Blockchain-Based Secure and Efficient)
Crowdsourcing Framework e

Prerna Goel and Mohona Ghosh

Abstract Blockchain is an emerging Web-based technology that being distributed
and decentralized, and public ledger provides the capability to build applications
that are more secure, reliable and trustworthy. Crowdsourcing is one of the use cases
of blockchain technology. It allows an organization or an individual to utilize the
talent of individuals over the Internet in exchange for some rewards. Centralized
crowdsourcing platform has many limitations, beginning from centralized storage
to reward distribution for task completion. Blockchain-based approach for crowd-
sourcing solves many of the problems posed by centralized crowdsourcing. In this
work, comparative analysis of various proposed blockchain-based crowdsourcing
approaches has been done and Ethereum-based crowdsourcing platform has been
proposed, that efficiently deals with Sybil attack, solution confidentiality breach,
unbiased evaluators’ selection and task evaluation using techniques such as bit
commitment and elliptic curve-based ElGamal cryptosystem.

Keywords Blockchain - Ethereum + Crowdsourcing + Smart contract

1 Introduction

Nowadays, crowdsourcing platforms offer ways to solve complicated problems in
the most efficient ways [1]. Crowdsourcing allows an organization or an individual
to utilize the talent of individuals over the Internet for task completion in exchange
for some rewards [2]. Advantages offered by these platforms include reduced cost,
low task completion time and better quality of solution [3]. Some famous crowd-
sourcing platforms are Upwork [4], Amazon Mechanical Turk [5] and Uber [6].
Many problems are faced by centralized crowdsourcing platform such as a single
point of failure, prohibitive cost [1], being vulnerable to Sybil and distributed denial-
of-service (DDoS) attack [7]. Sybil attack is an attack in which the user tries to
create multiple identities over the platform [3]. Some other problems include free

P. Goel - M. Ghosh (X)

Department of Information Technology, Indira Gandhi Delhi Technical University for Women,
Kashmere Gate, New Delhi, India

e-mail: mohonaghosh@igdtuw.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 391
S. Smys et al. (eds.), Computer Networks and Inventive Communication Technologies,

Lecture Notes on Data Engineering and Communications Technologies 58,
https://doi.org/10.1007/978-981-15-9647-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9647-6_30&domain=pdf
mailto:mohonaghosh@igdtuw.ac.in
https://doi.org/10.1007/978-981-15-9647-6_30

392 P. Goel and M. Ghosh

riding, where worker tries to obtain the reward without having sufficient effort for
task completion and false reporting, where requester lies about the task status, to
keep the reward amount to himself [8, 9]. Crowdsourcing platforms rate workers and
requesters over some parameters, leading to re-entry attack, where a worker with a
low reputation score creates a new account to start again. One other possible attack
is collusion. Collusion is an attack in which group of users collude with each other
in order to lower the target user’s reputation [10].

To deal with many of these issues, blockchain-based crowdsourcing platforms
came into the picture. It solves the problem of a single point of failure. Blockchain
is a public, immutable ledger that is shared among all the users in the distributed
network [11]. It is a chain of blocks, where each block contains the hash value of
the previous block, timestamp and transaction details [12]. Ethereum is an extension
of Bitcoin blockchain with an added feature of smart contracts. Smart contracts
are codes written in Solidity language that contains various functions which can
be invoked by the users [3]. Storing data on a blockchain is very expensive. So,
decentralized storage is used for data storage and the hash of the data, obtained from
the storage system, is stored on a blockchain. Distributed storage commonly used
with blockchain includes Swarm [13] and InterPlanetary File System (IPES) [14].
Some of the studied research works [3] are already implemented and compared with
existing crowdsourcing platform, and our proposed work will give an edge to it.

In this work, a new blockchain is proposed based on decentralized crowdsourcing
platform that solves the issues exhibited by various already proposed decentralized
crowdsourcing platforms. None of the crowdsourcing platform studied so far is effi-
cient enough to prevent task forwarding, that is, prevent evaluators from forwarding
solution to some other person, without task requester’s consent, to whom that solu-
tion belongs. Some of the existing approaches have not dealt with the problem of
false reporting [1, 11] and collision attack [3, 7, 15]. The solution to deal with all of
these problems has been proposed. Our model prevents the crowdsourcing platform
from any of the attacks reported until now, making it one of the most efficient and
robust decentralized crowdsourcing platform approaches.

The remainder of this paper is organized as follows: Sect. 2 presents the related
work, Sect. 3 includes the comparative analysis of various blockchain-based crowd-
sourcing platforms, briefing what are the limitations of other platforms that are over-
come by our proposed Ethereum-based crowdsourcing platform, Sect. 4 gives an
overview of a model proposed, Sect. 5 explains each of the steps involved in detail,
and Sect. 6 concludes this paper.

