
LoRaWAN Network Server Session Keys
Establish Method with the Assistance of Join

Server

Kun-Lin Tsai1(B), Fang-Yie Leu2, Li-Chun Yang1, Chi Li1, and Jhih-Yan Liu1

1 Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
kltsai@thu.edu.tw

2 Department of Computer Science, Tunghai University, Taichung, Taiwan

Abstract. With the development of Internet of Things (IoT), various communica-
tion protocols are created to support long range, low cost and low power consump-
tion network environment. The LoRaWAN developed by LoRa Alliance is one of
them. The LoRa Alliance Technical Committee proposed LoRaWAN specifica-
tion version 1.1 to detail message communication structure in each network layer
and to enhance network security. The network server in LoRaWAN specification
version 1.0 is divided into three in version 1.1, i.e., home network server, serv-
ing network server, and forwarding network server. However, the security among
these three network servers is not specified in LoRaWAN specification. In this
paper, a secure session keys establishmethod, named network Server SessionKeys
Establish (SSKE) method, is proposed to generate multiple session keys for three
different types of network servers so that they can communicate with each other
by using these session keys. With the assistance of join server, the key establish
process employs the elliptic curve cryptography, two-dimensional operations, and
time keys, to exchange their session keys. The SSKE not only effectively hides
important encryption parameters, but also achieves fully mutual authentication
among three servers. Security analysis shows that the SSKE can resist known-
key, impersonation, replay, eavesdropping, and forgery attacks. Moreover, the
SSKE generates 40 session keys in a key establish process, meaning the proposed
protocol can support 40 sessions simultaneously.

Keywords: LoRaWAN · Security · Network server · Join server · Session key

1 Introduction

Nowadays, various Internet of Things (IoT) applications enhance human beings’ quality
of lives gradually. For example, IoT based smart city [1, 2] provides an intelligent scheme
to manage transportation, citizens’ healthcare, energy consumption, living environment,
etc.; IoT factory [3] permits the products with improved quality and lower cost by lever-
aging the data collected by IoT. The development of IoT comes from the advancement
of various technologies, including sensors, wireless communication technologies, secu-
rity policies, innovative applications, and so on. Among them, wireless communication
technologies play a very important role.

© Springer Nature Singapore Pte Ltd. 2020
I. You et al. (Eds.): MobiSec 2019, CCIS 1121, pp. 23–33, 2020.
https://doi.org/10.1007/978-981-15-9609-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9609-4_3&domain=pdf
https://doi.org/10.1007/978-981-15-9609-4_3

24 K.-L. Tsai et al.

Low-Power Wide-Area Network (LPWAN) is a wireless telecommunication wide
area network designed to allow long range communications at a low bit rate among
connected objects. Some LPWAN specifications, such as Narrow Band IoT (NB-IoT)
[4], LoRaWAN [5], Sigfox [6], Telensa [7], and Weightless [8], have been proposed for
IoT data communication.Among them,LoRaWAN, using unlicensed bands to define IoT
network architecture and communication scheme, has many attractive features, such as
long-range communication, long battery lifetime, secure data communication and high
network capacity.

A typical LoRaWAN topology includes numerous end-devices, several gateways,
network servers, application servers, and a join server. According to the specifications
of the LoRaWAN [9, 10], the LoRaWAN utilizes Advanced Encryption Standard (AES)
[11] to secure payload of a message transmitted between end-devices and application
servers and to guarantee message integrity between end-devices and network servers.
However, as mentioned by LoRa Alliance, the secure communication method between
network server and join server is not specified in the LoRaWAN specification [9].

In this paper, a secure key generation and renew method, named Secure Com-
munication for LoRaWAN Servers (SeCo for short), is proposed to provide a secure
AES encryption/decryption key generation procedure and key renew procedure between
LoRaWAN’s network server and join server. The SeCo uses a key renew counter, time
keys, random numbers, and binary operations to prevent the procedure suffering replay
and eavesdropping attacks. Besides, AES is also utilized in the SeCo to encrypt important
information, and no other complex encryption/decryption cryptography is needed. Secu-
rity analysis shows that the SeCo can achieve mutual authentication, provide message
integrity, and resist replay and eavesdropping attacks.

