi.org/10.1007/978-981-10-8476-8_6
http://arxiv.org/abs/1709.07102
http://arxiv.org/abs/1701.07179
http://arxiv.org/abs/1802.03162


104 K. Simran et al.

18. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Evaluating deep learning
approaches to characterize and classify malicious URL’s. J. Intell. Fuzzy Syst.
34(3), 1333–1343 (2018)

19. Vazhayil, A., Vinayakumar, R., Soman, K.P.: Comparative Study of the detection
of malicious URLs using shallow and deep networks. In 2018 9th International Con-
ference on Computing, Communication and Networking Technologies (ICCCNT),
pp. 1–6. IEEE (2018)

20. Abdi, F.D., Wenjuan, L.: Malicious URL detection using convolutional neural net-
work. J. Comput. Sci. Eng. Inf. Technol. 7(6), 1–8 (2017)

21. Jiang, J., et al.: A deep learning based online malicious URL and DNS detection
scheme. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds.) SecureComm
2017. LNICST, vol. 238, pp. 438–448. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78813-5 22

22. Wanda, P., Jie, H.J.: URLDeep: continuous prediction of malicious URL with
dynamic deep learning in social networks. IJ Netw. Secur. 21(6), 971–978 (2019)

23. Vu, L., Nguyen, P., Turaga, D.: Firstfilter: a cost-sensitive approach to malicious
URL detection in large-scale enterprise networks. IBM J. Res. Dev. 60(4), 4:1–4:10
(2016)

24. Bhowmick, A., Hazarika, S.M.: Machine learning for e-mail spam filtering: review,
techniques and trends. arXiv preprint arXiv:1606.01042 (2016)

25. Alurkar, A.A., et al.: A proposed data science approach for email spam classification
using machine learning techniques. In: 2017 Internet of Things Business Models,
Users, and Networks, pp. 1–5. IEEE (2017)

26. Eugene, L., Caswell, I.: Making a manageable email experience with deep learning
(2017)

27. Yang, H., Liu, Q., Zhou, S., Luo, Y.: A spam filtering method based on multi-modal
fusion. Appl. Sci. 9(6), 1152 (2019)

https://doi.org/10.1007/978-3-319-78813-5_22
https://doi.org/10.1007/978-3-319-78813-5_22
http://arxiv.org/abs/1606.01042


Computational Models



An M/M/1 Queueing Model Subject
to Differentiated Working Vacation

and Customer Impatience

K. V. Vijayashree(B) and K. Ambika

Department of Mathematics, Anna University, Chennai, India
vkviji@annauniv.edu, ambisavi.ambika@gmail.com

Abstract. This paper deals with the stationary and transient analysis of a single
server queueing model subject to differentiated working vacation and customer
impatience. Customers are assumed to arrive according to a Poisson process and
the service times are assumed to be exponentially distributed. When the system
empties, the single server takes a vacation of some random duration (Type I) and
upon his return if the system is still empty, he takes another vacation of shorter
duration (Type II). Both the vacation duration are assumed to follow exponential
distribution. Further, the impatient behaviour of the waiting customer due to slow
service during the period of vacation is also considered. Explicit expressions for
the time dependent system size probabilities are obtained in terms of confluent
hyper geometric series and modified Bessel’s function of first kind using Laplace
transform, continued fractions and generating function methodologies. Numerical
illustrations are added to depict the effect of variations in different parameter values
on the time dependent probabilities.

Keywords: M/M/1 queue · Differentiated working vacation · Customer
impatience · Continued fractions · Generating functions · Confluent
hypergeometric functions

1 Introduction

A vacation queueing system that distinguishes between two kinds of vacation that a
server can take, namely, a shorter duration and a longer duration vacation is termed as
queues subject to differentiated vacation. Ibe and Isijola (2014) obtained the analytical
expressions for the steady-state system size probabilities of theM/M/1 queueing model
subject to differentiated vacation. Phung Duc (2015) considered the same model intro-
duced by Ibe and Isijola (2014) to derive the expressions for the sojourn time and the
queue length and subsequently extended the model with working vacations to obtain
steady-state results for system size probabilities and certain other performance mea-
sures. Vijayashree and Janani (2018) extended the studies of Ibe and Isijola (2014) on
steady-state system size probabilities of the queueing model to the corresponding time
dependent analysis using the probability generating function and Laplace transforms.
Customer’s impatience is another important aspect of queueing models and it may occur

© Springer Nature Singapore Pte Ltd. 2020
S. Balusamy et al. (Eds.): ICC3 2019, CCIS 1213, pp. 107–122, 2020.
https://doi.org/10.1007/978-981-15-9700-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9700-8_9&domain=pdf
https://doi.org/10.1007/978-981-15-9700-8_9


108 K. V. Vijayashree and K. Ambika

due to the long wait in the queue. Recently, Suranga Sampth and Liu (2018) derived the
transient solution for anM/M/1 queue with impatient customers, differentiated vacations
and a waiting server. In many practical situations, it is reasonable to assume an alternate
server during the vacation duration whoworks at a relatively slower pace. In this context,
this paper studies anM/M/1multiple vacation queueing models with two kinds of differ-
entiated working vacations considering the impatient behaviour of the waiting customer
during the vacation period of the server. Explicit expressions for the steady state and
time-dependent system size probabilities are obtained. The model under consideration
is relevant in several human involved systems like a clerk in a bank, a cashier in the
super market and many more.

