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To my Mother Nirmala Sastry



Foreword

When I first heard about the field of bioinformatics, I was a university senior
majoring in chemistry. It was 1995, and my intention at the time was to focus on
the application of chemistry in the life sciences. In fact, in those days I was interested
in any field of science or engineering that could be applied to biology. But, when it
came time to select a project for my senior thesis, I was asked by my thesis adviser if
I had an interest in computers. Certainly, I did. I had a year of computer science
courses under my belt, but I also had an avid interest in computers as a hobby—I
wrote my first BASIC program circa 1981 on a friend’s Atari800. And, so my
adviser proceeded to tell me that there is this nascent field called “bioinformatics,”
which is a hybrid of computer science and biology. I immediately fell in love with
the idea that I could combine a professional interest of mine with a personal one.
And, from then on, even through graduate school, all of my research projects
involved programming. Not one required that I stand at a bench with a micropipette,
as I knew I would be doing as a biochemist. Of course, it did not go over so well with
many of the professors back then that a student would pursue a degree in either
biochemistry or biology with a purely computational project. In the 1990s, there
were just a handful of degree programs in bioinformatics in the whole world—one of
them halfway around the world from where I lived. But I limited my own geograph-
ical options, and it seemed that my only choice was to pursue a graduate degree in
“traditional” biochemistry and find an adviser and laboratory group that had an
interest in performing computational analyses on their data.

Fortunately for aspiring scientists today, there are many straightforward ways to
enter the field of bioinformatics. To that point, there are scores of degree programs
throughout the world—many of them online degrees. And, there are other ways to
further one’s own career as a bioinformatics practitioner. For one, there is the
Bioinformatics.Org website, of which I am the founder, with Prashanth Suravajhala
among the directors. Prash also founded Bioclues.org and has been active in
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mentoring students online regarding their academic projects in bioinformatics. It is
because of this experience of his that I think you will be enlightened by the insight
that Prash shares within these pages.

Bioinformatics.Org, Hudson, MA, USA J. W. Bizzaro
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Prologue

Today, we define success by publicity and bank accounts. But that is not really
success at all. Do not believe the hype. Success is ephemeral. You have to define it
yourself.

Chris North
Most people would succeed in small things if they were not troubled with great

ambitions.
Henry Wadsworth Longfellow
Any new word invites inquiry, excitement, and sometimes disdain and so was

bioinformatics, at least in developing countries. Theoretical bioinformatics, although
born in the 1980s, has flourished ever since, as many new academic and empirical
developments with focal point on wet-lab research confirm. Bioinformatics is now
regarded as a tool but fantasized as a familiar science even by few scientists who
have had a track record of early career building. With research on bioinformatics
mushrooming, both theoretical and wet-lab-based bioinformatics-aided works are
often deemed very procedural and paraphernalia that these are not easily accessible
to those who want to use the “tools for biology.” Additionally, the career-driven
paths using bioinformatics is tacit by the fact that one needs to attend to earn
programming skills which is not always the case. This book aims to be an interface
between those who aim for bioinformatics and apply research with a focus on Q and
A on career growth. A great saying goes “If you want more, you have to require
more from yourself.” This also applies to bioinformatics. Happy reading!

Department of Biotechnology and
Bioinformatics, Birla Institute of
Scientific Research, Jaipur, India

Prashanth N. Suravajhala
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Chapter 1
Whither Bioinformatics?

Prashanth N. Suravajhala

Ever since the word “Theoretical Biology” was coined by Paulien Hogeweg in1978,
bioinformatics, the current word has steadfastly come into existence with many
biologists taking a leaf out of this discipline. Researchers by now know that bioinfor-
matics is a mere tool, whereas its sister concern, computational biology, is deemed as a
discipline. With bioinformatics burgeoning in the late 1990s, we relate the commence-
ment of data deluge to the animistic knowledge that bioinformatics has brought in,
lessening the scale of experimentation. Authentic bioinformatics, however, will not
gain significant interest for researchers, at least until the wet laboratory biologists take
a leap forward in acclimatizing the split half-term in bioinformatics. The figure of
dogmas is pivotal in bringing the collaboration between biologists and cross-
disciplinarians across biology as the event of dogmas in turn has introduced a plethora
of new relationships between scientific studies and molecular biology. In effect,
researchers have asked several questions on specialized mechanisms, if any that may
be discovered in the advent of bioinformatical knowledge. This collaborative knowl-
edge owes its impetus to the differentiation of independent eccentric science, namely,
systems biology (SB). So, to ask whither bioinformatics into the enunciation and
practice of the bioinformatical tools and scientific methods is a candid query.

Bioinformatics, since ages, has created a process of reasoning that was certainly
not dependent on biology alone. Prior notions of intelligent algorithms clubbed with
statisticians’ skills, IT scientists’ inclination, physicists’ predictions, chemists’ cor-
ner, and mathematicians’ mind are a necessity to perform bioinformatics research.
Not all disciplines can be made up by an individual alone but need unicentric efforts
to meet the goals to derive bioinformatics knowledge. For example, the next
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generation sequencing (NGS) technologies have enabled non-sanger based sequenc-
ing technologies with unprecedented speed, thereby enabling novel biological appli-
cations. However, before bioinformatics and NGS stepped into the limelight, it must
be noted that the NGS had overcome torpor in the field with the help of several cross-
disciplinarians. It would never have been easy to stir up this understanding without
the rapid involvement of the multifaceted scientists who have transformed biology as
a whole. This obviously has the advantages of building up cross-disciplines, thereby
deepening the knowledge curve between eccentric biology and information science,
the latter constantly teaming up with the former to signify its discoveries with
dogmas.

The greatest challenge facing the molecular biology community today is to make
sense of the wealth of data that have been produced by genome sequencing projects.
Conventional biology research was deemed always to be in the laboratory until the
data deluge and explosion of genomic scale in the late 1990s. Thus, we are in an age
of computing-to-research process. There are two different challenges one would
pose: (1) sequence generation and (2) ensuring storage of the plethora of sequences
generated in the laboratory with specific understanding and investigation using
computers and artificial intelligence. That said, understanding the biology of an
organism is a trivial issue as there are a number of focused research areas at different
levels of “omics”-es, namely, genomics, proteomics, functomics, transcriptomics,
need to being carried out at different levels. One of the foremost challenges today is
to ensure that such data are efficiently stored, used through three forms of Es—
extracting, envisaging, and elucidating this mass of data. A meaningful interpreta-
tion of such data must be done before one analyzes the complete volume for
interpreting it or what we call “annotating” manually. In conclusion, discerning
the function using computer tools must be the focus so as to have meaningful
biological information explained.

The journey of transcriptomics starts with the discovery of ribonucleic acids in
1869 followed by their role in protein synthesis and as a catalyst in various
biochemical reactions. However, the term transcriptomics first appeared in 1998 in
the scientific literature (https://en.wikipedia.org/wiki/Transcriptomics_technologies)
concurrent with different “omics” terminologies. Different “omes” and their respec-
tive descriptions are summarized in Table 1.1.

Why is bioinformatics interesting? All the central biological processes revolve
around bioinformatics tools that need to be developed with a possible leeway in
understanding the sequence–structure–function relationship (see Fig. 1.1). DNA
sequence determines the protein sequence which determines structure and function.
Why is it that we end up with protein as a determiner for every analysis? The
simplest answer is that we would have less noise when we deal with protein
sequences wherein, we deal with 20 odd amino acids to narrate results unlike the
several compositions of four bases, namely, ATGC compendium of six reading
frames translating into amino acids. This integration of information making up
biological processes would allow us to understand the complete repertoire of the
biology of organisms. However, the challenge faced by the biology community,
especially on the inordinate data, is more from the umpteen genome sequencing
projects. Traditionally, wet laboratory biologists carry experimental work even as
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the huge increase in the scale of data being produced from time to time could be
better facilitated by in silico analysis. With the help of high-performance computing
(HPC), sequences generated can be sporadic and further analyzed. Nevertheless,
given the fact that molecular biology of a system is very complex, understanding and
disseminating the information is to carried out at different levels using the “omes”

Table 1.1 Components defining different ‘omics’ technologies. The word ‘ome’ refers to ‘many’
or ‘monies.’ For example, genomes indicate the study of many genes

‘Omes’ Description

Genome The full complement of genetic information both coding and noncoding in an
organism

Proteome The complete set of proteins expressed by the genome in an organism

Transcriptome The population of mRNA transcripts in the cell, weighted by their expression
levels as transcripts copy number

Metabolome The quantitative complement of all the small molecules present in a cell in a
specific physiological state

Interactome Product of interactions between all macromolecules in a cell

Phenome Qualitative identification of the form and function derived from genes, but
lacking a quantitative, integrative definition

Glycome The population of carbohydrate molecules in the cell

Translatome The population of mRNA transcripts in the cell, weighted by their expression
levels as protein products

Regulome Genome wide regulatory network of the cell

Operome The characterization of proteins with unknown biological function

Synthetome The population of the synthetic gene products

Hypothome Interactome of hypothetical proteins

Fig. 1.1 An overview of the dogma of molecular biology with known specialized and unknown
mechanisms/flows. (Image courtesy: Daniel Horspool)
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including the genome, proteome, transcriptome, and metabolome levels. There is a
need for researchers, especially from the wet laboratory community, to herald
bioinformatics indefatigably both in academia and industry.

What discoveries interest researchers? Looking at the dogmas, it is still not clear
whether or not a protein can replicate another protein or a DNA can be obtained by
direct reverse translation. It would be intriguing to understand if these could really
happen in an organism. Can a genomic repertoire take shape in understanding the
dogmas bottom-up? There is an aspiration but puny hope that bioinformatics can
handle this. For example, protein–protein interactions (PPI) play a huge role in
understanding the function of proteins. Various bioinformatics tools have been
developed that allow researchers to compare proteins. Such comparative studies
using algorithms such as BLAST (Altschul et al. 1990, 2005; Alstchul 1991) and
other tools were carried out to distinguish unique proteins from paralogs, which later
might have resulted from gene duplication events. The genomes sequenced so far
were helpful in predicting not only evolutionary relationships but also identified
function for the genes through functional genomics (Link et al. 1997a, b). The in
silico methods such as homology search, presence of motifs, domains and signature
sequences, orthology mapping, and radiation hybrid transcript mapping (Avner et al.
2001) are available for descriptive predictions of proteins with known (and some-
times unknown) function. However, these employed methods possibly might have a
lot of false positives unless in vitro and/or in vivo experiments are followed to
validate them. Moreover, these methods do not reveal a predicted function of
hypothetical proteins (HP), thus making predictions more insignificant. Although
all these methods are being employed by researchers, screening of HPs for novel
translatable candidates is not often used and the researcher repeatedly performs the
screening with laborious wet laboratory experiments. Furthermore, the proteins
whose function remains unknown (i.e., those that remain hypothetical) and that are
targeted to different organelles, especially mitochondria, could be important.

Many protein sequences contain motifs or short signature sequences called
equivalogs (Haft et al. 2003), which are conserved in several organisms. These are
a set of homologous proteins conserved since their last common ancestor with
respect to function (Pearl et al. 2002). Some of these proteins might have a chance
to be duplicated in organisms. It is therefore necessary to understand the genomic
context of such proteins. An example of equivalog model is TIGR00658, identified
as ornithine carbamoyltransferase. However, this enzyme is also known to act in an
arginine biosynthesis pathway from ornithine (TIGR00032 and TIGR00838) in
Yersinia pestis and arginine degradation (TIGR00746 and TIGR01078) in Strepto-
coccus pneumoniae. The TIGRFAMs models, a TIGR family database, include
equivalog models that have been used extensively in genome annotation. In addition,
proteins with weak sequence similarity and no relevant structural homologies
usually do not have known cellular function; such proteins are discarded from
well-known proteins. When annotating proteins, a new molecular role for known
cellular function is carefully addressed and curated. In many cases, there are
numerous proteins that fall under domains whose functions are essentially known
but they have no genuine role played in genomes. In addition, when annotating, if a
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reference genome is considered besides comparing sequences in UniGene database
(see web references) with selected protein reference sequences, the alignments
would possibly suggest the function of a gene and finally, the possibility of anno-
tating the protein as the hypothetical would be reduced. For example, many proteins
in humans have been named as some repeat domains (for example, accession
#CAB98209.1) maintaining homology to some known domains and all of them
fall under a large category of domains. This does not necessarily mean that all these
proteins makeup a function. There are also some instances of some proteins already
similar to some organisms not showing up the function, although possibly studied
from in silico and a few wet laboratory studies. Two such examples, one from
eukaryotes and the other from bacteria, are discussed in what follows:

1. The Ankyrin repeat domain 16 (Ankrd16) has protein similarities in mice with
100% (Accession #NP_796242.1), humans with 85.7% (Accession
#NP_061919.1), Xenopus with 71.1% (Accession #NP_001088685.1), and
Danio rerio with 66.6% (Accession #NP_001017563.2). This annotation as
revealed by GenBank and UniGene reference might have an update at a later
point of time when new orthologs as identified from other metazoan sequences
keep adding up to the annotation.

2. In bacteria, the proline proline and glutamic acid (PPE) and the proline glutamic
acid (PE) gene families comprise many unique genes, some of them novel and
labeled as hypothetical. Of them, many are known to be pseudogenes (Marri et al.
2006). The 10% of the coding DNA of Mycobacterium tuberculosis constitutes
PE and PPE family genes and is involved in gene expression upon infection of
macrophages, some of them as antigens mediating role in the pathogenesis or
virulence. These were characterized while the expression levels and the functions
of select PE/PPE family genes during various phases of infection (latent/mild/
hypoxic) with M. tuberculosis (Kim et al. 2008) were studied (Fig. 1.2).

The aforementioned examples discussed are all resultant of the explosion of
bioinformatics tools during the last three decades. Have bioinformatics technologies

UK

KK

UU

KU

Known Unknowns

Unknowns

Knowns

Fig. 1.2 The importance of Known Unknowns aliased “hypothetical genes” in the genome,
illustrated in the form of a checkerboard. The Known is acronymed “K” while the Unknown
“U.” Apparently, we seldom find “UU”s as it is a misnomer here. Unless the genome is sequenced,
we find genes evaluating and devaluating
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revolutionized genomics and proteomics? Well, there has been a focus on molecular
medicine which paved the way for establishing intervention and treatment of well-
known diseases to proactive prediction and prevention of disease risk. These
approaches should really require new informatics systems that will link large-scale
databanks and special programs for data mining and retrieval in bioinformatics and
chemoinformatics. All the wet laboratories should be able to provide a platform for
powerful new molecular diagnostic tools along with multianalyte assays for expres-
sion of genes and proteins in different patterns of diseases. With researchers scaling
the ladder of bioinformatics progress by leaps and bounds, there is a need for an
enhanced understanding of the interactions in a system (organism). What are the
components that interact with each other? What is the outcome of such interactions?
Do interactions alone provide us the functional decipherment? Should we just be
sufficed with the progress made on say, cures for diseases by the year 2050? Should
we reach a consensus on the combination of tools, namely, rapid and inexpensive
DNA sequencing technologies, HapMap project, dollar one genome (DOG), and so
on? We hope that this will let us understand precisely how bioinformatics transits
from research to vocation and avocation (Table 1.2).

1.1 Bioinformatics “Aging” in Systems Biology

Systems biology has gained a lot of attention over the years. Of late, biologists have
been actively engaged in this discipline in different forms when molecular biology is
merged with multi-context disciplines. During this process, SB ran into several
definitions. To answer what is a system: We could think of multiple organelles
existing in our human body as we use components to describe entities in a system.

As we integrate various vehicular components to construct a vehicle, we describe
components such as organelles to makeup a living system. The biology of the system

Table 1.2 Pros and cons of different methods in annotating sequence

1. Sequence-based methods

Pros: Most known/reliable method

Cons: BLAST hits are electronically annotated and turn out to be false positives

2. Structure-based methods

Pros: Based on active site characterization/global fold similarity

Cons: Free energy minima always need to be set/obligation

3. Associated-based methods

Pros: Based on the domain/phylogenetic profiles

Cons: Lack of conserved proximity does not indicate a lack of functional association

4. Proteomics-based methods

Pros: Based on protein interaction domains. Gaps or holes in the known pathway can be
assigned. Function awaits a protein to be characterized

Cons: Lots of false positives
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is called systems biology. Every system has an effect on its environment and so does
the components in a system, even as the components entitled to SB include genes,
proteins, metabolites, and enzymes as minor entities, while cells, tissues, organelles,
and organs as major components. Hence, interactions among the components would
be interesting to value SB. While a system could have many organelles and the
components that makeup the flow of a system, they are bound to interact with one
another. For example, enzymes, proteins, metabolites, genes, DNA, and functional
protein domains are known to interact with each other. Integrating all the interactions
of components indicates: Which survives (and competes) the best while the ultimate
goal of SB is to exploit the interplay among the components. From a reductionism’s
point of view, researchers define SB based on whether the components in a system
are interacting with each other, mutations arising and falling, proteins evaluating and
devaluating, strains adapting and unfitting in the environment, and some genes if lost
and found (Table 1.3).

Table 1.3 Timeline eventing important spheres in bioinformatics

• 1859 Charles Darwin’s “origin of species”

• 1944 Avery, MacLeod, McCarty: DNA is the genetic material

• 1953 Structure of DNA

• 1955 Complete sequencing of insulin

• 1988 National Center for Biotechnology Information (NCBI) founded

• 1988 Sanger Centre, Hinxton, UK

• 1994 EMBL European Bioinformatics Institute, Hinxton, UK

• 1995 First bacterial genomes completely sequenced

• 1996 Yeast genome completely sequenced

• 1999 Fly genome completely sequenced

• 2000 bioinformatics.org and opensource

• 2001 Human genome and bioinformatics ****Systems Biology****

• 2002–2004 Umpteen genomes sequenced

• 2005 EVOLUTION in terms of bioinformatics as a breakthrough

• 2007 Personal genomics*person “omics”

• 2008 The hypothetical proteins and orphan genes???

• 2011 Predictive biology approaches

• 2012 Next Generation Sequencing burgeons

• 2014 Oxford Nanopore changed the pace of NGS with its first product

• 2016–2019 ScRNA-Seq and spatial genomics era

1 Whither Bioinformatics? 7



1.2 Defining Systems Biology Through Omics: The Two
Paradigms

Is systems biology (SB) all about the genes making up the proteins and how the
components processing in a system interact with each other? The fields of omics in
the recent past have believably revolutionized biomedicine and by far means there
needs to be a focus on change in defining these upcoming omics-es. Huang S’s
classification of SB has yielded the loose and the apparent but broadened definitions
from the dynamics and reductions approach (Huang 2004). The dynamicity of SB is
based on a pure level where the system is based on models and networks: Be it
quantitative or qualitative, whereas the reductionism defines SB based on the high-
throughput methods involving different molecular biology techniques. Overall, the
loose definition applies to projects exploring individual biological networks, while
the broadened but still “derivative” definition is the outgrowth of theoretical models
along with systems theory across interdisciplinary sciences such as engineering,
mathematics, statistics, artificial intelligence, and so forth. However, many authors
(Tracy 2008; Cornish-Bowden et al. 2007; Huang and Wikswo 2006; Strömbäck
et al. 2006; Bruggeman and Westerhoff 2007) have deliberated that the concept of
the gene resulting in omics has begun to outlive its usefulness while they felt that the
SB could be projected into several dimensions keeping in view the multifaceted
systems’ complexity of living organisms (Ideker and Hood 2019). With SB matur-
ing, researchers have started proposing an alternative means to define gene based on
a richer explanation: Genetic functor, or genitor, a sweeping extension of the
classical genotype/phenotype paradigm that describes the “functional” gene (Fox
Keller and Harel 2007). Thus, we could understand the dynamic behaviors of
molecular associations implicitly known from various methods and technologies
integrating one or more of the SB data:

Overall, SB can be envisaged keeping in view the following points:

1. Systems biology is conceptualized in terms of PPI. The interplay between
components in systems is exploited between protein–protein, domain–domain,
DNA–DNA as a whole, or even a protein–DNA.

2. The interactions among the components are better explained in such a way that
what is in theory need not fit practically implicating that a hypothesis-driven
approach need not always be experimental (biological) driven.

3. With some answers to questions like if there are interactions known, we can take a
measure of unknown interactions in a system, SB approaches toward understand-
ing bona fide PPI.

Does SB back biologists? There are specific traits that makeup PPI networks:
Everything in biology is better explained through interactions while the interactions
are a priority in accordance with the organization, cooperability, and mapping the
components in a system. The SB signifies if components interact with each other.
This led to the birth of several disciplines such as systems molecular medicine,
immunological SB, local and global metabolic profiling, systems diagnostic therapy,
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and systems drug development, all budding across nascent biology disciplines.
Although the PPI are outcomes of almost all cellular processes, there is diversity
in protein interactions, that is, all proteins share common properties at a certainty.
For example, the distortion of protein interfaces leads to the development of many
diseases, and to understand its mechanism, we lead PPI experiments. When proteins
recognize specific targets and bind them, it results in conservation that depends on
structural and physicochemical properties. The nature and applications of SB with
respect to PPI were well-reviewed elsewhere (Huang 2004; Tracy 2008; Cornish-
Bowden et al. 2007; Huang and Wikswo 2006; Strömbäck et al. 2006).

1.3 Is Biology Explained Through Protein–Protein
Interaction Networks Alone?

Apart from the three most common omics-es, namely, “Gen-omics,” “Prote-omics,”
and “Transcript-omics,” bioinformatics and biology researchers have been taking up
omes and omics-es very rapidly as is evident from the use of the terms in PubMed
(Dell et al. 1996). As a result, a variety of omics disciplines such as phenomics
(Schork 1997), physiomics (Chotani et al. 2000; Gomase and Tagore 2008),
metabolomics (Kuiper et al. 2001; Fiehn 2002), lipidomics (Han and Gross 2003),
glycomics (Gronow and Brade 2001), interactomics (Govorun and Archakov 2002),
cellomics (Taylor et al. 2001) have begun to emerge, each with their own set of
instruments, techniques, reagents, and software. These have driven new areas of
research consisting of DNA and protein microarrays, mass spectrometry, and a
number of other instruments that enable high-throughput analyses.

While genomics forms a main hierarchy of classification, there are many other
omics-es that fall under a clad of primary (gen) omics’ enabled SB, for example,
functional genomics, comparative genomics, computational genomics, and
phylogenomics. With more than 1800 microbial genomes sequenced or being
sequenced today and the number still increasing, another set of omics called
metagenomics aims to access the genomic potential of an environmental sample. It
would answer some of the questions we posed in the earlier sections. This environ-
mental “omics” bridges the integration of metagenomics with complementary
approaches in microbial ecology (Schloss and Handelsman 2003).