The rest of the paper is organized as follows. Section 2 briefly introduces the
LoRaWAN architecture and its security scheme. Besides, some related studies are also
investigated in Sect. 2. Section 3 presents the SeCo and its security is discussed in Sect. 4.
Finally, Sect. 5 concludes this paper and describes some future studies.

2 Preliminary

In this section, we first introduce the LoRaWAN architecture and its security scheme,
and then discuss some related studies of this work.

2.1 LoRaWAN Architecture and Its Security Scheme

LoRaWAN, developed by LoRa Alliance, is an attractive LPWAN protocol. Generally,
there are numerous end-devices, several gateways, network servers, application servers,
and a join server in a LoRaWANenvironment. The end-devices communicatedwith gate-
ways can be sensors, meters, monitors, controllers, machines, and so on. Gateways pass
messages sent by end-devices to the network server and then the network server verifies
messages’ integrity and delivers these messages to corresponding application servers.
Application server responses with the corresponding action based on the information
carried in the receiving messages. Join server manages the end-devices join process and

LoRaWAN Network Server Session Keys 25

generates two session keys, NwkSKey and AppSKey, for network server and application
server, respectively.

The LoRaWAN security policy uses standardized AES cryptographic algorithm
and end-to-end secure communication protocols to achieve the requirements of mutual
authentication, confidentiality and integrity protection. Two operations, i.e., Cipher-
based Message Authentication Code (CMAC) and Counter Mode (CTR), are combined
with original AES encryption/decryption algorithm so as to perform message integrity
protection and data encryption. During new end-device joining process, two unique 128-
bit root keys, AppKey and NwkKey (both equipped with new end-device and recorded
in join server), and a globally unique identifier EUI-64-based DevEUI (also equipped
with new end-device) are utilized to generate several session keys. They are

• Network SessionKey(s) (NwkSKey for LoRaWAN1.0 and SNwkSIntKey, FNwkSIn-
tKey, NwkSEncKey for LoRaWAN 1.1) which is(are) a(three) unique 128-bit key(s)
shared by the end-devices and network server(s), and

• Application Session Key (AppSKey) which is a unique 128-bit key shared by end-
device and the corresponding application server.

Figure 1 shows the traffic between end-device and application server is protected using
these session keys. Each payload is encrypted by AES-CTR and carries a frame counter
(to avoid packet replay) and a Message Integrity Code (MIC) computed with AES-
CMAC (to avoid packet tampering). While the payload or MAC Header/Frame Header
is tampered, the receiver cannot compute the correct MIC so as to guarantee com-
munication data integrity. As mentioned above, AES algorithms are used to provide
authentication and integrity of packets to the network server and end-to-end encryption
to the application server. Although the LoRaWAN specifies the communication secu-
rity between end-devices and application servers and between end-devices and network
servers, the security between application server and join server is not defined in its
specifications [9, 10].

2.2 Related Studies

IoT demonstrates a great convenience tomany people’s lives, however, due to the hetero-
geneous nature and constrained resource of IoT devices, the security and privacy prob-
lems threaten an IoT-based system [12, 13]. For example, Kotenko et al. [14] described
the attack problem on IoT network layer and specified 14 types of attack behaviours. Hui
et al. [15] also summarized many IoT related security challenges, e.g., key management,
intrusion detection, access control, privacy protection. They also discussed the technical
characteristics of blockchain, and described how to utilize these characteristics in IoT.

Although the LoRaWAN utilizes AES and SSL to secure IoT data communication,
many studies [16–18] pointed out several weaknesses of LoRaWANsecurity. Butun et al.
[16] analyzed security risks of LoRaWAN v1.1 by using ETSI guidelines and created
a threat catalog for this system where the security risks, coming from new security
framework and incomplete LoRaWAN specification, comprise vulnerabilities against
end-device physical capture, rogue gateway and replay attack. Miller [17] introduced
somepossible attacks onLoRaWAN, and recommended that the sessionkeymanagement

26 K.-L. Tsai et al.

rook keys

rook keys
(AppKey NwkKey)

NwkSKey

AppSKey AppSKey

NwkSKey

Home Network Server
(hNS)

Application Server
(AS)

Join Server
(JS)

End
Device

JS-AS

AS-hNS

hNS-JS

Gateway

ED-NS
(AppKey NwkKey)

Fig. 1. Two session keys are used for end-to-end data security.

policy as well as its session key generation process should be improved. You et al.
[18] examined the standard LoRaWAN protocol, and observed that it fails to support
the perfect forward secrecy, the end-to-end security and the defense against the replay
attack.

