
Chapter 4
An Introduction to Emergence Dynamics
in Complex Systems
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Abstract Emergence is one of the most essential features of complex systems. This
property implies new collective behaviors due to the interaction and self-organization
among elements in the system, which cannot be produced by a single unit. It is our
task in this Chapter to extensively discuss the basic principle, the paradigm, and the
methods of emergence in complex systems based on nonlinear dynamics and statis-
tical physics. We develop the foundation and treatment of emergent processes of
complex systems, and then exhibit the emergence dynamics by studying two typical
phenomena. The first example is the emergence of collective sustained oscillation in
networks of excitable elements and gene regulatory networks. We show the signif-
icance of network topology in leading to the collective oscillation. By using the
dominant phase-advanced driving method and the function-weight approach, funda-
mental topologies responsible for generating sustained oscillations such as Winfree
loops and motifs are revealed, and the oscillation core and the propagating paths are
identified. In this case, the topology reduction is the key procedure in accomplishing
the dimension-reduction description of a complex system. In the presence ofmultiple
periodic motions, different rhythmic dynamics will compete and cooperate and even-
tually make coherent or synchronous motion. Microdynamics indicates a dimension
reduction at the onset of synchronization. We will introduce statistical methods to
explore the synchronization of complex systems as a non-equilibrium transition.
We will give a detailed discussion of the Kuramoto self-consistency approach and
the Ott-Antonsen ansatz. The synchronization dynamics of a star-networked coupled
oscillators andgive the analytical description of the transitions amongvarious ordered
macrostates. Finally, we summarize the paradigms of studies of the emergence and
complex systems.
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4.1 Introduction

The core mission of physics is to understand basic laws of everything in the
universe. The Chinese vocabulary the English word “UNIVERSE” is “宇宙”, which
is composed of two characters “宇” and “宙” with distinctly different meanings.
The word “宇” means the space, and “宙” refers to the time. The ancient Chinese
philosopher Shi Jiao(尸佼, or尸子, Shi Zi) in the Warring States period (475–221
B.C.), wrote that “四方上下曰宇, 往古来今曰宙” in his book “Shi Zi”. Similar
expressions also appeared in other books such as “Wen Zi: the Nature”, “Zhuang Zi.
Geng Sang Chu”, “Huai Nai Zi”, and so on [1]. These interesting citations indicate
that the mission of physicists is a deep understanding of basic laws of space and
time, or say, the common and fundamental laws of variations embedded in different
systems.

A basic paradigm of natural science developed throughout the past many decades
is the principle of reductionism. The essence of reductionism is that a system is
composed of many elements, with each element can be well understood and physi-
cally described. As long as the laws governing the elements are clear, it is expected
that the properties of the system can be well understood and reconstructed. This
belief had been successfully undertaken in the 18–19 centuries, where the structures
of matters, ranging from molecules, atoms, protons, neutrons, electrons to quarks,
were successfully revealed [2].

The reductionism encountered its crisis from the first half of the twentieth century.
The development of thermodynamics and statistical physics, especially the findings
of various phase transitions such as superconductivity and superfluidity, indicated
that these behaviors result from the collective macroscopic effect of molecules and
atoms,whichdonot occur at the atom/microscopic level. Physicistsworkingon statis-
tical physics interpreted the occurrence of phase transition as a symmetry breaking,
which can be extensively found in antiferromagnets, ferroelectrics, liquid crystals
and condensed matters in many other states. Philip Andersen connected the later
findings of quasiparticles, e.g. phonons, implies collective excitations and modes
organized by atoms with interactions [3]. Collective behaviors that are formed by
interacted units in a system, e.g. transitions among different phases, are termed as
the emergence.

The emergence property of many-body systems implies the collapse and failure
of reductionism. Andersen asserted:

The ability to reduce everything to simple fundamental laws does not imply the ability to
start from those laws and reconstruct the universe…… The behavior of large and complex
aggregates of elementary particles, it turns out, is not to be understood in terms of a simple
extrapolation of the properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviors requires research which
I think is as fundamental in its nature as any other.

Nowadays, emergent behaviors have been extensively found in living activities
of neuron systems, brains and the formation of proteins, DNA, and genes [4]. These
phenomena imply that even if one knows everything about an element, the behaviors
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of a system composed of these elements still cannot be simply predicted based on
individual properties. All these are called complex systems.

One can list some common properties of complex systems. When looked at in
detail, such as cooperation or self-organization, emergence, and adaption [5]. The
process of organized behavior arising without an internal or external controller or
leader in a system is called the self organization. Since simple rules produce complex
behavior in hard-to-predict ways, the macroscopic behavior of such systems is some-
times called the emergence. A complex system is then often defined as a system that
exhibits nontrivial emergent and self-organizing behaviors. The central question of
the sciences of complexity is how these emergent self-organized behaviors come
about [6].

Emergence is one of the most essential features of complex systems. In this
Chapter, we will discuss extensively the basic principle, the paradigm, and the
methods of emergence in complex systems based on nonlinear dynamics and statis-
tical physics. We develop the foundation and treatment of emergent processes of
complex systems, and then exhibit the emergence dynamics by studying two typical
phenomena.

The first example is the emergence of collective sustained oscillation in networks
of excitable elements and gene regulatory networks. We show the significance of
network topology in leading to the collective oscillation. By using the dominant
phase-advanced driving method and the function-weight approach, fundamental
topologies responsible for generating sustained oscillations such as Winfree loops
and motifs are revealed, and the oscillation core and the propagating paths are iden-
tified. In this case, the topology reduction is the key procedure in accomplishing the
dimension-reduction description of a complex system.

In the presence of multiple periodic motions, different rhythmic dynamics will
compete and cooperate and eventuallymake coherent or synchronousmotion.Micro-
dynamics indicates a dimension reduction at the onset of synchronization. We will
introduce statistical methods to explore the synchronization of complex systems as a
non-equilibrium transition. We will give a detailed discussion of the Kuramoto self-
consistency approach and theOtt-Antonsen ansatz. The synchronization dynamics of
a star-networked coupled oscillators gives the analytical description of the transitions
among various ordered macrostates.

We will summarize the paradigms of studies of the emergence and complex
systems based on the above discussions.

4.2 Emergence: Research Paradigms

Emergence implies the self-organized behavior in a complex system, which occurs
under the physically non-equilibrium condition. This collective feature comes from
the cooperation of elements through coupling, and it cannot be observed at the
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microscopic level. To reveal the emergent dynamics at the macroscopic level, scien-
tists have proposed various theories from microscopic to statistical and macroscopic
viewpoints.

4.2.1 Entropy Analysis and Dissipative Structure

Let us first discuss the possibility of self-organization in non-equilibrium systems
from the viewpoint of thermodynamics and statistical physics. This implicitly
requests an open system that can exchange matters, energy, and information with
its environment, as shown in Fig. 4.1. We focus on the entropy change dS in a
process of an open system. One may decompose the total entropy production dS into
the sum of two contributions:

dS = diS + deS, (4.1)

where diS is the entropy production due to the irreversible process inside the system,
and deS is the entropy flux due to the exchanges with the environment. The second
thermodynamic law implies that

diS ≥ 0, (4.2)

where diS = 0 denotes the thermal equilibrium state. If the system is isolated,
deS = 0, one has dS = diS > 0. In the presence of exchanges with the environment,
deS �= 0.When this open system reaches the steady state, i.e. the total entropy change
dS = 0. This leads to

dS = −deS < 0. (4.3)

Fig. 4.1 A schematic
entropy process of an open
system exchanging with the
environment, which leads to
the emergence of
non-equilibrium structure
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This means that if there exists a sufficient amount of negative entropy flow,
the system can be expected to maintain an ordered configuration. Prigogine and
colleagues thus claimed that “Nonequilibrium may be a source of order”, which
forms the base of the dissipative structure theory [7].

The emergence of dissipative structure depends on the degree of deviation from the
equilibrium state of the system. In the small-deviation regime, the system still keeps
its thermodynamic property, and theminimum entropy principle applies. In the linear
regime, numerous theories such as linear response theory and dissipation-fluctuation
theorem have been proposed. As the system is driven so far from the equilibrium state
that the thermodynamic branch becomes unstable, structural branches may emerge
and replace the thermodynamic branch [7, 8]. This can be mathematically described
in terms of dynamical system theory [9, 10].

Denote the macrostate of a complex system as
⇀
u (t) = (u1, u2, . . . , un), the

evolution of the state can be described as

d
⇀
u /dt = ⇀

f
(

⇀
u , ε

)
, (4.4)

where
⇀

f = (f1, f2, . . . , fn) is the nonlinear function vector, and ε are a group of
control parameters. Equation (4.4) is usually a group of coupled nonlinear equations
and can be extensively discussed by using theories of dynamic systems, and the
stability of possible states and bifurcations have been exhaustively studied in the
past decades. Readers can refer any textbook on nonlinear dynamics and chaos to
gain a detailed understanding [11, 12].

Considering the spatial effect, i.e. u = u(r, t). The simplest spatial effect in
physics is the diffusion process, which is given by Fick’s law as the proportional
relation between the flux and the gradient of matter condensation in space:

J = −D∇u, (4.5)

whereD is the diffusion coefficient. Therefore in this case the governing equation of
motion can be written as

∂u/∂t = f (u, ε) + D∇2u, (4.6)

where D denotes the diffusion coefficient. Equation (4.6) is called the reaction–
diffusion equation. This equation and related mechanism were first proposed by
Alan Turing in 1952 as a possible source of biological organism [13]. The reaction
term f (u, ε) gives the local dynamics, which is the source of spatial inhomogeneity.
The diffusion term tends to erase the spatial differences of the state u, thus it is the
source of spatial homogeneity. Both mechanisms appears at the right hand side of
Eq. (4.6) and compete, resulting in an self-organized state. Equation (4.6) and related
dynamical systems have been extensively explored in the past a few years, and rich
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spatiotemporal patterns and dynamics have been revealed. Readers can reach related
reviews and monographs to get more information [14–16].

4.2.2 Slaving Principles and the Emergence of Order
Parameters

The study of dissipative structure is, in fact, largely based on the dynamics of
macrostate variables. However, it is very important to appropriately select these
macroscopic variables. These state variables are required to reveal the emergence of
dissipative structures, hence they should act as order parameters similar to studies
of those in phase transitions. The concept of order parameter was first introduced in
statistical physics and thermodynamics to describe the emergence of order and the
transitions of a thermodynamic system among differentmacroscopic phases [17–19].
It had been naturally extended to non-equilibrium situations to reveal the order out
of equilibrium.

Haken and his collaborators proposed the synergetic theory and focused on the
conditions, features and evolution laws of the self organization in a complex system
with a large number of degrees of freedom under the drive of external parameters [20,
21]. and the interaction between subsystems to form spatial, temporal or functional
ordered structures on amacroscopic scale. The core of synergetics is the slaving prin-
ciple, which reveals how order parameters emerge from a large number of degrees
of freedom through competitions and collaborations. As the system approaches the
critical point, only a small number of modes/variables with a slow relaxation domi-
nate the macroscopic behavior of the system and characterize the degree of order
(called the order parameters) of the system. A large number of fast-changing modes
are governed by the order parameters and can be eliminated adiabatically. Thus we
can establish the basic equation of the order parameters. The low-dimensional evolu-
tion equation of order parameters can thus be used to study the emergence of various
non-equilibrium states, their stability and bifurcations/transitions.

