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Abstract Convolutional Neural Networks (CNNs) have revolutionized the image
classification tasks to a greater extent. Various researchworks reported the high accu-
racy of CNNs in image classification problems related to science and engineering. It
has been found thatmany image classification problems carry an additional challenge
of imbalanced classes in the dataset. In absence of a suitable analysis of the effect of
imbalanced image data on the performance of CNNs, the current study thoroughly
analyzed the same. CNN models are evaluated in terms of Sensitivity, Specificity,
G-Mean and Bookmaker Informedness with varying degrees of imbalance ratio. The
experimental results have revealed that the performance of CNN is severely affected
by increased imbalance ratio.
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1 Introduction

Almost every modern individual utilizes the facilities of the current technologies for
the creation and sharing of images of any kind. This sharing of images has eased the
mode of visual communication over the years. However, the quality of this communi-
cation mostly depends on the processing [1] than the quality of image. An image can
be of any type starting from biomedical images [2, 3], document images [4], satellite
images [1] and PolSAR images [5]. An intelligent system is very much necessary to
identify the category of an image from a thick chunk of wide variety of images. The
application of machine learning in real life issues has been studied and experimented
over a wide range of time [6–11]. With the expansion of the field, the application
of Neural Networks (NN) is gradually suppressing the implementations of other
machine learning algorithms [12]. A NN based image classification [13] model can
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generate better results compared to any other traditional image classification tech-
nique due to the robustness of the prior model. A popular way of classifying an image
is by using Convolutional Neural Networks (CNN) [14]. Over the years CNN based
models have gained a wide popularity and has been implemented to resolve various
real-life issues starting from face detection [15] to languagematching [16]. However,
in the recent years CNN has become a very concrete tool for image classification
and segmentation. The classification of images incorporates the task of putting any
selected image of a kind to its relative category based on intelligent computations.
Various studies over the years successfully developed concrete models delivering
effective classifications on chunks of images both offline and online. However, in the
recent years the techniques of image classifications using CNN are documented to
suffer from the imbalanced classification problem. The Class-Imbalanced problem
was coined in the early 1990s and have been studied for more than two decades. A
imbalanced dataset is mostly a common situation and can be very much prominent in
any day to day practical scenarios. Apart from image classification, the problem has
also become very popular in sentiment analysis [10], sarcasm detection [17], botnet
detection [18] and twitter-spam detection [19]. In this paper a detailed documenta-
tion of class-imbalance problem in CNN based image classification is presented. The
classification challenges and the future research scope are also discussed.

2 Image Classification Using CNN

A Convolutional Neural Network (Conv-Net/CNN) is a Deep Learning Based algo-
rithm which is basically applied to analyse image data. A CNN consists of an input
layer, an output layer andmultiple hidden layers. Input is a visual imagery tensorwith
shape (number of images) * (image width) * (image height) * (image depth). After
passing through the convolutions, the image gets absorbed to a feature map. In [20],
the authors make an account for the early applications of CNN in speech recognition,
text recognition, handwriting recognition and later in natural image recognition. In
[21] the authors documented the behaviour of CNN on a set of 1.2 million high
resolution images consisting of 1000 different variety of classes in ILSVRC-2010
competition. The authors found that CNN gives us a remarkable performance but
can undergo some complications if a layer is removed. In the ILSVRC-2012 compe-
tition, the authors averaged the predictions of two CNNs that were pre-trained on
the entire Fall 2011 release with the five CNNs which gave an error rate of 15.3%.
The application of CNNs to multi-categorical classifications applied in the earlier
paper, attracted a lot of attention in the computer vision research community. In [22] a
pre-trained CNNmodel generated at the full-connected layers extracts features better
than conventional hand-crafted features on all datasets in image retrieval application.
In a comparative study done by Yi Hou et al. in [23], we get to know howCNN-based
image descriptors are better than the state-of-the-art hand-crafted image descriptors
in the visual loop closure detection application. In [24], the authors introduced 3D
CNNmodels for action recognition. From adjacent input frames the authors generate
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multiple channels of information. Convolution and subsampling is performed sepa-
rately in each channel after that. TheCNNbased image classification is thus nowused
in many medical examinations as it significantly improved the best performance for
many image databases [25]. CNN based image classification is still an interesting
topic among researchers. In [26] a recently published paper presents a method to
optimize input for CNN-based HSI classification. Liu et al. [27] proposed a detailed
study by investigating the middle layers of the CNN and conducted experiments on
different image datasets. Their approach fused the latent features extracted in the
middle layers of the CNN which effectively improves the classifier’s performance.
Another remarkable application of CNN was demonstrated by Peng et al. [28] to
detect fruit flies by using the FB-CNN technique. In [29], the authors utilized the
texture filters to classify between histopathological images.

