
Chapter 3
Quantum Optical Phenomena in Nuclear
Resonant Scattering

Ralf Röhlsberger and Jörg Evers

Abstract With the advent of high-brilliance, accelerator-driven light sources such
as modern synchrotron radiation sources or x-ray lasers, it has become possible
to extend quantum optical concepts into the x-ray regime. Owing to the availabil-
ity of single photon x-ray detectors with quantum efficiencies close to unity and
photon-number resolving capabilities, fundamental phenomena of quantum optics
can now also be studied at Angstrom wavelengths. A key role in the emerging field
of x-ray quantum optics is taken by the nuclear resonances of Mössbauer isotopes.
Their narrow resonance bandwidth facilitates high-precision studies of fundamental
aspects of the light-matter interaction. A very accurate tuning of this interaction is
possible via a controlled placement of Mössbauer nuclei in planar thin-film waveg-
uides that act as cavities for x-rays. A decisive aspect in contrast to conventional
forward scattering is that the cavity geometry facilitates the excitation of cooperative
radiative eigenstates of the embedded nuclei. The multiple interaction of real and
virtual photons with a nuclear ensemble in a cavity leads to a strong superradiant
enhancement of the resonant emission and a strong radiative level shift, known as col-
lective Lamb shift. Meanwhile, thin-film x-ray cavities and multilayers have evolved
into an enabling technology for nuclear quantum optics. The radiative coupling of
such ensembles in the cavity field can be employed to generate atomic coherences
between different nuclear levels, resulting in phenomena including electromagnet-
ically induced transparency, spontaneously generated coherences, Fano resonances
and others. Enhancing the interaction strength between nuclei in photonic structures
like superlattices and coupled cavities facilitates to reach the regime of collective
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strong coupling of light and matter where phenomena like normal mode splitting
and Rabi oscillations appear. These developments establish Mössbauer nuclei as a
promising platform to study quantum optical effects at x-ray energies. In turn, these
effects bear potential to advance the instrumentation and applications of Mössbauer
science as a whole.

3.1 Introduction

The study and applications of light-matter interactions in the optical regime have
undergone a revolutionary development over the last decades, to the point where
now quantum technologies become a reality. Quantum mechanical phenomena in
this interaction are the domain of quantum optics, which encompasses semiclassical
setups exploiting the quantum-mechanical nature of the matter, as well as cases in
which the quantum character of the light has to be taken into account [1–4]. A key
driver for the advancement continues to be the progress in laser source technology,
also beyond the visible light regime.

3.1.1 Light Sources for X-Ray Quantum Optics

X-ray quantumoptics has not been very prominent in the early phase of x-ray science,
not least because of source limitations. For instance, unlike a laser source, typical
x-ray sources emit photons into a large number of electromagnetic-field modes, sev-
erly restricting the control possibilities offered by the light. This is no longer the case
for experimental conditions that can be realized with modern synchrotron radiation
sources and x-ray free-electron lasers, together with increasing source brilliance and
advances in x-ray optical elements and detection techniques (for a view on the evolu-
tion of the brilliance of x-ray sources, see Fig. 3.1). As a result, the study of quantum
optical effects in the interaction of light and matter moves within reach at hard x-ray
energies, and is becoming increasingly relevant for new enabling experimental possi-
bilities and for the interpretation of data obtained at these radiation sources. Broadly
speaking, the long-term goals of this approach are to fully exploit the capabilities
offered by the new x-ray sources, and to continue the success story of quantum optics
at hard x-ray energies.

3.1.2 X-Ray Quantum Optics with Atomic Resonances

Two key concepts of quantum optics are coherence and interference. Sharp reso-
nances are favorable in this regard, since the narrow linewidth translates into com-
parably long lifetimes of coherent superpositions of the involved atomic states. At
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Fig. 3.1 Evolution of brilliance (a.k.a brightness) of x-ray sources since the discovery of x-rays.
The advent of synchrotron radiation sources enabled the first accelerator-based nuclear resonant
scattering experiments following the proposal by Ruby [5]. The further increase in brilliance result-
ing from the improvement of storage-ring technology facilitated a multitude of unique applications
throughout the natural sciences [6]. The ultimate limit in storage ring technology is reached when
the diffraction limit of electron and photon beams is encountered (USR = ultimate storage ring).
A further increase in brilliance is possible with x-ray free electron lasers (XFEL) based on the
SASE process (SASE = self-amplified spontaneous emission). At these levels, the x-ray pulses may
contain several photons within the resonance bandwidth of the nuclear transition, which enables the
realization of coherent multiphoton excitations for experiments in quantum and nonlinear optics.
Ultimate brilliance values are expected when the SASE process is amplified in a cavity as proposed
in the XFEL-oscillator (XFELO) concept [7, 8]

hard x-ray energies, however, it becomes increasingly difficult to find sharp elec-
tronic resonances in atoms because they are intrinsically lifetime-broadened due to
strong competing interactions within the inner electron shell, see Fig. 3.2. A fortunate
exception from this rule are nuclear resonances. If they are of sufficiently low energy
(< 100 keV) and if the nucleus is bound in a solid, we observe the Mössbauer effect
of recoilless absorption and emission of photons. This leads to the immediate conse-
quence of coherence in the scattering of radiation from nuclear resonances because
the interaction is completely elastic (the final state and the initial state are identical).
As a result, nuclear resonances of Mössbauer isotopes are particularly promising
in terms of coherence and interference effects. On the other hand, the Mössbauer
resonances are much more narrow than the spectra of the pulses delivered by mod-
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Fig. 3.2 Bound states of electrons or nucleons in atoms are the origin of electromagnetic resonances
in matter. While the keV excited states of inner-shell electrons are affected by several competing
decay channels and thus are strongly lifetime broadened, the isolated keV nuclear resonances can
be observed with their ultranarrow natural linewidth if the nuclei are bound in a solid. This is due
to the Mössbauer effect, in which the whole solid with its large mass acts as a recoil partner so
that the recoil energy exchanged with the solid during absorption or emission is negligibly small.
The right graph shows the real and imaginary parts of the atomic scattering amplitudes f ′ and
f ′′, respectively, in the vicinities of the Fe K-edge at 7.1 keV and the 14.4 keV nuclear resonance
of 57Fe. Please note the relative amplitudes of the electronic and nuclear scattering amplitudes as
well as their largely different energy scales and spectral shapes. While the Fe K-edge absorption
proceeds from a bound state into the continuum, the 14.4 keV transition can be considered as an
almost ideal two-level system connecting two discrete nuclear levels

ern x-ray sources, such that it is challenging to strongly drive nuclear resonances
as compared to corresponding electronic resonances. Already these general obser-
vations separate electronic and nuclear resonances into complementary platforms
to establish quantum optical concepts at x-ray energies. This review will focus on
how quantum optical phenomena can be realized in the regime of hard x-rays via the
nuclear resonances of Mössbauer isotopes.

3.1.3 Collective and Virtual Effects in Quantum Optics

Next to coherence and interference, the structure and control of field modes, photon
correlations, entanglement, vacuum fluctuations and virtual processes, spontaneous
and stimulated emission, and nonlinear optical interactions are important elements
of quantum optics. They are fundamentally affected if many identical atoms are
interacting with the same radiation field. This has led to the development of the
research area of cooperative emission in quantum optics, which has been mostly
developed on theoretical grounds during many decades because the preparation of
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ensembles of identical emitters was by far not trivial for a long time. This situation
has changed significantly in recent years, e.g., due to the development of storing
and manipulating of atoms in electromagnetic traps, but also by the possibility to
prepare resonant atoms in solid state environments in a very controlled fashion. It
turns out that such a controlled preparation of identical atoms is naturally realized for
certain experimental settings involvingMössbauer isotopes, and that the engineering
of cooperative effects in turn is indispensable for implementing advanced quantum
optical schemes with nuclei.

Collective and virtual effects in the interaction of identical atoms with single
photons are the source of intriguing phenomena in atomic physics and quantumoptics
[9–22] extending into the regime of hard x-rays [23–29]. The cooperative character
of the interaction modifies the decay rate [30] (see Fig. 3.3) and shifts the resonance
energy of the atomic ensemble as compared to a single atom [31], also known as the
collective Lamb shift. Nowadays, these effects are becoming increasingly attractive
to create entangled atomic ensembles [32] for applications ranging from quantum
memories [33], quantum information processing [14] to radiative transport of energy
in light-harvesting systems [34]. In particular, as discussed in this review, they also
allow for the design of cooperative nuclear level schemes [28, 29, 35–40].

The collective decay rate of an ensemble of identical resonant atoms was intro-
duced by Dicke in his pioneering work on superradiance [30]. In contrast to the
atomic Lamb shift, the collective Lamb shift emerges when a virtual photon emitted
from one atom is not absorbed by the same atom but by another atom within the
ensemble [31, 41]. The investigation of the collective Lamb shift induced by virtual
processes has received stimulated theoretical interest [15, 18, 19, 31, 41–44] that
has been accompanied by recent experimental studies [27, 45–48]. Virtual transi-
tions not only lead to a shift of the transition energy, but have an interesting effect
on the collective decay rate as well [19–21]: They partially transfer population from
the initially superradiant state into slowly decaying states, resulting in a trapping of
the atomic excitation. On the other hand, virtual transitions open additional decay
channels for otherwise trapped states. It lies at the heart of superradiance that the
presence of many identical atoms opens a large number of potential decay channels
for collective excitations. From that perspective such systems are appealing examples
for open and marginally stable quantum many-body systems [49].

3.1.4 X-Ray Cavities as Enabling Tool for Nuclear Quantum
Optics

Today it is possible to experimentally access collections of identical resonators in a
controlled fashion, ranging from atomic Bose-Einstein condensates to quantum dots
in solid state systems.Moreover, laser technology has reached a level of advancement
that allows to control the light-matter interaction down to timescales of attoseconds.
Currently this field of research progresses to shorter and shorter wavelengths into
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the regime of hard x-rays. However, it is not only the sharpness of the nuclear reso-
nances and their favorable coherence properties which render Mössbauer nuclei an
ideal candidate to experimentally explore cooperative phenomena at x-ray energies.
Also, the possibility to engineer the interaction of x-rays with nuclei and the coupling
between nuclei via their geometric arrangement or by embedding them into photonic
nanostructures opens many fascinating routes to realize quantum optical concepts
with nuclei. In this respect, thin-film x-ray cavities and multilayers have become an
enabling technology for nuclear quantum optics. These cavities transform the prop-
agating x-ray field delivered by the source into a standing wave field structure, and
the precise placement of the nuclei within this standing wave allows for an accu-
rate tuning of the interaction of the nuclei with the x-rays. Another decisive aspect
is that the cavity geometry facilitates the excitation of single cooperative radiative
eigenstates of the embedded nuclei, and to tailor the superradiant enhancement of the
resonant emission as well as the collective Lamb shift. The possibilities are further
enriched if the magnetic substructure of the nuclei is exploited, or if different nuclear
ensembles are embedded within a single thin film structure. Then, the cavity fields
can be employed to generate atomic coherences between different nuclear states,
and to induce couplings between nuclear states up to the regime of strong collective
coupling, opening additional new possibilities. This enabled the implementation of
archetype quantum optical phenomena such as electromagnetically induced trans-
parency, spontaneously generated coherences, Fano resonances and others. While
much progress has already been achieved on the level of single excitations, we antic-
ipate further enrichment of this fascinating field of physics facilitated by the ongoing
development of modern x-ray sources like high-brilliance synchrotrons and x-ray
lasers, see Fig. 3.1. These sources are capable of delivering many resonant photons
in each single radiation pulse, providing a direct route towards multiphoton x-ray
optics, and opening perspectives for associated effects like stimulated emission, x-ray
lasing, nonlinear optics and more.

3.1.5 Outline of this Review

This review is organized as follows. In Sect. 3.2 of this chapter we review the proper-
ties of nuclear resonances as almost ideal two-level systems that can be prepared as
identical emitters in various structural arrangements. This leads us then in Sect. 3.3 to
discuss general properties of ensembles ofMössbauer isotopes forming a cooperative
atomic environment concerning their radiative properties. Specifically, in Sect. 3.4
we will discuss the properties of the nuclear exciton, i.e., the state that is formed after
impulsive excitation of a nuclear ensemble by a radiation pulse, the duration of which
is much shorter than the collective nuclear lifetime. Section 3.5 describes the most
fundamental effect of cooperative emission, the collectiveLamb shift, the observation
of which was enabled via the application of planar x-ray cavities. While this section
contains a semiclassical description of the underlying physics to illustrate the basic
concepts of x-ray cavities as ‘enabling technology’ for this field, the following Sect.
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Fig. 3.3 Illustration of single-photon superradiance according to Dicke [30]. If a sample consisting
of N identical resonant atoms is excited by a single photon, each of the atoms can be excited (red
dots), but we do not know which one. Therefore, each Fock state of the system with one atom exited
(red arrow up) contributes with the same probability to the state vector |ψ〉 of the whole sample.
Since all the singly excited states decay to the same ground state, the sample can radiate its energy
via N different pathways, so the decay proceeds N times faster than the decay of a single atom. This
applies for the case that the linear dimensions of the sample are smaller than the wavelength. In the
opposite case, the relative spatial phases of the atoms have to be taken into account which leads to a
complex non-exponential temporal evolution of the collective decay that is strongly directional [26,
50]. In experiments with x-rays, samples are typically much larger than the radiation wavelength,
so this is the most frequently encountered case. For the description of collective nuclear resonant
scattering the states |ψ〉k0 have been coined ‘nuclear excitons’ [26], in a more general perspective
they are referred to as ‘timed Dicke states’ [9]

3.6 provides a fully quantum optical description of the Mössbauer nuclei in x-ray
cavities, setting the stage for inclusion of multiphoton excitation conditions. Section
3.7 is then devoted to quantum optical effects in x-ray cavities that result from the
formation of coherences in this particular environment, like Fano resonance control,
electromagnetically induced transparency, spontaneously generated coherences, and
slow light. Further engineering of the atomic environment to form superlattices or
coupled cavities allows one to reach the regime of collective strong coupling. This
is discussed in Sect. 3.8, illustrated by the observation of normal-mode splitting and
Rabi oscillations between nuclear ensembles. Finally, Sect. 3.9 provides an outlook
on the ongoing development of modern high-brilliance x-ray sources and how they
will contribute to further development of this exciting research field.

3.2 Nuclear Resonances of Mössbauer Isotopes as
Two-Level Systems

In the x-ray regime, the nuclear resonances of Mössbauer isotopes provide almost
ideal two-level systems to study the effects of cooperative emission. After being pro-
posed by Ruby in [5], the use of synchrotron radiation for nuclear resonant scattering
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was demonstrated first by Gerdau et al. in 1985 for nuclear Bragg diffraction [51]
and by Hastings et al. in [52] for nuclear resonant forward scattering. Since then
the technique became an established method at many synchrotron radiation sources
around the world with a multitude of applications in various fields of the natural sci-
ences [6, 53, 54]. The most widely used isotope in this field is 57Fe with a transition
energy of E0 = 14.4125 keV, a natural linewidth of �0 = 4.7 neV, corresponding
to a lifetime of τ0 = 141 ns. Beamlines at present-day 3rd generation synchrotron
radiation sources like ESRF, APS, SPring8 and PETRA III deliver a spectral flux of
about 105 photons/s/�0. The radiation comes typically in pulses with a duration of a
few 10 ps, so that excitation and subsequent emission can be treated as independent
processes.

Before discussing cooperative effects in the resonant interaction of many identical
nuclei with a common radiation field, it is instructive to discuss first the scattering
behavior of a single atom. The scattered field of an atom in momentum-frequency
space is given by [55]:

A(k, ω) = −c
δ+(k, ω)

(2π)4

∫
〈� f |M(k, ω,k′, ω′)|�i 〉A0(k′, ω′)d3k ′ dω′ (3.1)

The scattering process described by this equation can be read from right to left:
The incoming field is represented by A0(k′, ω′), which may be understood as the
wave function of a photon. In fact, |A0(k, ω)|2d3k dω is the probability of finding
the incoming photon in the mode characterized by the wave vector k and energy
ω. M is the scattering operator of the atom for scattering an incident photon with
k′, ω′ into an outgoing photon with k, ω and δ+(k, ω) = −4πc/(ω2 − k2c2 + iε) is
the propagator of the outgoing photon. The scattering operator M depends on the
electromagnetic current b, on the Hamiltonian H and on the propagator G0 of the
atom:

M(k, ω,k′, ω′) (3.2)

= i

c

∫
e−i(kx−ωt)eiHt b(x)G0(t − t ′)b(x ′) e−iHt ′

ei(k′x′−ω′t ′)d3x d3x ′ dt dt ′

The propagator G0 itself can be expressed in terms of the Hamiltonian H and the
level-shift operator 
 :

G0(t − t ′) = i

2π

∫
e−iω(t−t ′)

ω − H − 
(ω)
dω (3.3)

The level-shift operator is in general non-Hermitian. 
 consists of a radiative con-
tribution 
γ resulting from the perturbation of the atom by its own photon field
(the self energy) and of a non-radiative contribution 
α that originates from inter-
nal conversion. The real part of 
 gives the single-atom Lamb shift [56] while the
imaginary part is the decay width of the transition. The smaller this imaginary con-
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tribution becomes, the more pronounced is the resonance behavior of the propagator.
This leads to a strong enhancement of the scattering in the vicinity of sharp nuclear
resonances.