In order to enhance the security of LoRaWAN, many studies [18–20] pro-
posed new methods for data encryption, session key management, and session key
update/generation. [18] utilized default option and security-enhanced option to prevent
a malicious network server from breaking the end-to-end security. Sanchez-Iborra et al.
[19] evaluated the security vulnerabilities of LoRaWAN in the area of key management
and proposed a lightweight keymanagementmethod on Ephemeral Diffie-HellmanOver
COSE transaction. To enhance the security of AES key generation process, Hayati et al.
[20] investigated several parameters, e.g., key generation time, randomness level, and
key length, and claimed that these parameters should be considered in the key generation
process.

In spite of previous studies provided higher security level for LoRaWAN environ-
ment, most of them considered end-to-end security, i.e., end-devices and application
servers. Only little attention had been given to the point of server to server security. As a
result, we propose the SeCo to provide secure communication method for LoRaWAN’s
servers.

3 Secure Communication Method for LoRaWAN Servers

In order to create a secure communication channel for LoRaWAN’s join server and
network server, a special data encryption/decryption key, i.e.,NJKey, is generated at first
time and then renewedperiodically.Once, the key is generated, the important information
and commands between join server and network server can be protected by using this key.
The key generation procedure and key renew procedure are introduced in this section.

LoRaWAN Network Server Session Keys 27

3.1 Key Generation Procedure

Key generation procedure is used to generate a communication key between join server
and network server when the LoRaWAN is built at the first time. In the key generation
procedure, a per-installed key,NSJSKey, and a randomnumber, rA, are utilized to produce
a new encryption/decryption key, i.e., NJKey. As shown in Fig. 2, there are four rounds
in the key generation procedure.

Network Server (NS) Join Server (JS)

GENKEY
Round 1

Key_Generation_Request

GENKEY
Round 2

GENKEY
Round 3

GENKEY
Round 4

Key_Generation_Answer

Key_Generation_Ack

Fig. 2. The key generation procedure of the SeCo.

– GENKEY Round 1:

The Network Server (NS)

1. fetches the system time tnonce,NS and generates the time key KT ;
2. generates a random number rA ∈ Z∗

n ;
3. generates a key renew counter NSJSCounter and initializes its value to be 1;
4. calculates Address_checking =

aes128_encrypt(KT ,NSAddr||JSAddr||NSJSCounter), where NSAddr, JSAddr are
the addresses of network server and join server, and aes128_encrypt represents mes-
sage encryption by using 128-bit AES cryptography algorithm with encryption key
KT ;

5. calculates GenKeyMsg =
(NSAddr||JSAddr||(rA +2 (NSJSKey ⊕ NSJSCounter))) ⊕ KT , where NSJSKey is
a pre-installed key for both network server and join server,+2 and⊕ indicate binary
addition and binary exclusive-or operation, respectively;

6. calculates GenKey_req = aes128_encrypt(NSJSKey ⊕ KT ,GenKeyMsg);
7. sends Key_Generation_Request = {

tnonce,NS ,Address_checking,GenKey_req
}
to

the join server JS.

