
Chapter 8
Fréedericksz-Like Positional Transition
Triggered by An External Electric Field

Ke Xiao and Chen-Xu Wu

Abstract Microparticles (colloidal particles) of different shapes suspended in an
anisotropic nematic liquid crystal (NLC) host medium are important soft matter sys-
temswhich behave quite differently from those simply composed ofmicroparticles or
conventional isotropic liquids. The embedded microparticles disturb the alignment
of LC molecules and induce elastic distortions, generating long-range anisotropic
interactions and topological defects. The replacement of isotropic liquids with NLC
medium gives rise to abundant physical behaviors of the microparticles, which leads
to a broad range of practical applications ranging from biological detectors to new
display and topological memory devices. This chapter is devoted to the new dynamic
behaviors of amicroparticle suspended in a uniformnematic liquid crystal (NLC) cell
in the presence of an external electric field, an important tool in soft matter systems
to manipulate microparticles. Investigating the basic dependence of critical elec-
tric value on cell thickness, Frank elastic constant, microparticle size and density is
essential for understanding the dynamical behaviors of micropartices. This chapter is
organized as follows.We start with a short introduction on liquid crystal togetherwith
a review of the related literature onmicroparticle-suspended liquid crystal (Sect. 8.1).
The theoretical background of liquid crystals with particular focus on order parame-
ter, Frank-Oseen free energy, surface anchoring free energy, Fréedericksz transition,
and multipole expansion is described in Sect. 8.2. The main theoretical model and
tools are then outlined in Sect. 8.3 to study the properties of a single particle in a
uniform nematic liquid crystal cell in the presence of an external electric field. The
main results and discussions based on the theoretical model we proposed in Sect. 8.3
are presented in Sect. 8.4. In Sect. 8.5 a brief summary is made.
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8.1 Introduction

Liquid crystals (LCs) are soft materials made of organic molecules with rodlike,
disclike or banana shapes, a mesophase intermediate between the crystalline and
isotropic liquid state formed at a certain temperature or molecular concentration
range [1, 2]. In the undeformed ground state, uniaxial molecules in nematic liquid
crystal (NLC) phase, the simplest type of all orientational orders, prefer an orientation
with their molecular long axes aligning along a common direction n called director.
It is widely accepted that the NLCs possess many anisotropic physical properties
that are easy to control by external stimuli owing to their long-range orientational
order rather than translational order. Colloids, which are widely used in our daily
life, including milk, ink, paint, cream and fog, are dispersions of solid, liquid or gas
particles with typical size ranging from a few nanometers up to a few micrometers in
a host surrounding medium [3, 4]. When dispersed in a NLC, the colloidal particles
disturb the alignment of LC molecules and induce elastic distortions which give rise
to long-range anisotropic interactions and topological defects. The generated long-
range force leads to the self-assembly of molecules in such system, a topological
phenomenon offering the possibility to control and design anticipated function for
novel composite materials and diverse topology materials with similar features. One
of themain themes of liquid crystal is to study the properties and behaviors of colloids
suspended in nematic liquid crystal (NLC), and a wide range of promising practi-
cal applications have been realized, such as new display and topological memory
devices [5–7], new materials [8], external triggers and release microcargo [9], and
biological detectors [10, 11]. Over the past two decades, many experimental, theo-
retical and computer simulation studies have been focused on the physical properties
of colloidal particles embedded within NLCs [12–25].

At the experimental level, diverse methods and techniques have been developed
to measure the interaction force between particles in NLC in a direct manner [12,
26–29]. It has been found that the interaction force of spherical particles suspended
in NLC is associated not only with interparticle distance and geological confine-
ment [13], but also with the shape of particles which plays a crucial role in pair inter-
action and aggregation behaviors [17]. Whereas, in the presence of the electric field,
fruitful fascinating physical phenomena such as levitation, lift, bidirectional motion,
aggregation, Electrokinetic and superdiffusion [24, 30–32] have been observed for
colloids dispersed in NLCs. On the other hand, theoretical modeling and computer
simulation as useful complements to experiments, such as Landau-de Gennes (LdG)
theory and elastic free energy method, have been carried out to interpret the nature
of colloidal particles dispersed in NLCs. Generally Monte Carlo simulation [23,
33], lattice Boltzmann method [34, 35] and finite element method [13, 36–39] are
common adopted techniques to minimize the LdG free energy functional. Except
for the methods mentioned above, recently S. B. Chernyshuk and coauthors studied
the interaction between colloidal particles in NLCs with or without external field
by using Green’s function method, and obtained general formulae for interaction
energy between colloidal particles [40–42]. In the liquid crystal and particles coex-
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istence system, it is observed that external field is able to drive particles apart [12],
cause rotation [18] and alignment [43] of LC molecules, and even manipulate the
equilibrium position of microdroplet [44]. Although interactions of two particles in
a NLC are very well understood and the particle-wall interaction has been widely
observed experimentally for a single particle immersed in a nematic cell [41, 45,
46], the properties of a single particle in a uniform NLC cell in the presence of an
external electric field theoretically have not been fully addressed. Thus, it is of crucial
importance to investigate the nature of a single particle in a uniform NLC cell in the
presence of an external electric field.

8.2 Fréedericksz Transition in NLC

In a uniaxial nematic liquid crystal, the anisotropy of nematic phase is characterized
by a symmetric and traceless tensor order parameter Qαβ which can be written as

Qαβ = S(nαnβ − 1

3
δαβ). (8.1)

Here nα and nβ are components of the director n, which is a unit vector with the
property n = −n, describing the direction along which the molecules are aligned.
And S is the scalar order parameter that describes the degree of nematic order. It also
represents how well the molecules are aligned along n. If S equal to 0, there is no
alignment, which means that the system is in an isotropic phase; If S equal to 1, it
corresponds to a perfect alignment. When the director field n(r) changes drastically
due to the distortion from undeformed ground state in nematic liquid crystal, it costs
elastic energy for the deviation of the director, which can be classified into three
types, namely splay, twist and bend, making the Frank-Oseen free energy density for
elastic distortions reads as [47]

fel = 1

2
K11(∇ · n)2 + 1

2
K22[n · (∇ × n)]2 + 1

2
K33[n × (∇ × n)]2, (8.2)

where K11, K22 and K33 are Frank elastic constants corresponding to splay, twist
and bend constants, respectively. The bulk free energy of the nematic liquid crystal
sample can be obtained by integrating fel over the sample volume

Fel =
∫

feldV . (8.3)

LC molecules are sensitive to weak external stimuli, such as electric field, magnetic
field and light, due to the anisotropic property of NLC. The facile response to weak
external stimuli results in the easy distortion of director field when a magnetic or
an electric field is applied. If an external magnetic filed is applied to the NLC, the
following extra term should be added to the free energy
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fH = −1