Since we are interested here in coherent elastic scattering (ω = ω′) we consider
only the diagonal elements of the operatorM. The currents b of the atom are split into
the nuclear and the electronic part. This gives three contributions to the scattering
operator: the pure electronic part E, the pure nuclear part N, and an interference
term between the nuclear and electronic currents that can be neglected in most cases.
The nuclear contribution to the atomic scattering operator for an unsplit (single-line)
nuclear resonance is given by:

N(k, ω,k′, ω) = ei(k−k′)·R f0 (�0/2)

ω − ω0 − i

with f0 = fL M

2k0

2Ie + 1

2Ig + 1

1

1 + α
(3.4)

where fL M is the Lamb-Mössbauer factor, Ig and Ie are the spins of the ground and
excited nuclear states, respectively, and α is the coefficient of internal conversion.
Effectively, the situation of an unsplit ground and excited state justifies a scalar
approach to the scattering problem. As we will see in the next section, 
 is not a
property of the single atom only, but can be greatly affected by cooperative effects,
i.e., by the radiative coupling of many identical atoms.

3.3 The Nuclear Level Width in a Cooperative Atomic
Environment

In an ensemble of many identical atoms a radiated photon may interact not only with
the same atom but also with identical atoms within the same ensemble. To describe
this interaction a diagrammatical approach was introduced by Friedberg et al. in [31]
that is illustrated in Fig. 3.4.

This leads to the complex-valued self-energy correction 
C = LC + i �C of the
collective resonance energy of the atomic ensemble. To sum all these repeated dia-

Fig. 3.4 Photon scattering from a resonant atom (vertical double line: excited state) involving the
exchange of virtual photons (horizontal wavy lines) with other atoms in the ensemble. The total
amplitude is given by the sum over all possible diagrams
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grams in Fig. 3.4 we note that the Fourier transform G̃(ω) of the excited-state prop-
agator G(t − t ′) satisfies the Dyson equation

G̃(ω) = G̃0(ω) − iG̃0(ω) 
̃C(ω) G̃(ω) (3.5)

where G̃0(ω) = 1/(ω − H − 
(ω)) is the uncorrected propagator of the single atom.
Solving Eq. (3.5) for the corrected propagator yields:

G̃(ω) = 1

ω − H − 
(ω) − 
C(ω)
. (3.6)

It should be noted that the Dyson equation above only provides the proper summing
of the repeated diagrams in Fig. 3.4. The amplitudes of the individual diagrams
have to be calculated before. The diagrammatical technique has been applied in
a pioneering paper [31] to calculate the collective Lambshift. Since then the CLS
has been calculated for various geometries (sphere, cylinder, slab) and models for
the electromagnetic field (scalar/vector) [11, 31, 41, 57, 58]. The result of these
calculations in the large-sample limit, i.e., for k0 R � 1 with R being the size of the
sample can be summarized as follows :


C ≈ i�C

(
1 − i S

k0R

)
with �C = 3

2

N

(k0R)2
�0 = ρλ2R

2π
�0 , (3.7)

where ρ is the number density of resonant atoms in the sample. S is a factor that
depends on the shape of the sample and on the scalar/vector model of the field.
Thus, for the CLS to be observable, the quantity ρ λ3 has to be sufficiently high. In
gaseous samples, however, an increase of the density goes along with the increase of
interactions between atoms, leading to collisional broadening of the resonance line.
In condensed matter systems significantly higher number densities than in gases can
be reached without these perturbing effects. In this case a detrimental effect that
could quench cooperative emission is the inhomogeneous broadening of atomic and
nuclear resonances due to interactions of the resonatorswith their environment.While
atomic resonances are most susceptible to the interaction with their surrounding,
nuclear resonances are much less affected. In fact, by controling the environment
of the Mössbauer isotopes in solids it is possible to prepare ensembles of identical
resonators with high number density while still keeping the natural linewidth of
the transition. It appears that the narrow nuclear resonances of Mössbauer isotopes
provide an almost ideal two-level system for the study of cooperative effects in the
interaction of x-rays with matter.

In the following we will describe a procedure how to calculate the eigenmodes
of an ensemble of resonant atoms that yields the eigenfrequencies together with
the complex self-energy correction 
C . The derivation follows in great parts the
treatment given in [26], p. 234ff.
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3.4 The Nuclear Exciton, Radiative Eigenstates and
Single-Photon Superradiance

Soon after the discovery of the Mössbauer effect it became clear that ensembles of
nuclei collectively excited by single photons bear a number of fascinating proper-
ties. These states have been called ‘nuclear excitons’ and the physics of them was
explored theoretically byAfanas’ev andKagan [23] as well as Hannon and Trammell
[24, 25]; for an extensive review see [26]. With the advent of high-brilliance syn-
chrotron radiation it became possible to prepare such states and study their properties
systematically. Due to the small number of photons per mode of the radiation field
at these sources, however, there is in most cases only one photon interacting with
the resonant ensemble at a time. In the following we investigate collectively excited
atomic (nuclear) states that have been created by short-pulse excitation containing
one photon at most. Since we do not know which nucleus is excited, all possible
Fock states |b1 b2 . . . a j . . . bN 〉 containing one excited nucleus (a j ) while the others
(bi ) are in the ground state, contribute with equal weight to the state vector of the
whole system. In this sense, the superradiant excitonic states are those of maximum
delocalization of the excitation energy.

For the case that the sample extension R is much smaller than the wavelength of
the radiation, k0R � 1, the exciton state is written as

|�e〉 = 1√
N

|b1 b2 . . . a j . . . bN 〉. (3.8)

This state is fully symmetric with respect to exchange of any two atoms, therefore
it is often called the symmetric Dicke state. In most cases of optical physics up into
the x-ray regime, however, the opposite limit is encountered where k0R � 1, so that
the spatial position of the atoms within the ensemble has to be taken into account:

|�e(k0)〉 = 1√
N

∑
j

ei k0·R j |b1 b2 . . . a j . . . bN 〉, (3.9)

where k0 is the wave vector of the incident photon andR j denotes the position of the
j th atom. This state was introduced to describe coherent nuclear resonant scattering
as ‘nuclear exciton’ [23, 26] or more recently as ‘timed Dicke state’ [41], because
atoms at various locations within the extended sample are excited at different times.

3.4.1 Radiative Normal Modes

The collective spectral response of a given ensemble of emitters and the tempo-
ral evolution of its decay can be obtained by determination of the radiative normal
modes. The scattering of an external wave proceeds via virtual excitation of these
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modes as intermediate states. The decay of a collectively excited state is then a super-
position of exponentially decaying normal modes of the system. In the following we
will summarize how to obtain the Hamiltonian equation of motion of the system
that determines the complex normal mode frequencies ωn , based on the formalism
layed out in Ref. [26]. Due to retardation effects in the ‘timed Dicke state’ of Eq.
(3.9), the Hamiltonian is symmetric rather than Hermitian. For that reason the eigen-
modes |�n〉 are transpose orthogonal rather than Hermitian orthogonal. A general
superposition exciton state |�e〉 = ∑

an |�n〉, prepared by pulsed excitation, will
develop dynamical beats in the time evolution of its decay, resulting from destructive
interference effects between the light emitted from the normal modes. Under certain
conditions, however, a single superradiant eigenmode |�e(k0)〉 can be excited that
exhibits a simple enhanced exponential decay. This is the case for single crystalline
samples if the wavevector k0 of the incident photons satisfies a symmetric Bragg
condition or if k0 excites a single mode in a cavity [59]. If k0 is off-Bragg (i.e. trans-
mission in forward direction) then |�e(k0)〉 is a superposition of normal modes. The
spread of frequencies of these modes and their Hermitian nonorthogonality deter-
mine the superradiant decay at early times and the emergence of dynamical beats
thereafter. Because the energy bandwidth of the synchrotron radiation pulses (meV -
eV, depending on the degree of monochromatization) is much larger than the natural
linewidth of the nuclear transition (4.7 neV for 57Fe), the incident pulse covers the
energies of all radiative eigenmodes of the sample, such that their excitation only
depends on arrangement of the nuclei.

In a classical system of resonators with oscillating dipole moments, the coupled
equations of motion lead to an eigenvalue equation from which the eigenfrequen-
cies and the eigenvectors of the semi-stationary (decaying) normal modes can be
determined:

h̃ X = ωX (3.10)

with X being an N -component vector that contains the amplitudes of all N oscilla-
tors. h̃ is the Hamitonian of the system. In a quantum mechanical description one
obtains the equations of motion by taking the Fourier transform of the decaying
exciton G0(t − t ′) |�e(k0)〉 with G0(t − t ′) given by Eq. (3.3) [26]. The Hamilto-
nian equation of motion has the same shape as Eq. (3.10) where the state vector is
now the nuclear exciton

X = |�e〉 =
∑

j

c j |b1 b2 . . . a j . . . bN 〉 =

⎛
⎜⎜⎜⎝

c1
c2
...

cN

⎞
⎟⎟⎟⎠ (3.11)

where here and in the following for notational simplicity we identify the quan-
tum mechanical states with their vector representation in the basis of Fock states
|b1 b2 . . . a j . . . bN 〉. The Hamiltonian is given by
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hii = ω0 − i�

2
and hi j (i 	= j) = −�γ

2
κi j

eik0 Ri j

k0Ri j
(3.12)

with

κi j ≈
{

3
2

(
3 cos2 � − 1

) [
1

(k0 Ri j )2
− i

k0 Ri j

]
(near zone Ri j � λ)

3
2 sin

2 � (far zone Ri j � λ)
(3.13)

where� is the angle between thewavevector of the outgoing photon and the polariza-
tion direction of the oscillator as determined by the polarization of the incident pho-
ton. The complex frequencies ωm = ω′

m − i�m/2 of the normal modes are obtained
via the determinant equation

Det[h̃ − ω 1̃] = 0 (3.14)

where 1̃ is the N × N unity matrix. The resulting frequencies ω′
m and the decay

widths �m will generally be different from the corresponding values of an isolated
nucleus. After determination of the eigenvectors Xm we obtain the N × N matrix U
that diagonalizes the Hamiltonian h̃ (the rows of U are the transpose eigenvectors
XT

m):
U h̃ U−1 = ω̃ (3.15)

with U−1 = U T and ω̃ being the diagonal eigenvalue matrix [ω̃]mn = ωm δmn . Since
the trace of a matrix is an invariant under a similarity transformation, we have
Tr(h̃) = Tr(ω̃), which is equivalent to:

∑
m

ωm = N

(
ω0 − i�

2

)
(3.16)

From this equation two important sum rules for the real and imaginary part follow:

∑
m

δω =
∑

m

(ω′
m − ω0) = 0 (3.17)

∑
m

�m = N �0 (3.18)

The frequency shift sum rule, Eq. (3.17), means that the frequency shifts of all modes
average to zero. If some modes are selectively excited or unequally populated, one
may nevertheless observe an overall net shift. The decay width sum rule, Eq. (3.18),
states that the decay width averaged over all modes equals that of a single resonator.
With the normal mode state vectors |�m〉 and their complex frequencies ωm now at
hand, we can calculate the time evolution of any single-exciton state |�e〉 via

|�e(t)〉 =
∑

m

am e−iωm t |�m〉 with am = 〈�T
m |�e〉 (3.19)
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In a synchrotron experiment with broadband excitation, we observe the decay of the
excitation probability that is given by

I (t) = 〈�e(t)|�e(t)〉 =
∑
m,n

a∗
n am ei(ω∗

n−ωm )t 〈�n|�m〉 (3.20)

Since the normal modes |�m〉 are transpose orthogonal rather than Hermitian orthog-
onal, we have in general 〈�n|�m〉 	= 0. This gives rise to dynamical beats between
the modes in the temporal evolution I (t) of the decay. In the following subsec-
tions we discuss the most frequently encountered cases, i.e., forward scattering and
Bragg scatteringwith particular emphasis on cooperative effects encountered in these
geometries.

3.4.2 Forward Scattering

The state vector in Eq. (3.8) corresponds to the small sample limit, also called the
simple Dicke limit. The time evolution of the decay of this state to the ground state
is strictly exponential, but due to the lack of spatial phasing there is no directionality
involved. On the other hand, for extended samples (k R � 1) the spatial phasing in
Eq. (3.9) leads to directional emission that is the situation most frequently encoun-
tered in experiments, especially in the regime of hard x-rays.

The exciton |�e(k0)〉 created by the synchrotron pulse can be considered a Bloch
wave given by Eq. (3.9). However, the Bloch waves are generally not the true radia-
tive normal modes in a crystal. In general, the Bloch state |�e(k0)〉 is a superposition
of radiative eigenmodes, which exhibit a distribution of eigenfrequencies and decay
rates. In all cases, the initial decay is always superradiant but the decay at delayed
times is drastically different, depending on whether the exciton |�e(k0)〉 is an eigen-
mode or not.1 In the case of an eigenmode, the scattered signal I (t) exhibits a pure
exponential decay with an enhanced decay rate. On the other hand, if |�e(k0)〉 is a
superposition of eigenmodes, the superradiant components die out quickly, leaving
a superposition of slowly decaying components with a distribution of eigenmode
frequencies. This leads to a slowly decaying beating signal at delayed times, referred
to as dynamical beats or propagation quantum beats, as illustrated in Fig. 3.5. They
have been observed not only for nuclear resonant scattering [50], but also for coher-
ent forward scattering from excitons in the optical domain [60]. Quantitatively, the
response function of the sample, characterizing the amplitude of the scattered light
for an incident field δ(t), is given by

A(t) = δ(t) − e−�0t/2�
�C

�

J1(
√
4�C t/�)√
�C t/�

, (3.21)

1In a great part of the literature about the collective Lamb shift the values given are valid only for
the initial phase of the temporal evolution where the decay can be considered superradiant.
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where �C depends on the thickness of the sample, see Eq. (3.7) with R = L‖. At
early times the decay is essentially superradiant with an enhanced decay width given
by �0 + �C . At delayed times the decay of the exciton proceeds with an envelope
given by 1/

√
t3 and an onset of dynamical beats ∼ cos2(

√
t). The width �C for the

initial radiative decay is given by [26]

�C(k0) = �γ

4π N

∫
d� sin2 � |S(k − k0)|2 (3.22)

with

S(k − k0) =
N∑

j=1

exp[−i(k − k0) · R j ] (3.23)

where k is the wavevector of the outgoing photon, and the sum runs over all N
atoms in the sample. |S(k − k0)|2 = N 2 in those directions k where constructive
interference takes place for the amplitudes emitted from all nuclei, as it applies for
forward scattering. In this case the decay width is given by

�C(k0) = �γ

N

4π

� (3.24)

where 
� is the solid angle around k0 for which (k − k0) · (Ri − R j ) < 1 for all
interatomic distances. Thus, due to the phasing, the emission preferentially proceeds
into the direction of the incident photon wave vector.2

Equation (3.24) implies that 
� strongly depends on the dimensionality and the
shape of the sample. For a 3-dimensional sample we find that
� ≈ (λ/L⊥)2, where
L⊥ is the dimension of the sample transverse to k0. In this case we obtain

�C(k0) = 1

4π
ρ λ2 L‖(k0) �γ , (3.25)

where L‖(k0) is the dimension of the sample along the direction of k0 and ρ =
N/(L2

⊥ L‖) is the number density of resonant atoms in the sample. The product
ρ λ2 L‖ has an interesting interpretation: It is the number of resonant atoms in a
column with cross section λ2 and length L‖, as illustrated in Fig. 3.5.

It is instructive to take another view on forward scattering by dividing the sample
into M thin layers (see Fig. 3.5) and solve for the time dependent response of the
oscillators in each layer as they act under the influence of the radiation fields from
all the other layers after pulsed excitation. The initial phasing of the emitters in each
layer is assumed to be symmetrical, i.e., they radiate equally in both forward and

2The directional emission of single photons has been called counterintuitive [9] since no macro-
scopic dipole moment is involved in the single-excitation timed Dicke state Eq. (3.9) like it is the
case, e.g., for a fully inverted system. Therefore one might expect that a weakly excited system
radiates with an undirected emission pattern as a single atom does. The directionality, however, is
just another consequence of the coherence involved in the scattering process.
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Fig. 3.5 a Dynamical beats in nuclear resonant forward scattering through an optically thick foil
of D = 20μm stainless steel, where the 57Fe nuclei act as single-line resonators. For times later
than t ∼�/�C after excitation the temporal evolution is dominated by dynamical beats described
by Eq. (3.21). The dashed line in the graph illustrates the initial superradiant part of the temporal
evolution that proceeds as I (t) = I0 exp[−(1 + χ) t/τ0] with a speedup factor of χ = 60. b χ =
�C/�0 ∼ ρ λ2 L‖ is the number of resonant atoms N in the column of cross section λ2. Reprinted
from [61], Copyright 2012, with permission from Wiley

backward directions. In forward scattering, however, there is no radiative coupling
with another scattering channel (as it is in Bragg geometry), and this leads to an
asymmetry: While the mth layer acts under the influence of the (m − 1) upstream
layers, the downstream (M − m) layers have no effects on the mth layer. As a result,
the emitters in the first layer radiate at their natural resonance energy ω0 and decay
rate �0 while the emitters in the M th layer are driven by the fields from all upstream
layers. This strong driving eventually forces the downstream layers out of phase with
the upstream layers resulting in dynamical beats and a nonexponential decay at late
times. On the other hand, if the incident wave vector satisfies the symmetrical Bragg
condition, then the radiated waves are constructive in both transmitted and reflected
directions. As a result, the driving forces on each oscillator in the sample are equal,
leading to a normal mode oscillation with superradiant decay width �C at the natural
resonance frequency ω0.

