
Silicon: A Plant Nutritional “Non-Entity”
for Mitigating Abiotic Stresses 2
Sahil Mehta, Mansi Gogna, Baljinder Singh, Anupam Patra,
Indrakant Kumar Singh, and Archana Singh

Abstract

In the present era, the progression of plant development in the environment is
adversely affected by increasing incidences of abiotic and biotic stresses. These
stressors singly or in combination negatively pose pressure on plants. As a result,
the plants display a wide range of morphological, physiological, biochemical,
metabolic, molecular as well as epigenetic responses that help them in averting
stress-triggered alterations. In addition to “Omics,” plant breeding, functional
genomics, transgenic technology, and genome editing approaches, better mineral
nutrition coupled with soil-health amendments is still considered as the key
management practice. Use of Silicon (Si), the second most predominant and
quasi-essential element, has been recommended in the recent past. Si not only
promotes growth and development of plants, it also works as “anti-stress agent.”
Si mitigates this alleviating effect mainly by ROS detoxification, immobilization,
and compartmentation of toxic metal ions, modification in water and nutrients
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uptake, alteration in gene expression and phytohormone biosynthesis, mainte-
nance of osmotic potential and gaseous exchange, and formation of Si–cuticle
double layer. Moreover, being non-corrosive and non-pollutive,
Si-supplementation has proven to be the most economic as well as eco-friendly
method. The present chapter is an attempt to primarily address the involvement of
Si in minimizing the negative effects of abiotic stresses.
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2.1 Introduction

The term “stress” signifies a set of conditions that deviate plant growth, develop-
ment, and other characteristics adversely from its “normal state” (Lal et al. 2018;
Mehta et al. 2019a). Plants encounter these stresses during their entire life cycle
initiating from germination and seedling stage to the post-harvest stage (Singh et al.
2018; Sharma et al. 2020). All these growth-limiting “stresses” can be categorized
into two major categories, namely abiotic and biotic stresses (Singh et al. 2019;
Mehta et al. 2019b; Ramegowda et al. 2020). Abiotic stress conditions arise due to
fluctuation in plant’s physical environment (naturally occurring inanimate factors)
like rain, drought, floods, salinity, metal/metalloid toxicity, nutrient paucity, dwin-
dling seasonal patterns, and temperature shifts (Lal et al. 2018; Mohammadi et al.
2020). On the other hand, the latter one is a consequence of living disturbances, such
as fungi, bacteria, virus, nematodes, rodents, oomycetes, etc., that negatively affect
the plant’s well-being (Rahman et al. 2019; Ali et al. 2020).

The most frightening fact is that the frequency and incidences of these stresses
have increased in the last 50 years (Xu 2016; Surówka et al. 2020). It is actually
because of amalgamated effects of growing human population and anthropogenic
activities (Cripps 2016; Mahmoud and Gan 2018; Tamburino et al. 2020). These
activities include over-exploitation of resources, deforestation, desertification, pol-
lution, and global warming (Mahmoud and Gan 2018; Mona et al. 2019; Baldos
et al. 2019). All these factors either individually or in combination have affected the
total food productivity negatively and the whole scenario of food production will
turn worse in the near future (Kamanga and Mndala 2019; Rafique et al. 2020).
There is a huge gap between food productivity, demand, and supply (Grafton et al.
2015; Müller et al. 2020). Therefore, the most serious challenge at present is to refine
the scientific research as well as administrative strategies, so as to feed the every-
minute increasing population in future (Conceição et al. 2016; Martin-Shields and
Stojetz 2019; Tyagi 2020). Additionally, the focus must be given on enhancing the
already declined soil fertility as the soil provides habitat, nutrients, and beneficial
microbes, which is required for proper growth and development of plants (Shahid
et al. 2019).
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In order to resolve the issue on food security in a best possible manner, it is highly
important to understand the responses as well as adjustments that occur during
averting stress-triggered alterations (Pecinka and Mittelsten Scheid 2012; Goswami
et al. 2020). As an effort, various groups of researchers are keenly focusing on
understanding the mechanism through various newly developed tools and
techniques (Anamika et al. 2019; Shahbazy et al. 2020). These efforts have resulted
in generating knowledge regarding the “changes and adjustments” and their
associated mechanisms up to an extent (Gilliham et al. 2017; Vakilian 2020).
Furthermore, many crossbred and transgenic plants have also been developed in
the last 15 years (Hasanuzzamam et al. 2018; Dixit et al. 2020). However, time,
efforts, and environment suitability are primary factors that are considered majorly.
Hence, there is a need to look for reliable environment-friendly methods for sustain-
able agriculture (Kawalekar 2013; Ahirwar et al. 2020).

In this context, one of the most reliable practices has been to supply adequate
mineral nutrition coupled with maintenance of sound soil-health (Pandey et al. 2015;
Fresno et al. 2018; Lu et al. 2020). This method assures both environmental and
economic benefits and crop plants can be supplemented with required components
directly in the form of fertilizers and its effect can be observed at morphology,
physiology, biochemistry, and metabolome levels (Ma 2004; Marschner 2012;
Liang et al. 2015; Mu et al. 2020). Till date, few elements have been studied for
promoting a range of tolerance mechanisms for alleviating various stresses in several
important agricultural and horticultural crops (Kaur et al. 2016; Chauhan et al. 2017;
Salgado et al. 2020). One such studied element is Si, a “multi-talented” quasi-
essential element that has been established as a stimulant to trigger growth and
development in stressed plants at an optimal concentration (Malhotra and Kapoor
2019; Ahanger et al. 2020; Singh et al. 2020). This is because the Si is being directly
supplemented by the small and marginal farmers in their fields since 1840s in the
form of non-corrosive, non-pollutive, regular fertilizer for economic as well as
ecological benefits (von Liebig 1843). Now, due to its positive effects, the status
of Si has shifted from “beneficial but non-essential” to “quasi-essential” by the
International Plant Nutrition Institute (IPNI) (http://www.ipni.net/). Furthermore,
in 2013, the Association of American Plant Food Control Officials (AAPFCO)
also officially announced Si as a plant “beneficial substance” (http://www.ipni.net/
publication/bettercrops.nsf/0/26A7E8FDB7F2FBBF85257C28007A07BB/$FILE/
BC%202013-4%20p14.pdf). Besides, the beneficial effects of Si for imparting stress
tolerance is also well documented in the form of Si nanoparticles and Si priming
(Abdel Latef and Tran 2016; Rastogi et al. 2019; Parveen et al. 2019; Siddiqui et al.
2020). This chapter focuses on highlighting the significance of Si as a growth
regulator and anti-stress agent.
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2.2 Silicon: Occurrence and Sources