To clarify the emergence of order parameters, let us first take a simple two-
dimensional nonlinear dynamical system as an example. Suppose the following
nonlinear differential equations with two variables (u(t), s(t)):

u̇ = αu − us, (4.7a)

ṡ = −βs + u2. (4.7b)

where the linear coefficients are α, β, and β > 0. Let us set α as the modulated
parameter. When α < 0, the stationary solution is (u, s) = (0, 0). By changing the
parameter α to slightly larger than 0, i.e. 0 < α � 1, the solution (u, s) = (0, 0)
becomes unstable. The new solution
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s = α, u = √
αβ (4.8)

emerges and keeps stable. However, because the new stable solution (4.8) is still near
(0,0), (4.7b) can be solved by integrating (4.7b) approximately as

s(t) =
t∫

0

e−β(t−τ)u2(τ )dτ

= 1

β
u2(t) − 2

β

t∫

0

e−β(t−τ)u(τ )u̇(τ )dτ . (4.9)

The first expression is the integral form, and the second expression can be obtained
by using the partial integral. Considering 0 < α � 1, and the variables u, s, u̇, ṡ are
also small but with different order. Using the simple scaling analysis, one can get

u∼√
α, s∼α, u̇∼α3/2, ṡ∼uu̇∼α2. (4.10)

Therefore |u̇| � |u| when α � 1, the second term in the second expression
of (4.9) is a high-order term and can be neglected. Thus one obtains the following
approximated equation:

s(t) ≈ 1

β
u2(t). (4.11)

By comparing (11a) and (4.7b), one can easily find that the result of (11a) is
equivalent to setting

ṡ = 0 (4.12)

in (4.7b), and one can get s(t) = u2(t)/β. Substituting it to (4.7a) one obtains

u̇ = αu − 1

β
u3. (4.13)

This is a one-dimensional dynamical equation and can be easily solved.
The proposition (4.12) is called the adiabatic elimination principle, which is a

commonlyused approximationmethod adopted in appliedmathematics. This approx-
imation has a profound physical meaning. Eq. (4.12) indicates that, under this condi-
tion, the variable u(t) is a slow-varying and linearly-unstable mode called the slow
variable, while s(t) is a fast-changing and linearly-stable mode called the fast vari-
able. The real essence of (4.12) is that, near the onset of the critical point, the fast
mode s(t) can be so fast that it can always keep up with the change of the slow mode
u(t), and the fast variable can be considered as the function of the slow variable, as
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shown in (4.11). In other words, the slowmode dominates the evolution of the system
and of course, the fast mode can be reduced in terms of adiabatic elimination, leaving
only the equation of the slow mode. Therefore, the slow mode will determine the
dynamical tendency of the system (7) in the vicinity of the critical point and can be
identified as the order parameter. The emergence of order parameters in a complex
system is the central point of the slaving principle, which was proposed by Hermann
Haken [21].

The above discussion exhibits a typical competition of two modes in a two-
dimensional dynamical system. The insightful thought embedded in the slaving
principle can be naturally extended to complex systems with a large number of
competing modes. Suppose an n-dimensional dynamical system ẋ = F(α, x), where
α is the controlling parameter. The equations ofmotion can bewritten in the following
canonical form near the critical point x = 0:

ẋ = A(α)x + B(x,α), (4.14)

where x is an n-dimensional state vector x = (x1, x2, . . . , xn)
T ,A = A(α) is an n×n

Jacobian matrix, and B(x, α) is an n-dimensional nonlinear function vector of x. The
eigenvalues of the matrix A are {λi(α)}, which are aligned as the descending order
according to their real parts, i.e.

Reλ1 ≥ Reλ2 ≥ . . . ≥ Reλn.

Assume that x = 0 is a stable solution of (4.14) in a certain parameter regime of
α, i.e. the real parts of all eigenvalues are negative,

Reλi(α) < 0, i = 1, . . . , n. (4.15)

By modulating the parameter α to a critical point, say, α > αc, when Re λ1

changes from negative to positive, i.e.

0 < Reλ1 << 1, (4.16)

and other eigenvalues {Reλ2,Reλ3, . . . ,Reλn} remain negative. In this case the solu-
tion x = 0 becomes unstable. By introducing the linear transformation matrixT of
the Jacobian A as

Ã = T−1AT (4.17)

so that the new matrix is diagonalized as.
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Ã =

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 . . . 0
0 0 0 0 λn

⎞
⎟⎟⎟⎟⎟⎠

(4.18)

To distinguish the eigenvalue λ1 from other eigenvalues, we relabel these
eigenvalues as.

λu = λ1, λ
1
s = λ2, λ

2
s = λ3, . . . , λ

(n−1)
s = λn,

where Reλsi < 0, i = 1, 2, . . . n − 1. Then the corresponding state vector x can be
transformed to.

(u, s)T = Tx. (4.19)

Equations (4.14) can be rewritten as

u̇ = λuu + B̃u(u, s), (4.20a)

ṡ = −λss + B̃s(u, s), (4.20b)

where s is an (n − 1)-dimensional vector s = (s1, s2, . . . , sn−1)
T .

By using the above procedure, one successfully separates the slowmode u(t) from
all the variables in terms of the transformation (4.20a), and the remaining variables
{si(t), i = 1, 2, . . . , n − 1} are fast variables that satisfy Eq. (4.20b). One can apply
the adiabatic elimination to (4.20b) based on the same reason as

ṡ = 0. (4.21)

This leads to the following n − 1 equations:

λss = −B̃s(u, s). (4.22)

Fast variables s can be analytically solved from the n − 1 equations of (4.22) as
the function of the slow variable u in the form s = s(u). Then by inserting s(u) into
Eq. (4.20a), one obtains

u̇ = λuu + B̃u(u, s(u)). (4.23)

This is the one-dimensional dynamical equation of the order parameter u, which
can be easier to analyze.

When there exist degenerations for the first m > 1 eigenvalues {λ1, λ2, . . . , λm},
which means that they have the same real parts:
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Reλ1(α) = Reλ2(α) = . . . = Reλm(α),m < n, (4.24)

thesemmodes may lose their stability simultaneously at the critical point and all are

slow modes, and their eigenvalues λu = (λ1, λ2, . . . , λm). In this case u and
∼
Bu in

(4.23) should be replaced by vectors. Therefore

u = (u1, u2, . . . , um)T , (4.25a)

s = (s1, s2, . . . , sn−m)T , (4.25b)

B̃u =
(
B̃1
u, B̃

2
u, . . . , B̃

m
u

)T
, (4.25c)

and the equations of motion are rewritten as

ṡ = −λss + B̃s(u, s), u̇ = λuu + B̃u(u, s). (4.26)

s(u) can be obtained in terms of the adiabatic elimination (4.20b). Eq. (4.23) becomes
m-dimensional equations of motion by inserting the formula s(u) into (4.20a):

u̇ = λuu + B̃u(u, s(u)). (4.27)

These are the equations of motion of the order parameters u = (u1, u2, . . . , um)T .
By comparing Eq. (4.27) with Eq. (4.23), one finds that these two equations have the
same form. However, they are essentially different. In Eq. (4.26), the s variables are
functions of time t, while in Eq. (4.27), s are functions of the slow variables u, and the
degrees of freedom of (4.27) is considerably less than that of (4.26). In practice, only
a very small portion of modes may lose their stability at a critical point, therefore
one can consider the procedure from Eqs. (4.20) to (4.23) and (4.27) as a reduction
from high-dimensional to low-dimensional dynamics governed by only a few order
parameters. This obviously is a great dynamical simplification, which is an important
contribution of the slaving principle at the critical point.

The slaving principle is closely related to the central manifold theorem in topo-
logical geometry. The center-manifold theorem is a commonly used method of
dimensionality reduction, which is suitable for studying autonomous dynamical
systems. The center-manifold method uses the characteristic of the tangent mani-
fold and the corresponding subspace to find out the equation of the system on the
center manifold. For high-dimensional dynamical systems, it is difficult to study the
dynamical system directly through the traditional bifurcation behavior. In order to
better grasp the nature of the problems to be studied, the central-manifold theorem
is generally adopted to reduce the system to lower dimensional equations.
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4.2.3 Networks: Topology and Dynamics

The blossom of network science is absolutely a great milestone in the exploration
of complexity. Early studies of complex networks started from the graph theory in
mathematics. One can infer from the early work of Euler on the Konisburg bridge
problem. Graph theory proposed a number of useful concepts and laws in analyzing
the sets composed of vertices and edges. Although the studies of networks can be
traced back to the development of graph theory in mathematics, the scope of today’s
network science is an interdisciplinary field covering extensive subjects fromphysics,
chemistry, biology, economy, and even social science. The topics of network science
thus are explosive with the development of science and technology, the contributions
from various subjects vividly enrich the network science.

The important mission of network science is to give a common understanding
of various complex systems from the viewpoint of topology. Behind this mission
the important issue relates to the reduction of complexity based on network theory
and dynamics. Nowadays we can easily get a knowledge and big data via various
measure techniques from complex systems. How to gain useful information from
these data is essentially a process of reduction, i.e. to get the truth by getting rid of
redundant information. To perform such an effective reduction of a complex system
from itsmicrodynamics, the very important starting point is to identify an appropriate
microscopic description. Two ingredients are indispensable when one studies the
microdynamics, i.e. unit dynamics and the coupling patterns of units in a system.
Now let me discuss these two points.

Different systems are composed of units with different properties. This is the
fundamental viewpoint of reductionism. For example, a drop of water is in fact
composed of ~1023 H2O molecules, the human brain is composed of ~1011 neurons,
and a heart tissue is composed of ~1010 cardiac cells. Apparently, these units work
with different mechanisms and are described by distinct dynamics. It has been a
central topic in exploring the mechanism of these units. For example, a single neuron
or a cardiac tissue works in an accumulating-firing manner and can be modeled by a
mimic nonlinear electronic circuit. This dynamical feature is described by a number
of excitable models, e.g. the Hodgkin-Huxley model, the Fitzhugh-Nagumo model,
and so on.

The second ingredient is themodelling of interactions among units. At the particle
level, the forces among quarks, elementary particles, atoms, molecules are quite
different. It is an important task for physicists to explore these interactions. The inter-
actions out of physics are also system dependent. For example, the relations of indi-
viduals in a society are complicated, depending strongly on the type of information
that is exchanged between two individuals.

It becomes astonishing when there are too many individuals in a system, when the
formsof unit dynamics and coupling functions sometimesmatter,while inmanycases
they are not essential. A typical situation happenswhen the coupling topology ismore
important than the specific form of coupling function. The behaviors of emergence
formwhen themacroscopic behaviors appear for a complex systemwhile they do not
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happen at the level of each unit. Recent studies of the so-called complex networks
stimulated by milestone works on small-world [22] and scale-free networks [23]
provide a powerful platform in studying complex systems. For example, it is a signif-
icant topic to explore network properties of biological gene, DNA, metabolic, and
neural networks, social and ecological networks, WWW and internet networks, and
so on. Another important topic is the study of dynamical processes on networks, such
as synchronization, propagation processes, and network growth. Interested readers
may refer related monographs and reviews for more knowledge of network science
[24–30].

4.3 Emergence of Rhythms

4.3.1 Biological Rhythms: An Introduction

Biological rhythm is an old question and can be found ubiquitously in various living
systems [31]. The 2017 Nobel Prize in Physiology or Medicine was awarded to J. C.
Hall, M. Rosbash and M.W. Young for their discoveries of molecular mechanisms
that control circadian rhythms [32, 33]. Circadian rhythms are driven by an internal
biological clock that anticipates day-night cycles to optimize the physiology and
behavior of organisms. The exploration of the emergence of circadian rhythms from
the microscopic level (e.g. molecular or genetic levels) aroused a new era of studies
on biological oscillations [34] (Fig. 4.2).

