
Automatic Grading of Online Formative
Assessments Using Bidirectional
Recurrent Neural Networks
and Attention Mechanism

Advay Pakhale, Xavier Lien, and Tan Guoxian

Abstract Formative assessments have been shown to be highly beneficial for stu-
dents’ learning processes due to their ability to provide feedback to both teachers and
students. However, the marking of short-answer questions in formative assessments
is a tedious task for teachers. The advent of online learning platforms, however,
has allowed for the digitalisation of student answers which opens up opportunities
for automatic grading. We propose novel automatic grading architectures that (1)
produce an accurate quantitative score in order to expedite the marking process and
(2) provide qualitative feedback to teachers and students in terms of the key areas of
improvement. These architectures consist of bidirectional long short-term memory
and gated recurrent unit networks with an attention mechanism for quantitatively
scoring answers, and a cosine similarity-based model that provides qualitative feed-
back based on a simple marking scheme comprising marking points. We evaluate
these architectures across different metrics on two datasets collected from an online
physics quiz, consisting of two short-answer physics questions on the topic of ther-
modynamics. We show that our architectures achieve reasonable accuracy on the
scoring task and provide useful feedback to teachers and students, thus successfully
aiding in automatically grading formative assessments.
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1 Introduction

Formative assessments place a primary focus on providing qualitative feedback for
both teachers and students. Such feedback not only allows teachers to monitor their
students’ progress and evaluate the effectiveness of their own instruction, but also
provides insight as to how the teaching and learning process can be optimised going
forward [1]. Formative assessments have been shown to produce a much greater
impact on student learning as compared to summative assessments when adminis-
tered frequently and in a timely manner [2]. Hence, formative assessments clearly
play a beneficial role in today’s modern classrooms.

However, grading certain forms of formative assessments such as short-answer
questions is a complex task that requires significant human intervention and input.
Furthermore, valuable feedback needs to be produced that is beneficial to both stu-
dents and teachers, which is a time-consuming and tedious task for teachers. The
automation of this task would allow open-ended formative assessments to be admin-
isteredmore frequently and easily, greatly easing theworkload of teachers and allow-
ing both students and teachers to reap their benefits through the frequent and timely
report of progress that they would receive.

The advent of online learning platforms has made administering formative assess-
ments more convenient and more importantly, has allowed for the digitalisation of
student answerswhich opens up opportunities for automatic grading that are explored
in the following sections.

2 Literature Review

Much progress has been made in developing different approaches to the automatic
grading of open-ended questions. Reference [3] showed that a system utilising mul-
tiple linear regression with a combination of hand-crafted features and probabilistic
models, such as Bayesian classifiers and k-nearest-neighbour algorithms, can give
results comparable with human graders. Reference [4] developed CarmelTC, a rule-
based approach, combining both features obtained from deep syntactic functional
analyses of texts and a “bag-of-words” classification extracted from Rainbow Naive
Bayes, outperforming Latent Semantic Analysis, Rainbow Naive Bayes and a purely
symbolic approach. Reference [5] used a deep learning approach for essay grading
while [6] used hand-picked features with linear regression on the same dataset. The
former performed significantly better, demonstrating the superiority of deep learning
approaches over classic Natural Language Processing (NLP) methods.

However, much of the literature focuses on grading summative assessments; the
only objective is to produce an accurate quantitative prediction of the score. This is
arguably easier and less complex than grading formative assessments which involves
producing feedback for both teachers and students on top of merely providing a
quantitative score. Thus, there is a need for new automatic grading architectures that
can fulfil the aims of formative assessments.
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3 Methodology

3.1 Datasets

An online physics quiz was conducted on 292 Raffles Institution Secondary 2 stu-
dents, comprising two short-answer physics question on the topic of thermodynam-
ics. Thermodynamics was chosen as it is an important topic in mainstream schools
which students have many misconceptions about, and this topic is typically tested
using qualitative short-answer questions. The first question is a simple recall ques-
tion, while the second question is a more complex application question, designed to
have more variance in answers. The answers were then graded by an entire level of
3 physics teachers based on a marking scheme comprising different marking points.
Student answers were then pre-processed by tokenising and converting to lowercase
while punctuation, non-alphabetical characters and stop words were also removed.
The answers and scores from question 1 and question 2 are denoted dataset 1 and
dataset 2 respectively.