It should be noted that the formalism outlined so far is valid only in the local or
Markov approximation, i.e., for slowly evolving systems that do not change much
while the signal propagates through the sample. In case of large samples that violate
the local approximation the dynamics becomes nonlocal in time and one expects
collective oscillations in the atomic population resulting from subsequent emission
and reabsorption of radiation within the sample [15, 62, 63].

3.4.3 Bragg Scattering

In contrast to forward scattering, theBragg exciton is an eigenmode that radiates at the
natural resonance frequency ω0 with an exponential accelerated decay. This can be
understood via the normal mode analysis presented above. For a crystal consisting
of M resonant layers, each layer separately has two-dimensional normal modes
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corresponding to Blochwaves. The layers scatter into the same outgoing fieldmodes,
which at the same time couples the different layers. As a result, the crystal of M layers
with a spacing of d will give rise to M different linear combinations of the single-
layer solutions [26]. Factorizing out the two-dimensional component corresponding
to the single-layer Bloch waves, the part of the excitonic state characterizing the
superposition of the different layers is given by

|�e(k0)〉 = 1√
M

⎛
⎜⎜⎜⎝

1
eig0d

...

eig0d(M−1)

⎞
⎟⎟⎟⎠ , (3.26)

with g0 = k0 sin�B . At the Bragg angle�B we have nλ = 2d sin�B with a natural
number n, so that g0d = nπ if the Bragg condition is fulfilled. Thus, at the exact
Bragg angle for a symmetric Bragg reflection, the phasing is such that only the
superradiant eigenmode state is excited. With increasing deviation from the Bragg
angle, in addition to the superradiant eigenmode, various other normal modes are
virtually excited. As a result, the weighted resonance energy is shifted from ω0, and
the effective decay width is reduced. Quantitatively, the reflectivity of a thin crystal
consisting of M resonant layers in the vicinity of the resonance energy ω0 is given
by [26]:

R(ω, δ) = 1

1 − i Mδ

i�C/2

[ ω0 − ω − i�0/2 − i(�C/2)/(1 − i M/δ)] (3.27)

with δ = k0d cos�B δ�. d is the spacing of the lattice planes, δ� = � − �B is the
deviation of the incidence angle � from the exact Bragg angle �B , and �C is given
by Eq. (3.25). Thus, in Bragg geometry, the effect of the collective resonant scattering
is an enhancement of the decay width to

� = �0 + �C

1 + (Mδ)2
(3.28)

while the resonance frequency ω′
0 is shifted relative to ω0 by the amount


ωc(δ) = ω′
0 − ω0 = Mδ

1 + (Mδ)2

�c

2
(3.29)

Accordingly, inBragggeometry the collectiveLamb shift
ωc changes fromnegative
to positive values if the angle of incidence crosses the Bragg angle from below. Such
a behaviour has been experimentally observed in nuclear Bragg diffraction from
perfect single crystals of FeBO3 [64]. It was also reported in a theoretical study for
a density modulated slab of material [65].
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3.5 Cooperative Emission and the Collective Lamb Shift
in a Cavity

It has been shown in the previous Sect. 3.4.3 that radiative eigenstates of a resonant
collection of identical atoms can be selectively excited by proper phasing of the
resonators. This is the case, for example, if the atoms are arranged in a crystal and
the incident wavevector matches a symmetric Bragg reflection. Here we discuss
another phasing scheme for a superradiant eigenstate that leads to large cooperative
effects and exhibits a high degree of experimental tunability. This is the case if the
resonant atoms are embedded in a planar cavity that is excited in its first-order mode,
as sketched in Fig. 3.6. An ultrathin layer of 57Fe atoms is located in the plane at z = 0
the center of the cavity. The layer system that forms the planar cavity consists of a
material of low electron density (e.g., carbon) as a guiding layer that is sandwiched
between two layers of high electron density (e.g., Pt) acting as total reflectingmirrors.

The two phasing schemes are in fact closely related. In the Bragg case, the phasing
leads to constructive interference if the condition nλ = 2d sin�B is satisfied. Then,
different scattering pathways through the crystal add up in phase. We can relate
this expression to the cavity case by rewriting λ = 2π/kλ with the wave number
kλ, and evaluating the corresponding wave number normal to the cavity surface via
sin�B = k⊥/kλ. Using λ⊥ = 2π/k⊥, the Bragg condition becomes d = nλ⊥/2,
which is the usual resonance condition for the nth mode of a perfect resonator with
length d. One may therefore interpret a cavity as a Bragg setting “folded” into one
layer via the action of the mirrors. This way, also the scattering pathways shown in
Fig. 3.6 can be related to the corresponding pathways in the Bragg case.

To find the complex eigenfrequencies of the system we reverse the solution pre-
cedure outlined above, first obtaining the eigenmodes by symmetry and then solving
for the eigenfrequencies. We find for the electric field in the regions above and below
the resonant layer at z = 0

Fig. 3.6 a Structure of the planar cavity and scattering geometry used for calculation of the CLS for
an ensemble of resonant 57Fe nuclei embedded in the center of its guiding layer. bDepth dependence
of the normalized radiation field intensity in the first-order guided mode of the cavity. Dashed lines
mark the interfaces between layers
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E(z) =
{

A (eikz z + rm e−ikz z), (z > 0)
B (e−ikz z + rm eikz z), (z < 0)

(3.30)

where kz is the wavevector in z direction and rm is the reflection coefficient of the
mirrors. The reflection and transmission coefficients of the ultrathin resonant layer
(thickness d) are given by

rr = i f d

1 − i f d
, tr = 1 + rr , with fn = fn(ω) = 2πρ

k2
0

f0(�0/2)

ω − ω0 − i(�0/2)
(3.31)

where fn is the nuclear scattering amplitudewith f0 defined inEq. (3.4).Matching the
fields in Eq. (3.30) above and below the resonant layer under conditions of resonant
transmission and reflection leads to

(
A

B

)
=

(
rrrm trrm

trrm rrrm

) (
A

B

)
(3.32)

The eigenfrequencies are determined from the coresponding determinant equation:

rm(rr ± tr ) = 1 (3.33)

where the sign distinguishes between the odd and even solutions for the field in
the cavity. Odd modes are those with a minus sign; they have a node at z = 0 and
thus do not interact with the resonant layer. For the even modes Eq. (3.33) turns into
rm(2rr + 1) = 1 from which we derive that f d = i (1 − rm)/(1 + rm) which yields
the complex eigenfrequency

ω = ω0 − i�0

2

[
1 − 2πρ f0d

k2
0

(
1 + rm

1 − rm

)]
. (3.34)

From this expression we obtain the frequency shift

LC = 2πρ f0d

k2
0

�0 Im

(
1 + rm

1 − rm

)
. (3.35)

For highly reflecting mirrors with |rm | ≈ 1 the expression on the right can become
quite large. Effectively, the cavity promotes the exchange of real and virtual photons
between the resonant atoms within the ensemble, leading to large values for the
cooperative decay width and the collective Lamb shift.

For a more rigorous description we treat the propagation of x-rays in stratified
media within a transfer matrix formalism [66]. Owing to the high energies of x-
rays compared with electronic binding energies in atoms, the refractive index n of
any material is slightly below unity. Thus, n is commonly written as n(E) = 1 − δ.
Accordingly, in the X-ray regime, every material is optically thinner than vacuum,
thus total reflection occurs for angles of incidence (measured relative to the surface)
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below the critical angle φc = √
2δ. Since δ = 10−6 . . . 10−5 for hard X-rays with

energies between about 10 and 20 keV, the critical angle ϕC is typically a fewmrad. In
the regime of total reflection, the radiation penetrates only a few nm into the material
via the evanescent wave. In the example shown in Fig. 3.6, the top Pt layer is thin
enough (2.2 nm) so that x-rays impinging under grazing angles can evanescently
couple into the cavity.

Constructive superposition of the partial waves inside the cavity occurs at certain
angles when the thickness of the guiding layer equals an integer multiple of the

standingwave period that is given by (λ/2)/
√

ϕ2 − ϕ2
C , where ϕC is the critical angle

of total reflection of the guiding layer material. This leads to a strong amplification of
the local photonic density of states, limited only by the photoabsorption in the guiding
layer material. In the first-order mode excited at about ϕ = 2.5 mrad, illustrated in
Fig. 3.6, one obtains a 25-fold enhancement of the normalized intensity in the center
of the cavity.

In the following we calculate the spectral response of this system around the
nuclear resonance energy to determine the collective decay width and the collective
Lamb shift of the nuclei in the cavity. This can be accomplished via a perturbation
expansion of the resonant reflectivity R of the cavity in powers of the nuclear scat-
tering amplitude fn at the angular position ϕ = ϕ1 of the first-order mode [27]. Each
order of the perturbation series of R corresponds to one of the outgoing partial waves
Ai that are emitted from the nuclear ensemble at the ‘vertices’ (denoted by the black
dots) in the diagram. In order to sum up all the partial waves Ai , we note that the
scattered amplitude in the nth outgoing wave is related to the (n − 1)th amplitude
via

An = (i d fn) p q An−1 (3.36)

Here d is the thickness of the 57Fe layer and p and q are the amplitudes of the
wavefields (at the position of the resonant nuclei) propagating in the directions of the
incident and the reflected beams, respectively. The depth dependence of the relevant
product p q for the first-order mode of the cavity used here is shown in Fig. 3.6b.
For the first vertex we have A1 = (i d fn) p2 A0 that also includes the coupling of
the radiation into the cavity. Finally, the sum over all orders results in

R = i d fn p2
∞∑

k=0

(i d p q fn)
k = i dp2 fn

1 − i d p q fn
. (3.37)

Inserting fn(ω) as defined in Eq. (3.31) we obtain a spectral response that is again a
Lorentzian resonance line

R(ω) = C d p2 (�0/2)

ω − ω0 + LC + i(�0 + �C)/2
with C = 2πρ cn

k0 k0z
(3.38)

that exhibits a decay width of �C = C d |Re(p q)| �0 =: χ �0 and an energy shift
of LC = −C d Im(p q) �0/2. Combining these results into one expression for the
complex-valued frequency shift 
C , we obtain
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Fig. 3.7 a Measured time response of a 1.2nm thick layer of 57Fe atoms embedded in the center
of the planar cavity (Fig. 3.6), excited in the first-order mode. The decay proceeds exponentially
over two orders of magnitude with a speedup of χ = 65 compared to the natural decay (upper
dashed line). At later times the decay levels off into a curve with a much smaller slope, resulting
from residual hyperfine interactions of the nuclei in the C matrix. b Experimental setup to record
the energy spectrum of the radiation reflected from the cavity. The analyzer is a 6 μm thick foil
of stainless steel 57Fe0.55Cr0.25Ni0.20 where the 57Fe exhibits a single-line nuclear resonance. It
is mounted on a Doppler drive in order to obtain the spectrum by recording resonantly scattered
photons as function of the drive’s velocity. c The measured energy spectrum is strongly broadened
due to the superradiant enhancement. Its center is shifted by about -9�0 which is the collective Lamb
shift for this sample [27]. Reprinted from [67], Copyright 2015, with permission from Springer
Nature


C = i�C

(
1 + i

Im(p q)

|Re(p q)|
)

(3.39)

The collective Lamb shift in single-photon γ -ray superradiance has been experimen-
tally confirmed in an experiment at the European Synchrotron Radiation Facility
(ESRF) [27], see Fig. 3.7.

While for a spherical atomic cloud the collective Lamb shift scales with the
quantity ρλ3 [31, 41], in this setting it scales with ρAλ2, where ρA is the areal
density of the resonant nuclei in the sample. Here the ensemble of resonant nuclei
effectively appears to be two-dimensional because all nuclei within the thin layer
are confined to a dimension that is small compared to the period of the standing
wave in the cavity. As a result, the cooperative emission from the nuclei in the
cavity takes place in the limit k0zd � 1, so that essentially the small-sample limit of
Dicke superradiance is realized here, while the directionality of the emission is kept
because the resonant nuclei interact only with one guided mode of the cavity with a
well defined wavevector. One may speculate that if the resonant atoms are confined
in a 1-dimensional structure like a fiber, the collective Lamb shift might scale as ρLλ,
where ρL is the linear density of the atoms [61, 68]. This could lead to relatively
large values of the CLS. The preparation of corresponding samples is certainly more
demanding, although x-ray waveguides with a 2-dimensional confinement of the
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photonfield have already be demonstrated [69]. Evenmore interesting it is to consider
a 0-dimensional confinement of the atoms, e.g., in a 3D cavity. Thiswill be practically
impossible for x-rays, but has been demonstrated with microcavities in the optical
regime [70].

The cavity is an ideal laboratory to study features of cooperative emission. In the
followingwe exploit this to study the dependence of theCLSon the size of the sample.
For that purpose we increased the thickness of the resonant layer while keeping the
areal density of the resonant atoms constant. Calculations of the cavity reflectivity
for an extended ensemble of atoms distributed over the standing wave within a 3rd
order guided mode are shown in Fig. 3.8a. A close inspection reveals two prominent
features: First, one observes a sharp dip in the reflectivity spectrum at the exact
resonance energy (
 = 0). This structure is very reminiscent of the transparency dips
that appear in the phenomenon of electromagnetically induced transparency (EIT)
in quantum optics [71, 72]. As will be discussed in Sect. 3.7.2, there is indeed a
mechanismwhich leads to EIT in the case of nuclear resonant scattering from a cavity
that contains resonant atoms. Second, the CLS (determined from the center of gravity
of the curve), is a non-monotonous function of the thickness of the atomic ensemble
within the cavity. This behavior can be studied particularly well if higher-order
modes are employed where the resonant atoms can be distributed over a large range
of k R values within the cavity, see Fig. 3.8b. The results are displayed in Fig. 3.8c.
For comparison, we have used the function a + b(sin 2k R)/(2k R) (dashed lines) to
pinpoint the functional dependence of the oscillations in the CLS with increasing
sample size as it was predicted first in [31] and recently experimentally verified [45].
A rigorous theory to describe this behaviour on the basis of the cavity geometry used
here, however, still has to be developed.

3.6 QuantumOptics of Mössbauer Nuclei in X-Ray Cavities

The reflectance and spectral response of an x-ray cavity can be calculated using
different techniques (see Fig. 2 in [40]). One approach is Parratt’s formalism [73],
in which all possible scattering pathways arising from the material boundaries are
summed up. A generalization of this technique which enables one to include reso-
nant multipole scattering with its polarization dependence has been formulated in a
transfer-matrix formalism (for an overview, see [6]). A numerical implementation
of this formalism is provided via the CONUSS software package [74]. An alterna-
tive approach involves the direct numerical integration of Maxwell’s equations, via
a finite-difference time-domain method [75]. The analysis so far, however, focused
to the case of linear light-matter interaction with classical light fields. Moreover,
these methods do not enable one to interpret the obtained spectra in terms of the
underlying nuclear dynamics. In the following, we therefore focus on a recently
developed quantum optical framework for the description of ensembles of nuclei
in x-ray cavities [35, 37]. The key idea of this approach is to relate the entire sys-
tem comprising the x-ray cavity and the large ensemble of multi-level nuclei to that
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Fig. 3.8 The collective Lamb shift (CLS) for an extended layer of resonant atoms within the
cavity. Left column: cavity reflectivity in the third-order guided mode for increasing thickness D
of the resonant layer. The insets show the cavity cross section with the resonant layer (red) and the
standing wave intensity pattern (solid line). Right column: CLS as function of kz D for the 7th and
11th order mode in a Pt/C/Pt cavity with a 100nm thick guiding layer. Similar curves have been
observed recently in an experiment involving thin layers of atomic vapor [45]. Reprinted from [61],
Copyright 2012, with permission from Wiley

of a corresponding “artificial atom”, that is, a quantum optical few-level structure
which for low probing fields gives rise to the same response. This method has the
advantage that it treats the x-ray field as quantized, enables one to explore non-linear
and quantum effects, allows for a full interpretation, and for a quantitative modeling
of experiments. On the other hand, designing the cavity geometry and the nuclear
level structure in a suitable way enables one to design artificial atoms with properties
which reach beyond what is available in natural atoms [29, 68]. We note that the
quantum optical model presented here recently was promoted to an ab-initio theory,
in which themodel parameters and the realized artificial quantum system can directly
be calculated from a given cavity structure [40, 76]. As compared to previous mod-
els, this ab-initio theory further predicts qualitatively new phenomena, e.g., related
to the effect of off-resonant cavity modes on the nuclear dynamics.
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3.6.1 Quantum Optics of the Empty Cavity

