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Abstract In several areas, products are obtained from lignocellulosic biomass, such
as bioethanol and personal items. Notwithstanding, it features high recalcitrance,
hence its use often demands pretreatment and hydrolysis stages to reach bio-based
final products. Industrially, the most common method is the chemical pretreatment
which, as the name implies, involves chemical components with potential environ-
mental risks. This procedure is responsible to increase biomass accessibility and to
enhance polysaccharides achieving in subsequent stages. Biological pretreatment
presents a new perspective to replace or cooperate with its chemical counterpart,
once microorganisms can modify the lignocellulosic structure and facilitate acces-
sibility to macromolecules of interest. According to the above, this chapter covers
the potential of biological pretreatment as well as the mechanisms of microbial
degradation, their enzymes, and the impacts on the economy worldwide.
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6.1 Introduction

Recent technological, social, and environmental changes have brought new needs in
both science and industry for developing alternative technologies that make it
possible to achieve similar products, than those obtained from petroleum sources
(Ruan et al. 2019). Since the last years of the nineteenth century, the world energy
matrix has been based on fossil fuels (British Petroleum 2019). Among the possi-
bilities to replace oil, biomass has become the most important resource, able to
generate several products by different routes, with the great advantage of being
environmentally friendly (Guedes et al. 2019). In this perspective, bio-based prod-
ucts are currently part of everyday life, with applications in sectors such as engines,
packaging, medicines, and many others. With or without slight treatment/modifica-
tions, vegetal biomass like crops, vegetable oils, forest, agricultural waste, and also
the municipal and industrial ones are used to produce bioproducts (Sorokina et al.
2017; Rosales-Calderon and Arantes 2019). However, turning vegetal biomass into
bioproducts may become a challenge, since the raw material needs to be undergone
to different types of stages during the conversion process until reaching suitable
yields (Holwerda et al. 2019). Pretreatment has a huge importance in the steps of
value-added products generated from biomass systems, where complex structure
presented in plants must be conditioned for subsequent stages (Antunes et al. 2019).

The most used methods of biomass pretreatments, such as chemical and physical
procedures, have in common the demand for plenty of chemical reagents and/or
energy inputs in its process. Such chemicals are widely used in industries to separate
biomass components in order to manufacture all kinds of (bio-) products, but in
consequence, those reagents are found polluters for the environment. Nowadays,
facing an economic and global warm crisis, it is essential and recommended looking
for alternatives to low-cost, less oil-dependent, and non-polluting manufacturing
methods.

Biological pretreatment of biomass is already known as an option to conventional
methods used in industries. This method does not generate toxic and inhibitory
compounds and need low quantity of chemical and energy input, which makes it an
economically and eco-friendly feasible process. Biological pretreatment also can be
used before a chemical or physical pretreatment: the biological stage can provide a
better decrease of the recalcitrance while the chemical stage provides the separation
of the macromolecules. This combination can reduce the costs and chemicals in the
whole process (Sindhu et al. 2016; Singh 2018; Agbor et al. 2011; Felipuci 2020).

In this chapter will be discussed biological pretreatment characteristics, including
the enzymes and microorganisms involved in the biomass structure modification.
Moreover, the benefits and disadvantages of this method are discussed, as well as
value-added and commodity products, mainly on large scale.
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6.2 Biological Pretreatment

Biological pretreatment of lignocellulosic biomass became a fundamental research
topic since it is clear that a near-term economy will depend on the supply of biomass
to produce bioproducts and bioenergy. It is related to the use of microorganisms,
aiming to degrade or modify vegetal biomass structure employing their special
enzymatic complexes (Agbor et al. 2011; Sindhu et al. 2016). Among the vast
variety of species in the world, fungi and bacteria are well known to produce specific
enzymes for lignocellulose deconstruction, called cellulases, hemicellulases, and
ligninases. These enzymes are capable to degrade natural macromolecules found
in the plant cell wall, such as cellulose, hemicelluloses, and lignin. Cellulose and
hemicelluloses, for instance, are hydrolyzed into smaller molecules (the monomeric
sugars) (Sharma et al. 2019).

Among the numerous enzymes produced by fungi that degrade cellulose, hemi-
cellulose and lignin, the most studied are: endoglucanases, exoglucanases, and
β-glucosidases that hydrolyze cellulose; endoxylanases, β-xylosidases, acetyl
xylan esterases and others that degrade xylan and laccases, manganese peroxidases
and lignin peroxidases that degrade lignin (Pamidipati and Ahmed 2019; Gautam
et al. 2019; Malgas et al. 2019).

The species of fungi that degrade lignin are known as white-rot. The ones that
depolymerize cellulose and hemicelluloses are named brown-rot because the wood
degraded takes a brownish appearance, due to the loss of polysaccharides (cellulose
and hemicellulose) remaining high amounts of lignin (Hatakka and Hammel 2011).

Biological pretreatment does not generate toxic compound (degradation products,
inhibitors) during its process and it is ecologically promising, which is an advantage
comparing to other usual methods. Moreover, results can be optimized when the
strains are pre-selected (Sindhu et al. 2016; Van Kuijk et al. 2015). In the biodeg-
radation, variable microbial communities are important to the quality of the final
results due to its vast amount of enzymes. However, in addition to the microorgan-
ism itself, biomass composition, temperature, humidity, pH, aeration rate, incubation
time, and biomass particle size are elements that can also affect the result and the
quality of the pretreatment (Sindhu et al. 2016; Fang et al. 2012; Li et al. 2012; Iqbal
et al. 2013; Fatokun et al. 2016).