3.2 Components of Architecture

We aim to design an architecture (Fig. 1) that automatically grades short-answer
formative assessments by (1) providing an accurate quantitative score for student
answers in order to expedite the marking process and (2) providing qualitative feed-
back to teachers and students in terms of the key areas of improvement.We evaluated
different qualitative and quantitative models that attempt to achieve these two aims.

3.2.1 Quantitative Component

We propose a neural network model for the quantitative component. In order to
design the best performing architecture, we propose different types of models below.
Firstly, we compare the use of different word embeddings. Secondly, we fix our
baseline model to be a simple feedforward neural network. Thirdly, we compare two
types of Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM)
networks andGatedRecurrentUnit (GRU) networks. Fourthly,we compare the use of
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(Marking Points)
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(E.g. Online Quiz)
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Fig. 1 Outline of architecture
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bidirectional RNNs (BiRNNs) and their unidirectional variants. Finally, we propose
an attention mechanism.

(a) Word Embeddings Within the neural networks, the answers are first represented
in terms of word vectors that can encode meaningful semantic relationships
between words. We compare 2 types of word embeddings—GloVe [7] and fast-
Text [8], both of which are 300 dimensional.

(b) Feedforward Neural Network (Baseline) We chose a simple feedforward neural
network as our baseline. This network is trained on an “answer vector” for
each answer, which is simply the sum of the word vectors for each word in
the answer. While this approach does not preserve sequential information, word
vectors have been shown to be able to meaningfully encode linearities such
as king − man + woman = queen and Paris − France + Italy = Rome [9].
Thus, we hypothesise that the answer vectors will nevertheless be able to encode
meaningful information about the answers to a certain degree. The architecture
of the baseline and non-baseline models can be found in Fig. 2.

(c) LSTM and GRU Networks LSTM networks [10] preserve long-distance depen-
dencies, making them ideal for processing text sequences [11]. On the other
hand, GRU networks were developed as an alternative to LSTM networks and
are computationally less complex [12], yet perform comparably to LSTM net-
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works in sequence processing tasks [13]. We chose to work with RNNs as they
have demonstrated excellent performance in sequence processing tasks, includ-
ing sequence classification, due to their ability to account for sequential infor-
mation [14], making them applicable to our task of grading short-answer physics
questions.

(d) Bidirectional Recurrent Neural Networks BiRNNs [15] such as BiLSTM net-
works aim to improve upon RNNs by processing the same input sequence twice,
forwards and backwards. This allows the BiRNN to retain contextual informa-
tion in both directions and has led to an improvement in performance in various
sequence processing tasks [16, 17]. Hence, we compare the performance of
BiLSTM and BiGRU models with that of regular LSTM and GRU models.

(e) AttentionMechanism Recently, the attention mechanism has been developed for
sequence processing tasks such as machine translation and sequence classifica-
tion [18, 19]. Since not all words in a sentence contribute equally to its meaning,
attention is used to place more weight on more important words while placing
less weight on less important words. We hypothesise that attention would be
able to extract keywords from answers to aid in marking them more effectively,
similar to how a teacher might mark answers. A detailed diagram showing the
architecture of the attention layer on top of a BiRNN layer can be found in Fig. 3.

