
A Hidden File Extraction Scheme
Defeating Malware Using Android

Dynamic Loading

Hongsun Yoon1 , Hyunseok Shim2 , and Souhwan Jung3(B)

1 Department of Information and Telecommunication Engineering, Soongsil
University, Seoul, South Korea

ghdtjs243@gmail.com
2 Department of Information and Communication Convergence, Soongsil University,

Seoul, South Korea
ant tree@naver.com

3 School of Electronic Engineering, Soongsil University, Seoul, South Korea
souhwanj@ssu.ac.kr

Abstract. Recently, malicious Android applications have become intel-
ligent to bypass traditional static analysis. Among them, which using
dynamic loading techniques hide malicious code by separating DEX files.
These additional DEX files can be installed together during the instal-
lation time in different directory or downloaded from the command and
control server. However intelligent malwares delete the DEX files after
execution to avoid analysis. Therefore, It is difficult to figure out the some
of hidden behavior without extracting files used for dynamic loading.
In this paper, we propose a extraction algorithms to save the loaded or
deleted DEX file using Xposed. After that, verifies whether the extracted
DEX file is malicious by using the proposed technique. This method
allows you to analyze additional actions performed by malware through
analysis. As a result, it contributes to find hidden features of Application.

Keywords: Multidex · Dynamic loading · Java reflection ·
ClassLoader · Android malware

1 Introduction

When comparing the market share of the portable device OS in 2018 based on
data provided by Statista, Android accounts for more than 85% of the market

This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2019-0-00477, Development of android security framework technology using virtualized
trusted execution environment) and this work was supported by Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2020-0-00952, Development of 5G Edge Security
Technology for Ensuring 5G+ Service Stability and Availability).

c© Springer Nature Singapore Pte Ltd. 2020
I. You et al. (Eds.): MobiSec 2019, CCIS 1121, pp. 85–98, 2020.
https://doi.org/10.1007/978-981-15-9609-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9609-4_7&domain=pdf
http://orcid.org/0000-0003-0848-2510
http://orcid.org/0000-0002-2051-7109
http://orcid.org/0000-0003-2676-3412
https://doi.org/10.1007/978-981-15-9609-4_7


86 H. Yoon et al.

Fig. 1. Java reflection sample code.

[23]. In addition, IDC’s estimated smartphone market share statistics predicted
that the Android OS would maintain an 85% share over the next five years
[13]. Therefore, apps running on Android environments have increased dramat-
ically, and malicious apps have also been on a steady rise according to McAfee
Report [17] in the first of 2019. Nowadays, intelligent malwares avoid static and
dynamic analysis through source code obfuscation, encryption, dynamic load-
ing, and environment detection. Among the methods of analyzing an app, static
analysis has the advantage of analyzing the entire malicious behavior source code
to enable accurate analysis. But it cannot respond to apps that separate source
codes using dynamic loading techniques. So some Android malicious apps use
multiple DEX with dynamic loading techniques to avoid static analysis, which
invoke additional DEX from the main DEX to perform actual malicious behav-
ior. Because of this behavior, it is difficult to find all of code that performs in
the Application.

In this paper, We propose a algorithm for extracting files dynamically loaded
by Android malicious apps. With Xposed framework, we can see the API calls
and extract files used to dynamic loading from malicious apps. And This allows
analyst to find and analyze dynamic loading codes hidden by intelligent and
advanced Android malicious apps. Following the introduction, We explain about
Java reflection and Xposed in Sect. 2. After that, see details of APK structure
and feature of the API hiding technique with Java reflection as a related research
in Sect. 3. In Sect. 4, introduces the algorithms to extract DEX file and describes
the operation process. After that, we verifies the proposal algorithms and analyze
loaded DEX file. Finally, sum up the result of this paper and describes the future
research and direction.

2 Background

2.1 Java Reflection

Java reflection is a feature of Java language that is used to check or change
run-time behavior of applications running in Java Virtual Machines (JVM) [26].
With this, it is possible to get a loaded class and method lists in JVM and use
it directly [15]. Figure 1 is an example of code using Java reflection techniques.



