
Power-Efficient Big.LITTLE Core
Assignment Scheme for Task Graph

Based Real-Time Smartphone
Applications

Se Won Lee1 , Donghoon Kim2 , and Sung-Hwa Lim3(B)

1 Pukyong National University, Busan, Republic of Korea
swlee@pknu.ac.kr

2 TmaxSoft, Seongnam, Republic of Korea
ldh94@ajou.ac.kr

3 Namseoul University, Cheonan, Republic of Korea
sunghwa@nsu.ac.kr

Abstract. Demand of energy saving for smartphone batteries is increas-
ing along with the improvement in quality and performance of smart-
phone applications. In response to these demand, most of the smart-
phones recently released are equipped with ARM big.LITTLE architec-
ture, which is composed of relatively energy efficient low performance
cores (LITTLE cores) and high power consumption high performance
processor cores (big cores). However, it is difficult to take full advan-
tage of the energy-saving benefits of the ARM big.LITTLE architecture,
because most real-time tasks tend to be assigned to big cores rather than
LITTLE cores. To solve this problem, we propose power-efficient multi-
core allocation schemes for task graph-based real-time smartphone appli-
cations that can increase the utilization of LITTLE cores. The experi-
ment on an off-the-shelf smartphone have shown that the algorithm can
reduce energy consumption by up to 50% while meeting the applications
deadline. We also discuss energy-aware security issues on big.LITTLE
core assignments of real-time application threads.

Keywords: Energy conservation · Asymmetric multi-cores ·
Smartphone · Real-time applications

1 Introduction

With the spread of smartphones and the emergence of high-quality applications,
there is a growing interest in the issues of power consumption. Recently, as
smartphones incorporate IoT, Augmented Reality and Virtual Reality (AR/VR),
the more demand for processing high workloads on smartphones in real time
[2,5]. Moreover, a smartphone play an important role in personal area networks
as a network edge or a sensor edge. A Real-time system typically has a deadline

c© Springer Nature Singapore Pte Ltd. 2020
I. You et al. (Eds.): MobiSec 2019, CCIS 1121, pp. 73–84, 2020.
https://doi.org/10.1007/978-981-15-9609-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9609-4_6&domain=pdf
http://orcid.org/0000-0001-5215-099X
http://orcid.org/0000-0002-2449-8806
http://orcid.org/0000-0002-9783-9050
https://doi.org/10.1007/978-981-15-9609-4_6


74 S. W. Lee et al.

for each task, ensuring that it is processed within each deadline. To meet this time
constraint (i.e., deadline), the system may require higher performance, which
consumes more power. However, advances in battery technology tend to lag
behind the development levels of such high power hardware and applications [15].

To address this problem, the asymmetric multi-core architecture is being
introduced into the mobile environment, which consists of multiple processors
having different processing power and different power efficiency. A widely used
asymmetric multi-core architecture is the big.LITTLE architecture developed
by ARM [8]. The ARM big.LITTLE architecture combines big cores with high
processing power and high power consumption, and LITTLE cores with low
power consumption and relatively low performance. We can increase the energy
efficiency by allocating the application tasks that are not urgent and do not
require high throughput to LITTLE cores. However, the desired energy savings
by the big.LITTLE architecture will not be sufficiently achieved unless the LIT-
TLE cores are fully utilized. In practice, many application tasks have performed
on the big cores instead of the LITTLE cores [17]. This is because the crite-
ria for assigning an application’s tasks to cores are based on the task’s priority
and the load. Unfortunately, most applications have high priorities to meet user
requirements.

Tasks with deadlines in real-time applications are considered urgent so that
they tend to run on big cores. However, real-time tasks do not affect perfor-
mance or satisfaction even though the processing time increases as long as the
deadline is guaranteed. Therefore, in order to increase the energy saving effect
of the big.LITTLE core structure, a novel energy efficient multi-core assignment
technique is required to increase the utilization of LITTLE core in application
environment with real-time characteristics. A running application consists of a
group of task, which has an acyclic graph structure. We propose a power-efficient
big.LITTLE core assignment technique that estimates the deadline compliance
status of task graph based real-time application, and assigns the guaranteed
tasks to LITTLE core first. We also consider guarantee of the deadline of a task
graph for an application. By applying the proposed scheduling technique on the
real test-bed, we show that the proposed technique improves energy saving effect
while guaranteeing real-time performance as compared to the performance of the
legacy scheduler.