2
�χ(H · n)2, (8.4)

where H is the magnetic field and �χ = χ‖ − χ⊥ is the diamagnetic anisotropy of
the NLC, which can be positive or negative. Here χ‖ and χ⊥ are the two components
of magnetic susceptibility for liquid crystal molecules when the magnetic field is
applied. If �χ > 0, the molecules tend to align parallel to the direction of H, while
if �χ < 0, the molecules tend to align perpendicularly to the field direction. Anal-
ogously, if the external field is an electric one, then alternatively the additional free
energy becomes

fE = − 1

8π
�ε(E · n)2, (8.5)

whereE is the electric field and�ε = ε‖ − ε⊥ is the dielectric anisotropy of theNLC,
which can be positive or negative as well. Here ε‖ and ε⊥ are the dielectric suscep-
tibilities of the liquid crystal molecule parallel and perpendicular to the molecular
long axis respectively. To illustrate how external fields alter the interactions of liquid
crystal molecules, let us consider an NLCwith thickness L sandwiched between two
cell walls, and we choose the coordinate z axis normal to the cell walls where LC
molecules are parallel to the x direction, as depicted in Fig. 8.1. Suppose a magnetic
field H is applied along the z direction. Then the director field deviating from the
undeformed director n0 = (0,0,1) is given by

n(z) = (cos θ(z), 0, sin θ(z)), (8.6)

Fig. 8.1 Sketch of Fréedericksz transition. The director n is fixed in the x direction at the two
plates of the cell, while the direction of the applied magnetic field H is perpendicular to the cell
walls. a If H is below a certain critical field Hc, the NLC remains aligned in the x direction. b If
H is above Hc, the NLC molecules start to try to realign along the z direction
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where θ is the angle between the director and z axis, satisfying the boundary condition
θ(0) = θ(L) = 0 due to the surface anchoring. The total free energy is then

Ftotal = 1

2

∫
dz

[
(K11 cos

2 θ(z) + K33 sin
2 θ(z))(

dθ(z)

dz
)2 − �χH 2 sin2 θ(z)

]
.

(8.7)
To obtain the distribution θ(z) corresponding to minimum total free energy, we cal-
culate the functional derivative of the total free energywith respect to θ(z). Using one
Frank constant approximation K11 = K33 = K leads to the Euler-Lagrange equation

d2θ(z)

dz2
) + 1

ξ 2
sin θ(z) cos θ(z) = 0, (8.8)

where ξ = √
K/(�χH 2) is called the magnetic coherence length. When the mag-

netic field is small (i.e., L/ξ is small), the solution is θ(z) = 0.However, the solutions
vary as the magnetic field increases and exceeds a certain threshold. To address this
problem, we assume the functional form of θ(z) can be approximated by

θ(z) = θ0 sin(
π z

L
). (8.9)

If θ0 � 1, substituting Eq. (8.9) into the total free energy of Eq. (8.7) and integrate
over z = 0 to L , we obtain

Ftotal = π2 K

4L
θ2
0 − �χLH 2

4
θ2
0 = �χL

4
(H 2

c − H 2)θ2
0 , (8.10)

where Hc is the critical field

Hc = π

L

√
K

�χ
. (8.11)

Below the critical field (i.e., H < Hc), we have the solution θz = 0 throughout the
cell, and the NLC remains aligned in the x direction (see Fig. 8.1a). If H > Hc the
deviation of the director field takes place (see Fig. 8.1b) and such a order transition
called the Fréedericksz transition.

When a microparticle is introduced into the NLC, the microparticle interacts with
the surrounding liquid crystal primarily via surface anchoring. The resulting surface
anchoring free energy can be expressed as an integral over the microparticle surface
in the Rapini-Popular form [1, 48]

Fanchoring = 1

2
W

∫
(n · ν)2dS (8.12)

where W is the anchoring coefficient and ν is a unit vector along the easy axis. Typ-
ically, the order of magnitude of W varies within the range 10−4 mJ/m2 − 1 mJ/m2,
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where 10−3 − 10−4 mJ/m2 is considered as weak anchoring and 1 − 10−1 mJ/m2 is
regard as strong anchoring. In most cases the inclusion of particles into an NLC cell
tends to create LC alignment singularities around the suspended substances, which
in general are determined by surface anchoring conditions, particle size, boundary
conditions, and external fields etc. [17, 49–52]. It has been widely accepted and
confirmed that when a spherical particle is immersed in NLC, there are three pos-
sible types of defect configurations [53–55]. Dipole and quadrupolar configurations
are usually seen around a spherical particle with strong vertical surface anchoring,
whereas boojum defect is formed by a micro-sphere with tangential surface anchor-
ing. In addition, recently B. Senyuk et al. assumed that conically degenerate bound-
ary condition gives rise to the so-called elastic hexadecapole [56], and then Y. Zhou
reported that the dipole-hexadecapole transformation can be achieved via tuning the
preferred tilt angle of LC molecules anchoring on colloidal particle surface [57].
Through experimental observations it has been found that, when an external field is
applied, there exists a transition between elastic dipole and quadrupolar configura-
tion, which depends on particle size and surface anchoring strength [58–60].

As an application of the above theory, let us first of all consider a system that
a particle is embedded in a uniform NLC without confinement. There are now two
contributions to the free energy. The first contribution is the elastic deformation of
the LC and can be accounted by the well known Frank-Oseen free energy. With one
constant approximation K11 = K22 = K33 = K , the bulk deformation energy can be
written as

Fb = K

2

∫
dV [(∇ · n)2 + (∇ × n)2]. (8.13)

The second contribution is the surface anchoring free energy which is in the Rapini-
Popula form Eq. (8.12), and the integration is over the particle surface. To determine
the distribution of the director field n(r) for a particle embedded in a NLC, the goal is
solve the Euler-Lagrange equations arising from the variation of the total free energy
F = Fb + Fanchoring . Unfortunately, the Euler-Lagrange equations with subjected
boundary conditions at the surface of the particle and parallel boundary conditions
at infinity are highly nonlinear, and analytical solutions are quite difficult to found.
However, utilising the multipole expansion method similar to electrostatic [61], we
can obtain analytic solutions for the director field far from the particle. We assume
that the director field at infinite approach the undeformed director field n0 = (0,0,1)
when there is no other confinement. The deviation of n(r) from n0 induced by
the embedded particle is small at the large distance but not infinite, and n(r) ≈
(nx,ny, 1). Therefore, at large r , the nonlinear bulk free energy of deformation can
be replaced by the harmonic free energy [53, 55]

Fhar = K

2

∫
dV (∇nμ)2 (8.14)
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with Euler-Lagrange equations of Laplace type

∇2nμ = 0. (8.15)

Here nμ (μ = x, y) represents the components of the director field n perpendicular
to n0. Expanding the solutions into multipoles and we have the form of the solutions
as follows [53, 55]

nx = p
x

r3
+ 3c

xz

r5
, (8.16)

ny = p
y

r3
+ 3c

yz

r5
, (8.17)

where p and c are the magnitude of the dipole and quadrupole moments respectively.
If a particle is immersed in a NLC with confinement (i.e., NLC cell) and in the
presence of external electric field, another surface anchoring free energy at the two
plates of the cell and free energy arising from the applied electric field are need
to be added. Thus our task is to minimize the more complicated total free energy
functional. Unfortunately, it becomes more difficult to find the analytical solutions
for the system of a particle suspended in a NLC cell in the presence of external
field. Therefore, it is necessary to develop a phenomenological method to address
this problem [40, 55], and this approach is introduced in the next section.