In accordance with multiple sources, the soils inherit their element composition
primarily from parent rocks that were subjected to geochemical as well as
pedochemical weathering processes primarily. As per the data evaluated, silicon is
the second most abundant element in the earth’s crust in terms of quantity after
oxygen, i.e. 27.7%. (Mitra 2015; Malhotra and Kapoor 2019). In the earth’s crust, Si
has been deposited in the form of quartz (SiO2), sand, and sandstone (Rédei 2008;
Malhotra and Kapoor 2019). Within the soil, it comprises even up to 70% of soil
mass in the form of monosilicic acid, polysilicic acid as well as complexes with
organic and inorganic compounds such as aluminum oxides and hydroxides (Rao
and Susmitha 2017). Out of all, the most important form is plant-available form,
i.e. silicic acid (H4SiO4), a non-charged plant-available molecule that considerably
ranges between 10 ppm to over 100 ppm (Epstein 2009; Liang et al. 2015; Zargar
et al. 2019). During the crop use, the polysilicic acid, and inorganic and organic
complexes act as important sinks/sources that replenish the monosilicic acid (Rao
and Susmitha 2017). In soil solution, the concentration of Si is equivalent even up to
many macroelements such as potassium (K), calcium (Ca), and phosphorus
(P) (Epstein 1994; Malhotra and Kapoor 2019). Silicon solubility in the soil is
affected by a variety of factors, which include irrigation water, the particle size of
the silicon fertilizer employed, critical soil characteristics (moisture, temperature,
and pH), presence of organic complexes concentration of iron (Fe), phosphate (P),
and aluminum (Al) ions as well as dissolution reactions occurring (Gérard et al.
2002; Tavakkoli et al. 2011; Rao and Susmitha 2017; Zargar et al. 2019). As per one
report, the range of silicon present in the soil around the globe lies within 50–400 g
silicon/kg of soil (Matichenkov and Calvert 2002; Haynes 2019). The silicon present
within soil improves water absorption capacity, soil physical and chemical
properties as well as maintain other nutrients in plant-available form by creating
silica bridges (Rao and Susmitha 2017; Malhotra and Kapoor 2019; Zargar et al.
2019). Compared to the soil, silicon comprises 0.0001% and 0.026% in terms of
quantity in oceans and humans, respectively (http://www.elementalmatter.info/ele
ment-silicon.htm).

On the other hand, the availability of Si in plants is low but ranges from 0.1 to
10% of dry weight (Hodson et al. 2005; Balakhnina and Borkowska 2013; Malhotra
and Kapoor 2019). In here, the most important fact to be noted is that concentration
of Si ranges distinctly within and among plant species which depend directly on the
capability of the roots to uptake Si (Hodson et al. 2005; Ma and Yamaji 2006;
Malhotra and Kapoor 2019). Plants have been categorized into three major classes
such as accumulators, intermediate, and excluders based on the Si accumulation in
their tissues (Mitani and Ma 2005; Marschner 2012; Luyckx et al. 2017). The best
examples of accumulators are members of Equisetales, Cyperales, and Poales
(especially rice, sugarcane, and maize) with a value of more than 1 for silicon/
calcium ratio. On the contrary, tomato and soybean are examples of Si excluders that
show the value of <0.5 for silicon/calcium. However, nettle and snapdragon are
examples of the intermediate type (Mitani and Ma 2005; Luyckx et al. 2017;
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Malhotra and Kapoor 2019). Within angiosperms, the monocots tend to accumulate
more silicon in their aerial parts due to the presence of silicon transporters (Henriet
et al. 2006; Malhotra and Kapoor 2019). For a long time, it is a noted fact that the
silicon levels in the soil is enhanced by fertilization. The agricultural wastes such as
silicate slag, bagasse furnace ash, lignite fly ash, and rice straw are considered as rich
silicon sources that are being employed mostly. The other sources of silicon
employed these days include wollastonite, calcium silicate, potassium silicate,
garnet, silica gel, diopside, calcium silicate hydrate, etc. (Kalra et al. 2003; Daniel
Maxim et al. 2008; Malhotra and Kapoor 2019; Zargar et al. 2019).

2.3 Silicon: Uptake, Transportation, and Accumulation

The majority of the investigations regarding silicon uptake and transportation has
been focused more on monocots; however, the speed for enhancing knowledge
regarding dicots has also increased in the last 5 years. As per literature, Si is absorbed
by lateral roots actively in the form of neutral, monomeric monosilicic acid, Si(OH)4,
whose concentration ranges between 0.1–0.6 mM (Knight and Kinrade 2001; Rao
and Susmitha 2017). The ability of monosilicic acid to cross the plasma membrane
of lateral root depends highly on the physiological pH and water (Raven 2001). The
vehicle for its uptake and distribution is a simple molecule, i.e. water; however, both
molecules vary in size (Exley et al. 2020). Therefore, the pace of both water uptake
and Si adsorption has been classified into three possible situations, namely (1) active
(Si-uptake> water uptake), (2) passive (where Si-uptake¼ water uptake), and lastly
(3) rejective (Si-uptake<water uptake) in higher plants (Cornelis et al. 2011; Zargar
et al. 2019). Ostensibly, upon the entry with water via the symplastic route, silicic
acid encounters a myriad of different enumerable water channels that control the
movement of silicic acid further. For example, in rice, a high silicon accumulating
plant, the silicon transportation is highly governed by majorly three low silicon rice
genes, i.e. OsLSi1, OsLSi2, and OsLSi6 (Ma et al. 2006, 2007; Yamaji and Ma
2009; Dhakate et al. 2019). Among these genes, LSi1 (influx transport activity) and
LSi2 (efflux transport activity) have been shown to be involved in silicon transport
from root cells to the apoplast (Ma and Yamaji 2008; Rao and Susmitha 2017)
(Fig. 2.1).

