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Abstract According to Singapore Health Services, the largest healthcare group
in Singapore, they perform approximately 479 surgeries daily (SingHealth (2018)
About us. https://www.singhealth.com.sg/PatientCare/Overseas-Referral/En/Abo
utUs/Introduction/Pages/Home.aspx. Retrieved, 12 June 2018). Multiple require-
ments and steps are also involved in instrument processing, including preparation,
cleaning, and packaging (Even Cuny and Fiona M. Collins (May 2010). Instrument
Processing, Work Flow and Sterility Assurance. Retrieved June 12, 2018). These
factors increase the stress that instrument processing department staff face and the
propensity of human errors, as most hospitals check surgical tools with their own
eyes. The Smart Surgical Tools Checker (SSTC) is an intelligent scanner that will
identify the tool on the platform and tally it with a reference toolset. If there is a
wrong tool placed, or if there are missing tools, the software, using image processing
algorithms and artificial intelligence (Al), will warn the user about the error. This
reduces the occurrence of incomplete surgical sets and missing tools in the inventory.

Keywords Artificial intelligence - Machine learning + Image processing + Surgical
tools - VGG16 neural network + Surgical tool checker

1 Introduction

The World Health Organization (WHO) released the WHO Safe Surgery Checklist
which has played a major role in preventing errors [ 1, 2] caused by the usage of wrong
tools during operations [3]. However, there are many disadvantages of the checklist,
such as the duplication of existing checklists which leads to ‘checklist fatigue’ [4].
Another product s the Ultra High-Frequency Radio Frequency Identification (RFID),
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Fig. 1 Images of hardware set-up of surgical tool checker

which keeps track of surgical tools. While it reduces the time wasted and is cost-
efficient [5], the signal produced may interfere with sensitive medical equipment.

Previous prototypes from NUS students [6] have been rejected. These systems
involved a push-in-pull-out closed system tray, which was hard to sterilize. The SSTC
built upon these limitations and thus the system had been made semi-open for ease in
sterilization, while preventing ambient lighting from affecting the images captured
of the surgical tools.

The SSTC will benefit hospital staff and patients by reducing human errors
affecting the surgery and packaging staff can work in less stressful environments
and more efficiently.

2 Materials and Methods

2.1 Phase 1—Building of Prototype

The setup used an acrylic sheet ceiling to attach an 8-megapixel camera, and the
underside was lined with LED lights along the aluminium rods. To support the
structure, aluminium rods were attached to the sheet. A circular rotating disc was
placed at the bottom of the structure (with a stepper motor) and covered with a
non-slip medical cloth (Fig. 1).

2.2 Phase 2—Coding (Image Processing and Machine
Learning)

Turntable: After connecting the stepper motor to the Arduino Uno Microcontroller,
we used the Arduino Genuino IDE [7] software to code a program allowing for the
turning of the mechanism.

Image Capturing: Using OpenCV [8] and NumPy libraries in Python, we connected
the camera to the computer and obtained one picture. A high-resolution red—green—
blue (RGB) image was captured by altering external factors such as lighting around
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the tool. The image capturing was then adjusted such that 1 picture was taken per
1-degree rotation of the turntable. Image processing tools and variation in lighting
intensity, opaqueness etc., were used to create 2 or more copies of the same image
allowing for a larger dataset for training the model.

Neural Network: We used a VGG16 neural network model to construct a deep
learning model. To test the accuracy of the network, we trained it with pictures from
Kaggle [9]. We then trained with real surgical tools and improved the accuracy such
as by improving the picture resolution.

2.3 Obtaining Data

Experiments were done using a macOS High Sierra with a 2.9 GHz Intel Core i5
processor 64 bit installed with Python version 3.6, without GPU acceleration. We
applied the VGG 16 neural network and Keras software (with TensorFlow backend) to
train the computer using data (pictures of tools) gathered from Phase 2. The accuracy
of the model was tested before more functions were applied to improve the accuracy
of the computer with more data of tools.

2.4 Getting Accuracy of Model

Given N training samples, x represents the annotated parts of the model while y
represents the labels given to the images. After training, the VGG16 model can
approximate a model F by mapping out the relationship between the input vectors x
and output vectors y. During the forward propagation phase, when a training sample
(X, 1) is taken in by the neural network, x; is fed-forward from the input layer to the
output layer. Finally, we get the output o;. This process can be formulated as, where
L is the number of layers in the sequential model, w; is the weight vector of the jth
layer F;. We define F; as the convolutional layer which performs operations. After
a series of operations by the convolutional layers, estimating the weight vectors wy,
W3, ..., WL, can be solved with the following optimization problem, where is usually
defined as cross-entropy loss function.