Usually, biological pretreatment needs long-time requirements (10–14 days),
space, and careful growth conditions to work. In industrial scale it may be less
attractive but the biological pretreatment can be used together with chemicals and
physical pretreatment. The potential of delignification by microorganisms combin-
ing with chemical and physical methods is inviting because of the complete degra-
dation of lignocellulosic biomass components, mainly lignin, that can take a long
time to reach significant results (Agbor et al. 2011; Hatakka 1994; Hatakka et al.
1993).

Recalcitrance is the capacity of a biomass resist to a pretreatment or to enzyme
action. The quantity and organization of the components into the cell wall such as
cellulose crystallinity are factors that may change the recalcitrance level of biomass
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(Naidu et al. 2018; Melati et al. 2019; Park et al. 2010). Lignin contributes to the
material recalcitrance due to its resistance against pathogens and insects, and its
removal influences the access to the polysaccharides (Shimizu et al. 2020; Schmatz
et al. 2020; Zhao et al. 2012; Phitsuwan et al. 2013).

High recalcitrance is a challenge in the search for better methods of macromol-
ecules isolation from biomass. Accordingly, different pretreatment methods have
been developed, aspiring to circumvent this problem in order to separate its compo-
nents. One method to work around the recalcitrance problem is to select varieties
with low lignin content (Brienzo et al. 2015) or delignify biomass decreasing lignin
content, considering that lignin is a barrier in carbohydrate extraction (Shimizu et al.
2020; Brienzo et al. 2017). A usual pretreatment focuses on improving the formation
or capability to form fermentable sugars by hydrolysis; to prevent loss of carbohy-
drates; avoid by-product formation that may prevent subsequent processes and be a
good cost-benefit ratio method (Melati et al. 2019). Thus, biological pretreatment is
an option to replace or co-work with other methods of pretreatment by attending
such ideal requirements.

Other way to degrade lignocellulosic biomass is using co-culture, which use more
than one microorganism. This method is based in to use fungus or/and bacteria to
degrade the lignocellulosic biomass. However, competition between microorgan-
isms for the substrate is not recommended, and it can be used one after other. This
technique is useful due to microorganisms encompass large quantities of enzymes,
which can completely degrade the lignocellulosic material. This process can be used
in different areas such as agronomy (degrade pesticides) and industry (carpet
decolorization) (Yoon et al. 2014; Sariwati et al. 2017; Wang et al. 2017; Kumari
and Naraian 2016).

6.2.1 Lignocellulosic Biomass Structure

Lignocellulosic biomass englobes all organic matter directly from plant sources. It is
the largest source of carbohydrates in nature, with a great variety, abundance, and
availability, involving wood, agro-industrial waste, municipal waste, and plants.
What draws attention to these materials is that they are renewable resources with
energy potential. This presents them as possible substitutes for fossil fuels, generat-
ing sustainable energy through bioethanol and co-generation of electric energy (by a
burning process) (Nanda et al. 2015). Consequently, interest in research, both in
scientific and industrial fields, grows constantly (Bilgili et al. 2017; Mao 2015; Aslan
2016; Toklu 2017; Sharma et al. 2019).

One of the most used lignocellulosic biomass is the sugarcane bagasse
(Saccharum spp). Currently, the bagasse is used in the production of electrical and
thermal energy through its combustion in high-pressure boilers in plants (Fernandes
2018). Another application aims to obtain second-generation ethanol (cellulosic
ethanol), serving as an alternative to replace fossil fuels and charcoal.
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Lignocellulosic biomass is also used in the production of clothing, artificial skin,
paper, and other products in common use (Mizuhashi et al. 2015; Kim et al. 2014).
More specifically, in biotechnology and biomass conversion, it is possible to pro-
duce briquettes, carbon adsorbents, and biofilms. The production of these items
depends on the treatment that those biomasses will be undergone. For separation of
each macromolecule, there is one or a series of treatments to be based on biological
routes.

The main characteristic of vegetal biomass is its lignocellulosic structure existing
into the cell wall, presented in all plant forms. Its composition is mainly cellulose,
hemicelluloses, and lignin, with less quantities pectins, proteins, and extractives
(Naidu et al. 2018). Quantities of each component change according to biomass and
soil types, geographic localization, and other factors (De Vasconcelos 2015). The
three main components (cellulose, hemicelluloses, and lignin) in the cell wall are
organized in a way that recalcitrance is increased, making its separation harder in
biotechnological processes. Cellulose and hemicelluloses are strongly connected by
hydrogen bonds. Hemicelluloses can be located between cellulose fibers, while
lignin is connected to the carbohydrates forming a complex interaction network
(Schmatz et al. 2020; Busse-Wicher et al. 2016).