To illustrate the photonic environment in a cavity without nuclei, we restrict the
discussion to a single cavity mode and neglect the light polarization for the moment.
The probing x-rays have frequency ω and a wave vector k that defines the incidence
angle θ . The cavity modes are characterized by discrete wave number components
perpendicular to the cavity surface, but continuous wave number components along
the surface. The boundary conditions impose that thewave vectorkC inside the cavity
has a component |kC | cos(θ) along the cavity surface. The component transverse to
the cavity surface, however, is fixed by the guided mode standing wave condition to
|k| sin(θ0), if θ0 is the incidence angle under which this mode is driven resonantly
for incident wave number |k|. Thus, |kC | =

√
|k|2 cos2(θ) + |k|2 sin2(θ0), and a

detuning 
C = ωC − ω ≈ −ωθ0
θ between the cavity resonance frequency and
the frequency of the incident light can be defined, which can be tuned via small
variations in the incidence angle 
θ = θ − θ0 from the resonance condition. With
this detuning, the Heisenberg equation of motion for the cavity mode in the absence
of nuclear resonances characterized by annihilation [creation] operators a [a†] is
given by

d

dt
a = −(κ + i
C)a + √

2κR ain , (3.40)

where κ is the overall damping rate of the cavity mode, κR characterizes the evanes-
cent coupling into and out of the cavity mode, and ain the applied x-ray field. In
practice, κR can be adjusted, e.g., by choosing the thickness of the cavity top layer
through which the x-rays evanescently couple into the cavity mode. From the cavity
field operators, the empty cavity reflectance |Rc|2 can be obtained via the input-output
relations [77] aout = −ain + √

2κR a, using Rc = 〈aout〉/〈ain〉. In the stationary state
(SS) ȧ(SS) = 0, such that

a(SS) =
√
2κR ain

κ + i
C
(3.41)

and

Rc = 2κR

κ + i
C
− 1. (3.42)

At the so-called critical coupling condition 2κR = κ , the reflectance |Rc|2 vanishes
on resonance 
C = 0, which can be interpreted as destructive interference between
light reflected from the outside of the cavity with that coupling out of the cavity
mode. If operated in this regime, the cavity can be employed to suppress a significant
part of the background photons, facilitating the detection.
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3.6.2 Quantum Optics of a Cavity Containing Resonant
Nuclei

Next we consider the effect of the nuclei on the cavity, restricting the discussion to
the single-excitation subspace spanned by the two collective states |G〉 and |E〉. The
nuclei effectively act as a source term for x-ray photons in the empty cavity equation
of motion (3.40), which is modified to

d

dt
a = −(κ + i
C)a + √

2κR ain − ig∗√N |G〉〈E |, (3.43)

where g is the x-ray-nucleus coupling constant. Thus the reflectance Eq. (3.42)
becomes

R = Rc − i

ain

2κR

κ + i
C
g∗√N 〈E |ρ̂|G〉, (3.44)

where ρ̂ is the density operator characterizing the nuclei. If the empty cavity
reflectance Rc vanishes on resonance in critical coupling, then the observable
reflectance originates from the nuclei alone, and therefore ideally forms a signal
without any background.

The result Eq. (3.44) can be generalized in a straightforward way to accomodate
for arbitrary input and output photon polarizations, as well as the magnetic sub-
structure of the nuclear levels, as it may result from nuclear Zeeman splitting in the
presence of a magnetic hyperfine interaction in a ferromagnetic environment. We
denote the input [output] polarization unit vectors as âin [âout], the two cavity mode
polarization unit vectors as â1 and â2, and define 1⊥ = â1â∗

1 + â2â∗
2 . The different

transitions from the ground state manifold to the excited state manifold within each
nucleus are labeled with index μ, and have a dipole moment dμ and a Clebsch-
Gordan coefficient cμ. Since the nuclei initially are distributed over the different
ground states, we further define the number of nuclei in the ground state of transition
μ as Nμ, and generalize the exciton Eq. (3.9) to |Eμ〉 as the exciton created upon
excitation on transition μ. Then,

R = Rc â∗
outâin − i

ain

2κR

κ + i
C
g∗ ∑

μ

(â∗
out · 1⊥ · d̂μ) cμ

√
Nμ〈Eμ|ρ̂|G〉. (3.45)

It can be seen that the empty cavity response Rc can be filtered out using orthog-
onal input and output polarizations, as expected. The nuclei, however, can scatter
between these two orthogonal modes, such that this crossed polarization setting
again is a method to detect the nuclear response without background via a high-
purity polarimetry setup [78]. Further, the different transitions μ can be interpreted
as a collective few-level system, with number of relevant states determined by the
input and output polarization, as well as the nuclear quantization axis defining the
magnetic substates. This setting with magnetic sublevels therefore enables one to
realize quantum optical few-level systems [35, 37]. As evidenced by the coherent
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addition of the scattering channels, the responses of the different transitions within
this few-level system may interfere, providing access to a rich variety of quantum
optical phenomena.

3.6.3 Nuclear Dynamics in the Cavity

It remains to determine the nuclear dynamics, i.e., its evolution under the action of
an x-ray pulse, in order to determine the density matrix ρ entering the reflectance
in Eqs. (3.44) and (3.45). Here we want to illustrate this for the simplest case of
two-level nuclei and a single cavity mode a. The original Hamiltonian is of Jaynes-
Cummings-type [2, 29], and contains interaction terms of the form S(n)

+ a, describing
the annihilation of a cavity photon (a) together with an excitation of nucleus n
(S(n)

+ ), as well as the reverse process. The problem can be simplified considerably be
exploiting that the fastest timescale in the problem typically is given by the cavity
lifetime 1/κ . In this “bad cavity” limit characterized by short photon trapping times,
the cavity modes adiabatically follow the much slower evolution of the nuclei. As
a consequence, the cavity operators can approximately be replaced by their steady-
state values Eq. (3.43), which results in an effective Hamiltonian for the nuclei alone.
In the radiative eigenmode basis it is given by [35, 37]

H = −�
|E〉〈E | + �(�eff |E〉〈G| + H.c.) + �
L S |E〉〈E |. (3.46)

The interpretation of this Hamiltonian is straightforward. It is equivalent to the Rabi
model for a driven two-level system [2]. However, the effective Rabi coupling con-
stant �eff = g

√
N a(SS) in H� is not given by the bare nucleus-cavity coupling g,

but modified by cooperative effects as indicated by the superradiant enhancement
factor

√
N , as well as by the cavity field as indicated by the presence of the steady-

state value of the field operator a(SS). Furthermore, the usual detuning 
 between
x-ray frequency and bare nuclear transition frequency is augmented by an additional
contribution


LS = |g|2N Im[(κ + i
C)−1], (3.47)

which arises due to the radiative coupling between the nuclei and which can be
interpreted as the cooperative Lamb shift. Similar to the Hamiltonian parts, also the
incoherent spontaneous emission of the individual nuclei γ is modified by

� = 2|g|2N Re[(κ + i
C)−1]. (3.48)

In linear response, the desired nuclear polarization 〈E |ρ|G〉 is governed by

〈E |ρ̇|G〉 = −i�eff + i

[
(
 − 
L S) + i

2
(γ + �)

]
〈E |ρ|G〉. (3.49)
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Inserting the steady state solution obtained from 〈E |ρ̇|G〉 = 0 into Eq. (3.44) finally
yields

R = Rc − i

(
κ − i
C

κ + i
C

2κR

κ

)
�/2

(
 − 
L S) + i
2 (γ + �)

, (3.50)

with the empty cavity reflectance Rc defined in Eq. (3.42). The nuclear response
therefore comprises a Lorentzian shifted with respect to the bare nuclear resonance
frequency by the collective Lamb shift 
LS, and with superradiant broadening � of
the natural line width γ , as already found using a different formalism in Eq. (3.38).

3.7 Quantum Optical Effects in Cavities

3.7.1 Interferometric Phase Detection via Fano Resonance
Control

In Sect. 3.5 it was found that a resonantly driven cavity containing resonant two-
level nuclei features a Lorentzian spectral response, broadened by superradiance,
and shifted by the cooperative Lamb shift. Having the expression for the cavity
reflectance Eq. (3.50) at hand, we can start by exploring the cavity response off-
resonance with the cavity mode [79]. Close to the resonance, 
C = δC(θ − θmin),
such that the detuning between x-rays and cavity mode can experimentally be tuned
by varying the x-ray incidence angle θ around the resonance angle θmin.

To simplify the analysis, we specialize to strongly superradiant cavities (γ � �)
in critical coupling (κ = 2κR) and rewrite Eq. (3.50) using Eq. (3.48) to give

|R|2 = |ε + q|2
1 + ε2

σ0 , (3.51)

where we defined the dimensionless energy ε = (
 − 
LS)/(�/2), the prefactor
σ0 = [1 + κ2/
2

C ]−1, and the so-called q-factor q = κ/
C . The cavity response
thus takes the form of a Fano resonance [80], which is an ubiquitous spectroscopic
signature in light-matter interactions [81, 82]. The Fano resonance arises, because
there are two interfering pathways for the light to propagate through the sample.
First, the spectrally broad cavity response, which is of relevance it the light does not
interact with the nuclei. Second, a spectrally narrow bound-state contribution arising
from the scattering on the nuclei. The relative phase between the two contributions
is given by φ = −arg(q − i), and it turns out that this phase determines the line
shape, which may range from Lorentzian absorption features via dispersion-like
asymmetric structures up inverted Lorentzian lines [83]. Conversely, external control
over this relative phase can be used to manipulate the lineshape [83, 84]. Since close
to resonance, q = κ/[δC(θ − θmin)], we find that changing the incidence angle allows
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Fig. 3.9 Fano lineshape control with nuclei embedded in a thin film cavity. The panels show the
reflectance recorded at incidence angles deviating from the resonance angle by 
θ indicated in
the panels. The figure shows raw data without baseline subtraction such that the absolute scaling
cannot directly be compared. Red lines show fits with a generic Fano line shape. The cavity is a
Pd(4 nm)/C(36 nm)/Pd(14 nm) structure with a 1.2nm thick layer of 57Fe nuclei in the middle of
the guiding C-layer. Reprinted from [79], Copyright 2015, with permission from the American
Physical Society

one to tune the Fano parameter and thus the spectral lineshape. Example lineshapes
are shown in Fig. 3.9, clearly demonstrating the control mechanism.

The analytic expression Eq. (3.51) enables one to interpret the cavity spectra on-
and off-resonance as Fano resonances. But more importantly, the phase-sensitivity
of the spectra together with the possibility to control the relative phase of the two
interfering channels open the possibility to exploit the setup as an interferometer.Note
that the cavity setup discussed here enables one to control the phase in a staticmanner
via the x-ray incidence angle, but it has been demonstrated that also a dynamical
control over the phase is possible [83, 84]. This approach enables one tomeasure tiny
phase shifts via the asymmetry of the line shape. On the other hand, manipulating
the phase can be used to control the light-matter interaction. As an example, the
complex nuclear dipole moment induced by the x-rays could be measured using this
interferometric approach [79]. From a broader perspective, the line shape control
discussed here provides a route towards the implementation of a diverse range of
applications relying on Fano interference [81, 82] at x-ray energies. One example,
electromagnetically induced transparency, will be discussed in the next Sect. 3.7.2.
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3.7.2 Electromagnetically Induced Transparency

As shown in Sect. 3.6, an ensemble of nuclei in a cavity can be effectively considered
as an artificial atom with an enhanced decay width and a self-energy correction of
its resonance energy given by the collective Lamb shift. The strong spatial variation
of the photonic density of states inside the cavity opens the possibility to tune these
properties via placement of the atomswithin thewavefield of the cavity. An ensemble
in an antinode of the cavity field displays a strong superradiant enhancement, which
defines a new evolution time scale which is much faster than the usual single-nucleus
single decay. Relative to this accelerated time scale, ensembles in a node will remain
subradiant, since their dynamics is not accelerated. Thus, a cavity with two atomic
ensembles at positions with such markedly different photonic densities of states can
be considered as an artificial atom with three levels: one belonging the common
ground state and two excited state levels that correspond to the superradient and
subradiant ensembles, respectively. Effectively, the subradiant ensemble represents
a metastable level because its radiative lifetime is much longer than that of the
superradiant ensemble. In this three-level system, all levels are radiatively coupled
through thevacuumfieldof the cavity. Such a couplinggives rise to a keyphenomenon
of quantum optics, electromagnetically induced transparency (EIT) [72].

The EIT effect arises from the cancellation of resonant absorption due to quantum
interference between atomic levels with significantly different radiative lifetimes. In
the original version of EIT, the quantum interference is induced by an external laser
field tuned to the transition between a metastable level and a shortlived excited state
in a three-level system. The basic ingredients for EIT are illustrated in Fig. 3.11a,
where a three-level system is shown, represented by the ground state, |1〉, and two
upper states, |2〉 and |3〉with respective energies E2 and E3. A strong laser field with
Rabi frequency �C induces an atomic coherence between states |2〉 and |3〉. Tuning
a (weak) probe laser field across the resonant transition 1 → 3 leads to a Fano-type
quantum interference [80] that renders the medium almost transparent in a narrow
window around the exact resonance frequency. The transparency arises since due
to the coherent superposition of the two states |1〉 and |2〉, the two excitation path-
ways |1〉 → |3〉 and |2〉 → |3〉 interfere destructively, such that no excitation takes
place. The degree of transparency is limited by the dephasing of the atomic coher-
ence resulting from the decay of state |2〉 or external perturbations. Thus, maximum
transparency is observed if |2〉 can be considered metastable, i.e., if it has a decay
width, γ2, that is negligibly small relative to the radiative decay width, γ3, of the
state |3〉.

To investigate the possibility of EIT in the 57Fe containing cavity, we replace the
spatially extended 57Fe layer in Fig. 3.8 by two layers with a separation of half the
period of the standing wave in the cavity, as shown in Fig. 3.10. Energy spectra of the
cavity reflectivity are calculated via the transfer matrix formalism already employed
in Sect. 3.4.2. Quite remarkably, the appearance of the dip in the reflectivity very
sensitively depends on the location of this pair of layers in the cavity. The dip is
most pronounced (Fig. 3.10a) if the first of the resonant layers (seen from the top) is
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Fig. 3.10 Top row: sample geometry of planar cavities for X-rays containing two 2-nm-thick
layers of 57Fe (red) together with the normalized field intensity (solid line) in the 3rd-order guided
mode, excited at an angle of incidence of ϕ = 3.5 mrad. Bottom row: calculated energy spectra of
the cavities reflectivity around the nuclear resonance, together with the difference of the spectra in
(a) and (c), displayed in (d). The fundamental difference between the spectra in (a) and (c) results
from the asymmetry of the boundary conditions for the electromagnetic field in the cavity, see
supplementary material for Ref. [28]. Reprinted from [61], Copyright 2012, with permission from
Wiley

located in a node of the wavefield and the second one is located in an antinode of
the wavefield. The dip gradually vanishes if the two layers are displaced by half a
period of the standing wave (Fig. 3.10b, c). To determine the spectral shape of the
transparency dip we subtract the two spectra in Fig. 3.10a, c. The resulting difference
spectrum (Fig. 3.10d) exhibits an asymmetric shape corresponding to a Fano profile
[80], thus providing clear evidence for the type of quantum interference that is typical
for EIT [85].

In order to analyse the analogy with EIT more closely we expand the cavity
reflectivity around the nuclear resonance (details of the derivation are given in the
supplementary information of Ref. [28]), resulting in:

R(
) = d2 f0 γ0E2−+(i
 + γ0)

(i
 + γ0)(i
 + γ0[1 + d2 f0 E2−−]) + d1 d2 f 20 γ 2
0 E2−+E1+−

(3.52)

The quantities E2−+, E2−−, and E1+− are elements of the transfer matrices that
describe the propagation of the photon field in the unperturbed cavity. Equation (3.52)
is basically identical to the standard expression for the complex susceptibility in case
of EIT [72] if one identifies (see Fig. 3.11)
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γ2 = γ0

γ3 = γ0[1 + d2 f0 E2−−] (3.53)

�2
c = d1 d2 ( f0 γ0)

2E2−+E1+−

This result prompts an obvious interpretation, supported by the illustration in
Fig. 3.11b, c: The two ensembles of nuclei in the node and the antinode of the standing
wave field experience two significantly different photonic densities of states, leading
to two different collective decay rates γ2 and γ3. This effectively converts the nuclei
in the cavity into three-level systems with two degenerate upper levels represented
by the states |2〉 and |3〉, as illustrated in the level scheme of Fig. 3.11c. The expres-
sion for �2

C is proportional to the two transfer matrix elements E2−+ and E1+− that
describe the transition amplitudes between the two counterpropagating fields in the
cavity at the position of the two resonant layers. This indicates that the coupling field
arises from the radiative coupling of the two resonant layers via the cavity field: An
excited atom in the antinode |3〉 decays back to the ground state |1〉 and releases
a photon into the cavity. This photon can promote an atom in the node from the
ground state into state |2〉 that eventually decays and again releases a photon into the
cavity, and so on. As a result, the two excited states |2〉 and |3〉 are coupled through
their common ground state |1〉 via the vacuum field of the cavity, which effectively
establishes a control field between the two upper states, represented by the horizon-
tal arrow in Fig. 3.11c. The resulting arrangement of levels in Fig. 3.11c and their
coupling resembles closely a�-type level scheme as in Fig. 3.11a. It should be noted
that the control field Rabi frequency of Eq. (3.53) enters Eq. (3.52) as a complex-
valued quantity �2

C rather than a real number |�C |2 in the usual expression for an
EIT susceptibility. A closer inspection reveals that the imaginary part of �2

C is small
compared to its real part for the cavity configurations employed here. It remains to
be investigated in which way the imaginary part of �2

C affects EIT in these systems.
We want to emphasize that cooperative emission is critical to EIT in this sys-

tem. While one of the atomic ensembles undergoes single-photon superradiant
enhancement leading to a decay width of �C = 2γ3 = d2 f0 Re[E2−−] �0 and a
collective Lamb shift of LC = −d2 f0 Im[E2−−] �0/2, the decay width 2γ2 of
the other’subradiant’ ensemble is given by just the natural line width �0, so that
γ3 ≈ 50 γ2 in the example shown in Fig. 3.10. Thus, in the presence of a strong
superradiant enhancement of state |3〉, the state |2〉 is relatively long-lived and thus
can be considered asmetastable. This is an important condition for a pronounced EIT
effect. The superradiantly broadened transition of the nuclei in the antinode provides
the continuum of states relative to which the Fano interference in this system takes
place. The collective Lamb shift of this level introduces an asymmetry that leads to
the characteristic Fano profile of the transparency window. For vanishing CLS, the
profile would simply be a Lorentzian line [79, 82, 83].