3 Results and Discussion

We implemented a method of saving the bottleneck features of the image taken
by using a data flow generator to convert the images into a NumPy array and a
VGG16 Neural Network without the fully-connected top layer to train with the
images initially. The second part of the program involved a bottleneck model with
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two dense layers, and a dropout of 50% to achieve a greater generalization across
all convolutional layers for them to be independent of each other and generate a
higher validation accuracy. The sigmoid activation was used on the last dense layer
to generate the predictions of the images we put into the bottleneck model. The
model was compiled with the RMSProp optimizer and the binary cross entropy loss
function. Table 1 shows the results of our training and validation at the 100th epoch
of two of the runs in our experiments.

From our results in Table 1, the training accuracy was higher than the validation
accuracy in the 1st and 2nd runs, indicating that we had overfitted the neural network.
This caused the model to learn the specific details of the pictures and random fluctu-
ations in the training data as new concepts such that the performance was negatively
affected. This affected the validation as these concepts did not apply to new data
and affected the model’s ability to generalize. While we achieved a 90% accuracy in
both runs, our results improved after replacing the images from Kaggle with surgical
tools (Table 2).

This could be due to the effect of generalization, where in the case of the training
images, all training data varied a lot from each other in terms of shape, colour and
features; whereas for the images of the tools we had taken with the SSTC, it was
limited to a small set of images where all the images were similar. As such, the trained
model would be able to pick up the salient differences in the images and learn how to
differentiate between the tools, thus giving the high training and validation accuracy
[10, 11]. However, the accuracy started to decrease significantly when more tools
were added for training (Tables 3 and 4).

To improve the accuracy of our model, we adapted multiple functions and physical
changes to our program and set-up respectively. We worked with different optimizers
to compile the Keras model and different activations for the last and dense layers
of the model to obtain a better differentiation curve where the mapping of the given
data sets can be separated clearly. We worked on more aggressive dropout and batch
normalization to generalize the model as much as possible to prevent complex co-
adaptations on training data. Physical changes we made include the usage of better
lighting and better internal reflection of the internal setup such that a clearer image
is used by the model. We also took more pictures to enlarge our limited dataset, and
train the model to pick up changes in the images.

Using our original data and bottleneck model (Table 1) as a benchmark, we made
alterations to the code. The original bottleneck model utilized a flattening layer,
followed by a dense layer of output size 256, data dropout of 50%, and finally a
dense layer of output size 1 with a sigmoid function. In the first test, two tools, the
crab-claw tool (CCT) and golden scissors (GS) were used. In the second, the CCT,
GS and length-one scissors (LL.1S), and for the third, the CCT, GS and pincer tool
(PT). As seen from the results of the first three tests, we can conclude that as the
number of images and number of classes put into the model increased, the accuracy
of the model decreased.

In test 4, the dropout layer was removed. The accuracy was lower as overfitting
had occurred and the neurons in test 3 were able to be co-dependent of each other
during training and curb the individual power of each neuron. In test 5, a few more
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Table 2 Results of training and validation with VGG16 neural network using two tools taken by
the tool checker

Training Validation Training loss/% | Training Validation Validation
images images accuracy/% loss/% accuracy/%
10,800 3600 208.56e—07 100.00 109.60e—07 100.00

Table 3 Results of training and validation with VGG16 neural network using four tools (crab-claw
tool, golden scissors, length-one scissors and pincer tool) taken by the tool checker

Training Validation Training Training Validation Validation
images images loss/% accuracy/% loss/% accuracy/%
37,800 12,600 199.02 25.00 196.59 25.00

Table 4 Comparison of results of training and validation with VGG16 neural network using two,
three and four tools taken by the Tool Checker at the last (50th) epoch

Number of tools Training loss/% Training Validation loss/% Validation
accuracy/% accuracy/%
2 208.56e—07 100.00 109.60e—07 100.00
327.83e—09 33.33 397.36e—08 33.33
4 199.02 25.00 196.59 25.00

dense and dropout layers were added, but the model was slightly less viable. In tests 6
and 7, different amounts of dropout (75% and 25% respectively) caused underfitting
of the model, resulting in lower accuracies recorded. In test 8, the size of the output
dense layer was modified from 8 to 32 to check if it had an effect on the predictions
that were obtained from the final dense layer. However, the accuracy was lower,
indicating that too many parameters were present for the prediction layer to have a
conclusive accurate classification.