OsLSi1 gene belonging to the NIP-III (nodulin26-like intrinsic proteins) subfam-
ily of aquaporin is primarily found to be constitutively located in the basal zones of
roots. Within this, the OsLSi1 gene is found to be localized exactly on the plasma
membrane of the distal side of both exodermis and endodermis cells where casparian
stripes are located (Yamaji and Ma 2007; Ma and Yamaji 2008; Dhakate et al. 2019).
On the other hand, expression patterns and cellular localization studies have revealed
that the OsLSi2 gene (efflux Si-transporter) is localized on the proximal side of the
same cells (Yamaji and Ma 2009; Yamaji and Ma 2011; Dhakate et al. 2019). This
rice OsLsi2 gene is found to be responsible for reloading and diffusing Si into the
vascular bundles (Yamaji and Ma 2011; Ma and Yamaji 2015). After reaching the
apoplast, monosilicic acid in xylem sap needs to be unloaded so as to prevent the Si
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deposition within xylem. In this regard, OsLSi6 gene plays role in transferring Si
from the large vascular bundles to the panicles (Yamaji and Ma 2009; Feng et al.
2011; Rao and Susmitha 2017). The knock-out and localization studies revealed that
the OsLsi6 gets localized on the adaxial side of xylem parenchyma cells in the leaf
sheaths as well as leaf blades (Feng et al. 2011; Ma and Yamaji 2015). Therefore, it
is important to keep a note that both apoplastic and symplastic route operates for
silicic acid (Exley et al. 2020). In addition to the rice, homologs of Si-transporters
have also been observed in other plant species. The list includes barley (Mitani et al.
2009a, b; Chiba et al. 2009), maize (Mitani et al. 2009a, b), crookneck pumpkin
(Mitani et al. 2011), wheat (Montpetit et al. 2012), soybean (Deshmukh et al. 2013),
field horsetail (Vivancos et al. 2016), cucumber (Sun et al. 2017, 2018), tobacco
(Zellner et al. 2019), poinsettia (Hu et al. 2020), and tomato (Sun et al. 2020). The
possible reason for the identification of Si-transporters lies in the ability to mine the
well-annotated plant genome sequences available for more than 100 species.

Upon successful transport, the silicon gets deposited under the cuticle and in
intercellular spaces or vascular bundles (Heckman 2013). Beneath the cuticle, the
silicon gets deposited as a cuticle–silicon double layer (silicic acid) (Rao and
Susmitha 2017; Rao et al. 2017). Furthermore, with the age, the concentration of
monosilicic acid increases which results in polymerization to form silica gel (SiO2.
nH2O) through a non-enzymatic reaction (Mitani and Jian 2005; Zargar et al. 2019).
In addition, amorphous silica particles polymerize in plant cells to form phytoliths
without incurring any energy as soon as its concentration exceeds a critical mark of
2 mM. These phytoliths are found as silica cells in vascular bundles and silica bodies
in bulliform cells, and fusoid cells (Rao and Susmitha 2017; Nawaz et al. 2019).

Fig. 2.1 Diagrammatic representation of silicon uptake, transportation, and accumulation
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2.4 Silicon and Abiotic Stresses

As per the literature, the important roles attributed to Si in plants include elevation in
growth, crop yield, and quality, photosynthesis, nitrogen (N2) fixation as well as
protection against abiotic and biotic stresses (Balakhnina and Borkowska 2013;
Steiner et al. 2018; Malhotra and Kapoor 2019; Zargar et al. 2019; Ahanger et al.
2020; Singh et al. 2020). Interestingly, the abiotic stresses are the first and foremost
reason that besets the annual productivity rate. Abiotic stresses include salinity,
extreme temperature, UV-B radiation, heavy metal/metalloid toxicity, mechanical
injury, nutrient deficit, nutrient toxicity, and drought (Sharma et al. 2020). All these
stresses result in oxidative, osmotic as well as an ionic inconvenience in plants that
ultimately culminate into reactive oxygen species (ROS) accumulation, altered
metabolic and physiological processes (Sharma et al. 2020). This ultimately results
in hampered growth and net productivity which affect the farmer fields, farmer
pockets, and overall economy (Sharma et al. 2020).

A plethora of lab-scale, greenhouse-level, and field experiments have been
conducted that endorses the numerous benefits of silicon on the plants growing
under adverse conditions (Soundararajan et al. 2014; Manivannan et al. 2016;
Luyckx et al. 2017; Liu et al. 2019; Malhotra and Kapoor 2019; Zargar et al.
2019; Ahanger et al. 2020). It has also been deduced that it is not single but an
amalgamation of key mechanisms that alleviate stresses which include: (1) attune-
ment of antioxidant systems and osmolytes for harmful ROS detoxification,
(2) immobilization or complex formation/co-precipitation or compartmentation of
noxious metal ions and enhanced uptake of nutrients, (3) modifying water as well as
nutrients uptake processes, (4) regulating expression of various genes, phytohor-
mone biosynthesis, maintenance of osmotic potential, photosynthetic apparatus, and
gaseous exchange, and (5) formation of Si–cuticle double layer (Tripathi et al. 2016;
Etesami and Jeong 2018; Etesami and Jeong 2020; Souri et al. 2020) (Fig. 2.2).