Observations that organisms adapt their physiology and behavior to the time of
the day in a circadian fashion have been recorded for a long time. The very early
observations of leaf and flower movements in plants, for example, the leaves of
mimosa plants close at night and open during the day presented interesting biological
clocks. In 1729, the French scientist de Mairan observed that the leaves of a mimosa
plant in the dark could still open and close rhythmically at the appropriate time of the
day, implying an endogenous origin of the daily rhythm rather than external stimulus
[35].

The genetic mechanism responsible for the emergence of circadian rhythms was
first explored by S. Benzer and R. Konopka from the 1960s. In 1971, their pioneering
work identified mutants of the fruit fly Drosophila that displayed alterations in the
normal 24-h cycle of pupal eclosion and locomotor activity, which was named as
period (PER) [36]. Later on, Hall and Rosbash at Brandeis University [37] andYoung
at Rockefeller University [38] isolated andmolecularly characterized the period gene
(Fig. 4.3).

Further studies by Young, Hardin, Hall, Rosbash and Takahashi revealed that
the molecular mechanism for the circadian clock relies not on a single gene but on
the so-called transcription-translation feedback loop (TTFL), i.e. the transcription
of period and its partner gene timeless (TIM) are repressed by the PER and TIM
proteins, generating a self-sustained oscillation [39–42]. These explorations led to
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Fig. 4.2 The observation of de Mairan on the rhythmic daily opening-close in the sun and in the
dark. a in the normal sunlight-dark environment. b always in dark., The environment-independent
open-closing implies an endogenous origin of the daily rhythm. (Adapted from [33])

Fig. 4.3 a A simplified illustration of the biochemical process of the circadian clock. b The
transcription-translation feedback loop (TTFL), i.e. the transcription of period and its partner gene
timeless (TIM) are repressed by the PER and TIM proteins, generating a self-sustained oscillation.
(Adapted from [33])
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numerous potential studies that revealed a series of interlocked TTFL’s together with
a complex network of reactions. These involve regulated protein phosphorylation
and degradation of TTFL components, protein complex assembly, nuclear transloca-
tion and other post-translational modifications, generating oscillations with a period
of approximately 24 h. Circadian oscillators within individual cells respond differ-
ently to entraining signals and control various physiological outputs, such as sleep
patterns, body temperature, hormone release, blood pressure, and metabolism. The
seminal discoveries by Hall, Rosbash and Young have revealed a crucial physio-
logical mechanism explaining circadian adaptation, with important implications for
human health and disease.

Essentially, biological rhythms ubiquitously existing in various biological systems
are physically oscillatory behaviors, which are indications of temporally periodic
dynamics of nonlinear systems. On the other hand, rhythmic phenomena can be
extensively observed in various situations, ranging from physics, and chemistry to
biology [6, 43]. Therefore, these oscillatory behaviors with completely different
backgrounds can be universally studied in the framework of nonlinear dynamics.

4.3.1.1 Self-sustained Oscillation in Simple Nonlinear Systems

Self-sustained oscillation, also called the limit cycle, which is defined as a typical
time-periodic nonlinear behavior, has received much attention throughout the past
century [44]. The essential mechanism of sustained oscillation is the existence of
feedback in nonlinear systems, but the source of feedback depends strongly on
different situations.

First, the competition-balance mechanism between the positive feedback and the
negative feedback can maintain a stable oscillation. In mechanical systems, for
example, the conventional Van der Pol oscillator, the adjustable damping provides
the key mechanism for the energy compensation to sustain a stable limit cycle.
The damping becomes positive to dissipate energy when the amplitude is large and
becomes negative to consume energy when the amplitude is small. Stability analysis
can well present the dynamical mechanism of the limit-cycle motion. There are a lot
of historic examples and models in describing these typical oscillatory dynamics.

Let us study a simple nonlinear system with a limit cycle oscillation by adopting
the following complex dynamical equation:

ż = (λ + iω)z − bz|z|2, (4.28)

where z(t) = x(t) + iy(t) is a complex order parameter. We use “i” to denote the
imaginary index throughout this chapter. Physically the order parameter z(t) can be
obtained via the reduction procedure by eliminating the fast modes. Equation (4.28)
presents a two-dimensional dynamics in real space, and the possible time-dependent
solution of this equation is the limit cycle.
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To obtain an analytical solution, it is convenient to introduce the polar coordinates.

z(t) = r(t)eiθ(t),

and Eq. (4.28) can be decomposed into the following two-dimensional equations of
the phase and the amplitude that are uncoupled to each other:

θ̇ (t) = ω, (4.29a)

ṙ(t) = λr − br3. (4.29b)

The phase Eq. (4.29a) indicates that the phase evolves uniformly with the phase
velocity ω. The amplitude Eq. (4.29b) has two stationary solutions for λ > 0: the
unstable solution r = 0 and the stable solution r0 = √

λ/b. By considering the
dynamics of both the phase and the amplitude, the latter one represents the periodic
solution of Eq. (4.28) as.

z(t → ∞) = r0e
i(ωt+θ0).

This is a stable and attractive limit-cycle, and the relaxation process from an
arbitrary initial state can lead to this solution. The stability of this sustained oscillator
is the result of the competition between the positive feedback termλr and the negative
feedback term −br3.

The second source of the feedback mechanism comes from the collaboration of
units in a complex system, which is our focus here. In the following discussions,
we will study the collective oscillation of a population of interacting non-oscillatory
units. Because each unit in the system does not exhibit oscillatory behavior, the
feedback mechanism of sustained oscillations should come from the collaborative
feedback of units.

The self-sustained oscillation in complex systems consisting of a large number
of units is a typical emergence that results from more complicated competitions
and self organizations, and the mechanism of this collective oscillation was of great
interest in recent years [45–47]. It is thus very interesting and important to explore
the mechanism of oscillatory dynamics when these units interact with each other
and study how a number of non-oscillatory nodes organize themselves to emerge a
collective oscillatory phenomenon [48].

4.3.1.2 Self-sustained Oscillations in Complex Systems

The topic of self-sustained oscillations in complex systems was largely moti-
vated by an extensive study and a strong background of system biology. Non-
oscillatory systems exist ubiquitously in biological systems, e.g. the gene segments
and neurons. People have extensively studied such common behaviors in nature, such
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as oscillations in gene-regulatory networks [46, 49–53], neural networks and brains
[54–59].

The exploration of the key determinants of collective oscillations is a great chal-
lenge. It is not an easy task to directly apply the slaving principle in synergetics
to dig out the order parameters in governing the self-sustained oscillations in this
complex system. Recent progresses revealed that some fundamental topologies or
sub-networks may dominate the emergence of sustained oscillations. Although the
collective self-sustained oscillation emerges from the organization of units in the
system, only a small number or some of key units form typical building blocks
and play the dominant role in giving rise to collective dynamics. Thus some key
topologies that are composed of a minor proportion of units may lead to a collective
oscillation and most other units play the role of slaves. We may call these organizing
centers the self-organization core or the oscillation source.

Theoretically, diverse self-sustained oscillatory activities and related determining
mechanisms have been reported in different kinds of excitable complex networks.
It was discovered that one-dimensional Winfree loops may support self-sustained
target group patterns in excitable networks [60, 61]. Moreover, it was also revealed
the center nodes and small skeletons to sustain target-wave-like patterns in excitable
homogeneous random networks [62–64]. The mechanism of long-period rhythmic
synchronous firings in excitable scale-free networks has been explored to explain the
temporal information processing in neural systems [65].

On the other hand, node dynamics on biological networks depends crucially
on different systems. For example, the gene dynamics is totally different from
excitable dynamics, and the network structures are also different. It was found
some fundamental building blocks in gene-regulatory networks can support sustained
oscillations, and the interesting chaotic dynamics and its mechanism were studied
[66–68].

Revealing the key topology of the organizing center, oscillation cores and further
the propagation path is the dominant mission in this section. We first propose two
useful methods, i.e. the dominant phase-advanced driving method and the func-
tional weight approach, and then apply them to analyze and further pick up the key
topologies from dynamics.

4.3.2 The Dominant Phase-Advanced Driving (DPAD)
Method

An important subject in revealing the coordination of units is to explore the core struc-
ture and dynamics in the organization process of a large number of non-oscillatory
units. DPAD is a dynamical method that can find the strongest cross driving of
the target node when a system is in an oscillatory state. Here, we briefly recall the
dynamical DPAD structure [60–64].
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Given a network consisting of N nodes with non-oscillatory local dynamics
described by well-defined coupled ordinary differential equations, there are M (M
> N) links among these different nodes. We are interested in the situation when the
system displays a global self-sustained oscillation and all nodes that are individu-
ally non-oscillatory become oscillatory. It is our motivation to find the mechanism
supporting the oscillations in terms of the network topology and oscillation time
series of each node.

Let us first clarify the significance of nodes in a network with sustained oscil-
lations by comparing their phase dynamics. Obviously, the oscillatory behavior of
an individually non-oscillatory node is driven by signals from one or more interac-
tions with advanced phases, if such a phase variable can be properly defined. We
call such a signal the phase-advanced driving (PAD). Among all phase-advanced
interactions, the interaction giving the most significant contribution to the given
node can be defined as the dominant phase-advanced driving (DPAD). Based on
this idea, the corresponding DPAD for each node can be identified. By applying
this network reduction approach, the original oscillatory high-dimensional complex
network ofN nodeswithM vertices/interactions can be reduced to a one-dimensional
unidirectional network of size N with M

′
unidirectional dominant phase-advanced

interactions.
An example of clarifying the DPAD is shown in Fig. 4.4a. The black/solid curve

denotes the given node as the reference node. Many nodes linking directly to this
reference can be checked when a given network is proposed. Suppose there are

Fig. 4.4 a A schematic plot of the DPAD. As comparisons, the reference oscillatory time series,
a usual PAD and a phase-lagged node dynamics are also presented, respectively. b An example of
simplified (unidirectional) network in terms of the DPAD scheme. (Adapted from Ref. [63])
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three nodes whose dynamical time series labeled by green/dashed, blue/dotted and
red/dash-dotted curves, respectively. The green/dashed curve exhibits a lagged oscil-
lation to the reference curve, therefore one calls it the phase-lagged oscillation. The
blue/dotted and red/dash-dotted curves provide the drivings for exciting the reference
node, so these curves are identified as PAD. The blue/dotted one presents the earliest
oscillation and makes the most significant contribution, thus it is the DPAD.

Figure 4.4b gives an illustration of aDPADstructure consisting of one loop and the
nodes outside the loop radiated from the loop. For excitable node dynamics, as shown
below, the red nodes form a unidirectional loop that acts as the oscillatory source,
and yellow nodes beyond the loop form paths for the propagation of oscillations.

The DPAD structure reveals the dynamical relationship between different nodes.
Based on this functional structure, we can identify the loops as the oscillation source,
and illustrate the wave propagation along various branches. All the above ideas
are generally applicable to diverse fields for self-sustained oscillations of complex
networks consisting of individual non-oscillatory nodes.

4.3.3 The Functional-Weight (FW) Approach

The aboveDPADapproach provides away in analyzing the phase relations embedded
in dynamical data to unveil information on unit connections. In some cases, it is
possible to get the detailed dynamics of coupled systems.We start from the following
dynamical system composed of N units labeled as x = (x1, x2, . . . , xN ):

dxi
dt

= λixi + fi(x), (4.30)

where xi denotes the state variable of the i-th node in a network (for simplicity
one adopts the one-dimensional dynamics on the nodes). We separate the linear
component from the nonlinear coupling function fi(x) at the right-hand side of (4.30).
It is ourmotivation here to explore the topologicalmechanismof collective oscillation
in networks of coupled non-oscillatory units. Therefore the linear coefficients λi are
negative, and we set λi = −1 without losing generality.