Hidden File Extraction Scheme 87

In the reflection code, the Class.forName method is to obtain class objects
and create object through the newInstance methods. After that, set up the
method contained in the class using getMethod and finally can call the method
by Invoke call. As a result of using reflection, inside of class and method data
can be changed with in run-time. It’s kinds of useful function for developing,
but malicious application want to use this for calling other method contain-
ing additional behaviors. So, they load malicious class and method by execute
ClassLoader API And call them in run-time By doing this techniques, malicious
application can avoid Static analysis.

2.2 Dynamic Analysis

Dynamic Analysis is designed to analyze Android Runtime (ART) when the
target is running. Android applications can be dynamically analyzed by logging
API function calls and responses to broadcast events and intents. There are
many tools such as Xposed and Frida for API function invocation and response
collection. There are several input generation tools for dynamic analysis, such as
monkeys, but random-based methods have low code coverage. An efficient app-
roach is needed to increase the scope of code. Therefore, accurate and efficient
input generation tools are essential for dynamic analysis. Researchers designed
user-interface-based methods such as DynaLog and DroidBot. The input gen-
eration tool reads and analyzes UI components to increase the scope of code
application by pressing a button or typing in a text field.

2.3 Xposed

Xposed [19] is an Android application hooking tool that enables dynamic code
modification while running. For example, you can hook a result of API call inside
value. In case of getting phone number from calling getline1number method,
originally the result value is your phone number. However, it can be empty
using Xposed. Not only modifying return value, But can see the parameters or
making exception while each app running.

In addition, for hooking the sdk information using Xposed, all the parameters
and return must be same as target API signature as shown in Fig. 3. Or they
might cause exception while hooking, however due to many SDK versions, it is
quite difficult to match those APIs for every versions. So we manually investi-
gated for every version of targets and separate the API according to each version,
in order to match for every cases.

Figure 2 shows the difference of booting process. When Android OS system
booting, zygote process is created in the init process. Zygote [11] is a key element
of the Android system and contains core libraries. And using app process required
class can be load in zygote. Also all applications are forked by zygote, so the
applications have core libraries which zygote contains. Same with this step, the
Xposed extends app process to add a jar file which named as XposedBridge to
the class path, which invokes the method at a specific point during execution to
enable modification of the application behavior.



88 H. Yoon et al.

Fig. 2. Normal booting VS Xposed booting in Android

Fig. 3. SDK hooking example using Xposed

3 Related Works

3.1 APK Reverse Engineering

Figure 4 represents the file structure of the Android Package Kit (APK). APK
can be extracted easily through the Android Debug Bridge (ADB) [6]. In addi-
tion, APK has following the Zip format, which makes it easy to decompress
with apktool [20]. And after extraction using the apktool, there are classes.dex,
resource, libraries, assets, META-INF.



Hidden File Extraction Scheme 89

Fig. 4. Android APK structure

APK Structure. Classes.dex is a file that aggregates all class files and converts
them into byte codes for Android Dalvik virtual machines to recognize. Res is a
folder in which all non-compiled resources exist. Resources include image files,
xml files, and so on. Lib is the folder where the library is collected. This folder
contains so-files compiled for each process created with Native Development Kit
(NDK) [9]. Assets is a folder that contains information about applications that
can be managed by Assets Manager. META-INF is a folder related to signatures.
Inside of MANIFEST.MF, there are CERT files. These files store signed values
using SHA1 and base64 [14]. Also, signature files can be decoded using the key-
tool. Resources.arsc is a file that records information about resource files. The
type and id information of various resource files of resfolder is stored. Android-
Menifest.xml [8] is a xml file for managing applications. The file specifies the
application’s permission settings, Android component information (e.g., Service,
Int, Activity, Receiver, Provider), and Android version. Table 1 shows the overall
structure of APK.