2.4.1 Drought

Drought imposes a grave threat to plant population on earth as the morphological as
well as physiological functions of a plant get affected (Kusaka et al. 2005; Shao et al.
2008). Drought stress can be injurious to physiological and metabolic events such as
turf quality, growth rate, root/shoot ratio, leaf carbon/nitrogen content, photosynthe-
sis, transpiration, and stomatal conductance (Saud et al. 2014). Application of Si
ameliorates stressful drought conditions by elevating photosynthesis, total leaf water
content, chlorophyll content, and turf rate by 44%, 33%, 42%, and 44%, respectively
(Saud et al. 2014). It often results in disrupted water supply via the xylem, which
consequently results in lost turgor pressure and reduced stomatal closure (Taiz and
Zeiger 2006). It also convulses the photosynthetic framework via its association with
UV or visible rays (Garcia-Plazaola and Becerril 2000). The effectiveness of Si in
combating drought stress has been noted in many plants; for example, exogenous
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supply of Si regulate, leaf structure, water potential, erectness, and structure of
xylem vessels (Gong et al. 2005; Hattori et al. 2005a, b).

An interesting study was carried out to comprehend the differences between
drought-tolerant and drought-sensitive tomato lines in response to exogenous appli-
cation of Si. Elevation in amino acid biosynthesis is noted in drought-tolerant tomato
lines due to Si-induced increase in sulfur (S) and ammonia (NH4+) levels. Whereas
in drought-sensitive tomato lines, the application of Si results in accumulation of
gamma-aminobutyric acid (GABA) proline and, which is key to the maintenance of
cellular ionic redox equilibrium (Ali et al. 2018). Brassica napus faces extreme
oxidative stress. Silicon application provides defense against antioxidant enzymes
such as glyoxalase, ascorbate-glutathione, proline, and so on (Hasanuzzamam et al.
2018).

The deposition of exogenously supplemented Si on leaf epidermis helps to
generate a higher water potential under scarce conditions (Lux et al. 2003). Simi-
larly, suberin-containing endodermis also accumulates Si in drought-stressed cereal
cultivars. In Si-treated plants, the water uptake is higher and faster from the rhizo-
sphere to roots (Hattori et al. 2003, 2005a, b). Si strengthens plant’s tolerance against
water stress by elevating root silicification, lignification, and suberization (Guerriero
et al. 2016). During water scarcity, Si forms a complex with hemicellulose (He et al.
2013; Ma et al. 2015). Si also enhances Casparian strip development leading to an
increase in the level of suberization in roots of rice plants (Fleck et al. 2015).

Fig. 2.2 Key mechanisms involved in the ameliorative effect of silicon on plants facing various
abiotic stresses
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Moreover, Si-supplementation also enhances transpirational bypassing of toxic ions
from symplast streamflow (Coskun et al. 2016). This theory allows to propose that
the movement of Na+ and Cl� is limited in rice plants by suberized exodermis and
endodermis of roots, thereby bypassing the step of xylem loading via symplast
(Coskun et al. 2016). Much like in salinity stress, foliar supplementation of Si brings
about an increase in the expression of different aquaporins (AQPs) located in the
membranes of root cells.

2.4.2 Salinity Stress

About 20% of global crop production is affected by salinity stress (Hussain et al.
2018). Under salt stress, rice plants display an interesting deviation in the apoplastic
movement of noxious Na+ and Cl�, on exposure to Si (Shi et al. 2013). Si-mediated
amelioration of salt stress has been studied and deciphered at various biochemical
and physiological levels. Starting from its impact on roots, the primary site of ion
uptake to serial tissue like leaves wherein salt stress has a drastic effect on several
proteins and enzymes related to photosynthesis and stomatal opening (Liu et al.
2019; Gogna and Bhatla 2019, 2020). Silicon protects photosynthetic machinery of
plants under stress due to persisting soil salinity by preventing pigment degradation
and regulation of several photosystems and chloroplast-related proteins (Muneer
et al. 2014; Soundararajan et al. 2017). Exogenous application of Si modulates
enzymatic antioxidant machinery constituting enzymes like catalase, superoxide
dismutase, and guaiacol/ascorbate peroxidase (Zhu et al. 2004; Manivannan et al.
2015). The primary action undertaken by a stressed plant to overcome salinity is the
restriction of Na+/Cl� uptake via roots (Liu et al. 2019; Gogna et al. 2020). Exoge-
nously supplied Si not only limits the uptake of toxic ions by plant roots but also
regulates several other essential biochemical aspects like photosynthesis, mainte-
nance of redox equilibrium, and effective distribution of nutrients to the plant (Liu
et al. 2019). Similar to Ca2+, the application of Si not only restricts excess uptake of
Na+ but also mediates accumulation of K+, thereby impacting tolerance against
salinity. This study has been extensively carried out across sugarcane, aloe, zinnia,
and rose (Ashraf et al. 2010; Manivannan et al. 2015; Garg and Bhandari 2016;
Soundararajan et al. 2018). The foremost role of Si in alleviating salt stress is its
possible interaction with noxious ions responsible for oxidative stress and disrupted
ionic homeostasis. K+ is the most essential element necessary for plant growth,
development, and yield. However, uptake of Na+ under salt stress often results in K+

deficiency (Liebersbach et al. 2004). Thus, the addition of Si not only negates the
competition between Na+ and K+ but also alleviates K+ distribution in salt-stressed
wheat and blueberry (Tuna et al. 2008).