While the mapping of PPI is a key to understand biological processes through
interactomics, many technologies have been reported to map interactions, widely
applied in yeast. At present, the number of reported yeast protein interactions truly
validated by at least one other approach is low with the amount of throughput it takes
to process (Cornell et al. 2004). This is because of the false discovery rate of proteins
interacting with their partners. With the advent of virtual interactions, the growth of
false positives also increased, thereby allowing the researchers to keep a track of
finding these false positives through statistical inference. Any dataset of interaction
map is complex while tools to decipher true positives are being developed in the
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form of markup languages such as system biology markup language (SBML)
(Hucka et al. 2004). The mapping of human–protein interaction networks is even
more complicated, suggesting that it is unreasonable to try mapping the human
interactome; instead, interaction mapping in human cell lines should be focused
along the lines of diseases or changes that can be associated with specific cells
(Figeys 2004). This “omics revolution” would force us to re-evaluate our ability to
acquire, measure, and handle large datasets. The omic platforms such as expression
arrays, MS, and other high-throughput methods have enabled quantification of
proteins and metabolites derived from complex tissues. Applying SB, the integrated
analysis of genetic, genomic, protein, metabolite, cellular, and pathway events are in
flux and interdependent. With the onset of various datasets, it necessitated the use of
a variety of analytic platforms as well as biostatistics, bioinformatics, data integra-
tion, computational biology, modeling, and knowledge assembly protocols. Such
sophisticated analyses would definitely provide new insight into the understanding
of disease processes through phenome–genome networks and interactomics studies
(Lage et al. 2007). In this regard, SB clubbed with interactomics, more appropriately
considered as a process containing a series of modules, aims to provide tools and
capabilities to carry out a wide range of tasks (Morel et al. 2004). Even as protein
analysis is known as a field of research with a long history, several developments of a
series of proteomics approaches including MS opened the door for a synergistic
combination with genomic sequence analysis, focusing on aspects of genome-wide
transcription control, regulomics. In analogy with all the other omics-es, a combi-
nation of MS-based proteomics with in silico regulomics analyses can produce
synergistic effects in the quest to understand how cells function (Werner 2004).
Carrying this further, it has been suggested that the term “translatome” could be used
to describe the members of the proteome weighted by their abundance, and the
“functome” to describe all the functions carried out by them (Greenbaum et al.
2001). However, there are still many difficulties resulting from the disorderliness
and complexity of the information. To overcome this, removing noisy data and
finding false positives could be enhanced using various tools to some degree.
However, these can also be overcome by averaging broad proteomic categories
such as those implicit in functional and structural classifications (Fig. 1.3).

1.4 Systems Biology in Wet Laboratory

Fundamental biological processes can now be studied by applying the full range of
omics technologies (genomics, transcriptomics, proteomics, metabolomics, etc.)
using the same biological sample and high-throughput methods such as MS
(McGuire et al. 2008; Kim et al. 2008). A wide array of assays including high-
throughput methods such as tandem mass spectrometry (MS/MS), yeast two hybrids
(Y2H), and pull-down assays are preferentially used to navigate them. Clearly, it
would be desirable if the concept of the sample were shared among technologies
such as MS for that, until the time a biological sample is prepared for use in a specific
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omics assay, its description is inherently technology independent. However, the
compulsion for accurate analyses of all these high-throughput methods is to remove
redundant and false-positive data. Redundancy of data has been the biggest threat for
causing errors in data usage. Sharing a common informatics’ representation would
encourage data sharing, leading to a decrease in redundant data, and the potential for
error. The recent introduction of WikiProteins has been a worthy effort that brought
all annotators to come together on a common platform (Mons et al. 2008). This
would result in a significant degree of harmonization across different omics data
standardization activities, a task that is critical if we are to integrate data from these
different data sources (Morrison et al. 2006). The bioinformatics applied to omics are
varied and particularly noteworthy or characteristic of proteomics research, for
example, 2DE analysis or MS. Another important task of bioinformatics is the
prediction of functional properties through ontology-based functional networks
from a vast number of databases.

Apart from the above-discussed issues, genome technologies are being carried
out in every major model system. For example, new technologies are being devel-
oped to rapidly identify mutations or small molecules that increase the life span for
aging-related research. While the DOG recently has been known to play a role as a
model system for cancer, because of its similarities to human anatomy and physiol-
ogy, it may prove invaluable in research and development on cancer drugs (Khanna

Fig. 1.3 Quantitative picture of various omics and the various fields, an enthusiast can take up
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2006). Inversely, as dogs too naturally develop cancer they may share many
characteristics with human malignancies. This probably would accelerate genome-
wide, cross-comparison of organisms for finding the function of more genes ulti-
mately using drug discovery development.

1.4.1 Metabolomics

Metabolomics has come into sight as one of the newest “omics” science with a
dynamic portrait of the metabolic status of living systems. The analysis of the
metabolome is particularly challenging as it has it’s roots in early metabolite
profiling studies but is now a rapidly expanding area of scientific research in its
own right. It is a science employed toward the understanding of global SB (Rochfort
2005). The metabolomic tools aim to fill the gap between genotype and phenotype
permitting simultaneous monitoring molecules in a living system. The smartness of
using metabolic information could be applied in translating into diagnostic tests as
they might have the potential to impact on clinical practice and might lead to the
supplementation of traditional biomarkers of cellular integrity, cell and tissue
homeostasis, and morphological alterations that result from cell damage or death
(Claudino et al. 2007). Metabolomics has been widely applied to optimize microor-
ganisms for white biotechnology even as it spreads to the investigation of biotrans-
formation and cell culture. Together with the other more established omics
technologies, metabolomics aims to contribute to different spheres ranging from
an understanding of the in vivo function of gene products to the simulation of the
whole cell in the SB approach. This will allow the construction of designer organ-
isms and yet another science synthetic biology evolves (Oldiges et al. 2007).
Although metabolomics measures the multiparametric response of living systems
to genetic modification, there is a consistent debate of synonymy with
metabolomics. Admittedly, there is a concurrence of the former being associated
with NMR while the latter being associated with mass spectroscopy. This part of the
microbial transformation has led several standards for these two meta-omics’ deliv-
ering SB tools (Fiehn et al. 2006).

1.5 Mitochondriomics

Mitochondria are semiautonomous organelles, presumed to be the evolutionary
product of a symbiosis between a eukaryote and a prokaryote. The organelle is
present in almost all eukaryotic cells to an extent from 10^3 to 10^4 copies. The
main function of mitochondria is the production of ATP by oxidative phosphoryla-
tion and its involvement in apoptosis. The organelles contain almost exclusively
maternally inherited mtDNA, and they have specific systems for transcription,
translation, and replication of mtDNA. Mitochondrial dysfunction has been
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correlated with mitochondrial diseases where the clinical pathologies are believed to
include infertility, diabetes, blindness, deafness, stroke, migraine, heart, kidney, and
liver diseases (Reichert and Neupert 2004).

Recently, cancer was added to this list when investigations into human cancer
cells from breast, bladder, neck, and lung revealed a high occurrence of mutations in
mtDNA. With the understanding of the role of mitochondria in a vast array of
pathologies, research on mitochondria and mitochondrial dysfunction has in the
last decade yielded a huge amount of data in the form of publications and databases.
Yet, the field of mitochondrial research is still far from exhaustion with many
essentials waiting to be discovered. The recent identification of a number of proteins
targeting mitochondria has enabled immense interest to understand the function of
some genes unnoticed in the mitochondrion (Calvo et al. 2006). With only 13 pro-
teins sitting inside mitochondria through oxidative phosphorylation, and more than
1500 estimated proteins targeting this tiny organelle, identifying complete protein
repertoire in this machinery could decipher the biology behind mitochondria or what
makes us breathe. A complete set of mitochondrial proteomes syntenic with other
eukaryotes has just started and there is a promise in understanding how the organelle
proteomes and interactomes could essentially be used to develop into SB (Calvo
et al. 2006).

1.6 “Omic” Challenges in Systems Biology

Bioinformatics has enabled all-against-all comparison distinguishing unique pro-
teins from proteins that are paralogs resulting from gene duplication events. The last
two decades have seen an avalanche in databases while algorithms such as BLAST
allowed such comparisons. In the post-genomic era, the genomes sequenced so far
would essentially cover the future of omics in them as they enable predicting not
only evolutionary relationships but also make use of different approaches used in
identifying the function of genes. This functional genomics is the cause of under-
standing how proteins interact with each other and network in the living organism.
The gene or protein function could be ascertained based on physiological character-
ization or if the two proteins are known to be physically interacting with each other
or virtually interacting with each other. The SB approaches in present-day bioinfor-
matics have brought in a special emphasis on association-based networks in the form
of virtual interactions, thereby making up the possibility of phenome–genome
networks grow bigger (Lage et al. 2007). Ultimately, it makes sense when such
interactions bring out a function and find a candidate for disease. The increase in
GenBank accessions resulted not only in the number of genes identified but also in
the number of citations these accessions refer to. While various databases and terms
have been defined, several omics-es are reported from time to time at http://www.
omics.org (Fig. 1.4).

The last 10 years have not only seen the rise of bioinformatics producing an
unprecedented amount of genome-scale data from many organisms but also the wet
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laboratory research community has been successful in exploring these data on using
bioinformatics many challenges still persist. One of them is the effective integration
of datasets directly into approaches based on mathematical modeling of biological
systems. This is where SB has bud resulting in top–down and bottom–up
approaches. The advent of functional genomics has enabled the molecular biosci-
ences to come a long way toward characterizing the molecular constituents of life.
Yet, the challenge for biology overall is to understand how organisms’ function. By
discovering how function arises in dynamic interactions, SB is everywhere
addressing the missing links between molecules and physiology. Top–down SB
identifies molecular interaction networks on the basis of correlated molecular behav-
ior observed in genome-wide “omics” studies. On the other hand, bottom–up SB
examines the mechanisms through which functional properties arise in the interac-
tions of known components. Applications in cancer are a good example to counteract
these two major types of complementary strategies (Stransky et al. 2007). Several
web-based repositories have been established to store protein and peptide identifi-
cations derived from MS data, and a similar number of peptide identification
software pipelines and workflows have emerged to deliver identifications to these
repositories. Integrated data analysis is introduced as the intermediate level of an SB
approach and as a supplementary to bioinformatics to analyze different “omics”
datasets, that is, genome-wide measurements of transcripts, protein levels or PPI,
and metabolite levels aiming at generating a coherent understanding of biological
function (Steinfath et al. 2007). Furthermore, existing and potential problems/solu-
tions such as de facto experimental and the following bioinformatics challenges
might hold prospective in the near future:

1. Challenges in high-dimensional biology (HDB): Recently, the term HDB has
been proposed for investigations involving high-throughput data (Mehta et al.
2006). The HDB includes whole-genome sequences, expression levels of genes,
protein abundance measurements, and other permutations. The identification of
biomarkers, the effects of mutations and drug treatments, and the investigation of
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diseases as multifactor phenomena can now be accomplished on an unprece-
dented scale.

2. Finding the function of HP: Another feature of PPI map is to find the function of
unknown proteins. PPI has become a very common step in the annotation of a
protein. Various tools such as iHOP (http://www.ihop-net.org), STRING (http://
string.embl.de), GeneMania (http://www.genemania.org), and so on, aid the
researchers to find if there are interacting partners of protein of interest. The
data could be visualized through tools such as Cytoscape (www.cytoscape.org),
VisANt (http://www.visant.bu.edu), and Osprey (http://biodata.mshri.on.ca/
osprey/servlet/Index), and so on, for further analyses. The nearest partners
would essentially mean that the hypothetical or uncharacterized protein could
play a function similar to its interactor(s). In the context of PPI networks, we
could consider if a model is to be developed from the network or a network is to
be generated with an already established model. Precisely, the putative function
of a protein could be better known from a PPI network to develop a model from
it. Information on “known” or “unknown” PPI is still mostly limited but inte-
grating tools such as these could generalize a way to find bona fide function.

1.7 Are Interactions Based on the Nature of Binding?

Does close homology between two proteins confer that they do interact in the same
manner? Yes, they do and confer evolutionary constraints in lieu of structural
divergence while remotely related proteins have a different interaction mode
(Drummond et al. 2005). Also, conservation of protein interface indicates the
average conservation of the rest of the protein. While all these forms an integral
part of SB, apart from the novel interactions that arise based on the type of
homology, there are interactions based on the binding entity, namely, stable and
transient. The former interactions are consistent and bookmarked while the latter is
temporary. There are interacting proteins that might co-express indicating that the
expressed proteins, which evolve slowly are normalized wherein the normalized
difference between the absolute expression data is calculated based on several tools
such as microarrays (Drummond et al. 2005). However, there are other techniques
such as density gradient and virtual pull-down assay methods cited as above
beginning to be understood and substantiate above views.

As thousands of new genes are identified in genomics efforts, the rush is on to
learn something about the functional roles of the proteins encoded by those genes.
Clues to protein functions, activation states, and PPI have been revealed in focused
studies of protein localization. A meta-analysis of data derived from genome-wide
studies of aging in simple eukaryotes will allow the identification of conserved
determinants of longevity that can be tested in other mammals (Khanna 2006;
Kaeberlein 2004). Adding to the various high-throughput methods, technical break-
throughs such as GFP protein tagging and recombinase clones, large-scale screens of
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protein localization are now being undertaken to understand the function of the
proteins (O’Rourke et al. 2005).

1.8 Fundamental and Best Practiced Tools for Annotating
Proteins and Genes

In the recent past, various bioinformatics tools have been developed that allow
researchers to compare genomic and proteomic repertoire. Comparative studies
using algorithms such as Blast and databases are carried out to distinguish unique
proteins from paralogs, which later might have resulted from gene duplication
events. The genomes sequenced so far were helpful in predicting not only evolu-
tionary relationships but also identified function for the genes through functional
genomics. Although many methods are being employed by researchers, screening of
proteins for novel translatable candidates is not often used and the researcher
repeatedly performs the screening with laborious wet laboratory experiments. To
increase the sensitivity, further clues on tissues and development stages from the
queried gene’s sequences could be surveyed using tools such as gene expression
omnibus (GEO) or UniGene-EST or cDNA profile database. Furthermore, protein
link to the genomic location specified by transcript mapping, radiation hybrid
mapping, genetic mapping, or cytogenetic mapping as available from GenBank
resources would improve the understanding of protein annotation. Besides this,
whether or not a protein contains a polyadenylation signal could be an added
knowledge to meet the criteria of well-annotated proteins. This is because tools
such as MEME reveal many 30 UTRs forming conserved motifs, which indicates
these regions appear more conserved than expected. This means, higher the conser-
vation, greater the duplications and greater is the chance of being not annotated or
“hypothetical.” There seem to be many unique genes that are overrepresented in the
form of duplications; a simple search in GenBank gene list would reveal that there
are several accessions duplicated. For example, in the case of the gene FusA2a, bona
fide accession is mapped to CAD92986, and yet, a few of the isoforms/unique genes
remain unknown (e.g., CAD93127). In summary, there could be many proteins less
annotated, and yet many tools are known to describe the function. This leaves to beg
a question, what would be the fate of proteins that cannot be annotated through some
tools, or in contrast how many best tools are used to describe or annotate a protein?

Apart from BLAST and FASTA, the sequence-based feature annotation is
applied by RefSeq using several tools, namely, BEAUTY X-Blast Enhanced Align-
ment Utility, and PROSITE. While many other variants of BLAST including PSI
Blast and PHI Blast, sequence alignments using ClustalW, ClustalX, and Cobalt are
used, not all the tools are used in tandem to eliminate false positives. Whether the
protein is soluble or insoluble is known through TopPred; the topology of protein
with the orientation and location of transmembrane helices attribute to the function.
Additionally, orthology mapping using tools such as HomoMINT are used, which

16 P. N. Suravajhala



increases the chance of the protein annotation. With the central dogma beyond the
age today in bioinformatics, namely, sequence specifies structure and function;
annotations have become mightier to further manually curate allowing researchers
to perform experimental analyses for some proteins. The structures of proteins not
only provide functions but the shapes exhibited by the proteins allow them to interact
selectively with other proteins or molecules. This specificity is the key for the
proteins to interact with another protein, thereby inferring the function. However,
most of the bioinformatics analyses are misleading unless biochemical characteri-
zation is carried out. Furthermore, the protein annotation has gained much impor-
tance with the introduction of many metazoan genome sequencing projects in
addition to the 1000 genomes project that is in progress. With 40–50% of identified
genes corresponding to proteins of unknown function, the functional structural
annotation screening technology using NMR (FAST-NMR) has been developed to
assign a biological function which is based on the principle that a biological function
can be described based on the basic dogma of biochemistry that the proteins with
similar functions will have similar active sites and exhibit similar ligand-binding
interactions, although there is a global difference in sequence and structure. Tools
such as combinatorial extension which confer structure similarity, DALI for NMR,
finally determining function, PvSOAR, and Profunc—given a 3D structure, aims at
identifying a protein’s function has been widely used. However, there are many
other methods such as the Rosetta Stone method, phylogenetic profiling method, and
conserved gene neighbors that have been widely employed and being accepted by
the scientific community.

Biological function of proteins would help in the identification of novel drug
targets and helps reduce the extensive cost of practical examinations on several
candidates. With the enormous amount of sequence and structure information
availability, innumerable automated annotation tools for proteins have also been
generated. One such example is the automated protein annotation tool (APAT),
which uses a markup language concept to provide wrappers for several kinds of
protein annotations. While FFPred is available to predict molecular function for
orphan and unannotated protein sequences, the method has been optimized for
performance using a protein feature-based method through support vector machines
(SVMs) that does not require prior identification of protein sequence homologs. It
works on the premise of posttranslational modifications, Gene Ontology, and local-
ization features of proteins. Yet another tool, namely, VICMpred, aids in broad
functional classification of proteins of bacteria into virulence factors, information
molecule, cellular process, and metabolism molecule. The VICMpred server uses an
SVM-based method having patterns, amino acid, and dipeptide composition of
bacterial protein sequences. ConSeq and ConSurf have been widely applied in
predicting functional/structural sites in a protein using conservation and
hypervariation.

The final part of annotation can be studied through interactions and associations.
All interactions are associations, while not all associations are interactions. The
association tools, namely, search tool for the retrieval of interacting genes/proteins
(STRING), GeneCards, IntAct, MINT, biomolecular interaction network database
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(BIND), which have been enhanced as biomolecular object network database
(BOND). With BIND inside, BOND is a comprehensive database that helps in the
annotation of proteins through unique object-based interaction studies. Although
there are other variants of some of these databases such as GeneAnnot and
GeneDecks of GeneCards, most of them are used for finding genes based on
different queries.

Methods for predicting protein antigenic determinants from amino acid sequences
were a crucial point for segment-level annotation of proteins. Since then, so many
computational methods have been developed based on such basic and fundamental
methods and pinpoint the importance of basic methods in the area of computational
biology. Developed methods are being assorted in applications from sequence-based
antigenic determinants to surface-based consensus scoring matrix approach for
antigenic epitopes. Such developments significantly contributed to the refinement
of existing and development of new and versatile techniques; but have roots in
indispensable and conventional approaches.

Incorporating a systematic representation of fundamental and best practiced tools/
servers to facilitate users for information would be useful even as additional features
with their respective inputs, outputs, mode of action, and level of annotation have
also been compiled (see Table 1.4), and will help experienced as well as beginners in
the area of protein annotation.

1.9 Can Bioinformatics Influence Animal
Experimentation?

Decades ago, legislation on the use of animals was enacted in many countries
involving three R’s: Reduction, refinement, and replacement of animal models.
Ever since this was enacted, there was a sudden buzz about laboratory animals
and their use to be reduced, refined, and replaced wherever possible, for ethical and
scientific reasons. The three R’s concept was put forward by W.M.S. Russell and
R.L. Burch in 1959 in The Principles of Humane Experimental Technique. A great
detail on the three R’s was reviewed by many in the interest of good and humane
science. The word “alternatives” came into use after the publication of the book
“Alternatives to animal experiments” by David Smyth in 1978.

With the arrival of bioinformatics and SB, the impact on animal experiments was
slowly felt. The generation of high-throughput data in the form of genomics,
transcriptomics, and metabolomics, biology has essentially transformed into a com-
putational problem. Due to this reason, we believe that the role of computation in
biology leading to reducing, refining, and replacing animal experiments needs to be
reviewed and discussed. Let us review this question using two approaches.

1. Reductionist approach: Today the fields of omics have revolutionized fundamen-
tal biology and biomedicine. Greater attention needs to be paid to defining
upcoming omics-es based on the three Rs. We believe that the first two R’s—
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reduction and refinement—aptly fit into the category of definition where we may
not completely replace animal experimentation but at least lessen the scale and
usage of laboratory animals. Thanks to high-throughput techniques through
which we are able to better explore in vitro methods. However, the reductionist
approach does not completely reduce or refine this process as this implies for
smart experimentalists with a humane touch. Homogeneity and environmental

Table 1.4 Best practiced tools for a myriad of protein functional annotations

Tools/
Servers

Interaction/
Association Output

Comments on
methods Annotation

Blast/
FASTA

Protein
sequence
database

Close and distant
candidates

Heuristics Homology

Pfam/GO Protein
sequences

Ontology based Pattern based Ontology

VICMPred Annotated
protein
sequences

Functional information Machine learning
based

Functional
annotation

Interpro/
Prodom

Protein
sequence
motifs and
domains

Protein family and domains Domain based Structural and
functional
annotation

MEME Protein
sequence
motifs

Protein motifs Statistical Motifs identi-
fication and
analysis

TopPred Protein solubility
conditions

Machine learning
based

Solubility/
insolubility of
proteins

Profunc 3D structure Various functions Machine learning
based

Functional
annotation

STRING/
IntAct

PPI and
database

Interactors Pattern and mining
based

Protein–pro-
tein
interactions

TargetP/
PTarget

Annotated
proteins

Inter- and intracellular
signals

Quantitative
analytical

Signal sorting

APAT Proteins Myriad features Markup language
based

Miscellaneous

FFPred/
RIGOR

Information
based

Structural and functional
element information

Structural elements
based annotation

Structural and
functional
annotation

ConSeq/
Con surf

Protein
sequence
and 3D
structure

MSA, phylogenetic tree,
various statistical scores,
conserved residues on
sequence, and structure of
proteins

Sequence and
structural evolu-
tionary conserva-
tion and
hypervariation

Structural,
functional,
and evolu-
tionary
annotation

MINT/
BIND/
BOND/
GeneCards

Protein–pro-
tein
interactions

Interactors and annotated
pathways

Miscellaneous Protein–pro-
tein interac-
tions and
pathways
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conditions play a major role in reducing the experimentation process. Greater the
use of genetic homogeneity, greater is the chance to reduce the use of animal
models. Similarly, greater the chance of maintaining and ensuring the conditions
of the experiment, greater is the chance to reduce animal experimentation.