From tests 10 to 13, we tested to see if the size of the output dense layer had an
effect on the model again, but using the original model (from test 1). As the size
increased from 8 to 32, the accuracy increased from 43 to 63%. However, as the size
increased further from 32 to 64 and 512, the accuracy dropped from 63 to 59 and
33%.

From test 14 to 16, we worked with various activation functions of the final predic-
tion layer. With softmax, the accuracy was 33%. With tanh, the accuracy dropped
from 59% in epoch 1-37% in epoch 50. With the linear function, the accuracy was
at 0.00% indicating that the model was unable to differentiate the tools from each
other. As such, the sigmoid function was still the most viable activation function.

Through these results, we concluded that for this specific dataset of tools, the
dense layer with an output size of 32 and data dropout of 50% with the sigmoid
activation function would be the most efficient and reliable model.

Increasing epoch number and decreasing batch size proved to yield a lower accu-
racy as seen from test 17, and limits in computational power increase the training time
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required significantly. Increasing dense and dropout layers with the current model as
in test 18 decreased model accuracy (like in test 3 and 4) to 33.33%, and decreasing
batch size in test 19 and an intermediate dense layer was added in test 20 with a
SoftMax activation function provided negligible change to the accuracy from test
18. Increasing the number of epochs to 1000 (like in test 17) lead to higher accuracy
as more time was provided for training, so accuracy increased to 62%.

A method we finally utilized was a data augmenter. We conducted vigorous data
augmentation of the images by changing the images’ zoom range, flipping the image,
altering the RGB channels etc. This yielded an accuracy of about 75%, which was a
significant improvement from the previous sets of results, as the more varied set of
images present prevented the model from picking up random fluctuations.

Another method was the use of multi-label instead of multi-class classification.
This means each image can be grouped together under the same class so the model can
identify similar aspects in tools for faster classification as well as higher accuracy due
to the neurons learning to focus only on specific parts of the image. We also made the
VGG16 smaller by decreasing the convolutional layers in each convolution. More
vigorous batch normalization was used to provide better generalization as proven
from the tests. This smaller VGG16 also allowed us to save training time, allowing
for more efficient, practical usage of the model. With all 3 methods implemented,
the results improved significantly (Table 5).

In our machine learning program, a support vector machine (SVM) [12] was being
built. Using an SVM classifier enabled classification of data into two or more classes.
When training, the SVM builds a model before mapping the decision boundary
for each class, and specifies the hyperplane that separates the classes. Increasing
the hyperplane margin improves the classification accuracy. As such, SVM can be
used to effectively perform non-linear classification. The model needs to know what
input shape it should expect. Thus, the first layer in a sequential model needs to
receive information about its input shape. This input image is a placeholder tensor
that contains generated images and will be put into the network for training. A
convolutional neural network (CNN) is comprised of one or more convolutional
layers, followed by one or more fully connected layers as in a standard multilayer
neural network.

First, we know that deep learning needs a large amount of labelled training data,
and second, the surgical tools are very similar to each other and in order to differentiate
them, a high-resolution image would be preferred such that the hyperplane margin
can increase in distance. Ambient lighting as well as reflectivity of the turntable play
an essential role in ensuring the correct identification of the tools into their classes.

Table 5 Results of training and validation with VGG16 neural network using seven tools at the
last (75th) epoch with data augmentation and multi-label classification

Number of tools Training loss/% Training Validation loss/% Validation
accuracy/% accuracy/%

7 0.44 99.84 27.25 92.05
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As such, we need to find the optimum point at which both lighting and reflectivity
can be balanced to ensure a high-quality image produced. Our final model was also
able to balance the resolution of the image by altering the RGB channels of the image
such that it would be optimized for input into the neural network model. Our dataset
this time consisted of 7 tools, length-0 scissors (LOS), L1S, length-2 scissors (L2S),
GS, PT, ST and CCT.

4 Conclusion and Future Work

The SSTC is able to identify tools accurately with a low-cost production. By mini-
mizing human errors, it will greatly reduce the time wasted that will affect the surgery
being carried out. Unlike similar projects, the SSTC will enable the streamlining of
hospital procedures in a more efficient manner. Some improvements for the future
include creating a larger platform such that more tools can fit onto it such that the
speed of processing and registering the tools will be increased. Some factors that we
did not work on would be the use of a different table below the setup, as that could
affect the image taken by the camera. We could have adapted a Faster R-CNN model
which would be able to bypass the problem of having to select a huge number of
regions for identification. Finally, we also hope to work on a Graphical User Interface
(GUI) such that the SSTC can be more user-friendly and catered to the hospital staff,
rather than be hindered by complicated lines of codes which may be irrelevant to
them.
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