2 Related Work

Several centralized crowdsourcing platforms are being developed over time [4, 5].
These platforms face various issues such as privacy and security [16], quality control
[17] and false reporting [8]. Blockchain has its application in a wide range of areas
starting from feedback management system [18], smart transportation system [19]

Blockchain-Based Secure and Efficient Crowdsourcing Framework 393

to the storage of educational records, degrees and records of learning by educational
institutions [20] to crowdsourcing platforms [9, 10]. Various solutions are proposed
by researchers to overcome the limitations of centralized crowdsourcing platforms.

Several decentralized crowdsourcing platforms have been proposed by authors to
deal with issues of centralized crowdsourcing. Some of the approaches solved the
issue of Sybil attack and confidentiality breach [3, 15, 21]. Only a few of them has
considered the issue of false reporting [3, 15] while none of the studied research talked
about task forwarding. After the task solution is submitted by the worker, it needs
to be evaluated. Some of the authors have not involved task requester in evaluation
process [3, 7]. Approaches that use other workers for evaluation have not specified
a proper mechanism for evaluator’s selection [7, 15] and collusion prevention [3].

3 Analysis

Tablel provides a comparative analysis of our proposed approach with already
proposed Ethereum-based crowdsourcing platforms. Tick () denotes that the corre-
sponding issue has been dealt with by that author and cross () signifies that they have
not tackled that issue in their paper. Issues that do not apply to that particular paper
are marked with a dash (-).

In[15,21] and [2], authors have used third party CA to issue certificates to indicate
the legitimacy of entities. The third party can be any central authority storing user-
sensitive information, which makes them vulnerable to attack leading to information
leakage. Bhatia et al. [3] have dealt with Sybil attack, by asking users to submit some
ethers as joining fee at the time of registration.

The approaches proposed in [3, 7, 21] have asked users to encrypt the solution
using a public key of task requester or evaluator, so that, only they can decrypt the
solution using their private key. Authors in [15] have used a separate shared key that

Table 1 Comparative analysis of already proposed approaches and our approach

Issues Sybil | Solution Task Task Random | Evaluator’s | False
papers attack | confidentiality | forwarding | requester | selection | collusion | reporting

breach as of

evaluator | evaluators

[2] 4 v X X 4 X v
[3] X 4 X X X X X
[6] 4 X X 4 v 4 X
[1] 4 X X 4 - - X
[21] 4 v X 4 - - X
[4] v v X v X X v
Our v v v v v v v
approach

394 P. Goel and M. Ghosh

is used by the worker to submit the solution. Anyone with access to that key can
decrypt the solution. Zhu et al. [2] have mentioned the use of separate subchain for
the execution of private tasks. However, they have not mentioned anything regarding
how the solution is passed to validators for evaluation. If it is transmitted without
being encrypted, then anyone on the network can access that plain text solution.

Task forwarding is the case where evaluator passes on the solution to someone else
without task requester’s consent. The worker submits the task, which is evaluated by
either task requester or other workers on the platform that being called as evaluators.
Zhu et al. [2] have proposed the private subchain to maintain the confidentiality of
solution, but have not included the condition if validators of private subchain forward
the solution to the third person. Bhatia et al. [3] have not included task requester as
one of the evaluators. Li et al. [7] have not involved task requester as an evaluator,
but requester has specified guidelines to be followed regarding solution evaluation.
The requester should be one of the evaluators because he is the one whose given task
is being completed by workers and has the most clarity about solution evaluation.
In [1] and [21], solutions are evaluated by task requesters themselves, so there is no
concept of evaluator selection. Feng and Yan [15] have not selected evaluators, and
miners will evaluate the solution. Zhu et al. [2] use Delegated Proof of Stake (DPOS)
and Practical Byzantine Fault Tolerance (PBFT) consensuses to select validators for
the public and private chain.

Evaluators can collude to lower the reputation of a worker. Bhatia et al. [3] have
selected evaluators pseudo-randomly, but their proposed model does not guarantee
that evaluators cannot collude. Also, once the task is completed, the worker has to
submit a solution to evaluators using their public key. That means a worker is aware of
who are the evaluators for his solution. It should be a blind review; that is, the worker
should be unaware of evaluators. Li et al. [7] have not mentioned about evaluator’s
selection. Zhu et al. [2] used a third party certificate that maintains the anonymity of
users registered to platform. Feng and Yan [15] assume that the miners with more
trust value are more trustworthy, so they will not collude. False reporting looks for
the strategy adopted by the author to identify malicious users. Malicious users are
those who give a false report for the evaluation of the submission. [3] has marked
outliers, one whose evaluation result highly varies from all others, as false reporters.
[2,7,21] have not dealt with cases of false reporting. In [1], task requester is the only
evaluator, so he can report the evaluation the way he wants. In [15], task requester
evaluates the solution, but if he is not satisfied with solution quality, then miners will
evaluate the solution.