8.3 Theoretical Modeling

In order to introduce the phenomenological method mentioned above in details, we
take the system that a spherical microparticle of radius r suspended in a NLC cell
sandwiched between two parallel plates a distance L apart in the presence of an elec-
tric field as an example. The polarization of the particle is neglected compared with
the influence of external field on the alignment of liquid crystal molecules. Figure 8.2
illustrates two systems schematically under external fieldwith a homeotropic anchor-
ing (Fig. 8.2a) and a homogeneous planar anchoring (Fig. 8.2b) respectively at the
two cell walls. The suspended microparticle induces the director distortion and the
director deviations nμ (μ = x, y) from the undeformed director field n0 = (0,0,1) are
small at the region far from the microparticle. In order to use the same set of symbol
subscripts (nμ (μ = x, y)) in our theoretical modelling for the two surface anchoring
conditions, two different coordinate frames are deliberately used here, as illustrated
in Fig. 8.2a and b. Assuming n ≈ (nx ,ny ,1) with one Frank constant approximation,
the effective elastic energy for the system reads [42]

Ue = K
∫

d3x
[ (∇nμ)2

2
− k2

2
(e · n)2 − 4π P(x)∂μnμ − 4πC(x)∂z∂μnμ

]
, (8.18)
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Fig. 8.2 Schematic representation of a microparticle of radius r suspended in a nematic liquid
crystal cell with surface-to-surface distance L and a normal anchoring and b planar anchoring in
the presence of an external electric field

where k2 = (4πK )−1�εE2, P(x) and C(x) denote the dipole and the quadrupole
moment densities respectively. When an electric field is applied along z axis, the
Euler-Lagrange equation are given by [42]

�nμ − k2nμ = 4π [∂μP(x) − ∂z∂μC(x)]. (8.19)

When the external electric field is applied parallel to x axis, we have the Euler-
Lagrange equations written as [42]

�nμ + k2δxμnμ = 4π [∂μP(x) − ∂z∂μC(x)]. (8.20)

If the applied electric field is parallel to y axis, then the Euler-Lagrange equations
are [42]

�nμ + k2δyμnμ = 4π [∂μP(x) − ∂z∂μC(x)]. (8.21)
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WithDirichlet boundary conditions nμ(s) = 0 on the twowalls, the solution to Euler-
Lagrange equations can be written as [42]

nμ(x) =
∫

V

d3x
′
Gμ(x, x

′
)[−∂

′
μP(x

′
) + ∂

′
μ∂

′
zC(x

′
)], (8.22)

where Gμ is the Green’s function for nμ. Notice that here μ in the integral does not
follow Einstein summation notation.

8.4 Results and Discussions

8.4.1 Homeotropic Boundary Condition

8.4.1.1 External Field Perpendicular to the Two Plates

Here we choose the coordinate z axis along the normal direction of the two cell walls
where LC molecules are homeotropically anchored, as depicted in Fig. 8.2a). In
the first case, when an electric is applied perpendicular to the two plates, i.e., E‖z in
Fig. 8.2a, the corresponding Euler-Lagrange equations arewritten as Eq. (8.19).With
Dirichlet boundary conditions nμ(z = 0) = nμ(z = L) = 0, the Green’s function
can be derived as [42]

Gμ(x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπ z

L
sin

nπ z
′

L
Im(λnρ<)Km(λnρ>). (8.23)

Here ϕ and ϕ
′
are the azimuthal angles, z and z

′
are the positional coordinates, Im

and Km are modified Bessel functions, ρ< is the smaller one between
√
x2 + y2 and√

x ′2 + y ′2, and λn = [(nπ/L)2 + �εE2/4πK ]1/2 with L the thickness of the NLC
cell. Using the definition of self energy given in terms of Green’s function[42]

Usel f
dd = −2πKp2∂μ∂

′
μHμ(x, x

′
)|x=x′ , (8.24)

where Hμ(x, x
′
) = Gμ(x, x

′
) − 1/|x − x

′ |, we can obtain the elastic energy U I
e for

an NLC cell with a microparticle suspended in the presence of an electric field.
Besides the elastic energy, the gravitational potentialUg due to buoyant force should
be considered as well, leading to a total energy written as

U I
total =U I

e +Ug

= − 2πKp2
[
− 4

L

∞∑
n=1

λ2n sin
2(
nπ z

L
)K0(λnρ) + 1

ρ3

]

ρ→0

− 4

3
πr3(ρLC − ρmp)gz,

(8.25)
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Fig. 8.3 Elastic energy and total energy as a function of microparticle position for different electric
fields (0, 1.0, 1.5 and 2.0 V/µm). Here we set the radius of microparticle and cell thickness as 2.2
µm and 7 µm, respectively

where r is the radius of microparticle, p = 2.04r2 is the magnitude of the equiv-
alent dipole moment, ρLC − ρmp is the density difference between liquid crystal
and microparticle, g = 9.8 m/s2 is the gravitational acceleration, and z denotes the
position of microparticle.

Based on the total energy obtained by Green’s function method, we now plot the
profiles of total energy as a function of microparticle position for different electric
field. Let us first consider the case �ε > 0. The total energy and elastic energy
against for four different electric field strengths are shown in Fig. 8.3. In the presence
of a small external electric field, the total energy given by Eq. 8.25 overlaps the
elastic energy U I

e and remains symmetric, indicating that the interaction among
LC molecules still dominates the system if the external field applied is not large
enough to realign the LC molecules, especially in the region close to the midplane.
Thus the contribution made by asymmetric gravitational potential is trivial and the
microparticle in this case is still trappedwithin itsmidplane, as shown in Fig. 8.3b and
c. However, as we increase the field applied, it tends to widen and flatten the bottom
of the elastic potential well and that by contrast enlarges the relative contribution
made by the asymmetric buoyant force to the total energy. As a result, the buoyant
force will drive the microparticle with ease from midplane to a new equilibrium
position (Fig. 8.3d). It is obvious that the sign of ρLC − ρmp determines the direction
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Fig. 8.4 Equilibrium position z0 in response to electric field for different a cell thicknesses (7, 10,
15 and 20 µm), where the Frank elastic constant and the radius of microparticle are set as K = 7
pN and r = 2.5µm respectively, and b Frank elastic constants (7, 10, 15 and 20 pN), where the cell
thickness and the radius of microparticle are set as L = 10 µm and r = 2.5 µm respectively. These
two figures show a positional transition occurring at an electric field threshold Ec, which depends
on c cell thickness L and d Frank elastic constant

√
K

of particle displacement with respect to the original equilibrium position. It seems
that the interaction potential well around the midplane tends to be flattened due to
the realignment of liquid crystal molecules made by the applied external field, which
creates a “fast lane” in the vertical direction for the microparticle to move. It triggers
a positional transition from the midplane, if driven by an asymmetric buoyant force,
when such a fast lane is fast enough (weakens the elastic energy gradient).