Among those of files, the classes.dex is actually executed file in Android
system. It contains compiled source code inside, and we can decompile this file
using dex2jar [18] and Jd-Gui [1]. With this static analysis tool, It is possible to
get readable source code of APK. Attackers use these methods to extract code
and then put malicious code inside to attack. Apktool also has the ability to
repackage modulated code easily again. Once repackaged APK file is distributed
via the Third-party, then it will be the malware.

3.2 API Hiding Technique

The API hiding technique is based on source code. Developers do not want to
break down their own applications. Thus, there are many kinds of hidden meth-
ods in the Android world, and we have already mentioned one of the hidden
methods, the Java reflection, in Sect. 2. Malicious applications also use this tech-
nique by using the name of protecting malicious behavior source codes. There-
fore, for proper analysis, the files that apply to Java Reflection must be extracted
and analyzed before drawing the appropriate call graph [22].

4 Proposed Scheme and Implementation

In this section, We will talk about How we implement our extraction system. Nor-
mally, Malicious applications use dynamic loading techniques using DexClass-
Loader with executable some files in device, such as DEX, JAR, ZIP, APK, etc.



90 H. Yoon et al.

Table 1. Dynamic loading API method and parameter.

Name Description

classes.dex Files converted class files into byte codes for recognition
within the Android Dalvik virtual machine

res A directory aggregates non-compile images and xml
resources

lib Directory contains library files, which are compiled with
NDK

Meta-INF A directory related to signature. It contains
MANIFEST.MF, CERT.SF, and store signature encrypted
with SHA1 and base64

resources.arsc File that record information about resource files. Store
types and ids of resource files located in res directory

assets A directory aggregates application’s information that can
be managed by AssetsManager

AndroidManifest.xml An xml file for managing applications, specifying the
application’s permissions, component information such as
content, services, and activity, and information about the
SDK version

Those files can be installed when APK downloading time or comes from remote
locations while runtime. Also, they can use reflection to execute sub loadable
files. However, intelligent malwares dynamically loads the files and then delete
it to avoid being analyzed. So in this paper, we propose extraction algorithms
to solve the problems of dynamic loading behavior which contains prevention of
delete files case.

4.1 Dynamic Loading API and Java Reflection

Originally, DEX dynamic loading technique is used to cover up DEX file’s lim-
itation. In one DEX file, it cannot contain method over 65536 [28]. It means
when we develop a application, we cannot use the number of method more than
that. So Android allow developers to use multiple DEX files in on application.
And it can be loaded dynamically in run-time. However, malicious applications
using dynamic loading techniques for hiding source code with same as normal
application.

Class.forName is the most important method for Java reflections. The method
is used to extract the DEX with a dynamic loading technique and then place the
class in the Class object. This feature allows you to detect which class the applica-
tion actually runs. Through the class extracted from the Class.forName method,
you can find out the class that actually was loaded, and hook the getDeclared-
Methods method to get a list of the methods that were called directly by dynamic



Hidden File Extraction Scheme 91

loading. This allows you to identify the method names in the class using the Java
reflection technique, which can not be confirmed by static analysis, and extract
information about the constructor and field.

Table 2 shows the method for dynamic loading. DEX Path is a parameter used
for loadable DEX file path. Optimized Directory is location of created an ODEX
file [25]. The Optimized Dalvik Enable (ODEX) is an executable optimized DEX
for each system that runs. It generated when application is built. Library Search
Path is a parameter used to set the library which related to loaded DEX. Parent
is parent classloader.

4.2 Hook with Magisk and EdXposed

In previous Sect. 2, the Xposed tool can hook Android API method in runtime.
With this tool, you can easily hook classloader’s class or method. If you hook
the classloader then we can check the path of loadable DEX file and get it with
dynamic analysis. Using Xposed in device give us a lot of benefits. But, there
is prelimitation to use the Tool. Each android app is separated by sendbox-
ing technique, cannot access or execute the other app’s private data, storage
and components. So, the Xposed require root privilege to hooking application
method. And another Key point of Xposed hooking is developers should have to
use exact method name and parameter types for hooking API.

