
Static Analysis for Malware Detection
with Tensorflow and GPU

Jueun Jeon, Juho Kim, Sunyong Jeon, Sungmin Lee, and Young-Sik Jeong

Abstract With the advent ofmalware generation toolkits that automatically generate
malware, anyonewithout a professional skill can easily generatemalware.As a result,
the number of new/modified malware samples is rapidly increasing. The malware
generated in this way attacks vulnerabilities, such as PCs andmobile devices without
security patch, causing damages involving malicious actions, such as personal infor-
mation leakage, theft of authorized certificates, and cryptocurrency mining. To solve
this problem, most security companies use the signature-based malware detection
technique to detect malware, in which the signatures of known malware and files
suspected to be malware are compared before detecting malware. However, the
signature-based malware detection technique has a limitation in that it is not efficient
for detecting new/modified malware which is generated rapidly. Recently, research
is underway to utilize deep learning technology for detecting new/modifiedmalware.
In this study, we propose a SAT scheme that can detect not only known malware but
also new/modified malware more quickly and accurately, thereby reducing malware-
induced damages to PCs and mobile devices. The SAT scheme employs an open
source library called Tensorflow in theGPU environment to learnmalware signatures
and then to statically analyze malware.

Keywords Malware analysis ·Malware detection · Static analysis · Deep
learning · Signature
J. Jeon · J. Kim · S. Jeon · S. Lee · Y.-S. Jeong (B)
Department of Multimedia Engineering, Dongguk University, Seoul, Republic of Korea
e-mail: ysjeong@dongguk.edu

J. Jeon
e-mail: jry02107@dongguk.edu

J. Kim
e-mail: 2015112624@dongguk.edu

S. Jeon
e-mail: sunyongj1004@dongguk.edu

S. Lee
e-mail: bearbear11@dongguk.edu

© Springer Nature Singapore Pte Ltd. 2021
J. J. Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing,
Lecture Notes in Electrical Engineering 715,
https://doi.org/10.1007/978-981-15-9343-7_76

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9343-7_76&domain=pdf
mailto:ysjeong@dongguk.edu
mailto:jry02107@dongguk.edu
mailto:2015112624@dongguk.edu
mailto:sunyongj1004@dongguk.edu
mailto:bearbear11@dongguk.edu
https://doi.org/10.1007/978-981-15-9343-7_76


538 J. Jeon et al.

1 Introduction

About two billion malware attacks occurred in 2018 alone. Since the introduction
of automated malware toolkits, about 340,000 new types of malware are detected
every day. For rapidly growing new/modifiedmalware, the spreadingmethod to other
PCs and mobile devices as well as the symptoms of infected devices are gradually
becoming more complicated and intelligent. As a result, PCs and mobile devices
infected with such malware experience various hacking-related damages, such as
personal and confidential information leakage, cryptocurrency mining, and spam
mailing. In the case of recently detected Vidar malware, it is installed in the device
by taking advantage of the vulnerability of the Internet Explorer browser where
security patch for the vulnerability was not applied, and then infects and spreads the
malware by exploiting normal advertisement services [1–5].

In order to protect the user’s PCs andmobile devices from suchmalware, a variety
of techniques for analyzing malware have been investigated. Malware analyzing
techniques can be divided into the following three types as shown in Fig. 1. First,
the signature-based malware detection technique detects malware by storing signa-
tures of previously detected malware in a database and then comparing them with
signatures of files suspected to be malware. In the heuristics-based malware detec-
tion technique, which is also called behavior-based malware detection technique,
if a certain degree of match is found between specific parts of previously detected
malware and a file suspected to be malware, the file is determined to be malware.
The specification-based malware detection technique is one type of the heuristics-
basedmalware detection technique. The specification-based malware detection tech-
nique is not a method for analyzing the signature of malware, but a method for
detectingmalware by detecting deviations between the program specification and the

Fig. 1 Various techniques for identifying and detecting malware



Static Analysis for Malware Detection with Tensorflow and GPU 539

program behavior. Lastly, the cloud-based malware detection technique is a method
for detecting malware by transferring the file suspected to be malware to a cloud
server to analyze the signatures of the malware within the cloud server, and then
sending the malware detection result to the client. Most security companies rely on
the signature-basedmalware detection technique to detectmalwarewhich attacks and
damages PCs and mobile devices and to analyze and identify malware [1–3, 6, 7].

However, while this signature-based malware detection technique can detect
known malware accurately, its detection result may not be as accurate for
new/modified malware, where part of the malware has been modified or packaged.
To solve this problem, many studies have been conducted to apply deep learning to
the signature-based malware detection technique to detect malware [1, 3–6, 8].