2. Dynamic or a vibrant approach: This applies to in silico models. Many compu-
tational models in biology are used nowadays. Dynamicists might not even go to
that extent but think of plan B: considering a scale of sentience. A common
question often asked is why not use animals that are small at the scale of
taxonomy? But as computational biologists, we would not lose hope in saying
that we are at our magnanimous best and not very far in bringing intelligent and
sophisticated bioinformatics tools and use dynamic approaches wherein in silico
models are widely exploited. Here, acceptance and use of computer-based and
in vitro methods in fundamental research in testing chemicals, medicines, apply-
ing biostatistics through experimental design are inevitable thus raising ques-
tions—can animal models be replaced?

To address this key question, opinions were raised through bioinformatics.org
online polls and an extensive discussion was organized through the SAB forum
(http://www.scienceboard.org). Bioinformatics clubbed with SB have been practi-
cally two-fold as the practitioners understand how molecules work in silico; how
chemistry works between biology and information technology, and importantly, see
how genes or proteins could be predicted heuristically or non-heuristically algorith-
mic, thereby we could approach the wet laboratory beforehand in a more organized
mode. Bioinformatics, by and large, has become an enforced tool in today’s full-
bodied molecular biology. So, the popularity is not for professionals from bioinfor-
matics only. In neutrality, not every person from bioinformatics will have these types
of statistics, but let us judge ourselves closer to getting hold of computational
biology or bioinformatics by following the three Rs before experimenting in the
laboratory!

We leave our thoughts with the following quotes by Dr. Peter Mansfield (GP, and
Founder-President of ‘Doctors in Britain against Animal Experiments’.) in “Animal
Experiments in Medicine: The Case Against,” May 1990:

There is no comprehensive animal model for humankind. . .The truth is, and always has
been, that the first clinical use of new medication in human patients provides the first reliable
clues as to what can be expected of it. Premarketing research on animals is a lottery; post
marketing surveillance comes too late for the first human victims of side- effects.

1.10 Addendum: Results of Poll @Bioinformatics.org

Only 22% of the people voted for yes when asked could computer models someday
replace humans in clinical trials while 50% voted negative and 28% have no hopes
at all.
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1.10.1 Opinion of Few Scientists on Bioinformatics
Influencing Animal Experimentation

Lorikelman opined that an Artificial Intelligence—Turing test could be an option
that predicts human behavior. “Problem will be the unexpected interactions between
pathways or organ systems that we might expect to see in a fairly large number of
people that therefore could be observed in a clinical trial and so I don’t think models
will be replacing trials soon. Second big problem will be the occasional catastrophic
individual reaction that some people have to a drug—difficult to model” was what
Lorikelman had to say. Furthermore, he feels with no decent models available, the
information about human metabolism and human immune reaction cannot be
understood.

R. Wintle added saying that it could be a problem with regulatory agencies
buying computer models as they may not seem to work. Also, uncontrollable
environmental effects on drug efficacy, and potentially also stochastic effects are
further hindrances to model the animals.

Jooly opines that improved computer models may be extremely helpful in terms
of “reduction,” but feels she cannot imagine that they will ever be good enough for
complete “replacement.”

R. Stevens says, “I’ve seen too many people say that we can someday understand
“gene products” by just looking at the DNA sequence to fall for this idea. As soon as
you think you know all the variables needed to understand something in silico,
someone will discover that the variables were all for one gender, race, age or
whatever, and the whole thing will be wrong. Not those clinical trials are perfect.
Even if you do everything you can to test a new drug/treatment, there could always
be something out there that wasn’t predicted by the trials.”
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2.1 Bioinformatics Is Challenging and One Is Free
to Respect Open-Access

Bioinformatics has enabled wet laboratory biologists to respond to the demands of
ensuring quick results for the research done in the wet laboratory. Making the
wet-laboratory biologists introducing some methods and predictions to lessen the
scale of experimentation would not only help the researchers for educating under-
graduate students but also allow them to move forward. As many researchers feel
bioinformatics to be not a traditional bioscience, it reflects the growing modularity of
biology even as it is equally diverse and has a wide array of solving biological
problems.

2.2 It Delves into Predictions but Bona Fidelity Is the Means
for Predicting Genes

Bioinformatics tools are sometimes trivial but are based on lots of predictions. For
example, a protein multiple sequence alignment would delve into the status of which
sequence might have evolved first. Whether or not the sequences are related can be
interpreted using BLAST against a reference dataset, the annotation associated with
potential matches can therefore be used to identify the gene sequences. However, the
bona fidelity of the sequences will be questioned, if we do not use such sequences
that can be aligned with the query protein matching the original query protein
(Fig. 2.1).

Human Genome Map for
$250 only

BUY ONE AND GET
CHIMPANZEE GENOME

TRANSCRIPTOME
FREE

WANT YOUR (SEQUENCE)
MAP.??????

REGISTER

Fig. 2.1 A cartoon depicting the importance of low-cost stride of sequencing
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2.3 Intelligent and Efficient Storage of Data Is the Key

To benefit from the bioinformatics opportunities while overcoming the challenges in
the post-genomic era, several models are adopted, which demand efficient Informa-
tion Technology (IT) approaches. These are to be integrated for efficient storage and
intelligent data management. Many storage approaches have been deployed widely
over the past few years that are insufficient to meet emerging storage and data
management challenges, the approaches that treat data in the form of virtual com-
puting are to be discussed.

2.4 Development of Tools and Programs Making Wet
Laboratory Biologists Ease Their Experiments

To convince a biologist is like winning an idea. One of the best examples that one
could pertain to is designing the primers. Although there are tools available to design
primers for a sequence in an efficient way, it is far less useful as they may not get the
desired amplicon every time. There are hardly any tools these days that present proof
of concept by setting up experimental validation of functionality. As all possible
primers are individually analyzed in terms of GC content, presence of GC clamp at
30-end, the risks of primer–dimer formation, and intra-primer complementarities, a
wet laboratory perspective for designing software would make the researchers
interested to take up bioinformatics.

2.5 It Is Multifaceted and Brings Networking Among Cross
Disciplinarians

Multifaceted disciplinarians and scientists should join hands for a better science.
Take the example of developing a web server. The biologist would interpret the
background data, a machine learner or a mathematician would think of using support
vector machines. Bioinformatics is a multidisciplinary field and requires people from
different working areas. It is the combination of biology and IT to discover new
biological insights and there is an utmost necessity of tools that helps them to work
together.
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2.6 It may Partly Influence Animal Experiments

Decades ago, legislation on the use of animals was enacted in many countries
involving three R’s: Reduction, refinement, and replacement of animal models.
Ever since this was enacted, there was a sudden buzz about laboratory animals and
their use to be reduced, refined, and replaced wherever possible, for ethical and
scientific reasons. The three Rs concept was put forward by W.M.S. Russell and
R.L. Burch in 1959 in “The Principles of Humane Experimental Technique.”A great
detail on the three Rs was reviewed by many in the interest of good and humane
science. The word “alternatives” came into use after the publication of the book
“Alternatives to animal experiments” by David Smyth in 1978.

28 P. N. Suravajhala



2.7 Bioinformatics Curation, not Annotation Is the Key
for Databases

The knowledge base (KB) construction and semantic technologies (ST) have been
intensely shown great importance in the growth of bioinformatics and computational
biology. However, the KBs ensure manual curation is not sufficient for annotation of
genomic databases.

2.8 Use of Bioinformatics Methods Propel Contract
Research Organizations

A contract research organization (CRO) in bioinformatics is the need of the hour,
especially, in clinical research. A CRO can provide services such as commerciali-
zation and technology licensing pharmaceutical, assay development, preclinical
research, clinical research, clinical phases management, and vigilance. Many
CROs specifically provide support for drugs even as software must be made
available using the World Wide Web.

2.9 Bringing Core Programmers Closer

Core programmer/developers would not have any interest in biology unless one gets
motivated by bioinformatics in the application of their projects. They can only be
recruited as mere developers and possibly would be very good listeners as they can
easily understand the biology of it. After all, a circuit diagram in the computer
chipset is similar to the biology system. Isn’t it?

2.10 It Is Dynamic and So Is Inviting to Be Entrepreneurial

As we have documented extensively, R and D through education would have
substantial returns in two forms: Privately and socially. The cross-section of
researchers could fully utilize an individual’s education by becoming entrepreneurs,
with returns lower than in the perfect match, they are still substantial. Moreover, let
there be looking back at the success rate as it seldom lasts for an entire working life.
Educating entrepreneurs is at the high end of the interval and so, investments from
angelists, brokers, and venture capitalists are important for offspring benefit, as more
educated parents have more successful children.

2 Ten Reasons One Should Take Bioinformatics as a Career 29



Chapter 3
Developing Bioinformatics Skills

Prashanth N. Suravajhala

Cs gets degrees?
You never get a second chance to get a first impression
Oscar Wilde

P. N. Suravajhala (*)
Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur,
India

Bioclues Organization, Hyderabad, India
e-mail: prash@bioclues.org; http://bioclues.org

© Springer Nature Singapore Pte Ltd. 2021
P. N. Suravajhala (ed.), Your Passport to a Career in Bioinformatics,
https://doi.org/10.1007/978-981-15-9544-8_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9544-8_3&domain=pdf
mailto:prash@bioclues.org
http://bioclues.org
https://doi.org/10.1007/978-981-15-9544-8_3#DOI


Can a mediocre student raise high above standards in bioinformatics? Did
achievers succeed abruptly in a first shot? No, they have had tasted lots of failures.
That said many graduate students who have taken bioinformatics as a taught
program in developing countries have had problems in identifying job prospects.

So, what would be the fate of the aspirants with the third grade? In bioinformatics,
we believe they stand tall. Remember as a bioinformaticist, it is your duty to remain
multifaceted, think multifaceted irrespective of the stances that you take. Plan your
curricula properly. Furthermore, grading standards may become even looser in the
coming years, making it increasingly more difficult for graduate schools and
employers to distinguish between excellent, good, and mediocre students.

The following are the two plans for the ones who do not get the job offer:

1. Plan for a management degree in bioinformatics: What is seen in a researcher is
how he/she manages a laboratory. Managing a biotechnology laboratory is a very
important entity for a researcher and so is whether he/she understands the
intricacies of the market. For example, an intriguing question one could ask is
what if not? There must always be plan B. Biotechnology or bioinformatics are
just tools and one needs to be an expert in using them. If there is not a research
focus, one can opt for managerial programs which can be worked on the
following:

(a) Transforming biological entities
(b) Understand the patent regime and monopolies that lead to higher costs for

drugs and treatments
(c) Understanding Intellectual Property Right System with clear background

technicalities.

32 P. N. Suravajhala



What is often pointed and overlooked, however, is for those who have not at all
worked hard to achieve or become successful researchers. The IPR and management
courses would typically be abundant. What do you think one can make use of that? It
is the student’s job to find out whether or not the skills acquired from his erstwhile
education interests or provide value to his successful profession. On the flipside, core
competencies in bioinformatics can be increased year over year, the average GPA at
universities and colleges across the nation is on the rise.

One of the other advantages is that the students may be getting a better education
in bioinformatics rather “Exceptional Mediocrity.”

While the third-grade students would find it crucial to discuss the integration of
biology and information technology (IT) subjects, what about the rest? And you will
succeed because you have leadership and communication skills. The ability to sell
ice to an Eskimo does not necessarily require college credentials. Can a mediocre
student get into bioinformatics? Yes, what all matters is to be disciplined, deter-
mined, dynamic, and diligent (The four D rule).

3.1 Be Devoted

Ever since evolutionary biology was developed by Ernst Mayr, many multifaceted
and scientific works have been established which effectively brought bioinformatics,
one among many regularities into the wider biology and extensive post-synthesis
work in systems biology. Making a chief disciplined builder in bioinformatics
proves to be an important step in drawing together multifaceted disciplinarians.
The bioinformaticists have an increasing sense that ‘new’ biology-related ‘IT’
were emerging that would bring together the experimental methods of genetics
and IT. It was not until Paulien Hogeweg and Ben Hesper introduced the term in
1978 to refer to “Theoretical aspects of Chemistry and Biology.”

3.2 Be Determined

In taking up bioinformatics, one has to understand that determination succeeds in all
forms of academia. Understand what is that you are good at, never set aback your
temper, and please be advised that you need to face challenges from time to time.
The greatest challenge for one would be to liaise between the native fields and
acclimatizing it to bioinformatics. Take up a problem, formulate it, and thereon
allow the ‘D’ to answer yourself.

The other Ds are Diligence and dynamism: One needs to identify a great
profession in bioinformatics with the focus, diligence, and dynamism of all subjects
involved with extremely high standards. This will also allow us to achieve a very
good result in acquiring synergies between the multidimensional scientists and
ultimately in becoming an even stronger force in the IT and bioinformatics.
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3.3 Bioinformatics and the Three Cs of Research

3.4 Consistency

The first C, which one has to follow, is “internal consistency.” This C assesses
whether or not the candidate who opted for bioinformatics has chosen the same
quality, skill, or characteristic. Measured by the precision, this reliable entity often
helps researchers interpret data and predict the value of scores and the limits of the
relationship among bioinformatics variables. Assume that a researcher designs a
questionnaire to find out about bioinformatical problems with a particular focus on
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say, cardiovascular diseases (CVD), analyzing the internal consistency of identify-
ing the questions that fall not just on CVDs deals with dissatisfaction, and this we
will liaise on the questionnaire focusing on CVDs. What would be the perchance of
CVDs making the problem in the future? Are there any genes that makeup the
problem would mean that the researcher is trying to put up a brave front in
understanding the problem better?

Continuity of Research Efforts: Tracing the communication of scientific and
technical information in research is characteristic of two media—the meetings and
networking and the journals/way of publishing. As research is a cyclic process,
researchers are the producers of scientific information. The continuity of research
belies with the sources of information used by active researchers in correlation with
the current research taken by them. It is nice if the authors/researchers stick to their
same area and develop their specific subareas of research while involved in publi-
cations of their article wherein continuing authors could publish a subsequent
similar/different article in the same area as their original article. However, there is
a lack of continuity of inquiry and progress to move forward in research as authors
seldom publish in the applied research but stick to reporting the results of a single
study.

Credibility: Biological credibility is what one needs to describe to move forward.
Whether or not, there is a logical entity proposed in research, that is, a system with
which one can have a causal effect. This proposed mechanism should be consistent
with the current understanding of biology. For instance, many researchers were
averse to discuss synthetic products especially coming out of artificial expression,
which are proteins developed in the laboratory. Scientists rejected the hypothesis
because there was no known explanation for how proteins could copy themselves.
This also invited discussions from statesmen on the ethics of making proteins and
their artificial expression. Furthermore, the use of prions and their spread of an
infection to a new individual have changed the scope of protein studies on how they
copy themselves in newly infected victims. A biologically plausible mechanism is at
stake while we understand how synthetic biology takes shape. So, the need of the
hour is to make credible research.
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3.5 Hate Wet Laboratory Work?

3.6 Coping the Pressure of Experimental Work

Coping the pressure of experimental work by judging your fairness for research. Ask
how good are you able to cope with the loss of your results if you are not able to
justify it substantially. You could also ask what type of nonsense experiments would
have no results. Are experiments always predictable? Laboratory work is fairly time-
consuming and labor-intensive, even as it involves bizarre working hours. Although
time-consuming, it would be very rewarding to work in areas of very core/integrative
biology, especially looking at fundamental questions on how on earth life evolved
and how bioinformatics can leverage huge data? With many researchers in the
laboratories renowned for doing extra and long hours with intense work ethics,
one needs to ask whether or not it really works in working for long hours, thereby
doing better science. Working strenuously in the laboratory is considered one of the
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reasons why many people hate working. That said, coping with the wet laboratory
work sometimes is seen as “slave-drivers.” Thanks to bioinformatics, many
researchers started using the tools thereby lessening the scale of experimentation.
One would advocate the importance of spending time away from the laboratory
works for keeping fresh while the others would claim the workaholism is the only
way to succeed. Let there be hope and belief that the scientific community will
continue to consider wet laboratory scientists toward creative endeavor, and diver-
sity in the workplace is sure to be encouraged.

The following is the classical example of how bioinformatics has lessened the
scale of experimentation. The analysis of proteins in peanut leaves has been shown
to have a direct approach to define the function of their associated genes. Proteome
analysis linked to genome sequence information was deciphered wherein
two-dimensional gel electrophoresis in combination with in silico based sequence
identification was used to determine their identity and function related to growth,
development, and responses to stresses (Katam et al. 2010). Furthermore, upon
verification, we transferred the protein interactors from Arabidopsis to peanut,
which has enormously negated the idea of running bioassays like pull-down assays
to check for protein interaction partners. In this process, we could be able to identify
some potential proteins including RuBisCO, glutamine synthetase, glyoxisomal
malate dehydrogenase, oxygen-evolving enhancer protein, and tubulin.
Bioinformatical analyses have not only further allowed us to understand how these
groups of proteins were accorded to their cellular compartmentalization and biolog-
ical functionality, respectively, but also led to the development of protein markers
for cultivar identification at the seedling stage of the plant.

3.7 From “Hands-on In Vitro” to “Hands-on In Silico”

It would be fugitive to say that all wet laboratory work can be formulated for
predictions in silico. It is a certainty that bioinformatics predictions help the wet
laboratory biologists to reduce the time frame set for experimentation. What and how
good bioinformatics can help experimental scientists to overcome the stress and cope
it need to be a foregone conclusion.

Many researchers consider bioinformatics a hackneyed term and do not under-
stand the application of it. There is a lot to read about bioinformatics, more than a
tool. Bioinformatics has helped wet laboratory biologists and other cross-
disciplinarians tremendously in the last decade even as there has been increased
automation in the generation of data from sequenom to phenomes using genotyping
information. Bioinformatics has connected biological data to hypotheses by provid-
ing up-to-date descriptions in analyzing sequences. This has further allowed
sequences to elucidate the literature and study the evolution of organisms. The
application of high-throughput DNA sequencers has already provided an overload
of sequence data from analyzing DNA and protein sequences, from motif detection
to gene prediction, and annotation to curation. There has been a wide focus on gene
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expression analysis from the perspective of traditional microarrays by an introduc-
tion to the evolving field of phenomics. Furthermore, there are associated mining
tools that are becoming increasingly essential to interpret the vast volume of
published biological information, while from a developer’s point of view, one
needs to describe the various data and databases toward common programming
languages used for bioinformatics applications.

The following are a couple of case studies that show how one can correlate in
silico approaches to a wet laboratory. While the first explains the need for statistical
inference for an experiment, the second combines the bioinformatical predictions
using already existing wet laboratory data.

3.7.1 Correlating and Identifying Statistically Significant
Causality Data

As correlation does not imply, hence, causation is the paradigm behind understand-
ing certain data, namely, biomolecules. From formulating a problem to separating
correlated data, causality is a major difficulty in understanding complex differences
of molecular biology from a systems level. So, what if we have a data correlated to
different groups showing relative antigenicity data linked to them? Could we assign
the likelihood of causality to these groups? For example, an antigen A is causal for
another antigen B in group X, the reverse causation B being the causality of A may
not hold true. Here, we consider antigenic data linked to various subpopulation of
HIV infected (�patients) by developing a strategy to determine the causality of
antigen-specific data in various subgroups of the diseased population. This white
paper may be used as a measure to predict the antigens targeted to various groups,
here more precisely “causality.”

3.7.1.1 Problem

Identifying variations in the antigens susceptible to various diseased groups of
subpopulation provides functional information on how genes lead to disease. Let
us consider the below-mentioned data which consists of the peripheral blood mono-
nuclear cells (PBMC) from three groups which were stimulated with different
bacterial antigens. In turn, the cytokines produced by PBMCs play an important
role in the immune system. Based on the production of cytokines, immunogenicity
in these groups could be better understood. We propose a method to sensitize and
identifying positive predictive accuracy (PPA) using t-tests in predicting the antigens
(causal data) immunogenizing the various groups.
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3.7.2 Brief Methods

3.7.2.1 Dataset

The three various groups of HIV that were analyzed are as follows:

1. HIV positive
2. HIV control
3. HIV negative and other “diseases” negative

3.7.2.2 Statistical Analyses

1. Positive Predictive Accuracy:
The sensitivity and specificity do not always provide the probability of a correct
hypothesis. At times, we must approach the data using predictive accuracy. The
PPA is based on the probability of the antigen to be more immunogenic against a
certain group. We used the following three calculations to perform the prediction:

(a) Sensitivity is the proportion of true positives correctly identified in the data
(b) Prevalence or likelihood is the number of samples/total number of samples

within the group
(c) Positive prediction accuracy or PPA is calculated using the formula.

PPA ¼ sensitivity� prevalence
sensitivity� prevalenceþ 1� specificityð Þ � 1� prevalenceð Þ

However, since we have taken the proportion of true positives to be maximum
while ignoring the true negatives, specificity remains out of question, thus making

PPA ¼ sensitivity� prevalence
sensitivity� prevalence� 1� prevalenceð Þ

PPA ¼ 1� prevalence

2. The t-test of significance: Student’s t-test was used based on sampling the three
groups as they have unequal variances. In particular, this test is sensitive and
could be used to yield a better probability, a value better than PPA, which might
provide ample evidence to support the above hypothesis. While this test is the
standard test for calculating the relative efficiency of other tests (in this case
PPA), it also requires the most stringent assumptions.

3. Friedman test: The Friedman test is a two-way analysis based on ranks which
models the ratings of a (rows) “antigens” on b (columns) “groups.” The test
parameter here W is called Kendall’s coefficient of concordance.
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W ¼ Sum Rct2
� � � 12= a2 � b � a2 � 1

� �� �� 3

� b?1ð Þ= b� 1ð Þ=Kendall’s coefficient
Q ¼ a � b� 1ð Þ �W=Chi square

Degrees of Freedom DoFð Þ ¼ b� 1ð Þ=Number of columns� 1

Furthermore, the mean Spearman rank correlation coefficient (Rsm) between
all the rows could also be identified using (a*W�1)/(a�1).

3.7.3 Interpreting the Results Based on Preliminary Analyses
Using PPA

In the data provided, we have used all the three groups and scored the sensitivity,
prevalence, and PPA. Interpreting the probability using prevalence is crucial and was
carried out using the total number of subpopulations in the groups. If the prevalence
is low, the PPA is high, which clearly indicates that the data constitute all true
positives. Had specificity been inclusive, it is highly inevitable that the results will be
false positives. However, a high PPA may indicate that it is statistically relevant to
find antigens specific for immunogenicity, but it does not necessarily indicate the
presence of immune response. Further analyses on detection and elicitation of
immune response using cytokines were carried out wherein the preliminary analyses
using a t-test of significance showed that the groups 1 and 2 are statistically more
significantly compared to the third group. Considering the fact that group 2 is a
control dataset, we would, however, find it to be significant; hence, a test of the
hypothesis was carried out to find statistical significance.