Magisk [24] is a tool developed by topjhonwu and is used for Android device
rooting. Unlike conventional rooting, it is possible to provide root access without
changing or replacing the image of the existing system. It can also be linked
to external programs to provide various functions together. The main point of
the Magisk is mirroring original system. First, mirroring system directories to
specific directories and change root mount points. Then, reboot android device.
After that, automatically changed the root directory to the new mount point
and create the /system, /data, and /cache directories as subdirectories based
on the mirrored directory. The directory is mirrored to the existing system,
where changes and manipulations are carried out and applied together. The
biggest advantage of using Magisk is that it can bypass the SafetyNet provided
by Google [5]. Google’s SafetyNet is a fairly powerful environmental detection
API that collects information about the environment in which the app runs
and authenticates itself. This allows the integrity of the system to be verified,
and all the rooting and emulator detection [7] are possible. Therefore, using the
attest function among the SafetyNet APIs, you can accurately detect the device
environment and obtain confirmation from Google for the integrity of the device.
In addition, in cases other than the previously used stock boot image, Android
Open Source Project (AOSP) [3] build and use cannot pass through SafetyNet.

Among the existing studies, dynamically loaded files were being extracted
in various ways. In particular, the approach of building a new OS by changing
AOSP [27] or using various tools for memory analysis [29] has become more likely
to not work correctly if the app is using SafetyNet, and in future papers, it may
be necessary to consider how to analyze apps using SafetyNet. Therefore, using
the Magisk created to bypass SafetyNet can proceed with the correct detection



92 H. Yoon et al.

when using other supported tools. Xposed can also bypass SatetyNet and hook
APIs by using Edxposed, an open source that is changed for use by Magisk.

Table 2. Dynamic loading API method and parameter.

Method Parameter

DexClassLoader (dexPath, optimizedDirectory, librarySerchPath, parent)

BaseDexClassLoader (dexPath, optimizedDirectory, librarySerchPath, parent)

PathClassLoader (dexPath, librarySerchPath, parent)

OpenDEXFile (sourceName, outputName, flag)

On the other hand, the SafetyNet API is also a kind of API. You can change
the failed result to Success by hooking the result value of API used for Test.
Simple implementation is possible using existing Hooking tools. However, Google
also has an algorithm to verify the results received from SafetyNet using backend
server to ensure that the values are not forged. If the app is implemented to
validate and operate the result values of the attest API on the designated server,
the Magisk is the only way to bypass SafetyNet as a result of the investigation
so far. Therefore, the Magisk tool was installed at the actual terminal to hook
up the dynamic loading API, and Edxposed [2] was installed to configure the
environment.

4.3 File Extraction Algorithms

Figure 5 is the dex file extraction algorithm proposed in this paper. In the previ-
ous section, we identified the APIs offered by Android to perform dynamic load-
ing and configured an environment with Magisk and Xposed to extract DEX
files. After applying the developed environment to the actual device, use the
monkey tool, a program that automatically executes the app, to operate the
app randomly. Monkey [4] is a tool that can help you turn over Activity by
randomly clicking on the UI of the Android app. Therefore, if dynamic loading-
related APIs and reflection-related APIs are called during the execution of the
app to be analyzed, refer to the first parameter of the function to check the
location of the DEX file loading. In such cases, the loaded path is then recorded
and the algorithm is constructed so that it can be extracted at once at the end
of the analysis.

On the other hand, there are many malicious codes that erase files after
dynamic loading. As described earlier, the source code acquisition is difficult
and is one of the factors hindering the analysis. Therefore, if an app deletes a
loaded file using APIs that delete a specific file, it can block it using Xposed and
copy it to another path for storage.