Cellulose is the major macromolecule in the plant cell wall (Fig. 6.1). The
quantity varies according to biomass type: rice toasts showed 28.7–34.7%; cotton
presented around 95%, and sugarcane bagasse showed 25–45% (Naidu et al. 2018).
It is also considered most abundant organic polymer found on the planet Cellulose is

Fig. 6.1 Schematic representation of lignocellulosic biomass emphasizing the cellulose macro-
molecule (Jasmania and Thielemans 2018)
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an arrangement constituted by cellobiose unities (glucose dimers) joined by β-1,4
glycosidic chains. In the cellulose structure, there are amorphous regions which are
organized regions demined crystalline and non-crystalline zones (Ioelovich 2016).
Cellulose is widely sought in the industry as raw material for common use products,
such as varnish, films, paper, among others. Due to several industrial interests,
cellulose isolation from biomass is widely studied. Cellulose can be separated
from other carbohydrates by alkaline treatment or broken by acid treatment. In the
case of alkaline treatment, ester linkages break down, resulting in structural modi-
fication of the cell wall and facilitating separation from hemicelluloses (Galletti and
Antonetti 2012).

Hemicelluloses, different from cellulose, are composed of more than one mono-
saccharide: pentoses, hexoses, and uronic acids. In pentoses group is found xylose
and arabinose; in hexoses group is found mannose, glucose and galactose and in
uronic acids is found glucuronic and galacturonic acids. Those monosaccharides can
also be subdivided into three main groups: xyloglucans, xylans, and mannans, that
are formed by subunits of mannose. The monosaccharides are connected by β and α
glycosidic bonds and can have between 80 and 200 units. Hemicelluloses have
amorphous characteristics and a lower degree of polymerization than cellulose. It
makes up 15–35% of lignocellulosic biomass and it is associated to the integrity of
the plant cell wall, having great importance in its shape and resistance. Hemicellu-
loses correspond to one-third of all renewable carbon on the planet. Hemicellulose
has been studied for several applications, with a feature for oligomers such as
xylooligosaccharides and manooligosaccharides (De Freitas et al. 2019; Chiyanzu
2014).

Lignin is a biomass macromolecule composed of phenylpropane units of
p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). This polyphenolic structure
is organized irregularly and has an amorphous structure. Depending on species,
lignin comprehends between 10 and 20% of lignocellulosic biomass, being the third
most abundant macromolecule in the plant cell wall. For plants, lignin helps in
protection against insects and fungi and also contributes to growth development and
mechanical strength. This protection is one of the reasons to the biosynthesis, once
infections, metabolic stress, and disturbances in cell wall structure are starters to the
plant initiate the process (Vanholme et al. 2010). It is arranged mainly on the
secondary wall, making it rigid and waterproof. Lignin organization is to be linked
with hemicelluloses, together with its irregular structure and a gigantic number of
possibilities for connections between its forming units, which suggests that there is a
low chance of existing two similar lignin molecules (Ralph et al. 2004). This favors
the increasing recalcitrance of its biomass (Schmatz et al. 2020). Lignin is an
obstacle for a process dedicated to macromolecule separations as it remains as
residual content/contaminant (Felipuci 2020).
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6.2.2 Microorganisms in Biological Pretreatments

Microorganisms are considered of key function in biological pretreatments of
lignocellulosic biomass. Degradation capacity of microorganisms is widely
known, mainly because of the degradative potential of its enzymes, which are
produced during its growth. Biological pretreatment technology has generated
results in several areas involving biotechnology, bioremediation, bio-pulping
among others.

The most common microorganisms applied in biological pretreatment are white-
rot, brown-rot, and soft-rot fungi, besides bacteria. These microorganisms are
capable to consume all components in lignocellulosic biomass, mainly lignin, and
the capacity to mineralize lignin into carbon dioxide and water. Brown-rot fungi are
known to degrade polysaccharides more efficiently, and only slightly modifies the
lignin, while white-rot fungi can degrade lignin with more facility (Kirk and Moore
1972; Kirk and Highley 1973). Holocelluloses/lignin ratio presented in biomass after
degradation can be used to measure the fungal effect on the biomass decomposition.
The effect on the biomass components can be classified at different ratios: Class
1 (corresponds to brown decomposition agents): ratio less than one; Class 2: whose
process has a low amount of residual lignin; Class 3: holocelluloses content is two to
five times higher than lignin content; both classes 2 and 3 correspond to white
decomposition agents (Trojanowski 2001).

6.2.2.1 White-Rot Fungi

Industrially white-rot fungi are well known as lignin consumers, found in
Basidiomycota phylum. Those comprehend over than 90% of all Basidiomycetes
that rot woods. (Riley et al. 2014). This phylum has been studied in several areas,
including medicine (Madhanraj et al. 2019), agriculture (Duplessis et al. 2011), and
forestry (Martin et al. 2008). This phylum also includes mushrooms (Morin et al.
2012), and pathogens of plants, animals, and other fungi (Duplessis et al. 2011;
Dawson and Thomas 2007).