Plant root aquaporins are involved in the facilitation of water and mineral
nutrition transportation (Liu et al. 2019). NIP family of AQPs has been found to
play a significant role in the uptake and transport of Si and other metalloids (Wu and
Beitz 2007). Studies pertaining to rice plants have revealed that efflux and influx of
Si are carried out via the NIP family of AQPs (Ma et al. 2006). Apart from NIPs,
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PIPs (plasma membrane intrinsic proteins) also regulate Si levels in the cell under
abiotic stress conditions in roots of Sorghum plants (Liu et al. 2014, 2015). Salinity
stress often disrupts the hydraulic conductance of roots. Recent studies on sorghum
reveal that hydraulic conductance can be restored by exogenous application of Si
(Liu et al. 2014, 2015). Morphologically, Si application revived suppressed lateral
root growth and enhances the mechanical strength of the primary root (Liu et al.
2019).

Some other major consequences of salinity stress include reduction in photosyn-
thetic efficiency, diminished stomatal conductance and level of transpiration, and
lastly, damaged photosynthetic apparatus (photosystem I and II) (Hetherington and
Woodward 2003; Gupta and Huang 2014; Yang et al. 2015). Recent studies in wide
varieties of plants such as sorghum, maize, tomato, tobacco, and pumpkin have
shown that application of Si not only improves stomatal conductance in plants but
also elevates the capacity of leaves to fix CO2 (Parveen and Ashraf 2010; Nabati
et al. 2013; Hajiboland and Cheraghvareh 2014; Hu et al. 2014; Li et al. 2015).
Stomatal malfunction under salt stress conditions leads to a loss in levels of reduced
CO2 and disrupts the process of gaseous exchange. Thus, exogenously applied Si
repairs stomatal conductance (Hetherington andWoodward 2003; Abbas et al. 2015;
Parveen and Ashraf 2010). Similarly, in salt-stressed leaves of Capsicum annuum,
stomata remained open when supplemented with exogenous Si (Manivannan et al.
2016). Recent reports also show that salinity is deleterious to photosystem I and II of
tomato plants. PS I and II can be revived by foliar application of Si (Mateos-Naranjo
et al. 2015). Similarly, Si application also improves pigment quality and efficiency in
PS II of C4 grass, Spartina densiflora under salt stress (Gorbe and Calatayd 2012;
Oukarroum et al. 2015; Mateos-Naranjo et al. 2015). Si exhibits the same mitigating
effects as 24-Epibrassinolide on Brassica juncea under salt stress (Siddiqui et al.
2018). Si (Na2SiO3) has also been noted to carry out biofortification and reduce
water loss in salt-tolerant and -sensitive cultivars of rice. The impact of Si application
has been found to vary with varying sensitivities of salt (Das et al. 2018).

2.4.3 Heavy Metal Stress

Silicon has the ability to restrict and ameliorate heavy metal toxicity by several
mechanisms. It increases the rate of chelation in cells via stimulation of plant root
exudates which play a role in limiting uptake of heavy metals (Adrees et al. 2015). It
can quench the free heavy metallic ions from its apoplastic region which results in
reduced translocation (Adrees et al. 2015). Biosilicification is another silicon-
mediated tolerance mechanism wherein silicic acid undergoes polymerization in
the apoplast and a barrier of amorphous Si is formed which prevents penetration
of toxic heavy metals such as aluminum (Al), manganese (Mn), cadmium (Cd), zinc
(Zn), arsenic (As), and sodium (Na) into symplast or water transportation stream
(Ma et al. 2015; Exley 2015; Guerriero et al. 2016). Another mechanism of
counteracting heavy metals is via lignification. Lignified cell walls are good metal
binders and therefore prevent metal movement from roots to plant aerial tissue
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(Ma and Yamaji 2006; Ye et al. 2012). Silicon holds the unique ability to form
complexes with metal ions in the cell wall and eventually, forming a precipitate of
metal ions as co-factors (Pontigo et al. 2017). Silicon can react to form silicates and
oxides with heavy metals (Exley 2015) keeping the toxicants out of any plant
metabolic process (Exley 2015). Application of silicon to the soil is beneficial
since it balances the disrupted soil and immobilizes heavy metals like Cd making
them unavailable to plants (Wu et al. 2013).

2.4.3.1 Cd Toxicity
Presence of Cd in soil inhibits root growth of rice plants. The toxicity can be
identified by the appearance of black spots in the cortex and pericycle of roots
(Kim et al. 2014). In wheat and maize crops, it affects seed germination, nutrient
content, and lowers shoot and root length. (Ma et al. 2015). In barley, photosynthetic
apparatus, pigments, and lipids are affected by Cd-induced toxicity (Hodson et al.
2005). Heavy metal stress studies have revealed that silicon has the ability to
decrease cadmium uptake and further limits its translocation to plant aerial tissue
like shoots. Cd and Mn are often precipitated on the epidermis of the shoot or leaf
blade by forming amorphous silica (Ma et al. 2015). Cd is often compartmentalized
in root cell walls by Si, leading to its lowered accumulation in shoots of rice (Bhat
et al. 2019). In maize plants, Cd forms colloidal silicon embedded in the cell walls to
prevent its uptake or transport to the aerial parts (Bhat et al. 2019). Similarly, the
application of Si to Poa annua seedlings imparts tolerance to cadmium toxicity
(Zama et al. 2018).

2.4.3.2 As Toxicity
Arsenic toxicity is majorly seen in rice and spinach plants. In rice plants, it is
overcome by competition with other heavy metal ions at the point of entry/site of
uptake in roots. Dry biomass of leaves is regulated positively upon the application of
Si to spinach plants. A subsequent increase in levels of glutaredoxin (GRX) is also
noted (Dubey et al. 2018). Si-biochars are components composed by coupling
bamboo with Si. The element has been used to reduce bioaccumulation of arsenic
in spinach leaves by ~38% (Li et al. 2017) (Table 2.1).