3.2.2 Qualitative Component

We propose a few different methods to provide qualitative feedback to students and
teachers using the marking schemes in our datasets by capturing common strengths
and weaknesses in student answers. We mainly adapt and draw inspiration from
classic probabilistic topic models such as Latent Dirichlet Allocation [20], which
produces sparse and low-dimensional interpretations of topic memberships in docu-
ments. These are highly interpretable, allowing humans to gain high-level insight and
intuition from them,which is especially necessary in the field of formative assessment
where human understanding and feedback is key.

(a) Vector Decomposition Our datasets provide us with marking points and student
answers. In order to manipulate these mathematically, a vector representation
first needs to be defined for them. Motivated by the fact that word vectors can
meaningfully encode linearities, as mentioned in Sect. 3.2.1b, we initialise the
marking point vectors to be the sum of the words in each marking point, so that
they capture the meaning of the marking points:

tk =
∑

i∈Tk
wi, (1)

where tk and Tk are the marking point vector and the set of words in the kth
marking point out of n marking points respectively, andwi is the word vector for
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the i th word. The GloVe word vectors are used for the purposes of the qualitative
experiments.
A similarly suitable vector representation of student answers, is simply the sum
of all the word vectors for each word in the answer:

aj =
∑

i∈A j

wi, (2)

where aj and A j are the answer vector and the set of words in the j th answer
respectively.However, an answer can also be represented as a complete or incom-
plete combination of the marking points.
Thus, we hypothesise that the answer vector aj can be decomposed into a linear
combination of marking point vectors:

âj =
n∑

k=1

p jktk =
n∑

k=1

p jk

∑

i∈Tk
wi, (3)
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where p jk is the proportion of a marking point k in answer j and p jk ∈ [0, 1].
p jk = 0 would mean that a marking point is completely not within the stu-
dent’s answer, while p jk = 1 would mean otherwise. Let T be the matrix whose
columns are t1, . . . , tk, . . . , tn. Then âj is an element of the column space of T,
and can be equivalently expressed as âj = Tpj. In order to then find an accurate
decomposition of the answer vector, the optimal proportion vector p̂j can be
found by optimising the mean squared error between âj and aj:

p̂j = argminpj‖âj − aj
2‖ (4a)

= argminpj‖Tσ(pj) − aj2‖. (4b)

The logistic function σ(x) = 1
1+e−x is applied element-wise on pj to enforce the

constraint 0 ≤ p jk ≤ 1.
(b) Cosine Similarity Under this method, the marking point proportions p jk are

defined as the cosine similarity [21] between the student answer vector and each
marking point vector:

p jk = cos θ jk = aj · tk
‖aj‖‖tk‖ . (5)

These p jk values are collected into a vector, pj = (
(p j0 p j1 . . . p jk)

)
, for each

answer j .
(c) Euclidean Distance p jk can also defined as the Euclidean distance [21] between

the student answer vector and each marking point vector:

p jk = ‖aj − tk‖. (6)

Similarly, we define pj = (
(p j0 p j1 . . . p jk)

)
.

4 Data and Discussion

4.1 Evaluation Methodology

The datasets are split into training and validation sets, with a proportion of 0.8 and
0.2 respectively. Each model is evaluated using 5-fold cross-validation on 3 metrics.
Firstly, accuracy checks to seewhether themodel is able to give each student answer a
correct score. Such ametric is useful for teachers and students as an idealmodelwould
be able tomark all student answers exactly like a teacherwould. Secondly, categorical
cross-entropy loss is used to compare the different models as this the loss function
that they were trained using. Lastly, weighted F1 score takes into consideration
the unequal distribution of scores for the student answers as there are very few
students who received full marks for each question. The hyperparameters used for
the quantitative models can be found in Table 1.
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Table 1 Hyperparameters for quantitative models