The functional weight (FW) approach comes from a simple but solidly standing
idea: as all the nodes in the networks cannot oscillate individually, the oscillation of
any node i (the target node) is due to the interactions from its neighbors represented
by fi(x) in Eq. (4.30). However, all the inputs from the neighbors to the target node
are mixed together in fi(x) by nonlinear functions. To measure the importance of
different neighbors to the oscillation of the target node, contributions from all these
neighbors should be separated. The cross differential force between the i-th and the
j-th nodes can be measured by.
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δḟij(x) = (
∂fi(x)/∂xj

)
ẋj, (4.31)

where the total driving force is expressed as a simple summation of the contributions
of all its neighbors.

δḟi(x) =
N∑

j=1,j �=i

δḟij(x). (4.32)

It is emphasized that the differential form ∂fi(x)/∂xj rather than fi(x) itself plays
crucial role in the oscillation generation, because the amount of variation of the target
node i caused by the variation of a given neighbor j determines the functional driving
relationship from j to i. At time t, the weight of the contribution of the j-th node can
be easily computed from Eq. (4.32) as

wij(t) =
∣∣δḟij

∣∣
∑N

j=1,j �=i

∣∣δḟij(x)
∣∣ =

∣∣(∂fi/∂xj
)
ẋj
∣∣

∑N
j=1,j �=i

∣∣(∂fi/∂xj
)
ẋj
∣∣ , (4.33)

which is nothing but the normalized Jacobian matrix at time t weighted by ẋi. The
overall weight is integrated over T as

wij = lim
T→∞

1

T

t0+T∫
t0

wij(t)dt. (4.34)

For periodic oscillatory dynamics,

wij = 1

T

t0+T∫
t0

wij(t)dt, (4.35)

where T is the period for periodic oscillations. The quantity wij introduced here
represents the weight of neighbor node j in driving the target node i to oscillate
and serves as the quantitative measure of the importance of the link from node j to
node i. wij is positive or zero, and normalized as

∑N
j=1,j �=iwij = 1. A zero or small

wij represents no or a weak functional interaction while large or unity wij denotes a
strong or dominant driving [66–68].

In the following we will focus on self-sustained oscillations in excitable networks
and regulatory gene networks. One can find that both types of systems possess a
common feature, that is, only a small number of units participate in the global oscil-
lation, and some fundamental structures act as dominant roles in giving rising to
oscillatory behaviors in the system, although the organizing cores differ for these
two types of networks.
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4.3.4 Self-sustained Oscillation in Excitable Networks

4.3.4.1 Oscillation Sources and Wave Propagations

We first take the representative excitable dynamics as a prototype example to reveal
themechanism of global oscillations. Cooperation among units in the system leads to
an ordered dynamical topology to maintain the oscillatory process. In regular media,
the oscillation core of a spiral wave is a self-organized topological defect. People also
found that loop topology is significant in maintaining the self-sustained oscillation.
Jahnke and Winfree proposed the dispersion relation in the Oregonator model [68].
Courtemanche et al. studied the stability of the pulse propagation in 1D chains [69].
If a loop composed of excitable nodes can produce self-sustained oscillations, one
may call it the Winfree loop.

It is not difficult to understand the loop topology for a basic structural basis of
collective oscillation for a network of non-oscillatory units. An excitable node in a
sustained oscillatory state must be driven by other nodes. To maintain such drivings,
a simple choice is the existence of a looped linking among interacting nodes. A local
excitation leads to a pulse and are propagated along the loop to drive other nodes
in order, which forms a feedback mechanism of repeated driving. Furthermore, the
oscillation along the loop can be propagated by nodes outside the loop and spread
throughout the system. The propagation of oscillation in the media gives rise to the
wave patterns.

The loop structure is ubiquitous in real networks plays an important role in network
dynamics. Recurrent excitation has been proposed to be the reason supporting self-
sustained oscillations in neural networks. The DPAD method can reveal the under-
lying dynamic structure of self-sustained waves in networks of excitable nodes and
the oscillation source. In complex networks, numerous local regular connections
coexist with some long-range links. The former plays an important role in target wave
propagation and the latter are crucial for maintaining the self-sustained oscillations.

We use the following Bär-Eiswirth model [60] to describe the excitable dynamics
and consider an Erdos–Renyi (ER) random network [29]. The network dynamics is
described by.

u̇i = −1

ε
ui(ui − 1)

(
ui − vi + b

a

)
+ D

N∑
j=1

Ai,j
(
uj − ui

)
, (4.36a)

v̇i = f (ui) − vi (4.36b)

Variables ui(t) and vi(t) describe the activator and the inhibitor dynamics of the
i-th node, respectively. The function f (u) takes the following piecewise form:
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f (u) =
⎧
⎨
⎩
0, if u < 1/3,
1 − 6.75u(u − 1)2, if 1

3 ≤ u < 1,
1, if u > 1.

(4.37)

The relaxation parameter ε � 1 represents the time ratio between the activator
u and the inhibitor v. The dimensionless parameters a and b denote the activator
kinetics of the local dynamics and the ratio uT = b/a can effectively control the
excitation threshold. D is the coupling strength between linking nodes. A = {Ai,j} is
the adjacencymatrix. For a symmetric andbidirectional network, thematrix is defined
as Ai,j = Aj,i = 1 if there is a connection linking nodes i and j, and Ai,j = Aj,i = 0
otherwise.

We study the random network shown in Fig. 4.5a as a typical example. Without
couplings among nodes, each excitable node is non-oscillatory, i.e. they evolve
asymptotically to the rest state u = v = 0 and will stay there perpetually unless
some external force drives them away from this state. When a node is kicked from its
rest state by a stimulus large enough, the unit can excite by its own internal excitable
dynamics.

With the given network structure and parameters, one studies the dynamics of
the system by starting from different sets of random initial conditions. The system
evolves asymptotically to the homogeneous rest state in many cases. However, one
still finds a small portion of tests eventually exhibit global self-sustained oscillations.
The spatiotemporal patterns given in Figs. 4.5b, c are two different examples of these
oscillatory (both periodic and self-sustained) states.

One can unveil the mechanism supporting the oscillations and the excitation prop-
agation paths by using the DPAD approach. In Figs. 4.5d, e, the reduced directed
networks corresponding to the oscillatory dynamics by using the DPAD method
are plotted. For the case with dynamics shown in Fig. 4.5b, the single dynamical
loop plays the role of oscillation source, with cells in the loop exciting sequentially
to maintain the self-sustained oscillation, as shown in Fig. 4.5d. We can observe
waves propagating downstream along several tree branches rooted at various cells
in the loop. If we plot the spatiotemporal dynamics along these various paths by
re-arranging the node indices according to the sequence in the loop, we can find
regular and perfect wave propagation patterns. This indicates that the DPAD struc-
ture well illustrates the wave propagation paths. For the case with dynamics shown
in Fig. 4.5c, the corresponding DPAD structure given in Fig. 4.5e is a superposi-
tion of two sub-DPAD paths, i.e. there are two organization loop centers, where two
sustained oscillations are produced in two loops and propagate along the trees.

The DPAD structures in Fig. 4.5d, e clearly show the distinctive significance
of some units in the oscillation which cannot be observed in Fig. 4.5b, c, where
units evolve in the homogeneous and randomly coupled network, and no unit takes
any priority over others in topology. Because the unidirectional loop works as the
oscillation source, units in the loop should be more important to the contribution of
the oscillation.
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Fig. 4.5 a An example random network with N = 100 nodes, and each node connects to other
nodes with the same degree k = 3. (b–c): The spatiotemporal evolution patterns of two different
oscillatory states in the same network shown in (a) by starting from different initial conditions. Both
patterns display the evolution of local variable u. The nodes are spatially arranged according to their
indexes i. (d) The DPAD structure corresponding to the oscillation state in (b), where a loop and
multiple chains are identified; e The DPAD structure corresponding to the oscillation state in (c),
where two independent subgraphs are found with each subgraph containing a loop and numerous
chains. (Adapted from Ref. [63])

4.3.4.2 Minimum Winfree Loop and Self-sustained Oscillations

Studies on the emergence of self-sustained oscillations in excitable networks indi-
cate that regular self-sustained oscillations can emerge. However, whether there is
intrinsic mechanism in determining the oscillations in networks is still unclear. For
example, for Erdos–Renyi (ER) networks, whether the connection probability is
related to sustained oscillations is an open topic.
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In this section we study the occurrence of sustained oscillation depending on the
linking probability on excitable ER random networks, and find that the minimum
Winfree loop (MWL) is the intrinsic mechanism in determining the emergence of
collective oscillations. Furthermore, the emergence of sustained oscillation is opti-
mized at an optimal connection probability (OCP), and the OCP is found to form a
one-to-one relationship with the MWL length. This relation is well understood that
the connection probability interval and the OCP for supporting the oscillations in
random networks are exposed to be determined by the MWL. These three important
quantities can be approximately predicted by the network structure analysis, and
have been verified in numerical simulations [70].

One adopts the Bär-Eiswirthmodel (1) on ER networkswithN nodes. Each pair of
nodes are connected with a given probability P, and the total number of connections
is PN (N −1)/2. By manipulating P, one can produce a number of random networks
with different detailed topologies for a given P.

We introduce the oscillation proportion

Pos = Nos/NALL (4.38)

as the order parameter to quantitatively investigate the influence of systemparameters
on self-sustained oscillations in random networks, where NALL is the total number
of tests starting from random initial conditions for each set of parameters, and Nos is
the number of self-sustained oscillations counted in NALL dynamical processes.

In Figs. 4.6a–d, the dependence of the oscillation proportionPos on the connection
probability P for different parameters a, b, ε and D on ER random networks with
N = 100 nodes are presented. It is shown from all these curves that the system can
exhibit self-sustained oscillation in a certain regime of the connection probability,
and no oscillations are presented at very small or very large P. Moreover, an OCP
P = POCP for supporting self-sustained oscillations can be expected on ER random
networks. The number of self-sustained oscillations increases as the parameter a is
increased (see Fig. 4.6a), while Pos decreases as b is increased as shown in Fig. 4.6b.
Moreover, the OCP for supporting self-sustained oscillations is independent of the
parameters a and b. Figure 4.6c reveals the dependence of Pos on the relaxation
parameter ε. It is shown fromFig. 4.6c that as ε is increased,Pos decreases remarkably.
Increasing the coupling strengthD is shown to enhance the sustained oscillation (see
Fig. 4.6d).

The non-trivial dependences of collective oscillations on various parameters such
as the connection probabilityP are very interesting. As discussed above, the excitable
wave propagating along an excitable loop can form a 1DWinfree loop, which serves
as the oscillation source and maintain self-sustained oscillation in excitable complex
networks. Figure 4.7a presents the dependence of the sustained-oscillation period T
of the 1DWinfree loop on the loop length, where a shorter/longer period is expected
for a shorter/longer loop length. However, due to the existence of the refractory
period of excitable dynamics, a too short 1D Winfree loop cannot support sustained
oscillations, implying a minimum Winfree loop (MWL) length Lmin for a given set
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Fig. 4.6 The dependence of the oscillation proportion Pos on the connection probability P at
different system parameters in excitable ER random networks. The OCPs POCP for supporting
self-sustained oscillations in ER networks at different parameters are indicated. (Adapted from Ref.
[70])

of parameters. Moreover, sustained oscillation ceases for a shortest loop length,
corresponding to the MWL.

