
Optimization Algorithms for Inverse Kinematics
of Robots with MATLAB Source Code

Hazim Nasir Ghafil1(B) and Károly Jármai2

1 University of Miskolc, Miskolc, Egyetemváros 3515, Hungary
vegyhnr@uni-miskolc.hu
2 University of Kufa, Najaf, Iraq

Abstract. This work presents a methodology to solve the inverse kinematic prob-
lem for any kind of robot arm using optimization algorithms. Forward kinematic is
usually a straightforward analysis for any robot while inverse kinematic is hard to
be solved for many cases. Thus, depending on a set of the forward kinematic equa-
tion, the objective function can be formulated to be minimized to find the inverse
position. This methodology makes the inverse kinematic very simple operation
for all types of the robot, even for those who are complicated with a high degree of
freedom. A particle example of 5DOF revolute joint arm was used to present this
methodology with source code written in MATLAB for the objective function.
Dynamic differential optimization algorithm DDAO was used to minimize the
objective. DDAO has promising usage for embedded systems when prototyping a
controller that estimates the inverse kinematic as per user request.

Keywords: Inverse kinematics · Optimization algorithms · Robotics · Dynamic
differential optimization algorithm · Particle swarm optimization

1 Introduction

Inverse kinematics [1] is the cornerstone for articulated robots in all daily life applications
because all the rest of the robotic processes depends on its output. Articulated arm robot
moves by giving joint input variables to the actuators [2], and accordingly, the tip of the
armmoves inCartesian space. This is called forward kinematic, and it is a straightforward
operation that does not need serious computations or optimizations. We deal with the
motion in Cartesian space because that what is desired for most of the application while
the movement in the joint space still in the shadow. The most difficult process is when
the inputs are the Cartesian coordinates, and the desired is to find the corresponding
joint variables. This is called inverse kinematics which is what we usually deal with
most of the robotic applications. In the automotive industry, robots follow a specific
trajectory of Cartesian points to do some achievement like welding, cutting, grinding,
painting, etc. [3]. Thus, inverse kinematics maps the motion of the tooltip (or just the
extreme tip of the arm) fromCartesian spacewhere the tip swims to the joint space where
the actuators perform. It is worth mentioning that for simple topology robots, inverse

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2021
K. Jármai and K. Voith (Eds.): VAE 2020, LNME, pp. 468–477, 2021.
https://doi.org/10.1007/978-981-15-9529-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9529-5_40&domain=pdf
http://orcid.org/0000-0001-5592-8250
http://orcid.org/0000-0001-8487-4327
https://doi.org/10.1007/978-981-15-9529-5_40


Optimization Algorithms for Inverse Kinematics of Robots 469

kinematics can be simple and solved by many methods like geometric or analytical
solutions. For a complicated high degree of freedom robots, the process will be hard or
even impossible to be solved by traditional methods [4]. In this work, we are presenting
the formulation of the objective function for inverse kinematics to be solved by any of
the optimization algorithms. Dynamic annealed optimization algorithm (DDAO) [5],
specifically, proposed to find the inverse solutions for robot arms. What is interesting
in this algorithm is that it is independent of the population size, and that makes DDAO
perfect for embedded systems applications as we will express in the respective sections.

2 DDAO

Dynamic differential optimization algorithm (DDAO) is a physically inspired optimiza-
tion algorithm that mimics the process of production dual-phase steel. The mathematical
model of the algorithm is expressed as follows:

Sk = (
Sci − Scj

) + Sr.f (1)

f =
{

1 if rem(iteration, 2) = 1
random [0, 1] if rem(iteration, 2) = 0

, (2)

where rem is the remonder after division on 2, we suggest the same procedure depending
on the probability formula described by SA algorithm

P = e
−�E
T , (3)

�E = Cost(Sk) − Cost(SL)