In our paper, the Ethereum-based crowdsourcing platform has been proposed that
solves the problem of Sybil attack and prevents evaluators from forwarding solution
to anyone else without requester’s consent. In our proposed model, the requester is
one of the evaluators, as he is the one who assigned the task, so he is one who has the
right to evaluate the solution. If he is not satisfied with the solution, then he can ask
other users to evaluate the solution. This will eliminate the case of false reporting as
requester solely cannot degrade the worker’s reputation and keep the reward amount
to himself because other evaluators are involved. The two-step process to select
evaluators for solution evaluation as they are randomly selected and are unable to

Blockchain-Based Secure and Efficient Crowdsourcing Framework 395

collude with each other has also been proposed. Tasks are forwarded to evaluators,
in such a way that even if evaluator shares the solution with someone else, then also
the third person will not be able to decrypt it. Thus only the evaluator can have access
to the solution. These approaches are discussed in detail in Sect. 5.

4 Opverall Proposed System

In this section, the details of our proposed approach are outlined.

Crowdsourcing platform provides medium to different entities to interact with
each other. Figure 1 represents the workflow for our proposed model. It constitutes
of four entities, namely the Requester, who wants to get some work done, the Worker,
who took the responsibility to complete the task requested by a requester, the Selector
who plays the role in evaluator selection, and the Evaluator, who evaluates the
worker’s submission based on completeness and quality of submission [3] and assigns
a score based on which workers are paid and their reputation is updated.

Each user has to register himself, to be part of the crowdsourcing platform. Once
registered, task requester can post the task, along with appropriate details, on the
platform and make it public, to be accessible by other users on the platform. Workers
apply for the task that matches their requirement and skill set, and task requester
selects the worker for this task, among the users who applied. Once requester and
worker enter the agreement, the worker works on the solution and submits it to
the smart contract, following the steps specified within the contract. Task requester
selects the solution evaluators, who evaluate the solution and update the evaluation
score in one of the smart contracts, and details are given in the next section. Workers
and evaluators are paid, and their reputation is updated based on contract rules.

The building block of blockchain-based crowdsourcing platform is a smart
contract. These smart contracts contain the code, written in solidity, which executes
itself when someone invokes a functionality or some specific condition met. Six
smart contracts for our crowdsourcing platform have been used: (1) UserContract:

REGISTRATION X ! WORKER APPLIES

FOR TASK

®_0 (O
= 222 D =
REQUESTER | EVALUATOR I ’ WORKER | I SELECTOR]

LITION
OM

PAYMENT AND SOLUTION EVALUATORS

SELECTION

REPUTATION UPDATION EVALUATION

Fig. 1 Workflow of proposed blockchain-based crowdsourcing platform

396 P. Goel and M. Ghosh

APPLICATION LAYER

\ \ 1 [J /
L erucamoniaven

I | oFF-BLOCKCHAIN |

METAMASK

I | ON-BLOCKCHAIN |

Fig. 2 Proposed crowdsourcing platform

It contains the functionality required to register a new user on the platform, (2)
TaskContract: 1t specifies functionalities for new task creation by task requester and
then posting it on blockchain as a transaction, so it can be viewed by users registered
on the platform, (3) AgreementContract: It creates an agreement between the worker,
who registered for the task, and requester, who posted that task, (4) SolutionCon-
tract: It specifies how the solution will be submitted by the worker to task requester,
(5) SelectionContract: This contract selects the selectors and evaluators and sends
the encrypted solution to evaluators, and (6) EvaluationContract: Evaluators submit
their evaluation score to this contract. Contract computes and updates the workers
and evaluators’ reputation and pays the reward.

Figure 2 presents how a user interacts with smart contracts. The user invokes the
function of the contract that corresponds to the action required. Any of the function
calls that changes the state of Ethereum blockchain, that is, modifies data present
on a blockchain, is treated as a transaction and is appended to the blockchain after
being verified by miners. Users interact with the blockchain layer using the front
end. MetaMask [22] acts as the bridge between the front end and blockchain layer.
It is a browser extension that allows user to interact with Web applications that are
built on the top of Ethereum blockchain. It allows easy management of digital assets
with secure login and key vault.

Blockchain-Based Secure and Efficient Crowdsourcing Framework 397

5 The Process

This section explains each of the steps involved in crowdsourcing platform, as shown
in Fig. 1, in detail. It discusses how the process flows from one step to another and
how smart contracts come into play.