28 K.-L. Tsai et al.

– GENKEY Round 2:

When receiving the messages, the Join Server JS

1. fetches the system time tnonce,JS and undergoes a time condition by checking to see
whether or not tnonce,JS satisfies tnonce,JS − tnonce,NS ≤ δt , where δt is a predefined
time threshold for the allowable maximum transmission delay from NS to JS; If
checking failed, it discards this message and sends an GenKeyFail message to NS.
Otherwise, goes to next step;

2. derives KT from tnonce,NS;
3. obtains NSAddr, JSAddr, and NSJSCounter by calculating

NSAddr||JSAddr||NSJSCounter = aes128_decrypt(KT ,Address_checking), where
aes128_decrypt represents message decryption by using 128-bit AES cryptography
algorithm with decryption key KT , and then checks to see whether NSAddr and
JSAddr are recorded in its database or not; If not, it discards this message and sends
an GenKeyFail message to NS. Otherwise, goes to next step;

4. fetches NSJSKey from its database and calculates
GenKeyMsg = aes128_decrypt(NSJSKey ⊕ KT ,GenKey_req);

5. obtains NSAddr, JSAddr, from GenKeyMsg (step (4)) and check to see whether or
not these two addresses are the same with step (3); If not, it discards this message
and sends a GenKeyFail message to NS. Otherwise, goes to next step;

6. calculates
rA = ((GenKeyMsg ⊕ KT) − NSAddr||JSAddr) −2 (NSJSKey ⊕ NSJSCounter);

7. fetches another system time t
′
nonce,JS

;

8. calculates GenKey_Ans = aes128_encrypt(NSJSKey ⊕ rA,NSJSCounter||t ′
nonce,JS

);

9. sends Key_Generation_Answer =
{
t
′
nonce,JS

,GenKey_Ans
}
to NS.

– GENKEY Round 3:

When receiving the messages sent from JS, the Network Server NS

1. fetches the system time t
′
nonce,NS

and undergoes a time condition by checking to see

whether or not t
′
nonce,JS

satisfies t
′
nonce,NS

− t
′
nonce,JS

≤ δt′ , where δt′ is a predefined time
threshold for the allowable maximum transmission delay from JS to NS; If checking
failed, it discards this message and sends an GenKeyFail message to JS. Otherwise,
goes to next step;

2. calculates NSJSCounter_receive||t ′
nonce,JS

_receive =
aes128_decrypt(NSJSKey ⊕ rA,GenKey_Ans), where NSJSCounter_receive and
t
′
nonce,JS

_receive mean NSJSCounter and t
′
nonce,JS

receiving from the message sent by
JS;

3. checks to see whetherNSJSCounter_receive = NSJSCounter and t
′
nonce,JS

_receive =
t
′
nonce,JS

or not; If not, it discards this message and sends an GenKeyFail message to
JS. Otherwise, goes to next step;

4. generates the AES data encryption/decryption keyNJKey = (NSJSKey +2 rA)⊕rA;

LoRaWAN Network Server Session Keys 29

5. calculates GenKey_Ack = aes128_encrypt
(
NJKey, t

′
nonce,JS

)
;

6. sends Key_Generation_Ack = {GenKey_Ack} to JS.

– GENKEY Round 4:

When receiving the message, the Join Server JS

1. generates the data encryption/decryption key NJKey = (NSJSKey +2 rA) ⊕ rA;
2. calculates t

′
nonce,JS

_receive = aes128_decrypt(NJKey,GenKey_Ack);

3. checks to see whether t
′
nonce,JS

_receive = t
′
nonce,JS

(in step (7) of Round 2) or
not; If not, it sends a restart message to NS. Otherwise, stores NJKey as data
encryption/decryption key.

3.2 Key Renew Procedure

In order to enhance communication security, the AES encryption/decryption key NJKey
is renewed periodically. Figure 3 shows the key renew procedure in which it has three
rounds, and each round has several steps.

Network Server (NS) Join Server (JS)

REKEY
Round 1

Key_Renew_Request

REKEY
Round 2

REKEY
Round 3

Key_Renew_Ack

Fig. 3. The SeCo key renew procedure.

– REKEY Round 1:

When key renew time is up or JS sends a key renew message, the network server NS

1. fetches the system time t
′′
nonce,NS

and generates the time key KT ′′ ;
2. generates a random number rB ∈ Z∗

n ;
3. fetches NSJSCounter and rA from its database and calculates NSJSCounter_new =

NSJSCounter +2 1 +2 rA;
4. calculates ReKey_req = aes128_encrypt(NJKey,NSJSCounter_new||rB);

30 K.-L. Tsai et al.

5. sends Key_Renew_Request =
{
t
′′
nonce,NS

,ReKey_req
}
to the join server JS.