White-rot fungi have great potential to degrade lignocellulosic biomass (Fig. 6.2).
Although those fungi also can degrade polysaccharides, they are known as a well
specific lignin degrader (Rudakiya and Gupte 2017). Syringyl (S) units of lignin
usually are preferred instead of guaiacyl (G) units, due to its less resistance to
degradation. In certain conditions, white-rot fungi are lignin-selective depending
on several factors, like cultivation time, temperature, wood species, and other vari-
ables (Hatakka and Hammel 2011; Hakala et al. 2004). The degradation ability of
these fungi has been quite studied not only in lignocellulosic biomass researches, but
also in other areas, such as bioremediation, food, pharma, and other industries. These
abilities allow the fungi grow in restrictive conditions, such as lignocellulosic
wastes. In the last decade, several studies focused on these group showed results
to degrade pesticides (Kaur et al. 2016; Gouma et al. 2019), to increase productivity,
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Fig. 6.2 Scanning electron micrographs of beech wood degradation by white-rot fungi after
120 days; (a, c, and e) Pleurotus ostreatus; (b, d, and f) Trametes versicolor. (a) and (b) show
cross-sections (bar 20 μm): the arrows point cell walls already degraded and arrowheads point
colonization of hyphae in the cell lumina; (c) and (d) show radial sections (bar 100 μm): the arrows
point an entire decomposition of ray parenchyma and arrowheads point deconstruction of cell walls
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efficiency, and quality of several products (Kushwaha et al. 2018) and applied in
pulp and paper industry (Singh 2018).

6.2.2.2 Brown-Rot Fungi

Brown-rot fungi are also found in the Basidiomycota group, representing nearly 7%
of this phylum (Hatakka and Hammel 2011; Goodell 2003). Evolutionarily, most of
this group are derived from white-rot fungi, probably by losing of decay capability
and biodegradative mechanisms (Hibbett and Thorn 2001). Otherwise, white-rot and
brown-rot classification are discussed, since new genetic studies suggest continuum
rather than a dichotomy between these two groups. In this case, authors suggest that
the “white-rot fungi” term would be restricted to fungi that consume all the cell wall
macromolecules through activity of lignin-degrading peroxidases (Riley et al. 2014).

The brown color of brown-rot fungi is due to residual lignin left after degradation.
It is caused by fungi enzymatic arsenal that degrades polysaccharides: cellulose and
hemicellulose contents decrease, and lignin percentage increases in the pretreated
material (Felipuci 2020). Hemicellulose degradation is faster and polysaccharide
depolymerization involves oxidative components and hydrolytic enzymes (Hatakka
and Hammel 2011).

Degradation capacity is widely known in the bio-pulping area. Bio-pulping is a
process where wood chips are treated by microorganisms to improve quality and
make stronger paper produced. This method removes wood extractives and lignin,
reducing toxicity and pitch content (Gupta 2019). Using some species of brown-rot
fungi with worms to degrade paper mill sludge is a useful strategy to enhance
cellulose decomposition (Negi and Suthar 2018).

6.2.2.3 Bacteria

Bacteria are known to produce cellulolytic, hemicellulolytic, and ligninolytic
enzymes that can also be used in biological pretreatment (Sharma et al. 2019). An
advantage in comparison to fungal pretreatment is that some bacteria can grow faster
than fungi besides degrade lignin into small particles. Those small particles can be
recovered to be used as value-added products as well being faster and low cost since
it does not need high temperature and many processes after hydrolysis (Hatakka
2005; Kurakake et al. 2007).

Although bacteria can properly degrade lignocellulosic biomass, its sole use as
biological pretreatment has not proved efficient. However, it can improve the
enzymatic digestion of lignocellulose after applying another pretreatment, such as

⁄�

Fig. 6.2 (continued) and vessels; (e) and (f) show tangential sections (bar 100 μm): the arrows point
the separation of ray wall with vessels lumina, while arrowhead point disintegration of woody
structure (Bari et al. 2018)
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physicochemical method (Zhuo et al. 2018). Co-culture using bacteria and/or fungi
can degrade lignocellulosic biomass almost completely due to high enzymatic
activity. Selecting the best strains that can produce necessary enzymes is essential
for an efficient biological pretreatment in order to produce biofuels and bioproducts
(Sharma et al. 2019).

6.2.3 Enzymes Involved in Biological Pretreatment

The effectiveness of a biological pretreatment depends on enzymes ability to address
biochemical and physical barriers to hydrolysis. Therefore, a mix of enzymes can
co-work to increase biomass access by expanding small pores and open the cell wall
matrix (Amin et al. 2017).

Lignocellulose degradation by microorganisms is mainly accomplished by a
system of extracellular enzymes that hydrolyze and oxidize the biomass component
(Fig. 6.3). Hydrolases (cellulases and hemicellulases) are produced by hydrolytic
system to degrade polysaccharides and oxidative catalytic system to degrade lignin
by the production of ligninases (Sajith et al. 2016).

Fig. 6.3 Simplified representation of lignocellulolytic enzymes and their action mode (Sajith et al.
2016)
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6.2.3.1 Cellulases

Cellulases are glycosyl hydrolases (GHs) produced by microorganisms while they
grow on lignocellulosic materials. They hydrolyze cellulose into shorter chain poly-
saccharides by breaking down β-1,4-glycosidic bonds. In their structure, they usually
have a catalytic domain at the N-terminal and a carbohydrate-binding module at the
C-terminal. The catalytic domain cleaves the glycosidic linkage and the carbohy-
drate-binding module destiny the catalytic domain to the polysaccharide substrate
(Jayasekara and Ratnayake 2019; Obeng et al. 2017).

Three main enzymes comprise cellulases enzyme system, endoglucanases
(endo-β-1,4-D-glucanases; EC 3.2.1.4), exoglucanases (exo-β-1,4-D-glucanases;
EC 3.2.1.91), and glucosidases (β-D-glucoside glucan hydrolases, EC 3.2.1.21).
These enzymes are categorized as per their structure and function; however, their
collaborative work is essential for complete hydrolysis of the complex cellulose
fibers (Sajith et al. 2016).