2.4.3.3 Al Toxicity
Recent studies have revealed that silicon has the ability to regulate malic and formic
acid formation in plants. The formation of these cellular byproducts is helpful in
regulating uptake of aluminum (Pontigo et al. 2017). Phenolic compounds of maize
have also been investigated in relation to their ability to reduce Al-uptake (Adrees
et al. 2015). Si often complexes with Al to form Si–Al or aluminum silicate localized
in the plant cell wall, primarily in epidermis and hypodermis. Complex formation
makes toxic Al unavailable to the plants (Horst et al. 2010; Liu et al. 2013). Another
mechanism to combat Al toxicity is to form hydroaluminosilicates in root apoplast,
thereby, reducing mobility of noxious Al (Rogalla and Romheld 2002).
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2.4.4 Thermal Stress

Thermal stress is often caused by extreme fluctuations in temperature such as heat,
chilling, and freezing stress. High temperature or heat stress causes the burning of
aerial plant tissues (mostly, leaves), scorched twigs, senescence, and discoloration of
leaves (Fahad et al. 2017). A rise in temperature can cause a loss in germination
vigor of seeds and therefore poor growth and yield. They may also lead to reduced
flower and seed-set in sorghum and several cereal crops (Fahad et al. 2017). Similar
observations have also been made in maize and sugarcane. Heat stress leads to
reduction in oil, protein, and starch contents of oilseed crops. Several physiological
and biochemical processes are damaged on exposure to heat stress leading to water
scarcity, reduction in leaf tissue, reduced root conductance, and increased transpira-
tion (Huang et al. 2012). It also impacts nutrient metabolism in plants. Nitrate
reductase activity is drastically reduced under temperature stress (Klimenko et al.
2006). As observed in drought and salt stress, heat stress also visibly affects
photosynthesis and associated apparatus. Low CO2 availability, stomatal closure,
reduced moisture, and changes in photosynthetic pigments are noted under heat
stress (Fahad et al. 2017). Heat stress also impairs photosystem II along with the
regeneration capacity of RuBP (Wise et al. 2004).

Foliar application of Si is an effective method for protecting rice and grapevine
plants growing in chilling and freezing growth conditions, respectively (Habibi
2015; Azeem et al. 2016). Temperature and salinity stress modulate catalase activity
in wheat and Salvia, which is effectively countered by the application of exogenous

Table 2.1 Si-mediated mitigation of major abiotic stress responses in different plants

Stress Plant species Effect of stress
Effect of Silicon
supplementation References

Salinity Sorghum bicolor Inhibits uptake of
noxious ions,
photosynthesis as
well as stomata
opening

Modulation of
catalase, peroxidase,
SOD; restricts ion
uptake via roots

Soundararajan
et al. (2017), Liu
et al. (2019)

Drought Brassica napus,
Solanum
lycopersicum

Oxidative stress,
Decreased
photosynthesis

Accumulation of
proline, GABA and
ascorbate-
glutathione cycle
members

Ali et al. (2018),
Hasanuzzamam
et al. (2018)

Heavy
metals

Zea mays, Oryza
sativa, Spinacia
oleracea,
Bambusa
vulgaris

Reduced toxic ion
uptake and
accumulation

Lignification,
suberization

Li et al. (2017),
Dubey et al.
(2018), Bhat
et al. (2019)

Cold
stress

Hordeum
vulgare

Loss of membrane
integrity

Accumation of
soluble
carbohydrates and
other osmolytes

Joudmand and
Hajibolan
(2019)
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silicon (Liang et al. 2003). Electrolyte leakage is an important indicator of thermal
stress in plants. Si-supplementation causes reduced electrolyte leakage due to high
temperature (Ma et al. 2015). Thus, Si may have a role in generating thermal stability
in cell membranes although further investigations need to be carried out to decipher
the mechanisms and pathways involved.

In congruence with heat stress, chilling temperature conditions limit the growth
and development of plants drastically, by diminishing root proliferation and early
plant growth (Moradtalab et al. 2018). Cold stress and tolerance studies have been
extensively studied using maize as a model plant. Chilling stress results in chlorosis,
necrosis of leaf tissue, and inhibits root and shoot extension growth (Imran et al.
2013). These morphological deviations are often accompanied by physiological
stress responses such as elevated production of ROS (Pei et al. 2010). Mechanisms
involved in mitigating chilling stress still remain unexplored. Recent studies reveal
that cold stress amelioration is often carried out by Zn, Mn, and Si, commonly
known as the “cold stress protectants” (Bradáčová et al. 2016). Si helps to translocate
micronutrients of seed reserved to seedlings under cold stress (Moradtalab et al.
2018). Silicon has the ability to prevent leaching due to cold stress by maintaining
Zn/Mn reserves in the seed, which also act as cold stress suppressants. The most
significant role of Si in mitigating cold stress is the restoration of root growth in
maize plants. A similar role of Si under cold stress has been noted in soybean plants
as well (Pascual et al. 2016).

Recent studies have shed some light on the existence of the ICE–CBF–COR
pathway, which plays a key role in imparting cold stress acclimatization (Ritonga
and Chen 2020). Activation of C-binding repeats (CBF) via cold induction by the
inducer CBF-expression (ICE) results in the activation of cold responsive genes.
Activation and regulation of the ICE–CBF–COR pathway result in the expression of
several downstream genes, necessary for imparting tolerance against cold and
chilling environmental conditions (Ritonga and Chen 2020). Low-temperature stress
can often be categorized into chilling stress (<20 � C) and freezing stress (<0 � C)
(Mickelbart et al. 2015; Guo et al. 2017; Liu and Zhou 2018; Shi et al. 2018). Crops
such as tomato, soybean, cotton, corn, rice, and potato are intolerant to cold
environmental conditions (both chilling and freezing stress). However, plants like
oats, barley, rye, and wheat show good adaptability to cold stress (Zhang et al. 2011,
2017). Under low-temperature stress conditions, ICE mediated regulation of
Gibberellic acid (GA) level is essential for cold tolerance. Plants facing cold stress
have to maintain the stability of cell membranes and structural integrity for survival
(Chen et al. 2018). Exposure to freezing conditions can often lead to the formation of
ice nucleators and crystals in plant cell apoplast which ultimately results in dehydra-
tion, electrolyte leakage, and membrane disintegration (Puhakainen 2004). Under
extreme situations, these ice crystals can puncture the cell leading to plants death
(Demidchik et al. 2014; Sun et al. 2019). The most commonly observed mechanism
for studying cold temperature tolerance is the accumulation of cryoprotective
polypeptides, sugars, and osmolytes (Khan et al. 2015).