T-Test of Significance

• For groups 1 and 2: t ¼ �12.01, DF ¼ 25, p\ ¼ 1.615e-09
• For groups 2 and 3: t ¼ 12.59, DF ¼ 25, p\ ¼ 1.045e-09
• For groups 1 and 3: t ¼ �13.58, DF ¼ 25, p\ ¼ 5.352e-10.

Where N is the total numbers (population), DF is degree of freedom (N�1), and t, the
test parameter ¼ (Mean/SD)*sqrt(N ) and p, the probability. Since t is substantially
same for groups “1 and 2” and “2 and 3,” group 3 is ignored for a very less
probability.

Friedman Test

Kendall’s coefficient W ¼ �3.29
Chi-squared Q ¼ �164.44*X^2
Degree of freedom DoF ¼ 2, p\ ¼ 1.00000
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The level of significance, p\ ¼ 1.00000, given above is based on an approxima-
tion of the chi-squared distribution. Another statistical significant concordance is if
the test parameter Q is high (i.e., statistically significant), then the columns are
known to be different and the rows are correlated, which in our case, the dataset
holds true (Q being relatively high).

3.7.4 Predicting the Antigens Immunizing the Groups

From the above analyses, it is clear that the three methods we employed are
independent of each other and are sensitive to apply statistical significance. Further-
more, sensitivity in groups 1 and 2 when averaged (0.25 and 0.58, respectively) (see
data below), sets the mark for identifying the candidate antigens. Hence, the antigens
whose sensitive values are par below the above-mentioned respective values for the
groups are discarded (see the other data tabled) while the rest are used to identify
cytokines against the antigens that play an important role in the immune system.

3.7.5 Conclusions

The antigens, namely Z, A0, and B0 are specific to the two groups 1 and 2. Based on
the values obtained, the production of cytokines specific to the group as against the
antigens can be identified from the data. Furthermore, these could also be used to
integrate co-expression networks and genotypic data. If the data constitutes expres-
sion traits, we could establish statistical significance using the methods discussed
above. The causal predictions that were made (see Table 1.2) could in turn be used
wherein the data may be divided into training and testing data randomly in 8:2 ratios.
To avoid the selection bias, training set cross-validation of 10-fold could be carried
out producing an accuracy. While testing on the remaining 20% test dataset, the
predictive accuracy could again be established using a radial basis function support
vector machine (RBF-SVM) kernel. The use of an SVM-based classifier gives the
best result among all other classifiers, but the limited accuracy performance might
challenge the machine learning classifier.

3.7.6 Bottom Line

1. Which methods are readily implemented and able to extract biologically relevant
causal connections among genes?

• PPA, t-test, and Friedman tests
• Support vector machines (SVM)
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2. If a method employs data normalization, what are the strengths and weaknesses of
the normalization algorithm in terms of facilitating data analysis and interpreting
the data and results?

• Strengths: Sensitive and highly accurate, and easy to store data
• Weakness: Loss of data as it is pretty difficult to ascertain

3. What are the pros and cons of each method?

• PPA

Pros: Direct disease could be ascertained
Cons: It is extrinsic, meaning it is always dependent on other factors,

namely, prevalence.

• The t-test

Pros: Sampling huge datasets, correlation
Cons: The user must be aware of how big the sample is and what for the

data are to be used.

• Friedman test

Pros: Easy ranking and nonparametric test
Cons: High rate of false positives and dependent on other datasets

• SVM

Pros: Prediction accuracy is always high
Cons: Cannot be used for training if the data are less and mediocre.

4. Are there pitfalls to avoid with a given method or circumstances under which the
method may be less reliable?

• Using SVM, the number and inappropriate set of descriptors and multiple
target classes make this method more cumbersome to act as an efficient tool
especially to predict genes.

5. What criteria were used to evaluate and rank the methods?

• Ranking is based on the existence of antigens specific to a group and whether
or not a cytokine particular to the group is produced.

3.8 Case Study on Nematome: Protein Interactions Specific
to Parasitism in Nematodes

The nematodes, commonly called the roundworms (belong to phylum Nematoda),
are the most diverse of all animals. Of more than 28,000 described so far, approx-
imately 16,000 are parasitic. The parasitic nematodes especially those from plants
have not yet been known better. Furthermore, genome sequences of the plant-

42 P. N. Suravajhala



parasitic nematodes are just beginning to yield results even as RNA-Seq
(transcriptomic) analysis is being done by us and many other laboratories. With
Caenorhabditis elegans’ genome completely sequenced way back in 1998, nema-
tode genome sequences hold a great promise to understand the umpteen nematodes’
genomes waiting to be sequenced. It has been known that the genomic repertoire and
gene-centered density is roughly about 1 gene/5 kb with 24% introns on an average
across all nematodes. While many genes are arranged in the polycistronic series of
operon models, there holds greater importance to understand mitochondrial genome
as well owing to the identification of parasitic genes in nematodes. The RNA-Seq
and RNAi studies have started yielding results too with biology curators appraising
the set of known genes even as the predictions need to reach consensus along with
the flourished datasets of ESTs, RNAseq, and genomic repertoire. So that begs a
question of whether or not any commonalities of all these genes are known across all
nematodes? The answer belies in how and what kind of organisms are these:
Parasitic, nonparasitic, entomopathogenic parasitoids, non-entomo nematodes, and
so on.

For example, Caenorhabditis briggsae genome and further comparative genomic
analyses determined the novel gene sequences from the same genus nematodes such
as Caenorhabditis remanei, Caenorhabditis japonicawhich further enthused knowl-
edge that they might be less likely to complete and remain accurate than that of
C. elegans. That said, the worm-based database is void of many plant-parasitic
nematodes. Further understanding to nematodes has revealed that there has been
an accelerated rate of evolution in the parasitic lineages while several phylogenet-
ically ancient (Read parasitic) genes might have been lost and found elsewhere
across all nematode species. In that process, RNA interference (RNAi) experiments
leading to gene loss of f unction were done even as researchers were able to knock
down about 86% of the*20,000 genes in the worm with an established functional
role mounting to 9% of the nematode genomes on an average. However, the story
does not end here with ascribing function to the genes as the aforementioned
methods are mediocre and involve lots of false-positive datasets. With systems
biology burgeoning, there is a need to understand the how of interactions in
nematodes. The C elegans protein interaction network (PIN) was a masterpiece of
genomic catalog of protein–protein interactions (PPI).The interactions have been
established based on the small-scale experiments while there is need to complement
the bona fide interaction studies with large-scale datasets. Predicting the PIN across
individual nematode genomes involves lots of experiments, reactions, and impor-
tantly wastage of man-hours. Therefore, we wish to propose a uni-comparative
biology approach to predict PPI across ergonomically important nematodes of
parasitoids, viz. root knot, migratory, and most damaging. Nevertheless, the inter-
actions can be ascertained and the function can be better ascribed across these
nematodes wherein we would identify the proteins involved in parasitism. That
said, we propose a word called nematome fort hose set of (most commonly occur-
ring) proteins implicated in parasitism.
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3.8.1 Methods

Wet laboratory experiments.

Plasmid Construction

1. Two-hybrid constructs: The cDNAs encoding full-length parts will be amplified
by PCR using gene-specific primers containing REs with EcoRI and BamHI
restriction sites. The PCR products would then be digested with REs and then
ligated.

2. Plant/nematode expression constructs: The constructs used to transiently express
the interactor proteins will be based on a plasmid, namely, pMON999, which will
contain the proteins specific to the promotor and terminators (van Bokhoven et al.
1993). The cDNAs of the positive clones will then be excised from the vectors
using EcoRI and ligated in the EcoRI site to allow expression of the interactors
tagged with other proteins.

3.8.2 Interaction Analyses

• Yeast two-hybrid screening (or co-immunoprecipitation): The initial experiments
will be enthused with a C. elegans cDNA library in the desired vector (Promega/
Clontech). This library thus should be constructed with all possible independent
cDNAs. Colonies are then selected on agar plates lacking histidine, tryptophan,
and leucine over a 7-day period while positive yeast transformants will be picked
up and replated Gal assay. A positive interaction can then be determined by the
appearance of blue colonies and the plasmids can be isolated. In subsequent
experiments, bait and prey constructs containing full-length proteins or domains
will be analyzed and later can be transfected.

• Immunofluorescence labeling and fluorescent microscopy: This can be performed
essentially based on the aforementioned results and these can be imaged using
fluorescent microscopy.

3.8.3 Dry Laboratory/Bioinformatics

1. Traditional mapping of interactions for parasitic genes with respect to functional
annotation.

2. Interolog mapping: While it is known that the orthologous genes are highly
conserved between closely related species, we presume that the systems might
utilize the same genes and share interactant information across the orthology
datasets across different organisms. However, it does not necessarily mean that
the amount of sequence conservation is directly proportional to interaction even
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as certain studies comparing high-throughput data including expression,
protein–protein, protein–DNA, and genetic interactions between close species
show conservation at a much lower rate than expected. We would like to
identify those parasitic genes from step (1) and show that conservation is
maintained between species albeit through network modules. Furthermore, we
would like to employ a confidence score for interactions based on available
experimental evidence and conservation across species. (Please refer flowchart
below.)

3. Filtering the datasets and reaching the consensus: We would then filter the
interaction datasets and integrate them with a high-confidence interval thereby
reaching consensus. This would ensure that the estimated size of the parasitic
interactome of nematodes (nematome) would have an approximate number of
interactions. Comparison with other types of functional genomic data would
show the complementarities of distinct experimental approaches in predicting
different functional relationships between genes or proteins. Finally, we would
like to compare them against different tissue-related proteins with respect to
co-immunoprecipitation (CoIP) assays. A further re-examination of the connec-
tivity of essential genes in nematodes could support the presumption that the
number of interaction partners can accurately predict whether a gene is essential
and if essential to which organelle. This would yield organelle proteomic ana-
lyses. In conclusion, our analysis should facilitate an integrative systems biology
approach to elucidating the nematode cellular networks that contribute to diseases
(Fig. 3.1).

3.9 Tips and Traps in Writing a Research Article
in Bioinformatics

Many consider writing the article/proposal to be the toughest and perhaps most
boring part of the entire report-writing process. The best way to start a project
work especially Ph.D. is to start a review. The student must have a firm grasp on
the topic that they have been introduced to or the work they have been acquainted
with, and therefore put in countless man-hours of the literature review, formulate
a problem, and finally then submit the results in writing which is a difficult task, to
say the least. The following guiding principles could provide the reader with
tips on taking up the problem, defining it, and the logistics of the write-up, and
so on.
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3.10 Convert Ideas and Thoughts into Action for a Strong
Problem Formulation

There are changeable ideas always about how long or how short a review/paper
proposal should be. Conversely, the proposal can be called as white paper if it is
addressed during its preparation. But please ensure that in the former, all the points
and ideation process are covered while in the latter, a concrete dialog of proposal
should be summarized.

Fig. 3.1 A pipeline for making a “Nematome”

46 P. N. Suravajhala



3.10.1 Address the Problem Well with Subheadings

3.10.1.1 Background

The background is an important summary of the major points addressed by the
erstwhile researchers. These questions behind your research could be good compen-
dium to address the current problem you are to address in the future and provides the
context of those questions within a larger academic framework. This precisely is a
kind of pre-introduction and one should be able to see who read the introduction
should be able to understand what you are attempting to discern through your
research and writing.

3.10.1.2 Introduction and Review of Literature

This portion should address the scope of research while listing major findings.
Whether or not one sets out a specific portion of the proposal for a literature review
is to the discretion, it would be nice if a fair problem is specifically indicated wherein
bioinformatics has been employed to lessen the scale of experimentation. Some
points on introducing a pictorial representation or Gantt chart would also be inviting
wherein some of the results can interlace within the other major portions of the
intending proposal. Regardless of how one would present the literature review, we
could describe the findings of the review specific to the importance of the problem
chosen in the area of custom research.

3.10.1.3 Problem Formulation and Objectives of the Study

It would be nice if the researcher describes how bioinformatics can leverage issues as
depth and provide the background and particular context of the problem in relation to
the particular academic field. The objectives can be described on a point-to-point
basis not making up to one page.

3.10.1.4 Materials and Methods

What is the overall plan of the experiments that will be done and why planning these
bioinformatics predictions and experiments’ including annotation and curation is an
important element of the dissertation. All the detailed methods of research to be
demonstrated relating to the question and problem formulation should also be
addressed.
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3.10.1.5 Results and Discussion

This should specifically focus on what was aimed during the dissertation frame, and
the results, although not preferentially discussed as per the objectives, may include
the contents with pictorial and graphical representations with concise statements
debating and reaching the consensus of the objectives of the study. It would be nice
if the points are split and an appealing statement can be made to be inviting for the
reader to ensure there is a flow of very good reading. Many a time, the reader falls in
trouble in not understanding the scope and depth of the problem. Especially, if it
were bioinformatics predictions, what makes the predictions bona fide would mean
that the works are more precisely specific and with respect to the growth of the
works.

3.10.1.6 Conclusions and Future Directions

Conclusions typically are written shorter and play an important role in bringing
together the main areas covered in the erstwhile analyses as described until the
Results and Discussion. Furthermore, it would also work on giving a kind of prefinal
comment or judgment making suggestions for improvement and speculating on
future directions. Although conclusions are likely to look more complex, it is to be
noted that the significance of the findings and recommendations for future work are
to be brought to the notice of the reader in this section wherein important implica-
tions are to be covered. The future scope and the upcoming challenges negating the
line of false positives would really provide the reader and the dissertation very
inviting not only toward the research but also for the reader who can cite your
work in many ways.

3.10.1.7 References/Bibliography

Making a list of all source materials and properly formatting them in whatever
academic style is required for a complete dissertation, which will address the
problem of writing with elegance.

3.10.2 Plan Your Next Steps and Always Give Plenty of Time

One good thing that always takes us to move forward is to plan the way we write the
report. As bioinformatics involve lots of predictions, the wise thing would be to
estimate how many hours/days you can start working in writing the manuscript. The
last thing at the last minute is to understand the fact that the write-up or proposal may
even take up to 6–12 months to complete or sometimes even longer. Always ensure
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that there is room for tackling questionnaires, discussion with your peers, and most
important, call for constructive criticism.

3.10.3 Discuss with your Peers

Always broader understanding of the research topic helps because when it comes to
the dissertation proposal, many a proposal is negated and they eventually get off the
ground even without an adequate review. That will allow us to invite contacts in the
form of peer reviewers and committee members to prepare the report which plays a
vital step to stay in touch for the future. Furthermore, they are available anytime for
open advice anytime. There is nothing wrong with asking for copies of previous
reports so that these, which were once approved, would allow you to prepare with
ease and satisfaction.

3.10.4 Accept Constructive Criticism

Peer reviewing and the purpose of a support group are to ensure we read each other’s
work and give feedback. In doing this, we will not only help improve each other’s
writing but also allow us time to read while evaluating the work and later providing
the feedback. That said, one need not be an expert and so let not content or
vocabulary intimidated. Even if not familiar, a strong argument can be made on
how the manuscript has been written and addressed within the scope of the journal or
subject, and so on.

3.10.5 Publish or Perish Is the Key While Citing
and Cross-Referring Other Articles of Interest

After the research is well taken into, it is recognized only on account of publications.
The world knows only after the work is published where people come to know about
it. Adding references to such work into their publication text and list of references
can be seen as a kind of good normative citation. That said, references can be divided
into single units, whereby each reference turns into a citation that can be aggregated
in many different ways, forming a wide range of citation impact factors/indicators
(CIF). It is like many such articles are references and indexed in citation indexes,
such as the Thomson Reuters’ Web of Science database even as many online
repositories such as Google Scholar, BioMed Experts in the form of “scientometrics”
work for the cause. The key here is in the competitive field, publish, or perish.
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3.10.6 Peer Review Holds an Important Community Service

Peer review is the key! The more you review, in all likelihood, the more you will be
asked to review. Oftentimes you may be asked to review boring papers that are of no
interest to you. While it is important to serve as a reviewer, only accept papers in
which you are keenly interested, because either they are close to your area of
research or you feel you can learn something. You might say that should I not
know the work very well to be a reviewer? Often a perspective from someone in a
slightly different area can be very effective in improving a paper. Editors would of
course like to see your review papers even if you are not particularly interested in
them, but the reality is that good reviewers must use their reviewing time wisely.
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Chapter 4
The Esoteric of Bioinformatics

Prashanth N. Suravajhala

There are few people who can understand the intricacies of bioinformatics. Through
myriad bioinformatics predictions, the wet laboratory observations, and experiments
can be developed to illustrate ideas on problem formulation based on genes or
proteins. Topics include the biology of the system, sources, and effects of bioinfor-
matics predictions, characterizing the uncharacterized genes and genomes, and
applications in medicine and agriculture.

Basic skills in integrated biology would be a plus which includes knowledge of
biochemistry, bioinformatics, and molecular biology. One need not have to be an
expert in all, but it helps to have at least some background in each field. Amazingly,
bioinformaticists hail from many other disciplines such as statistics, computer
science, and mathematics. The smartness in getting into bioinformatics depends on
how good the researcher is getting acclimatized to through experience he/she had
gained in his/her field. We will provide tips on how to be a winner in bioinformatics
using bioinforma TICKS (Please see Frequently Asked Questions). Through limit-
less observations and discussions on experiments, we develop and illustrate the
following ideas on how esoterically bioinformatics can be in nutshell.

4.1 Bioinformatics Market: Hype or Hope?

The last couple of decades have seen the bioinformatics market significantly evolv-
ing across the world on the back of the rising omics industry. With an increase in the
application of these omics-es in biotechnology, there has been a commercial market
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for bioinformatics worldwide. With declining costs of per-base genome sequencing,
introduction of next-generation sequencing (NGS), widespread interest in Geneal-
ogy, micro-RNA research, the introduction of aptamers replacing antibodies, and so
on. Public and private sector investment has given a significant boost to the industry.
It has been known that the biggest field of the global bioinformatics industry has
been into sequencing, software, and services with respect to IT infrastructure. With
the software segment improving its share, the database market will suffer the
downturn due to the increasing popularity of innovative analysis software including
that of SAS/inbuilt software for companies. Applications of bioinformatics in
genomics, proteomics, and pharmacogenomics have furthered genome studies that
completely transformed basic research. For example, diagnostics specific to cancer
has become the leading therapeutic area wherein bioinformatics is a big support, be it
outsourcing or finding drivers pushing the market. As the market has been
witnessing the launches of key bioinformatics products and services in various
areas, these developments might impact the biotechnology industry’s future perfor-
mance, and therefore, the competitive landscape for this need to be done.

4.2 Decoding Genes Using Genealogy: What Bioinformatics
Can Do?

“DNA transcripts RNA and RNA translate proteins” have been the central dogma of
molecular biology and with the identification of genes contributing to diseases well
represented through the central dogma of bioinformatics using sequence predicts
structure predicts function, direct method for discovering the molecular pathways
involved in their pathogenesis or function of these proteins per se could be interest-
ing to delve. What interests’ researchers to delve into the genome? Let us imagine
10 years down the line what are the diseases one could predict beforehand and
perhaps have a diagnostic moiety represented so that humans can beware of? That
said Iceland based decode genetics have virtually established this using a built-in
system of information linking medical information from patients. However, there are
lots of ethics that one needs to exploit and understand and use this interpretation with
specific informed consent even as disease-by-disease studies and molecular genetic
information could be ascertained.

4.3 Communication Between Organelles and the Genes

Communication between organelles and the genes can be done with respect to the
systems biology context. A system can be better described as an entity constituting
major components and minor components. While major components, namely, tis-
sues, organs, and organelles, compete for space, minor components such as genes,
proteins, and enzymes compete for interacting with each other or compete with the
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analogous components. This competence results in ascribing function. One of the
major competitors is the presence of subcellular sorting signals for the proteins
localized to different organelles. For example, researchers have identified key
protein determinants targeting mitochondria. These protein determinants falling at
least four subclasses of mitochondrial-targeted proteins containing targeting signals
directed to different sites within the mitochondrion (outer membrane, intermembrane
space, inner membrane, and matrix) by diverse mechanisms (Bolender et al. 2008).
Conversely, some of these proteins are not known and are yet to be discovered,
remaining as “hypothetical.” Recently, a dog was used as a cancer model (Khanna
2006), which enabled the researchers to understand whether there are any unknown
genes or genes encoding some HPs involved in diseases (Snyderman and Langheier
2006). The dog genome study has initiated exploring some diseases whose genetic
linkage is not yet known. We think that some of the orthologous regions of these HPs
probably were mapped, providing clues to study important diseases.

4.4 Pull-Down Assays and the Role of Bioinformatics

Earlier, researchers’ idea that electrospray could spray and ionize molecules using
mass spectrometry was well-conceived, and the substances were analyzed to ionize
them. However, subsequently, small molecules would play an important role in
analyses wherein samples from the patients could be directly analyzed. Researchers
now have been working on similar ideas with proteins. However, there are several
limiting factors in measuring the mass of proteins and so is the case with sequencing
peptides. The Edman degradation test has been in use to determine what amino acid
it was. With mass spectrometry techniques burgeoning, tests such as ED were
shelved out bringing the development of more robust technologies such as tandem
MS and TOF. Thanks to bioinformatics, even there are efficient bioinformatics
databases employed with MS such as Mascot, a powerful search engine to identify
proteins from primary sequence databases. The idea of obtaining proteins from the
gel and still analyzing them very sensitively using mass spectrometry was a part of
pioneering studies by Mathias Mann’s research group back in 1996. With the pro-
teins very difficult to get out of the gel, it has been eventually discovered that the
short part of the protein sequences, aka peptide sequence tag, can be searched using
bioinformatics algorithms that are well-known and searched for similar sets of
sequences with equivocal function be ascertained. So, if one would ask whether
proteomicists’ view of mapping all proteins on this 2D gel electrophoresis was
deployable, it must be noted that it has its own merits and demerits. Furthermore,
out of the limitations and less potential use, variants of MS play an important role.
The electron spin ionization MS has enabled characterizing the protein complexes
where one can look at a small number of proteins that had some functional context;
nevertheless, we are now able to do it at one go. Consider an example MLH1which is
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involved in DNA mismatch repair. However, it has not been known that DNA
mismatch repair exists in mitochondria, but we knew that from a bioinformatics
point of view and interolog mapping, we could get interesting candidates and so
believe that MLH1might be inherent to mitochondria. To run pull-down assays, we
need antibodies raised against the bait (MLH1 here). The idea is that the proteins
when pulled down would interact with its prey proteins and therefore, would be
associated with each other and so the interactions and functions could be transferred.
If you had the antibody, you could pull out not just the receptor, but the other players
in the known mitochondrial pathway. Very recently, we could use aptamers which
completely are sensitive, and bona fidelity is at the means of cost-effectiveness when
compared to antibodies. Aptamers, until recently, were used for RNA chimeras, and
not long ago we discover that these can be used for pull-down assays, especially for
CoIP experiments sensitizing the tagged assays in determining the function of
hypothetical proteins.