Furthermore, in order to study the effect of the cell thickness and Frank constant
on the critical electric value, we plot the equilibrium position against the applied
electric field for different cell thicknesses (7, 10, 15 and 20 µm) and Frank elastic
constants (7, 10, 15 and 20 pN), as shown in Fig. 8.4a and b. It is found that
a positional transition occurs when the external field applied exceeds a threshold
value. The thinner the cell thickness L is and the larger the Frank elastic constant K
is, the larger the critical electric field is needed to trigger the transition, as shown in
Fig. 8.4c and d. A deeper investigation shows that the critical value of electric field
is inversely proportional to L and linearly proportional to

√
K , a Fréedericksz-like

behavior.
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Fig. 8.5 Equilibrium position z0 for different a radii (2.2 µm, 2.35 µm and 2.5 µm) with K = 7
pN and L = 7 µm; b densities (0.99, 1.02 and 1.03 g · cm−3) of microparticle with K = 7 pN
and L = 8 µm, showing the same critical value Ec of electric field triggering positional transition.
The dependence of Ec and

√
K/L for different c radii (2.2 µm, 2.35 µm, 2.5 µm and 3.0 µm); d

densities (0.99, 1.0 and 1.03 g · cm−3) of microparticle, obeying strictly a master curve given by
theoretical prediction Eq. (8.26)

In order to gain more insight into the dynamic behaviors of the microparticle,
we investigate the dependence of threshold value on various microparticle’s sizes
and densities in Fig. 8.5. Figure 8.5a and b depict the equilibrium position against
the applied electric field for different microparticle sizes and densities, where the
overlapping of equilibriumposition in Fig. 8.5a suggests that the critical electric value
is almost independent ofmicroparticle size.Whereas the symmetry of the equilibrium
position of microparticle with density equal to 0.99 g · cm−3 and 1.03 g · cm−3 in
Fig. 8.5b indicates that the slope of the master curve of critical electric value is nearly
independent of the magnitude of microparticle density. Furthermore, to understand
the dynamic behaviors of the microparticle, we plot the threshold value against√
K/L to obtain a master curve, as shown in Fig. 8.5c and d, where a Fréedericksz

curve (black) is also plotted. It is interesting to find that the critical electric field to
trigger a positional transition for microparticle suspended in a NLC cell follows a
Fréedericksz-like linear master curve, yet with a different slope. The existence of
slightly difference instead of overlapping to each other for the equilibrium position
of microparticle with density equal to 1.02 g · cm−3 and 1.03 g · cm−3 in Fig. 8.5b,
leads to different intercepts of the Fréedericksz-like linear master curves for critical
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electric field in Fig. 8.5d. Obviously, the results indicate that the critical electric
field for a positional transition to occur for a microparticle suspended in a NLC cell
remains unchanged for different microparticle sizes and densities.

Moreover, by comparing the numerical calculation results with the Fréedericksz
effect curve (π

√
4π/|�ε|√K/L) in Fig. 8.5c and d, it is surprising to find that the

slope difference between them is by a factor of ∼3
√

π . The additional energy con-
tribution coming from the surface energy due to the introduction of microparticle is
proportional to π (surface area). While on the other hand, the energy contribution
made by external field is proportional to E2, and that gives a critical value of exter-
nal field proportional to

√
π , if the transition comes from the competition between

equivalent surface energy due to the introduction of microparticle, and the Coulomb
interaction due to the application of external field. More specifically, an explicit
expression (where F denotes the Fréedericksz effect)

Ec � 3
√

πF − 1

5
= 6π2

√
K

|�ε|L2
− 1

5
(8.26)

for critical electric field can be proposed as a theoretical prediction. Such a pre-
diction, as shown by straight line (red) in Fig. 8.5c and d, agrees very well for
different radii (2.2, 2.35, 2.5, and 3.0µm) and densities (0.99, 1.0 and 1.03 g · cm−3)
of microparticle. This once again verifies the conclusion that the critical electric
field is independent of microparticle size and density. The reason might lie in that in
the present theoretical model, the microparticle is treated as a dipole in the far field
expansion approximation.

In the case when �ε < 0, the elastic energy and total energy as a function of
microparticle position for two different electric field strengths is plotted as well, as
shown in Fig. 8.6. Fig. 8.6a and b clearly show that the microparticle is trapped at

Fig. 8.6 Elastic energy and total energy as a function of microparticle position for different electric
fields a 0 V/µm and b 0.19 V/µm. Here the radius of microparticle, elastic constant and cell
thickness are fixed at 2.2 µm, 7 pN and 15 µm, respectively
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the midplane of the NLC cell, indicating that an application of external electric field
does not trigger a positional phase transition. Moreover, in these two figures we also
find that the electric filed has a crucial impact on the shape of potential well of elastic
energy and total energy. This is because when E‖z and �ε < 0, the realignment
of liquid crystal molecules with the increase of the electric field narrows down the
interaction potential well rather than flatten it (see Fig. 8.6), which creates a force
directing toward the midplane much larger than the gravitational contribution and
thus denies any positional transition.

8.4.1.2 External Field Parallel to the Two Plates

For the case of an electric field parallel to the two plates, i.e., E‖x in Fig. 8.2a, the
Euler-Lagrange equations for nx and ny are written as Eq. (8.20). With Dirichlet
boundary conditions nμ(z = 0) = nμ(z = L) = 0, the related Green’s functions Gx

and Gy are given by

Gx (x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπ z

L
sin

nπ z
′

L
Im(νnρ<)Km(νnρ>),

Gy(x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπ z

L
sin

nπ z
′

L
Im(μnρ<)Km(μnρ>), (8.27)

where νn = [(nπ/L)2 − �εE2/4πK ]1/2 and μn = nπ/L . In analogue to the previ-
ous case, we can obtain the elastic energy U I I

e and thereby the total energy U I I
total is

written as

U I I
total =U I I

e +Ug

= − 2πKp2
[
− 2

L

∞∑
n=1

sin2(
nπ z

L
)(αn + βn) + 1

ρ3

]
ρ→0

− 4

3
πr3(ρLC − ρmp)gz,

(8.28)

where αn = ν2
n K0(νnρ) + μ2

nK0(μnρ), and βn = ν2
n K2(νnρ) − μ2

nK2(μnρ).
In order to seek for the effect of electric field on the equilibrium position of

microparticle, plots for the elastic energy and total energy against the microparticle
position for different electric fields are presented in Fig. 8.7. When �ε > 0, the nar-
rows down of the potential well of elastic energy and total energy with the increase
of electric field in Fig. 8.7a indicates that the microparticle tends to be trapped in
the midplane of the NLC cell. When �ε < 0, the increases of electric field tends
to deepen and narrows down (which can hardly tell) the potential well of elastic
energy and total energy, as illustrated in Fig. 8.7b. Due to the deep potential well,
the microparticle is trapped in the midplane of the NLC cell regardless of the sign of
the molecular dielectric anisotropy, indicating that an application of external elec-
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Fig. 8.7 Elastic energy and total energy as a function of the microparticle position for different
electric fields with a �ε > 0 and b �ε < 0. Here the radius of microparticle, elastic constant and
cell thickness are fixed at 2.2 µm, 7 pN and 15 µm, respectively

tric field, however large it is, can not trigger a positional transition. This can be
understood by considering the fact that the molecular long (short) axes tend to align
along the direction of applied electric field as �ε > 0 (�ε < 0). As we increase
the field applied, the interaction potential is found to be narrowed down and deep-
ened, corresponding to a strong midplane-directing restoring force. Therefore for
the homeotropic boundary condition, the positional transition occurs only in an NLC
cell with positive molecular dielectric anisotropy when the external electric field is
applied along the undeformed director field.