(1) Monitoring API Calls which use ClassLoader
(2) Hook the dynamic loading methods
(3) Extract DEX file location in DEX Path parameter



Hidden File Extraction Scheme 93

(4) Check DEX files are deleted or not
(5) If delete executed, then prevent delete command
(6) Extract DEX file until analysis finished

By default, extracted DEX files are stored in the application’s default
path. Apps can store and retrieve data without authorization in the
/data/data/packageName directory, which is the location granted during instal-
lation process. If stored in an external storage device, they can be used only
with permission. On the other hand, the data/local/tmp path can be used as a
directory provided to store temporary files. Therefore, extracted DEX files are
designed to be moved to a temporary path, stored, and analyzed.

Fig. 5. File extraction algorithms in SDK area.



94 H. Yoon et al.

5 Evaluation

In this section, the performance of the implemented algorithms is evaluated in
several ways. The devices used in the evaluation process were analyzed through
Android Nexus 5 (Android version 5.1). AMAaaS-supplied application was used
to collect the apps that would be tested first. AMAaaS [21] is a web-based
Android analysis platform that provides basic static analysis information and
providing APIs that run and analyze apps using Android container environments
as a result of dynamic analysis. API information and sequence executed can be
checked using this method.

Application that was provided by AMAaaS is an application set that was
collected for one year from January 2018 to January 2019. Users uploaded the
app to analyze the app and check the malicious code. The total number of apps
collected is 1,323. The application was classified as Benign and Malware for
later analysis, and uploaded to Virustotal [16] for verification. And the app was
executed for 3 min and the results were analyzed using logs generated in the
process. Monkey tool was applied to collect as many logs as possible, and the
analysis results are as follows.

5.1 Performance Result

The content that was carried out before the classification of collected apps as
malicious or not is the dynamic loading ratio of apps. Although the apps collected
are not actually apps developed for that year, users can upload them through the
device, so they can confirm that they were recently used. Follow by Table 3 about
25% of the apps collected used dynamic loading techniques. Nowadays, most
apps are using many dynamic loading methods to avoid basic static analysis,
including malicious apps, and they have been able to see approximate numbers
through the analyzed values.

Table 3. Dynamic loading rate and extraction rate.

Number
(#)

Percentage
(%)

Extraction
success
(Percentage)

Extraction fail
(Percentage)

Dynamic load 322 24.3 259 (80.4%) 63 (19.6%)

Single DEX 1001 75.7 - -

Total 1323 100 259 63

Subsequently, the collected apps were actually activated and dynamic files
could be extracted. The analysis found that approximately 80% of apps were
able to perform static analysis but could actually be powered up and subject
to extraction. Among the apps collected, many apps were unable to run due to
contamination or tampering with the DEX file if the AndroidManifest.xml



Hidden File Extraction Scheme 95

file did not exist. In addition, we identified apps that do not run because the
value of the Minimum SDK set in the app is higher than the actual device.
With the exception of these, 259 applications were used for actual testing.

Table 4. Deleted rate after execution.

Number (#) Percentage (%)

Deleted 24 9.3

Alive 235 90.7

Total 259 100

Table 5. Malicious rate of loading DEX.

DEX state Number (#) Percentage (%)

Malicious Deleted 24 60.2

Alive 132

Benign Deleted 0 39.8

Alive 103

Total 259 100

We used 259 selected apps to see if dynamic loading actually takes place and
then summarize the statistical results on how many actual deletion of loaded
files takes place. According to the Table 4 approximately 10% of apps or less
were performing commands to delete dynamically loaded files. If you check the
results, you can see that about 1% app actually deletes it to protect the source
code or to hide malicious behavior based on the entire app that is not a very
high number.

To check the distribution of apps that were last deleted, we divided the
Benign app and the Malicious app into tables. Table 5 shows that among apps
classified as real benign, dynamic loading is performed and the results are not
deleted. It was finally possible to confirm that all 24 apps that were deleted were
only done in applications that were separated by malicious.