For an experimental verification of EIT in the x-ray regime, we have prepared
an x-ray cavity, shown in Fig. 3.11b, that consists of a Pt(3 nm)/C(38 nm)/Pt(10nm)
sandwich structure containing two 3 nm 57Fe layers that occupy a node and an
antinode of the cavity field. These two layers represent the subradiant state |2〉 and
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the superradiant state |3〉 that are radiatively coupled via the vacuum field of the
cavity, and thereby realize the EIT scheme. Drawing these states and their coupling
in a level diagram with the decay width as vertical axis, one obtains a � type level
system as shown in Fig. 3.11c. Using a spectroscopic detection scheme similar to
that employed for measurement of the collective Lamb shift [27], we could record
the energy spectrum of one of the hyperfine-split resonances of the Fe in this system,
shown in Fig. 3.11d, clearly displaying a pronounced EIT transparency dip at the
exact resonance where the system would be completely opaque otherwise [28].

Themodulation of the photonic density of states in the cavity facilitates the prepa-
ration of ensembles of resonant atoms with greatly different radiative lifetimes. In
other words, it lifts the radiative degeneracy of the atoms in the cavity, effectively

Fig. 3.11 a Typical,�-shaped level scheme of EIT in quantum optics: a strong laser field with Rabi
frequency �C induces an atomic coherence between the metastable level |2〉 and the upper state
|3〉. The decoherence rate γ2 can be neglected compared to the decay rate γ3. The system appears
to be transparent for the probe field at resonance (
 = 0) with the transition |1〉 → |3〉. b Cavity
geometry with two layers of 57Fe that can be translated into a �-shaped level scheme, if plotted
with the decay width as vertical axis, shown in (c). While level |3〉 in the antinode is superradiant,
level |2〉 in the node is subradiant so that γ2 � γ3. d Measured reflectivity spectrum of the cavity
shown in (b) that clearly shows the EIT transparency dip at the exact resonance energy where the
system would be completely opaque without the 57Fe layer in the node [28]. Reprinted from [67],
Copyright 2015, with permission from Springer Nature
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Fig. 3.12 Elementary processes in the interaction of the nuclei with the electromagnetic vacuum.
Green straight arrows indicate the nuclear dynamics. Red curved arrows depict the corresponding
emission and re-absorbtion of a virtual photon. a Emission and absorption of the virtual photon
within a single nucleus on a single transition leads to a complex energy correction, contributing
to Lamb shift and spontaneous emission. b The photon exchange between two nuclei induces
dipole-dipole couplings. c If the virtual photon couples different transitions within a single nucleus,
spontaneously generated coherences arise. Reprinted from [67], Copyright 2015, with permission
from Springer Nature

creating extra excited levels that are radiatively coupled amongst each other via the
cavity field. Note that this approach is general, as illustrated by the fact that the
EIT mechanism discussed here has been adapted to qubits operating at microwave
frequencies [86]. The degeneracy of the excited-state levels can also be lifted energy-
wise by a magnetic hyperfine interaction (nuclear Zeeman effect). In this case the
vacuum field of the cavity then leads to coherences between the excited states that
are subject of the following section.

3.7.3 Spontaneously Generated Coherences

So far, we have focused on nuclei without magnetic substructure. In an environ-
ment with magnetic fields, e.g., 57Fe exhibits two ground (I = 1/2) and four excited
(I = 3/2) states, which result in a splitting of the Mössbauer spectra into six lines.
Superradiant broadening can overcome this splitting, such that the different spectral
lines overlap.Naively, onemight expect an incoherent addition of the individual spec-
tral contributions of the different transitions. However, deep minima can arise in the
spectrum, which suggest the presence of destructive interference. These will turn out
to be a consequence of so-called spontaneously generated coherences (SGC) [87–89].
While SGC are linked to numerous potential applications including the suppression
of spontaneous decay, stringent conditions on their presence so far have limited the
experimental exploration.

The origin of SGC can be understood as follows. In second order perturbation the-
ory, the interaction of the nuclei with the surrounding electromagnetic vacuum field
leads to processes as visualized in Fig. 3.12. In (a), an initially excited nucleus deex-
cites and emits a virtual photon (red line), which subsequently is reabsorbed on the
same transition. This process results in a complex correction of the transition energy,
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Fig. 3.13 Spontaneous emission dynamics for nuclei initially in state |a〉 of Fig. 3.12c. a Regular
spontanous decay without the presence SGC, as it could be observed, e.g., in two-level nuclei. b
As in (a), but with SGC in the three-level system shown in Fig. 3.12c. Part of the nuclei evolve into
state |b〉, and half of the nuclei remain trapped in the excited states. c Similar to (b), but with energy
splitting γ /2 between |a〉 and |b〉, which limits the time over which population can be trapped in
the excited states. Reprinted from [67], Copyright 2015, with permission from Springer Nature

the real and imaginary part of which can be interpreted as single-particle Lamb
shift and spontaneous decay rate. Similarly, the virtual photon can be reabsorbed by
another particle (b), giving rise to dipole-dipole energy exchange between nuclei.
This corresponds to the exchange of virtual photons already discussed in Sect. 3.3.
To be added is the process shown in (c), where the virtual photon is re-absorbed
within the same particle, but on another transition. This state transfer establishes SGC
between the two excited states, arising from the interaction with the vacuum only. As
a consequence of this coherence, the spontaneous emission from a superposition of
the excited states |−〉 = (|a〉 − |b〉)/√2 is suppressed, since the two decay channels
|a〉 → |g〉 and |b〉 → |g〉 destructively interfere. In contrast, |+〉 = (|a〉 + |b〉)/√2
decays with double decay rate due to constructive interference. Figure 3.13 shows
the corresponding temporal evolution. Initially, the nuclei are in state |a〉. Without
SGC, the excited state exponentially decays, and the ground state population grows
accordingly (a).With SGC in (b), population is transfered from |a〉 to |b〉, establishing
a coherence. As a result, half of the nuclei remain trapped in |−〉, which corresponds
to the contribution to the initial state |〈−|a〉|2 = 1/2. In the optical spectra, such
trapping states translate into dark lines.

However, the generation of SGC is limited by stringent conditions, which usu-
ally are not met for atoms in free space. First, the dipole moments of emitting and
absorbing transitionsmust be non-orthogonal. Second, the energy difference between
the upper states should be small compared to the natural line width, since for non-
degenerate upper states the free time evolution converts the trapping state |−〉 into
the decaying state |+〉. Thus, with increasing energy difference the time over which
population can be trapped in the excitated states becomes smaller (see Fig. 3.13c),
until it eventually can be neglected compared to the natural lifetime. A final condition
is that the two involved transitions should share a common ground state |g〉 to enable
the re-absorption, even though there are also effects in the spectrum of the emitted
light associated to SGC on transitions with different ground states [90].

With large ensembles of nuclei in x-ray cavities, these limitations canbeovercome.
One reason is that the coupling between the different transitions is mediated via the
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cavity rather than free space. Then the condition of non-orthogonal dipole moments
d∗

μ · dν 	= 0 is relaxed to (d̂∗
μ · 1⊥ · d̂ν) 	= 0, where 1⊥ is a projector onto the cavity

polarization space [see Eq. (3.45)]. To illustrate the consequence of this, we introduce
a coordinate systemwith cavity surface normal unit vector π̂ = x̂ , wave vectork = ẑ,
and σ̂ = k̂ × π̂ = ŷ. In this case, 1⊥ = x̂ x̂∗ + ŷ ŷ∗, where the vectors are multiplied
with the outer product to form amatrix. If the nuclearmagnetizationBhf ∝ π̂ , the two
circularly polarized transitions have dipole moments d̂1 = (k̂ + i σ̂ )/

√
2 and d̂2 =

(k̂ − i σ̂ )/
√
2. Then, (d̂∗

μ · 1⊥ · d̂ν) = 1/2 for μ, ν ∈ {1, 2}. Since the cross terms
μ 	= ν have the same weight as the diagonal terms μ = ν, maximum SGC arises.
This is possible since the contribution due to x̂ x̂∗ vanishes in this particular cavity
geometry. In contrast, in free space, contributions of different polarizations would
cancel each other and d̂∗

1 · d̂2 = 0. Thus, the spatial anisotropy of the cavity vacuum
leads to the formation of SGC [91, 92].A secondmechanism for SGC inx-ray cavities
involves the coupling between different nuclei. In our approach, the combined system
of the large ensemble of nuclei and the cavity is described as a single effective nucleus.
Within this model, the probing x-ray beam does not resolve themicroscopic structure
of the system. As a consequence, the dipole-dipole coupling between different nuclei
appears as a radiative coupling between different states of the single effective nucleus.
Therefore, the nuclear many-body system enables one to engineer an effective single
nucleus with properties going beyond those naturally found in nuclei. Finally, in both
cases, the superradiant enhancement of spontaneous emission enables one to reduce
the perturbing effect of the energy splitting between the different states.

We implemented SGC in a Pd(5 nm)/C(20 nm)/57Fe(2.5 nm)/C(20 nm)/Pd(20
nm) layer system, in which the magnetization of the ferromagnetically ordered Fe
layer can be controlled via a weak external magnetic field. An example is shown in
Fig. 3.14 for the half-Faraday geometry, in which the magnetization Bhf ‖ (k̂ + σ̂ ).
The input and detection polarization were chosen along σ̂ and π̂ , respectively. It can
be seen that the quantum optical model predicts deep interference minima at around

 = ±30γ , which disappear if the mechanism leading to SGC is artificially omitted

Fig. 3.14 Experimental realization of SGC. aTheoretical predictions of the quantumopticalmodel,
as well as corresponding results obtained by artificially omitting the SGC contributions. b Experi-
mental data from [29], togetherwith a theoretical fit usingCONUSS including details of the detecion
procedure. The deep minima indicating the presence of SGC can clearly be seen. Reprinted from
[67], Copyright 2015, with permission from Springer Nature
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in the analysis. The corresponding experimental results clearly verify the presence
of these minima, and thus of SGC [29]. The experimental data is overlayed by a
theoretical calculation obtained using CONUSS [55, 74] which in addition takes
into account the details of the detection method. Interestingly, the intensity drops
down to the background baseline, which indicates full interference visibility. This
indicates a nuclear quantum system essentially free of perturbations.

Fromabroader perspecitive, the large ensembles of nucleiwithmagnetic sublevels
in x-ray cavities thus enable one to engineer a variety of tunable quantum optical
level schemes, including the possibility to implement SGC.

3.7.4 Tunable Subluminal Propagation of Resonant X-Rays

As discussed in Sect. 3.7.2, the key signature of electromagnetically induced trans-
parency is the vanishing of the linear absorption of a probe beam within a narrow
spectral transparency window. However, next to the transparency, EIT is also accom-
panied by characteristic modifications to the medium’s dispersion [72]. In particular,
within the transparency window, a steep linear dispersion appears, which can be
facilitated to control the group velocity of a light pulse passing through the medium.
To see this, we consider the propagation of an electromagnetic wave packet through
a medium, given in one dimension by

E(x, t) = 1

2π

∞∫

−∞
dωE(ω) ei(ωt−kx). (3.54)

Weassume that the spectralwidth of thewave packet is narrowas compared to theEIT
window, and expand thewave number k = kR + ikI in leading order of aTaylor series
around the center of theEITwindowatω0 to give kR(ω) ≈ kR(ω0) + ∂kR

∂ω
|ω0 (ω − ω0)

and kI (ω) ≈ kI (ω0). Note that the linear order of kI is zero since the absorption has
a minimum at ω0. Inserting this into Eq. (3.54) gives

E(x, t) ≈ 1√
2π

e−kI (ω0)x × ekR(ω0) (x−vph t) ×
∞∫

−∞
dωE(ω)ei ω−ω0

vgr
(x−vgr t)

. (3.55)

The three parts separated by “×” have a clear interpretation. The first part is the
linear attenuation because of the imaginary part of the resonant refractive index
nI (ω0) ∝ kI (ω0), following the Lambert-Beer law. The second part describes the
propagation of the carrier frequency plane wave through the medium. It moves with
the phase velocity vph = ω0/kR(ω0) = c/nR(ω0), that is, with the vacuum speed of
light c divided by the real part of the index of refraction. The third part shows that
the wave packet propagates with the group velocity
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Fig. 3.15 Schematic setup of the experiment. The lower panel shows the temporal and the spec-
tral structure of the x-ray pulse at different points throughout the propagation through the setup.
Reprinted from [36], Copyright 2015, with permission from the American Physical Society

vgr =
(

∂kR

∂ω

∣∣∣∣
ω0

)−1

= c

nR(ω0) + ω0
∂nR
∂ω

|ω0

. (3.56)

This expression illustrates that without dispersion ∂nR/∂ω, the group velocity of the
wave packet is equal to the phase velocity. Otherwise, depending on the sign and the
magnitude of the dispersion, the group velocity can be much lower than the vacuum
speed of light c (“slow light”, sub-luminal propagation), larger than c (“fast light”,
super-luminal propagation), or even negative. All cases have been experimentally
implemented with atomic gases, and the control of the group velocity has found
numerous applications [72].

Recently, group velocity control and slow light has also been achieved at x-ray
energies using Mössbauer nuclei [36]. The concept of the experiment is shown in
Fig. 3.15. The setup is motivated by two main experimental challenges. First, a
resonant medium with steep positive linear dispersion has to be implemented in
order to achieve vgr � c. For this, a suitably prepared cavity containing 57Fe nuclei
was used. Second, a spectrally narrowx-ray pulsemust be generated,whose spectrum
lies entirely within the linear dispersion part of the medium, i.e., within a bandwidth
of about 10–100 neV. This is impossible with conventional monochromators, but
can be realized, e.g., using pure nuclear Bragg reflections [93–95] or mechanical
choppers [96]. For the experiment, instead another method was developed, based on
a single line absorber together with a high-purity polarimetry setup [78].

To explain the generation of the spectrally narrowpulse,we follow the propagation
of the x-rays through the setup in Fig. 3.15. In the time domain, the incident spectrally
broad synchrotron pulse is well approximated as a Dirac delta function at time t = 0,
see the lower left panel. Upon passing through the single line absorber, the x-ray pulse
is split into two parts. The part which did not interact remains a delta function. The
other part which did interact with the nuclei in the single line analyzer leads to a
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temporally long response of the nuclei, and correspondingly to a narrow spectral
absorption resonance which will become the desired spectrally narrow x-ray pulse.
Note that because of the thickness of the single line absorber, dynamical beats appear
in the time domain,whichwill turn out to be crucial for the analysis of the experiment.
Afterwards, the x-rays pulse is polarized, which does not lead to notable changes
because of the natural polarization of the synchrotron radiation, but improves the
purity of the polarimetry setup. Next, the x-rays interact with the cavity. As explained
below, the nuclei in the cavity are operated in such a way that they slow down and
delay the narrow pulse component by a time τ , and at the same time rotate the
polarization of part of the scattered light. The analyzer is operated in crossed setting,
such that only light with rotated polarization may pass. As a consequence, only light
which interacted with the nuclei in the cavity can pass the analyzer. The light seen
by the detector thus contains two parts. The first part interacted with the cavity, but
not with the single line analyzer. The second part interacted with the cavity and the
single line analyzer. At late times, the latter signal dominates, because it is delayed
by both the single line analyzer and the cavity, and it comprises the desired signal of
a spectrally narrow x-ray pulse which interacted with the cavity. As the lower right
panel of Fig. 3.15 shows, this signal in the time domain approximately is a copy of
the input pulse, but delayed by τ . This delay is easily visualized independent of the
total count rate by the position of the dynamical beat minima.