Since the battery power is one of the crucial resources of smartphones, to
make a smartphone’s battery power quickly discharged may be one of the effec-
tive way for malicious attackers [12]. Our work can provide a thread-level energy
consumption effect on an application task. Therefore, it may be utilized to detect
or diagnose these kinds of battery power attacks. We also discuss energy-aware
security issues on big.LITTLE core assignments of real-time application threads.

The paper is organized as follows. In Sect. 2, we discusses related studies
that have been used to reduce energy consumption in asymmetric multi-core
architectures. Section 3 and 4 describe the system model and the multi-core
assignment algorithm proposed in this paper, respectively. Section 5 shows the



Power-Efficient big.LITTLE core Assignment Scheme 75

performance evaluation with experimental results of the proposed scheme. We
discuss energy security issues in Section 6, and conclude the paper in Sect. 7.

2 Related Work

Since ARM Holdings introduced ARM big.LITTLE structure, many studies have
been continued on ARM big.LITTLE structure. In [8], the big.LITTLE architec-
ture’s power efficiency is introduced by comparing the legacy symmetric multi-
core architecture. The software structure for task scheduling with these asym-
metric multi-core equipped device can be divided into three main categories
[7,8]. Figure 1 depicts each technique.

(a) Cluster Migration (b) CPU Migration

(c) Global Scheduling

Fig. 1. big.LITTLE software models [4,8]



76 S. W. Lee et al.

– Cluster Migration Technique: Multiple big cores make up a cluster, and sev-
eral LITTLE cores make up another cluster. When the scheduler runs the
task, the scheduler selects either the big core cluster or the LITTLE core
cluster. The deselected cluster becomes inactive. The disadvantage is that
not all cores are available at the same time.

– CPU Migration Technique: In an environment where there are multiple big
and LITTLE cores, one big core and one LITTLE core are paired together to
form a cluster. In situations where there are many tasks to run, all clusters
can be used simultaneously, but within one cluster only one of the big and
LITTLE cores is active, and the other cores are inactive.

– Global Task Scheduling Technique: Each core is independent, and the sched-
uler assigns tasks to the appropriate core (big core or LITTLE core) according
to the schedule policy setting. If the scheduler has a lot of tasks to run, the
scheduler can activate all cores. Since the scheduling complexity is higher
than that of existing techniques, careful scheduling techniques are required.

The studies in [14,17] present detailed comparisons between the ARM
big.LITTLE structure and the legacy high performance CPUs for performance
and energy trade-offs. In the study [1,18], the authors proposed application
assisted core assignment technique for the ARM big.LITTLE structure to save
energy especially running the web browser. The study in [6] proposed an energy
efficient heuristic scheme for the big.LITTLE core architecture to schedule multi-
ple applications using offloading. However, since the study [6] focuses on schedul-
ing through offloading, it does not suggest a method to increase the utilization
of LITTLE cores. Our research group presented an energy efficient multi-core
assignment algorithm exploiting LITTLE cores as long as every task in a task
graph (i.e., application) can complete its execution before the deadline of the
task is met [10]. However, the guarantee of the deadline of a task graph is not
considered in [10].

3 System Model

In our scheduling model, each application m has multiple tasks, and we use a
directed acyclic graph to represent an application with its tasks. In the graph,
each node is represented Xm,i for application m, and task i. In addition, the
connection between each node represents dependency between the nodes. For
example, if there is a dependency between Xm,i and Xm,j(Xm,j follow Xm,i ),
Xm,j can only be executed after the completion of Xm,i. Figure 2 shows the task
graph for two applications. The two applications are independent of each other,
and each node, or task, has dependency in each application. Also it presents the
job size and the deadline for each task. For example, task D of Application 1 in
Fig. 2 can start its execution only after all precedent tasks of task D (i.e., task
A, B, and C) are completed. The execution of an application is presented as the
time spend in completing the first node through the last node. For example, the
execution time of Application 2 in Fig. 2 is the time spend in completing task A
through task L.