– REKEY Round 2:

When receive the messages send from NS, the Join Server JS

1. fetches the system time t
′′
nonce,JS

and undergoes a time condition by checking to see

whether or not t
′′
nonce,JS

satisfies t
′′
nonce,JS

− t
′′
nonce,NS

≤ δt ; If checking failed, it discards
this message and sends an ReKeyFail message to NS. Otherwise, goes to next step;

2. calculates NSJSCounter_new_receive||rB = aes128_decrypt(NJKey,ReKey_req);
3. fetches NSJSCounter and rA from its database

and calculates NSJSCounter_new = NSJSCounter +2 1 +2 rA; and then checks
to see whether NSJSCounter_new_receive = NSJSCounter_new or not; If not, it
discards this message and sends an ReKeyFail message to NS. Otherwise, it updates
NSJSCounter as NSJSCounter +2 1 and goes to next step;

4. generates new encryption/decryption key NJKey_new = (NJKey +2 rB) ⊕ rA;
5. calculates ReKey_ack = aes128_encrypt(NJKey_new,NSAddr ⊕ rB);
6. stores NJKey_new as new NJKey, replaces rA with rB, updates NSJSCounter as

NSJSCounter +2 1 in its database and sends Key_Renew_Ack = {ReKey_ack} to
NS.

– REKEY Round 3:

Once receiving the messages send from JS, the network server NS

1. generates the new encryption/decryption key NJKey_new = (NJKey +2 rB) ⊕ rA;
2. calculates NSAddr = (aes128_decrypt(NJKey_new,ReKey_ack)) ⊕ rB;
3. checks to see whether NSAddr is correct or not; If not, it discards this message and

sends an ReKeyFail message to JS to restart key renew procedure. Otherwise, it
stores NJKey_new as new NJKey, replaces rA with rB, and updates NSJSCounter as
NSJSCounter +2 1 in its database.

4 Security Analysis

This section analyzes the security features of the SeCo, including mutual authentication,
confidentiality and integrity protection, replay attack resistance and eavesdropping attack
resistance.

• Mutual authentication

Mutual authentication which established between network server and join server ensures
that only genuine and authorized servers can perform the key generation procedure and
key renew procedure. Firstly, a network server and join server pair equip with a pre-
installed key, i.e. NSJSKey, which is utilized to encrypt messages in the key generation

LoRaWAN Network Server Session Keys 31

procedure. Only an authenticated server can decrypt the messages with correctNSJSKey
and pass the checking in step 5 of GENKEY Round 2, step 3 of GENKEY Round 3,
and step 3 of GENKEY Round 4. Secondly, after key generation procedure, a data
encryption key NJKey is generated by using NSJSKey and the random number rA. When
this data encryption key needs to be renewed, in step 3 of REKEY Round 2, the join
server verifies NSJSCounter and previous rA, which are both stored in join server’s
database, to authorize network server. In step 3 of REKEY Round 3, the network server
authorizes join server by checkingNSAddr which is encrypted withNJKey_new, and the
NJKey_new is generated by previous NJKey, rB and rA. Only the authorized network
server and join server have these parameters and can decrypt the correct NSAddr. In
summary, the network server and join server authenticate with each other by using
NSJSKey, NSJSCounter, rA, rB, and NSAddr.

• Confidentiality

In the SeCo, all of the important messages are encrypted by using 128-bit AES cryptog-
raphy algorithm except system time tnonce which is utilized for resisting replay attack.
Moreover, the AES encryption key in each round is different; KT is used in step 4
of GENKEY Round 1; NSJSKey ⊕ KT is utilized in step 6 of GENKEY Round 1;
NSJSKey ⊕ rA is employed in step 8 of GENKEY Round 2; NJKey is applied in step
5 of GENKEY Round 3 and step 4 of REKEY Round 1; and NJKey_new is oper-
ated in step 5 of REKEY Round 2. Since 128-bit AES is a well-know and high secure
level cryptography algorithm, the parameters and information can be encrypted during
key generation procedure and key renew procedure. Besides, in the SeCo, the encryp-
tion/decryption key is renewed periodically by using key renew procedure so as to
enhance the communication security and provide high confidentiality for LoRaWAN.