In order to implement the steep dispersion, we used a variety of the cavity fea-
turing spontaneously generated coherences (see Sect. 3.7.3) optimized for the linear
dispersion. Both EIT (see Sect. 3.7.2) and SGC may feature transparency windows
and steep linear dispersion, and in fact are related [35, 37]. The advantage of the
SGC cavities is the simpler design, and that previous experiments [29] had already
demonstrated the possibility to reach almost perfect transparency, see Fig. 3.14.
Furthermore, the SGC cavities rely on the magnetic substructure of the nuclei in a
way which allows to rotate the polarization of the scattered light as required for the
polarimetry method to generate spectrally narrow x-ray pulses.

To analyze light propagation in the cavity setting, in analogy to the procedure lead-
ing to Eq. (3.55), we expand the cavity response R(ω) around the transparency reso-
nance ω0 in linear order. We find R(ω) ≈ R(ω0)ei(ω−ω0)τ , where τ = ∂

∂ω
arg[R(ω0)].

The action of the cavity on an input pulse Ein(t) with spectrum Ein(ω) is therefore
given by

Eout (t) ∝
∫

Ein(ω)R(ω)e−iωt dω

≈ R(ω0)e
−iω0τ

∫
Ein(ω)e−iω(t−τ)dω

∝ Ein(t − τ) . (3.57)

We thus find that the input pulse preserves its shape, but is delayed by the time τ ,
as desired for slow light. The expression of τ can be understood by noting that in a
cavity setting, the real and imaginary parts of the medium susceptibility are in fact
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related to the phase arg(R) and the logarithm of the modulus log(|R|) of the cavity
reflectance R [36].

In the experiment, a cavity consisting of a Pd(2 nm)/C(20 nm)/57Fe(3 nm)/C(21
nm)/Pd(10 nm)/Si layer systemwas probed in grazing incidence, coupling the x-rays
into the fundamental mode. Amagnetic field was applied along the beam direction in
order to align the magnetization of the nuclei in the so-called Faraday configuration.
In this setting, spontaneously generated coherences occur, which lead to a steep
linear dispersion [29]. Since full transparency of the medium corresponds to zero
intensity of the scattered x-ray, the cavity was designed to avoid full transparency in
order to measure the delay of the x-rays also on resonance. The single line analyzer
comprised a 10μm thick stainless steel foil (57Fe55Cr25Ni20) mounted on a Doppler
drive, which generates a spectrally narrow pulse of about 10 ns duration with tunable
central frequency. The results of the experiment are shown in Fig. 3.16. (a) presents

Fig. 3.16 Results of the experiment. a Shows the recorded intensity as function of time and the
detuning of the single line absorber, as well as the corresponding theory result. Dashed lines in the
theory plot indicate the position of the undelayed dynamical beat minima. White lines indicate the
actual positions of the minima predicted from theory. b Shows two cuts through (a) at detunings

D = 0.56γ and 
D = 46.1γ , respectively. The two curves coincide at late times except for a
delay τ , indicated by the black arrow. c Shows the observed delay as function of the single line
analyzer detuning, i.e., the center frequency of the spectrally narrow x-ray pulse. The corresponding
theoretical result is shown in blue. Delays exceeding 35 ns are observed, corresponding to group
velocities below 10−4 c. Reprinted from [36], Copyright 2015, with permission from the American
Physical Society
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the experimentally recorded intensity as function of the time after excitation and
the detuning of the single line absorber. (b) shows the corresponding theoretical fit,
which agrees very well. Thewhite dashed lines indicate the position of the dynamical
beats expected without pulse delay. It can be seen that close to resonance 
D = 0,
the dynamical beat minima observed in the experiment are systematically shifted
to later times, as expected for slow light. To illustrate this further, (c) shows cuts
through (a) and (b) for 
D = 0.56γ and 
D = 46.1γ , respectively. For the lower
detuning, the spectrally narrow x-ray pulse experiences the steep linear dispersion,
and thus is slowed down. The higher detuning is outside the steep linear dispersion
region and does not lead to slow light. As a result, at late times, the two data sets
are essentially identical, except for a temporal delay indicated by the black arrow.
Note that at early times the two curves differ, because of the residual contribution of
light which did not interact with the single line absorber. Finally, panel (d) shows the
experimentally observed delay τ as function of detuning 
D . The solid line shows
the corresponding theoretical prediction. We find that our cavity allows to induce
delays exceeding 35 ns, which corresponds to group velocities below 10−4 c [36].

These results constitute another proof of the possibility of manipulating the x-ray
optical response of nuclei embedded in cavities to one’s desire. Further theoretical
calculations predict that with a suitable time-dependent manipulation of the applied
magnetic fields, also a complete stopping of the x-ray pulse could be achieved [97].
Possible applications of such techniques include the delay and synchronization of
x-ray photons, and the coherence-based enhanced of nonlinear interactions between
x-rays and nuclei [72].

3.8 Collective Strong Coupling of Nuclei in Coupled
Cavities and Superlattices

Acentral subject of quantumoptics is tomanipulate the interaction of light andmatter.
To achieve this, two important parameters must be controlled. One is the strength
of the light-matter interaction. It has to be strong enough that emitted photons have
a chance to act back on their emitters. This is the so-called strong-coupling limit
in quantum optics [98]. It can be achieved in special environments into which the
emitters are embedded. Strong coupling is used in the optical and infrared regimes,
for instance, to produce non-classical states of light, enhance optical nonlinearities
even at relatively low intensities [99] and control quantum states [100]. The other
parameter is the number of modes of the electromagnetic field that the resonant
system interacts within this environment. If the number of these modes is too large,
the emitted photons might get irreversibly lost when they are distributed over these
modes. Strong coupling has been achieved for a variety of systems and energy ranges,
but until now not with X-rays. Here we report about the first observation of collective
strong coupling of hard X-rays at the nuclear resonance of 57Fe.
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3.8.1 Strong Coupling of X-Rays and Nuclei in Photonic
Lattices: Normal-Mode Splitting

The usual route to strong coupling between light and resonant atoms is to insert the
atoms into a cavity, the Q-factor of which is on the order or larger than that of the
atomic resonance [98]. A good cavity restricts the interaction with the light to the one
mode allowed by the cavity; furthermore, the intensity of the light within the cavity is
large, leading to an enhanced interaction. The strong interaction leads to the coupling
of two degrees of freedom; two normal modes form, which are superpositions of the
otherwise uncoupled components of the system. If the cavity is probed, for instance
by monitoring its reflectivity or transmissivity, its spectral signature shows two dips,
which are detuned from the sample resonance and the cavity mode. Upon varying the
detuning between cavitymode and resonance, it turns out that the dips undergo a very
well-known anti-crossing dispersion; the minimal distance between the branches of
the dispersion relation is given by the interaction strength.

While X-ray cavities have been successfully applied to realize quantum optical
concepts in the linear regime, fabricating a cavity of sufficient quality to reach the
strong coupling regime is not possible yet in the X-ray range. Even in the angular
range of grazing incidence, the reflectivity of the cladding mirrors is ∼95% only.
Compared to the reflectivity achieved for microwave and visible light cavities of
99.999% this is not sufficient. The problem is rooted in the fact that the spectral
width of the cavity is much larger than the coupling strength. Essentially, the two
dispersive dips mentioned above cannot be resolved [27, 79].

This points the way to another method of coherent control. Since our nuclear
exciton interacts with only one mode anyway, we can focus on enlarging the inter-
action without making use of a cavity, but by enlarging the number of nuclei that
contribute to the nuclear exciton, as the collective interaction strength depends on
that number. In the following, we will focus our attention on periodic multilayers
or periodic resonant systems. These, often referred to as resonant photonic crystals
or resonant optical lattices, also restrict the number of modes the resonant matter
interacts with.

The propagation of light through periodic arrays of resonant media such as optical
lattices or multiple quantum wells has opened intriguing possibilities to control the
interaction of light andmatter [102–105].One of themost interesting features of these
systems is the appearance and dispersion of bandgaps [106–109], see Fig. 3.17.

Here we describe an optical lattice-like structure with bandgaps in the regime
of hard X-rays, consisting of a multilayer with alternating layers of non-resonant
56Fe and nuclear-resonant 57Fe. The electronic part of the index of refraction is
identical for both isotopes. The system can thus be modelled as having a uniform
background refractive index, with a periodic resonant refractive index superimposed.
The resulting bandgap can be observed by measuring the spectrally resolved X-
ray reflectivity of the sample close to the Bragg angle of the multilayer. Although
similar isotopic multilayer structures have been discussed before [110–113], mainly
the angular dependence of the reflectivity has been studied instead of its spectral
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Fig. 3.17 a Dispersion relation (plotted as frequency ω against wavevector k0z) for photons in
different media: in a medium with uniform refractive index (blue dashed line) and in a photonic
crystal with an interlayer spacing d (black solid curves). b Brillouin diagram for a material with
a modulated refractive index, showing the allowed and forbidden regions for the real wavevector,
implying propagation and reflection, respectively. Pink bands indicate photonic bandgap formation.
A periodic nuclear resonance structure can result in the formation of an excitonic Bragg reflection
feature. cA stack of 30 [(1.64nm 56Fe)/(1.12nm 57Fe)] bilayers was used to modulate the refractive
index of the material for light at the nuclear resonance. Figures a, b reprinted from [101], Copyright
2016, with permission from Springer Nature

properties. Here we report about high-resolution spectroscopic studies, and reveal
the strong collective interaction between resonant X-rays and nuclei, which leads
to the formation of photonic bandgaps. In the following we discuss the connection
between the photonic dispersion relation and the reflectivity of the multilayer, the
latter being the observable that allows us to experimentally assess the signatures of
strong coupling.

Figure 3.18 shows the real and imaginary parts of the dispersion relation around
the nuclear resonance and the Bragg peak. There are three distinct contributions to
the imaginary part: (1) the uniform electronic absorption, (2) the nuclear absorp-
tion, which exhibits a Lorentzian energy dependence around the resonance and (3)
the extinction, which determines how deeply the radiation penetrates into the multi-
layer. The higher the extinction, the fewer periods contribute to the reflection.Nuclear
absorption dominates around the resonance, absorbing most incoming radiation. Off
resonance, the extinction becomes stronger relative to the absorption, indicating
enhanced reflection. Far off resonance and off-Bragg, the electronic absorption sup-
presses the reflection. The shape of the real part results from a polaritonic effect:
X-rays of suitable energy impinging on resonant matter undergo nuclear-resonant
forward scattering, which leads to an energy-dependent phase shift of the scattered
photons. In periodic media, polaritons excited at certain angles and with certain
energies radiate in phase, such that the outgoing radiation has a different direction
from the incoming one because the electromagnetic waves interfere destructively
in all other directions. In other words, the Bragg condition k0z = π/d is fulfilled.
Tuning the angle across the Bragg peak, one can observe an angularly resolved
polaritonic dispersion relation and the corresponding anticrossing behaviour, as well
as a narrow, almost dispersionless contribution around resonance that is visible in
Fig. 3.18a, b. This interpretation is supported by a simple quantum-optical model
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Fig. 3.18 Angular-dependent dispersion relation of a 56Fe/57Fe multilayer. The dispersion of
the out-of-plane component kz of an infinite stack of 1.64 nm 56Fe/1.12 nm 57Fe bilayers around
the Bragg position is shown. a The real part of kz is encoded in the colour bar in units of π/d.
b Magnification of the small, dispersionless gap in (a). c Imaginary part of kz , logarithmically
encoded in the colour bar. d The extinction coefficient contribution to the imaginary part, encoded
logarithmically. It characterizes how well a sample reflects light and is due to dispersion, not
absorption of the materials. An anticrossing is visible at the Bragg position. In comparison with
(c), it is obvious that the extinction coefficient is a weak contribution to the imaginary part both
at the energetic resonance and very far from it, but is dominant in the intermediate range. Figures
reprinted from [38]

[38] to explain the dispersion relation in microscopic terms [114, 115]. To account
for the finite thickness of the resonant layers, we model our system as a so-called
bichromatic optical lattice (containing two atoms per unit cell) and simplify the
Hamiltonian until it can be numerically diagonalized for a range of k-vectors at a
particular angle. Figure3.19 compares the resulting quantum mechanical dispersion
relation to the reflectivities of two multilayers with a finite number of periods. In
Fig. 3.19a (30 periods) a splitting is readily observable, but in Fig. 3.19b (100 peri-
ods) the almost fully formed bands seem to diverge at the Bragg angle, because the
collective coupling-enhanced splitting is too large for the displayed energy range.
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Fig. 3.19 Calculated reflectivity of the 56Fe/57Femultilayer. aCalculated reflectivity of a 30-period
multilayer and b of a 100-periodmultilayer. cQuantummechanically calculated dispersion relation.
The reflectivity of a many-period multilayer is well-described by the model of the multilayer with
an infinite number of layers. For 30 periods, the bandgaps are not fully formed and the splitting is
smaller. This is due to the collectivity of the light-matter interaction. More layers result in a stronger
interaction and a larger splitting. In (b) and (c), the interaction and splitting are so large that the
bandgaps are not observed together in an experimentally accessible energy range. Figures reprinted
from [38]

We also see that the reflectivity of the 30-period structure exhibits peaks rather than
fully formed bandgaps. The peaks correspond to the lower edges of the bandgaps;
here the extinction coefficient is largest and even for a few-period structure there is a
sizable reflection. Alternatively, the peaks can be described as superradiant modes,
which, on adding more periods to the structure, turn into bandgaps [116]. Note that
the descriptions by the transfer matrix formalism and the quantum optical model are
qualitatively identical for infinite systems, thus supporting our interpretation of the
observed phenomena. The low-dispersion bandgap that appears close to resonance is
probably caused by nuclei weakly coupling to the electromagnetic field, for example
at the layer interfaces. Although the bandgaps we observe are photonic bandgaps,
their dispersion is due to the (strong) collective interaction of light and the nuclei.

In the case where the wavevector of the incoming light approximately fulfills the
Bragg condition, the quantum-optical model yields an analytic dispersion relation
given by

ω j,±(q) = ωk0z + ω

2
±

√
(
ωk0z − ω

2
)2 + 2Ng2

[
1 − (−1) j cos(qρ)

]
(3.58)

where index j = 1,2, g is the coupling constant, N is the number of unit cells, ρ is the
distance between atoms of the same unit cell and q is the reciprocal lattice vector. The
similarity to a standard strong coupling dispersion relation [98, 117] with the corre-
sponding Rabi splitting is obvious. In our case, multiple bands undergo this splitting,
leading to two bandgaps. The splitting between them is the signature of collective
strong coupling. This microscopic model does not include dissipation. However, it
has the advantage of giving our results an intuitive and qualitative explanation. The
dispersion relation derived from the transfer matrix model is quantitatively more
reliable because it includes dissipation and absorption.
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Fig. 3.20 Left: measured energy spectra of themultilayer reflectivity for different angular positions
around the Bragg angle θB . Displayed is the energy region around the outer resonance line of 57Fe
in ferromagnetic Fe. The spectra reveal a splitting of the line, the angular dependence of which
displays the characteristic anticrossing behavior (see blue lines as guide to the eye) that is indicative
of strong coupling. On the the right hand side the measured intensity is plotted as a colour map;
the background baseline is normalized to one. The upper right panel shows simulations, the lower
shows the data. The white bar in the upper panel indicates the dip distance which gives the collective
coupling strength. The white lines in the lower bar indicate the edges of the photonic band gaps.
Right figure reprinted from [38]

To experimentally verify the particular shape of the dispersion relation for a
nuclear optical lattice, we prepared a multilayer sample consisting of 30 periods
of (1.64nm56Fe)/(1.12nm57Fe) (average thicknesses) sandwiched between two 4
nm Ta layers, altogether deposited on a Si substrate. This facilitated to measure
the splitting in a suitable energy range, but did not permit an accurate quantitative
comparison to the model. However, the reflectivity can be simulated by the transfer
matrix model. Measurements were performed at the Nuclear Resonance Beamline
ID18 of the European Synchrotron Radiation Facility (ESRF). Reflectivity spectra of
the sample are shown in Fig. 3.20 together with simulations using the program pack-
age CONUSS [55, 74]. Owing to the magnetic hyperfine interaction in the sample,
the nuclear resonance of 57Fe is split into four well-separated lines, each of which can
be treated as a single-line nuclear resonance (displayed in Fig. 3.18). The outer lines
in the measured spectra exhibit the strongest collective coupling, manifesting in a
clearly resolved Rabi splitting at the Bragg position. The bands at zero detuning, i.e.,
at the Bragg angle, have the frequencies ±√

2Ng2(1 − (−1) j cos(qρ)) around the
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nuclear resonance. The splitting is then 4g
√

N f j (qρ), where f1(qρ) = cos(qρ/2)
and f2(qρ) = sin(qρ/2). Depending onwhether ρ is smaller or larger than 0.25a, the
bands marked by j = 1 or j = 2 form the inner bands. We assume that ρ is smaller,
giving a splitting of 4g

√
N cos(qρ/2) ≈ 8�0 ≈ 57.3 MHz. Again, this is the result

for 30 layers and should not uncritically be equated with the formula resulting from
the infinite model. Nevertheless, the agreement between transfer matrix model simu-
lations and measurements is excellent. An exception is the almost dispersionless gap
visible in Fig. 3.18a which could not be resolved experimentally since the energetic
width of the analyzer foil smears out sharp spectral features.