In Fig. 4.7b,POCP is found to build a one-to-one correspondence toLmin, indicating
that the emergence of collective oscillations is essentially determined by the MWL.
This correspondence can be understood by analyzing the following two tendencies.
First, as discussed above, a network must contain a topological loop with a length
that is not shorter than the MWL, i.e.

L ≥ Lmin.

Second, the average path length (APL) of a given network should be large enough
so that.
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Fig. 4.7 a The dependence of the oscillation period of a Winfree loop against the loop length.
When L < Lmin, the oscillation ceases. b The dependence of the OCP on Lmin. c The dependence
of the proportion of network structures satisfying L ≥ Lmin on the connection probability P. d The
dependence of the proportion of network structures with an APL satisfying dAPL ≥ Lmin − 1 on P.
e The dependence of the joint probability (JP) on P. The MWL with the length Lmin = 6 is used as
the example. (Adapted from Ref. [70])

dAPL ≥ Lmin − 1.

These two tendencies propose the necessary conditions for the formation of 1D
Winfree loop supporting self-sustained oscillations. Moreover, the first condition
leads to the lower critical connection probability, by violating which the network
cannot support sustained oscillations. The second condition gives rise to the upper
critical connection probability, and if the APL is so short that the loops are too small
to support oscillations. In Fig. 4.7c, the probability of the loop length larger than the
MWL length is computed against the connection probability P of an ER network. An
increasing dependence can be clearly seen, and a lower threshold exists. As shown in
Fig. 4.7d, the probability of an ER network with the APL satisfying dAPL ≥ Lmin − 1
is plotted against P. A decreasing relation and an upper threshold can be found.
Necessary condition for sustained oscillation should be a joint probability satisfying
both L > Lmin and dAPL ≥ Lmin − 1. The dependence of this joint probability on the
connection probability P is the product of Figs. 4.7c, d, which naturally leads to a
humped tendency shown in Fig. 4.7e, where an OCP expected for the largest joint
probability. This gives a perfect correspondence to the results proposed in Fig. 4.7.

The abovediscussion indicates that self-sustainedoscillation are related to the loop
topology and dynamics, and are essentially determined by theMWL. The one-to-one
correspondence between the optimal connection probability and the MWL length is
revealed. The MWL is the key factor in determining the collective oscillations on
ER networks [71–73].
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4.3.5 Sustained Oscillation in Gene Regulatory Networks

4.3.5.1 Gene Regulatory Networks (GRNs)

Gene regulatory networks (GRNs), as a kind of biochemical regulatory networks in
systems biology, can be well described by coupled differential equations (ODEs) and
have been extensively explored in recent years. The ODEs describing biochemical
regulation processes are strongly nonlinear and often have many degrees of freedom.
We are concerned with the common features and network structures of GRNs.

Different from the above excitable networks, positive feedback loops (PFLs) and
negative feedback loops (NFLs) have been identified in various biochemical regula-
tory networks and found to be important control modes in GRNs [46, 50–53]. Self-
sustained oscillation, bi-rhythmicity, bursting oscillation and even chaotic oscilla-
tions are expected for these objects. Moreover, oscillations may occur in GRNs with
a small number of units. The study of sustained oscillations in small GRNs is of
great importance in understanding the mechanism of gene regulation processes in
very large-scale GRNs. Network motifs as subgraphs can appear in some biological
networks, and they are suggested to be elementary building blocks that carry out
some key functions in the network. It is our motivation to unveil the relation between
network structures and the existence of oscillatory behaviors in GRNs.

We consider the following GRN model:

dpi
dt

= fi(p) − pi, (4.39)

where (p) = (p1, p2, . . . , pN ), and the function fi(p) satisfies the following form:

fi(p) =
⎧⎨
⎩
Ai(p) for activive regulation only
Ri(p) for repressive regulation only
Ai(p)Ri(p) for joint regulation

(4.40)

The active regulation function is.

Ai(p) = acthi /
(
acthi + Kh

)
, (4.41a)

and the repressive regulation function is written as

Ri(p) = Kh/
(
rephi + Kh

)
, (4.41b)

where

acti =
N∑

(j=1)

αijpj, repi =
N∑

(j=1)

βijpj,i, j = 1, 2, . . . ,N ,
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and pi is the expression level of gene i,0 < pi < 1. The adjacency matrices α, β

determine the network structure, which are defined in such away that αij = 1 if gene j
activates gene i, βij = 1 if gene j inhibits gene i and αij ·βij = 0 for no dual-regulation
of gene i by gene j. acti(repi) represents the sum of active (repressive) transcriptional
factors to node i. The regulated expression of genes is represented by Hill functions
with cooperative exponent h and the activation coefficient K, characteristic for many
real genetic systems [66].

4.3.5.2 Skeletons and Cores

Based on the known oscillation data of GRNs, we can explicitly compute all the
functional weights wij between any two genes based on Eqs. (4.33)–(4.35) and draw
the FW maps for the oscillatory networks. Figure 4.9a shows a simple example
of 6-node GRN with the dynamics given by Eq. (4.39), and computer simulations
indicate that this GRN possesses an oscillatory attractor for a set of parameters
given in Ref. [66]. From the oscillation data, we can draw the FW map in Fig. 4.9b.
An interesting as well as valuable feature of Fig. 4.9b is that the wij distribution is
strongly heterogeneous, i.e. someweightswij ≈ 1 indicate a significant control while
many others wij ≈ 0 represent weak functional links. The heterogeneity allows us to
explore the self-organized functional structures supporting oscillatory dynamics by
the strongly weighted links. In Fig. 4.9c, we remove all the less important links with
wij≤wth, where the threshold value wth = 0.30. By removing any interaction and
node in the network, we always mean to delete their oscillatory parts while keep the
average influence of the deleted parts as control parameters in Eq. (4.34). The reduced
subnetwork shown in Fig. 4.9c retaining only strongly weighted interactions is called
the skeleton of the oscillatoryGRN. Furthermore,we can reduce the skeleton network
by removing the nodes without output one by one, and finally obtain an irreducible
subnetwork where each node has both input and output which is defined as the core
of the oscillation.

For the network Fig. 4.8b the core is given in Fig. 4.8d. In Fig. 4.8e, f, we plot
the oscillation orbits of the original GRN and those of the core and skeleton in 2D
(p1, p2) and (p4, p6) phase planes, respectively. It is found that the dynamical orbits
of the original network given in Fig. 4.8a can be well reproduced by the reduced
structures in Fig. 4.8c, d, conforming that the skeleton and core defined by the highly
weighted links can dominate the essential dynamics of the originalGRN.Considering
Fig. 4.8d–e, c–f it is clear that the core Fig. 4.8d serves as the oscillation source of
the GRN while the skeleton Fig. 4.8c plays the role of main signal propagation paths
from the core throughout the network.

The analysis presented in Fig. 4.8 can be well applied to more complicated GRNs
with larger numbers of nodes and links to fulfill the reduction of network complexity
for understanding and controlling network dynamics. Numerical works for a large
network with many nodes and links indicates that the comparisons of the dynamics
of the core and skeleton with those of the original network are in good agreement.
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Fig. 4.8 An example of the functional-weight (FW) map for an oscillatory GRN. a An oscilla-
tory GRN with N = 6 genes and I = 15 links. Different node colors represent different phases
of the oscillatory nodes. Green full and red dotted arrowed lines represent active and repressive
interactions, respectively. b The FW map of all interactions computed by Eqs. (3.34) and (3.35).
c The reduced interaction skeleton obtained from (b) by deleting links with small weights. d An
irreducible core structure obtained by only retaining interactions with both input and output in
(c), which serves as the oscillation source propagating through the path of the skeleton (c. e) A
comparison of a dynamical orbit of the original GRN (a) with that of core (d) in a 2D phase plane.
f A comparison of an orbit of the GRN (a) with that of skeleton c in another 2D phase plane. Good
agreements between the orbits of the full GRN and that of the reduced subnetworks can be found

Let us give a brief summary of the above discussions on the emergence of sustained
oscillation dynamics in networks of non-oscillatory units. In this case, the feedback
topology is the fundamental mechanism. For a very large network, not every node
or link contributes to the collective oscillation, and only a small portion of nodes
and their connections dominates, forming some fundamental building blocks such
as motifs, loops, or cores. To dig out these basic topologies, an appropriate topology
reduction is the key point. This meanwhile leads naturally to dynamics reduction,
revealing the emergence of self-organized oscillation from collaborations of non-
oscillatory node dynamics. It is a significant issue to make a topology reduction to
reduce the dimensionality of dynamics of a complex system to obtain the essential
structural ingredient of emergence behaviors. In recent yearswedeveloped the related
techniques and ways in revealing the embedded topologies [74, 75].



4 An Introduction to Emergence Dynamics in Complex Systems 161

It should be stressed that there exist many fundamental topologies on a large
network that may induce various possible sustained oscillations. Competitions and
collaborations among these sub-networks and rhythms lead to complicated dynamics.

4.4 Synchronization: Cooperations of Rhythms

4.4.1 Synchrony: An Overview

Collective behavior of complex and nonlinear systems has a variety of specific mani-
festations, and synchronization should be one of the most fundamental phenomena
[76, 77]. Discussions of fundamental problems in synchronization cover a variety of
fields of natural science and engineering, and even many behaviors in social science
are closely related to the basic feature of synchronization. Many specific systems
such as pendula, musical instruments, electronic devices, lasers, biological systems,
neurons, cardiology and so on, exhibit very rich synchronous phenomena.

Let us first focus on fireflies, a magical insect on earth. A male firefly can
release a special luminescent substance to produce switched periodic flashes to attract
females. This corresponds to a typical biological sustained oscillation. A surprising
phenomenon occurs when a large number of male fireflies gather together in the dark
of night to produce synchronized flashings. This phenomenon was first written in the
log of the naturalist and traveler, Engeekert Kaempfer in 1680 when he traveled in
Thailand. Later in 1935, Hugh Smith reported his observation on the synchronized
flashing of fireflies [78]. More explorations have been performed after these initial
observations. Interestingly, Buck elaborated on this phenomenon and published two
articles with the same title “synchronized flashing of fireflies” on the same journal
in 1938 and 1988, respectively [79].

It is a complex issue in biology to explore the implication of the synchronization
flashing of male fireflies. The physical mechanism behind this phenomenon may be
more important and interesting because it is a typical dynamical process. If each
firefly is considered as an oscillator, the synchronous flashing is an emergent order
produced by these oscillators. This collective behavior is obviously originated from
the interaction between individuals, and the interplay between them results in an
adjustment of the rhythm of every firefly.

Accidentally and interestingly, before Kempfer’s finding of firefly synchroniza-
tion, Huygens described the synchronization of two coupled pendula [80] in 1673. He
discovered that a couple of pendulum clocks hanging from a common support
had synchronized, i.e. their oscillations coincided perfectly and the pendula moved
always in opposite directions.He also proposed his understanding of the phenomenon
by attributing to the coupling brought by the beam that hang two pendula and the
coupling-induced energy transfer between the two pendulum clocks.
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Although synchronization behaviors had been found in different disciplines such
as physics, acoustics, biology, and electronic devices, a common understanding
embedded these seemingly distinct phenomena was still lack. A breakthrough was
the study of sustained oscillations and limit cycles in nonlinear systems in the early
twentieth century [44]. Further, it is theoretically important to study the synchro-
nization between the limit cycles of driving or interaction on the basis of limit cycles
[76, 77].