Cost(SL)
, (4)

where Sk is a new solution proposed for the iteration number (k), k = 1…n where n
is the number of iterations, and Sci and Scj, are randomly chosen solutions from the
population with random (i) and (j) indices. Sr is a randomly generated solution within
the search space of the problem out of the population. P is the probability of accepting a
new solution, �E is the difference between the objective value of the proposed solution
from Eq. (1) and the objective value of the solution SL , which is a solution of index L in
the population, L = 1,…, population size. T is the temperature variable, which should
start with high value and be updated during iterations constantly to a lower value. The
proposed solution can be accepted if P > random number ∈ [0, 1]. At the beginning
of the search, T starts with high value; consequently, P will be close to one, according
to Eq. (3). This means that a wide range of random numbers can be less that one and
the solution will be selected. At the low value of T, the probability P will be close to
zero; according to Eq. (3), this means that a very narrow range of random numbers could
be less than P and the solution is less likely to be selected. The pseudocode illustrated
below.



470 H. N. Ghafil and K. Jármai

Initialize population Xi (i = 1,2,…,n)
Initialize parameter T, cooling rate
Calculate the cost of each solution
Xb= The best solution
While (t < Max iteration)
Initialize sub-population S
Calculate the cost of the sub-population
Sort sub-population
Sr= Best solution in sub-population
Choose two random solutions Xm and Xn from population
Calculate Sk from Eq. (1)
Sort population X
foreach solution in population X
if there is an improvement
Xi= Sk
otherwise, replace the worst solution in population X using
Eqs. (3) and (4)
endif
endfor
Update Xb
T = T*cooling rate
t = t+1
endwhile
return Xb

DDAO has a unique characteristic which is that it is independent of population size,
this means that it uses the minimum size of the RAM when considering the population
size of three individuals. Of course, other algorithms like particle swarm optimization
[6], genetic algorithm [7], grey wolf optimization [8]. These algorithms can be used by
setting population size as minimum as possible and what is the best algorithm for the
inverse kinematic problem is left to the reader for future works.

3 Practical Example

In this study, LabVolt 5150 robot manipulator [9] is used to apply the proposed method-
ology of calculating the inverse kinematics using optimization algorithms. It is a 5 DOF
manipulator; its rotational axes are base, shoulder, elbow, pitch and roller rotation, the
manipulator equipped with a griper and all the revolute joints actuated by fife stepper
motors. Figure 1 shows this robot manipulator, Fig. 2 expresses the configuration pace
of the robot, and Fig. 3 reveals the frame assignment. According to the model shown in
Fig. 2, the spatial parameters are estimated for each link, as shown in Table 1.



Optimization Algorithms for Inverse Kinematics of Robots 471

Fig. 1. Lab-volt 5150 manipulator

Fig. 2. Operative ranges and specifications of lab-volt 5150

Fig. 3. Operative ranges and specifications of lab-volt 5150



472 H. N. Ghafil and K. Jármai

Table 1. Spatial parameters of the lab-volt 5150 manipulator

Link ID Frame φ α a d limits

1 o0x0y0z0–o1x1y1z1 0 90 0 d1 −185, 153

2 o1x1y1z1–o2x2y2z2 0 0 a2 0 −32, 149

3 o2x2y2z2–o3x3y3z3 0 0 a3 0 −147, 51

4 o3x3y3z3–o4x4y4z4 0 90 0 0 −5, 180

5 o4x4y4z4–o5x5y5z5 0 0 0 d5 −360, 360

By usingDenvit-Hartenberg convention [10], the homogenous transformationmatrix
HTM for the links are calculated as follows:

H 0
1 =

⎡

⎢⎢
⎣

C1 0 S1 0
S1 0 −C1 0
0 1 0 d1
0 0 0 1

⎤

⎥⎥
⎦ (5)

H 1
2 =

⎡

⎢⎢
⎣

C2 −S2 0 a2.C2

S2 C2 0 a2.S2
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (6)

H 2
3 =

⎡

⎢⎢
⎣

C3 −S3 0 a3.C3

S3 C3 0 a3.S3
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7)

H 3
4 =

⎡

⎢⎢
⎣

C4 0 S4 0
S4 0 −C4 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦ (8)

H 4
5 =

⎡

⎢⎢
⎣

C5 −S5 0 0
S5 C5 0 0
0 0 1 d5
0 0 0 1

⎤

⎥⎥
⎦ (9)

H = H 0
1 × H 1

2 × H 2
3 × H 3

4 × H 4
5 (10)

equation (10) is 4×4 matrix holds the orientation and position vector of the end-effector
with respect to the base frame, as revealed in Eq. (11) and Eq. (12).