GloVe dimensions 300d

Number of hidden layers (without attention) 2

Number of hidden layers (with attention) 3

Number of units per hidden layer 64

Activation ReLu

Optimizer Adam

Learning rate 0.001

Dropout 0.1

Loss Categorical cross-entropy

4.2 Evaluation of Quantitative Component

4.2.1 Comparison of Models

(a) LSTM versus GRU From Tables 2 and 3, the GRU models performed better
than the LSTM models on dataset 1, while the opposite is true for dataset 2.
We hypothesise that this is the case because of the difference in complexity of
the two questions. Since question 1 is less complex than question 2, the simpler
GRU models with fewer parameters are likely to have less overfitting than the
LSTM models. Likewise, the LSTM models are likely able to better capture the
complexities of the second questions, giving them better performance. As shown
by [22], LSTM networks are “strictly stronger” than GRU networks as they can
easily perform unbounded counting, which GRU networks cannot, further sup-
porting the hypothesis that LSTM networks are better suited for more complex
questions. The difference in question complexity is likely also the reason for the
disparity in performances between the two datasets for all models.

(b) Attention In addition, attention significantly improved the performance of the
models, supporting our initial hypothesis. This is likely because physics answers
are marked based on keywords, which is suited for attention as it is able to
place weight on more important words and extract keywords. This is further
corroborated by the attention weights extracted from the layer, visualised in Fig.
4, which shows that attention places more weight on keywords such as “gases”,
“solids”, and “states”.

(c) Word Embeddings GloVe performed better for the first dataset while fastText
performed better for the second dataset. We hypothesise that this performance
disparity could be to the fact that fastText was better able to capture the more
complex nature of the second question, due to the “subword” information cap-
tured by fastText [8].

(d) Baseline Contrary to our initial hypothesis, the baseline performed surprisingly
well and outperformed many of the more complex models, despite having a
major disadvantage due to the fact that it does not preserve sequential informa-
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Table 2 Performance of quantitative models on dataset 1

Models Accuracy Loss F1 score

Feedforward neural network (Baseline) 0.733 0.849 0.719

LSTM with GloVe 0.702 0.780 0.660

BiLSTM with GloVe 0.705 0.837 0.699

BiLSTM with GloVe and attention 0.760 0.698 0.750

BiLSTM with fastText and attention 0.716 0.741 0.696

GRU with GloVe 0.715 1.050 0.701

BiGRU with GloVe 0.709 0.909 0.692

BiGRU with GloVe and attention 0.781 0.701 0.775

BiGRU with fastText and attention 0.726 0.715 0.692

Table 3 Performance of quantitative models on dataset 2

Models Accuracy Loss F1 score

Feedforward Neural Network (Baseline) 0.472 1.354 0.433

LSTM with GloVe 0.428 1.840 0.399

BiLSTM with GloVe 0.432 1.546 0.394

BiLSTM with GloVe and Attention 0.520 1.530 0.500

BiLSTM with fastText and attention 0.541 1.157 0.506

GRU with GloVe 0.414 1.658 0.373

BiGRU with GloVe 0.421 1.459 0.392

BiGRU with GloVe and Attention 0.462 1.435 0.447

BiGRU with fastText and attention 0.496 1.265 0.465

tion. We conjecture that this could be due to two possible reasons. The more
complex models have a significantly greater number of parameters compared
to the baseline. This, combined with the relatively small datasets, could have
led to overfitting in these models [23], preventing them from generalising their
classification task to the validation set as well as the baseline model, leading
to the latter having a better performance. The baseline could have also outper-
formed the other models due to poor hyperparameter tuning in themore complex
models, causing them to be stuck in poor local minima [24]. If this is the case,
then there is a possibility that performance can be significantly improved with a
more careful hyperparameter search.