Power-Efficient big.LITTLE core Assignment Scheme 77

(a) Application 1

(b) Application 2

Fig. 2. Examples of task graph



78 S. W. Lee et al.

4 Power Efficient Multi-core Assignment Algorithms

4.1 Meeting the Deadline of Each Task

The basic idea is that if a task can finish its execution running on a little core
before its deadline, the task is assigned on the little core. The algorithm pro-
gresses as shown in Algorithm 1. A task graph for an application to be scheduled
is required as input data. The main procedure and the essential functions are
described as follows:

– Main procedure: A task is taken from the input task graph in descending
order. It checks if the task is ready, i.e., all of precedent tasks of the task
should be completed. If the task is ready, the task is assigned to a LITTLE
core only if the task can be completed within the deadline. Otherwise, the
task is assigned to a big core.

– ExpectedExecT ime(task, coreType): This function computes the expected
execution time to complete the given task while running on the coreType.
coreType can be either big or LITTLE.

– getAvailableCoreList (coreType): This function returns the list of available
cores among coreType (i.e., big or LITTLE).

Algorithm 1: Multi-core assignment algorithm considering the deadline
of each task
1 Input: Task Graph G
2 while G is not empty do
3 Ti ← next task from G
4 while precedent task of Ti is not completed do
5 Ti ← next task from G
6 if ExpectedExecT ime(Ti, LITTLE) < deadline of Ti then
7 Savailable=getAvailableCoreList(LITTLE)
8 else
9 Savailable=getAvailableCoreList(big)

10 if Savailable is not empty then
11 Assign Ti to a core of Savailable
12 else
13 Assign Ti to any available core
14 remove Ti from G

4.2 Meeting the Deadline of the Application

Algorithm 1 presented in the previous section guarantees that each task com-
pletes its execution within its deadline as shown. For example, it is guaranteed
that Execution time of a task shown in Fig. 3 should always be smaller than the



Power-Efficient big.LITTLE core Assignment Scheme 79

required deadline of the task. However, it is more usual that an application (i.e.,
its task graph) has to be finished within its deadline. For example, Execution
time of an Application in Fig. 3 should always be smaller than the required
deadline of the task graph (i.e., the application).

Fig. 3. Execution time of a task and an application

In Algorithm 2, we present a multi-core assignment algorithm considering the
deadline of a task graph.

Algorithm 2: Multi-core assignment algorithm considering the deadline
of a task graph
1 Input: Task Graph G
2 CriticalPathG ← FindCriticalPath(G)
3 while G is not empty do
4 Ti ← next task from G
5 while precedent task of Ti is not completed do
6 Ti ← next task from G
7 if Ti is a vertex of CriticalPathG then
8 ExecT imeSumc ← sum of all vertex’s expected execution time of

CriticalPathG

9 if ExecT imeSumc is greater than the deadline of G then
10 coreType ← big
11 else
12 coreType ← LITTLE

13 Savailable=getAvailableCoreList(coreType)
14 if Savailable is not empty then
15 Assign Ti to a core of Savailable
16 else
17 Assign Ti to any available core
18 remove Ti from G



80 S. W. Lee et al.

The main procedure and the essential function in Algorithm2 are described
as follows:

– Main procedure: At first, it finds out the critical path, which is explained in
the next paragraph, from the given graph. In the loop, a task is taken from
the input task graph in descending order. It checks if the task is in the critical
path, the task is assigned to a big core. Otherwise, the task is assigned to a
LITTLE core only if the task can be completed within the deadline. If it can
not be, the task is assigned to a big core.

– FindCriticalPath(Graph G): This function finds the critical path of the given
graph G. A critical path of a graph includes a path from the first node (i.e.,
root node) to the last node (i.e., terminal node), of which the sum of execution
time of the member nodes is greater than any other path of the graph.

5 Performance Evaluation

In this chapter, we evaluate the performance of our proposed scheme by imple-
menting a test program on a real smartphone. In the evaluation, we randomly
generate task graphs, then proceed with scheduling according to the proposed
algorithm. Using this randomly generated task graph, we compared our sched-
uler with the Android’s default scheduler. Before showing the main results, we
first present the experiment setting.