5.1 User Registration

Each user needs to register himself/herself to be part of the crowdsourcing platform.
User can take any of the roles from requester, worker, selector and evaluator.

Personal information that is submitted by the user includes his name, some govern-
ment identification proof (ID), skill set and any other detail he may want to specify
regarding his work experience. Initial reputation value of each user is 1 when he
registers on the platform. Government identification proof is submitted as a hash, to
maintain user anonymity from other users on the platform, so no one can look for
user’s ID details. It is required to prevent users from being rational with each other.
The worker will select the task based on his interest, and task requester will select
the worker based on his skills, not being affecting by whether they both know each
other or not. ID is needed in the situation when the user tries to collude or turns out
to be malicious. In such a case, the requester can ask that user to prove his iden-
tity by revealing hashed ID proof. Joining fee that has to be submitted by the user
for registering himself/herself to the platform is to prevent the platform from Sybil
attack. Once the user registers on the platform and submits joining fee, his details
are stored in UserContract and unique user ID is assigned to that user. Joining fees
is returned to the user depending upon the reputation that the user has at the time of
leaving the platform. This process is shown in Fig. 3.

Hash of the government ID is stored using the concept of bit commitment [23].
Government ID decimal number is converted into a hexadecimal form of length 15
that called as HID. Then, the user selects two random hexadecimal numbers a and
b. Random numbers have been used so that it is difficult for anyone to guess what
the number can be. Message is created by appending HI D, a and b. Message is
hashed using SHA-256 hashing scheme to obtain the result, denoted by HM.

HM is stored as part of personal information on IPFS, along with anyone of the
random hexadecimal number, that is, a or b. It will prevent the user from computing
the same hash value, using different random numbers and ID. According to bit
commitment, if the user tries to change the ID value that he submitted for the hash,
then he will have to check with various other random numbers, a combination that
will provide him with the same hash that he provided before. Submitting one of the
random numbers in the plain text will prevent him from selecting another random
number. So, it is a commitment the user cannot deny from in future. At the time
of verification, the requester can invoke the verification function of UserContract.
The contract will ask the user for the HID and another random number that he did

398 P. Goel and M. Ghosh

I Personal Information

-—-

USER Hash IPFS

° Hash, Public Key, Joining Fee
User ID

USER CONTRACT

Fig. 3 User registration

not submit as plain text. Once requester submits all the details to contract, it will
compute HM' = Hash (Message/), where Message' is the (HI D, a, b) given by
the user to requester. If HM matches HM', then user identity is verified. Otherwise,
the user will be removed from the platform and he will not get any of his joining fees
back.

5.2 Task Posting

As shown in Fig. 4, requester compiles all the task-specific information and stores
it on IPFS. IPFS returns the hash for it, which is passed to TaskContract along with
other details like task ID, skills required, last date to apply for the task, deadline
for task completion, reward to be given for task by the requester and total ethers
that need to submitted by the worker to register himself for the task. Task-specific
information can include task details, steps to be followed, specific guidelines, the
format in which solution expected and any other detail required for task completion.
Once the transaction is mined, the task is public to the users registered to the platform.

Some fixed amount of ether is requested from worker to assure the quality of
submission and that the worker will not leave the task incomplete. After task submis-
sion and evaluation process completes, the worker will get back the amount submitted
based on the quality and completeness of submission. If the worker leaves the task
halfway, those ethers will be transferred to the requester as compensation. Instead of
ethers, the worker can also put his reputation value at stake. Same as with ethers, his

Blockchain-Based Secure and Efficient Crowdsourcing Framework 399

. Task Details
REQUESTER Hash IPFS

o Hash, Task ID, Skills, Reward

TASK CONTRACT

Fig. 4 Task posting

reputation value will decrement if he leaves in between or solution is not as expected
in terms of completeness and quality. Task requester can post any number of tasks. If
any of the tasks requires efforts from multiple workers, then the task can be divided
further into subtasks.

Workers can look for the list of available tasks and apply for the task that matches
their skill set and interest, provided they agree upon the reward amount specified for
the task completion. When worker applies for a task, his details, that is, hash of his
details that he submitted at the time of registration, are shared with the requester, along
with worker’s public key. The worker’s reputation with requester has not been shared,
so that requester cannot differentiate between workers based on their reputation, and
instead they look for their skills. The worker can apply for multiple tasks at a time
depending on his preference.