8.4.2 Planar Boundary Condition

8.4.2.1 External Field Perpendicular to the Two Plates

Nowwe turn to the situation that LC molecules are horizontally anchored on the two
cell walls and an electric field is applied vertically to the two plates, i.e., E‖x , as
depicted in Fig. 8.2b. The Euler-Lagrange equations are given by Eq. (8.20), and the
corresponding Green’s functions Gx and Gy read as [42]

Gx (x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπx

L
sin

nπx
′

L
Im(νnρ<)Km(νnρ>),

Gy(x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπx

L
sin

nπx
′

L
Im(μnρ<)Km(μnρ>), (8.29)

with νn and μn identical to those in Eq. (8.27). Similarly, the elastic energyU I I I
e can

be obtained and the total energy U I I I
total can be derived as



338 K. Xiao and C.-X. Wu

U I I I
total =U I I I

e +Ug

= − 2πKp2
[
4

L

∞∑
n=1

μ2
n

[
cos2(

nπx

L
)K0(νnρ) − 1

2
sin2(

nπx

L
)
(
K0(μnρ) − K2(μnρ)

)] + 1

ρ3

]
ρ→0

− 4

3
πr3(ρLC − ρmp)gx, (8.30)

where x denotes the vertical position of the microparticle.
In this case, let us first consider a positive dielectric anisotropy �ε > 0. Intrigu-

ingly, a significant feature is observed regarding the profile of total energy as a
function of microparticle position for four different electric fields, as illustrated in
Fig. 8.8. In the presence of small field (below the critical electric value), Fig. 8.8a
and b show that the interaction potential well around the midplane tends to be flat-
tened in this region due to the realignment of liquid crystal molecules made by the
increment of external electric field. However, when the electric field rises beyond
the threshold value, there exists two symmetric equilibrium positions for the sus-
pended microparticle (see Fig. 8.8c and d). Which one the microparticle shifts to is
decided by the perturbation stemming from the asymmetric buoyant force, i.e. by the
density difference between NLC and microparticle (ρLC − ρmp). Notably, the total
energy now is almost equal to the elastic energy due to the fact that the gravitational

Fig. 8.8 Total energy profile as a function of the suspended microparticle position for an NLC cell
with planar anchoring in the presence of different electric fields perpendicular to the two plates
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Fig. 8.9 Equilibrium position x0 in response to electric field for different a cell thicknesses (8,
9, 10 and 11 µm) with Frank elastic constant K = 7 pN and the radius of microparticle r = 2.2
µm, and b Frank elastic constants (8, 9, 10 and 11 pN) with cell thickness L = 10 µm and radius
of microparticle r = 2.2 µm. It is shown that the electric field threshold Ec at which a positional
transition occurs, depends on c cell thickness L and d Frank elastic constant

√
K

contribution is much smaller in contrast to the elastic one, generating the depths of
the two local minimums in Fig. 8.8c (and Fig. 8.8d) nearly equal to each other.

To probe the influence of cell thickness and Frank constant on the critical field
value, we plot the equilibrium position of the suspended microparticle against the
applied electric field for different cell thicknesses (8, 9, 10 and 11 µm) and Frank
elastic constants (8, 9, 10 and 11 pN), as shown in Fig. 8.9a and b, where a positional
transition occurs at some electric field threshold values and there exist two bistable
equilibrium positions when the external field applied exceeds the critical value. The
thinner the cell thickness L is and the larger the Frank elastic constant K is, the larger
the critical electric field is needed to trigger the positional transition, as shown in
Fig. 8.9c and d. A more deeper investigation shows that the critical value of electric
field is inversely proportional to L and linearly proportional to

√
K , a Fréedericksz-

like behavior.
As a following step, we examine whether the critical electric value is correlated

with the size and density of the microparticle. Surprisingly, Fig. 8.10a and b show
that the plots of the equilibrium position of suspended microparticle against the
applied electric field for differentmicroparticle sizes and densities overlap each other,
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Fig. 8.10 Equilibrium position x0 for different a radii (2.2 µm, 2.35 µm, 2.5 µm and 3.0 µm); b
densities (0.99, 1.0 and 1.04 g · cm−3) of a microparticle with K = 7 pN and L = 7 µm, showing
the same critical value Ec of electric field triggering positional transition. The dependence of Ec on√
K/L for different c radii (2.2 µm, 2.35 µm, 2.5 µm and 3.0 µm); d densities (0.99, 1.0 and 1.04

g · cm−3) of the microparticle, obeying strictly a master curve which can be given by the theoretical
prediction Eq. (8.31)

suggesting that the critical electric value is independent of or negligibly depends on
microparticle size and density. To gainmore insight into the dynamic behaviors of the
microparticle, we further plot the threshold value against

√
K/L in Fig. 8.10c and d,

where a Fréedericksz curve (black) is shown as well. It is interesting to find that the
critical electric field to trigger a positional transition for a microparticle suspended
in an NLC cell follows a Fréedericksz-like linear master curve with slightly different
slopes, a universal one also valid for different microparticle sizes and densities.

By comparing the numerical calculation results with the Fréedericksz transition
(π

√
4π/|�ε|√K/L) in Fig. 8.10c and d, we found that the slope difference between

them is by a prefactor of ∼0.915, and that enables us to propose a theoretical pre-
diction for the critical electric field

Ec � 0.915F , (8.31)

where F denotes the Fréedericksz effect. Such a prediction, as shown by straight
line (red) in Fig. 8.10c and d, agrees very well for different radii (2.2, 2.35, 2.5,



8 Fréedericksz-Like Positional Transition Triggered by An External Electric Field 341

Fig. 8.11 Elastic energy and total energy profile as a function of the suspended microparticle posi-
tion for an NLC cell with planar anchoring in the presence of different electric fields perpendicular
to the two plates. Here the radius of microparticle, elastic constant and cell thickness are set as 2.2
µm, 7 pN and 15 µm, respectively

and 3.0 µm) and densities (0.99, 1.0 and 1.04 g · cm−3) of microparticle. Due to the
mathematical difficulty, we still don’t know how to derive 0.915 analytically.