In recent years, the available bandwidth in communication system needs to meet
several services such as video conferencing, video gaming, data off loading etc. thereby
resulting in higher energy consumption. Hence, there arises a need to save the energy
being consumed. With the advent of increase in mobile usage, various energy saving
strategies were introduced. The IEEE.802.16e defines a sleep mode operation for con-
serving the power ofmobile terminals. Sleepmode plays a central role for energy efficient
usage in recent mobile technologies such as WiFi, 3G and WiMax. The sleep mode is
characterized by the non-availability of the Mobile Stations (MS) as observed by the
serving Base Stations (BS) to downlink and uplink traffic. In the data transfer between
MS and BS, the MS can be modelled as a single server which in normal state is in active
mode and switches off to sleep mode (Type I) and continues in listen interval (Type II)
when no data packets are waiting in the buffer. In the IEEE standard the sleep state is peer
specific and has two different modes of operations - light sleep and deep sleep mode.
Chakraborthy (2016) revealed that there exists interesting performance tradeoffs among
light sleep mode and deep sleep mode that can be explored to design an efficient power
profile for mesh networks. Certain theoretical analysis work was carried out by various
authors are Seo et al. (2014), Xiao (2005), Niu et al. (2001) to study the sleep mode
operation employed in IEEE 802.16e. Among them, Xiao (2005) and Niu et al. (2001)
construct queueing models with multiple vacations to analyse the power consumption
and the delay.

2 Model Description

Consider a single server queueing model in which arrivals are allowed to join the system
according to a Poisson process with parameter λ and service takes place according to an
exponential distribution with parameter μ. The server takes a vacation of some random
duration (type 1) if there are no customers in the system.When the server finds an empty
system upon his return, the server takes another vacation of shorter duration (type 2). It
is assumed that the server continues to provide service even during the vacation period,
but at a slower rate rather than completely stopping the service. Such an assumption
agrees well with most of the real time situations. The service time during type I and type
II vacation are assumed to be exponentially distributed with parameters μ1(< μ) and
μ2(< μ) respectively. Customers arriving while the system is in vacation state become
impatient due to slow service. Each customer, upon arrival, activates an individual timer,
which is exponentially distributed with parameter ξ for both vacation types (type I and



An M/M/1 Queueing Model Subject 109

type II). If the customer’s service has not been completed before the customer’s timer
expires, he abandons the system never to return. It is assumed that the inter-arrival times,
service times, waiting times and vacation times are mutually independent and the service
discipline is First-In First-Out. Furthermore, the vacation times of the server during type
I and type II vacation are also assumed to follow exponential distributionwith parameters
γ1 and γ2 respectively. The state transition diagram for the queueing model under study
is given in Fig. 1.

Fig. 1. State Transition Diagram of anM/M/1 queueing system subject to differentiated working
vacation and customer impatience.

Let X (t) denote the number of the customer in the system and S(t) represent the state

of the server at time t, where S(t) =
⎧
⎨

⎩

0, if the server is busy
1, if the server is in type I vacation
2, if the server is in type II vacation.

It can be readily seen that the process {X (t), S(t)} forms a Markov process on the
state space

� = {(0, 1) ∪ (0, 2) ∪ (n, j); n = 1, 2..; j = 0, 1, 2}.

2.1 Governing Equations

Let Pn,j(t) denote the time dependent probability for the system to be in state j with
n customers at time t. Assume that initially the system is empty and the server is in
type I vacation. By standard methods, the system of Kolmogorov differential difference
equations governing the process are given by

P
′
1,0(t) = −(λ + μ)P1,0(t) + μP2,0(t) + γ1P1,1(t) + γ2P1,2(t) (2.1)



110 K. V. Vijayashree and K. Ambika

P
′
n,0(t) = −(λ + μ)Pn,0(t) + μPn+1,0(t) + λPn−1,0(t) + γ1Pn,1(t) + γ2Pn,2(t),

n = 2, 3..
(2.2)

P
′
0,1(t) = −(λ + γ1)P0,1(t) + μP1,0(t) + (μ1 + ξ)P1,1(t) (2.3)

P
′
n,1(t) = −(λ + γ1 + μ1 + nξ)Pn,1(t) + λPn−1,1(t) + (μ1 + (n + 1)ξ)Pn+1,1(t)

(2.4)

P
′
0,2(t) = −λP0,2(t) + (μ2 + ξ)P1,2(t) + γ1P0,1(t) (2.5)

P
′
n,2(t) = −(λ + γ2 + μ2 + nξ)Pn,2(t) + λPn−1,2(t) + (μ2 + (n + 1)ξ)Pn+1,2(t)

(2.6)

with P0,1(0) = 1,P0,2(0) = 0 andPn,j(0) = 0 for n = 1,2,3… and j = 0,1,2,..

3 Transient Analysis

In this section, the time–dependent system size probabilities for the model under con-
sideration are obtained using Laplace transform, continued fractions and probability
generating function method in terms of modified Bessel functions of first kind and
confluent hypergeometric function.