To summarize, we have simulated andmeasured the energy-resolved reflectivities
of an isotopic 1.64 nm 56Fe/1.14 nm 57Fe multilayer around the nuclear resonant
Bragg peak. The results were explained in terms of the polaritonic propagation of
light and excitations of nuclear resonant matter. Within a quantum optical model, we
could connect the dispersion to the coupling of x-rays with nuclear excitons and have
given a lower bound to the collective coupling strength. Dissipation and the interface
roughness that grow with the number of layers thwart any attempt to observe fully-
formed band-gaps, and therefore precise values cannot be determined. However,
the distinctly observable dispersion and splitting of bands is the first unambiguous
evidence of collective strong coupling in the hard x-ray energy range.

Nuclear optical lattices display several unique features absent in other systems,
such as extremely high number densities (on the order of 1028m−3) and stability over
a wide temperature range. This work could be extended to other isotopes with higher
energies and less electronic interaction, such as 119Sn (23.9keV) or 61Ni (67.4 keV).
We therefore anticipate that nuclear resonant periodic multilayers will stimulate x-
ray quantum optics research and bring it closer to coherent control of the x-ray-matter
interaction. Even further, the concept of polaritons in bichromatic optical lattices or
other periodic systems itself is a subject that holds great interest far beyond the x-ray
range.

To put our results into perspective we briefly summarize previous work in similar
systems, as given in [118]. To the best of our knowledge, two physical systems have
yielded phenomena and observations similar to those described here: genuine optical
lattices [104, 106, 107] and gratings of excitonic quantum wells. In excitonic quan-
tumwells, a semiconductor is doped periodically; that way, the background refractive
index is identical throughout, but there are periodically spaced regions where quan-
tum well excitations are possible [119]. This medium is particular interesting, since
it suffers from a similar drawback as ours: too few layers result in an unclear or
incomplete formation of band gaps. Since the early 1990s, the results obtained from
excitonic quantum wells have been described in a different framework. Instead of
assuming an infinite structure, researchers calculated the eigenmodes of these sys-
tems for a small number (∼10) of layers [120, 121]. In that case, the eigenmodes
are one superradiant Bragg mode, which reflects the radiation in a band much wider
than the exciton resonance, and a number of dark modes. In a sense, this is the
incipient Bragg band gap. However, experiments [108, 122] showed that with an
increasing number of layers, dips in the superradiant mode and a saturation of its
width appeared; researchers explained this later in terms of band gaps and standing
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waves within the band gaps [116, 123], much as the quantum optical model of this
chapter. A system resembling a bichromatic array of quantumwells was examined in
[102]; although that paper has a different focus, the observed phenomena resemble
those presented here.

3.8.2 Rabi Oscillations via Strong Coupling of Two Nuclear
Cavities

In the regime of strong coupling, the reversible exchange of photons between a cav-
ity mode and an electromagnetic resonance leads to an oscillatory energy transfer
between the two systems, the so-called Rabi oscillations. Collective strong coupling
of X-rays and nuclei has recently been demonstrated in a periodic multilayer [39], as
described in the previous section. Themode splitting and anticrossing dispersion typ-
ical of strong coupling was observed in energy-resolved reflectivity measurements.
However, the Zeeman splitting of the Mössbauer resonance into several resonance
lines together with dissipation and structural imperfections of the layer system pre-
vented a clear detection of Rabi oscillations. Moreover, a conclusive proof of strong
coupling requires that the splitting of the resonance is solely due to the interaction
between the ensembles and is not affected by Lamb shift contributions. This requires
a particular arrangement of the resonant ensembles, as explained in the following.

The central requirement for the strong coupling regime is that the coupling of the
mode and the resonant layer be larger than their decay rates given by the the spectral
width of the cavity (that is, the inverse of the time a photon is stored in the cavity)
and the decay width of the nuclear ensemble. For a single thin-film cavity system, the
coupling strength, although larger than the nuclear decay width, is still much smaller
than the cavity linewidth.We circumvent this difficulty by introducing a novel double
cavity setup (Fig. 3.21), which is described by an effective Hamiltonian fulfilling
the desired strong coupling conditions. This ansatz follows the general approach
of simulating a complex physical system that mimics a simple Hamiltonian that
cannot be implemented straightforwardly. Similar approaches are used extensively
in contemporary research, for example to observe the Dicke phase transition [124,
125] or in the use of ultracold quantum gases to simulate magnetism [126] and
correlated materials [127, 128].

In the following we discuss a quantum optical description of the double cavity
setup in order to show that it indeed fulfills the conditions to observe Rabi oscillations
between the two nuclear layers. The interaction between the X-ray field and the two
nuclear layers embedded in the double cavity can be described bymeans of a recently
developedquantum-opticalmodel [29, 79] adapted to the particular sample geometry.
The Hamiltonian of this interaction is given by
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Fig. 3.21 Sketch of the coupled cavity system and experimental geometry to observe Rabi oscilla-
tions between two ensembles of 57Fe nuclei. Each cavity consists of a Pd/C/57SS/C/Pd layer stack,
where 57SS denotes stainless steel (Fe0.55Cr0.25Ni0.2) with its iron content enriched to 95% with
57Fe. Stainless steel does not exhibit ferromagnetic order, so in this alloy the 57Fe isotope presents
a single-line resonance at 14.413 keV with no Zeeman splitting. This layer structure realizes two
almost identical cavities coupled via a thin Pd interlayer, which also constitutes the top cladding
of the lower cavity and bottom cladding of the upper cavity. The layer system was positioned on a
goniometer that permitted to control the cavity detunings via adjustment of the angle of incidence
θ and to perform (θ − 2θ) reflectivity measurements

H = 
1a
+
1 a1 + 
2a+

2 a2 + J (a+
1 a2 + a+

2 a1)

− 
(|E1〉〈E1| + |E2〉〈E2|) (3.59)

+ g1
√

N1
(
a1|E1〉〈G| + a+

1 |G〉〈E1|
)

+ g2
√

N2
(
a2|E2〉〈G| + a+

2 |G〉〈E2|
)
,

where |G〉 = |g1g20102〉 denotes the nuclear ground state and |E1〉 = |e1g20102〉,
|E2〉 = |g1e20102〉 denote the states with a single excitation in either of the nuclear
layers, respectively. The first line in Eq. (3.59) gives the energies of the cavity modes
and their interaction term; the second one likewise the energies of the nuclear ensem-
bles. The third line describes the interaction between the first mode and its nuclear
ensemble, while the fourth one depicts the interaction between the second mode and
its ensemble. The creation (annihilation) operators of the cavity mode in the first
cavity are a†

1(a1). A second cavity is coupled to this first one by a strength J . The
second cavity mode’s creation (annihilation) operators are a†

2(a2). The detunings of
these two cavities are denoted by 
1 and 
2, respectively.

In each cavity, there is a nuclear ensemble coupled to it. In our experiments with
synchrotron radiation there is at most one photon in the system, i.e., we work in
the one-excitation limit. This allows us to truncate the Hamiltonian and to take into
account only the first symmetric timed Dicke state [29] of these ensembles that
is coupled to these modes [79]. The Dicke states are denoted as |E1〉 and |E2〉, and
their excitation and deexcitation operators are |E1(2)〉〈G| and |G〉〈E1(2)|, respectively.
They are coupled to their respective cavity modes with a collective coupling strength
g1

√
N1, g2

√
N2, where the N1(2) is the number of nuclei per ensemble, and g1(2)

the coupling strength of an individual nucleus to the respective cavity mode. An
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additional term 
 describes the energy of the nuclei and their detuning from the
incoming beam.

We then continue by prediagonalizing the interaction between the cavity modes,
resulting in two cavity supermodes a±, both coupling to the two nuclear ensembles
(seeMethods in [39]).We then heuristically add driving terms for both of these cavity
modes, which are i

√
2κR±(aina†

± + a∗
ina±). The energy bandwidth of the empty cav-

ities is very large, on the order of 100 eV, which renders them highly dissipative, i.e.,
their interactions and the temporal evolution of their modes take place on extremely
fast timescales, orders of magnitude faster than the evolution of the nuclear decay.
Therefore, the common practice is to adiabatically eliminate the cavity modes and
solely follow the temporal evolution of the three states |g1g20102〉, |g1g20102〉 and
|g1e20102〉, corresponding to states with no nuclear excitation or one delocalised,
collective excitation in layer 1 or 2, respectively, as depicted in Fig. 3.22d. Thus
we reduce the problem to that of two interacting low-excitation nuclear ensembles
similar to Ref. [79]. The effective Hamiltonian then reads (see Methods in [39]):

H =
⎛
⎝ 0 �1 �2

�∗
1 
 − δ1 + iγ1 g12 − iγ12

�∗
2 g12 − iγ12 
 − δ2 + iγ2

⎞
⎠ , (3.60)

where the Hamiltonian is made up of a series of effective parameters given by:
(i) the effective driving strengths of both layers:

�1 = g1
√

N

( √
2κR+

κ+ + i
+
+

√
2κR−

κ− + i
−

)
ain, (3.61)

�2 = g2
√

N

( √
2κR+

κ+ + i
+
−

√
2κR−

κ− + i
−

)
ain, (3.62)

(ii) The effective decay widths, consisting of real and imaginary part, δ and γ ,
respectively:

δi = −g2
i N

2

(

+

κ2+ + 
2+
+ 
−

κ2− + 
2−

)
, (3.63)

γi = g2
i N

2

(
κ+

κ2+ + 
2+
+ κ−

κ2− + 
2−

)
, (3.64)

(iii) the effective cavity-mediated coupling strength (real and imaginary part):

g12 = −g1g2N

2

(

+

κ2+ + 
2+
− 
−

κ2− + 
2−

)
, (3.65)

γ12 = g1g2N

2

(
κ+

κ2+ + 
2+
− κ−

κ2− + 
2−

)
. (3.66)
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Fig. 3.22 Illustration of the quantum optical models for description of the two coupled cavities.
a Each cavity contains a thin 57Fe layer located in the antinode of the first mode of each cavity
so that the coupling constants g1 and g2 are roughly equal. The first cavity is illuminated by a
classical driving field. Both cavities are at the same time divided and coupled via a thin cladding
layer, the thickness of which must be carefully adjusted to ensure a large coupling constant J . b
Level scheme of the setup in (a). There are four states that are labeled by g or e, describing the
states of the nuclear ensemble in layer 1 and layer 2, and by 0 or 1, which denote the number
of photons in the first guided modes of cavity 1 and cavity 2. gi describes the situation when all
atoms in layer i are in the ground state, and ei stands for the first symmetric Dicke state after the
delocalized excitation of one nucleus in layer i . c, d Sketches of the effective set-up achieved after
adiabatic elimination of the cavity modes. The original energies of the layers are replaced by those
of the Dicke states in individual layers and undergo collective Lamb shifts, denoted δ1 and δ2. Their
decay is superradiantly enhanced, with decay widths γ1 and γ2, and there is an effective interaction
�R between the layers. The latter is stronger than the respective superradiant decay rates, leading
to strong coupling between the upper two levels. The decay of these dressed states shows Rabi
oscillations. Figures b, d reprinted from [39]

Originally, the cavity modes were driven by an outside X-ray beam. Because we
have adiabatically eliminated the cavity modes, in our new picture that driving term
is now applied to both nuclear ensembles. In this picture the beam effectively drives
both ensembles directly, but with an extra dispersion inherited from the cavity mode.

 is the X-ray detuning to the nuclear resonance energy, considered to be the same in
both layers. 
± is the detuning of the supermodes from the incoming beam energy.

The new effective Hamiltonian in Eq. (3.60) can be interpreted as follows: The
new energies of the states representing collective excitations in layer i are given by

 − δi + iγi . γi is the cavity-enhanced superradiant decay rate of the Dicke state,
and δi is the cavity-induced collective Lamb shift [27]. The two states are connected
by an effective interaction given by the real part g12 and an imaginary part γ12. All
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parameters in the effective Hamiltonian can be derived from g1(2)
√

N1(2), κ± and

±, and κR±. While the latter three can be extracted from an off-resonant reflectivity
curve, the quantity gi

√
Ni must be fitted from the experimental data. Note that

these new, effective parameters can be tuned via the angle of incidence θ through a
wide range of values, as they all depend on the detuning, which is given by 
± =
(sin(θ±)/ sin(θ) − 1) ω0. Here, θ± is the angle for which one cavity supermode is
exactly at resonance at the nuclear transition energy ω0.

We can essentially regard the new, effective Hamiltonian as a three-level system
(Fig. 3.22d). The first level, corresponding to the ground state (no excited ensemble)
serves only to probe the properties of the other two through the (very weak) driving
terms. The energies of these two states, in turn, can be tuned via the collective Lamb
shifts, as can their superradiant decay terms and their mutual interaction. These
upper two levels form a two-level system with tunable energies, decay constants and
a tunable mutual interaction. Just as for a regular two-level system interacting with
a cavity mode, strong coupling and Rabi oscillations between the two levels can be
achieved if the interaction term is larger than the two respective decay terms, in this
case g12 > γ1, γ2. If this can be reached by appropriate tuning, the two upper states
will exchange a photon multiple times before the whole system decays, giving rise to
Rabi oscillations [129]. This is an equivalent of the standard strong-coupling set-up,
where the coupling strength between an atom and a cavity must exceed the latter’s
decay constants [130–133]. This effective three-level system may also be regarded
as the implementation of an artificial Autler-Townes set-up, which also consists of
two upper levels whose interaction is probed from a lower ground state. A crucial
difference is that the interaction here is cavity-induced, whereas in theAutler-Townes
case, a laser beam tuned to the energy difference between the two levels couples them.

The equivalent of the classical Rabi frequency in our case is given by

�R =
√

g2
12 + γ 2

12 + (δ1 − δ2)2, (3.67)

which includes the cavity-mediated coupling strength g12 between the two ensem-
bles/states, as well as their relative energy detuning δ1 − δ2. The behaviour of �R

in comparison with the superradiant decay rates, and the collective Lamb shifts as a
function of the incident angle, are shown in Figs. 3.23b,c. Any change in the incident
angle θ leads to modifications of all parameters δi , γi and g12, which makes it dif-
ficult to reach the desired behaviour of the coupling and the decay properties of the
system. This raises the question of whether we can find an angle θ at which the strong
coupling conditions (g12 > γi ) are fulfilled. This is indeed the case: In between both
supermodes, at large detunings from them, the superradiant decay widths γ1, γ2 are
insignificant compared to the interaction strength between the two layers. This can
be explained because the real part g12 of the interaction strength is suppressed by
1/
−1

± at angles sufficiently far away from the cavity angle of zero detuning, while
the imaginary part γ12 describing the superradiant decay is suppressed by 1/
−2

± .
However, the collective Lamb shifts do not go to zero as quickly, and, according to
Eq. (3.67), they are also involved in determining the oscillation rate �R . To observe
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Fig. 3.23 a Reflectivity and b, c effective parameters (given by Eqs. (3.61)–(3.66)) of the Hamilto-
nian that describes the coupled cavities. ϕM is the optimum coupling angle at which the conditions
for the observation of pure Rabi oscillations between the two resonant layers are fulfilled. ϕm lies in
the middle between the two cavity modes that show up as dips in the reflectivity displayed in (a). At
ϕm , the collective Lamb shifts (b) in the two layers cancel, and the superradiant enhancements (c)
are minimal, meaning that according to Eq. (3.67) the splitting is exclusively due to the interaction
�R . Figures reprinted from [39]

pure Rabi oscillation - that is, the case when the oscillations are solely induced by
the coupling constant, i.e. �R = g12, it is necessary to have zero Lamb shift detun-
ing between the layers. This, in turn, requires that both layers either have the same
collective Lamb shift, or none at all.

A brief inspection of the Hamiltonian reveals that this is possible if the Lamb
shifts caused by the two cavity modes cancel exactly for both layers. This can be
accomplished if the two cavity modes both couple to the nuclear layers with identical
strength. The double cavity is precisely the set-up thatmatches all these requirements:
the field modes couple equally strong to both layers, so the Lamb shifts of both layers
will always be equal. There are, however, always imperfections in real samples that
may lead to slightly different coupling strengths. An easy way to ameliorate this,
relies on the fact that the Lamb shift is highly dependent on the sign of the relative
detuning. Between two modes, the corresponding contributions will cancel and the
Lamb shifts of both layers will be exactly zero. At that particular angular position,
illustrated in Fig. 3.23a, we perform our experiment.

The experiment was performed at the nuclear resonance beamline ID18 of the
European Synchrotron Radiation Facility (ESRF). The beam was pre-monochro-
matized to a bandwidth of 1 meV around the nuclear resonance energy by the suc-
cessive use of high-heat load and high-resolution monochromators.