In the case when �ε < 0, to determine whether the positional transition phe-
nomenons takes place or not, we plot the elastic energy and total energy against
microparticle position for different electric field, as depicted in Fig. 8.11. The com-
parison of Fig. 8.11a and b shows that the potential well of elastic energy and total
energy are narrowed down with the increase of electric field, indicating that the
suspended microparticle is trapped at the midplane of the NLC cell, which can be
predicted by the profile change of the total energy potential well due to application of
an external electric field in the vertical direction (x direction in Fig. 8.2b). The short
axes of liquid crystal molecules tend to align along the electric field, a result lead-
ing to the narrowing of total potential well and thereby generating strong restoring
force acting on the suspended microparticle. Therefore, in the case of a microparti-
cle suspended in an NLC cell with planar anchoring condition in the presence of an
external electric field applied perpendicular to the two plates, the positional transition
triggered by the electric field occurs only under the condition of positive molecular
dielectric anisotropy.

8.4.2.2 External Field Parallel to the Two Plates but Perpendicular to
the Anchoring Direction

Now let us consider the case when the electric field applied is parallel to the two
plates but perpendicular to the anchoring direction, i.e., E‖y in Fig. 8.2b, the Euler-
Lagrange equations can be given by Eq. (8.21), with their corresponding Green’s
functions Gx and Gy written as
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with the same νn and μn as those in Eq. (8.29). In a similar way, the total energy
U IV

total is given by

U IV
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e +Ug

= − 2πKp2
[
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− 4

3
πr3(ρLC − ρmp)gx, (8.33)

where U IV
e is the elastic energy.

Similar to the previous cases, to probe the influence of electric field on the equi-
librium position of microparticle, plots for the elastic energy and total energy against
the microparticle position for different electric field are presented in Fig. 8.12. When
�ε > 0, the potential well of elastic energy and total energy in Fig. 8.12b are nar-
rowed down as compared with that in Fig. 8.12a. When �ε < 0, Fig. 8.12c and d
show the same trend. Those results suggest that no matter �ε > 0 or �ε < 0, the
microparticle is always trapped at the midplane of the NLC cell regardless of the
magnitude of the electric field applied, indicating that no positional transition occurs.
The reason lies in that the realignment of the liquid crystal molecules in the presence
of the external electric field does not flatten the interaction potential well substan-
tially enough so as to decrease its corresponding equivalent restoring force on the
microparticle to a small magnitude, with which the asymmetric gravitational force
becomes competitive.

8.4.2.3 External Field Parallel to the Two Plates and the Anchoring
Direction

Finally, we consider an NLC cell in the presence of an electric field parallel to the
two plates and the anchoring direction as well, i.e., E‖z in Fig. 8.2b. Given the
corresponding Euler-Lagrange equations Eq. (8.19), the Green’s functions are [42]

Gμ(x, x
′
) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ
′
) sin

nπx

L
sin

nπx
′

L
Im(λnρ<)Km(λnρ>), (8.34)

with the same λn as that in Eq. (8.23). Similarly, the total energyUV
total can be derived

as
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Fig. 8.12 Elastic energy and total energy as a function of microparticle position for a �ε > 0 and
E = 0 V/µm; b �ε > 0 and E = 0.19 V/µm; c �ε < 0 and E = 0 V/µm; d �ε < 0 and E = 5
V/µm;. Here the radius of microparticle, elastic constant and cell thickness are fixed at 2.2 µm, 7
pN and 15 µm, respectively

UV
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with UV
e the elastic energy.

Given a positive molecular dielectric anisotropy, namely �ε > 0, we can plot, as
shown in Fig. 8.13, the total energy profile as a function of the suspended micropar-
ticle position for four chosen electric fields. In the presence of a small external field,
the total energy profile remains symmetric, indicating that the elastic interaction
among LC molecules dominates the LC alignment, especially in the region close to
the midplane. Thus the contribution made by asymmetric gravitational potential is
trivial if compared with elasticity and the suspended microparticle will be trapped
within its midplane, as demonstrated in Fig. 8.13a and b. While as the electric field is
increased, it is found that it tends to widen and flatten the bottom of the elastic poten-
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Fig. 8.13 Total energy profile as a function of the suspended microparticle position for an NLC
cell with planar anchoring in the presence of four chosen electric fields parallel to the two plates
and the anchoring direction as well

tial well, which equivalently by contrast amplifies the relative contribution made by
the asymmetric buoyant force to the total energy of the NLC cell. As a result, the
buoyant force will drive the microparticle with ease from the midplane to a new
equilibrium position (see Fig. 8.13c and d). It is apparent that the sign of ρLC − ρmp

determines the direction of the microparticle displacement. It looks very much like
that the bottom of the interaction potential well around the midplane is “pressed due
to the realignment of liquid crystal molecules made by the applied external field,
which creates a “fast lane” along the vertical direction in the cell for the suspended
microparticle to migrate. Once such a “fast lane” constructed by the external field in
the cell reaches a critical value of “smoothness” (corresponding to a weakened elas-
tic energy gradient), driven by the asymmetric buoyant force, it triggers a positional
transition for the suspended microparticle from the midplane to its new equilibrium
position.

In order to study the influence of cell thickness and Frank constant on the critical
value of electric field, plots for the equilibrium position for the suspended micropar-
ticle against the applied electric field for different cell thicknesses (8, 10, 12 and 15
µm) and Frank elastic constants (8, 10, 12 and 15 pN) are presented in Fig. 8.14a
and b, where it is found that a positional transition occurs when the external field
applied exceeds a threshold value. It is also shown that the thinner the cell thickness
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Fig. 8.14 Equilibrium position x0 in response to electric field for different a cell thicknesses (8, 10,
12 and 15 µm), where the Frank elastic constant and the radius of microparticle are set as K = 7
pN and r = 2.5 µm, and bFrank elastic constants (8, 10, 12 and 15 pN), where the cell thickness
and the radius of microparticle are set as L = 10 µm and r = 2.5 µm. The electric field threshold
Ec depends on c cell thickness L and d Frank elastic constant

√
K

L is and the larger the Frank elastic constant K is, the larger the critical electric
field is needed to trigger the positional transition. The further study of electric field
threshold (see Fig. 8.14c and d) shows that it seems to be inversely proportional to
cell thickness L and proportional to the root square of Frank elastic constant K , a
behavior similar to the field threshold of Fréedericksz phase transition.