That said, determining the HPs targeted to mitochondria specific to MLH1 could
be interesting. There are currently 1185 HPs in humans. While searching for human
mitochondrial proteins, we augmented the fidelity of in silico selection strategy in
searching for candidate HPs targeted to mitochondria. In this process, the human
mismatch repair protein hMLH1 that we explored revealed that it is not localized to
mitochondria, while the hMLH1 is known in nuclear extracts of human cells. A
greater amount of gene diversity remains to be studied across many DNA mismatch
repair proteins including that of hMLH1. In that process, we believe many HPs
targeted to mitochondria (read putative DNA mismatch repair) could be interesting
candidates to study the dynamic behavior of genes and establish how HPs are
distributed and altered. The work could be interceded based on wet laboratory and
in silico experiments. First, to check for candidate HPs targeted to mitochondria, we
can run pull-down assays. Whereas the above wet laboratory experiments can be
carried out, we can also work based on the interaction studies. We could deduce
putative protein interactions that we are already establishing specific to hMLH 1and
diseased candidates. From the interaction map, we could find the nearest interacting
partners of the protein and then model the genes involved in diverse functions, and
specifically, that of the HPs targeted to mitochondria. Above all, while hMLH1 is
just considered as an example, we can consider any genes or set of genes to study
how gene functions are altered. Finally, a web server (with script complemented) is
to be developed to find how genetic variation is ascribed to genes.

As MS data analysis is endless and limitless, we feel it is quantitative especially
when bioinformatics has made leaps and bounds in the recent past. Previously, one
used mass spectrometry, as we are trying to do on MLH1, to find and sequence a
single protein. Now thereon, quantitative measurements on it can be done with the
kinds of things with proteins that people have only been doing so far with mRNA
and microarrays. The advantage of doing them at a protein level is that proteins are
the functional agents. When you look at mRNA on chips, you have a question as to
whether the change you are seeing is at the mRNA level or down at a deeper level of
regulation. Maybe, it is at the protein level. Nowadays, we can read out the proteome
in a quantitative way, in a large-scale fashion. Another area of work that is more
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specific to mass spectrometry is to look at modifications. We not only want to know
what proteins are present in a sample but also how they are modified. Are they in
active status? Are they phosphorylated, for example? This can now be done in a
large-scale way by mass spectrometry. We can now look at the proteome quantita-
tively and examine how mitochondrial pathways change by looking at how the
proteins are modified, whether they are phosphorylated. By doing so, we have a very
good handle on how cells process information. This will be a big theme and esoteric
in the fields of bioinformatics and systems. There is another new field called
“interaction proteomics.” Here you use mass spectrometry and proteomics to see
which proteins talk to which other proteins. Could the MLH1 be used as a potential
biomarker for diseases? And that is also finally coming within reach. We hope that
with further development we can look at the proteins in a urine sample, for instance,
and then use them to classify patients. What diseases would we be covering and
following? What drugs do they respond to? It is limitless, isn’t it?

4.5 Say “Ome” Using Essential Bioinformatical Indicators

Access to huge bioinformatics data is essential for understanding what kind of data
would be useful to experiment in the laboratory. Thanks to many omics-es that have
steadfastly been available. Among several impediments to generating data and
accessing in the laboratory, an important incentive for scientists to publish research
articles in bioinformatics with explicit recognition from wet laboratory perspective,
collaborate with scientists, has tacit conversations through academic communities.
Ome is many or monies. Saying “ome” is the key to become a successful
bioinformaticist.

4.6 Ten Career Options to Opt Through Bioinformatics

1. Scientist

WHAT: You chose to become a Scientist.
WHO: A Ph.D. in Biology/Biotechnologies/Informatics is needed. However,

MScs with research with an exceptional track record can apply for
positions too.

WHEN: A Ph.D. with a couple of years of postdoctoral experience can start
applying for positions.

WHERE: In research organizations, collaborative institutes, and so on.
HOW: You will be responsible for the following:
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(a) Envision and build databases/web servers for wet laboratory researchers
to share their biological data. In the case of hospitals, help create person-
alized data warehouse medicines with individuals’ genetic code and
biochemistry. Create computer tools to track and analyze the patterns of
viral outbreaks, such as flu, around the country.

2. Lab manager
3. Professor
4. Research fellow
5. Entrepreneur
6. Analyst
7. Consultant
8. Technology licensing officer
9. Business manager

10. Research associate
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Chapter 5
Common Minimum Standards: A Syllabus
for Bioinformatics Practitioners

Prashanth N. Suravajhala

Disseminating key survival messages on bioinformatics with emphasis on common
minimum standards for bioinformatics education could bring a rise in awareness of
the need for nonformal and formal education programs. The following are the brief
subheads of what an undergraduate in bioinformatics could be taught:
Introduction

• What and the how of bioinformatics.

Bioinformatics to Computational Biology

• From a mere “Tool” to a science.

Need for bioinformatics today.
Applications of bioinformatics in various disciplines. Current prospects and

future challenges.
Homology and similarity searches using bioinformatics.
Advanced similarity searching on the Web.
Using Blast on the Web.
Searching sequence databases for predicting structures.

Phylogenetic and Multiple Alignment Tools

• CLUSTAL and PHYLIP.

Sequence-based Taxonomy
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• From multiple alignments to phylogeny.

Validating consensus sequences.

Primer Designing In Silico

• Properties of a bona fide primer.

Primer Designing Tools

• Primer Blast and e-PCR

A pilot experiment for designing and synthesizing a primer in vitro. Hands-on
with emphasis on the participants’ favorite genes.

Introduction to computational evolutionary biology.

Bioinformatics for Evolution

• Validating novel proteins

Ks/Ka score detects evolution. Detecting selection in sequences.

Functional Genomics

• Annotating genomes to proteomes. Why need curation?

Validating complexity in sequences/conserved regions.
Genome Projects

• Comparative genomics

Advances

• The HapMap project

Poor Man’s Genomes

• An EST perspective

Expression Data in Genomes

• SAGE

Web-based practices and analyzing assembled genomes.
Systems to Synthetic Biology.
What is Systems Biology?
Systems Biology of aegis.
Top-down and bottom-up.Protein–protein interactions (PPI).
Wet laboratory methods employed for analyzing PPI

Interpreting the Data

• In silico tools and visualizers for Systems Biology
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Introduction to (Now) Next-Generation Sequencing

• Challenges
• Tools for next-generation sequencing

Semantic technologies for biologists.
Interpreting genes and proteins using rearrangement.

Conserved DNA sequences

• Understanding promoters and restriction sites.

Domains, motifs, patterns, and SNPs. Comparative genomics of regulatory
regions. Introduction to bio programming.

Subcellular localization studies and the role of genes as probes.
Miscellaneous topics of interest.
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Chapter 6
Colloquial Group Discussion
on Bioinformatics: Grand Challenges

Prashanth N. Suravajhala

This is the outcome of the GD addressed by multifaceted disciplinarians. The
following text is colloquial and the reader may consider it to be the voice of all
the participants.

Bioinformatics was highly evolved in early 2000 and all of a sudden fallen and not
much talked by the end of the decade. Various schools and universities have recently
started a high-end program on bioinformatics in Western countries where as in
developing countries, the taught programs are weakened on the premise there is a
demand for expeditious faculty. With researchers scaling the ladder of bioinformatical
progress by leaps and bounds, there is a need to identify the why and the how of lacuna
for bioinformatics. Some of the excerpts from the consensus points of the GD titled
‘bioinformatics: Visions and Challenges for the next decade’ are as follows.

We considered how bioinformatics may evolve in the future and what challenges
and research is needed to realize this evolution. With an increase of diverse
resources, we suggest bioinformatics will evolve by bringing biologists together to
understand what precisely the ‘B’ word is. In other words, we all agreed that
multifaceted disciplinarians play an important role to evolve bioinformatics research
in developing countries for that matter anywhere. While many researchers consider
bioinformatics a threadbare term, few do not understand the application of it leaving
lots to read about bioinformatics, more than a tool. How bioinformatics will help wet
laboratory biologists and other cross-disciplinary scientists were discussed in great
detail. It was felt that the biologists can easily understand and interpret the results of
bioinformatics compared to bioinformaticists because of the girth of understandabil-
ity they have. Basic skills in integrated biology would be a plus which includes
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knowledge of biochemistry, bioinformatics, and molecular biology. One need not
have to be an expert in all, but it helps to have at least some background in each field.
Amazingly, bioinformaticists hail from many other disciplines such as statistics,
computer science, and mathematics. The smartness in getting into bioinformatics
depends on how good the researcher is getting acclimatized to through the experi-
ence he/she had gained in his/her field. That said, we also discussed how to be a
winner in bioinformatics and perhaps not make paraphernalia.

While all of us agreed to the fact that bioinformatics in India and developing
countries has been hyped a lot, the Information technology (IT) aspect of it was
considered to be one of the reasons even as a high salary market for bioinformatics
was assumed to play wet blanket. Many people also agreed to the fact that it is not
really a problem to digest the big B word, with no compulsion set to it. We also
agreed that funding, reaching consensus; flexibility, and collaboration are the keys to
bioinformatics in Indian research to move forward. On a note on whether or not we
are good at writing research grants, there was a split in the opinion, wherein many
opined that yes, it could be; while bureaucracy hinders the innovation and ideas.
That said, we also herald the discussion for respecting open-access, which is stellar
for bioinformatics development.

Bioinformatics as a subject should be taught at school and college level along
with major subjects or it should be a part of computer application. That said, students
who come out of college or universities will have an idea about what actual
bioinformatics applications can be leveraged in solving major biological problems.
The government could also take the initiative to encourage bioinformatics by giving
funding to the projects, facilities, and positions in undergraduate schools and
colleges. Likewise, all faculties could visit colleges and schools once in a month
and cater to the understanding of bioinformatics in the schools. With the world
facing a lot of problems in the environmental and medical issues, we reached a
consensus that bioinformatics is the solution through combined efforts. Tradition-
ally, we have a lot of acceptance to the novelty and inventory through the three C’s in
practice: Creativity, credibility, and continuity. That said, we can grow high lest we
realize that the growth of bioinformatics in India is in our hands for that maxim we
need to follow: To be enthused is to be infused with life!

6.1 Opinion of Bioinformatics Practitioners

Madhan Mohan opines . . .

1. How should bioinformaticist makeup the blend of being a biologist as well as a
programmer?
Right from the career point, the candidate has chosen, the student should be
preparing himself for problems specific to both biologists and informaticists. I
suggest students give emphasis to understanding the programming logic, make an
algorithm on white paper, and then try compiling the program, testing it several
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times. Initially, there could be acclimatizing problems for students where biolo-
gists may not find programming logic interesting as most of them hail from pure
biology background and not taught mathematics during their intermediate school-
ing whereas in the Indian scenario at least it has not been difficult for program-
mers to understand biology. Interestingly, the latter genres of students have
become the most fitting entrepreneurs in bioinformatics. In conclusion, try
achieving it, not thinking of failures.

2. How best to formulate a problem for research in bioinformatics? What are the
challenges one should pose?

As a bioinformatician, please understand that there are genres of multifaceted
disciplinarians who have a background in physics, statistics, informatics, bio-
chemistry, and so on. Try making a preproposal and collaborate with biologists
and biochemists who do not have a background in programming. That said,
problems described through programming should be understood with basic
logic and then algorithms could be written. The main challenge is to understand
the problem and solve it whereas if you are a programmer, simply solve it.

3. Given the high-dimensional genomic data generated from time to time, how
should a bioinformaticist keep himself updated?

Just follow the new publications that are available in reputed journals such as
Nature, Science, Public Library of Science, and many more. You will find the
greatest updates at the three genebanks available worldwide, namely, NCBI,
DDBJ, EMBL-EBI, and from India—IISc, IMT, MKU, and University of Pune
websites. The updates can be checked through “What’s new” and importantly
comparative analyses of genomes, with an advent of next-generation sequencing
(NGS), new genomes can be studied.

4. Open-access and ethics play a very important role for the biologist. Do you agree?
If so or not, how good are these to be exploited in bioinformatics? Please give
valuable suggestions.

I slightly differ considering the fact that there should be closed access and
some data may be kept confidential until it gets through the file of patenting
records. Ethics also clubs to closed access. Thanks to the introduction of the new
patenting regime in India!

5. Making a successful principal investigator after years of postdoctoral experience
is a need by choice. Please provide suggestions with an example specific to the
development of bioinformatics in academia and industry.

I would say that a Ph.D./Postdoc making a career front could go for tenure
track positions which need not really affect his career. While, it need not be a
choice, but it would essentially allow him to make a better PI. As discussed earlier
it is not specific to bioinformatics but lest bioinformaticist work for both biology
and information technology principles.

Pawan Dhar writes

1. How should bioinformaticist makeup the blend of being a biologist as well as a
programmer?
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Bioinformatics offers an opportunity to help understand biology more accu-
rately. What is accurate can be programmed. What can be programmed, can be
understood. Thus, bioinformatics is a reasonable way to blend biological con-
cepts and programming tools to help understand biology better. In my opinion,
first students must identify the widest variety of data that makes an organism.
Second, students must know the biological context in which the data makes
sense. Third, they must know the right mathematics and computational tools to
play with the data. Finally, an attempt should be made to build models that
represent biology as we know it. The payoff is that if we understand biology,
we can compose organisms. Students should clearly understand that if they are
good biologists, only then can they be good bioinformaticians.

For bioinformatics students to become good biologists, they should be trained
to write algorithms that accurately abstract biological processes, from molecular
expression to cell–cell interaction and onward. To appreciate the beauty of scale
and complexity, it would be useful to train bioinformaticians in experimental data
collection—from sequencing to expression, structure, and flux measurement
technologies, and so on.

2. How best to formulate a problem for research in bioinformatics? What are the
challenges one should pose?

To formulate a problem, the following steps may be helpful.
Step 1: Read the discussion section of good scholarly papers published in the

last 2–3 years.
Step 2: Make a document of unanswered questions. The questions usually

appear in the form of direct statements or loosely thrown hints.
Step 3: Extract common and unique questions. The common ones are those

that the community is often discussing and may be important. The unique ones
will be those that the authors are thinking about and could be important. One
should expect to see some noise in such data.

Step 4: Match the questions with your interests and available facilities,
funding, and so on.

Step 5: Add more questions with the hope to extend the intellectual front-end
of the field.

Step 6: Predict the value of answer (i.e., nonobviousness and scale), if one
successfully addresses the problems.

Step 7: Assemble questions into an integrated research problem and imagine
practical applications that would possibly emerge at the end of the project.

With reference to the challenges, there are at least two different approaches:

1. For those who want to play safe, look for a challenge that would result in
incremental but useful innovation.

2. For those who like disruptive innovations, either (i) look for simple things that
have been ignored, which, if properly addressed, may result in groundbreaking
work, for example, BLAST, or (ii) scale up the work to an embarrassingly
complex level, for example, virtual organisms.
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Since research is essentially an art to predict useful ignorance, students must
be exposed to creativity and innovation exercises, in addition to getting trained in
formal bioinformatics.

3. Given the high-dimensional genomic data generated from time to time, how
should a bioinformaticist keep himself updated?

Keep track of publications in key journals, follow conferences and symposia
where speakers are likely to showcase the latest unpublished results and make
announcements. These days one need not physically attend an event as several
talks appear online, both real-time and also as a repository.

4. Open-access and ethics play a very important role for biologists. Do you agree? If
so or not, how good are these to be exploited in bioinformatics? Please give
valuable suggestions.

Yes, in my opinion for every scientist. Both open-access and traditional
models have advantages and limitations. However, given the financial crunch
that publishers are facing in the traditional model, it seems to me that increasingly
journals are going to opt for an open-access model in the future. There are many
bioinformatics journals that offer open-access option. One may start more such
journals provided the focus is not just to make huge profits only but to identify the
niche and maintain the quality, which in my opinion and experience is extremely
difficult to balance. Given the fast-paced competitive world that we are part of, I
support the idea of “first publish and then defend.”Another idea is to get the paper
prereviewed by the scientific community and publish it straight away. I recognize
that there are flaws in every publication model.

5. Making a successful principal investigator after years of postdoctoral experience
is a need by choice. Please provide suggestions with an example specific to the
development of bioinformatics in academia and industry.

The following points apply both to academia and industry:

• Focus on algorithms more than tool development
• Move from sequence level to the pathway level and tissue level
• Find strategies to integrate every type of data that organisms offer
• Develop reliable literature mining tools such that one can build good molec-

ular interaction models straight from the literature
• Maintain the database, if you have built one. However, maintain that the

database is infeasible, merge it with a more established larger database
• Design standards of data exchange and BioCAD tools for constructing

organisms

Cox Murray writes

1. How should bioinformaticist makeup the blend of being a biologist as well as a
programmer?

Bioinformatics is really made up of three parts—biology, mathematics and
statistics, and computer science. While bioinformaticists obviously need some
coding ability, it is far more important that they have a good grasp of biology and
can frame biological questions as a logical series of analytical steps. Too many
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students with an interest in bioinformatics neglect vital areas of study, such as
algorithms and statistics. A given problem can be coded in many ways, but a good
understanding of algorithms can inform which are most efficient, or indeed,
which are computationally tractable. Similarly, it is now easy to generate vast
amounts of bioinformatics’ data, but telling which patterns are meaningful
remains much more difficult. It is increasingly important to have a solid grasp
of statistics, including Bayesian and Monte Carlo approaches, especially as
datasets get bigger and it becomes easier to misinterpret spurious, nonsignificant
patterns in biological datasets.

2. How best to formulate a problem for research in bioinformatics? What are the
challenges one should pose?

I would consider that there is no such thing as a bioinformatics’ question.
There are, however, biology questions, some of which can be addressed using
computational approaches. The questions bioinformaticist addresses should
always be driven by the underlying biology. In this sense, it is important to
distinguish whether a question can best be answered computationally or in the
laboratory, or better yet, using a combination of both approaches. Some of the
best bioinformatics studies are those where computational and laboratory-based
researches inform and support each other.

3. Given the high-dimensional genomic data generated from time to time, how
should a bioinformaticist keep himself updated?

Good bioinformaticists require solid working skills in biology, mathematics
and statistics, and computer science. Few researchers are equally conversant in all
three areas. I advise my students to focus on upskilling in their weakest subjects.
It is also important to keep track of subject areas that are changing particularly
fast, which in practice, unfortunately, tends to be all three. It is often tempting to
find quick, project-specific solutions to individual problems, but I encourage my
students to discover generic solutions wherever possible. This means you already
know the answer when you invariably encounter a similar problem again in the
future.

4. Open-access and ethics play a very important role for biologists. Do you agree? If
so or not, how good are these to be exploited in bioinformatics? Please give
valuable suggestions.

Issues around open-access and ethics are not specific to bioinformatics. The
best policy is to follow ethical guidelines for the associated biology field, which
usually have the same broad underpinnings, but different specific requirements.
Open-access publishing is quite a different concern and has its pros and cons. I am
very supportive of making research results more accessible to the general public,
as it seems unfair that taxpayers who have already funded research should have to
pay again to access its results. Nevertheless, it is important to recognize that there
are genuine, nontrivial costs associated with publishing, and these costs are not
substantially lower for electronic-only publications. Open-access publishing
pushes these costs from the reader to the author, and in doing so, introduces
new problems. Publishing costs, which can easily exceed US$2000–3000, limit
who can afford to publish in open-access journals, and can often make researchers
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choose what research they want to release. Unfortunately, this divide is not
obviously one between developing versus developed countries, but instead
often falls within countries between well-resourced and poorly resourced research
groups. Open-access publishing is still an emerging phenomenon, and the pro-
gression and sustainability of this model are yet to fully play out.

5. Making a successful principal investigator after years of postdoctoral experience
is a need by choice. Please provide suggestions with an example specific to the
development of bioinformatics in academia and industry.

Although again not specific to bioinformatics, postdoctoral training is increas-
ingly viewed as a necessary evil. The complexity of most modern research
questions means that training beyond a Ph.D. degree is required for most scien-
tific jobs. I encourage students to expand their research horizons during their
postdoctoral training by learning new skills unrelated to their Ph.D. research.
Training in a foreign country often proves extremely useful as well, particularly
given the increasingly international nature of modern research programs. The Ph.
D. degree can now be considered basic training, while postdoctoral positions
allow students to mature into well-rounded scientific researchers.

(a) Challenges and road ahead: Key skills and knowledge for bioinformatics
(b) Bioinformatics as a career

Jeff W Bizzaro, President of bioinformatics.org opines

1. How should bioinformaticist makeup the blend of being a biologist as well as a
programmer?

Bioinformatics is cross-disciplinary. If your intention is to enter it from any
one of the other STEM fields (Science, Technology, Engineering, and Mathe-
matics), you will need to supplement your education with courses or background
material in certain places. For example, if your studies have or had a major focus
outside of the life sciences, then you should also study the basics of biology, with
an emphasis on genetics, genomics, and proteomics. Likewise, if you have a
strong background in the life sciences, you will need to learn about computer
programming, databases, and statistical analysis.

However, just as it would be impossible for a biologist to become familiar with
every single topic in biology, no one can expect to have a fully comprehensive
education in bioinformatics. If you consider the fact that the field is at the
intersection of several subjects, each requiring years of mastery, you will appre-
ciate that the makeup of a bioinformatics research group is complementary by
necessity. Once you do have a solid education in one major field and have
completed some cross-disciplinary studies, it would therefore be best to quickly
choose an area of interest within bioinformatics—a specialty.

2. How best to formulate a problem for research in bioinformatics? What are the
challenges one should pose?

As a bioinformaticist, you are likely to collaborate with biologists and bio-
chemists who do not have a background in programming. Nevertheless, any
problem that involves programming can be described algorithmically, even

6 Colloquial Group Discussion on Bioinformatics: Grand Challenges 67

http://bioinformatics.org


employing some brainstorming sessions at a marker board. At such times the
common “language” is science, and there may be little need to elaborate on the
details of any programming that will be involved.

3. Given the high-dimensional genomic data generated from time to time, how
should a bioinformaticist keep himself updated?