Endoglucanases generate oligosaccharides with free chain ends by hydrolyzing
internal β-1,4-glycosidic bonds and acting randomly on amorphous areas of cellu-
lose. These enzymes can convert cellodextrin (intermediate product of cellulose
hydrolysis) into cellobiose and glucose (Singh et al. 2016). Endoglucanases has
rapid dissociation, can reduce chain length and viscosity by acting on cellulose but
exhibit no activity against crystalline cellulose such as avicel (De Moraes Akamine
et al. 2018; Obeng et al. 2017; Sajith et al. 2016).

Exoglucanases act on the crystalline region of cellulose and release cellobiose as
product from reducing (EC 3.2.1.91) or non-reducing ends (EC 3.2.1.176). The
oligosaccharide chain portion that each enzyme attacks are related to its classifica-
tion. However, the actions of the enzymes are unidirectional in a long-chain oligo-
mer (Obeng et al. 2017; Singh et al. 2016). These enzymes are more active against
crystalline cellulose substrates such as avicel and cellooligosaccharides but do not
hydrolyze soluble resultants of cellulose like carboxymethyl cellulose (Jayasekara
and Ratnayake 2019; Sajith et al. 2016).

β-glucosidases present rigid structure with an active site that favors disaccharides
entry, however, they also can hydrolyze low degree of polymerization soluble
cellodextrins. These enzymes act on cellobiose to complete the hydrolysis process
of cellulose. As result, glucose with a free hydroxyl group at C4 from the
non-reducing end of oligosaccharides are released (Obeng et al. 2017; Sajith et al.
2016).

Retention and reversion are catalytic mechanisms that lead to successful cellulose
hydrolysis. This is performed by two catalytic amino acid residues of the enzymes, a
proton donor and a nucleophile. Both of them stereochemically modifies the
anomeric carbon configuration, facilitating enzymatic cleavage of the glycosidic
bonds (Garvey et al. 2013).

Cellulolytic enzyme multisystem can suffer inhibition by its products. For this
reason, β-glucosidases and exoglucanases are essential to alleviate exo- and
endoglucanases, respectively, from feedback inhibition. In the same way,
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β-glucosidase is also inhibited by glucose, therefore is necessary a search for glucose
tolerant β-glucosidases (Obeng et al. 2017). Complementary action of these cellu-
lases is crucial for efficient hydrolysis in order to obtain glucose residues, which can
be used for several applications such as the production of biofuel and chemicals.
Among microorganisms, fungi are responsible for approximately 80% of cellulose
hydrolysis and therefore, considered great cellulase producers (Singh et al. 2016).

6.2.3.2 Hemicellulases

Efficient hemicellulose hydrolysis of lignocellulosic biomass improves hydrolysis
yield and consequently reduces enzyme costs and dosages, which makes crucial the
use of hemicellulases. They are most often glycoside hydrolases and are usually
produced by microorganisms together with cellulases. The hemicellulose backbone
of a lignocellulosic biomass can be composed by different polysaccharides,
depending on the source (Sindhu et al. 2016; Singh et al. 2016).

Mannan and xylan are the most common hemicelluloses found in nature. Xylan is
the main hemicellulose in lignocellulosic biomass from agriculture residues, com-
prised of xylose units in the backbone chain that are usually linked to acetyl and
ferulic groups, arabinofuranosyl or glucuronic acid residues. Therefore, multiple
enzymes are necessary to decompose xylan, including endoxylanase (EC 3.2.1.8),
β-xylosidase (EC 3.2.1.37) that act on the main chain of xylan. The enzymes that
work on the pending groups are α-arabinofuranosidase (EC 3.2.1.55) and
α-glucuronidases (EC 3.2.1.139) (Ábrego et al. 2017). In addition, acetyl xylan
esterases (EC 3.1.1.72), ferulic acid esterases (EC 3.1.1.73), and p-coumaric acid
esterases (EC 3.1.1.x) are also requested for the complete deconstruction of xylan
(Chadha et al. 2019). Hemicellulases structures are consisted by a catalytic domain
to perform enzyme functions. They can be glycosyl hydrolases that cleave glycosidic
bonds or can be carbohydrate esterases that hydrolyze ester bonds, between xylan
and acetic acid or ferulic acid substitutions (Juturu and Wu 2013).

Xylanases hydrolyze β-1,4 linkages in xylan backbone chain, producing
xylooligosaccharides. Most of them belong to glycoside hydrolase (GH) families
10 and 11, however, enzymes that are exclusively active on D-xylose-containing
substrates, known as “true xylanases,” are only on family 11 (Tyagi et al. 2019).
β-xylosidases hydrolyze a low degree of polymerization xylooligomers, produced by
xylan hydrolysis, into xylose. Xylanases action is inhibited by xylooligomers pro-
duced in the hydrolysis, therefore β-xylosidases action removes end-product inhibi-
tion increasing the efficiency of xylanases (Chadha et al. 2019).