A fruitful modelling of synchronization was pioneered by Winfree, who studied
the nonlinear dynamics of a large population ofweakly coupled limit-cycle oscillators
with distributed intrinsic frequencies [81]. The oscillators can be characterized by
their phases, and each oscillator is coupled to the collective rhythm generated by
the whole population. Therefore, one may use the following equations of motion to
describe the dynamical evolution of interacting oscillators:

θ̇i = ωi +
⎛
⎝

N∑
j=1

X (θj)

⎞
⎠Z(θi), (4.42)

where j = 1, ...,N . Here θi denotes the phase of the i-th oscillator, ωi its natural
frequency. Each oscillator j exerts a phase-dependent influence X (θj) on all the other
oscillators. The corresponding response of oscillator i depends on its phase through
the sensitivity function Z(θi).

Winfree discovered that such a population of non-identical oscillators can exhibit
a remarkable cooperative phenomenon in terms of the mean-field scheme. When the
spread of natural frequencies is large compared to the coupling, the system behaves
incoherently, with each oscillator running at its natural frequency. As the spread is
decreased, the incoherence persists until a certain threshold is crossed, i.e. then a
small cluster of oscillators freezes into synchrony spontaneously.

Kuramoto put forward Winfree’s intuition about the phase model by adopting the
following universal form [82]:

θ̇i = ωi +
N∑
j=1

�ij(θj − θi), (4.43)

where the coupling functions� depends on the phase difference and can be calculated
as integrals involving certain terms from the original limit-cycle model. A tractable
phase model of (4.43) was further proposed by adopting a mean-field sinusoidal
coupling function:

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), (4.44)
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K ≥ 0 is the coupling strength. The frequencies are randomly chosen from a given
probability density g(ω), which is usually assumed to be one-humped and symmetric
about its mean ω0. This mean-field model was hereforth called the Kuramoto model.

The Kuramoto mean-field model can be successfully solved by using the self-
consistency approach in terms of statistical physics, which reveals that a large number
of coupled oscillators can overcome the disorder due to different natural frequencies
by interacting with each other, and the synchronized state emerges in the system.

The success of Winfree’s and Kuramoto’s works aroused extensive studies of
synchronization undermore generalized cases (interested readermay refer the review
papers and the monographs [83–85]). The study of coupled phase oscillator synchro-
nization, and the Kuramoto model on complex networks has become the focus of
research [86–89].

Apart from the self-consistency approach, recently Ott and Antonsen proposed
an approach (OA ansatz) to obtain the dynamical equations of order parameters
[90, 91]. Strogatz explained the physical meaning of the OA ansatz based on the
Watanabe-Strogatz transformation [92, 93].

In recent years, with the widespread studies of chaotic oscillations, the notion
of synchronization has been generalized to chaotic systems [76]. The study of
synchronization of coupled chaotic oscillators extended the scope of synchronization
dynamics, and different types of chaos synchronization such as complete/identical
synchronization, generalized synchronization, phase synchronization, and measure
synchronization were revealed [88, 94, 95].

4.4.2 Microdynamics of Synchronization

Let us begin with the simplest scenario to explore the synchronous dynamics. It is
very important to discuss the microscopic mechanism of synchronization, which can
make us better understand how a large number of coupled oscillators form ordered
behaviors through interaction and self-organization.

4.4.2.1 Phase-Locking of Two Limit-Cycle Oscillators

We consider two mutually coupled oscillators z1,2(t) that are described by Eq. (4.28)
but with different natural frequencies. They are coupled to each other and obey the
following dynamical equations of motion

ż1,2 = (λ1,2 + iω1,2)z1,2 − b1,2z1,2
∣∣z1,2

∣∣2 + K1,2z2,1
∣∣z2,1

∣∣2, (4.45)

where λ1,2 > 0, K1,2 > 0. b1,2 are two real parameters, and ω1 �= ω2 are the
natural frequencies of the two oscillators. The third term at the right hand side of
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Eq. (4.45) represents the interaction between two oscillators. By introducing the
polar coordinates r1,2(t) and θ1,2(t) as

z1,2(t) = r1,2(t)e
iθ1,2(t), (4.46)

the motion in two complex equations of (4.45) can be decomposed into four real
equations of the amplitudes and phases as

ṙ1,2(t) = λ1,2r1,2(t) − b1,2r
3
1,2 + K1,2r

3
2,1Re[ei(θ2,1−θ1,2)], (4.47a)

θ̇1,2(t) = ω12 + K1,2(r
3
2,1/r1,2)Im[ei(θ2,1−θ1,2)]. (4.47b)

It can be seen from (4.47b) that the coupling term will adapt the actual phase
velocities θ̇1,2(t) even if two oscillators have different natural frequency ω1,2.

We consider the possibility of the attracting tendency of two oscillators in the
presence of coupling. By comparing the coupling terms in (4.47a) and (4.47b), it can
be found that the first one is of order r3, while the latter is of order r2. Therefore
the coupling term in (4.47a) can be neglected, and the two equations in (4.47a) are
decoupled and can be solved.As t → ∞, r1,2 → r10,20 = √

λ1,2/b1,2. By substituting
the amplitudes r1,2 in (4.47b), one can obtain the following coupled phase equations:

θ̇1,2(t) = ω1,2 + K1,2(
r320,10
r10,20

) sin(θ2,1 − θ1,2). (4.48)

The above procedure implies the separation of time scales of the amplitude and
phase, which is actually the consequence of the slaving principle by setting ṙ1,2 =
0, i.e. the amplitudes r1,2(t) are fast state variables, while the phases θ1,2(t) are
neutrally-stable slow variables. Let us keep in working out the phase dynamics of
two coupled oscillators. By introducing the phase difference θ(t) = θ2(t) − θ1(t)
and natural-frequency difference  = ω2 − ω1, Eq. (4.48) can be changed to

�θ̇ =  − α sin �θ, (4.49)

where the parameter

α = K2(
r310
r20

) + K1(
r320
r10

).

The evolution of (4.49) can be easily solved by integrating the differential
equations and eventually one gets
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t =
ϕ∫

ϕ0

d�θ/[ − α sin�θ ]. (4.50)

when || > |α|, the integral (4.50) can be worked out in one period of the phase,
and the corresponding period is expressed as

T =
2π∫

0

d�θ

 − α sin�θ
, (4.51)

i.e. the phase difference evolves periodically with the period T:

�θ̇ = �θ̇2 − �θ̇1 = ω
′
2 − ω

′
1 ≈ 2π/T , (4.52)

i.e. the actual frequency difference of two coupled oscillators depends on the integral
(5.51). When α � , one has

ω′
2 − ω′

1 ≈  = ω2 − ω1. (4.53)

On the other hand, when || < |α|, the integral (5.51) diverges at sin�θ0 = α/.
This implies that as t → ∞, �θ tends to a fixed value �θ0 = arcsin(α/), and the
period T → ∞ in (5.51). From (5.52) one has

�θ̇ = θ̇2 − θ̇1 → 0, (5.54)

i.e. the frequencies of the two oscillators are pulling to each other and eventually
locked. In fact, because α is proportional to the coupling strength, the critical condi-
tion || ≤ |α|means that coupling strengthK1,2 should be strong enough to overcome
the natural-frequency difference. Therefore, the critical condition is αc = ω2−ω1.
Near this critical point, i.e. one has 〈�θ̇〉 ∼ (αc − α)1/2,where < · > represents a long-
time average. This implies a saddle-node bifurcation at the onset of synchronization
of two coupled oscillators.

As an inspiration, one finds from the above study of synchronization between
two interacting limit-cycle oscillations that: (1) The phase is the dominant degree of
freedom in the process of synchronization of coupled oscillators as compared to the
amplitude variable; (2) The coupling function between oscillators is typically of the
sinusoidal form of the phase difference. These two points are in agreement with the
proposition of Winfree and Kuramoto in modelling synchronization, which is also a
very important starting point in describing the synchronization problem.
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4.4.2.2 Synchronization Bifurcation Tree

For N > 2 coupled oscillators, it is not an easy task to give analytical discussions of
the microdynamics of synchronization. One usually performs numerical simulations
and compute some useful quantities. Let us consider the following nearest-neighbor
coupled oscillators:

θ̇i = ωi + K

3
[sin(θi+1 − θi) + sin(θi−1 − θi)], (4.55)

where i = 1, 2, . . . ,N , {ωi} are natural frequencies of oscillators, K is the coupling
strength. Without losing generality, we assume that

∑
i ωi = 0.

When the coupling strengthK is increased from0, different from the two-oscillator
case, the system will show complicated synchronization dynamics because of the
competition between the ordering induced by the coupling and the disorder of natural
frequencies. For the nearest-neighbor coupling case, there is an additional compe-
tition, i.e. the competition between the coupling distance and the natural-frequency
differences. As the coupling strength increases, the system will gradually reach the
global synchronization. There is a critical couplingKc, whenK > Kc the frequencies
of all the oscillators are locked to each other. As K < Kc, a portion of oscillators
are synchronized, which is called partial synchronization. To observe the synchrony
process, we define the average frequency of the i-th oscillator as

ωi = lim
T→∞

1

T

T∫

0

θ̇i(t)dt. (4.56)

Synchronization between the i-th and the j-th oscillators is achievedwhen
−
ωi = −

ωj.
As the coupling strength changes, oscillators will undergo a coordinated process to
achieve global synchronization.

To observe the synchronization of multiple oscillators clearly, we introduced the
so-called synchronization bifurcation tree (SBT), which is defined as the set of the

relation {−
ωi(K)}, i.e. the relationship of the average frequencies of all oscillators

and the coupling strength K. The SBT method gives a tree-structured process of
synchronization transitions and exhibits vividly how oscillators are organized to
become synchronized by varying the coupling [96–99].

In Fig. 4.9a–b, we plot the average frequencies {−
ωi} defined in Eq. (4.56) against

the coupling strength K for N = 5 and 15, respectively, by varying K from K = 0
toK = Kc. In both figures, we find interesting transition trees of synchronizations.
When K = 0, all oscillators have different winding numbers, and an increase of the

coupling may lead to a merging of
−
ωi. As two oscillators become synchronous with

each other, their frequencies become the same at a critical coupling and keep the
same (a single curve) with further increase of the coupling strength.
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Fig. 4.9 Transition trees of synchronization for averaged frequencies of oscillators versus the
coupling K. a N = 5; b N = 15. Note the existence of three kinds of transitions labeled A, B, and
C. c An enlarged plot of the nonlocal phase synchronization for N = 15. (Adapted from Ref. [98])

An interesting behavior of SBT is the clustering of oscillators, i.e. several
synchronous clusters can be formed with the increase of the coupling, and these clus-
ters have different frequencies and numbers of oscillators. Clusters also form into
larger clusters by reducing the number of clusters. For sufficiently strong coupling,
only few clusters (usually two clusters) are kept and eventually merge into a single
synchronous cluster. The formation of a single cluster implies the global synchro-
nization of all oscillators. For both the SBT in Fig. 4.9a, b, one can observe the
interesting tree cascade of synchrony.