In an effort to keep the alert level high against the threats of both well-known
existing malware and new/modified malware, in this paper, we propose the static
analysis for malware detection with Tensorflow (SAT) scheme, which can detect
malware quickly and thus prevent it from spreading to other PCs and mobile devices.
This SAT scheme employs the Long Short TermMemory (LSTM)model through the
Tensorflow library to perform a static analysis of known malware and new/modified
malware using the signature-basedmalware detection technique [9]. TheSATscheme
proposed in this study is intended to show themost efficient overall performancewith
both the speed and accuracy of malware detection being equally considered.

2 Related Works

In order to detect new/modified malware as well as known malware, various studies
have been conducted to statically analyze malware using deep learning. Static anal-
ysis is defined as a method of analyzing the code and binary file information of
malware without directly executing it. In static analysis, opcodes are mainly used as
the key signatures for detectingmalware. In terms of the opcode, although the opcode
itself is important, the sequence between the opcodes is also considered important.
For this reason, many studies have been conducted to detect malware by utilizing the
LSTM model, in which the learning process is based on the sequence of text strings
[10].

As a method to detect IoTmalware that threatens to compromise IoT devices used
in diverse industries, HaddadPajouh et al. [3] proposed a strategy to build a detection
model by extracting the opcodes from decompiled malware and then having them
learned by the LSTM. To train the detection model, they used an IoT application
data set consisting of 281 malware and 270 non-malware files. In addition, they
constructed three different LSTM models to evaluate the detection models which
had been trained based on the data set of 100 new malware files. They found that
the LSTM model consisting of two hidden layers showed the highest accuracy in
detecting new malware compared to the other LSTM models.

Kang et al. [4] created a vector with 1369 dimensions using the one-hot encoding
method to classify malware files according to their types and features. After reducing



540 J. Jeon et al.

Table 1 Comparison between the SAT scheme and previous studies

Related works Feature Number of
branches
classified

Performance
evaluation factors
considered

Target
environment

A deep recurrent
neural network
based approach
for internet of
things malware
threat hunting

Opcode 2 (Benign,
Malware)

Accuracy ARM based IoT
devices

Long short-term
memory-based
malware
classification
method for
information
security

Opcode, API call 9 (Malware
family)

Accuracy Window

Our proposed
scheme

Opcode, API call 9 (Malware
family)

Execution time,
accuracy

Window

the number of dimensions from 1369 to 300 using CBoW, which is one of the
word2vec technique, they proposed a model that trains an LSTM model consisting
of two hidden layers with 128 dimensions to detect malware. For the training of the
malware detection model, they used the malware data set published by Microsoft
in the Microsoft Malware Classification Challenge (BIG 2015), which is composed
of opcodes and API calls extracted through the static analysis of the file contents
and characteristics of malware [11]. The performance assessment on the opcode-
embedding method of the proposed model led to the conclusion that malware can
be detected more quickly and accurately when CBOW, one of the word2vec models,
was used compared to the one-hot encoding method.

Table 1 shows the comparison between the SAT scheme proposed in this paper
and previous studies.

3 Scheme of SAT

In order to establish amalware detectionmodelwith efficient performance in terms of
the speed and accuracy of detection and classification during the detection and clas-
sification process of malware with various characteristics, in this paper, we propose
the SAT scheme that performs static analysis of malware in the GPU environment
utilizing the Tensorflow library.

The SAT scheme consists of three phases: data processing, pre-processing, and
learning phases, as shown in Fig. 2, where malware learning and detection are
processedbasedon this schematic. In thefirst data processingphase, for the trainingof



Static Analysis for Malware Detection with Tensorflow and GPU 541

Fig. 2 Overall schematic of the SAT scheme for malware detection and classification

malware signatures, knownmalware files are labeled and statically analyzed through
a disassembler to extract their opcodes and API calls. In the pre-processing phase,
word embedding is performed using word2vec or fasttext to apply the extracted
opcode sequence data to the LSTM model. In the last learning phase, the malware
is classified according to the characteristics of the malware based on the signatures
of the vectorized malware, which are opcodes and API calls, followed by malware
learning and detection.

3.1 Data Processing

In the data processing phase, the malware, which has been classified into one of the
nine kinds of malware, is labeled to extract its opcodes and API calls, which are
the signatures of the malware, and through a disassembler process, the malware is
converted from amachine code form to an assembly language code form to statically
analyze the file information and the code contents of the malware.