In a similar way to the previous sections, the dependence of the threshold value
on microparticles size and density is also investigated. Figure 8.15a and b depict
the equilibrium position against the applied electric field for different microparticle
sizes and densities, where the overlapping of equilibrium position in Fig. 8.15a
suggests that the critical electric value is almost independent of microparticle size.
Whereas the symmetry of the equilibrium position of microparticle with density
equal to 0.99 g · cm−3 and 1.03 g · cm−3 in Fig. 8.15b indicates that the slope of
the master curve of critical electric value is nearly independent of the magnitude of
equivalent microparticle density. To gain more insight into the dynamic behaviors
of the microparticle, the threshold value is plotted against

√
K/L in Fig. 8.15c and

d, where a Fréedericksz transition curve (black) is shown as well. The existence of
slightly difference instead of overlapping to each other for the equilibrium position
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Fig. 8.15 a Equilibrium position x0 for different radii of microparticle with K = 7 pN and L = 8
µm, showing the same critical value Ec of electric field triggering positional transition. b K = 8
pN and L = 10 µm. The dependence of Ec and

√
K/L for different c radii (2.2 µm, 2.35 µm,

2.5 µm and 3.0 µm); d densities (0.99, 1.0 and 1.03 g · cm−3) of microparticle, obeying strictly a
master curve given by theoretical prediction Eq. (8.36)

of microparticle with density equal to 0.99 g · cm−3 and 1.0 g · cm−3 in Fig. 8.15b,
leads to different intercepts of the Fréedericksz-like linear master curves for critical
electric field in Fig. 8.15d. Like before, the critical electric field for a positional
transition to occur for a microparticle suspended in a NLC cell remains unchanged
for different microparticle sizes and densities.

Similarly, a contrast between the numerical calculation results and the traditional
Fréedericksz transition curve (π

√
4π/|�ε|√K/L) in Fig. 8.15c and d shows that

the slope difference between them is by a prefactor of ∼ 5.8. More specifically, an
explicit expression

Ec � 5.8F − 0.08 = 5.8π

√
4πK

|�ε|L2
− 0.08 (8.36)

for critical electric field can be proposed as a theoretical prediction. Such a prediction,
as shown by straight line (red) in Fig. 8.15c and d, agrees very well for different
radii (2.2, 2.35, 2.5, and 3.0 µm) and densities (0.99, 1.0 and 1.03 g · cm−3) of
microparticle. This once again verifies the conclusion that the critical electric field is
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Fig. 8.16 Total energy profile as a function of the suspended microparticle position for different
external electric fields

independent of microparticle size, of which the reason might lie in that in the present
theoretical model, the microparticle is approximately treated as a dipole in the far
field expansion.

As for the case �ε < 0 when the external field applied parallel to both the two
plates and the anchoring direction, i.e., E‖z in Fig. 8.2b, a bistable equilibrium state
structure is found as the electric field exceeds a threshold value, as illustrated in
Fig. 8.16. In the small-field region, the external field applied tends to, first of all,
flatten the bottom of potential well, as shown in Fig. 8.16a and b. Further increase of
external field will change the one-state potential structure to a bistable one. As the
gravitational contribution to the total energy is still negligibly small compared to the
elastic one, one sees no involvement of gravitational force to the determination of
the critical value of positional transition for the microparticle in the NLC cell. Thus,
the positional transition in this case does not come from the competition between the
gravitational force and the equivalent elastic force but rather purely from the bistable
local minimum of the elastic potential, as shown in Fig. 8.16c and d. Nevertheless
the asymmetric gravitational force still plays a very important role in determining the
direction of microparticle motion (up or down) by acting as a small but significant
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Fig. 8.17 Equilibrium position x0 in response to electric field for different a cell thicknesses (7,
8, 9 and 10 µm), where the Frank elastic constant and the radius of microparticle are set as K = 7
pN and r = 2.5 µm, and b Frank elastic constants (8, 9, 10 and 11 pN), where the cell thickness
and the radius of microparticle are set as L = 10 µm and r = 2.5 µm. It is shown that a positional
transition occurs at electric field threshold Ec, which depends on c cell thickness L and d Frank
elastic constant

√
K

perturbation, or more precisely, by the sign of buoyant force (the sign of ρLC − ρmp).
Therefore, the magnitude of the asymmetric gravitational force in this case is trivial
but not its sign.

In order to understand how cell thickness and Frank elastic constant affect the
critical value of electric field, we plot equilibrium position against the applied elec-
tric field for different cell thicknesses (7, 8, 9 and 10µm) and Frank elastic constants
(8, 9, 10 and 11 pN), as shown in Fig. 8.17a and b, where a bifurcation of equilib-
rium position is found due to the bistable state structure of elastic potential and a
positional transition occurs when the external field applied reaches a threshold value.
Additionally, a Fréedericksz-like behavior is shown in Fig. 8.17c and d. As observed,
the thinner the cell thickness L is and the larger the Frank elastic constant K is, the
larger the critical electric field is needed to trigger the positional transition, which
corresponding to that the critical value of electric field is inversely proportional to L
and linearly proportional to

√
K .

Finally, in order to gain more insights into the physics hidden behind the dynamic
behaviors of microparticle, it is worthwhile to evaluate whether the critical electric
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Fig. 8.18 Equilibrium position x0 for different a radii (2.2 µm, 2.35 µm, 2.5 µm and 3.0 µm); b
densities (0.99, 1.0 and 1.02 g · cm−3) of microparticle with K = 8 pN and L = 10 µm, showing
the same critical value Ec of electric field triggering positional transition. The dependence of Ec
and

√
K/L for different c radii (2.2 µm, 2.35 µm, 2.5 µm and 3.0 µm); d densities (0.99, 1.0

and 1.02 g · cm−3) of microparticle, obeying strictly a master curve given by theoretical prediction
Eq. (8.37)

value is correlated with the size and density of the microparticle. The dependence
of the equilibrium position on the applied electric field for different microparticle
sizes and densities is shown in Fig. 8.18a and b, where the strict overlapping of
equilibrium position in the figures implies that the critical electric value is, as shown
in the previous section, independent of microparticle size and density. For a better
understanding of the dynamic behaviors of the microparticle, we further plot the
threshold value against

√
K/L in Fig. 8.18c and d, with a Fréedericksz transition

curve (black) shown as well. It is found that the critical electric field triggering a posi-
tional transition for a microparticle suspended in a NLC cell follows a Fréedericksz
master curve irrelevant to microparticle size and density.

More precisely, by comparing the numerical calculation results with the Fréeder-
icksz effect curve (π

√
4π/|�ε|√K/L) in Fig. 8.18c and d, it is found that the slope

difference between them is by a prefactor of∼ 3/π , leading to a proposed theoretical
prediction for the critical electric field. Such a prediction, as shown by straight line
(red) in Fig. 11c and d, agrees very well for different radii (2.2, 2.35, 2.5, and 3.0
µm) and densities (0.99, 1.0 and 1.02 g · cm−3) of microparticle.
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Table 8.1 Formation of a vertical fast “lane” for positional transition to occur (+) and not to occur
(−) for a microparticle suspended in an NLC cell in the presence of an external electric field

Anchoring Molecular
dielectric
anisotropy

Field direction

E ⊥ Plates E ‖ Plates

Homeotropic �ε > 0 + −
�ε < 0 − −

Planar E ⊥ Anchoring E ‖ Anchoring

�ε > 0 +/bistable − +

�ε < 0 − − +/bistable

Ec � 3

π
F = 6

√
πK

|�ε|L2
(8.37)