You will find the greatest change in the available data if your interests include
comparative genomics (the comparison of genomes between species) or newly
investigated species. However, the genomic data for even the most highly studied
organisms may already be somewhat static, in which case your research could
involve lesser-known aspects, such as gene regulation, epigenomics, protein–
protein interactions, or protein structures.

4. Open-access and ethics play a very important role for biologists. Do you agree? If
so or not, how good are these to be exploited in bioinformatics? Please give
valuable suggestions.

Ethics in bioinformatics can be thought of as a dichotomy between the need to
reveal and the need to protect, perhaps more so than in any other field of science.
On the one hand, science itself depends upon the free exchange of information,
particularly for the purpose of reproducing and verifying results. Science as we
know it cannot exist without such a collegial atmosphere.

One the other hand, individuals feel a need for privacy regarding their medical
information, and so data that come from human trials or medical records need to
be given special consideration. Along the same lines, companies and academic
institutions also share an interest in profiting from discoveries and innovations
and are often required by law to protect their information if they are to claim
certain rights to them.

5. Making a successful principal investigator after years of postdoctoral experience
is a need by choice. Please provide suggestions with an example specific to the
development of bioinformatics in academia and industry.

A postdoctoral appointment is a necessary internship for those pursuing a
career based on a cycle of grant proposals and subsequent funding. It could also
be important in an industry where the research and development phase of a
product would be funded in a similar fashion. The role of a bioinformaticist,
however, is oftentimes in support of larger projects that are not computational by
nature. Drug discovery is an example of that. In such a case, a master’s degree
with several years of experience would be suitable for an employer.
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Chapter 7
The Bioinforma “TICKS”: Frequently
Asked Questions

Prashanth N. Suravajhala

Abstract What is bioinformatics?
Bioinformatics is a tool, whereas computational biology is a discipline. Bioinfor-

matics predicts the biological outcome and can be used to compare the biological
data, for example, sequence analyses and structure prediction. In a nutshell, bioin-
formatics predictions can lessen the scale of experimentation. Bioinformatics can be
considered as a method to annotate the newly sequenced genomes. It can be well
defined in the biological and computational way.

1. What is bioinformatics?
Bioinformatics is a tool, whereas computational biology is a discipline. Bioinfor-
matics predicts the biological outcome and can be used to compare the biological
data, for example, sequence analyses and structure prediction. In a nutshell,
bioinformatics predictions can lessen the scale of experimentation. Bioinformat-
ics can be considered as a method to annotate the newly sequenced genomes. It
can be well defined in the biological and computational way.

Definition from biologists’ perspective. Application of informatics and statis-
tics to solve, analyze, annotate, and organize biological data in graphical and
browsable formats.

Computational scientists’ perspective. Design computational algorithms and
applications for solving biological problems. By analyzing the existing biological
data using information technology, we can predict the biological outcomes.
Planning the analysis by workflow using bioinformatics tools and knowing the
expected output of the workflow will help to predict and solve the biological
problems. The bioinformatics era has been started, and data are generated in huge
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amounts by next-generation sequencing (NGS) in every field of biology, increas-
ing the need for bioinformatics analysis.

2. Where can I be placed? Are there any companies working in the area of core
bioinformatics research?

There are many institutes that require bioinformaticists to work with. After
all, the role of bioinformaticist/bioinformatician is to help wet laboratory biol-
ogist plan his experiment or lessen his scale of experimentation using in silico
methods. Say in India,

• Indian Institute of Science (IISc), Bangalore
• Indian Institute of Technology (IIT)
• Indian Institute of Science and Educational Research (IISER)
• National Center for Biological Sciences (NCBS), Bangalore
• Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore
• Jawaharlal Nehru University (JNU), New Delhi
• Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR)
• National Institute of Mental Health and Neuro-Sciences (NIMHANS).

And a host of all bioinformatics centers developed by the Department of
Biotechnology, Government of India.

3. Can I get placed in companies? Are there any companies that have bioinformat-
ics resources/placements?

• Astrazeneca
• GVKBio
• AravindBio
• Reddy’s laboratories
• Ocimumbio.com
• Biocon

4. What are the branches/fields of bioinformatics?

(a) Computational Biology
(b) Drug Designing
(c) Phylogenetics
(d) Structural bioinformatics
(e) Population Genetics
(f) Genotype Analysis
(g) Systems Biology
(h) Synthetic Biology
(i) Functional Genomics

5. People say that bioinformatics has no scope. Is it true?
No, it is not so. Research is measured with publications, and now, almost all

high impact factor journals are accepting with bioinformatics analysis in the
articles. This shows the importance of bioinformatics in all fields of biology.
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6. Do I need programming experience to become a good bioinformaticist?
Yes, one does need programming experience for that. It helps to understand

the most bioinformatics tools and their functionality; maybe you do not write
your programs, but surely it is an asset to learn more as a bioinformaticist.

7. How is chemoinformatics different from bioinformatics?
Cheminformatics deals specifically with the chemical structures, whereas

bioinformatics deals with the biological systems and signaling pathways. Both
the fields are devised so as to be able to manage huge data easily and come up
with respective tools and techniques to study the same.

8. I am a B.Tech graduate. How can bioinformatics help me?
There are two options available: The first one is to go for M.Tech and then

Ph.D., and the second option you can opt to work as a project assistant with
funded projects or as a trainee/junior post with a bioinformatics organization. If
you like to have a good grip on bioinformatics and start your career with a good
level, better go for the first option.

9. Whither bioinformatics?
When it comes to bioinformatics, the biologist has the opinion of just storing

the date or searching from different databases such as doing the BLAST search,
and now things have changed with the time. As the different genome project
moved up and algorithmic solution needs with large data, thus biology itself has
changed from a dogmatic, “disciplinary” or “pathway-based” science, to a
broader, multidisciplinary exercise.

10. What’s new in bioinformatics?
According to Shankar Subramaniam of the University of California, San

Diego, there is a new “central dogma”; genomes code for gene products, whose
structures and functions are embedded in the pathways and physiology of
biological activity. Each metabolic pathway can no longer be considered in
isolation but in the context of the interlocking and cross-coupled networks in
which each component of that pathway participates. So, the next solution is with
a bioinformatician. According to Leroy Hood, founder of the Institute for
Systems Biology in Seattle, such an approach not only needs a greater infra-
structure (DNA/gene expression array technologies, proteomics, multiparameter
cell sorting, mass spectroscopy, single-cell assays, etc.) than traditional disci-
plines (molecular/cellular biology, biochemistry) but also requires advanced
computational technologies. The major challenge the bioinformatics/system
biology is facing, for now, is trained bioinformatician and sufficient funding;
here at Bioclues, we have taken the one challenge to have 2020
bioinformaticians by 2020.

11. Who coined the term bioinformatics?
Paulien Hogeweg of the University of Utrecht, Netherland, coined the word

Theoretical Biology in late 1980s.
12. How good the salary would be for a bioinformaticist?

It depends from one country to the other. As far as India is concerned, for a
beginner, one can expect 30k per month while medium-level scientists 40k and a
Senior level 60k.
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13. Can I do a Ph.D. in bioinformatics? Where?
Of course, you can. But please understand that bioinformatics is a tool. You

may have to complement the wet laboratory analysis done by someone or you
need to liaise with a wet laboratory biologist.

14. Is there any integrated course/curriculum for bioinformatics?
No. But IBAB, Bangalore has recently started the program. Many IISER

institutes in India have recently started a 5-year integrated program catering to
the needs of student scientists.

15. Where can I undergo training after undergraduation/graduation in
bioinformatics?

After completing your graduation/undergraduation, try to seek a position in a
reputed laboratory, which is working on bioinformatics. In this way, you would
learn many tools and techniques which shall be adding to your profile.

16. I want to do a project in bioinformatics. Can you suggest to me?
For doing a bioinformatics project, try approaching the people who are

actually working on it in various research institutes by surfing the internet and
writing those emails. Apart from this, you can enroll for a live virtual project
with Bioclues itself and get real-time problems to solve under the guidance of
top-notch scientists.

17. If I take up M.Sc. bioinformatics, won’t my area be more specialized and
narrower? Can you suggest to me to take up a broader area for my masters?

Your subject would be more specialized as compared to any other broad field.
No doubt about it, but you would be an expert in it. If you are confused as to
whether bioinformatics is your cup of tea or not, then go for a broad subject for
your masters in which you may study one paper on bioinformatics and later on
pursue higher studies in the same to have the expertise.

18. I have done my B.Tech in bioinformatics. I am planning for my masters. I am
confused between MS (Research) and M.Tech. I would like to know your
valuable opinion on the career prospects of MS in biotechnology and MS in
bioinformatics as per the industry standards.

We would suggest you to always go by “interest” because opportunities
reckon by interest not necessarily by choice. MS by research is a “mentored”
degree, and as a protege, you will be free to undertake a project of your interest.
Typically, it lasts for 1.5 years with a small amount of time dedicated to teaching
the program. Both MS by research and M.Tech allow you to gain in-depth
exposure to the component parts of bioinformatics. While the former focuses on
research, the latter on pure taught program.
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Chapter 8
Undergraduate Education
in Bioinformatics—Progress and Lessons
Learnt from an Engineering Degree

Bruno A. Gaeta

More than 20 years since Russ Altman’s landmark bioinformatics editorial (Altman
1998) started the discussion on bioinformatics education, a standard bioinformatics
curriculum remains a moving target as the field and associated technologies continue
to evolve. What has become clear is that a single curriculum for all students is
unfeasible due to the wide variety of interested students. Distinctions have been
made between “training” (applied, skill-specific, most often targeted at biologists)
and “education” (a formal course or degree programs with an emphasis on theory) as
well as between courses targeted at “tool-users” versus “tool-builders”. The curric-
ulum task force of the International Society for Computational Biology (ISCB)
suggested three main “personas” for students: bioinformatics users—for example,
clinicians or wet lab biologists who make use of a small subset of tools relevant to
their domain expertise; the biology-focused bioinformatics scientists who work
toward biological discovery primarily by computational means, and the more
computing-oriented bioinformatics engineers who develop new tools and set up
the necessary computational infrastructure for the other personas (Welch et al.
2014). While these personas are necessarily an oversimplification in an increasingly
popular and complex field, they provided a useful tool and inspired a community
effort to identify suitable core competencies that define the knowledge and skills
expected of bioinformatics graduates at a range of levels. The refinement of these
core competencies is an ongoing effort (Mulder et al. 2018; Welch et al. 2016),
which has drawn on the feedback from an increasing number of bioinformatics
educators worldwide including GOBLET, the Global Organisation for Bioinformat-
ics Learning, Education and Training (Atwood et al. 2015).

A parallel effort has focused on the importance of bioinformatics content in
undergraduate life science education. While there is a consensus that bioinformatics
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must become an essential component of the life science undergraduate curriculum,
there is some disagreement as to the nature and amount of computer science and
mathematics required. Pevzner (2004; Pevzner and Shamir 2009) has argued that
solid theoretical foundations in computer algorithms and statistics are essential so
that life science graduates can be “bioinformatics scientists”, as opposed to “bioin-
formatics technicians” only able to use and apply existing tools. Pevzner’s view of
the bioinformatics scientist is close to that of the ISCB scientist persona, while their
bioinformatics technician is closer to the ISCB bioinformatics user persona. Another
perspective has emerged from NIBLSE, the Network for Integrating Bioinformatics
into Life Sciences Education, who surveyed life science educators across universities
(mainly US-based) and used the results to develop a set of core bioinformatics
competencies in life science undergraduate education focusing on the informed
use of tools and data sources in bioinformatics, with only a light emphasis on
algorithms and computer science (Porter and Smith 2019; Wilson Sayres et al.
2018). The NIBLSE competencies are more consistent with a user persona than a
scientist persona.

Core competencies and minimal standards (for example, Tan et al. 2009) provide
a useful framework for evaluating courses and degree programs, as well as formu-
lating general guidelines in the design of new programs, but their generalization to
all types of bioinformatics practitioners at all levels of expertise remains difficult.
The Mastery Rubric for Bioinformatics (Tractenberg et al. 2019) is an attempt to add
a longitudinal element by focusing on knowledge/skills/attributes (KSAs) displayed
by bioinformatics students/practitioners at multiple levels of development (Novice,
Beginner, Apprentice, and Journeyman). The level of detail of the Mastery Rubric
makes it well-suited to external and self-evaluation of individual skills in addition to
that of curricula. The rubric is mostly tailored at bioinformatics scientist and user
personas whose goal is biological discovery, rather than method or infrastructure
development. This reflects the fact that these personas represent the majority of
current employment opportunities in bioinformatics. Educational programs aimed at
the bioinformatics engineer persona, while essential in driving the development of
the field forward, are less common.

One example of an engineering-focused bioinformatics degree is the Bachelor of
Engineering (Bioinformatics Engineering) program offered by UNSW Sydney
(www.engineering.unsw.edu.au/study-with-us/undergraduate-degrees/bioinformat
ics-engineering). Starting in 2001, it is the oldest continuously running bioinformat-
ics degree program in Australia. The program is formally accredited as an
engineering degree by Engineers Australia, the engineering peak body in
Australia. This means that its graduates are recognized as professional engineers
by all the national engineering bodies in countries signatories to the Washington
Accord (www.ieagreements.org/accords/washington/), including ABET in the USA.
This accreditation introduces several constraints on the program but also results in
graduates with a strong set of technical and practical design skills.

Difficulty in designing the bioinformatics engineering program was the large
number of foundation courses required in bioinformatics. Students need to study
introductory biology, computer science, engineering, mathematics, chemistry, and
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physics, as well as sophomore or senior statistics, algorithms, programming, data-
bases, molecular biology, and genetics. Bioinformatics is taught at the sophomore
and senior level both from “tool-user” and “tool-builder” perspectives. Students also
take courses in engineering ethics, design, and project management.

A number of lessons were learned over the course of designing, running, and
revising the program over the 20 years since its creation.

1. Keep options open for students: When the program started, bioinformatics
employment opportunities were still rare in Australia and the program was
designed to provide enough versatility for graduates to be highly employable in
other fields including IT and computing, biomedical engineering, and biotech-
nology. Over the course of the program around 25% of graduates have gone to
work in bioinformatics, as engineers or scientists, and 50% have chosen employ-
ment as engineers and consultants in the IT industry or computer science with no
biology applications. The remainder has gone on to postgraduate retraining, for
example as medical doctors and biomedical professionals. The fact that many
students are keen to keep their options open is shown by the fact that more than
half of the students elect to study bioinformatics jointly with another degree such
as biomedical engineering, commerce, or science.

2. Involve colleagues from other faculties and industry: Bioinformatics is interdis-
ciplinary, whereas universities are typically organized in disciplinary “silos” in
departments, schools, and faculties. Providing a good interdisciplinary experi-
ence for the students will require drawing on expertise from more than one
department. Since its inception, the bioinformatics engineering program has
drawn on expertise not only from its home school (Computer Science and
Engineering) but on lecturers from biotechnology and biomolecular sciences,
mathematics and statistics, medical sciences, and physics. One feature of the
program is a number of practical workshop courses where the students work in
teams on engineering projects provided by “customers” from research groups in
the university and associated medical research institutes. A number of software
applications and pipelines have resulted from these courses, as well as several
publications, and the students continuing their work with the customers as
undergraduate or postgraduate thesis students.

3. The pros and cons of an undergraduate degree: As an undergraduate program, the
bioinformatics engineering program accepts students straight out of high school.
This is a strength of the program as students learn from the beginning to think
both as life scientists and as quantitative scientists/engineers. Many bioinformat-
ics programs around the world are taught at the master’s level, by which stage the
students have already specialized either in the computer or life sciences for their
bachelor’s degree, and may require significant retraining and refresher courses.
Some of the bioinformatics courses in the program are offered to both under-
graduate and postgraduate students (coursework and research), which allows a
direct comparison of their performance. As a rule, undergraduate students in the
courses get much better marks than the postgraduate students in the same course,
who often have difficulties with either the biology or the computing components.
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However, the lack of awareness in high school in the field of bioinformatics
means that relatively few students choose to study undergraduate bioinformatics
engineering. Enrolments have been only around 10–15 students a year until
recently. In order to diversify the offering and recruit additional students,
UNSW also introduced a bioinformatics major as part of its standard bachelor
of science degree. Since science students typically do not choose their major until
their second year, this allows more students to become aware of bioinformatics as
an option. The bioinformatics science major shares many courses with the
engineering program but has less technical content. It aims to graduate “bioin-
formatics scientists” as defined by the ISCB personas.

4. Review and revise: As a field, bioinformatics has gone through a number of
changes since the 1990s, as new omics technologies and data types emerged and
took over the field, and the bioinformatics content of the program must keep up
with these changes. The program must also be altered periodically in response to
constraints imposed by the university administration, course changes in other
schools/faculties, and by external accreditation bodies such as Engineers
Australia. In addition to these university-mandated revisions, both the engineer-
ing and science bioinformatics programs are periodically reviewed using the
ISCB core competencies. The process used is to map the learning objectives
and assessment items in individual courses in the program to the core competen-
cies and building a competency matrix that allows identifying areas of strength
and weaknesses in the curriculum. The program is then adjusted when possible to
address the weaknesses.

5. Focus on long-term, transferable skills: The demand is high in the biology
research community for graduates trained in currently “fashionable” bioinformat-
ics techniques, and this demand is most often served using short focused training
courses which are best targeted at the bioinformatics user persona. However, the
field also needs graduates with solid foundational knowledge to adapt to, adopt,
and develop the methods of the future. A program aimed at bioinformatics
scientists and engineers should aim to provide foundations and skills that the
graduates can build on for the rest of their careers in addition to current trends.

6. Network with other educators: Unlike established disciplines, there is no “stan-
dard” curriculum for bioinformatics. While there is now an abundance of text-
books, they are often already out of date by the time they are published.
Resources for practical teaching of bioinformatics also change very quickly. It
is therefore important to keep in touch with other bioinformatics educators to
exchange information about best practice and useful tools. Organizations such as
GOBLET (www.mygoblet.org) and ISCB (www.iscb.org) are extremely useful
for meeting others who are facing similar challenges, and for sharing resources
and ideas that ultimately feedback into the development of bioinformatics beyond
a niche discipline.

A recent surge of interest in the UNSW bioinformatics undergraduate degrees
suggests that students are becoming increasingly aware of the importance of the
field. This is good news for bioinformatics educators but also provides a challenge to
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keep the curriculum relevant and suitable for current and future developments in the
field.
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Chapter 9
Engineering Minds for Biologists

Alfredo Benso, Stefano Di Carlo, and Gianfranco Politano

9.1 Why Bioinformatics Needs an Engineering Mind

In the last decades, the advances in data gathering technologies, from high-
throughput sequencing to “omics” analyses, has changed the approach to biology.
From an engineering point of view, biological research is a “reverse-engineering
problem”, where scientists try to unravel the mechanisms that allow and support life
in living organisms. Traditionally, biology was approached using a bottom-up
approach, where each individual actor (molecules, cells, organs) was individually
studied, with the hope of later understanding the functioning of the whole biological
system by “assembling” the functionalities of its individual components. Unfortu-
nately, the data gathered in the last decades demonstrated that this is not possible
because biological systems are complex systems. Mathematics tells us that to
understand a complex system we must understand the relations between the parts.
The system as a whole determines how the parts behave. Doing otherwise would be
like trying to understand how a flock of birds move by individually studying each
bird (Fig. 9.1). There are two other very important characteristics of complex
systems that we need to mention. The first is that their behavior heavily depends
on their initial conditions, and this is incredibly important if we think that inside
biological systems a lot of random events (e.g., the proximity of two molecules or
cells) can drastically change these “initial conditions” from one moment to the next.
The second, directly related to the first, is that the study of the systems “dynamics”
(how the system behaves in time) cannot be overlooked. As a simple example,
imagine that we want to observe the behavior, in time, of a certain biological reaction
(e.g., a cell cycle). As with every dynamic, this reaction will be regulated by a time
frequency. At each step, the reaction will take some time to pass from one state to the

A. Benso (*) · S. Di Carlo · G. Politano
Control and Computer Engineering Department, Politecnico di Torino, Turin, Italy
e-mail: alfredo.benso@polito.it

© Springer Nature Singapore Pte Ltd. 2021
P. N. Suravajhala (ed.), Your Passport to a Career in Bioinformatics,
https://doi.org/10.1007/978-981-15-9544-8_9

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9544-8_9&domain=pdf
mailto:alfredo.benso@polito.it
https://doi.org/10.1007/978-981-15-9544-8_9#DOI


next. The number of state-changes over a unit of time determines the system’s
“frequency”. Now let’s suppose that our technology allows us to take a “snapshot”
of the reaction every second. After collecting our reaction timeline, we then want to
understand, reconstruct, the whole reaction by studying the individual snapshots. Is
this possible? Unfortunately, the answer is not “yes” every time. The Nyquist-law
states that a signal can be reconstructed only if we sample it with a frequency that is
at least double the system’s own frequency. So, in our example, the data would allow
us to reconstruct the reaction only if its frequency were of at least 2 s. In any other
case, the data we gathered would be completely useless and any deduction obtained
from it flawed.

The “engineering mind” is, in our view, the tool to overcome these methodolog-
ical flaws and approach biological research from a much more efficient and prom-
ising angle.

Systems biology, a research methodology (not only a discipline) based on the
cross-fertilization between biology, physics, computer science, mathematics, chem-
istry, and engineering, emerged as the most promising tool for biological research. It
is not by chance that biological networks became a “hit” in 1998 when a physicist
(Barabasi) and a biologist (Oltvai) became neighbors. At the time, Barabasi was
studying the structure of the internet and had already shown that the internet was a
nonrandom network and that its connectivity structure was influencing its functions.
One year later, in 1999, together they proved that the metabolic pathways of yeast
define a network whose structure is very similar to that of the internet. Starting from
this discovery, the step to demonstrate that recurrent topological structures of

Fig. 9.1 A flock of birds shows patterns and behaviors that emerge from the interactions among the
birds, and that could not be seen nor understood by studying each bird individually
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biological networks were clearly linked to biological functions took little time
(Barabasi and Oltvai 2004; Alon 2003; Emmert-Streib and Glazko 2011; Kaplan
et al. 2008; Konagurthu and Lesk 2008). The “subliminal” message here is that
communication, not only collaboration, is a fundamental aspect of being a
bioinformatician. Being at the frontier between two incredibly different communities
requires learning to speak (fluently) both “languages” and to become an extremely
patient mediator.