3.1 Evaluation of Pn,1(t) and Pn,2(t)

Let P̂n,j(s) be the Laplace transform of Pn,j(t); n = 0, 1 . . . and j = 0, 1, 2. Taking
Laplace transform of the Eqs. (2.4) and (2.6) leads to

sP̂n,1(s) − Pn,1(0) = −(λ + γ1 + μ1 + nξ)P̂n,1(s) + λP̂n−1,1(s)

+ (μ1 + (n + 1)ξ)P̂n+1,1(s) (3.1)

and

sP̂n,2(s) − Pn,2(0) = −(λ + γ2 + μ2 + nξ)P̂n,2(s) + λP̂n−1,2(s)

+ (μ2 + (n + 1)ξ)P̂n+1,2(s) (3.2)

Using the boundary conditions and rewriting Eq. (3.1) yields

P̂n,1(s)

P̂n−1,1(s)
= λ

s + λ + γ1 + μ1 + nξ − (μ1 + (n + 1)ξ)
P̂n+1,1(s)
P̈n,1(s)

which further yields the continued fraction given by

P̂n,1(s)

P̂n−1,1(s)
= λ

(s + λ + γ1 + μ1 + nξ) − λ(μ1+(n+1)ξ)

(s+λ+γ1+μ1+(n+1)ξ)− λ(μ1+(n+2)ξ)

(s+λ+γ1+μ1+(n+2)ξ)
−...



An M/M/1 Queueing Model Subject 111

Using the identity (Refer Lorentzen and Waadeland 1992) relating continued fractions
and hypergeometric series given by

1F1(a + 1; c + 1; z)
1F1(a; c; z) = c

c − z

(a + 1)z

+c − z + 1

(a + 2)z

c − z + 2
. . . ,

where 1F1(a; c; z) is the confluent hypergeometric function, we get

P̂n,1(s)

P̂n−1,1(s)
= λ

ξ
(
s+γ1+μ1

ξ
+ n

)
1F1

(
μ1
ξ

+ n + 1; s+γ1+μ1
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ1
ξ

+ n; s+γ1+μ1
ξ

+ n;−λ
ξ

) ,

for n = 1, 2, 3 . . . . Hence, we recursively obtain

P̂n,1(s) = φ̂n(s)P̂0,1(s) (3.3)

where

φ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ1+μ1

ξ
+ i

)
1F1

(
μ1
ξ

+ n + 1; s+γ1+μ1
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ1
ξ

+ 1; s+γ1+μ1
ξ

+ 1;−λ
ξ

) .

In particular, when n = 1, Eq. (3.3) becomes

P̂1,1(s) = φ̂1(s)P̂0,1(s). (3.4)

Now, taking Laplace transform of Eq. (2.3) and applying the boundary conditions leads
to

sP̂0,1(s) − P0,1(0) = −(λ + γ1)P̂0,1(s) + μP̂1,0(s) + (μ1 + ξ)P̂1,1(s),

and hence

P̂0,1(s) = 1

s + λ + γ1
+ μ

s + λ + γ1
P̂1,0(s) + (μ1 + ξ)

s + λ + γ1
P̂1,1(s). (3.5)

Substituting Eq. (3.4) in the Eq. (3.5) and after some algebra, we get

P̂0,1(s) =
(
1 + μP̂1,0(s)

) ∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1 . (3.6)

Substituting Eq. (3.6) in Eq. (3.3) yields

P̂n,1(s) =
(
1 + μP̂1,0(s)

)
φ̂n(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1 , n = 1, 2, 3. (3.7)

Applying the boundary conditions to Eq. (3.2) and using the same procedure as above
to evaluate P̂n,1(s), it is seen that P̂n,2(s) can be expressed as

P̂n,2(s) = ψ̂n(s)P̂0,2(s) (3.8)



112 K. V. Vijayashree and K. Ambika

where

ψ̂n(s) =
(

λ

ξ

)n
⎛

⎝
1

∏n
i=1

(
s+γ2+μ2

ξ
+ i

)

⎞

⎠

⎛

⎝
1F1

(
μ2
ξ

+ n + 1; s+γ2+μ2
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ2
ξ

+ 1; s+γ2+μ2
ξ

+ 1;−λ
ξ

)

⎞

⎠.

In particular, when n = 1, Eq. (3.8) becomes

P̂1,2(s) = ψ̂1(s)P̂0,2(s). (3.9)

Again taking Laplace transform of Eq. (2.5) leads to

sP̂0,2(s) − P0,2(0) = −λP̂0,2(s) + (μ2 + ξ)P̂1,2(s) + γ1P̂0,1(s),

and hence

P̂0,2(s) = (μ2 + ξ)

s + λ
P̂1,2(s) + γ1

s + λ
P̂0,1(s). (3.10)

Substituting Eq. (3.6) and Eq. (3.9) in the Eq. (3.10) and after some algebra, we get

P̂0,2(s) = γ1

(
1 + μP̂1,0(s)

) ∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m
[
ψ̂1(s)

]m

(s + λ)m+1 . (3.11)

Substituting Eq. (3.11) in Eq. (3.8) yields

P̂n,2(s) = γ1

(
1 + μP̂1,0(s)

)
ψ̂n(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m
[
ψ̂1(s)

]m

(s + λ)m+1

(3.12)

Taking Laplace inverse for Eq. (3.7) and Eq. (3.12) leads to

Pn,1(t) = (
δ(t) + μP1,0(t)

) ∗ φn(t) ∗
∞∑

r=0

(μ1 + ξ)r[φ1(t)]
∗r ∗ e−(λ+γ1)t (t)

r

r! ,

n = 0, 1, 2, . . . (3.13)

and

Pn,2(t) = γ1
(
δ(t) + μP1,0(t)

) ∗ ψn(t) ∗
∞∑

r=0

[φ1(t)]
∗r

∗ e−(λ+γ1)t ((μ1 + ξ)t)r

r!
∞∑

m=0

[ψ1(t)]
∗m ∗ e−λt ((μ2 + ξ)t)m

m! ,

n = 0, 1, 2 . . . . (3.14)

ltiple vacation queueing systems with
where δ(t) is the Kronecker delta function and φn(t) and ψn(t) for all values of n are

derived in the Appendix. Therefore, all the time dependent probabilities of the number
in the system during the vacation period of the server (both type I and type II vacation)
are expressed in terms of P1,0(t). It still remains to determine P1,0(t).