β-mannanases hydrolyze mannan-based hemicelluloses. As result, short
β-1,4-mannooligomers are released that can be hydrolyzed into mannose by
β-mannosidases. Arabinofuranosidases catalyze the removal of arabinosyl substitu-
ents and facilitate an increase in access points of xylanase to xylan Both
β-mannanases and arabinofuranosidases are required for mannan or
arabinofuranosyl containing hemicelluloses (Terrone et al. 2020). The
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α-1,2-glycosidic bond can be broken down by α-D-glucuronidases releasing
glucuronic acid from the xylan chain (Chadha et al. 2019; Singh et al. 2016).

Acetyl xylan esterases are enzymes responsible to remove acetyl groups linked to
β-D-xylopyranosyl residues by hydrolyzing the ester bonds. The accessibility of
enzymes that break the backbone by steric hindrance can be interfered by acetyl side-
groups, therefore their removal makes the xylanases action easier. Ferulic acid
esterases and p-coumaric acid esterases also catalyze ester bonds on xylan. The
first enzymes are recognized to break down ester linkages between ferulic acid and
arabinose substitutions on xylan, and the second acts on the bond between arabinose
and p-coumaric acid (Chadha et al. 2019; Bajpai 2014).

Hemicelluloses are chemical structure complex, its hydrolysis into its constituent
monomers requires catalytic action of versatile enzymes that work synergistically.
Hemicellulolytic enzymes can be produced by different fungi and bacteria, however,
the source of most commercially important hemicellulases is fungi (Manju and
Chadha 2011). They have biotechnological potential and several industrial applica-
tions, like hemicelluloses hydrolysis of lignocellulosic biomass, improving cellulose
saccharification (Chadha et al. 2019).

6.2.3.3 Ligninases

Lignin is one of the main responsible for recalcitrance in lignocellulosic biomass
because its complex structure, protecting polysaccharides (Schmatz et al. 2020). To
break down the lignin structure, microorganisms developed some specific extracel-
lular enzymes based on oxidative reactions. In nature, lignin degradation is impor-
tant to the biogeochemical carbon cycle (Ruiz-Dueñas and Martínez 2009). Those
enzymes are also used in the bioremediation process and its action is an important
step for lignin removal in industries that work with cellulosic biomass (Jha 2019).

Ligninases are, generally, separated in two different types: phenol oxidases and
peroxidases. Laccases are an example of phenol oxidases enzymes. Lignin degrada-
tion by laccases (EC 1.10.3.2) is normally by oxidation of phenolic compounds,
yielding quinines and phenoxy radicals. Peroxidases make part of oxidoreductases
family. This group of enzymes catalyzes lignin depolymerization utilizing H2O2

(Sajith et al. 2016).
Laccase enzymes are observed in plants, insects, bacteria, and fungi, mainly in the

white-rot group. In fungi, these enzymes are involved not just in lignin degradation
but also in sporulation, pigmentation of the fungus, detoxification, and fruiting body
(Clutterbuck 1990; Thurston 1994). The molecular weight of laccase is around
50–100 kDa and they are classified as multicopper oxidases, which can be mono-
meric, dimeric, or tetrameric. Laccase use molecular oxygen to oxidize phenolic
rings to phenolic radicals. Laccase can cleave Cα–Cβ cleavage, aryl-alkyl cleavage,
and Cα-oxidation. Products may be submitted through non-enzymatic reaction, like
polymerization, hydration, or dismutation, or a second enzyme-catalyzed oxidation
(Madhavi and Lele 2009; Sajith et al. 2016). With a redox mediators present,
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laccases can also catalyze the breakdown of non-phenolic lignin structures, and
cleave β-O-4 linkages.

Lignin peroxidase (EC 1.11.10.14) is considered one of the key enzymes in plant
cell wall degradation due to its ability to oxidize non-phenol lignin structures. This
reaction can cleavage Cα–Cβ bonds, mediating ring-opening reactions. Lignin
peroxidases are oxidized by hydrogen peroxide, and, this catalysis results in the
creation of intermediate radicals such as phenoxy and veratryl alcohol (Wong 2009;
Ruiz-Dueñas and Martínez 2009). Lignin peroxidase and laccase are considered
“partners” enzymes in certain conditions, due to substrate provided by lignin
peroxidase after lignin degradation (Boominathan and Reddy 1992).

Manganese peroxidase (EC 1.11.1.13) attacks both phenolic and non-phenolic
lignin units. This enzyme works as a mediator in enzymatic activity, once it is
converted from Mn2+ into Mn3+. Several monomeric phenols are oxidized by Mn3+

cation, including dyes and phenolic lignin model compounds (Datta et al. 2017).

6.2.4 Enzymatic Hydrolysis of Biological Pretreated Material

In a biorefinery system, lignocellulosic biomass hydrolysis is an essential phase in
the whole process, since through hydrolysis intermediate products are obtained by
breaking up of macromolecules existent in pretreated biomass (Bichot et al. 2018;
Pocan et al. 2018). The intermediate denomination is because these products will be
used at a subsequent stage of conversion, the main intermediate products are mono-
mers such as hexoses and pentoses coming from cellulose and hemicelluloses (Loow
et al. 2016). Hydrolysis or saccharification can be performed by acid, enzymatic or
combined procedures, among the aforementioned, the biological process is possibly
the most researched in the last years (Pocan et al. 2018). Hydrolysis by biological
routes shows benefits associated to mild temperature in operation, high ratio (quan-
titative) between obtained product and precursors (monomers), minimal corrosion
problems and in enzymatic hydrolysis does not produce inhibitory chemicals that
can modify enzymes activities (Amezcua-Allieri et al. 2017; Jahnavi et al. 2017).