The sample system for the experiment consists of two thin-film cavities stacked
on top of each other, coupled through a thin interlayer as sketched in Fig. 3.21. A res-
onant 57Fe nuclear ensemble is embedded into each cavity. Specifically, the sample
was a (15nmPd)/(19nmC)/2nm57SS)/(19nmC)/(2nmPd)/(16nmC)/(2nm57SS)/
(19nm C)/(2nmPd) multilayer (Fig. 3.21) fabricated by sputter deposition on a
superpolished Si wafer. Here, 57SS indicates stainless steel (Fe0.55Cr0.25Ni0.2) with its
iron content enriched to 95% with the resonant 57Fe isotope. Stainless steel does not
display ferromagnetic order, so the 57Fe isotope presents a single-line resonance at
14.4125 keV with no Zeeman splitting. A weak hyperfine magnetic field distribution
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Fig. 3.24 Left: measured energy-resolved reflectivity at the optimum coupling angle ϕm . The two
peaks indicated by the arrows are due to the normal mode splitting that translates to the frequency
of the Rabi oscillations in (b). The modulation of the background (yellow dashed line is a guide
to the eye) is due to the detection method involving time gating and has been taken into account
in the numerical simulation. Right: temporal response of the double cavity, showing pronounced
Rabi oscillations. The theoretical curves are a Fourier transform of the energy-resolved reflectivity,
derived from the quantum optical model, and an exponentially damped cosine with a period that
corresponds to the Rabi frequency, respectively. Note that these temporal oscillations are evenly
spaced, in contrast to dynamical beats [50, 134], the period of which increases with increasing time
after excitation. Figures reprinted from [39]

in the sample, however, effectively broadens the 57Fe-resonance linewidth to ∼2–3
�0 [135]. This design effectively implements two almost identical cavities coupled
via a thin Pd interlayer, which also constitutes the top cladding of the lower cavity
and bottom cladding of the upper cavity.

For an energy analysis of the reflected radiation, a 1-μm-thick 57Fe-enriched stain-
less steel foil was inserted into the beampath. In this foil the 57Fe nuclei exhibited
a single-line resonance with a FWHM width of 1.5 �0. This stainless-steel foil was
mounted on a Mössbauer drive, which was then moved at velocities of ±10 mm/s.
The ensuing Doppler shifts of ±100 �0 covered the spectral range of interest. To
obtain the energy spectrum of the reflectivity at the optimum angle of incidence
ϕ = ϕm (Fig.3.24a) the delayed, resonantly reflected photons at that angular setting
were detected together with the actual velocity of the Mössbauer drive. The non-
resonantly scattered radiation was rejected from being recorded by a temporal gating
from 0 to 7 ns after excitation. The temporal gating ensured that the huge background
of nonresonantly scattered radiation was rejected from the detection, but the asso-
ciated time-window effect introduced an unphysical background modulation that is
visible in the spectrum. Moreover, because the non-resonant background is already
subtracted in the detection process, dips in the reflectivity appear as peaks in the
spectrum measured at the APD detector. For the time-resolved measurement, the
Mössbauer drive with the analyzer foil was removed. The measured temporal beat
pattern in Fig. 3.24b shows a clear, exponentially damped cosine patternwith a period
that corresponds the energy splitting of the line in (a), the typical fingerprint of Rabi
oscillations.
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To summarize, we have succeeded in observing Rabi oscillations in the X-ray
regime by using a double cavity set-up, and confirmed the collective strong coupling
regime via a quantum optical model. The temporal evolution of the system is marked
by the coherent exchange of a photon between two different collective excited nuclear
states. The result also points the way to coherent control of X-rays over matter.
Already minor changes in the layer structure, such as the positioning of the layers,
can create new effective multilevel systems with completely different dynamics,
and facilitate artificial quantum optical systems in the X-ray range, with tunable
dispersions and interactions.

3.9 Nuclear Quantum Optics with Advanced Sources
of X-Rays

A further boost for the field of nuclear quantum optics will be enabled not only by an
increase of the spectral flux provided by the x-ray source, but also by qualitatively new
properties of the radiation source. One of those is the so-called photon degeneracy
η, which is a parameter that gives the number of resonant photons per mode of the
radiation field. In the case of a pulsed radiation source where the pulse length is
much shorter than the nuclear lifetime, η is simply given by the number of photons
per pulse within the nuclear resonance bandwidth. If η is significantly larger than
1, one obviously enters the regime of multiphoton excitation of nuclear ensembles
which could open new avenues for nuclear quantum optics, ranging from stimulated
emission to nonlinear optics. At most present-day sources, however, values for η are
typically much lower than 1, implying that in the majority of the pulses that interact
with the sample there is no resonant photon. This means that there is typically only
one nuclear resonant photon at a time in the setup. Under favorable conditions,
e.g., when large bunch charges like in few-bunch filling mode of the storage ring
are realized, there can be a sufficiently large fraction of bunches containing two
or more resonant photons. The situation changes drastically with the advent of x-
ray laser sources operating in the regime of hard x-rays like the LCLS in Stanford
(USA) [136], SACLA in Himeji (Japan) [137], and the European XFEL in Hamburg
(Germany) [138–141]. At these sources, values for η larger than 102 at 14.4 keV
can be expected. In fact, a first experiment devoted to NRS has been recently been
performed at SACLA, demonstrating superradiant emission from nuclear excited
states with close to 102 photons per pulse [142]. In this section we are going to
discuss two new types of future sources of x-rays that have great potential to further
stimulate the field of nuclear quantum optics. These are the ultimate realizations
of synchrotron radiation sources, i.e., diffraction limited storage rings (DLSR) and
x-ray free electron laser oscillators (XFELO).
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3.9.1 Diffraction-Limited Storage Rings

A new generation of accelerator-based x-ray sources is presently emerging that relies
on a novel type of electron optics for the storage-ring, the so-called multi-bend
achromat (MBA) [143–145]. The new concept allows for a significant reduction
of the horizontal emittance εx compared to existing facilities. The emittance is a
property of a radiation source and is given by the product of beam diameter and beam
divergence. The smaller the emittance, the higher is the degree of spatial coherence
of the source, which is the most desirable property of a radiation source for focusing
or imaging applications. The emittance cannot be arbitrarily decreased, but is limited
by the fundamental effect of diffraction of the beam by the shape of its own beam
cross section. For that reason there are worldwide great efforts undertaken to reduce
the emittance of synchrotron radiation sources as much as possible to reach the
diffraction limit. The synchrotron radiation source MAX IV in Lund, Sweden, is the
first light source that was successfully commissionedwith this new lattice type [146],
and SIRIUS in Campinas, Brazil, is currently under construction. Amongst the high-
energy synchrotron radiation sources (electron energy equal or larger than 6GeV), the
European Synchrotron Radiation Source (ESRF) in Grenoble, France, will undergo
an upgrade starting in winter 2018 to the fourth generation light source ESRF-EBS
with an emittance as low as εx ≈ 130 picometer-radian (pmrad) at an electron beam
energy of 6 GeV [147]. Many other sources worldwide have upgrade plans along
these lines, among which are also the high-energy storage-ring sources Advanced
Photon Source (APS) at Argonne National Laboratory (USA) [148], SPring-8 in
Harima (Japan), and PETRA IV at DESY in Hamburg (Germany) [149]. The latter
facility will be the first source reaching the diffraction limit for hard x-rays at 10 keV
photon energy. The implementation of the new electron optics in the storage ring
allows for an increase of the spectral brightness by one to two orders of magnitude.
This will dramatically change the landscape of synchrotron radiation facilities in the
next decade, see Fig. 3.25.

The benefit of diffraction-limited storage rings for the field of nuclear quantum
optics will not be an increase in the photon degeneracy parameter η, but primarily the
concentration of more resonant photons in a given scattering volume as compared to
present-day sources. This is enabled by the high degree of lateral coherence which
facilitates a very efficient collimation and focusing of x-rays, leading to an enhanced
coupling of x-rays to nuclear ensembles, e.g., in cavities and photonic nanostructures.

3.9.2 X-Ray Free-Electron Lasers: SASE-XFEL and XFELO

A tremendous increase of the photon degeneracy η will be reached by x-ray sources
that rely on a fundamentally different mechanism of radiation generation. This is the
principle of self-amplified spontaneous emission (SASE) which forms the basis for
free-electron lasers (FEL). The SASE principle leads to a increase in the brilliance
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Fig. 3.25 Diffraction limit for selected synchrotron radiation sources and their future upgrades.
Reprinted from [149], the authors licensed under CC-BY 4.0

of the radiation by several orders of magnitude compared to synchrotron radiation
sources, going along with a corresponding increase in η. The ultimate performance
for nuclear resonant scattering experiments, however, will be achieved if the SASE
process takes place in a specially designed cavity where the relativistic electrons
interact with the x-rays that are circulating in the cavity. Such a device has been
termed x-ray free-electron laser oscillator (XFELO), conceptually introduced about
ten years ago [7, 150, 151].

AnXFELO is a low-gain device, in which anX-ray pulse that circulates in a cavity
formed by diamond crystal Bragg mirrors is amplified every time it overlaps with an
electron bunch in the undulator, illustrated in Fig. 3.26 . Due to its high reflectivity
and excellent thermo-mechanical properties, diamond is the preferred material for
the Bragg crystals employed to form the X-ray cavity [152]. An XFELO will work
at any photon energy for which the Bragg reflectivity of diamond is sufficiently high
and the bandwidth is sufficiently broad so that the initial exponential gain of the
intra-cavity pulse energy can be sustained for a reasonable set of electron beam and
undulator parameters. This range is expected to extend from 5 to 25 keV [151]. The
photon energy can be continuously tuned for a given setting within a range of about
5% by changing the Bragg angle and adjusting the crystal positions so that the cavity
roundtrip time remains fixed.

An XFELO will open up completely new possibilities in the field of nuclear
resonance scattering (NRS) for isotopes with resonance energies between 5 and 25
keV. Due to the narrow resonance linewidths of Mössbauer transitions, NRS will
benefit from the extremely intense, narrow-bandwidth radiation from the XFELO
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Fig. 3.26 A schematic illustration of an XFELO. Four crystals form a closed X-ray cavity via
Bragg reflection. Figure adopted from [8]

in several ways: The anticipated hard X-ray spectral flux of 3×109 ph/sec/neV is
more than 4 orders of magnitude larger than at existing 3rd generation synchrotron
radiation sources [8].

As an example, at 14.4 keV (the transition energy of the 57Fe Mössbauer reso-
nance) the number of photons per pulse is expected to be 1×1010 within a pulse length
of 680 fs (FWHM) and a spectral bandwidth of 3 meV (FWHM). This amounts to an
average spectral flux of about 3×1015 photons/sec/meV or 1.5×1010 photons/sec/�0,
which corresponds to η = 1.5×104 photons/pulse/�0 where �0 = 4.7 neV is the nat-
ural linewidth of the 57Fe Mössbauer resonance. These numbers are four orders of
magnitude larger than those observed at the best third-generation synchrotron radia-
tion sources to date. This allows one to pushMössbauer science far beyond the single
photon regime, opening new perspectives for X-ray quantum optics and nonlinear
science with nuclear resonances. The full transverse coherence of the radiation will
allow for efficient focusing to extremely small spot sizes in the range of 10 nm,
enabling one to combine NRS with high-resolution imaging techniques. Moreover, a
frequency stabilized XFELOwould enable a hard X-ray frequency comb with pulse-
to-pulse coherence for unique applications in X-ray coherent control and extreme
metrology.

The longitudinal coherence of optical fields is the core requisite to induce and
control interference between different quantum pathways in atoms. In nuclei, similar
developments so far were restricted to single photons interfering with themselves,
due to the lack of sufficiently coherent photon sources.With an XFELO this situation
will fundamentally change. Its full coherence and spectral brightness provides new
avenues for studying the interaction between X-rays and nuclei under multiphoton
excitation conditions, thus offering unique possibilities for nonlinear spectroscopy of
the nucleus, aswell as for novel approaches to nuclear state preparation and detection.

For example, at low orders of nonlinearity quantum aspects involving X-ray pho-
tons could naturally be explored with two or more correlated photons. Potential
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approaches encompass both the generation of X-ray photon entanglement and its
applications, and the exploration of quantum states in the nuclei by subsequent spec-
troscopic detection of scattered X-ray photons [153]. The availability of multiple
coherent photons per pulse in turn enables detection of multiple correlated X-ray
photons, providing access to higher-order correlation functions characterizing, e.g.,
density fluctuations, phonons or similar excitations. This will fuel the development
of a broad class of new detection and analysis techniques. With multiple potentially
phase-locked driving fields, multi-dimensional spectroscopy techniques comewithin
reach, providing further insight into the dynamics. 2D nuclear spectroscopy might
reveal couplings among nuclear transitions that could provide fundamental insight
into intra-nuclear interactions, analogous to what is revealed in two-dimensional
spectroscopy throughout radio frequency to optical spectral ranges [154, 155]. This
and the other 2D measurements mentioned above will require at least phase-related
X-ray pulse pairs, which could be generated by splitting one XFELO output pulse by
an X-ray split-and-delay line or by applying temporal control of resonantly scattered
photons via ultrafast piezo modulation [84].

Further progress is anticipated in the engineering of advanced nuclear level
schemes. First steps have recently been demonstrated at 3rd generation light sources,
by designing suitable target structures utilizingMössbauer nuclei embedded in super-
lattices [38] and planar X-ray cavities [27, 29, 39]. The XFELO will enhance these
capabilities by its unique source properties, which, aside from the spectral bright-
ness also includes coherent multi-pulse or multi-color excitation. The XFELO could
also facilitate novel nuclear resonance excitation processes, such as non-linear two-
photon excitation [156] or four-wave mixing.

The pulse-to-pulse coherence of an energy stabilized XFELO enables one to
realize a hard X-ray frequency comb (see Sect. 3.6), facilitating ultrahigh-resolution
X-ray spectroscopy of nuclear transitions. Examples includemulti-level nuclear tran-
sition measurements, probing ultra-narrow X-ray Mössbauer resonances, dynamics
of X-ray driven nuclear—electronic transitions, and X-ray+ laser double resonance
experiments. Facilitated by X-ray comb spectroscopy, fascinating possibilities come
into reach: X-ray frequency and wavelength metrology would be enabled by extend-
ing the optical frequency comb technologies and techniques to X-ray wavelengths.
In addition to probing nuclear physics with unprecedented precision, linking nuclear
transitions to the Cs standard can be used to search for the variation of fundamental
constants with improved sensitivity [158, 159]. Nonlinear phase-coherent driving
and probing at X-ray wavelengths will be possible over long times >10 s. High-
quality-factor nuclear transitions like the 12.4 keV level of 45Sc with a lifetime of
∼300 ms and �0/E0 ∼10−19 (see Fig. 3.27) can be established as new and improved
frequency standards. Importantly, the pulse-to-pulse coherence allows to excite these
narrow resonances using a sequence of pulses, offering the possibility of orders of
magnitude higher excitation fraction than expected from SASE [153].

With sufficient temporal coherence and high intensity, coherent processes includ-
ing nuclear coherent population transfer in the stimulated Raman adiabatic passage
(STIRAP) technique [160, 161] or nuclear Rabi oscillations [162] are rendered pos-
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Fig. 3.27 Diagram of Mössbauer isotopes and nuclear isomers together with atomic and nuclear
clock transitions in the parameter space of transition energy and half-life. The shaded regions
covers the energy range of the XFELO (light blue) and the XFELO with a high-gain high-harmonic
(HGHG) extension to reach photon energies above 25 keV (light brown). Modified from [157],
Copyright 2016, with permission from Springer Nature

sible. Coherent population transfer would enable controlled pumping, storage and
release of energy stored in long-lived nuclear excited states. In addition, also nuclear
reactions starting from excited nuclear states driven by the XFELO can be envisaged.

3.10 Concluding Remarks

We have shown in this review that planar cavities and photonic nanostructures like
multilayers and superlattices containingMössbauer nuclei constitute interesting sys-
tems to explore quantum optical effects in the x-ray regime. Since the period of the
x-ray standing waves in these structures is typically much larger than the thickness
of ultrathin layers of Mössbauer atoms embedded in them, one is able to realize the
small-sample limit of Dicke superradiance. This is instrumental for the preparation of
single radiative eigenmodes of these nuclear ensembles. Accurately controlling their
placement within the standing wave field facilitates to tailor their radiative decay
width. In the vacuum field of the cavity this leads to several possibilities to prepare
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coherences between nuclear levels. One of those coupling schemes leads to electro-
magnetically induced transparency (EIT), another one to spontaneously generated
coherences (SGC), and many others are still to be explored, opening exciting per-
spectives for future research in the field of cooperative emission and quantum optics
with hard x-rays. Further engineering of photonic structures in one, two, or even
three dimensions with modern thin-film deposition methods and lateral structuring
techniques enables one to reach the regime of collective strong coupling between
x-rays and nuclear resonances. We have demonstrated the basic effects encountered
in this regime, namely normal mode splitting of the resonances and Rabi oscilla-
tions between nuclear ensembles. While all these effects could be explored in the
limit of single-photon excitation, new avenues could open up under conditions of
multiphoton excitation. This includes stimulated emission, nonlinear x-ray optics,
multiphoton cooperative emission, novel hybrid light-matter states in cavities, to
name a few. Especially intriguing in this area would be the simultaneous coupling of
different types of photonic structures like cavities and multilayers to further enhance
the multiphoton light-matter coupling with nuclear resonances. Moreover, the con-
cepts presented in this review even open the possibility to transfer them into other
wavelength regimes of the electromagnetic spectrum.One could explore these effects
also with narrow resonance of inner-shell resonances, where first measurements on
the collective Lamb shift have been performed [163]. Further applications could be
to realize concepts of quantum memory with nuclear resonances which could even
form a bridge into the area of quantum computing implementations.
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