Optimization Algorithms for Inverse Kinematics of Robots 473

R0
5 =

⎡

⎣
S1.S5 + C1.C5.C234 S1.C5 − C1.S5.C234 C1.S234

−C1.S5 + S1.C5.C234 C1.S5 + S1.C5.C234 S1.S234
C5.S234 S5.S234 −C234

⎤

⎦ (11)

P0
5 =

⎡

⎣
x = d5C1S234 + a2C1C2 + a3C1C23

y = d5S1S234 + a2C2S1 + a3C23

z = −d5C234 + a2S2 + d1 + a3S23

⎤

⎦ (12)

4 Objective Function

This is the problem of finding the joint variables from the given position and orientation
of the end-effector. While forward kinematics is detecting the position and orientation
of the end effector from the given set of joint variables, inverse kinematics is the inverse
operation, but it is somewhat complicated.

⎡

⎢⎢⎢
⎣

θ1

θ2
...

θn

⎤

⎥⎥⎥
⎦

⇒
⇐

⎡

⎢⎢
⎣

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

⎤

⎥⎥
⎦ (13)

While forward equations are a straightforward process, we will rely on these
equations to establish the objective function for the inverse problem.

Herewe looking for an optimum set of joint variables that can lead to theminimumof
a cost function, the only thing to do is developing cost function for the inverse Kinematic.
Consider Fig. 4, for a specific robot configuration, the current position vector of the end-
effector can be represented by the distance from the base of the end-effector of the
manipulator while the desired position vector represents the task point. Obviously, if the
difference between these two vectors is zero, then the tooltip will be in the right position
at the task point, and this is the objective function f of the inverse problem

Fig. 4. Representation of the objective function for inverse kinematic problem



474 H. N. Ghafil and K. Jármai

f = ‖Ci − De‖ (14)

Where Ci denotes the instantaneous position vector, and De is the desired position
vector. In other words, Eq. (14) is the function that has to be minimized as much as
possible, and it just the distance between the end-effector and task point.

f =
√

(xCi − xt)2 + (yCi − yt)2 + (zCi − zt)2 (15)

Where t refers to the task point coordinates which is given for the inverse kinematic
problem.

If Eq. (15) has been used alone as an objective function, we may get the end-effector
in the task point but with many choices of orientations.

5 The Procedure of the Objective Function

In this section, we shall model the objective function for the inverse kinematic of any
robot manipulator. Figure 5 shows a schematic diagram for the inverse problem; it is
more descriptive to explain the procedure by a set of notes as follows.

1. Optimization algorithm sent the candidate solution, which is a set of possible joint
variables, to the cost function to evaluate its fitness.

2. Cost function contains the desire task point coordinates; it sends the possible solution
to Forward function to get x, y, and z coordinates of the tooltip.

3. Forward function contains all the forward kinematic equations of the robot arm, by
substituting the candidate solution to that equations we can get the overall homoge-
nous transformation matrix by a repeated call for HTM function. The output of the
Forward function is the position vector of the total transformation matrix.

4. Cost function will receive the position vector and apply Eq. (15) to the candidate
vector and the desired task position vector. The result is the fitness of the solution
that will be back to the main optimization algorithm.

This process is constant for all types of manipulators; the only thing to change is the
forward kinematic equations and the task position vector. It is worth mentioning that not
all optimization methods can return a guaranteed solution; this depends on the efficiency
of the algorithm itself.

The implementation of thismethodology has a great significance on robot autonation,
consequently, facilate and increase the productivity especially in aumotive engineeering.
The automotive enginnering has wide applications for robots where they can be used in
many cases and many operations [11, 12].