3 Class-Imbalance Problem in Image Classification

The imbalanced classification problemcanoccur in both binary ormulti-class dataset.
The problem occurs when the count of a particular class in a dataset becomes more
dominant compared to the other classes. At this scenario, the classifying algorithm
will have a tendency to generate decisions in favour of the class with the majority
count. This mostly results in a wide deflection in performance of a machine learning
model. The most common approaches to mitigate the issue are oversampling of
minority instances or the under-sampling of majority instances. However, the most
popular way to handle this problem is by making the minority class denser as under-
sampling can result in a loss of valuable information from the dataset. Some of
the popular techniques developed for oversampling over the years are SMOTE
[30], Borderline-SMOTE [31], ADASYN [32] and Safe-Level-SMOTE [33] and.
However, in [34, 35] the authors described the consequences of oversampling and also
presented a remarkable majority focussed approach to overcome that. The earliest
reference of the effects of class imbalance in image classification is found in [36].
However, in the recent years it has become a significant problem in the domain of
image classification [37–41]. The problem mostly arise when the model is made to
classify images in any practical domain. Classification with CNNs also undergo the
same problem, like any other techniques of image classification. In [42] Lee et al.
encountered with the class imbalance problem in Plankton image classifications.
The authors proposed a novel approach based on CNN and avoided the problem
by training the CNN with normalized data. The principle idea behind their approach
depends on the value of thresholdμwhich is selected to construct the normalized data
by sampling the original data. The normalized data is constructed in a way such that
no class is larger thanμ. The primary problem behind this approach is the loss of data.
In the following year Wang et al. [43] developed a Generative Adversarial Network
(GAN) based Plankton classification model. The primary concern of their technique
was to perform an effective image classification by resolving the class imbalance
problem. The proposed architecture CGAN-Plankton generates the minority class
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data using the Generative model which is discriminated using the Discriminative
model. The approach widely outperforms other CNN based models. Mahmood et al.
[44] also faced the class imbalance problem while proposing a technique to classify
corals. Their proposed approach was also based on CNN and used the MLC dataset
for the experiment which is prone to the class imbalance problem. A simple down-
sampling of data was done to mitigate the problem which also resulted in the loss of
valuable data. Rahman and Wang [45] used a Fully-Convolutional Neural Network
(FCNN) for an augmentation in the IoU score. The main objective of the paper is to
mitigate the object category segmentation problem and in their series of experiments
they encountered the class-imbalance problem. In [46] the authors developed an
efficient model by hybridizing CNN with uneven-margin based SVM to conduct an
effective performance on imbalanced visual problems. Uneven margins were intro-
duced to SVM to handle imbalanced data and was constructed by implying a margin
parameter to the standard SVM model which is a ratio of the positive margin to the
negative margin. In the proposed model of [46], the rearmost layer of the CNN is
replaced by the uneven SVM which produced better performance than the standard
model of SVM. In 2017 [47]Yue discussed the effects of imbalanced classification on
CNN based malware image classification and also introduced the weighted softmax
loss approach to mitigate the issue. The weight ω_k is calculated by,

ωk = (� − ∅/C × �) + 1

where� is the dimension of themajority class,∅ is dimension the selected class andC
is the constant controlling the scaling of the weighted loss. Sahu et al. [48] performed
a CNN based multi-label classification to detect a surgical tool. Their approach also
faced a class-imbalanceproblemwhile training theCNN.The authors performed their
experiments on M2CAI tool detection dataset by considering the co-occurrences of
the tools. In [49] Li et al. proposed an imbalanced-awareCNN tomitigate the problem
in vehicle classifications from aerial images. The authors extended the CNN model
with a cost-effective imbalance aware feature map. In [50] the authors presented a
very novel technique detect lithographic hotspots in electronic circuits basedonCNN.
The authors encountered a the imbalanced classification problem while performing
the experiments and applied mirror-flipping and up-sampling to mitigate the issue,
which resulted a significant improvement in the performance. Pouyanfar et al. in [51]
performs a dynamic on the samples of each class of a dataset based on the F1-score to
mitigate the imbalance data. A data augmentation module is present in the model is
used to generate real time image data. In recent years some of the best improvements
of CNN in imbalanced datasets can be found in mammal detection fromUAV dataset
[52], Marine image classification [53], sewer damage detection from CCTV images
[54] and automatic bird detection [55].
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4 Experimental Analysis

The most commonly known metric to evaluate a model’s performance is Accu-
racy. However, highly imbalanced training or testing data provides a biasness to the
accuracy [56] and deflects its values. This problem has been coined in various exper-
iments [57, 58] suggesting it to be a very inferior metric to test on imbalanced data.
However, some of the most commonly used metrics to evaluated these datasets are
Area Under Curve (AUC) and Receiver Operating Characteristic curve (ROC). In
[58] the authors suggested that Sensitivity (Ss) and Specificity