3.2 Pre-processing

In the pre-processing phase, a word embedding method, through which opcodes and
API calls in the form of natural language are converted to numbers for computers
to understand and efficiently process them, is applied so that the learning process is
carried out in the LSTM model based on the opcodes and API calls extracted in the
static analysis during the previous data processing phase. The SAT scheme proposed
in this paper employs a word embedding method of word2vec or fasttext, whichever



542 J. Jeon et al.

shows optimal performance, in the pre-processing phase. The word2vec technique
was developed by Google in 2013 and is one of the techniques for vectorizing key
words by analyzing surrounding assertions [12]. Word2vec consists of the CBoW
technique that predicts words based on context and the Skip-gram technique that
predicts context based on one word. Fasttext is a technique developed by Facebook
that considers many subwords to exist in a single word and vectorizes the word in
consideration of the subwords [13].

3.3 Learning Phase

Lastly, the learning phase, where malware is detected by learning and classifying the
signatures of malware according to their characteristics, is composed as shown in
Fig. 3. The opcodes and API calls vectorized through the pre-processing process are
assigned to twoLSTM layers composed of 128 cells,which are hidden layers, in order
to classify them into one of the nine kinds of malware which have been classified by
the characteristics of malware. Here, the nine kinds of malware includes Ramnitm,
Lollipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1, Obfuscator.ACY, and
Gatack. Malware is learned through Softmax layer and Adam Optimizer, and the
new malware is tested based on the model established in this way.

Fig. 3 The learning phase in the SAT scheme for detecting and classifying malware



Static Analysis for Malware Detection with Tensorflow and GPU 543

4 Experience

The SAT scheme proposed in this paper was tested under the environments with
the configurations of CPU with eight AMD FX-8370E Eight-Core Processors and
of GPU of Quadro P4000 with 32.9 GB memory using the data set published by
Microsoft in BIG 2015 [11]. The main purpose of the experiment conducted for the
SAT scheme is to determine whether to use word2vec or fasttext as the word embed-
ding method in the static analysis of malware to obtain the most optimized results
for the SAT scheme. The input data size, window size, hidden layer number, and
cell number were used as parameters for both word2vec and fasttext. Additionally,
the embedding method was used as a parameter for word2vec for analysis, while the
n-gram range was used as a parameter for fasttext for analysis. Input data refers to
the data to be entered in the word-embedding method after extracting API calls and
opcodes from the assembly code and window refers to the range of data analysis in
the word-embedding method. In addition, cell refers to the size of the hidden layer
and the hidden layer refers to the step of input data processing within the LSTM
model. The initial values used in the experiment were as follows: 300 for the input
data, 5 for the window size, 128 for the number of cells, and 2 for the hidden layer.

Tables 2 and 3 show the accuracy of malware detection when the word2vec model
or the fasttext model was used as the word embedding method. The accuracy of
malware detection under the various conditions ranged from 96.61 to 97.60%. In
addition, a higher accuracy of 97.60% was observed in detecting malware when
fasttext was used compared to when word2vec was used.

The word2vec technique showed a malware detection accuracy of
97.59%, and the fasttext technique showed a malware detection accuracy of

Table 2 Detection accuracy when using the word2vec model as the word embedding method

Type Input data Window size Cell Hidden layer Embedding
method

Accuracy (%)

Word2vec 200 5 128 2 CBoW 97.57

300 5 128 2 CBoW 97.59

400 5 128 2 CBoW 97.59

300 3 128 2 CBoW 97.59

300 5 128 2 CBoW 97.59

300 7 128 2 CBoW 97.59

300 5 64 2 CBoW 97.54

300 5 128 2 CBoW 97.59

300 5 256 2 CBoW 97.59

300 5 128 2 CBoW 97.59

300 5 128 3 CBoW 97.19

300 5 128 2 CBoW 97.59

300 5 128 2 Skip-gram 97.59



544 J. Jeon et al.

Table 3 Detection accuracy when using the fasttext model as the word embedding method

Type Input data Window size Cell Hidden layer N-gram Accuracy (%)

Fasttext 100 5 128 2 3–6 97.59

200 5 128 2 3–6 97.59

300 5 128 2 3–6 97.60

300 3 128 2 3–6 97.60

300 5 128 2 3–6 97.60

300 7 128 2 3–6 97.60

300 5 64 2 3–6 97.51

300 5 128 2 3–6 97.60

300 5 256 2 3–6 97.59

300 5 128 2 3–6 97.59

300 5 128 3 3–6 96.61

300 5 128 2 2–5 96.60

300 5 128 2 3–6 97.60

300 5 128 2 4–7 97.60

Table 4 Execution time
when word2vec or fasttext
was used in the
pre-processing phase

Word2vec 12 min

Fasttext 41 min

Table 5 Execution time
under the CPU and GPU
environments in the learning
phase

Device

CPU GPU

Word embedding Word2Vec 42 h 20 m 30 s 8 h 12 m 23 s

Fasttext 43 h 45 m 10 s 8 h 16 m 2 s

97.60%. Tables 4 and 5 show the analysis results of the execution time when
word2vec and fasttext were executed under the optimal conditions in the pre-
processing and learning phases. Table 4 shows the execution time when word2vec
and fasttext were used as the word embedding method in the pre-processing phase.
Table 5 shows the execution time when word2vec and fasttext were executed in the
CPU and GPU environments in the learning phase.