6 Limitation

The original goal of the this paper was to identify malicious behavior using
dynamic loading techniques among apps classified as benign. Benign apps ana-
lyzed using the proposed method are using dynamic loading techniques but have
not been deleted. The previous analysis confirmed that the apps that proceed
with deletion were malicious applications with high probability. On the other
hand, the extracted files were verified using the virus total using the extracted



96 H. Yoon et al.

results for files loaded by the benign app, and the malicious behavior was not
found.

The first problem is if the code are not executed which call dynamic load then
it cannot extract the loaded file. Monkey tools used to increase code coverage
cannot currently bring higher code cover compared to other tools such as UI-
automation [10] and DroidBot [12]. However, the data set what we use could be
extracted and stored because dynamic loading techniques were used immediately
when apps were executed.

Second problem is that if the application has not yet been found, but the
code to find the Magisk app and stop the operation is inserted, the extraction is
not possible for the app. Magisk app basically offers a technique called magisk-
hide and root-hide. But if you look at the source code of github, you can see
which files exist in which path. This information is fully detectable, especially
su-file and services are installed and used inside the data directory.

7 Conclusion

In this paper, for applications using dynamic loading techniques, the DEX file
extraction method is designed and implemented using Magisk and Xposed. Pre-
viously, it is impossible to analyze if changing Android OS or extract dynamic
files using emulator when using SafetyNet. Therefore, direction was provided to
solve this problem, and the application of deleting loaded DEX files was also
implemented to limit deletion behavior and extract target files. Subsequently, it
was finally confirmed that most of the apps that perform the acts were imple-
mented in applications that include malicious behavior.

On the other hand, the app did not solve the shortcomings of dynamic anal-
ysis that must be executed to extract the application’s dynamic loading file, and
there are disadvantages that cannot be analyzed if the app implements code
that detects the Magisk app itself and determines its operation. Nevertheless, if
the code was executed, the entire loaded file could be extracted and the source
code obtained without any problems. It is also expected that the detection and
extraction of the actual device will enable the execution and analysis of as many
applications as possible, thus contributing to detecting malicious behavior that
could not be analyzed in static analysis.

References

1. Dupuy, E.: JD-GUI (2019). https://github.com/java-decompiler/jd-gui. Accessed
May 2019

2. ElderDrivers: EdXposed (2019). https://github.com/ElderDrivers/EdXposed.
Accessed May 2019

3. Google: Android open source project (2004–2019). https://source.android.com/n.
Accessed May 2019

4. Google: Monkey (2016–2019). https://developer.android.com/studio/test/
monkey. Accessed May 2019

https://github.com/java-decompiler/jd-gui
https://github.com/ElderDrivers/EdXposed
https://source.android.com/n
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey


Hidden File Extraction Scheme 97

5. Google: SafetyNet (2017–2019). https://developer.android.com/training/
safetynet/attestation. Accessed May 2019

6. Google: Android debug bridge (2019). https://developer.android.com/studio/
command-line/adb?hl=ko. Accessed May 2019

7. Google: Android virtual device (2019). https://developer.android.com/studio/run/
managing-avds. Accessed May 2019

8. Google: Androidmanifest.xml (2019). https://developer.android.com/guide/
topics/manifest/manifest-intro?hl=ko. Accessed May 2019

9. Google: NDK (2019). https://developer.android.com/ndk. Accessed May 2019
10. Google: UI Automator (2019). https://developer.android.com/training/testing/ui-

automator. Accessed May 2019
11. Google: Zygote (2019). https://blog.codecentric.de/en/2018/04/android-zygote-

boot-process/. Accessed May 2019
12. Honeynet: DroidBot (2019). https://github.com/honeynet/droidbot. Accessed

May 2019
13. IDC: Smartphone market share (2019). https://www.idc.com/promo/smartphone-

market-share/os. Accessed March 2019
14. Kanwal, M., Thakur, S.: An app based on static analysis for Android ransomware.