The key to the biological hydrolysis of pretreated lignocellulosic biomass is the
hydrolytic enzymes; cellulose saccharification happens by deed of cellulolytic
enzymes (cellulases), and hemicelluloses splitting befalls by action of
hemicellulolytic enzymes (hemicellulases) (Bhardwaj et al. 2019; Barbosa et al.
2020). These enzymes can be synthesized mainly by fungi, bacteria, yeast, or algae
through its controlled growth in solid or submersed fermentations (Dotsenko et al.
2018; Aruwajoye et al. 2020). Instead of producing hydrolytic enzymes, there is the
alternative to purchase commercial enzymes prepared by different industries dedi-
cated to synthesize and purify enzymatic cocktails that act according to specific
conditions in hydrolysis (Flores-Gómez et al. 2018). Table 6.1 shows a summary of
some characteristics related to hydrolytic enzymes, their mode of action, product
formation, and inhibitory aspects.
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Finally, it should be taken into account that hydrolytic enzymes can suffer
deactivation by temperature, pH, reaction time, stirring intensity, enzymatic loads,
and mixing modes (Balan 2014; Hu et al. 2016; Singhvi and Gokhale 2019).
Substrate characteristics and modifications over the enzymatic hydrolysis can
increase the material recalcitrance (Wallace et al. 2016). Therefore, it is
recommended to develop new researches with new conditions that exploit novel
tolerance levels for increasing pretreatment and hydrolysis yields.

6.2.5 Mechanisms of Cell Wall Degradation by
Microorganisms

During periods of fungal growth, cell wall undergoes structural modifications that
allow access to inside components (Riley et al. 2014). Although degrading enzymes
are known and studied, degradation can occur in a different manner according to
situations: chemical structure and composition of the cell wall are different among
woody materials (or non-wood) and enzymatic arsenals of microorganisms are
different among them (Fig. 6.4). These factors determine the degradation level of
the material and make it difficult to fully understand how biomass is consumed and
how the degradation process occurs. Thus enzymes involved in the degradation
process must be suitable to each substrate. Furthermore, it is important to evaluate
which microorganism and its respective strain are most adequate for each kind of
substrate.

Degradation efficiency by microorganisms depends, in many cases, on the chem-
ical structure of molecules and on the presence of efficient enzymes in degrading
compounds, which are specific for most substrates (Pereira and De Freitas 2012).
Biomass chemical structure can influence the metabolism of the microorganisms,
especially regarding rates and extent of biodegradation. In the case of catabolic
enzymes that have low specificity for its substrate, xenobiotics with a chemical
structure similar to natural compounds can be recognized by an active enzyme
system and, consequently, used by microorganisms as a source of nutrients and
energy (Pereira and De Freitas 2012).

Carbon sources can influence fungi growth, which can affect growing patterns
(Mannaa and Kim 2017). Hyphae development allows better colonization of ligno-
cellulosic material and also penetrate easily to plant cell walls than bacteria, reaching
macromolecules unavailable for those microorganisms (Pereira and De Freitas
2012). Enzymes are a crucial tool for the degradation of lignocellulosic biomass.
Microorganisms release those enzymes which work in a synergistic and indepen-
dently action, such as peroxidases, laccases, xylanases, and the other enzymes.

An example of cell wall degradation is proposed in Fig. 6.5 (Zeng et al. 2014). In
this degradation proposal, the plant cell wall is degraded by Phanerochaete
chrysosporium, which is capable to degrade all components of the lignocellulosic
biomass. Fungal hyphae attach inside the cell wall, secreting enzymes. Manganese
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peroxidases (MnP) oxidize Mn2+ to Mn3+ and break the phenolic and non-phenolic
lignin units (Datta et al. 2017; Wong 2009). Lignin peroxidases (LiP) oxidize
non-phenolic structures to mineralized lignin, cleaving Cα–Cβ bonds, mediating
ring-opening reactions (Wong 2009; Ruiz-Dueñas and Martínez 2009). This process
occurs in the secondary cell wall, in which are located structural carbohydrates as
well as aromatic backbone. Cellulases hydrolyze β-1,4-glycosidic bonds and act on
the microcrystalline region in cellulose chain to break the cellulose into monomers of
cellobiose and D-glucose. Cellobiose dehydrogenases co-work with cellulases to
break cellulose chains into small saccharides, generating hydroxyl radicals, H2O2,
and Fe3+.

Although the process of degradation could be different from all microorganisms,
the enzymes work similarly but secreted at a different amount, and one characteristic
that can be noticed is the variety of the lignocellulosic structure/composition. In
wheat lignin degradation using analytical pyrolysis was revealed that Cα–Cβ bonds
and free phenolic units are preferred than non-phenolic units by Pleurotus eryngii
and Phanerochaete chrysosporium. This preferential is due to the redox potential
that is lower in comparison with the etherified ones, permitting easier oxidation by

Fig. 6.4 Scanning electron microscope images on the surface of the Oil palm Empty Fruit Bunch.
(a) Untreated; (b) biologically pretreated using Schizophyllum commune (ENN1); (c) biologically
pretreated using Phanerochaete chrysosporium (Arbaain 2019)
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ligninolytic peroxidases and laccases produced by the fungi. In vitro, applying
enzyme in lignocellulosic biomass, P. eryngii is capable to reduce the phenolic
content of lignin, evidencing its capacity of modifying lignocellulosic materials
(Martı  nez et al. 2001; Camarero et al. 2001). Another example of lignocellulosic
biomass deconstruction is with the brown-rot fungi Penicillium echinulatum. In this
case, using different carbon sources was grown wild-type (2HH) and a mutant strain
(S1M29). It was realized that the mutant was more capable to produce cellulases and
hemicellulases, showing that the variety of microorganisms can differentiate by the
quantity of enzymes produced (Schneider et al. 2016).