An M/M/1 Queueing Model Subject 113

3.2 Evaluation of Pn,0(t)

Towards this end, define the probability generating function, Q(z, t) as Q(z, t) =
∑∞

n=1 Pn,0(t)zn. Then,
∂Q(z,t)

∂t = ∑∞
n=1 P

′
n,0(t)z

n.

Multiplying Eq. (2.2) by zn and summing it over all possible values of n leads to

∞∑

n=2

P
′
n,0(t)z

n = −(λ + μ)

∞∑

n=2

Pn,0(t)z
n + λz

∞∑

n=2

Pn−1,0(t)z
n−1 + μ

z

∞∑

n=2

Pn+1,0(t)z
n+1

+ γ1

∞∑

n=2

Pn,1(t)z
n + γ2

∞∑

n=2

Pn,2(t)z
n + (λ + μ)P1,0(t)z. (3.15)

Multiplying Eq. (2.1) by z, we get

P
′
1,0(t)z = −(λ + μ)P1,0(t)z + μP2,0(t)z + γ1P1,1(t)z + γ2P1,2(t)z. (3.16)

Now, adding the above two equations yields

∂Q(z, t)

∂t
−
(
−(λ + μ) + μ

z
+ λz

)
Q(z, t)

= γ1

∞∑

n=1

Pn,1(t)z
n + γ2

∞∑

n=1

Pn,2(t)z
n − μP1,0(t).

Integrating the above linear differential equation with respect to ‘t’ leads to

Q(z, t) = γ1

∫ t

0

( ∞∑

n=1

Pn,1(y)z
n

)

e−(λ+μ)(t−y)e(
μ
z +λz)(t−y)dy

+ γ2

∫ t

0

( ∞∑

n=1

Pn,2(y)z
n

)

e−(λ+μ)(t−y)e(
μ
z +λz)(t−y)dy

− μ

∫ t

0
P1,0(y)e

−(λ+μ)(t−y)e(
μ
z +λz)(t−y)dy.

. (3.17)

It is well known that if α = 2
√

λμ and β =
√

λ
μ
, then the generating function of the

modified Bessel function of the first kind of order n represented by In(.) is given by

exp

(
μt

z
+ λzt

)

=
∞∑

n=−∞
(βz)nIn(αt).

Comparing the coefficients of zn in Eq. (3.17) for n = 1, 2, 3 . . . . leads to

Pn,0(t) = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
n−k In−k(α(t − y))e−(λ+μ)(t−y)dy

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
n−k In−k(α(t − y))e−(λ+μ)(t−y)dy



114 K. V. Vijayashree and K. Ambika

− μ

∫ t

0
P1,0(y)β

nIn(α(t − y))e−(λ+μ)(t−y)dy. (3.18)

Comparing the coefficients of z−n in Eq. (3.17) yields

0 = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
−n−k I−n−k(α(t − y))e−(λ+μ)(t−y)dy

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
−n−k I−n−k(α(t − y))e−(λ+μ)(t−y)dy

− μ

∫ t

0
P1,0(y)β

−nI−n(α(t − y))e−(λ+μ)(t−y)dy.

Multiplying the above equation by β2n and using the property I−n(t) = In(t), we get

0 = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
n−k In+k(α(t − y))e−(λ+μ)(t−y)dy

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
n−k In+k(α(t − y))e−(λ+μ)(t−y)dy

− μ

∫ t

0
P1,0(y)β

nIn(α(t − y))e−(λ+μ)(t−y)dy. (3.19)

Subtracting Eq. (3.18) from Eq. (3.19) leads to

Pn,0(t) = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
n−k(In−k(α(t − y)) − In+k(α(t − y)))e−(λ+μ)(t−y)dy

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
n−k(In−k(α(t − y))

− In+k(α(t − y)))e−(λ+μ)(t−y)dy. (3.20)

for n = 1, 2, 3, . . .. Thus Pn,0(t) is expressed in terms of Pk,1(t) and Pk,2(t) which are
expressed in terms of P1,0(t) in Eq. (3.13) and Eq. (3.14) respectively. It still remains to
determine P1,0(t) explicitly. Substituting n = 1 in Eq. (3.20) yields

P1,0(t) = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
1−k(I1−k(α(t − y)) − I1+k(α(t − y)))e−(λ+μ)(t−y)dy

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
1−k(I1−k(α(t − y))

− I1+k(α(t − y)))e−(λ+μ)(t−y)dy.