Based on the discussions in the sections above, it is quite obvious that the external
electric field applied enhances the existing anisotropy of distortion generated by the
boundaries of the NLC cell shaped by the movable suspended microparticle and the
two parallel walls. It looks like there exists an anisotropic movable “bubble” sur-
rounding the suspended microparticle, created by the external field and the boundary
conditions combined. Inside the “bubble” along the vertical direction a fast “lane”
will be constructed once the external field applied reaches a critical value. The elec-
tric field threshold is a signal to complete the construction and a “key” to switching
on the use of the fast “lane”, wobbling the “bubble” along the vertical direction, and
thereby tune the motion of the microparticle inside, which has been proved to be a
positional transition [44]. Interestingly, this kind of motion can be found in the some
SiFi novels picturing one of the possible tactics for intergalactic travel in the future by
moving a planetary object via wobbling the space-time around it, which is supported
by general relativity. After a thorough discussion of all the conditions combined to
create such a wobbling “bubble” in a NLC cell in the presence of an external electric
field, we come up with a table for a positional transition to occur in such a system, as
shown in Table8.1. It is found in the Table that out of the ten combinations of field
direction, molecular dielectric anisotropy, and anchoring feature, only four shows the
possible occurrence of positional transition. Moreover, for a nematic liquid crystal
cell with planar surface alignment, a bistable equilibrium structure for the transi-
tion is found when the direction of applied electric field is (a) perpendicular to the
two plates of the cell with positive molecular dielectric anisotropy, or (b) parallel to
both the two plates and the anchoring direction of the cell with negative molecular
dielectric anisotropy.
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8.5 Conclusion

In summary, using the Green’s function method, the total energy for a microparticle
suspended in an NLC cell in the presence of an external electric field is calculated.
It is found that with the application of the external electric field, it is possible to
create an anisotropic bubble around the microparticle with a vertical fast “lane” for
the microparticle to move from the midplane to a new equilibrium position. Such a
new equilibrium position is decided via a competition between the buoyant force and
the effective force built upon the microparticle inside the “lane”. The threshold value
of external field, which triggers positional transition under appropriate conditions
of surface anchoring feature, field direction and molecular dielectric anisotropy,
depends on thickness L and Frank elastic constant K and slightly on themicroparticle
size and density, in a Fréedericksz-like manner as coined by the authors before, but
by a factor. For an NLC cell with planar surface alignment, a bistable equilibrium
structure for the transition is found when the direction of the applied electric field
is (a) perpendicular to the cell wall with positive molecular dielectric anisotropy,
and (b) parallel to the undeformed director field n0 of the NLC cell with negative
molecular dielectric anisotropy. When the electric field applied is parallel to the two
plates and perpendicular to the anchoring direction, the microparticle suspended in
NLCwill be trapped in themidplane, regardless of the sign of themolecular dielectric
anisotropy. Explicit formulae proposed for the critical electric field agrees extremely
well with the numerical calculation.
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I.: Phys. Rev. E 77, 031705 (2008)

16. Ryzhkova, A.V., Škarabot, M., Muševič, I.: Phys. Rev. E 91, 042505 (2015)
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30. Pishnyak, O.P., Tang, S., Kelly, J.R., Shiyanovskii, S.V., Lavrentovich, O.D.: Phys. Rev. Lett.

99, 127802 (2007)
31. Pishnyak, O.P., Shiyanovskii, S.V., Lavrentovich, O.D.: J. Mol. Liq. 164, 132 (2011)
32. Pagès, Josep M., Ignés-Mullol, Jordi, Sagués, Francesc: Phys. Rev. Lett. 122, 198001 (2019)
33. Atzin, N., Guzmán, O., Gutiérrez, O.: Phys. Rev. E 97, 062704 (2018)
34. Denniston, C., Orlandini, E., Yeomans, J.M.: Phys. Rev. E 63, 056702 (2001)
35. Changizrezaei, S., Denniston, C.: Phys. Rev. E 99, 052701 (2019)
36. Ravnik, M., Žumer, S.: Liq. Cryst. 36, 1201 (2009)
37. Ravnik, M.: Liq. Cryst. Today 20, 77 (2011)
38. Tasinkevych, M., Silvestre, N.M., da Gama, M.M.T.: New J. Phys. 14, 073030 (2012)
39. Seyednejad, S.R., Mozaffari, M.R., Ejtehadi, M.R.: Phys. Rev. E 88, 012508 (2013)
40. Chernyshuk, S.B., Lev, B.I.: Phys. Rev. E 81, 041701 (2010)
41. Chernyshuk, S.B., Lev, B.I.: Phys. Rev. E 84, 011707 (2011)
42. Chernyshuk, S.B., Tovkach, O.M., Lev, B.I.: Phys. Rev. E 85, 011706 (2012)
43. D’Adamo, G., Marenduzzo, D., Micheletti, C., Orlandini, E.: Phys. Rev. Lett. 114, 177801

(2015)
44. Xiao, K., Chen, X., Wu, C.X.: Phys. Rev. Res. 1, 033041 (2019)
45. Kim, S.-J., Kim, J.-H.: Soft Matter 10, 2664 (2014)
46. Lee, B.-K., Kim, S.-J., Lev, B., Kim, J.-H.: Phys. Rev. E 95, 012709 (2017)
47. Frank, F.C.: On the theory of liquid crystals. Faraday Discuss 25, 19–28 (1958)
48. Rapini, A., Papoular, M.: J. Phys. (Paris), Colloq. 30, C4–54 (1969)
49. Stark, H.: Phys. Rep. 351, 387 (2001)
50. Stark, H.: Phys. Rev. E 66, 032701 (2002)
51. Wang, Y., Zhang, P., Chen, J.Z.Y.: Phys. Rev. E 96, 042702 (2017)
52. Yao, X., Zhang, H., Chen, J.Z.Y.: Phys. Rev. E 97, 052707 (2018)
53. Poulin, P., Stark, H., Lubensky, T.C., Weitz, D.A.: Science 275, 1770 (1997)
54. Poulin, P., Weitz, D.A.: Phys. Rev. E 57, 626 (1998)
55. Lubensky, T.C., Pettey, D., Currier, N., Stark, H.: Phys. Rev. E 57, 610 (1998)
56. Senyuk, B., Puls, O., Tovkach, O.M., Chernyshuk, S.B., Smalyukh, I.I.: Nat. Commun. 7,

10659 (2016)
57. Zhou, Y., Senyuk, B., Zhang, R., Smalyukh, I.I., de Pablo, J.J.: Nat. Commun. 10, 1000 (2019)
58. Ruhwandl, R.W., Terentjev, E.M.: Phys. Rev. E 54, 5204 (1996)
59. Ruhwandl, R.W., Terentjev, E.M.: Phys. Rev. E 56, 5561 (1997)
60. Loudet, J.C., Poulin, P.: Phys. Rev. Lett. 87, 165503 (2001)
61. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)


	8 Fréedericksz-Like Positional Transition Triggered by An External Electric Field
	8.1 Introduction
	8.2 Fréedericksz Transition in NLC
	8.3 Theoretical Modeling
	8.4 Results and Discussions
	8.4.1 Homeotropic Boundary Condition
	8.4.2 Planar Boundary Condition

	8.5 Conclusion
	References