The typical systems biology pipeline is sketched in Fig. 9.2. It is made of three
main stages: lab experiments, data gathering, and modeling and simulation. Never-
theless, its most important characteristic is the continuous feedback-loop from
computational results back to the lab. This loop creates a situation in which labs
produce data used to optimize the model of the biological system under study and
make predictions that drive the next set of experiments. Each of the three phases of
the systems biology pipeline poses, for different reasons, important “engineering”
challenges. Experiments are expensive and time-consuming and need to be driven by
plausible hypotheses. Despite that, biological data will still be extremely noisy,
unreliable, biased by many factors like lab-equipment, operators, and so
on. Moreover, labs are not the only data source; a lot of information is also gathered
and integrated from publicly available databases. The problem is that the life science
research community is still understanding the need for solid formalisms for data

Fig. 9.2 The Systems Biology pipeline is built on a feedback-loop, where Computer modeling and
simulations are continuously used to improve Experimental data and protocols which, in turn, allow
to create more and more refined models
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storage, handling, and exchange. The result is that a huge percentage of available
data is not reliably reusable outside of the scope in which it was generated, and is
therefore useless. Even if the typical systems biology pipeline intrinsically partially
mitigates these problems (thanks to the feedback loop), a lot of work still needs to be
done.

Obviously, gathering data is not enough if we are then not able to extract
information and new knowledge from it (see Fig. 9.3). Therefore, data has to be
used to build more and more refined models, which then can be analyzed and
simulated to both validate the model itself, and to come up with new hypotheses.
Simulation results are the feedback loop to the lab, where they need to be used to
drive the experiments necessary to validate the hypotheses.

Networks (or “graphs” in engineering terms) are very simple yet powerful models
to represent interactions among systems’ components, and for this reason, they
emerged as one of the most used formalisms used to models biological systems
(protein-to-protein interactions, metabolic reactions, gene-regulatory mechanisms,
bacterial populations, etc.). But networks alone are not enough.

It is obvious that each step in the systems biology pipeline requires expertise from
different disciplines. This is why we advocate the need for an “engineering mind”: to
train researchers able to understand, coordinate, and address all these problems.

9.2 The Importance of Data Handling

Often, the work of a pure systems biologist, especially when a wet lab is not
available for custom data generation or validation, only relies on data available
online. It is therefore a mandatory requirement to validate the data on top of which

Fig 9.3 Interesting and useful insights are usually deeply buried into vast amounts of irrelevant,
uninterpretable, and noisy information, which in turn constitutes a small percentage of the
available data
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algorithms are developed. Nowadays, a large amount of publicly available sources of
high throughput/dimensionality data is available, which is good news for researchers
facing the systems biology field. However, all that simplicity and availability may
dangerously hide some often-neglected caveats that should be properly considered in
order to guarantee the overall reliability of the entire pipeline/model and its results.
Some practical hints: do not just integrate data without any critical thinking, do not
simply trust the homepage claims of a high-quality repository, go in-depth, read the
related paper (don’t forget additional materials), understand the scope, the underly-
ing assumptions, the experimental bias, if any, and don’t forget to check the date of
the last update, bearing in mind that not always a recently updated data source may
be easily integrated with another with less frequent updates; don’t ever assume that
one update is backward-compatible with the previous one.

Such caveats should be always critically considered before starting downloading
data from a new source. Otherwise, there is the risk to incur some hidden and
misunderstood errors, very hard to be identified a posteriori.

When accessing a new data source, thus, critical analysis and a proper assessment
should be done by verifying a set of main aspects: (1) the scope of the data source,
(2) the naming standardization adopted, (3) the data exchange format, and (4) their
updates timing.

9.3 Scope

The first thing we should consider when accessing a new data source is its scope.
Taking gene regulation as an example, many databases are very specialized in a
limited set of interaction types, possibly providing a biased perspective on the broad
scenario of regulations that concurrently take place in a biological entity. Let us
consider for instance a database containing posttranscriptional (e.g., microRNAs)
regulations such as miRTarBase (Chou et al. 2018) or Targetscan (Agarwal et al.
2015). Information provided by those two databases are in the form of punctual
miRNA–mRNA interactions, with no reference to a broader context like a signaling
cascade or a pathway (Politano et al. 2014, 2016). Similarly, we have detailed
information about host genes relations with their co-transcribed intergenic or intra-
genic miRNAs (in the shape of mRNA-miRNA interaction, see miRiad (Hinske
et al. 2010) thus lacking again an integrated scenario comprising gene-gene regula-
tions. Protein–protein interaction (PPI) databases (e.g., Fisingene (Wu et al. 2010),
Mentha (Calderone et al. 2013), String (Szklarczyk et al. 2015)) usually provide
information about undirected protein interactions, which often reflects into clusters
of protein subunits that may cooperate for activation or assembly of a protein
complex, lacking any form of causality. And finally, pathway and regulatory data-
bases (like KEGG (Du et al. 2014) or iRefIndex (Razick et al. 2008)), which do
provide a representation of directed causal regulations that take place in a regulation
cascade. Furthermore, other specialized databases do exist representing
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Transcription Factor regulations (Mathelier et al. 2014), Transcription Factor
Co-regulation (Schaefer et al. 2011), or ceRNA neighborhoods (Bhattacharya and
Cui 2016).

Overall, though all these databases are sources of reliable information, they
provide different concepts of relation, with different customs and very specialized
approaches. Not a single database, on his own, is capable of providing a holistic
perspective on the complex set of regulations that concurrently take place. There-
fore, when designing a reliable system-level analysis or simulation, these
co-occurring regulations should not be neglected.

9.4 Naming and Standardization

The overall lack of centralized standards and naming conventions often makes it not
trivial to cross-match information among different databases (e.g., consider for
instance Unichem (Chambers et al. 2013), which reports up to 35 different aliases
for each chemical).

Data so far stored in publicly available databases often reflect overlapping and
sometimes conflicting conventions adopted in different subcommunities, with dif-
ferent scopes. Unique identifiers are commonly redefined from scratch for every
single database and rarely are adopted widely enough in the community to guarantee
a reliable cross match. This lack of consensus in the naming convention requires
users to check at first the viability to properly translate entity names from a data
source to another, to avoid further lookup problems.

9.5 Data Format

Data from the original repositories are often downloadable for further, high-
throughput, processing. Although this is a common feature among public databases,
things may become complex just considering the large amount of data formats
currently available, which often requires a custom parser, and are not always
“true” standards.1 We may encounter standard plaintext formats like csv/tsv or
more complex formats like XML, which can be further declined into specific
XML formalism, like OWL, Biopax. We may face raw SQL or non-relational DB
dumps, along with several other custom structured formats with proprietary

1A “standard” is certified by a standard certification authority (like IEEE), not defined or “custom-
ized” by each individual research group. There are also “de-facto” standards, not officially recog-
nized but widely used in scientific communities. Nevertheless, this does not to be the case in the Life
Science community.
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formalisms and naming conventions. This often results in difficult data interopera-
bility and high management complexity.

Given the large amounts of file formats and sometimes the lack of a proper parser
to extract custom information, and considering the average dimension of the files to
parse (in the range of tens of megabytes to hundreds of gigabytes), this time
consuming and error prone step should be considered in advance, to guarantee its
correctness and feasibility. Another solution may be to build intermediate data
storage containers and subgrouping data, in order to reduce the overall dimension-
ality thus allowing for faster querying and more immediate record-level access
(Politano et al. 2019).

9.6 Timing of Updates

Last but not least, the probably most neglected problem in data integration is related
to data versioning. Due to asynchronous updates in data sources, direct linking to
databases may rapidly become obsolete and, even more dangerously, a source of
erroneous assumptions. This problem is particularly evident when dealing with
miRNAs. miRbase, for instance, the current main reference for the naming of
microRNAs, during any update (e.g., see change log between releases 20 and 21)
cleans up dubious and mis-annotated sequences and reassigns previously used ids.
This resulted in 169 hairpins and 353 mature sequences that have changed names
(21), thus getting out of synch any work or data collection built before this update.
Reassigning miRNA ids means that any previous reference to a given miRNA id,
may actually refer to another one according to the new id reassignment. By consid-
ering the large amounts of updates during the year and often the lack of evident
information regarding data synchronism, a lot of attention should be spent to
properly investigate data aggregation timing and synchronism in order to avoid
dealing with obsolete, or worse, wrong references.

Keeping track of the consistency of cross-references among different databases is
not trivial and must be taken into account every time data from multiple sources must
be integrated.

9.7 Modeling for Simulation

After collecting relevant data regarding a target biological phenomenon, one of the
most important goals in systems biology is to build models able to simulate the
dynamics of the target system in order to further understand its mechanics and its
biological details. Simulations often aim at predicting in silico the outcome of an
experiment (e.g., administration of a particular drug or molecule) and, once prom-
ising results are identified, predictions can be tested by wet lab experiments (Loewe
and Hillston 2008).
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How these models are constructed and how predictions are computed strongly
depends on the target problem but, often, on the researcher’s background. With the
increasing availability of computing power, a simplistic solution to this problem
could be to capture everything that is known about a system and simulate it in
supercomputers. While this could be feasible for specific problems, it is often
complex and infeasible due to the complexity of biological systems, which often
demand simplifications to make them amenable to modeling. However, simplifica-
tions are a dangerous instrument, they have to capture the essence of the processes of
interest while neglecting the less important details all taking into account the
capability of the formalism and computing platform available for the simulation.

Systems biology models must be able to handle different scales of representation,
to model the system and its sub-parts into a complex hierarchical structure, and to
handle various types of information represented with different formalisms. Among
the different categories of models used in engineering, multilevel computational
models are a powerful instrument to handle complexity. Informally, multilevel
computational models describe a system considering at least two hierarchical levels,
with interactions that take place within and between these levels (Degenring et al.
2004). In the last decade, several methods have been proposed to properly represent
and simulate complex biological systems using multilevel computational models
(Bardini et al. 2017a).

The choice of the best modeling and simulation approach is not trivial. However,
we believe that a set of six relevant key performance indicators (KPIs) can be used to
fairly compare different modeling approaches:

1. Scalability with system’s complexity
2. Readability and visualization of the simulation results
3. Discrete simulation versus model solving
4. Model constructability starting from other formalisms devoted to data,

representation
5. Modeling complexity
6. Complexity management features

Taking these six KPIs in mind we can have a look at common approaches that
have been largely applied in the literature to model and simulate complex biological
systems:

• Ordinary differential equations (ODE)
• π-calculus
• Rule-based languages
• Agent-based models
• Petri nets

The ODEs are among the most exploited approaches to multilevel modeling and
simulation in systems biology (Jasim Mohammed et al. 2017; Suzuki et al. 2009),
although they are a powerful mathematical model that can describe how different
quantities (e.g., concentration of specific molecules) continuously changes in time.
The ODEs fit stoichiometry-based chemical problems in which relations and
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gradients are well known, however, their complexity may explode when applied to
contexts with a high degree of knowledge uncertainty like gene/protein interactions.
Moreover, the complexity of solving complex ODE-based models strongly increases
with the size of the system. This complexity becomes difficult to manage in real
biological case studies with many levels of abstraction/compartmentalization and
thousands of base entities (e.g., genes), all of which are concurrently interacting.

π-calculus is an attempt to cope with the major drawback of ODE (i.e., compu-
tational complexity) (Regev et al. 2001). π-calculus is very well suited to model
concurrency, communication, and stochasticity that are all important features of
cellular systems. However, the simplification introduced to handle the complexity of
the simulation limits its applicability whenever the target system shows complex
dependencies among the different parts and simultaneous exchange of information.

While ODE and π-calculus are significant examples of approaches derived from
mathematical theories, other approaches find their foundation in the software engi-
neering and computing simulation fields.

Rule-based languages are such an example of approaches that have been used to
create multilevel models of complex biological systems (Maus et al. 2011). These
languages offer a very compact multilevel representation of a complex system
making the modeling effort easy and allowing step by step simulation. Moreover,
they are easy to derive from other formalisms. However, they cannot easily express
downward and upward causation. In fact, an explicit notion of linkage is not
provided unless they are coupled with hierarchical graphs with multiple edge types.

Agent-based systems are another interesting simulation approach that particularly
focuses on the simulation problem and its complexity and scalability. They offer a
high degree of detail about the agent functions, which correspond to the rules
governing the underlying biological interactions. Moreover, they allow for compu-
tational parallelization, thus scaling up to very complex systems. Some models (e.g.,
Repast (North et al. 2006) and CompuCell3D (Fortuna et al. 2020)) offer graphical
user interfaces, but these unfortunately, lack significant features of relevance for
biologists (Gorochowski 2016).

When looking at the proposed examples it seems that mathematical models and
software engineering models both fail at providing all major KPIs required to answer
the systems biology requirements.

When facing multilevel hybrid modeling, Petri Nets and their improvements
formulations (i.e., Nets-Within-Nets) appear as an overall good compromise
among all the previously discussed methods (Bonzanni et al. 2014; Heiner et al.
2008). As graphical and mathematical tools, Petri Nets provide a uniform environ-
ment for modeling, formal analysis, and design of discrete-event systems. One of the
major advantages of using Petri Net models is that the same model is used for the
analysis of behavioral properties and performance evaluation, as well as for system-
atic construction of discrete-event simulators and controllers. This results in a
graphical layout easily understandable also for life scientists. Moreover, it provides
an unambiguous formalism that can be derived from other formal notations, such as
stoichiometric matrices or ODEs. Eventually, the structure of Petri Nets is deeply
based on causality, allowing to finely distinguish among concurrent and alternative
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behaviors (Heiner and Gilbert 2011). Several general-purpose simulation tools that
allow real-time inspection and network simulation using Petri Nets are available.

Among the several classes of Petri Nets presented in the literature, nets-within-
nets (NWNs) are an interesting class of high-level Petri Nets. An NWN is a high-
level Petri Net supporting nested architectures where complex information attached
to tokens can recursively be specified with the Petri Net formalism (Valk 2003).
NWNs implicitly enable observing a system in a zoom-in/zoom-out fashion. NWNs
can be used to model properties such as process synchronization, asynchronous
events, concurrent operations, and conflicts or resource sharing. These properties
characterize discrete- event systems and look promisingly coping with the synthetic
biology complexity (Bardini et al. 2017b).

9.8 Conclusions

Systems biology is, in our view, the most promising methodological approach to
study biological systems which, given their complex nature, cannot be thoroughly
understood using a traditional bottom-up approach. It requires cross-fertilization
between biology, physics, computer science, mathematics, chemistry, and engineer-
ing, but, most of all, it requires an “engineering mind” able to understand, coordi-
nate, and exploit this challenging mix of competences. In this chapter, while being
well conscious of the extreme complexity of biological systems, we supported our
claim by discussing many practical issues that appear in the systems biology
pipeline, and that are well known (and in several cases have been already addressed
and solved) in other engineering areas. To conclude, we summarize which, in our
opinion, are the main topics to be included in a bioinformatic/system biology
curriculum (Table 9.1).

Table 9.1 Main topics in a bioinformatic/system biology curriculum

Topic Prerequisites Cannot do without

Graphs models Math logic/differential equations Graph theory
Graph algorithms
Modeling and simulation

Programming Foundations of math
Programming logic

Python
Modeling and simulation
Basics of algorithm complexity

Big data Relational database design Machine learning
Deep learning basics
Graph databases
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Chapter 10
Design Bioinformatics Curriculum
Guidelines: Perspectives

Qanita Bani Baker and Maryam S. Nuser

10.1 Introduction

Bioinformatics is a highly dynamic, demanding, and evolving interdisciplinary field
that requires a good level of understanding of life sciences and good computational
skills. There are critical needs for bioinformatics for several users and researchers in
several fields in biology, biomedical, computer science, and medicine. While offer-
ing training and educational programs in bioinformatics are so crucial for several
educational institutes all around the world, there are still many challenges and
research that are going to meet the educational demand for this dynamic field of
study.

Learning methods and practices that contribute to bioinformatics courses training
success is critical (Emery and Morgan 2017). Several recent studies such as in
(Mulder et al. 2018; Attwood et al. 2019) have identified the big needs to define
and enhance the bioinformatics curricula and their contents to be taught in a suitable
pedagogical environment. Many works provided a range of approaches for bioin-
formatics training courses with several focuses. Emery and Morgan (2017) explored
the application of project-based learning, in a 5-day training course, as a part of
bioinformatics summer school. While, for example, in (Gurwitz et al. 2017), Gurwitz
et al. provided sustainable approaches to develop the bioinformatics domain in
Africa by offering an introductory course in bioinformatics that includes several
fundamental bioinformatics topics as the introductory level course.
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Many bioinformatics training programs have been established to address the
increasing needs of computational and quantitative learning in bioinformatics as
shown in (Cohen 2003; Schneider et al. 2012; Atwood et al. 2015). Despite efforts in
enhancing and developing these training programs and degrees, the adoption of them
is usually limited either to a small and limited number of institutions or to specific
courses within a given curriculum. Moreover, the established courses were primarily
directed to bioinformatics majors and no other related majors such as life sciences or
computer science as presented in several studies (Schneider et al. 2012; Atwood
et al. 2015; Wilson Sayres et al. 2018).

Unfortunately, these courses are either short, or/and concentrate on one subject,
or are provided as self-learning with no support (Faria et al. 2018). ELIXIR is
another example of a distributed sustainable infrastructure for collecting and
maintaining biological data in European countries. It provides comprehensive train-
ing programs in bioinformatics and computational biology for professionals
(Crosswell and Thornton 2012). With the increasing amount of training and teaching
information distributed across several locations, a new platform called the TeSS that
collects geographically dispersed information is developed by ELIXIR. It presents
information in a central portal that helps researchers to find training opportunities
that are relevant to their demands (Sansone et al. 2020). Moreover, efforts have been
made to create networks to improve education and training in bioinformatics such as
the African Bioinformatics Network for the Human Heredity and Health in Africa
(H3ABioNet), Global Organisation for Bioinformatics Learning, Education, &
Training (GOBLET), and Bioinformatics Club for Experimenting Scientists
(Bioclues).

In this chapter, we aim to report the current main perspectives in designing and
developing bioinformatics curriculum guidelines. These perspectives are based on
comprehensive investigations of the previous and most recent studies related to
bioinformatics to discuss the learning outcomes to take into consideration when
designing the bioinformatics curriculum and discuss them based on the educational
level and the program specialization. Moreover, in this chapter, the main issues that
currently face the development and implementation of bioinformatics training pro-
grams are presented. Finally, the main recommendation that could help researchers
and educators to enhance offering bioinformatics curriculums and planned courses
are reported.

The remainder of the chapter includes the following sections: in Sect. 10.2, we
discuss curricular goals and learning outcomes. Then, in Sect. 10.3, we present the
targeted educational level for the developed programs and their focuses, and in Sect.
10.4, we explain the works done for several targeted specializations based on
demands. After that, in Sect. 10.5, we discuss designing and running courses in
bioinformatics. Section 10.6 presents the bioinformatics courses’ designing and
offering issues. Following that, Sect. 10.7 shows the recommendations. Finally,
we present the chapter conclusion in Sect. 10.8.
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10.2 Curricular Goals and Learning Outcomes

In this section, we summarize the basic conceptual framework used to provide an
educational program that can meet diverse target audience populations. This frame-
work depends on competencies and the learning outcomes (LOs) expected from the
educational frameworks. As shown in (Mulder et al. 2018), demonstrating the
competencies is used to drive the bioinformatics curriculum development. Due to
the diversity of the potential training audience, there are different needs in terms of
required skills or knowledge and at which depth. In studies (Mulder et al. 2018;
Welch et al. 2016), three major user profiles were considered which are: the
bioinformatics engineer, the bioinformatics user, and the bioinformatics scientist.
ISCB Curriculum Task Force constructed a set of competencies that can be used to
develop a curriculum of bioinformatics training programs.

In several works such as (Machluf et al. 2017; Welch et al. 2014), the main
process is shown in Fig. 10.1, it is suggested to be used to build several case studies.
This is a part of continuing works to refine and update the building curricular
guidelines to serve and assist the bioinformatics community. In the first step, surveys
of educational and training programs’ needs are refined through a multiyear process
of community engagement. This includes surveying and asking questions to partic-
ipants to identify their computational skills levels and bioinformatics knowledge and
background. This community engagement will be the data-driven source to refine the
required competencies needed based on the audience’s needs and background. Then,
based on potential recipients of the training program’s needs, the competencies need
to be refined for each set of personas. The competency framework needs to be
developed using an iterative process with input from several parties from varieties of
backgrounds related to bioinformatics. After that, Bloom’s Taxonomy is used in
mapping competency levels for each of the user groups, with Bloom’s Taxonomy
terms that include: knowledge, comprehension, analysis, synthesis, application, and

Refine
competencies 

Map refined
competencies via

Bloom's
Taxonomy terms

Community
engagement

process

Fig. 10.1 Setting up the learning outcomes based on competencies based on the current studies
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evaluation. The curriculum task force of the “International Society of Computational
Biology” identified a set of 16 essential competencies setup using an iterative
process of inputs and surveys from learners with interest in bioinformatics and
computational biology domain (Mulder et al. 2018).

For training excellence and as shown by (Via et al. 2013), providing up-to-data
and high quality for satisfying the expectations of potential learning audience.
Several studies confirmed that LOs should be formulated based on competencies
and using Bloom’s Taxonomy Illustrative Verbs terms such as “analyze,” “repro-
duce,” “apply,” “design,” “predict,” “develop,” “compare,” rather than “know.” This
gives direct action into practical exercises and tasks, which represent essential and
core tools to achieve defined LOs.

10.3 Targeted Educational Level

With the growing demand for bioinformaticians, there is a persistent and continuing
need for bioinformatics education at all levels starting with students at schools going
through undergraduate students at universities to postgraduate students and might
continue as a form of training for postdoctorate and bioinformaticians. In this
section, we present and discuss the current efforts that cover several educational
levels and we divide them into three levels as shown in the following Sects 10.3.1,
10.3.2, and 10.3.3.

10.3.1 High Schools Level

It is important to integrate bioinformatics into high school classrooms. This integra-
tion enhances the teaching of concepts of evolution, human biology, molecular
biology, and genetics (Form and Lewitter 2011). Students can be trained in using
bioinformatics tools and on approaching real-world problems. Final year students
might be able to develop tools that they might continue using during college and
beyond. Moreover, this will introduce career awareness to students (Form and
Lewitter 2011).

Bioinformatics@-school (Marques et al. 2014) is one example of a project that
serves the life sciences curriculum that uses bioinformatics activities in high schools.
The project helps teachers incorporate and use the latest advances in science into
their teaching. It targets both students and teachers. Bioinformatics@-school project
includes a teachers-training program where teachers follow the same activities given
to students, with the help and support of a teacher manual and under the supervision
of qualified bioinformaticians. The main goal of the training program is to enable
teachers to guide students in the required activities and to understand the basics of
the bioinformatics methods, tools, and resources underlying given activities. On the
other hand, bioinformatics@-school includes web-based research tasks that students
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can practice alone or under teacher supervision. Also, the project enables the
discussion of key results between students and teachers (Marques et al. 2014).
Another study (Barker et al. 2015) supports the practicality of bringing university-
level, bioinformatics activities, and exercises to school students. A measurement
survey provides proof of an increase in awareness of the importance of computers
within biology. It also shows students’ ability to use computers in analyzing DNA
sequences.