5.3 Worker Selection

Requester waits till the last date specified along with the task, for workers to apply.
If no user applies for the task, then contract collapses after that date and others
submitted by the requester in TaskContract are returned in the requester’s account.
Once requester has enough number of applications for the task, he can look for
each worker’s details, to select the suitable worker for the task. Several conditions
need to be checked to verify whether worker application is valid or not. Worker’s

400 P. Goel and M. Ghosh

application will be rejected under the following conditions: (i) Worker applied for
the task after the last date to apply for the task has expired, (ii) if a worker chooses
to have ethers at stake with account balance less than what needs to be submitted for
task registration, (iii) if the worker chooses to submit his reputation value to register
for a task with reputation value lower than a threshold value. Threshold value can be
calculated as specified in Eq. (1).

ThresholdValue — Initial Reputation +2CurMaxReputati0n 0

where initial reputation is always 1 and CurMax is the current maximum reputation,
that is, whatever is the highest reputation value that is owned by any of the users, at
that point of time.

Once requester has selected a worker for his task, the worker is notified about the
same. Requester creates an AgreementContract between him and worker selected
that contains information about the worker, requester and task to be done. The secret
key is shared between requester and worker through the AgreementContract. That
secret key is used to encrypt solution details after task completion. Requester submits
the reward amount to the contract. If the worker is ready to accept the task, he
registers for the task by submitting either specified ethers or reputation value in
AgreementContract. Requester details that he submitted at the time of registration,
along with his public key, are shared with the worker by the contract. It is required
because the worker should have some knowledge about the requester whose task he
is working on. Once the worker has accepted the task, the requester cannot kill the
agreement. If he does so, the reward amount submitted by him will be transferred to
the worker involved in the agreement.

5.4 Solution Submission

Once the task is completed by the worker, certain steps are followed by the worker to
submit solution in SolutionContract. Worker computes the hash of the solution using
any system-specific cryptographic hash function, HS = Hash(S), where S is the
solution worked upon by worker. Hash; is any system-specific cryptographic hash
function. He then encrypts HS, appended along with the solution, using the public key
of the requester to get RS = PURr(H S||S), where RS means the solution only meant
for requester. The worker submits RS to IPFS, and hash, denoted by ISS, is obtained
as the result from IPFS. HS, ISS and timestamp are encrypted using a secret key,
stored in AgreementContract, and submit the RES = Ks(HS||ISS||Timestamp)
in solution contract. The timestamp is the current system date and time.
AgreementContract uses the secret key stored in it to decrypt the RES. It compares
HS with any of the previous solution hashes present on the platform, to ensure that
solution is not repeated or copied from someone else. It looks for the timestamp

Blockchain-Based Secure and Efficient Crowdsourcing Framework 401

in RES and accepts the solution only if it is submitted before the task completion
deadline. If the worker tries to submit it after the deadline, solution contract will
transfer the reward amount back to requester’s account and the worker will lose all
his task registration amount or have reputation degraded. Since the contracts are
public, anyone can use the secret key to verify the solution hash and timestamp when
the solution was submitted. But ISS data cannot be accessed by the public because it
is encrypted using the public key of the requester. Thus only the requester has access
to the solution. Hence, the confidentiality of solution is maintained from other users
on the platform. HS is included twice, once encrypted with requester’s public key in
RS for requester explicitly and then later with a secret key as RES for contract’s and
public access. It ensures that the same hash is submitted by a worker for contract and
requester and worker is not trying to cheat by submitting different hashes to both. It
eliminates the possibility that worker will submit some irrelevant hash to the contract
as HS, in case he is unable to complete the task before the deadline. Because both
hashes need to be same, so the worker will have to submit only relevant solution hash
that can be further evaluated by requester and evaluators.

5.5 Evaluators’ Selection

Once the solution is submitted in SolutionContract, the requester can invoke the
function for evaluators’ selection. Firstly, requester himself evaluates the solution. If
the requester is satisfied with the solution quality and completeness, then it moves
to payment and reputation updating step, explained in Sect. 5.7. If the requester
is not satisfied with the solution, then he will select the evaluators to evaluate the
solution. This will prevent our platform from false reporting attack by the requester.
Selection of evaluators is a two-step process: Requester selects selectors and selectors
select evaluators. As evaluators are selected using pseudorandom functions, two-
step process will assure that even if someone knows about pseudorandom functions,
then also evaluators will be randomly selected. Number of evaluators to be selected
for evaluation depends solely on the requester. One of the criteria can be solution
complexity. The number of selectors should be equal to many evaluators. All users,
other than the worker who completed that task and requester, who have a reputation
score more than the threshold value (Eq. 1), can volunteer themselves to be a selector.