• Integrity protection

Message integrity protection indicates that a message has not been tampered with or
altered during transmission. The most common approach is to use a hash function that
combines all the bytes in the message with a secret key and produces a message digest
that is difficult to reverse. In order to simplify the key generation procedure and key
renew procedure, in the SeCo, theNSAddr and JSAddr are used to guarantee themessage
integrity in step 3 and 5 of GENKEYRound 2, and the t

′
nonce,JS

is also utilized for message
integrity protection in step 3 of GENKEYRound 3 and step 4 of GENKEYRound 4. The
key renew procedure also employs NSJSCounter and rA in step 3 of REKEY Round 2,
and adopts NSAddr in step 3 of REKEY Round 3 to protect message integrity. It follows
from what has been said that all of the message receivers in the SeCo verify messages’
integrity when they receiving the message.

32 K.-L. Tsai et al.

• Replay attack resistance

In the key generation procedure, the time keyKT is derived from the network server’s sys-
tem time tnonce,NS . A replay attack is that a hacker duplicates a valid message transmitted
by the network server, and pretends the legal network server to send the message to join
server so as to obtain related information. Two situations may occur. The first on is the
hacker transmits the original message to the join server without modifying it. However,
the checking in step 1 ofGENKEYRound 2 tnonce,JS−tnonce,NS ≤ δt cannot be held since
the retransmission delay will make tnonce,JS − tnonce,NS > δt . The second situation is
the hacker modifies the time tnonce,NS to make the condition of tnonce,JS − tnonce,NS ≤ δt
hold. Nevertheless, in step 2 of GENKEY Round 2, the join server uses tnonce,NS to
derive KT which is then utilized to decrypt three parameters, i.e., NSAddr, JSAddr, and
NSJSCounter. The decrypted network server address NSAddr and join server address
JSAddr are compared with those parameters in join server’s database. Once the KT is a
incorrect decryption key, the verification is failed. In step 1, 2 and 3 of GENKEY Round
3, the network server also resists replay attacks by using t

′
nonce,JS

. Similarly, in REKEY

Round 1 and Round 2, the network server and join server adopt t
′′
nonce,NS

to prevent replay
attacks.

Furthermore, in the SeCo, a lifetime counter, NSJSCounter, used for recording a
unique number of key generation/renew procedure is utilized both in key generation
procedure and key renew procedure.NSJSCounter is initially set to 1, and then increased
by previous procedure’s ransom number rA in step 3 of REKEY Round 1. Since this
counter ismanaged by network server and join server, and is encryptedwithin transmitted
messages,when a hacker catches and duplicates a validmessage, and then he re-transmits
this message to join server or network server, the value of NSJSCounter is equal or less
then the value in the message. It indicates the received message is not from a genuine
and authentic server, thus this counter can also be used to resist replay attack.

• Eavesdropping attack resistance

A hacker may extract important information when he/she captures a large amount of
messages from the underlying network. The most important information we need to
protect is the message encryption/decryption key NJKey. In the SeCo, new NJKey is
generated by using previous NJKey and two random numbers rA and rB. While rA is
generated in key generation procedure (or last key renew procedure), and rB is generated
in current key renewprocedure, and both rA and rB are protected by usingAES algorithm,
the hacker is unable to extract one of these three parameters from the captured messages.
Thus, the SeCo is invulnerable to the eavesdropping attack.

5 Conclusion and Future Studies

To provide secure communication channel between LoRaWAN’s network server and
join server, the SeCo is proposed in this study. A data encryption/decryption key is
generated in the key generation procedure and updated periodically by using key renew
procedure. Two random numbers and one key-renew counter are utilized to guarantee

LoRaWAN Network Server Session Keys 33

the signal integrity during the key generation procedure and key renew procedure. The
security analysis shows that the SeCo can provide mutual authentication, confidentiality
and message integrity, and also can resist replay attack and eavesdropping attack.