There are many ways in investigating the dynamics of a system, among which
the most convincing tool is the computation of Lyapunov exponents. If one gets
the Lyapunov-exponent spectrum (LES) {λ1 ≥ λ2 ≥ · · · ≥ λN } of the system, the
basic properties of the attractor can be well traced and understood. By observing
the variation of the LES with system parameters, it is instructive to understand the
relation between changes of the synchronous dynamics and attractor transitions with
parameters. When there is one or more Lyapunov exponents larger than zero, the
motion of the system is chaotic. If there are M ≥ 2 zero exponents and no positive
exponents, then the motion of system is quasi-periodic, i.e. the attractor in phase
space is an M-dimensional torus (labeled as TM). The Ruelle-Takens quasiperiodic
route to chaos and the structural instability of the high-dimensional torus is a very
important topic. In fact, in some cases high-dimensional torus can also survive with
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Fig. 4.10 a The variation of
the LES with the coupling
strength for N = 5 coupled
oscillators with the same
parameters as in Fig. 4.9a.
b The corresponding
Lyapunov dimension DL
varying with the coupling
strength K. Steplike behavior
can be observed. (Adapted
from Ref. [98])

a non-zero measure. We can find the existence of high-dimensional quasiperiodicity
in the weak-coupling regime.

In Fig. 4.10a, we calculated the variation of the LESwith the coupling strength for
N = 5 coupled oscillators with the same parameters as in Fig. 4.9a. It can be seen
from Fig. 4.10a that when K ≤ 0.75, all the exponents λ1∼5 = 0, indicating that
the high-dimensional quasiperiodic motion is on T 5, and this 5-dimensional torus
keeps stable with K changes in a large scale. When K > 0.75, one can see that one
zero Lyapunov exponent becomes negative, and the number of zero exponents is
reduced by one, indicating that the dynamical attractor has a topological transition
from the torus T 5 to T 4. This transition implies a bifurcation. By comparing the SBT
shown in Fig. 4.9a, we can see that this transition point corresponds to the synchrony
between oscillator i = 4 and i = 5. If we keep increasing the coupling strengthK,we
can further find the more transitions with each critical point corresponding to a zero
Lyapunov exponent becoming negative, and also corresponding to the synchrony of
oscillators. Therefore, we assert that the synchronization process of coupled periodic
oscillators is accompanied with the process of dynamical transitions from high-
dimensional quasiperiodic to low-dimensional quasiperiodic motions. In the vicinity
of each critical point, the negative Lyapunov exponent λi satisfies the following
scaling law:

λi ∝ −A(Ki
c − K)1/2, (4.57)

where A is a factor, and Ki
c is the synchronous critical point.

The transition to a lower-dimensional torus means the reduction of the dimension
of the attractor in phase space during the synchronization process [97, 98]. We can
compute the dimensions of the attractor varying with the coupling strength K. A
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simplemethod for calculating the attractor dimension is theKaplan-Yorke conjecture
that the dimension can be obtained from the LES:

DL = M + 1

|λM+1|
M∑
j=1

λj, (4.58)

here M is an integer that satisfies the following criteria:

M∑
j=1

λj ≥ 0,
M+1∑
j=1

λj < 0. (4.59)

The Lyapunov exponents here are arranged in the descent order, i.e. λ1 ≥ λ2 ≥
· · · ≥ λN . We call the quantity DL the Lyapunov dimension. In Fig. 4.10b, we
calculated the Lyapunov dimensionDL varying with the coupling strengthK forN =
5, where the steplike behavior can be clearly observed. The system keeps an integer
dimension DL until a synchronization transition occurs, and then the dimension
jumps by one to another integer value. We can also see the upside-down jumps
between two integers, which suggests that many quasiperiodic windows embedded
in high-dimensional tori are still observable.

Herewe showed the importance ofmicroscopic synchronous dynamics of coupled
oscillators. With the increase of coupling strength, a large number of coupled oscil-
lators undergo a cascade of transitions from partial to global synchronizations, and
this process is accompanied with the decrease of the phase-space dimension. When
all oscillators reach the global synchronization, the dynamics of the system falls
into a very low-dimensional manifold in phase space. This means that at the onset of
synchronization, only a fewvariables are required to characterize the synchronization
dynamics of coupled oscillators. This fact provides a foundation for the macroscopic
description of synchronization of coupled oscillators.

4.4.3 Kuramoto Model: Self-Consistency Approach

It is not practical to give all the details of synchronization among oscillators when the
population is very large. To measure the coherent behavior of oscillators, it is more
convenient to introduce the following order parameter, also called the coherence
factor, which is defined as the mean-field average of the complex functions of phases
as

α1 = Rei� = 1

N

N∑
j=1

eiθj . (4.60)
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Fig. 4.11 A schematic process of the synchronization transition from incoherent to coherent states,
where oscillators are labeled as dots on the unit circle, and the arrow corresponds to the order
parameter α1. a For a weak coupling K ≈ 0, oscillators are not synchronized, and their phases are
evenly distributed in [0, 2π ], the order parameter α1 ≈ 0; bWith the increase of coupling strength,
more and more oscillators will be synchronized and no longer evenly distributed, |α1| �= 0; c As
the coupling becomes very large, oscillators form a single synchronized cluster, and |α1| becomes
larger (longer length of the arrow)

Here R is the modulus of the complex order parameter α1, which describes the
degree of coherence of oscillators, and � is a collective phase.

Although the natural frequencies of oscillators are different, interactions among
them can organize to an ordered state. By varying the coupling strength from 0, the

actual frequencies of oscillators {
−
ωi} defined in (4.56) will shift from their natural

values {ωi} and move closer to each other, which has been well exhibited in micro-
dynamics shown by SBT. When the coupling strength is very weak, only oscillators
with natural frequencies very close to each other can be synchronized, but their
proportions can be almost ignored asN � 1, almost all oscillators are evenly spaced
within 0 ∼ 2π at any time, as schematically shown in Fig. 4.11a. In this case it can
be easily verified that R = 0 when asynchronous state prevails. With the increase of
coupling strength, more and more oscillator will be synchronized and their average
frequencies i become equal. The phases of synchronized oscillator will be locked
and keep close, i.e. the phases of locked oscillators are no longer evenly distributed, as
shown in Fig. 4.11b.When all {i} are equal, the order parameterRwill become non-
zero, indicating that oscillators will maintain a fixed phase relationship at the onset
of synchrony. It has been proved that there exists a critical coupling strengthKc,hen
K ≤ Kcthe order parameter R = 0, while R �= 0 asK ≥ Kc. For stronger couplings,
phases of oscillators become closer to form a compact synchronized group, as shown
in Fig. 4.11c. In thermodynamic limit N → ∞, the above transition from asyn-
chronous to synchronous states is a typical nonequilibrium phase transition at the
critical point Kc. The Kuramoto model is a featured system that can be analytically
solved and exhibit the above phase transition.

In the study of this synchronization transition, an important task is to determine the
critical coupling strength of synchronous transitions Kc and the order parameters R.
The mean-field coupling of the Kuramoto model gives us the chance to deal with in
terms of the self-consistency method, if it is possible to build the equation of order
parameter as a function of coupling strength.
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The self-consistency approach is based on the assumption that the system has
a stationary state that does not change over time. In this stationary state, the order
parameter is a time-independent quantity, which can be obtained by its definition and
the equations of the motion. The self-consistency method is not limited to specific
dynamics and is one of the widely used methods in coupled oscillator systems.

When the number of oscillators N � 1, the order parameter defined by (4.60)
is irrelevant to N and does not change with time. Due to the mean-field feature of
the summation in the coupling term, by using (4.60) one can rewrite the Kuramoto
model (4.44) to the following form:

dθi/dt = ωi + KR sin(� − θi). (4.61)

If one regardsR as a parameter, Eq. (4.61) indicates that dynamics of all oscillators
are decoupled, i.e. the influence of other oscillators on the i-th oscillator is described
by the parameter R. If one knows R, (4.61) can be well worked out. However, R is
also an undetermined coefficient. A possible solution is to build an equation of R.
This equation is just the self-consistency equation [82, 84, 85]. Thus how to get the
self-consistency equation becomes the core task.

When N � 1, we do not care about the micro-states {θi(t)} any more, but how
are these phases distributed at any time t. Let ρ(θ, ω, t) denote a dynamical variable
representing the number density of the oscillators with natural frequencyω and phase
θ at time t. Since we are interested in the thermodynamic limit N → ∞, we expect
that an infinitely large number of oscillators will fall into an arbitrarily small but finite
interval �θ . The single-oscillator distribution function ρ(θ, ω, t) depends not only
on the phase θ variable, but also on the natural frequencyω. ρ(θ, ω, t) is 2π-periodic
and satisfies the normalization condition

+∞∫

−∞

2π∫

0

ρ(θ, t)dθdω = 1. (4.62)

The distribution of these oscillator phases directly determines the relative average.
The order parameter introduced in (4.60) as the summation of all oscillators can be
replaced by

α1 = Rei� =
+∞∫

−∞

2π∫

0

eiθρ(θ, t)dθdω. (4.63)

We are mainly interested in the behavior, especially the long-term behavior of
ρ(θ, ω, t). Since dynamical Eq. (4.44) is invariant under a translation of θi → θi+θ0,
one expects that the simplest collective behavior may be described by a uniform and
stationary distribution: ρ(θ, ω, t) = 1/2π, i.e.{θi} are uniformly distributed in the
range 0 ∼ 2π. It can be easily verified that the case of R = 0 corresponds to
the incoherent state. This is always a solution of the system, but it is not always
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stable. When K ≥ Kc the uniformly distributed solution is unstable and replaced
by the collective solution where the oscillators are locked, i.e. the solution when i

is equal, at which point the oscillator can maintain a fixed phase, and R �= 0. In the

latter case, all oscillators are oscillatory with the same frequency
−
ω, � =−

ω t. By
introducing variables

φi = θi − ωt, (4.64)

Equation (4.61) can be written as

dφi/dt = ωi − ω − KR sin φi. (4.65)

Equation (4.65) has the following two types of solutions:

(1) Synchronous Solution: When Eq. (4.65) that describes satisfies

|ωi − ω| ≤ KR, (4.66)

the solution for the phase φi is the fixed point

φi = sin−1[(ωi − ω)/KR]. (4.67)

This means that the i-th oscillator oscillates with the frequency
−
ω, and all oscil-

lators that satisfy the conditions (4.66) will oscillate with the same frequency
−
ω, i.e. oscillators satisfying (4.66) of course will be in a synchronous state.

(2) Asynchronous solution: when Eq. (4.65) satisfies

|ωi − ω| > KR (4.68)

the phaseφi is an oscillatory solution. Because it represents the phase difference,
oscillators with natural frequencies satisfying (4.68) are not synchronized.

The above discussion indicates that coupled oscillators can naturally divide into
the synchronous and asynchronous groups according the conditions (4.66) and (4.68).
In the following we will focus their contributions to the distribution ρ(θ) and the
order parameter R = |α1|.

If the Kuramoto system is driven by an external noise, the model is dynamically
described by

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi) + ξi(t), (4.69)

where the noise is usually assumed to be a spatiotemporally uncorrelated Gaussian
white noise that satisfies
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〈ξi(t)〉 = 0,
〈
ξi(t)ξj(t

′)
〉 = Dδijδ(t − t′), (4.70)

whereD is the noise intensity. By introducing the order parameter R, Eqs. (4.69) can
be written as

dθi/dt = ωi + KR sin(� − θi) + ξi(t), (4.71)

The distribution function ρ(θ, ω, t) satisfies the Fokker–Planck equation

∂ρ

∂t
= −∂(vρ)

∂θ
+ D

∂2ρ

∂θ2
, (4.72)

where

v = ω + KR sin(� − θ). (4.73)

In the absence of noise (D = 0), Eq. (4.72) is reduced to the continuity equation
satisfying the phase distribution function:

∂ρ

∂t
= −∂(vρ)

∂θ
. (4.74)

Because φ = θ− −
ω t, the distribution function ρ(φ, ω, t) satisfying equations

can be easily derived from the equation of ρ(θ, ω, t).
Considering the natural-frequency distribution of oscillators, if one is only

concerned with the distributions of the phase θ or φ, the reduced distribution can be
obtained by averaging over the natural frequencies as

ρ(φ, t) =
∫

ρ(ω, φ, t)g(ω)dω, (4.75)

In the following discussions we mainly discuss the synchronous transition in the
absence of noises and the case of stationary phase distributions.