Using the property Ik−1(t) − Ik+1(t) = 2kIk (t)
t and I1−k(t) = Ik−1(t), we get

P1,0(t) = γ1

∫ t

0

∞∑

k=1

Pk,1(y)β
1−k 2kIk(α(t − y))

α(t − y)
e−(λ+μ)(t−y)dy



An M/M/1 Queueing Model Subject 115

+ γ2

∫ t

0

∞∑

k=1

Pk,2(y)β
1−k 2kIk(α(t − y))

α(t − y)
e−(λ+μ)(t−y)dy. (3.21)

Taking Laplace transform of Eq. (3.21) leads to

P̂1,0(s) = 2γ1

∞∑

k=1

P̂k,1(s)β
1−k 1

α−k+1
(
p +√

p2 − α2
)k

+ 2γ2

∞∑

k=1

P̂k,2(s)β
1−k 1

α−k+1
(
p +√

p2 − α2
)k (3.22)

where p = s+ λ + μ. Substituting for P̂k,1(s) and P̂k,2(s) from Eq. (3.7) and Eq. (3.12)
in Eq. (3.22) leads to

P̂1,0(s) = 2γ1

∞∑

k=1

β1−k

(
1 + μP̂1,0(s)

)

α−k+1
(
p +√

p2 − α2
)k φ̂k(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

+ 2γ2γ1

∞∑

k=1

β1−k

(
1 + μP̂1,0(s)

)

α−k+1
(
p +√

p2 − α2
)k ψ̂k(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m
[
ψ̂1(s)

]m

(s + λ)m+1 ,

which further yields

P̂1,0(s)
(
1 − Ĥ (s)

)
= Ĥ (s)

μ
,

where

Ĥ (s) = γ1

∞∑

k=1

(
1

β

)k
(
p −√

p2 − α2

α

)k ∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

⎛

⎜
⎝φ̂k(s) + γ2ψ̂k(s)

∞∑

m=0

(μ2 + ξ)m
[
ψ̂1(s)

]m

(s + λ)m+1

⎞

⎟
⎠.

Therefore, we get

P̂1,0(s) = Ĥ (s)

μ
(
1 − Ĥ (s)

) = Ĥ (s)

μ

∞∑

k=0

(
Ĥ (s)

)k = 1

μ

∞∑

k=0

(
Ĥ (s)

)k+1



116 K. V. Vijayashree and K. Ambika

Laplace inversion of the above equation yields

P1,0(t) = 1

μ

∞∑

k=0

(H (t))∗(k+1), (3.23)

where H (t) is given by

H (t) = γ1

∞∑

k=1

(
1

β

)k kIk(αt)

t
e−(λ+μ)t ∗

∞∑

r=0

(μ1 + ξ)r[φ1(t)]
∗r ∗ e−(λ+γ1)t (t)

r

r!

∗
(

φk(t) + γ2ψk(t) ∗
∞∑

m=0

[ψ1(t)]
∗m ∗ e−λt ((μ2 + ξ)t)m

m!

)

Note that Eqs. (3.13) and (3.14) present explicit expressions for Pn,1(t) and Pn,2(t)
in terms of P1,0(t) where P1,0(t) is given by Eq. (3.23). All other probabilities, namely
Pn,0(t) are determined in terms ofPn,1(t) andPn,2(t) in Eq. (3.20). Therefore, all the time
–dependent probabilities are explicitly obtained in terms of modified Bessel function of
the first kind using generating function methodology. Having determined the transient
state probabilities, all other performance measures can be readily analysed.

4 Steady State Probabilities

Let πn,j denote the steady – state probability for the system to be in state j with n
customers. Mathematically,

πn,j = lim
t→∞Pn,j(t)

Using the final value theorem of Laplace transform, which states

lim
t→∞Pn,j(t) = lim

s→0
s P̂n,j(s).

It is observed that

πn,j = lim
s→0

s P̂n,j(s),

From Eq. (3.17), we get

lim
s→0

sP̂n,1(s) = lim
s→0

s

⎧
⎪⎨

⎪⎩

(
1 + μP̂1,0(s)

)
φ̂n(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

⎫
⎪⎬

⎪⎭
,

and hence

πn,1 =
[

μφn

∞∑

r=0

(μ1 + ξ)r[φ1]r

(λ + γ1)
r+1

]

π1,0.



An M/M/1 Queueing Model Subject 117

where

φn = lim
s→0

sφ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
γ1+μ1

ξ
+ i

)
1F1

(
μ1
ξ

+ n + 1; γ1+μ1
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ1
ξ

+ 1; γ1+μ1
ξ

+ 1;−λ
ξ

)

Similarly, from Eq. (3.10), we get

lim
s→0

sP̂n,2(s) = lim
s→0

s

⎧
⎪⎨

⎪⎩
γ1

(
1 + μP̂1,0(s)

)
ψ̂n(s)

∞∑

r=0

(μ1 + ξ)r
[
φ̂1(s)

]r

(s + λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m
[
ψ̂1(s)

]m

(s + λ)m+1

⎫
⎪⎬

⎪⎭

and hence

πn,2 =
[

γ1μψn

∞∑

r=0

(μ1 + ξ)r[φ1]r

(λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m[ψ1]m

(λ)m+1

]

π1,0.

where

ψn = lim
s→0

sψ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
γ2+μ2

ξ
+ i

)
1F1

(
μ2
ξ

+ n + 1; γ2+μ2
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ2
ξ

+ 1; γ2+μ2
ξ

+ 1;−λ
ξ

)

Also, consider the Laplace transform of Eq. (3.20) given by

P̂n,0(s) =
∞∑

n=1

⎧
⎪⎨

⎪⎩
γ1

∞∑

k=1

P̂k,1(s)β
n−k

⎧
⎪⎨

⎪⎩

(
p −√

p2 − α2
)n−k

αn−k
√
p2 − α2

−
(
p −√

p2 − α2
)n+k

αn+k
√
p2 − α2

⎫
⎪⎬

⎪⎭

+ γ2

∞∑

k=1

P̂k,2(s)β
n−k

⎧
⎪⎨

⎪⎩

(
p −√

p2 − α2
)n−k

αn−k
√
p2 − α2

−
(
p −√

p2 − α2
)n+k

αn+k
√
p2 − α2

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
,

where p = s + λ + µ. It is seen that

lim
s→0

s P̂n,0(s) = γ1

∞∑

k=1

πk,1β
n−k 1

λ − μ

{(
2μ

α

)n−k

−
(
2μ

α

)n+k
}

+ γ2

∞∑

k=1

πk,2β
n−k 1

λ − μ

{(
2μ

α

)n−k

−
(
2μ

α

)n+k
}

.