(
Sp

)
are undoubt-

edly an improvement over the Accuracy metric to evaluate the performance classes
individually. The metrices can be defined as,

Ss = ε1

ε1 + ε3
(1)

Sp = ε4

ε4 + ε2
(2)

where, ε1 represents True Positive values, ε2 represents False Positive values, ε3
represents False Negative values and ε4 represents True Negative values. However,
the authors constructed the G-Mean metric G, for their experiments. The metric can
be written as,

G = 2
√
Sp × Ss (3)

Johnson and Khoshgoftaar [59] also mentioned the accuracy-based evaluation
anomalies in their comprehensive study. The authors mentioned that Precision values
alone is critically affected by imbalanced distribution. However, Sensitivity values
always remains unaffected as it only deals with the positive class. Luque et al. [60]
stated the G-Mean metric and the Bookmaker Informedness BI f , as the best metrics
which provides unbiased performance values. The BI f values can be calculated as,

BI f = Sp + Ss − 1 (4)

We are going to concern ourselves with the particular case of Imbalanced Image
Classification and compare these metrics that are a good fit for the problem while
using CNN as a solution to our classification problem [47]. To document the perfor-
mance of CNN, in our experiment we concentrated on using CIFAR-10 [61] and
Fashion-MNIST [62] datasets.We eliminated data from 4 individual classes in Cifar-
10 and 5 individual classes in Fashion-MNIST at similar rates to deliberately achieve
imbalance and document the performance deflection. The CNN is trained at 100
epochs.

From Fig. 1a we see that the sensitivity deflection of the CNN for Cifar-10 indi-
cates a downward trend in the metric score hence suggesting an overall reduction of
the score with increase in Imbalanced data. However, initially the curve followed a
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Fig. 1 Performance deflection of CNN for Cifar-10 dataset with the increase in imbalance ratio:
a sensitivity, b specificity, c G-Mean and, d bookmaker informedness

zigzag trajectory but eventually ended up with a score of 0.7 from an initial recorded
score of 0.72 during balanced state. A sharp downward curve of specificity from a
score of 0.96–0.95 is also visible from Fig. 1b after crossing an IR value of 5 and an
immediate stabilization of deflection indicates a unique characteristic of the data in
the prediction of negative cases. From Fig. 1c we see the gradual drop in the G-mean
score on crossing an IR value of 5 and eventually recording a deflection in score
from 0.83 to 0.81. The deflection curve of the Bookmarker Informedness in Fig. 1d
exhibits a trajectory similar to that of the G-Mean. A similar sharp drop in scores are
visible after crossing an IR value of 5 recording a deflection from 0.68 to 0.65.

In Fig. 2a the Sensitivity value has a highest count of 0.92 when imbalance ratio
is lowest. When the IR is at approximately 2.5, the sensitivity value decreases to
0.91. When the ratio is around 6 it further decreases to 0.89. Finally, when the ratio
is approximately 12.5 the count reduces to 0.86. From here we can conclude that the
overall sensitivity value decreases in a very rapid pace. Figure 2b suggests that the
Specificity value has a highest count of 0.99 when IR is lowest. The specificity count
drastically decreases when the IR count increases very little. After this decrease,
the specificity count remains constant throughout the increase in imbalance. The G-
Mean values exhibits abrupt rise and fall in Fig. 2c. During initial state, the G-Mean
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Fig. 2 Performance deflection of CNN for fashion MNIST dataset with the increase in imbalance
ratio: a sensitivity, b specificity, c G-Mean and, d bookmaker informedness

count is highest, that is 0.95. With the gradual increase in the IR value, the G-Mean
value decreases and then again rises. When the IR count is near to 6, the value is
constant at 0.93. Finally, the G-Mean count decreases to 0.91 when the IR value is
extreme. From Fig. 2d we see that the Bookmaker Informedness value is 0.91 during
the balanced condition. It reduces and again increases within a very short interval.
Till the imbalance ratio count is near to 6 the value keeps on decreasing after which
we can see the value decreasing in a steep way. For the extreme value of IR, the
Bookmaker Informedness value is as low as 0.84.

5 Conclusion

The current study evaluated CNNs in presence of imbalance classes. The study
involved two artificially modified well known dataset CIFAR-10 and Fashion-
MNIST. Multiple classes are perturbed by gradually removing samples and thereby
making the dataset more imbalanced every time. The CNN is trained and tested
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in terms of well known performance metrics namely Sensitivity, Specificity, G-
Mean and Bookmaker Informedness which are specifically used to measure clas-
sifier performance in presence of imbalanced classes. The results revealed that the
performance of CNN is severely affected when the imbalance ratio is increased. In
case of CIFAR-10 the performance monotonically decreased after imbalance ratio
is increased above 5 and a similar trend is observed for fashion-MNIST above 2.5.
Future studies can be focused on developing algorithms to mitigate the performance
issue of CNNs in presence of imbalanced classes.
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