Furthermore, application of silicon to leaves of barley under cold (chilling as well
as freezing stress) leads to an increase in levels of antioxidant enzymes, soluble
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carbohydrates, and osmolytes, especially in leaf apoplasm (Joudmand and Hajibolan
2019) (Table 2.1). Being the first site to be exposed to the cues of low temperature,
overwintering plants often accumulate anti-freeze amino acids and compatible
sugars in their apoplasm (Liang et al. 2015).

2.4.5 Nutrition Stress

Since a long time, there is a common observation that tremendous use of nitrogen
fertilizers is being practiced by farmers for the multiple benefits, however, this also
results in adverse effects such as enhanced lodging coupled with susceptibility to
both pests and diseases (Ma 2004; Thomidis et al. 2016; Khan et al. 2018; Hosseini
et al. 2015). There are many reports in which silicon has been used to minimize this
offside issues as the silicate crystals provide mechanical strength as well as hinder
insect feeding and inhibit penetration of fungal germ tube on the plant surface
(Elsherbiny and Taher 2018; Singh et al. 2020). Besides, there are many reports
which endorse the enhanced uptake and assimilation of an important nutrient,
i.e. nitrogen in the presence of silicon (Pati et al. 2016; Malav Jugal and Ramani
2017; Patil et al. 2018; Haddad et al. 2018; Laîné Haddad et al. 2019; Gou et al.
2020; Raj et al. 2020). In addition, the use of silicon has also resulted in improved
nodulation, better N2 fixation, increased N use efficiency, and stimulated amino acid
remobilization (Detmann et al. 2012; Steiner et al. 2018; Kurdali et al. 2019;
Mohanty et al. 2020). Furthermore, excessive concentration of nitrogen is also
toxic as it negatively affects plant and the quality of their products (Neilsen et al.
2008; Hilbert et al. 2015; Abrol et al. 2017). Si also mitigates excessive nitrogen
stress (Singh et al. 2006; Liang et al. 2015; Campos et al. 2016; Barreto et al. 2016,
2017; Viciedo et al. 2019, 2020).

Next to nitrogen, phosphorus is another essential mineral element required for
plant vigor in higher amount but the contrasting point is low availability of plant-
available phosphorus in soil (Achary et al. 2017; Chu et al. 2020). In this regard, the
application of soluble silicon fertilizers has resulted in an increased amount of
bioavailable phosphorus as well as water-soluble phosphorus concentration
(Owino-Gerroh and Gascho 2005; Singh et al. 2006; Liang et al. 2015; Tripathi
et al. 2016; Agostinho et al. 2017; Zia et al. 2017; Kostic et al. 2017; Rezakhani et al.
2019; Zhang et al. 2019; Liao et al. 2020). The mechanism operating for how the
silicon influence phosphorus uptake in plants was solved before the onset of the
twenty-first century (Etesami and Jeong 2018, 2020).

In addition, potassium is also one of the major macronutrients that play important
role in plant’s growth, development, and metabolism as well as even range up to
2–10% of the dry mass (Cruz et al. 2019; Etesami and Jeong 2020). Silicon
application has been also reported to alleviate the K-deficiency stress in stressed
plants by modifying K-availability in both plants as well as soil (Mali and Aery
2008; Miao et al. 2010; Chen et al. 2016; Cuong et al. 2017). Sulfur-deficient barley
crops were alleviated by supplementation of Si which helps regulate the action of
ABA metabolism-related genes (Maillard et al. 2018). Additionally, application of
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silicon has been also found to support the plant in nutrient deficiency stress
conditions as well as toxicity; for example, calcium (Mali and Aery 2008; Etesami
and Jeong 2018; Dong et al. 2018; do Nascimento et al. 2020), magnesium (Hosseini
et al. 2019; do Nascimento et al. 2020), boron (Savić and Marjanović-Jeromela
2013; Liu et al. 2017; Metwally et al. 2018; Pereira de Souza Junior et al. 2019;
Oliveira et al. 2020), iron (You-Qiang et al. 2012; Pavlovic et al. 2013; Bityutskii
et al. 2014; Patil et al. 2018; do Nascimento et al. 2020; dos Santos et al. 2020),
manganese (Dragišić Maksimović et al. 2007; Patil et al. 2018; de Oliveira et al.
2019; do Nascimento et al. 2020), zinc (Gu et al. 2012; Bityutskii et al. 2014;
Hernandez-Apaolaza 2014; Pascual et al. 2016; do Nascimento et al. 2020; Raj
et al. 2020), copper (Frantz et al. 2011; Patil et al. 2018; Raj et al. 2020; El-Beltagi
et al. 2020), and sulfur (Maillard et al. 2018; Réthoré et al. 2020). The interaction of
silicon with the above-mentioned nutrient elements has not been explored exten-
sively and further investigation in this direction is highly recommended.