On simplification, we get

πn,0 = 1

λ − μ

{ ∞∑

k=1

[
γ1πk,1 + γ2πk,2

]
(

1 −
(μ

λ

)k
)}

,



118 K. V. Vijayashree and K. Ambika

which reduces to

πn,0 = π1,0

λ − μ

{ ∞∑

k=1

[

γ1

(

μφk

∞∑

r=0

(μ1 + ξ)r[φ1]r

(λ + γ1)
r+1

)

+ γ2

(

γ1μψk

∞∑

r=0

(μ1 + ξ)r[φ1]r

(λ + γ1)
r+1

∞∑

m=0

(μ2 + ξ)m[ψ1]m

(λ)m+1

)](

1 −
(μ

λ

)k
)}

,

Therefore,

πn,0 = γ1μ

λ − μ

{ ∞∑

k=1

[ ∞∑

r=0

(μ1 + ξ)r[φ1]r

(λ + γ1)
i+1

[

φk + γ2ψk

∞∑

m=0

(μ2 + ξ)m[ψ1]m

(λ)m+1

]]

(

1 −
(μ

λ

)k
)}

π1,0.

As a special case, when μ1 = 0 = μ2 and ξ = 0 the results are seen to coincide with
Vijayashree and Janani (2018) .

5 Numerical Illustrations

This section illustrates the behaviour of time-dependent state probabilities of the system
during the functional state and vacation states (type 1 and type 2) of the server against
time for appropriate choice of the parameter values. Though the system is of infinite
capacity, the value of n is restricted to 25 for the purpose of numerical study.

Figure 2 depicts the behaviour of Pn,0(t) against time for varying values of n with
the values λ = 0.4, μ = 0.6, γ1 = 0.8, γ2 = 1, μ1 = 0.1, μ2 = 0.05 and ξ = 0.01.
It is seen that for a particular value of n the transient state probability increases as time
progresses and converges to the corresponding steady state probabilities. However, for
a particular value of t the value of the probability decreases with increase in the number
of customer in the system.

Figure 3 and Fig. 4 depicts the variation of Pn,1(t) and Pn,2(t) against time t for
varying values of n with the same parameter values. All the values of Pn,1(t) and Pn,2(t)
are start at 0 and converges to the corresponding to the steady state probability . It
is observed that for a particular instant of time the probability values decreases as n
increases. However, for a particular value of n the probability values increases reaches
a peak and gradually decreases till it converges.



An M/M/1 Queueing Model Subject 119

Fig. 2. Behaviour of Pn,0(t) against t for varying values of n.

Fig. 3. Behaviour of Pn,1(t)
against t for varying values of n.

Fig. 4. Behaviour of Pn,2(t)
against t for varying values of n.

6 Conclusions

This paper presents a time dependent analysis of an M/M/1 queueing model subject to
differentiated working vacation and customer impatience. Closed form expressions for
the transient state probabilities of the state of the system are obtained using generating
function and continued fraction methodologies. Numerical illustrations are added to
support the theoretical results. The study can be further extended to anM/M/1 queueing
model subject to m kinds of differentiated working vacation with impatience.



120 K. V. Vijayashree and K. Ambika

Appendix: Derivation of φn(t) andψn(t)

The confluent hypergeometric function represented by 1F1(a; c; z) has a series repre-
sentation given by

1F1(a; c; z) = 1 + a

c

z

1! + a

c

a(a + 1)

(c + 1)

z2

2! + . . . = 1 +
∞∑

k=1

∏k−1
j=1 (a + i)

∏k−1
i=0 (c + i)

zk

k!

Consider the repression for φ̂n(s) obtained as

φ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ1+μ1

ξ
+ i

)
1F1

(
μ1
ξ

+ n + 1; s+γ1+μ1
ξ

+ n + 1;−λ
ξ

)

1F1
(

μ1
ξ

+ 1; s+γ1+μ1
ξ

+ 1;−λ
ξ

) . (A.1)

Using the definition of confluent hypergeometric function, we obtain

1F1

(
μ1

ξ
+ n + 1; s + γ1 + μ1

ξ
+ n + 1;−λ

ξ

)

=
∞∑

k=0

∏k
j=1(μ1 + (n + j)ξ)

∏n+k
i=1 (s + γ1 + μ1 + iξ)

(−λ)k

ξ k−nk!
And hence

1F1
(

μ1
ξ

+ n + 1; s+γ1+μ1
ξ

+ n + 1;−λ
ξ

)

∏n
i=1

(
s+γ1+μ1

ξ
+ i

) =
∞∑

k=0

∏k
j=1(μ1 + (n + j)ξ)

∏n+k
i=1 (s + γ1 + μ1 + iξ)

(−λ)k

ξ k−nk!