Fig. 4. Experimental equipment



Power-Efficient big.LITTLE core Assignment Scheme 81

5.1 Experiment Setup

We conducted experimental measurements by implementing our proposed
scheme on Samsung Galaxy S7 edge [16], an off-the-shelf smartphone. Samsung
Galaxy S7 edge embeds four big cores and four LITTLE cores. As a default
setting, the clock speed of the LITTLE core is set at 1.6 GHz and that of the big
core is 2.3 GHz. We measure the energy consumption of the smartphone during
the experiment by using Monsoon HV power monitor [13], as shown in Fig. 4.
For the clarification for measurements, we removed the smartphone’s battery and
powered directly from the monsoon power monitor. The smartphone was set in
the airplane mode during the experiment to prevent other functions working.

In the experiment, we assume that the application can have 8, 16, 20 and
24 tasks, each of which we measure the energy consumption until the end of
the application. Each task runs the Linpack algorithm [4]. The task graph of
the application program was randomly generated using TGFF [3] for each task
number (i.e., 8, 16, 20, 24). For the same environment of experiments, we used
a group of randomly generated task graphs with similar CPU utilization.

5.2 Experiment Result

The experiment increases the number of tasks to 8, 16, 20, 24 under the fixed
CPU Utilization (ρ) as shown in Fig. 5, 6, and 7. And then we measure the
amount of change in the power consumption of the existing scheduling technique
(i.e., legacy) and our proposed scheduling technique (i.e., Power-Efficient).

Fig. 5. Energy consumption for varying number of tasks when ρ = 25%

Figure 5 illustrates the result when the amount of tasks to be run is small
(i.e., average CPU Utilization is 25%). Because Utilization is 25%, most of the
tasks are assigned at the LITTLE core in Power-Efficient, whereas in legacy,



82 S. W. Lee et al.

most of the tasks are assigned at the big core. The more number of tasks, the
more power saving effect will be in Power-Efficient than legacy. It is found that
Power-Efficient reduces energy consumption by 50% compared to legacy when
the number of tasks is 24.

Fig. 6. Energy consumption for varying number of tasks when average ρ = 50%

Fig. 7. Energy consumption for varying number of tasks when average ρ = 75%

Figure 6 shows the result when the amount of tasks to be run is medium
(i.e., average CPU Utilization is 50%). Because more tasks can be handled at
the same time than the case of Fig. 5, energy consumption in both legacy and



Power-Efficient big.LITTLE core Assignment Scheme 83

Power-Efficient decreases than the result of Fig. 5. Similarly, as the number of
tasks increases, the difference of energy consumption between Power-Efficient
and legacy increases. When 24 tasks are used, we can find that Power-Efficient
reduces 42% energy consumption compared to legacy.

Figure 7 illustrates the result when CPU Utilization is 75%. Since Utilization
is increased compared to the case of Fig. 6, the energy consumption of both
schemes are reduced. Though the difference of energy consumption between the
two scheduling techniques decreases as the number of tasks increases, the Power-
Efficient is at least 5% less energy consumption than legacy.

6 Discussion of Energy-Aware Security Issues

Since the battery power is one of the crucial resources of smartphones, making a
smartphone wastefully consume its battery power to be quickly discharged may
be one of the most effective ways for malicious attackers. Each applications of
a smartphone consists of several real-time threads some of which have depen-
dency of the execution (i.e., thread dependency graph of a task). Therefore, if
a smartphone employing the application assisted big.LITTLE core assignment
policy is hacked by an attacker, its battery can be wasted by assigning one of
application threads on wrong cores. If a thread which can be run on a LIT-
TLE core is forced to be assigned on a big core, the energy consumption will
be increased. On the other hand, if a thread which should be run in real-time is
forced to be assigned on a LITTLE core, deadline misses will be occurred. The
application may start over the thread if its deadline is missed, which may also
increase the power consumption. Therefore, in order to maintain strict security
against malicious attacks, it is desirable to use power efficient and time-aware
big.LITTLE core assignments.

7 Conclusion and Future Works

In this paper, we propose power efficient multi-core assignment schemes that
process real-time tasks in asymmetric multi-core mobile devices while guaran-
teeing not only the deadlines of each tasks but also the deadline of the given task
graph. To evaluate the performance (i.e., energy saving effect) of the proposed
multi-core assignment scheme, the proposed algorithms are implemented and
measured on an off-the-shelf smartphone. The experimental results show that
the proposed scheme reduces the energy consumption by up to 50% compared
to the conventional scheduling technique when the CPU Utilization is less than
25%, and also show that the proposed scheme reduces the energy consumption
by at least 5% even if both the Utilization and the number of tasks increases.