2.4.6 UV-B Radiation Stress

Apart from the above-mentioned stresses, UV-B stress is considered as harmful
stress for both plants and animals including humans (Jordan 2002; Yin and Ulm
2017; Chakraborty et al. 2017). The reason lies in its ability to influence biochemis-
try, physiology, and genetic changes in plants (Jordan 2002; Tripathi et al. 2017;
Etesami and Jeong 2018; Azarafshan et al. 2020). The exogenous application of
silicon to the plants has also resulted in alleviating the effects of UV-B stress on
many plants (Fang et al. 2011; Yao et al. 2011; Schaller et al. 2013; Tripathi et al.
2017). All these studies together in combination have revealed that the exogenous
application of silicon results in the formation of a cuticle–Si double layer, which acts
as a glass layer and reduces the further transmission of UV radiation from the
epidermis (Gatto et al. 1998; Currie and Perry 2007; Etesami and Jeong 2018). In
addition, the silicon application induces resistance in plants by modifying ROS
consumption (Shen et al. 2010), levels of UV absorbing compounds (Liang et al.
2015), and antioxidative enzyme activities (Fang et al. 2019).

2.4.7 Wounding Stress

One of the interesting stresses among the variety of non-biological stresses is
wounding stress that results in physical injury in the plants (Malhotra and Kapoor
2019). This arises actually from strong winds or water and due to the attack by
herbivores (insects, birds, and nematodes) (Malhotra and Kapoor 2019; Singh et al.
2020; Souri et al. 2020). Primarily, these physical injuries increase the vulnerability
to pathogenic attack by creating openings in plant organs as well as initiate oxidative
stress at the secondary level that ultimately leads to death in serious cases via cell
apoptosis (Malhotra and Kapoor 2019). In order to cope-up with wounding stress,
the silicon treatment results in modulation in the levels of antioxidant enzymes (such
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as phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase, and catalase),
malondialdehyde, hormones, and changes in gene expression pattern (Kim et al.
2011, 2014, 2016; Hajiboland et al. 2017; Hall et al. 2019).

2.4.8 High pH Stress

Over the last century, due to the continuous anthropogenic activities and farming,
there has been a paradigm shift in the pH of soil which either results in acidic or
alkaline conditions (Wang et al. 2017; Shen et al. 2019). This pH changes in the pH
of soil affect not only the plant roots but their functionality too. As a result of it,
many modifications are induced frequently in the root and shoot physiology due to
change in the pH of the xylem sap. Even in this regard, exogenous application of
silicon has also resulted in alleviating the effects of pH stress on many plants (Abdel
Latef and Tran 2016; Wang et al. 2017; Liu et al. 2018; Khan et al. 2019; Ju et al.
2020) (Table 2.2).

2.5 Necessity of Silicon in Agriculture

With increasing incidences and severity of climate change, the challenges to the crop
production will also increase in a long way to the future (Mahmoud and Gan 2018;
Tamburino et al. 2020). This will be truly reflected in the form of more and more
cases of diseases, pest attack, salinity, and drought conditions (Bashyal 2018; Rathee
and Dalal 2018; Balamurugan et al. 2019; Shiru et al. 2020). Moreover, the
intensified cum successive cropping has resulted in the elimination of basic cations
from the soil (Jaiyeoba 2003; Xiao et al. 2013; Hao et al. 2019; Macedo et al. 2020).
In addition, the continuous fertilization by the farmers necessitates the liming
programs for maintenance of yields (Tubana et al. 2016; Hao et al. 2019; Xu et al.
2020). In this case, the high liming potential of silicon sources like silicate slags
serves as a good agronomic option to correct soil pH (Tubana et al. 2016; Keeping
et al. 2017; Etesami and Jeong 2018; Haynes 2019). In addition, many silicon and
fertilizers act as a low-cost, good source of some important nutrients in plants such as
Ca2+ and Mg2+ as well as fertilization enhance uptake of N, P, and K (Tubana et al.
2016; Zhao et al. 2020). Furthermore, various silicon sources that are being
employed are actually low-cost byproducts from industries (Chanchal Malhotra
et al. 2016). Even in few cases, many farmers have used straws of wheat and rice
straw along with other small grain crops as a potential Si source (Marxen et al. 2016;
Seleiman et al. 2019). Additionally, there are many reports on a foliar spray of Si
containing solution (Haynes et al. 2013; Rodrigues et al. 2015; Oliveira et al. 2019).
In the recent past, many liquids as well as granulated forms of Si fertilizers have been
also generated due to the advances in the field of nanotechnology (Tubana et al.
2016; Rastogi et al. 2019; Siddiqui et al. 2020). These nano-size scale high-
bioavailability fertilizers easily penetrate and create a thick-silicate layer on the
surfaces of leaves (Chanchal Malhotra et al. 2016; Siddiqui et al. 2020). All these
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factors establish the importance of a common agronomic practice worldwide,
i.e. silicon fertilization. Therefore, owing to the above-described points along with
the benefits of silicon in alleviating both non-biological stresses, it is a point to admit
that silicon is a plant nutritional “non-entity” for mitigating plethora of abiotic
stresses.

2.6 Future Prospects

According to the current status of Si-research, it has been deciphered that there are
multiple unaddressed questions related to many avenues which can be explored in a
long way to the future, including

1. Detailed deduction of the complete “omics network” that operates during both
non-biological and biological stresses in presence of silicon,

2. Deducing the effect of silicon amendments on plants exposed to combinatorial
stresses,

3. Deducing the transport mechanisms that work during foliar uptake of Si in
leaves,

4. Determining the effect of silicon fertilizers on the plant “whole microbiome” as
well as plant–microbe interactions,

5. Effect of Si on non-accumulator plant species for enhancing stress resistance,
6. Understanding the detailed effects of Si on root anatomy around the whole plant

kingdom,
7. Evaluating the economic feasibility of various Si sources,
8. Complete chemical analysis of the products made from slag,
9. Developing a prediction model that correlates the Si-mediated recovery with

carbon accumulated and amino acid metabolism during stresses,
10. Evaluating the complete potential of SiNPs for alleviating abiotic stresses in

farmer fields on large scale, and
11. Quantification of the content of monosilicic acid and polysilicic acid as well as

grain size to develop an optimized system that works well for every crop that is
being cultivated by humans.
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