Applying partial fraction in the above equation, we get

1F1
(

μ1
ξ

+ n + 1; s+γ1+μ1
ξ

+ n + 1;−λ
ξ

)

∏n
i=1

(
s+γ1+μ1

ξ
+ i

) =
∞∑

k=0

∏k
j=1(μ1 + (n + j)ξ)

k!
(−λ)k

ξ2k−1

n+k∑

i=1

(
(−1)i−1

(i − 1)!(n + k − i)!

)(
1

s + γ1 + μ1 + iξ

)

(A.2)

Now, consider the term in the denominator of φ̂n(s) as

1F1

(
μ1

ξ
+ 1; s + γ1 + μ1

ξ
+ 1;−λ

ξ

)

=
∞∑

k=0

∏k
j=1(μ1 + jξ)

∏k
i=1(s + γ1 + μ1 + iξ)

(−λ)k

ξ kk!

=
∞∑

k=0

(−λ)k âk(s)

Where âk(s) =
∏k

j=1(μ1+jξ)
∏k

i=1(s+γ1+μ1+iξ)

(
1

ξ k k!
)
and â0(s) = 1. By resolving into partial

fractions, we have

âk(s) = 1

ξ2k−1k!
k∑

r=1

∏k
j=1(μ1 + jξ)(−1)r−1

(r − 1)!(k − r)!
1

s + γ1 + μ1 + rξ
, for k = 1, 2, 3 . . .



An M/M/1 Queueing Model Subject 121

Using the identity is given by Gradshteyn et al. (2007), it is seen that

[

1F1

(
μ1

ξ
+ 1; s + γ1 + μ1

ξ
+ 1;−λ

ξ

)]−1

=
[ ∞∑

k=0

âk(s)(−λ)k

]−1

=
∞∑

k=0

b̂k(s)λ
k

(A.3)

where b̂0(s) = 1 and for k = 1, 2, 3 . . .

b̂k(s) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

â1(s) 1 . . .

â2(s) â1(s) 1 . . .

â3(s) â2(s) â2(s) . . .

. . . . . . . . . . . .

âk−1(s) âk−2(s) âk−3(s) . . . â1(s) 1
âk(s) âk−1(s) âk−2(s) . . . â2(s) â1(s)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
k∑

i=1

(−1)i−1âi(s)b̂k−i(s).

Substituting Eq. (A.3) and Eq. (A.2) in Eq. (A.1), we get

φ̂n(s) = λnξn
∞∑

k=0

(−λ)k

∏k
j=1(μ1 + (n + j)ξ)
∏k

j=1(μ1 + jξ)
ân+k(s)

∞∑

j=1

λj b̂j(s).

Taking inverse Laplace transform of the above equation leads to

φn(t) = λnξn
∞∑

k=0

(−λ)k

∏k
j=1(μ1 + (n + j)ξ)
∏k

j=1(μ1 + jξ)
an+k(t) ∗

∞∑

j=1

λjbj(t),

where

ak(t) = 1

ξ2k−1k!
k∑

r=1

∏k
j=1(μ1 + jξ)(−1)r−1

(r − 1)!(k − r)! e−(γ1+μ1+rξ)t, k = 1, 2, . . .

and

bk(t) =
k∑

i=1

(−1)i−1ai(t) ∗ bk−i(t), k = 2, 3, . . . , b1(t) = a1(t)

Similarly equation of ψ̂n(s) as

ψ̂n(s) = λnξn
∞∑

k=0

(−λ)k

∏k
j=1(μ2 + (n + j)ξ)
∏k

j=1(μ2 + jξ)
ĉn+k(s)

∞∑

j=1

λj d̂j(s).



122 K. V. Vijayashree and K. Ambika

Proceeding in the similar manner as that of φ̂n(s), it is seen that the Laplace inverse of
ψ̂n(s) is

ψn(t) = λnξn
∞∑

k=0

(−λ)k

∏k
j=1(μ2 + (n + j)ξ)
∏k

j=1(μ2 + jξ)
cn+k(t) ∗

j∑

j=1

λjdj(t).

where

ck(t) = 1

ξ2k−1k!
k∑

r=1

∏k
j=1(μ2 + jξ)(−1)k

(r − 1)!(k − r)! e−(γ2+μ2+rξ)t, k = 1, 2, . . .

and

dk(t) =
k∑

i=1

(−1)i−1ci(t) ∗ dk−i(t), k = 2, 3, . . .

References

Gradshteyn, I., Ryzhik, I., Jeffery, A., Zwillinger, D. (eds.): Table of Integrals, Series and Products,
7th edn. Academic Press, Elsevier (2007)

Ibe, O.C., Isijola, O.A.: M/M/1 multiple vacation queueing systems with differentiated vacation.
Model. Simul. Eng. 6, 1–6 (2014)

Seo, J.-B., Lee, S.-Q., Park, N.-H., Lee, H.-W., Cho, C.-H. (eds.): Performance analysis of sleep
mode operation in IEEE 802.16e. In: 38th IEEE Vehicular Technology Conference, vol. 2,
pp. 1169–1173 (2004)

Lorentzen, L., Waadeland, H.: Continued Fractions with Applications. Studies in Computational
Mathematics, vol. 3. Elsevier, Amsterdam (1992)

Chakrabory, S.: Analyzing peer specific power saving in IEEE 802.11s through queueing petri
Nnets: some insights and future research directions. IEEE Trans. Wireless Commun. 15, 3746–
3754 (2016)