Selectors’ Selection. When requester invokes function for selectors’ selection, users
who are eligible and want to become selector submit their reputation value to the
SelectionContract, along with their unique user id. SelectionContract will match the
submitted reputation value with the one stored in UserContract. In case the user
submits false reputation value, then he will not be able to participate as a selector or
evaluator and his reputation value will be decreased by 5. Once SelectionContract
has reputation value for each of the user, it will select the selectors. Each of the
selectors that will be selected will have different reputation values. In case, more
than one user has the same reputation value, then the one who submitted reputation

402 P. Goel and M. Ghosh

value first will be considered. User with duplicate reputation value will be considered
in the end only if there are not enough users with distinct reputation value. Starting
from the highest current reputation among those users, a contract will pick users in
order of decreasing reputation value.

Evaluators’ Selection. Once selectors are selected, all the users other than requester,
worker and selectors can be evaluators. Selectorl will select Evaluatorl pseudo-
randomly among users that are willing to be an evaluator. He will call the
pseudorandom function (Eq. 2), to find the first evaluator.

Evaluatorl = (Hash(PUsy, HS, CurTime))%len(Eval Num) 2)

Here, PUs; is the public key of Selectorl, HS is the hash obtained from the
hash of solution submitted by the worker, CurTime is the system current time and
len(Eval Num) is the number of evaluators required. Hash is keccak-256 hashing
function.

After having the first evaluator, ith evaluator is selected using Eq. (3).

FEvaluatori = (Hash(PUg;, PUg;_, CurTime))%len(EvalNum) (3)

where PUs; and PUg;_; are the public keys of selector i and last selected evaluator,
respectively. As it is not pre-decided that who will be the first evaluator and only after
the first evaluator is selected, second can be selected, so there is a low possibility of
knowing about evaluators before they are selected and of them knowing each other.
This will ensure that evaluators cannot collude and cheat, that is, give a high score
to the worker they know or degrade the score of the one whom they do not like. In
this way, our approach guarantees random selection of evaluators and prevents them
from colluding.

Selectors are paid with ethers by requester, and evaluators are paid with both ethers
and reputation because they have done the task of solution evaluation. As selectors can
only be users with high reputation, so they are just paid ethers, no increment is done in
reputation. Each time a user is selected as selector, his reputation is decremented by
2. This is done to ensure that the same user is not selected each time as selector, and
others also get a fair chance. It will ensure that the selector also registers themselves
as workers if they want an increment in reputation value. The amount that requester
has to pay to single evaluator i, for solution evaluation, is split between selector i and
evaluator i such that evaluator 7 is paid 30% of that amount and rest of the amount
goes to selector i. The evaluator is paid less ethers than selector because evaluator
also gets increment in reputation based on the quality of evaluation. Selector already
has enough reputation value, but evaluator needs increment in his reputation so he
can be selector next time.

Solution forwarding to Evaluators. Once evaluators are selected, they are given
the solution to be evaluated. Solution is given to them in such a way that they cannot

Blockchain-Based Secure and Efficient Crowdsourcing Framework 403

forward that solution to someone else without requester’s consent, leading to protec-
tion against confidentiality breach of solution. This is achieved as follows: Selected
evaluators are notified about their selection. Elliptic curve-based ElGamal protocol,
as described in [24], is used to encrypt the solution and forward it to evaluators.
Evaluator and requester select random integers kg and kg as their private keys that
they need to keep secret. E = krgG and R = krG are computed by evaluator
and requester, respectively, where E is the public key of evaluator and R is the
public key of requester. Sgr = kr(kpG) = kp(krG) = (x;, y;) is the shared key
between requester and evaluator which is shared when requester appoints an evalu-
ator. Selection contract generates a private key m that it stores secretly in evaluator’s
account details, without evaluator knowing about it. Requester generates the message
F’ = F ® H (m), where F is the solution file submitted by worker and H (m) is hash
computed for contract generated private key and submits F’ in contract. F’ cannot
be computed by contract, as solution F is not stored in contract. Contract calculates
F' = (F{, F}) = mG and sends (R, Cp1, Cp») to the evaluator, where Cpry = x, F|
and Cpy = y F;. These are mod(p) operations, where p is the prime number. Param-
eters p and G are specified according to elliptic curve condition in [24]. Evaluator
computes Sgg using his private key, kg, and public key of requester, k. He uses x;
to calculate F| = Cp;/x; and F; = CFp/x; and submits F| and F; in selection
contract. Contract computes F’ from F| and F, and applies XOR on F’ and H(m)
to compute F. Now, evaluator has access to F. However, F cannot be downloaded
by him. He has read-only permission to the file. Use of elliptic curve-based ElGamal
cryptosystem will prevent evaluator from sharing solution with anyone. Evaluator
may share (R, Cr1, Cr»), F| and F; with the third person, but that person will not
be able to access solution F because he requires m for that, which is stored in eval-
uators’ user account, and evaluator is unaware of it. If evaluator shares IPFS hash
with evaluator, then evaluator can share that hash with anyone, who can easily access
solution with the help of hash as IPFS data can be easily accessed by anyone using
hash. For this reason, solution is not given to evaluator through IPFS.