Static Analysis for Malware Detection with Tensorflow and GPU 545

5 Conclusion

With the advent of toolkits that can automatically generate malware, anyone can
create new/modified malware without being an expert. As a result, the number of
malware samples is rapidly increasing, and security companies spend a lot of time in
analyzing the characteristics of new/modified malware and generating signatures of
malware to help detect malware. To solve this problem, various malware detection
techniques have emerged, and many relevant studies have been conducted. However,
catching up with the generation rate of new/modified malware is impossible, which
makes it difficult to analyze and detect the characteristics of new/modified malware.
For this reason, deep learning has been applied to help detectmalware, and the related
research has begun.

In static analysis, opcodes and API calls are considered as the signatures of
malware,which are the feature elements ofmalware. For these opcodes, a singleword
itself is not meaningful, but the surrounding words are rather meaningful. Therefore,
the LSTMmodel has been mainly used to analyze malware using opcodes. However,
previous studies utilizing theLSTMmodel focused solely on the accuracy ofmalware
detection.

Therefore, in this paper, we proposed the SAT scheme that statically analyzes
malware in the GPU environment to detect malware quickly and accurately using
the LSTM model. The SAT scheme consists of three phases: data processing, pre-
processing, and learning phases. The results of the experiments on themalware detec-
tion time and accuracy, which were performed based on the SAT scheme, indicated
that fasttext was more efficient in terms of accuracy than word2vec, but when fasttext
was used in the pre-processing phase, an inefficient execution time was observed.
However, when the learning phase, which is the time when malware is classified and
learned in the LSTMmodel, was compared, the execution time under the GPU envi-
ronment was about three times more efficient than that under the CPU environment.
This suggests that when fasttext is used, the problem of inefficient execution time in
the pre-processing phase can be compensated.

Acknowledgements This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00644,
Linux Malware Dynamic Detection & Protection Solution on Embedded Device).

References

1. Souri A, Hosseini R (2018) A state-of-the-art survey of malware detection approaches using
data mining techniques. Human-Centric Comput Inf Sci 8:1–22

2. Keegan N, Ji S-Y, Chaudhary A, Concolato C, Yu B, Jeong DH (2016) A survey of cloud-based
network intrusion detection analysis. Human-Centric Comput Inf Sci 6:1–16

3. HaddadPajouh H, Dehghantanha A, Khayami R, Choo K-KR (2018) A deep recurrent neural
network based approach for internet of things malware threat hunting. Future Generat Comput
Syst 85:88–96



546 J. Jeon et al.

4. Kang J, Jang S, Li S, Jeong Y-S, Sung Y (2019) Long short-term memory-based Malware
classification method for information security. Comput Electr Eng 77:366–375

5. Choi S-Y, Lim CG, Kim Y-M (2019) Automated link tracing for classification of malicious
websites in malware distribution networks. J Inf Process Syst 15:100–115

6. DaoudWB,ObaidatMS,Meddeb-MakhloufA,Zarai F,HsiaoK-F (2019)TACRM: trust access
control and resource management mechanism in fog computing. Human-Centric Comput Inf
Sci 9:1–18

7. Belaoued M, Mazouzi S (2016) A Chi-square-based decision for real-time malware detection
using PE-file features. J Inf Process Syst 12:644–660

8. Nagpal B, Chauhan N, Singh N (2017) A survey on the detection of SQL injection attacks and
their countermeasures. J Inf Process Syst 13:689–702

9. Tensorflow. https://www.tensorflow.org/?hl=ko
10. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neu Computat 9:1735–1780
11. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-

classification
12. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in

vector space. In: ICLR 2013, International conference on learning representations. Conference
Track Proceedings, Arizona, pp 1–12

13. Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2017) Advances in pre-training
distributed word representations. In: The Eleventh international conference on language
resources and evaluation (LREC 2018). European Language Resources Association (ELRA),
Miyazaki, pp 52–55

https://www.tensorflow.org/?hl=ko
https://www.kaggle.com/c/malware-classification

	 Static Analysis for Malware Detection with Tensorflow and GPU
	1 Introduction
	2 Related Works
	3 Scheme of SAT
	3.1 Data Processing
	3.2 Pre-processing
	3.3 Learning Phase

	4 Experience
	5 Conclusion
	References