Suranga Sampth, M.I.G., Liu, J.: Impact of customer Impatience on an M /M /1 queueing sys-
tem subject to differentiated vacations with a waiting server. Qual. Tech. Quant. Manag. (2018).
https://doi.org/10.1080/16843703.2018.1555877

Phung-Duc, T.: Single-server systems with power-saving modes. In: Gribaudo, M., Manini, D.,
Remke, A. (eds.) ASMTA2015. LNCS, vol. 9081, pp. 158–172. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18579-8_12

Vijayashree, K.V., Janani, B.: Transient analysis of an M/M/1 queueing system subject to
differentiated vacations. Qual. Tech. Quant. Manage. 15, 730–748 (2018)

Xiao, Y.: Energy saving mechanism in the IEEE 80216e wireless MAN. IEEE Commun. Lett. 9,
595–597 (2005)

Niu, Z., Zhu, Y., Benetis, V.: A phase-type based markov chain model for IEEE 802.16e sleep
mode and its performance analysis. In: Proceedingof the 20th InternationalTeletrafficCongress,
Canada, pp. 17–21 (2001)

https://doi.org/10.1080/16843703.2018.1555877
https://doi.org/10.1007/978-3-319-18579-8_12


Author Index

Akshay, K. S. 51
Akshay, T. R. 51
Ambika, K. 107

Balakrishna, Prathiksha 93

Davis, Shreya 51
Divakaran, Aswathy 18
Diviya Prabha, V. 36

Govindarajan, Shubhashri 29

Mathiyalagan, P. 61
Mohan, Anuraj 18
Mylavarapu, Sai Praveen 29

Ranjith, Anjali 51
Raphael, Rincy 61
Rathipriya, R. 36

Shashank, A. 85
Simran, K. 93
Sminesh, C. N. 51
Soman, K. P. 85, 93
Sreevalsan-Nair, Jaya 3
Sriram, S. 85

Vangimalla, Reddy Rani 3
Vijayashree, K. V. 107
Vinayakumar, Ravi 85, 93


	Preface
	Organization
	Contents
	Computational Intelligence
	Comparing Community Detection Methods in Brain Functional Connectivity Networks
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Conclusions
	References

	A Network Embedding Approach for Link Prediction in Dynamic Networks
	1 Introduction
	2 Problem Definition
	3 Related Works
	4 Proposed Method
	4.1 Network Representation Learning (NRL)
	4.2 Time Series Construction and Forecasting
	4.3 Link Prediction

	5 Experiments
	5.1 Datasets Used
	5.2 Results and Analysis

	6 Conclusion
	References

	IDK My Friends: Link Analysis on Social Networks to Mine Surprise Connections
	1 Introduction
	2 IDK My Friends
	2.1 Dataset Preprocessing
	2.2 Approach
	2.3 Variations and Optimizations

	3 Experimental Results
	4 Other Applications
	5 Conclusion and Future Work
	References

	Prediction of Patient Readmission Using Machine Learning Techniques
	1 Introduction
	2 Methods and Materials
	3 Machine Learning Techniques
	3.1 Feature Selection
	3.2 Decision Tree
	3.3 Random Forest
	3.4 Support Vector Machine
	3.5 Logistic Regression

	4 Results and Discussions
	5 Conclusion
	References

	Cyber Security
	An Evaluation of Convolutional Neural Networks for Malware Family Classification
	1 Introduction
	2 Literature Survey
	2.1 Malware Visualisation Approaches
	2.2 Convolutional Neural Networks

	3 The Proposed System Architecture
	4 Experiments and Results
	4.1 DataSet
	4.2 Model Training
	4.3 Experimental Results

	5 Conclusion
	References

	An Exploration of Changes Addressed in the Android Malware Detection Walkways
	1 Introduction
	2 Android Based Malware Detection Techniques
	2.1 Signature Based
	2.2 Anomaly Based
	2.3 Topic Modeling Based

	3 Review of Literature
	3.1 Signature Based Approaches
	3.2 Anomaly or Behavioural Based Approaches
	3.3 Topic Modeling Approaches

	4 Evaluation of Selected Articles
	5 Conclusion
	References

	DCNN-IDS: Deep Convolutional Neural Network Based Intrusion Detection System
	1 Introduction
	2 Related Works
	3 Data Set Description
	4 Statistical Measures
	5 Proposed Model
	6 Results
	7 Conclusion
	References

	Deep Learning Based Frameworks for Handling Imbalance in DGA, Email, and URL Data Analysis
	1 Introduction
	2 Literature Survey on Deep Learning Based DGA, URL, and Email Data Analysis
	2.1 Domain Generation Algorithms (DGAs)
	2.2 Uniform Resource Locator (URL)
	2.3 Electronic Mail (Email)

	3 Background
	3.1 Text Representation
	3.2 Machine Learning
	3.3 Deep Learning Architectures
	3.4 Cost-Sensitive Model

	4 Description of the Data Set
	5 Proposed Architecture
	6 Experiments, Results, and Observations
	7 Conclusion and Future Work
	References

	Computational Models
	An M/M/1 Queueing Model Subject to Differentiated Working Vacation and Customer Impatience
	1 Introduction
	2 Model Description
	2.1 Governing Equations

	3 Transient Analysis
	3.1 Evaluation of  Pn,1 ( t )  and  Pn,2 ( t ) 
	3.2 Evaluation of  Pn,0 ( t ) 

	4 Steady State Probabilities
	5 Numerical Illustrations
	6 Conclusions
	Appendix: Derivation of  n ( t ) and n ( t ) 
	References

	Author Index