The proposed scheme is heavily influenced by the prediction accuracy of the
expected processing time of the task before a task is assigned to one of multi-
cores. Therefore, as a future work, we will employ a machine learning techniques
such as support vector machine (SVM) to enhance the prediction accuracy of
the expected processing time of a task in the proposed scheme [9,11].



84 S. W. Lee et al.

References

1. Bui, D.H., Liu, Y., Kim, H., Shin, I., Zhao, F.: Rethinking energy-performance
trade-off in mobile web page loading. In: Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Networking, pp. 14–26 (2015)

2. Chow, Y.W., Susilo, W., Phillips, J.G., Baek, J., Vlahu-Gjorgievska, E.: Video
games and virtual reality as persuasive technologies for health care: an overview.
JoWUA 8(3), 18–35 (2017)

3. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: task graphs for free. In: Proceedings of
the 6th International Workshop on Hardware/Software Codesign, CODES/CASHE
1998, pp. 97–101. IEEE (1998)

4. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurr. Comput. Pract. Exp. 15(9), 803–820 (2003)

5. Fiorino, D., Collotta, M., Ferrero, R.: Usability evaluation of touch gestures for
mobile augmented reality applications. J. Wirel. Mob. Netw. Ubiqui. Comput.
Dependable Appl. (JoWUA) 10(2), 22–36 (2019)

6. Geng, Y., Yang, Y., Cao, G.: Energy-efficient computation offloading for multicore-
based mobile devices. In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pp. 46–54. IEEE (2018)

7. Ghasemi, H.R., Karpuzcu, U.R., Kim, N.S.: Comparison of single-ISA heteroge-
neous versus wide dynamic range processors for mobile applications. In: 2015 33rd
IEEE International Conference on Computer Design (ICCD), pp. 304–310. IEEE
(2015)

8. Greenhalgh, P.: big.LITTLE technology: The future of mobile. ARM Limited,
White Paper, p. 12 (2013)

9. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

10. Kim, D.H., Ko, Y.B., Lim, S.H.: Energy-efficient real-time multi-core assignment
scheme for asymmetric multi-core mobile devices. IEEE Access 8(1), 117324–
117334 (2020)

11. Kotenko, I.V., Saenko, I., Branitskiy, A.: Applying big data processing and machine
learning methods for mobile internet of things security monitoring. J. Internet Serv.
Inf. Secur. 8(3), 54–63 (2018)

12. Merlo, A., Migliardi, M., Caviglione, L.: A survey on energy-aware security mech-
anisms. Pervasive Mob. Comput. 24, 77–90 (2015)

13. Monsoon Solutions Inc.: High voltage power monitor (March 2019). https://www.
msoon.com

14. Padoin, E.L., Pilla, L.L., Castro, M., Boito, F.Z., Navaux, P.O.A., Méhaut, J.F.:
Performance/energy trade-off in scientific computing: the case of arm big.LITTLE
and Intel Sandy Bridge. IET Comput. Digit. Tech. 9(1), 27–35 (2014)

15. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics.
IEEE Pervasive Comput. 4(1), 18–27 (2005)

16. Park, J., et al.: Mobile phone, US Patent App. 29/577,834, 11 April 2017
17. Seo, W., Im, D., Choi, J., Huh, J.: Big or little: a study of mobile interactive

applications on an asymmetric multi-core platform. In: 2015 IEEE International
Symposium on Workload Characterization, pp. 1–11. IEEE (2015)

18. Zhu, Y., Reddi, V.J.: High-performance and energy-efficient mobile web brows-
ing on big/little systems. In: 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pp. 13–24. IEEE (2013)

https://www.msoon.com
https://www.msoon.com

	Power-Efficient Big.LITTLE Core Assignment Scheme for Task Graph Based Real-Time Smartphone Applications
	1 Introduction
	2 Related Work
	3 System Model
	4 Power Efficient Multi-core Assignment Algorithms
	4.1 Meeting the Deadline of Each Task
	4.2 Meeting the Deadline of the Application

	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Experiment Result

	6 Discussion of Energy-Aware Security Issues
	7 Conclusion and Future Works
	References