5.6 Solution Evaluation

Evaluation score given by evaluator comprises 2 parameters, quality and complete-
ness of solution. Quality measures the aspects like if solution submitted is as expected,
guidelines specified for task completion are followed or not and other parameters.
Completeness measures how complete the solution is as per the requirement of the
requester. Each of the evaluators rates the submission out of 10. Evaluation score
given by each evaluator is stored in an evaluation contract.

When the solution is submitted by the worker in SolutionContract, requester
evaluates the solution itself. If he finds the evaluation score less than &, then he
has to select evaluators, to have consensus over the submitted solution. Otherwise,
evaluators are not needed.

404 P. Goel and M. Ghosh

5.7 Payment and Reputation Updating

Reputation value of the user can increase either by completing the task the requester
has posted or by evaluating the solution, submitted by a worker. Reputation value to
be updated depends on the evaluation score given by evaluator for that solution. Initial
reputation value of each user is 1 that is assigned to him at the time of registration
to the platform. Maximum reputation value that a user can have is 100. Maximum
reputation value that can be gained by a worker by task completion is 3. To calculate
the reputation value to increment, EvaluationContract will compute the average of
evaluation scores given by all the evaluators that will be called as SubmissionScore.

Evaluator’s Reputation. In the case of evaluators, if evaluation score given by
an evaluator is more than calculated SubmissionScore, then the reputation of the
evaluator is updated by 1. Otherwise, its reputation value is decreased by 1. In the
later case, it will be considered an outlier and will be suspected for unfair evaluation.

Worker’s Reputation. In the case of a worker, if his average evaluation score, that
is, SubmissionScore is less than 4, then his reputation value will be decremented.
Otherwise, it will be incremented. ReputationScore, that is, reputation value to be
incremented or decremented, is calculated using the formula in Eq. (4).

3
ReputationScore = round((SubmissionScore) X m))

ReputationScore will be added to or subtracted from the current reputation value
of worker depending upon increment or decrement condition.

Based on the SubmissionScore and ReputationScore, the worker gets back the
ethers that he submitted at the time of task registration. If ReputationScore is 2
or greater, the worker will get back all the ethers he deposited; otherwise, one-
third amount of the deposited ethers will be deducted and transferred to requester’s
account. Percentage of RewardAmount, ethers to be given to worker, will be
calculated using Eq. (5).

SubmissionScore
Reward Amount (%) = 100 (5)

When the user leaves the platform, he will get back the ethers that he submitted at
the time of registering at the platform. If the reputation value of the user at that time
is more than 60, he will get back his entire amount; otherwise, one-third amount will
be deducted and stored with UserContract on the platform. How that amount will
be utilized is not discussed as part of this paper.

Blockchain-Based Secure and Efficient Crowdsourcing Framework 405

6 Conclusion

In this paper, comparative analysis has been done to show the problems that are not
dealt with by those papers. Each of those problems and limitations that are posed by
those decentralized crowdsourcing platforms has been worked on. The Ethereum-
based decentralized crowdsourcing platform has been proposed that resolves the issue
of Sybil attack, confidentiality breach, collusion and false reporting by evaluators. To
achieve the desired result, the techniques like bit commitment and elliptic curve-based
ElGamal cryptosystem have been used, leading to a platform that is more efficient
and robust than any of the studied crowdsourcing approach. All the issues faced
by existing crowdsourcing systems have been thoroughly analysed and proposed
solution for each of them, explaining why the proposed solution is most effective.

As a part of future work, the proposed crowdsourcing approach will be imple-
mented and will calculate the cost associated with those transactions. In this work,
some of the attacks common to the crowdsourcing platform have been covered and
security analysis will be done in future work.

References

1. GuY, ChenJ, Wu X (2018) An implement of smart contract based decentralized online crowd-
sourcing mechanism. In: Proceedings of the 2018 2nd international conference on computer
science and artificial intelligence—CSAI 18. https://doi.org/10.1145/3297156.3297239

2. ZhuS,HuH, LiY,LiW (2019) Hybrid blockchain design for privacy preserving crowdsourcing
platform. 26-33. https://doi.org/10.1109/Blockchain.2019.00013

3. Bhatia G, Dubey A, Kumaraguru P (2018) WorkerRep: building trust on crowdsourcing

platform using blockchain

Upwork. https://www.upwork.com/

Amazon Mechanical Turk. https://www.mturk.com/mturk/welcome

Uber. https://www.uber.com/

Li M, Weng J, Yang A, Lu W, Zhang Y, Hou L, Jia-Nan L, Xiang Y, Deng R (2018) CrowdBC:

a blockchain-based decentralized framework for crowdsourcing. IEEE Trans Parallel Distrib