4.2.2 Performance Across Different Data Environments

We explored how the number of training samples affects the models’ performance.
42 student answers were put aside to be the validation set. The size of the training
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Fig. 4 Attention weights of answer sample from dataset 1

Fig. 5 Performance of dataset 1 best model (BiGRU with GloVe and attention) against size of
training set

set was varied from 25 samples to 250 samples in increments of 25 samples and
the performance of the model was monitored. The detailed results, which can be
found in Figs. 5 and 6, show that our best models perform well even in low data
environments. Since one of the intended aims of our models is to reduce the marking
load for teachers, this demonstrates their utility as teachers only need to mark a small
proportion of the dataset for the models to perform well.
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Fig. 6 Performance of dataset 2 best model (BiLSTM with fastText and attention) against size of
training set

4.3 Evaluation of Qualitative Component

4.3.1 Comparison of Models

To test how accurate the set of pj vectors generated by each qualitative model is,
we trained a simple feedforward neural network to predict the scores based on pj as
the input. This is based on the assumption that accurate proportions of each marking
point should be correlated to the score of the answers, since these marking points are
used by teachers to mark the answers. The results are summarised in Tables 4 and 5.
It can be seen that the cosine similarity model clearly outperforms the rest and the
results achieved by it are even comparable to our best quantitative models despite
the relative simplicity of this approach. This could be due to the same reasons our
baseline quantitative model outperformed more complex models, as highlighted in
Sect. 4.2.1d. This good performance also shows that the proportions generated are
accurate.

4.3.2 Producing Feedback

The pj vectors can be used to produce feedback for both teachers and students. Upon
some basic visualisation, students can view their own pj vector and observe which
marking points they managed to incorporate into their answer and which marking
points were missed out, to give them an indication of their areas for improvement.
Furthermore, an average pj vector across all answers can also be calculated and visu-
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Table 4 Performance of qualitative models on dataset 1

Models Accuracy Loss F1 score

Vector decomposition 0.591 0.931 0.552

Cosine similarity 0.716 0.652 0.713

Euclidean distance 0.648 0.769 0.608

Table 5 Performance of qualitative models on dataset 2

Models Accuracy Loss F1 score

Vector decomposition 0.455 1.251 0.438

Cosine Similarity 0.541 1.128 0.527

Euclidean distance 0.534 1.165 0.493

Fig. 7 Marking point proportions

alised for teachers’ analysis, as seen in Fig. 7. Figure 7 was produced by averaging
the pj vectors from the cosine similarity model run on dataset 1. From this, teachers
can immediately observe which marking points most students wrote in their answers
and which they failed to incorporate. This would provide feedback to teachers about
which parts of their teaching were well understood by the students and likewise,
which parts might need review. We can thus see how the qualitative feedback pro-
duced by the model aids in the task of formative assessment.

4.4 Final Architecture

Based on our results, we recommend two separate architectures for different types of
questions. For the quantitative component, we recommend a BiGRU network with
GloVe embeddings and an attention mechanism for simple recall style questions but
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a BiLSTM network with fastText embeddings and an attention mechanism for more
complex application-based questions. For the qualitative component, we recommend
the cosine similarity model for both types of questions.

5 Conclusion and Future Work

In this work, we proposed a novel approach to grading short-answer physics ques-
tions. Both the qualitative and quantitative components are shown to perform well,
especially in low data conditions, which is important in order to reduce the mark-
ing workload of teachers. Furthermore, the architectures also provide interpretable
feedback for both teachers and students, aiding in the task of formative assessment.

Given such promising results, these architectures can be applied to online learning
portalswhere teachers can deploy a system for each short-answer question they create
and feed the system a small amount of marked answers as training data along with
a simple marking point-based marking scheme.

In future works, we propose exploring different word embeddings such as
ELMo [25], which could yield a performance upgrade. Additionally, to tackle the
problem of overfitting we identified, dropout layers [26] could be employed in our
models. Thirdly, more careful hyperparameter optimisation using comprehensive
methods such as randomised search [27] and sequential search [28] on our current
models could yield better results. Considering the good performance of the qualita-
tivemodels, it may be possible to increase performance by incorporating themarking
points as features to the quantitative models. Lastly, the models could also be eval-
uated on other datasets, such as larger datasets and datasets from different domains
such as other sciences, to test its scalability and adaptability.
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