6.3 Economic Impacts and Challenges on Industrial Scale
Involving Biological Pretreatment

Studies involving biological pretreatments are needed today for several reasons,
including environmental friendly process, chemical reduction, and energy savings.
There is a growing number of items produced from fossil derivatives such as plastics
and tires that are not renewable, in addition to remaining in nature indefinitely.
Nevertheless, it is important to mention that a biotechnological route should concern

Fig. 6.5 Proposed process of degradation of the wheat straw cell wall by Phanerochaete
chrysosporium (Zeng et al. 2014)
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about energy and chemical reagents applied, aiming to be more advantageous than
traditional processes.

For biofuels, specifically, greenhouse gases bring concern and it is on the part of
governments. Gas derived from fossil is already being replaced by biofuels, which
draws attention to new processes of production and ways to reduce costs. The type of
biomass, process complexity, and value of by-product influence the choice of
pretreatment (Bajpai 2016). Despite chemical pretreatments holding the main
focus on these procedures, biological pretreatments are able to optimize those
processes in several levels, for instance: reduce the water, chemicals, and energy
spent, generate less inhibitor and toxic compounds, reduce the costs, and improve
performance and yield.

In the food industry, one of the most worrying problems is waste since all
economic classes in society have a certain degree of waste generation (McCarthy
and Liu 2017). This food that is not used can be turned into energy by the biological
or thermochemical process. Biological pretreatment in food waste has advantages in
comparison with conventional methods of pretreatment such as low cost and sim-
plicity (Pham et al. 2015). Lignocellulosic biomass products can be a source of
material and energy in order to support a more sustainable society. Products of direct
consumption or second value-added are already present in human life such as paper,
fibers and textiles, nanocellulose, organic acids, furfural, and others (Zamani 2015).
Food and biofuels are examples where biological pretreatment can be used to
improve the productivity and reduce costs. Moreover, several million tons of
lignocellulosic are produced annually, and the biological pretreatment can makes
this biomass even more useful.

Biological pretreatment can be economical. The extensive number of products
that can be produced with lignocellulosic biomass after a biological pretreatment
makes harder this count, considering the production cost and sell value of each one.
An example, the xylan extraction using biological pretreatment before chemical
(H2O2) pretreatment reduced the need for the chemical reagent to reach the same
results, which means less cost in the process (Felipuci 2020). On the other hand, the
production of fermentable sugar by biological pretreatment of corn stover using
posterior enzymatic hydrolysis showed to be more expensive (1.41 $/kg) than steam
explosion (0.43 $/kg), dilute sulfuric acid (0.42 $/kg), and ammonia fiber explosion
(0.65 $/kg) methods (Baral and Shah 2017). In this case, there was no need of
detoxification using biological pretreatment. However, this method investigated
required reactors, mainly due to long pretreatment time. Biological pretreatment
could considerer an option of process outside not using any reactor, but face other
problems such as contamination.

Although the advantages of an experimental scale, the use of biological
pretreatment in the industry is still a challenge. Recent studies showed the potential
of microorganisms in biofuels productions using biological pretreatment (Yahmed
et al. 2017; Zabed et al. 2019). However, it is a common view of all the difficulties
involved in biological pretreatment on a large scale. Microorganism utilization in
biotechnological processes requires certain precautions, which needs to add one or
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more steps in the process: contamination and sterilization of growth site are some
examples. Furthermore, microorganism growth is slow, while sugars are fundamen-
tal as an energy source (Vasco-Correa et al. 2016; Ummalyma et al. 2019). An
option to improve the process and pass through those problems is the genetic
engineering as well as co-culture of suitable microbial consortium (Sharma et al.
2019).

6.4 Concluding Remarks

Biological pretreatment has several advantages over traditional biomass separation
methods. Application of microorganisms and their enzymes, in addition to enhanc-
ing the breakdown of lignocellulosic structure, makes the process cheaper and less
aggressive to nature. An important advantage is no by-products generation, improv-
ing the fermentable sugars production by enzymatic hydrolysis of cellulose, with
appreciable cost-benefit, among other benefits.

Microorganisms present great potential for industrial use. Employment of micro-
organisms in pretreatments, or just their enzymes, can provide a reduction of energy
and chemical reagents consumption in the separation process of lignocellulosic
biomass macromolecules. Microorganism co-cultivation is a valid technique option
with biotechnological potential, once the enzymes produced by the microorganisms
can complement each other, achieving a greater degree of degradation. Mechanism
degradation of plant cell wall depends on the microorganism in question and,
mainly, on its enzyme production and action on lignocellulosic biomass. Even
though the use of the micro in the industrial scale requires greater cultivation
assistance, it still offers important advantages: there are cost reduction and yield
improvement for the biorefinery area and also less chemical residues in the
environment.
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