In: 2017 International Conference on Computing, Communication and Automation
(ICCCA), pp. 813–818. IEEE (May 2017)

15. Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: Reflection-aware static analysis of
android apps. In: 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 756–761. IEEE (September 2016)

16. C.S.I. Limited: Virus total (2011–2019). https://www.virustotal.com/. Accessed
May 2019

17. McAfee: McAfee mobile threat report q1 (2019). https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf. Accessed
March 2019

18. Panxiaobo: Dex2jar (2019). https://sourceforge.net/projects/dex2jar. Accessed
May 2019

19. rovo89: Xposed (2019). https://repo.xposed.info/module/de.robv.android.xposed.
installer. Accessed May 2019

20. Ryszard Wísniewski: APKTool (2010–2019). https://ibotpeaches.github.io/
Apktool/install/. Accessed May 2019

21. S4URC: AMAaaS (2018–2019). https://amaaas.com/. Accessed May 2019
22. Shan, Z., Neamtiu, I., Samuel, R.: Self-hiding behavior in android apps: detec-

tion and characterization. In: 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pp. 728–739. IEEE (May 2018)

23. Statista: Global mobile OS market share in sales to end users from 1st quarter 2009
to 2nd quarter 2018 (2019). https://www.statista.com/statistics/266136/global-
market-share-held-by-smartphone-operating-systems. Accessed March 2019

24. topjohnwu: Magisk (2018–2019). https://github.com/topjohnwu/Magisk/releases.
Accessed May 2019

25. Wan, J., Zulkernine, M., Eisen, P., Liem, C.: Defending application cache integrity
of Android runtime. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol.
10701, pp. 727–746. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72359-4 45

26. Wikipedia: Java virtual machine, 2019 (2019). https://en.wikipedia.org/wiki/Java
virtual machine. Accessed March 2019

27. Wong, M.Y., Lie, D.: Tackling runtime-based obfuscation in Android with TIRO.
In: 27th USENIX Security Symposium, pp. 1247–1262 (2018)

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/studio/command-line/adb?hl=ko
https://developer.android.com/studio/command-line/adb?hl=ko
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/guide/topics/manifest/manifest-intro?hl=ko
https://developer.android.com/guide/topics/manifest/manifest-intro?hl=ko
https://developer.android.com/ndk
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://blog.codecentric.de/en/2018/04/android-zygote-boot-process/
https://blog.codecentric.de/en/2018/04/android-zygote-boot-process/
https://github.com/honeynet/droidbot
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.virustotal.com/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://sourceforge.net/projects/dex2jar
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://ibotpeaches.github.io/Apktool/install/
https://ibotpeaches.github.io/Apktool/install/
https://amaaas.com/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://github.com/topjohnwu/Magisk/releases
https://doi.org/10.1007/978-3-319-72359-4_45
https://doi.org/10.1007/978-3-319-72359-4_45
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine


98 H. Yoon et al.

28. Yang, W., et al.: AppSpear: bytecode decrypting and DEX reassembling for packed
Android malware. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS,
vol. 9404, pp. 359–381. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26362-5 17

29. Zhang, Y., Luo, X., Yin, H.: DexHunter: toward extracting hidden code from
packed Android applications. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9327, pp. 293–311. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24177-7 15

https://doi.org/10.1007/978-3-319-26362-5_17
https://doi.org/10.1007/978-3-319-26362-5_17
https://doi.org/10.1007/978-3-319-24177-7_15
https://doi.org/10.1007/978-3-319-24177-7_15

	A Hidden File Extraction Scheme Defeating Malware Using Android Dynamic Loading
	1 Introduction
	2 Background
	2.1 Java Reflection
	2.2 Dynamic Analysis
	2.3 Xposed

	3 Related Works
	3.1 APK Reverse Engineering
	3.2 API Hiding Technique

	4 Proposed Scheme and Implementation
	4.1 Dynamic Loading API and Java Reflection
	4.2 Hook with Magisk and EdXposed
	4.3 File Extraction Algorithms

	5 Evaluation
	5.1 Performance Result

	6 Limitation
	7 Conclusion
	References