Optimization Algorithms for Inverse Kinematics of Robots 475

Cost function

Forward function

HTM function

Optimization Algorithm 

O
bj
ec

tiv
e

Fig. 5. Objective function scheme for inverse kinematic problem

6 Implementation of the Objective Function

The problem for LabVolt 5150 consists of five variables with lower and upper limits
shown in Table 1, for a given point in space v ∈ R3 the objective is finding the best
corresponding joint angles that drive the end-effector to that point. From optimization
algorithm, the candidate solution (sol) is transferred to the cost function (cost):

For each candidate solution, we have to calculate the corresponding forward kine-
matic to find the position vector in Eq. (12) to be used in Eq. (15) to estimate the objective.
Thus, the candidate solution v is transferred to the forward kinematic equations function
(Forward). In this function, the spatial parameters are defined for each link considering
data in Table 1:



476 H. N. Ghafil and K. Jármai

For general usage, we have developed separated function (HTM) to return the
homogenous transformation matrix described by Denavit matrix.

The source code described above is general, one can solve the inverse kinematic
of any robot just by replacing the proper spatial parameters and define them in func-
tion (Forward). According to the number of links, less or more Denavit matrices can



Optimization Algorithms for Inverse Kinematics of Robots 477

be estimated H_6,…, H_n. The function (HTM) is still valid for all types of robot
manipulators without changes.

7 Conclusion

Optimization algorithms are proposed to find the solution for the inverse kinematic
problem for robots of any type by optimizing the minimization objective function. The
proposed optimization algorithm is dynamic differential annealed optimization, which
is simple, fast, and uses low space of the memory of host machines or target devices. A
practical example of 5DOF revolute joints manipulator, LabVolt 5150, was considered
for the inverse problem. The described methodology is quite simple and can simplify the
hard problem of inverse kinematic greatly andmake it simple, straightforward operation.
The proposed DDAO does not promise a perfect solution, and many other optimization
algorithms should be tested to find a solution for the inverse problem, and that is proposed
for future works.

Acknowledgments. The research was supported by the Hungarian National Research, Develop-
ment and Innovation Office - NKFIH under the project number K 134358.

References

1. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control (2006)
2. Craig, J.J.: Introduction to robotics: mechanics and control, 3/E. Pearson Education India

(2009)
3. Ghafil, H.N., Jármai, K.: Optimization for Robot Modelling with MATLAB. Springer, Cham

(2020). https://doi.org/10.1007/978-3-030-40410-9
4. Lee, C.S.G.: A Geometric Approach in Solving the Inverse Kinematics of PUMA Robots–

College of Engineering. The University of Michigan, Ann Arbor (1983)
5. Ghafil, H.N., Jármai, K.: Dynamic differential annealed optimization: new metaheuristic

optimization algorithm for engineering applications. Appl. Soft Comput. 93, 106392 (2020)
6. Jiang, Y., Hu, T., Huang, C., Wu, X.: An improved particle swarm optimization algorithm.

Appl. Math. Comput. 193(1), 231–239 (2007)
7. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
8. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61

(2014)
9. Al-Saedi, F.A.T., Mohammed, A.H.: Design and implementation of chess-playing robotic

system. Int. J. Sci. Eng. Comput. Technol. 5(5), 90 (2015)
10. Bi, Z.M., Gruver, W.A., Zhang, W.-J., Lang, S.Y.T.: Automated modeling of modular robotic

configurations. Rob. Auton. Syst. 54(12), 1015–1025 (2006)
11. Jármai, K., Bolló, B.: Vehicle and Automotive Engineering 2: Proceedings of the 2nd

VAE2018, Miskolc, Hungary. Springer (2018). ISBN 978-3-319-75677-6
12. Jármai, K., Bolló, B.: Vehicle and Automotive Engineering: Proceedings of the JK2016,

Miskolc, Hungary. Springer (2018). ISBN 978-3-319-51189-4

https://doi.org/10.1007/978-3-030-40410-9

	Optimization Algorithms for Inverse Kinematics of Robots with MATLAB Source Code
	1 Introduction
	2 DDAO
	3 Practical Example
	4 Objective Function
	5 The Procedure of the Objective Function
	6 Implementation of the Objective Function
	7 Conclusion
	References