In the future, we would like to simplify the key generation procedure so that the
secure communication channel between network server and join server can be created
quickly. Besides, the security issues among application server, join server, and network
servers will also be investigated. These constitute our future studies.

References

1. Gaur, A., Scotney, B., Parr, G., McClean, S.: Smart city architecture and its applications based
on IoT. Proc. Comput. Sci. 52, 1089–1094 (2015)

2. Shih, C.-S., Chou, J.-J., Lin, K.-J.: WuKong: Secure Run-Time environment and data-driven
IoT applications for Smart Cities and Smart Buildings. J. Internet Serv. Inf. Secur. 8(2), 1–17
(2018)

3. Chekired, D.A., Khoukhi, L., Mouftah, H.T.: Industrial IoT data scheduling based on hier-
archical fog computing: a key for enabling smart factory. IEEE Trans. Industr. Inf. 14(10),
4590–4602 (2018)

4. Flore, D.: 3GPP Standards for the Internet-of-Things, Recuperado el 25 (2016)
5. Lora-alliance. https://www.lora-alliance.org. Accessed 15 Aug 2019
6. Sigfox. https://www.sigfox.com. Accessed 15 Aug 2019
7. Telensa. http://www.telensa.com. Accessed 15 Aug 2019
8. Weightless. http://www.weightless.org. Accessed 15 Aug 2019
9. LoRa Alliance Technical Committee: LoRaWANBackend Interfaces 1.0 Specification. LoRa

Alliance (2017)
10. LoRa Alliance Technical Committee: LoRaWAN 1.1 Specification. LoRa Alliance (2017)
11. Announcing the Advanced Encryption Standard (AES). Federal Information Processing

Standards Publication 197. United States National Institute of Standards and Technology
(2001)

12. Korzhuk, V., Groznykh, A., Menshikov, A., Strecker, M.: Identification of attacks against
wireless sensor networks based on behaviour analysis graphics processing units. J. Wirel.
Mob. Netw. Ubiquit. Comput. Depend. Appl. 10(2), 1–21 (2019)

13. Gritti, C., Önen, M., Molva, R., Susilo, W., Plantard, T.: Device identification and personal
data attestation in networks. J.Wirel. Mob. Netw. Ubiquit. Comput. Depend. Appl. 9(4), 1–25
(2018)

14. Kotenko, I., Saenko, I., Branitskiy, A.: Applying big data processing and machine learning
methods for mobile Internet of Things security monitoring. J. Internet Serv. Inf. Secur. 8(3),
54–63 (2018)

15. Hui, H., et al.: Survey on blockchain for Internet of Things. J. Internet Serv. Inf. Secur. 9(2),
1–30 (2019)

16. Butun, I., Pereira, N., Gidlund, M.: Security risk analysis of LoRaWAN and future directions.
Fut. Internet 11(1), 1–22 (2019). Article ID 3

17. Miller R.: LoRa Security – Building a Secure LoRa Solution. MWRLabs,Whitepaper (2016)
18. You, I., Kwon, S., Choudhary, G., Sharma, V., Seo, J.: An enhanced LoRaWAN security

protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking
system. Sensors 18(6), 1–32 (2018). Article ID 1888

19. Sanchez-Iborra, R., et al.: Enhancing LoRaWAN security through a lightweight and
authenticated key management approach. Sensors 18(6), 1–18 (2018). Article ID 1833

20. Hayati, N., Suryanegara, M., Ramli, K., Suryanto, Y.: Potential development of AES-128-
bit key generation for LoRaWAN security. In: International Conference on Communication
Engineering and Technology Proceedings, Nagoya, Japan, pp. 57–61 (2019)

https://www.lora-alliance.org
https://www.sigfox.com
http://www.telensa.com
http://www.weightless.org

	LoRaWAN Network Server Session Keys Establish Method with the Assistance of Join Server
	1 Introduction
	2 Preliminary
	2.1 LoRaWAN Architecture and Its Security Scheme
	2.2 Related Studies

	3 Secure Communication Method for LoRaWAN Servers
	3.1 Key Generation Procedure
	3.2 Key Renew Procedure

	4 Security Analysis
	5 Conclusion and Future Studies
	References