10.3.2 Undergraduate Level

There are a great number of undergraduate students who do not have the chance to
learn bioinformatics or/and computational biology skills structured in their educa-
tional curriculum. Undergraduate students in life sciences and biology, in many
cases, need to analyze big data; they rely on bioinformaticians to help them do such
tasks because bioinformatics education is not well integrated at the undergraduate
level for these majors (Zhan et al. 2019). Therefore, a need arises to educate
university students of these majors to analyze data by themselves through integrating
bioinformatics in these majors.

Barriers to the integration of the bioinformatics domain into life sciences educa-
tion were reported in (Williams et al. 2019). The most frequently reported barrier
was that most current life science professors don’t have the required bioinformatics
analysis skills. Other issues included were the big lack of students who have an
interest in bioinformatics study and research; the weakness in student preparation in
computer science, mathematics, and statistics; limited access to required resources,
vetted teaching materials, and overly full curriculum. One way to face some of these
barriers is by implementing teaching modules that can assist both teachers and
students in this area. The University of Puget Sound, Washington State
(US) implemented such a module. The module was incorporated into undergraduate
biology majors, who have little or no knowledge of computer science, and program-
ming. The module makes achievements in building students’ skills in basic
command-line computing and bioinformatics. It motivates students to investigate
more in the bioinformatics field by approaching real-world biological problems and
to appreciate the use of bioinformatics in modern biology (Madlung 2018).

Another implementation of such modules was a short course that was developed
in some colleges and regional universities in the United States to train professors
with essential bioinformatics skills that were later adopted by the professors in their
classes (Zhan et al. 2019). At Lancaster University, they integrate bioinformatics
skills into undergraduate biology degree portfolio (Gatherer 2020).
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10.3.3 Postgraduate Level

To identify the required qualifications suitable for employers in the bioinformatics
field, a study by (Shang and Ghriga 2019) indicated that of all the 38 jobs analyzed in
their research, a master’s degree is required or preferred. Most graduate programs,
and especially bioinformatics as an interdisciplinary field, have students from
various backgrounds with undergraduate degrees from a variety of majors. There-
fore, special attention needs to be taken in designing such curricula (Huanmei et al.
2016).

Some courses were introduced and served both undergraduate and graduate
students (Zhan et al. 2019) while others targeted only postgraduate students
(Guerfali et al. 2019) such as the advanced course in bioinformatics and genome
analyses offered in the Institut Pasteur de Tunis. Consequently, to spread the chance
to learn bioinformatics or computational biology skills, a well-designed curriculum
should start with students from schools going to undergrad level and through
postgrad levels.

10.4 Targeted Specialization Needs

Bioinformatics is an interdisciplinary field of study. Bioinformatics courses can be
offered under several departments based on the content of the course and the
background of the students. Life scientists, for example, need bioinformatics to
help them analyze big datasets. This requires courses that teach students how to
deal with computer programs starting from the formatting and parsing data files
going through writing computer scripts and programs that can connect existing
software applications. Also, training on using high-power computer clusters needs
to be prioritized (Madlung 2018).

As discussed in (Khuri et al. 2020), several bioinformatics topics are usually
incorporated with undergraduate computer science courses such as studies in (Cohen
2005; Unay et al. 2010). Also, many computer science departments offer several
undergraduate and graduate bioinformatics as electives, and/or specializations such
as (Ericson et al. 2014; Fetrow and John 2006; Khuri 2008; Ritz 2018). Computer
scientists need to have introductory information (course) on biological data. They
need to have the skills to work with and extract requirements from biologists and life
scientists who usually don’t have the required enough programming skills. A
suggested two course in concert was presented in (Goodman and Dekhtyar 2014).
The courses focused on teamwork where collaboration from both CS students and
biology students is required to solve the problems.

Medical students need bioinformatics essentials to succeed in medical research.
For example, at the Washington University School of Medicine (WUSM), a module
for teaching the bioinformatics essentials to first-year students is developed. The
module utilizes clinical cases as a platform to access information stored in Online
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Mendelian Inheritance in Man (OMIM), GenBank, and PubMed databases at NCBI.
The module proved its efficiency in introducing medical students to well-known
genetic databases. The developed module successfully integrated the basic principles
of molecular and clinical genetics using real clinical cases (Magee et al. 2001). Later,
a joint course was developed between the University of Washington and the
Universidad Peruana Cayetano Heredia. It served a new bioinformatics track along
with an established Medical/Public Health Informatics track for participants in Peru.
Assessment results showed the success of this course (Magee et al. 2001).

Genetics is another discipline that uses bioinformatics tools. Several universities
realized the importance of bioinformatics use in their departments and included their
needs for that field in their curriculum. At Clark Atlanta University, they designed
and implemented a new bioinformatics component to supplement the undergraduate
genetics course they have and which the students appreciated (David Holtzclaw et al.
2006). At Centenary College of Louisiana, they developed a project for the genetics
course, which is a research-based laboratory course, where students were introduced
to the use of bioinformatics methods and tools, and genetic and molecular biology
approaches (Brame et al. 2008).

10.5 Designing and Running Course in Bioinformatics

Several courses have been designed and run to address the many gaps in bioinfor-
matics education. Some of these courses are focusing on project-based (Emery and
Morgan 2017; Achappa et al. 2020), or with problem-based focus as (Ling 2017), or
it can be a combination of both (Saarunya and Ely 2018). Courses can be provided as
workshops or as a semester-long course.

As shown in Fig. 10.2, we summarize the basic steps that can be used to develop
courses in bioinformatics fields as recommended by several studies as in (Saarunya
and Ely 2018). The first step in designing the courses is to define the needs of
students based on their working domain. Then, the course’s participants have to be
defined including the number of participants, participants’ educational level, and
participants’ specializations. As explained in the above section. The needed compe-
tencies have to be established through surveys and in an iterative manner of inputs
from participants, and the LOs have to be setup based on the defined competencies.
Based on the responses of the participants, the learners can be assigned to three
groups as recommended by (Mulder et al. 2018) and as done by many studies
(Saarunya and Ely 2018). Then, a developed course structure needs to be determined
and, in this step, the syllabuses and the type of courses should be clearly defined.
Identifying a course’s types includes a clear stating: if the course is a workshop or

Course 
Concep�on

Course 
Par�cipants

Learning 
objec�ves and 
outcomes of 
the course

Build Course
Structure

Course 
implementa�on 
and comple�on

Course 
assessment

Fig. 10.2 Summary of the basic steps that can be used to develop courses in bioinformatics fields
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long semester course? Is it one semester or multi-semesters? Is it a problem-based or
project-based or both? Using multi-projects or a single project? Identifying the
practical part?

Some studies suggested having a small class, especially if the course has different
levels of students (Saarunya and Ely 2018). Small size class makes it able to work
with the students individually and to help them to achieve the learning outcomes
successfully. Conducting surveys includes a pre-survey that needs to be completed at
the very beginning of the training educational courses and a post-survey that should
be completed at the end of the course. Pre-survey could have some questions about
student demographics as shown in (Madlung 2018). Many research can be used to
help in building these surveys such as (Mendez et al. 2016). These surveys can
include questions asking the participant to identify their computational skills and
bioinformatics knowledge. By comparing these skills’ levels, which are reported by
participants in pre-survey and post-survey, the improvements can be measured after
completing a course.

10.6 Courses Design and Offering Issues

In designing and offering bioinformatics courses, many issues and challenges are
expected. Different studies have provided use cases for the training experiences and
showed many learned lessons and discuss many of these challenges. In this section,
we discuss and report the main challenges that can be taken into account when
offering and designing bioinformatics educational courses.

One of the major challenges that are expected is the heterogeneity of the back-
grounds and/or skills of the course participants. Many of the provided courses have
several levels of participants, for example, undergraduate and graduate levels, or
sometimes from different specialization, for example, with biology background or
computer science backgrounds. This causes different participants’ needs in terms of
knowledge or skills they require and at which depth. Many studies (Mulder et al.
2018) recommended to cluster the participant into groups and subgroups and
identify the competencies for each group. Other studies suggest providing a small
size class so it will be easy to make individual attention to courses’ participants.

Another challenge that was also reported in the previous studies (Ahmed et al.
2018) is offering bioinformatics training in a limited-resource setting (Ahmed et al.
2018), Awadallah et al. reported two types of resource-limited settings which are
location and timing. To solve these challenges the researchers in (Ahmed et al. 2018)
suggested that the location challenge can be solved by working more closely with the
universities to gain more support in allocating more resources and infrastructure.
Also, they suggested a more active collaboration with government agencies and
entities like ministries of higher education that will provide more sustained training.

Another important issue mentioned is the lack of expertise in the bioinformatics
domain. Finding enough expertise is crucial to develop new biocomputing-intensive
training programs (Gurwitz et al. 2017; Madlung 2018). This is still a challenge since
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many faculties received their training before the rapid expansion and evolution of
big and high-throughput bioinformatics data and research methods.

10.7 Recommendation

Designing a bioinformatics course should adhere to the highest educational quality
standards that aim to empower students with the necessary knowledge, skills, and
competencies that qualify them for future job positions, as well as in continuing their
study in the field of bioinformatics. To face many of the above challenges and issues,
some design issues need to be considered when designing bioinformatics courses
(Gurwitz et al. 2017). The following are some recommendation that we think could
help to offer a better bioinformatics training program and curriculum:

• Appropriate infrastructure is needed, especially if distance learning is an option.
Therefore, if a developing country is an issue an appropriate university needs to
be chosen as a starting place (Ahmed et al. 2018).

• The fundamentals of bioinformatics should be started at the school level. This
requires training of academic staff members on bioinformatics-related courses,
software packages, and tools and hardware components that are necessary to
build and deploy various algorithms, techniques, and applications that serve the
needs of different stakeholders across multiple bioinformatics domains. This
training should include academic members of both schools and universities.

• Subjects of the course content should go in line with the learning outcomes.
Participants’ backgrounds determine the depth of the subjects that should be
taught.

• Real-world up-to-date examples that in the long run will meet the market require-
ments should be a focus.

• It is extremely important to organize the contents of the individual course or the
content of successive courses in a logical order to attain a high level of cohesion
and complementarity. This can be accomplished by reusing datasets or building
on a previous project that the student used in a previous course (Faria et al. 2018).

• Balancing between theory and practice materials and exercises. The benefit from
most theoretical courses can be gained when applying practically what the
students have learned. Therefore, this point should be an important guideline
for bioinformatics courses where applications are mostly used (Faria et al. 2018).

• Lab exercises should be introduced in order to enforce interaction and commu-
nication between students across and within classrooms. This will teach students
how to collaborate with others especially if they are of different backgrounds,
which is a need in such a multidisciplinary field.

• Redundancy in course delivery methods is desired. A course might be given in a
real classroom in addition to a virtual classroom so that the student can access the
material in a way that is more appropriate to him/her (Gurwitz et al. 2017).

• The course should include real-world examples not artificially produced ones.
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• For postgraduate courses, the scope of the suggested bioinformatics courses
should be expanded in response to the emerging research to include applications
of several related areas (Welch et al. 2016)

• The course should be evolving constantly as different kinds of real-world prob-
lems are introduced (Welch et al. 2016)

• Such cross-disciplinary courses should be well-formed to attract students of
several majors.

10.8 Conclusions

There are growing needs to prepare bioinformatics professionals to meet the bio-
medical revolution demand. Several bioinformatics training programs have been
established in order to address these increasing demands in computational and
quantitative learning in bioinformatics. Comprehensive investigations of the previ-
ous and most recent studies related to bioinformatics training and education topics
provide us with many lessons to learn from the experiences. This chapter reports the
current main perspectives in designing and developing bioinformatics curriculum
guidelines. In this chapter, the main issues that currently face the development and
implementation of bioinformatics training programs are presented. The main rec-
ommendation that could help researchers to enhance offering bioinformatics curric-
ulums and planned courses are reported. These guidelines represent an aggregate of
the recommendations suggested in most existing courses and are fairly flexible to
meet the objectives and goals of the teaching educational institutions. More case
studies could be provided to describe the current needs to provide more professional
degrees especially to deal with the complexity of biomedical big data revolution.
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Chapter 11
Machine Learning for Bioinformatics

Harshita Bhargava, Amita Sharma, and Jayaraman K. Valadi

11.1 Introduction

Machine learning algorithms have gathered the attention of every individual with
applications in astronomy, online shopping, social media, medical diagnostics,
online trading, smart devices, online education, and so on. These algorithms differ
from traditional problem-solving algorithms with the ability to learn from the data
without being explicitly programmed. These data exist in different formats and are
typically generated from a variety of sources including data from primary or
secondary research, image, video, location, geospatial and sensory data (Alonso
et al. 2017). The availability of such data not only provides opportunities for data-
driven decision making through data analytics but also poses serious challenges in
terms of data management and storage. With the advent of cloud computing data
management and storage issues can be handled with greater ease and flexibility
while the data analytics part can be well addressed by the use of machine learning
algorithms.

Bioinformatics is an interdisciplinary active research field that requires and
derives knowledge from the fields of chemistry, physics, biology mathematics,
biotechnology, pharmacology, computer science, and so on (Manisekhar et al.
2020). In recent years bioinformatics data has also grown at a very fast pace along
with the availability of open-source databases and low cost, time-saving next
generation sequencing or high throughput sequencing techniques. These data can
be further analyzed either to develop hypotheses, draw inferences, or generate
predictions. These predictions can be in the form of gene sequence prediction,
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protein function and structure predictions, drug target interaction, drug side effect
prediction, and so on.

The students, researchers, and academicians in bioinformatics have equal oppor-
tunities to collaborate to study and address the basic problems of drug repositioning,
drug development, and drug discovery, and so on. This equality is justified by the
availability of open-source databases in bioinformatics including genomic, proteo-
mic, transcriptomic, and metabolomic data that can be directly utilized by the
students for machine learning applications. The datasets obtained using these
open-source databases can assist the students to develop conventional machine
learning or deep learning models and generate outputs while evaluating the same
using well-defined metrics as per the studied problem. The learning aspects of the
students increase with the interdisciplinary nature of the bioinformatics field and
further analysis using machine learning or deep learning approaches. As far as
education in bioinformatics is concerned one must be taught in a sequential manner
starting from the basic theoretical domain concepts to in-depth analysis and model-
ing the available data thereby extracting information in the form of classifications or
predictions.

11.2 Machine Learning Algorithms for Bioinformatics

Biological systems are too complex and so are the data, hence the conventional
approach of wet lab experimentation proves to be a tedious and time-consuming
task. The costs involved in this approach can be reduced to a great extent by using
machine learning or deep learning based computational models. As an example, if we
are given the task of discovering drugs for COVID-19 then this entire drug develop-
ment task takes years to complete. Here the concept of reusing the existing drugs can
be utilized which can greatly speed up the process. The concept of reusing existing
drugs also called drug repurposing relies on finding all other targets except the one for
which it was originally designed (Masoudi-Sobhanzadeh et al. 2020). These targets
can be shortlisted by machine learning methods rapidly. These scanned targets can be
further tested using wet lab experiments to ensure their reliability and accuracy.

Machine learning algorithms can be categorized as:
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• Supervised learning algorithms: These algorithms use existing domain knowl-
edge to build models. In other words, they take the labeled data from prior
annotations as training examples and learn the mapping between the inputs and
outputs in order to classify or label the new input examples. Supervised learning
tasks can take the form of classification where the output has a class label either
binary or some discrete value. It may also take the form of regression where the
output has a definite continuous value within a specific range. In the case of
regression, the difference between the expected and predicted output specifies
the error. The major concern with supervised learning is that while classifying the
data one should ensure that the dataset is balanced else the model will learn the
majority class and the output would be biased (Kaur et al. 2019).

• Unsupervised learning algorithms: These algorithms are used primarily when the
data are neither labeled nor defined as separate classes. It basically learns hidden
patterns and valuable domain knowledge using similarities/dissimilarities out of
the input data with the help of clustering or density estimation algorithms.

• Semi-supervised learning algorithms: These algorithms are well suited for prob-
lems where the labeled/classified data are far less than the unlabeled/unclassified
one. This kind of learning is used when labeling the examples is too expensive
and time-consuming as compared to utilizing unlabeled examples.

• Reinforcement learning algorithms: These algorithms enable the software agents
to learn the actions depending upon the feedback received using a trial and error
approach each time the agent interacts with the environment. This enables the
agent to learn the optimized states that are associated with the maximization of
rewards as per the defined problem. While supervised learning models learn from
data, reinforcement learning models learn from experience.

11.3 Deep Learning Algorithms for Bioinformatics

The main disadvantage with the classical machine learning algorithms is that they
require a typical feature engineering effort before their application to the respective
domain. The output of the machine learning algorithm thereby largely depends upon
the features selected for the respective problem. In order to mimic the idea of human
perception in arriving at conclusions directly from raw data without learning features
explicitly, deep learning was introduced (Zhang et al. 2017). Deep learning is a
subset of machine learning and has found applications in various fields including
social network data analysis, video streaming services, image classification, speech
recognition, precision medicine, recommender systems, drug development, and so
on. The voluminous bioinformatics data including genomic, proteomic, and micro-
array data can be considered as a perfect candidate for training deep learning
algorithms.

A significant class of deep learning algorithms includes:
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• Deep neural network (DNN): It is an inherited version of the ANN model with
multiple hidden layers between the usual input and output layers that learn a
hierarchy of concepts directly from the raw inputs. The inputs for the DNN are
applied at the input layer and each layer, the input multiplied by a weight vector is
calculated and a nonlinear function such as sigmoid or rectified linear unit
(RELU) is applied to produce outputs. The outputs are again used as inputs and
fed to the subsequent layer to generate the final output.

• Convolutional neural network (CNN): CNN has been a well-known class of deep
learning algorithms for analyzing images. In terms of architecture, a CNN
consists of a series of overlapping convolution layers, activation layers, pooling
layers, and fully connected layers with the appropriate configuration of filters at
each convolution layer. The architecture may differ but in general, the learned
features become more abstract with each layer. The max pooling or average
pooling is used to further reduce the dimension of the input matrix of pixels,
say an image as received from the previous convolution layer. The pooling
operation ensures the location invariance property suggesting the presence of
the feature irrespective of its location in the image.

• Recurrent neural network (RNN): RNN are used to analyze temporal sequences
or sequence-based input data either organized as text or gene sequences in the
form of DNA, RNA, or protein. They involve the computation of the hidden state
for each “entity” in the sequence. The output of the hidden state depends not only
on the normal input fed into the network serially from the sequence but also on
the previous hidden state.

• Autoencoders: Autoencoders are classified as unsupervised learning, generative
models that can learn to generate the outputs that resemble the inputs. The
unlabeled data is taken as input and encoded by the encoder into latent, com-
pressed, and low dimensional representations called code or latent space. The
decoder takes these low dimensional hidden and compressed representations
from the latent space and converts them back into original input data. The reduced
dimensional features can be used as input to any supervised learning algorithm.
Autoencoders have found applications in image coloring, image regeneration
from noisy image data, data compression (image, audio or video), and so on. In
bioinformatics, they are used for extracting interpretable factor models and
biologically relevant latent spaces.

11.4 Applications of Machine Learning
(ML) in Bioinformatics

In bioinformatics machine learning (ML) is frequently used in varied problems. ML
has become a strong tool to handle perplexing datasets in genomics. The students
can understand applications based on the ML algorithm’s task which are mainly
classified as:
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• Association rule based:
This category comprises those problems where the association between binary

or multiple sets is determined. Such problems are disease symptoms mapping,
drug target interaction, mapping of molecule structure with protein reaction
mapping, drug discovery from plant compounds, and so on. Association rule
based ML generates relationships between the known to known set and unknown
to a known set.

• Clustering:
Clustering algorithms are generally used whenever the prior information about

the problem is limited or unavailable. There are a large number of clustering
algorithms that provide significant support in developing knowledge for such
problems. Problems like determining possible sectors of infections or the pres-
ence of microorganisms, gene-based clustering to know the gene expression,
feature or sample-based clustering, and so on.

• Dimensionality reduction:
Dimensionality reduction algorithms are an intrinsic element of bioinformatics

problems because of the datasets curated from multiple databases. Problems like
gene sequencing, image processing, molecular structure processing, drug protein
interaction prediction employ basic dimensionality reduction using algorithms
such as principal component analysis, SVD, matrix factorization, and so on.

• Classification and regression:
In bioinformatics, classification and regression algorithms are commonly used

to predict the class or object. There are problems like disease prediction and
digital diagnosis, presence and possibility of infection, computational screening
of molecular fragments, virtual screening of compounds, computer aided drug
design, large-scale protein interactions, protein structure prediction, and
many more.

There are some complex problems where ML can be applied like fragment-based
de novo design, fragment linking to design novel inhibitors, molecular docking
analysis with virtual screening, construction of homology models, designing of the
linear discriminant analysis model, and designing of analogs. The career prospects of
ML in bioinformatics are increasing day by day. The application of ML to genetic
data and neuroimaging data opens new frontiers for novice engineering. It has
improved the understanding of complex diseases, genetic transformations, and
genetic disorders. With the help of ML different kinds of application software and
automated tools have been devised. Precision medicine and recommendation sys-
tems are the latest applications of ML. These applications assist medical experts in
the treatment of chronic diseases. ML algorithms can easily adapt to new data that is
generated each day and also they have the ability to handle noisy and missing
biological data.
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11.5 Conclusions

In the big data era transformation of huge unstructured data into structured informa-
tion and to valuable knowledge has been the key challenge. Recent advances in
machine learning and deep learning have effectively addressed this with improved
and cost-effective handling methods. Recent efforts to handle model interpretability
and overfitting issues will pave way for the development of more reliable models.
We have described a very brief and lucid introduction to machine learning and its
components. The role of machine learning in bioinformatics education is further
strengthened by the availability of open-source development packages, libraries, and
frameworks. There is however an urgent need for constant revision and upgradation
of the course curriculum.
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Bioinformatics Cross Word

ACROSS

4 Primerprimer

5 Homologs duplicated

6 Well-known sequence format

8 NCBI

10 Orthologous sets of interacting proteins
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DOWN

1 Thermal cycler

2 A database but predicts

3 An alternative to antibodies

7 Conserved sequences

9 Cluster of computers virtually
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Epilogue

Through this book, the author overtly conveyed to the readers from day-to-day
experiences, he has traversed whence his illustrious travel to several countries.
Otherwise, the author hopes it has tried to justify and confirm the traditional way
of providing guidance to the beginners in bioinformatics. Thank you for reading.
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