Syst 1-1. https://doi.org/10.1109/TPDS.2018.2881735

8. Gamage D, Ballav A, Goyal S, Mathur V, Richmond-Fuller A (2016) Boomerang: rebounding
the consequences of reputation feedback on crowdsourcing platforms

9. Kogias D, Leligou H, Xevgenis M, Polychronaki M, Katsadouros E, Loukas G, Heartfield R,
Patrikakis C (2019) Toward a blockchain-enabled crowdsourcing platform. IT Prof 21:18-25.
https://doi.org/10.1109/MITP.2019.2929503

10. Dennis R, Owen G (2015) Rep on the block: a next generation reputation system based on the

blockchain. 131-138. https://doi.org/10.1109/ICITST.2015.7412073

11. Nakamoto S (2009) Bitcoin: a peer-to-peer electronic cash system. Cryptography Mailing list

at https://metzdowd.com

12. Makridakis S, Polemitis A, Giaglis G, Louca S (2018) Blockchain: the next breakthrough in

the rapid progress of Al https://doi.org/10.5772/intechopen.75668

13. Hartman J, Murdock I, Spalink T (1999) The swarm scalable storage system. In: Proceedings

of international conference on distributed computing systems, pp 74-81. https://doi.org/10.
1109/1CDCS.1999.776508

14. Benet, Juan. (2014). IPFS—Content Addressed, Versioned, P2P File System.

Nown ks

https://doi.org/10.1145/3297156.3297239
https://doi.org/10.1109/Blockchain.2019.00013
https://www.upwork.com/
https://www.mturk.com/mturk/welcome
https://www.uber.com/
https://doi.org/10.1109/TPDS.2018.2881735
https://doi.org/10.1109/MITP.2019.2929503
https://doi.org/10.1109/ICITST.2015.7412073
https://metzdowd.com
https://doi.org/10.5772/intechopen.75668
https://doi.org/10.1109/ICDCS.1999.776508

406 P. Goel and M. Ghosh

15. Feng W, Yan Z (2019) MCS-chain: decentralized and trustworthy mobile crowdsourcing based
on blockchain. Future Gener Comput Syst 95. https://doi.org/10.1016/j.future.2019.01.036

16. Teo SG, Narayanan A, Jianneng C (2018) Privacy-preserving survey by crowdsourcing with
smartphones. In: 2018 IEEE 4th world forum on internet of things (WF-1oT). IEEE 2018

17. Baba'Y, Kashima H (2013) Statistical quality estimation for general crowdsourcing tasks. KDD.
https://doi.org/10.1145/2487575.2487600

18. Carboni D (2015) Feedback based reputation on top of the bitcoin blockchain. arXiv preprint
arXiv:1502.01504

19. Yuan Y (2016) Towards blockchain-based intelligent transportation systems. https://doi.org/
10.1109/1TSC.2016.7795984

20. Sharples M, Domingue J (2016) The blockchain and kudos: a distributed system for educational
Record. Reputation Reward 9891:490-496. https://doi.org/10.1007/978-3-319-45153-4_48

21. Lu Y, Tang Q, Wang G (2018) ZebraLancer: private and anonymous crowdsourcing system
atop open blockchain. 853—-865. https://doi.org/10.1109/ICDCS.2018.00087

22. MetaMask. https://metamask.io/

23. Naor M (1991) Bit commitment using pseudorandomness. J Cryptol 4(2):151-158

24. Rabah K (2005) Elliptic curve ElGamal encryption and signature schemes. Inf Technol J.
https://doi.org/10.3923/itj.2005.299.306

https://doi.org/10.1016/j.future.2019.01.036
https://doi.org/10.1145/2487575.2487600
http://arxiv.org/abs/1502.01504
https://doi.org/10.1109/ITSC.2016.7795984
https://doi.org/10.1007/978-3-319-45153-4_48
https://doi.org/10.1109/ICDCS.2018.00087
https://metamask.io/
https://doi.org/10.3923/itj.2005.299.306

	 Blockchain-Based Secure and Efficient Crowdsourcing Framework
	1 Introduction
	2 Related Work
	3 Analysis
	4 Overall Proposed System
	5 The Process
	5.1 User Registration
	5.2 Task Posting
	5.3 Worker Selection
	5.4 Solution Submission
	5.5 Evaluators’ Selection
	5.6 Solution Evaluation
	5.7 Payment and Reputation Updating

	6 Conclusion
	References