The above two types of solutions enlighten us that the stationary distribution ρ(φ)

can be decomposed into the synchronous and asynchronous parts:

ρ(φ) = ρs(φ) + ρas(φ). (4.76)

The synchronous part includes the oscillators with phases φi being fixed points,
thus ρs(φ) can be obtained by natural frequencies that satisfies dφi/dt = 0, i.e.

ω =−
ω +KRsinφ. Thus one has

ρs(φ) = g(ω)

∣∣∣∣
dω

dφ

∣∣∣∣ = KRg(ω + KR sin φ) cosφ, φ ∈
[
−π

2
,
π

2

]
. (4.77)
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For those oscillators that are not synchronized, the phases {φi} change with
time. Because φi evolves non-uniformly over time, the probability that the phase
being within φ → φ + dφ at time t should be inversely proportional to the phase
velocity

∣∣φ̇∣∣, i.e.

ρ(φ, ω) ∝ ∣∣φ̇∣∣−1
. (4.78)

This can also be obtained from the steady state of Eq. (4.74) by setting
∂ρ(φ, ω, t)/∂t = 0, leading to ∂(vρ)/∂φ = 0, and thus ρ ∝ v−1 = |φ̇|−1

. By
substituting the equation of motion (4.65) and making the normalization, one gets

ρ(φ, ω) =
⎧⎨
⎩ |ω − ω − KR sin φ|

2π∫

0

dφ

|ω − ω − KR sin φ|

⎫⎬
⎭

−1

=
√

(ω − ω)2 − (KR)2

2π |ω − ω − KR sin φ| . (4.79)

Because oscillators with |ω − ω| > KR are not synchronized, by summing up all
oscillators satisfying this frequency condition, one obtains

ρas(φ) =
ω−KR∫

−∞
g(ω)ρ(φ, ω)dω +

∞∫

ω+KR

g(ω)ρ(φ, ω)dω (4.80)

By introducing x = ω−ω and considering the symmetry property of the function
g(ω)

g(ω + x) = g(ω − x), (4.81)

The asynchronous part of the distribution can be written as

ρas(φ) =
∞∫

KR

g(ω + x)x
√
x2 − (KR)2

π [x2 − (KR sin φ)2] dx. (4.82)

The order parameter can be rewritten as

Rei� =
π∫

−π

ei(φ+ωt)ρ(φ)dφ =
π∫

−π

eiφ+iωt[ρs(φ) + ρas(φ)]dφ. (4.83)

Because the asynchronous part ρas(φ) has the even term sin2φ, the integral of
ρas(φ) in (4.83) is zero. Hence only the symmetric part ρs(φ) contributes to the
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integral (4.83). By further separating the real and imaginary parts of the integral
(note that the R is real) one obtains

R = KR

π
2∫

− π
2

cos2 φg(ω + KR sin φ)dφ, (4.84)

0 = KR

π
2∫

− π
2

cosφ sin φg(ω + KR sin φ)dφ. (4.85)

From (4.85) one can obtain the average frequency ω. (4.84) is a typical self-
consistency equation of R, which can be used to determine both R and the critical
coupling strengthKc. WhenK ≥ Kc, R changes from 0 to a very small value. Near
the critical point,R � 1, g(ω) can be expanded into Taylor series as

g(ω + KR sin φ) ≈ g(ω) + g′′(ω)

2
(KR)2 sin2 φ + O(R4), (4.86)

g′′(ω) = d2g(ω)

dω2

∣∣∣∣
ω=ω

. (4.87)

Substituting the expansion to (4.84) one obtains

1 = πK

2
g(ω) − 1

16
πK3R3g′′(ω) + O(R4). (4.88)

when K → Kc, R → 0, the second and third terms in (4.88) approach zero, one may
determine the critical coupling strength as [84]

Kc = 2/[πg(ω)]. (4.89)

Putting (4.89) back to (4.88), the critical behavior near Kc can be determined as

R ≈
√
8g(ω)(K − Kc)

g′′(ω)K3
. (4.90)

It can be seen from (4.89) and (4.90) that the characteristics of the natural-

frequency distribution g(ω) around
−
ω is very important. For example, for the Lorentz

distribution with the form

g(ω) = {π [(ω − ω)2 + γ 2]}−1γ, (4.91)

the results above are simplified to
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Fig. 4.12 The order parameter varying with the coupling strength K. a g
′′
(ω) > 0. b g

′′
(ω) < 0.

(Adapted from Ref. [85])

Kc = 2γ, (4.92a)

R = √
(1 − 2γ /K). (4.92b)

One can see that the order parameter R exhibits a typical continuous phase
transition behavior

R ∝ (K − Kc)
1/2 (4.93)

near the critical point, as shown in Fig. 4.12a. This implies a typical second-order
phase transition similar to statistical physics. It should be pointed out that this
is a kind of non-equilibrium phase transition, which is the result of the system
ordering (coupling) overwhelming the disorder brought by natural frequency random
distribution.

Usually the second derivative in Eq. (4.90) at ω =−
ω should satisfy g

′′
(−
ω
)

> 0,

which means that the distribution function g(ω) is unimodal. In this case one expects

the second-order phase transition as shown in Fig. 4.12(a). If g
′′
(−
ω
)

< 0, i.e. the

distribution function is not a unimodal one, then near the critical point one has

R ∝ (Kc − K)1/2, (4.94)

as shown by the dashed line in Fig. 4.12b, indicating that the synchronized state
is unstable and practically unobservable. There exists a solid line in Fig. 4.12b
representing the stable synchronous branch, and the transitions between the asyn-
chronous and synchronous states are discontinuous due to the existence of unstable
branch between two stable branches in the bifurcation diagram. Therefore the tran-
sition to synchronization when g

′′
(ω) < 0 is the first-order phase transition [85], and

the emergence of the bistable regime indicates the hysteresis behavior as one varies
the coupling strength upwardly and downwardly.Wewill no longer discuss the details
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of this case. In fact, the stable synchronous branch in the bifurcation diagram can no
longer be obtained by the self-consistency method.

4.4.4 Order Parameter Dynamics: Equations of Motion

For a large number of interacting oscillators, we can deal with its dynamics at the
statistical or macroscopic level instead of tedious microscopic details. The self-
consistency approach successfully predicts the transition to synchronization at the
macroscopic level, but it requires that the order parameter is time independent. Further
studies revealed in many cases the order parameter is far from stationary. Therefore
it is necessary to study the non-stationary dynamics of the order parameter.

Another interesting issue is the emergent process of order parameters. According
to the principle of synergetics, the emergence of an order parameter is the result of
the spontaneous collaboration and competition among various degrees of freedom
with different time scales. Why does α1 becomes dominant and acts as the order
parameter to characterize the macroscopic behavior of the system instead of other
quantities? A general coupled oscillator system is usually complicated, and it is
important to set up a theoretical framework of order parameter dynamics. In this
section, we focus on the emergence of dominant order parameters in terms of the
basic idea of slaving principle [6, 21, 100, 101].

Let us consider N fully coupled oscillators, and the equations of motion can be
written as

θ̇j(t) = F(α, θj,β, γj), (4.95)

j = 1, 2, . . . ,N . Here β = {β1, β2, . . . } represent a set of uniform control param-
eters, i.e. these parameters are the same for all oscillators. γ = {γ1, γ2, . . . , γN }
is a set of non-uniform control parameters, these parameters are not the same for
different oscillators. A typical example is that the natural frequencies of oscillators
are usually different, and in this case {γi = ωi, i = 1, 2, , . . . ,N }.

We define the following set of collective parameters α = {αn}:

αn = 1

N

N∑
j=1

einθj . (4.96)

Obviouslyα1 has the same expression as that defined in (4.60). Parametersαn with
n > 1 are high-order parameters. We call this set of parameters α the generalized
order parameters.

In thermodynamic limit N → ∞, the detailed dynamical information of an indi-
vidual oscillator is no longer relevant. It is more convenient to introduce density
distribution function ρ(γ , θ, t) and study the statistical property of the coupled oscil-
lator system, where ρ(γ , θ, t)dθ is the probability that the phase of an oscillator falls
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in θ → θ + dθ at time t. The evolution of the distribution function corresponding to
Eq. (4.95) is typically the continuity equation similar to (4.74)

∂ρ/∂t + ∂(ρv)/∂θ = 0, (4.97)

where the phase velocity is v = F(α, θ,β, γ ).
By considering the inhomogeneity in the system, the total distribution function

should sum over the non-identical parameter γ,

ρ(θ, t) =
∑
i

ρ(γi, θ, t). (4.98)

For example, when we study coupled oscillators with non-uniform natural
frequencies, the total distribution function canbe derived by summingover the natural
frequency as

ρ(θ, t) =
∫

ρ(ω, θ, t)g(ω)dω. (4.99)

where g(ω) is the distribution function of natural frequencies.
The above discussion establishes the statistical description of coupled oscilla-

tors. The phase distribution function contains all the information of the collective
behavior of coupled oscillators. As long as one solves the equation of the distribution
function (97), all the other statistical and macroscopic quantities can be calculated in
terms of the distribution function. As for the synchronization of coupled oscillators,
we are concerned with the order parameters, which can well describe the degree
of synchronization. By using the distribution function, the expression of the order
parameters in terms of the sum of einθ can be expressed as the following integral for
a homogeneous system:

αn =
∫

einθρ(θ, t)dθ. (4.100)

In the presence of heterogeneity, one also needs to sum over the non-uniform
parameters. For example, if the non-uniform parameter is the natural frequency, then
the integral form of the generalized order parameter can be expressed as

αn =
∫

einθρ(ω, θ, t)g(ω)dωdθ. (4.101)

The above expression indicates explicitly that the order parameters αn are actu-
ally the statistical average, or n-th order moment of the phase factor einθ . Note that
statistically the description of all orders of moments is equivalent to that of the distri-
bution function, i.e. one can obtain the complete information from the other party.
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In addition, we can see from the above two expressions that the generalized order
parameters are actually the Fourier coefficients of the distribution function ρ(θ, t).

The order parameters αn can describe different orderness of a population of
oscillators. First, it can be easily seen that |αn| ≤ 1. |αn| = 0 represents
a statistically homogeneous and random distribution of oscillators with phases
in [0, 2π ], which is denoted as the incoherent state. When |αn| = 1, oscilla-
tors are in the clustering state. For example, |α1| = 1 corresponds to the state
that all oscillators possess the same phase {θi(t) = θ(t), i = 1, 2, . . . ,N },
i.e. the globally synchronous state. |α2| = 1 refers to a two-cluster state,
where oscillators are divided into two synchronous clusters with a phase shift
π:

{
θi(t) = θ(t), θj(t) = θ(t) + π, i = 1, 2, . . . ,M , j = M + 1, . . . ,N

}
. Therefore

|αn| = 1 represents the state of n synchronous clusters with phase shift 2π/n, and
the state with order parameter 0 < |αn| < 1 is the partially synchronous state.

We first consider the case of N coupled identical phase oscillators. Our mission
is to derive the evolution dynamics of the order parameters. For a finite number of
oscillators, the dynamics of the generalized order parameters α should be equivalent
to that of the microdynamics oscillators, whose equations of motion are written as

θ̇j(t) = F(α, θj,β), j = 1, 2, . . . ,N . (4.102)

By taking the time derivative of the order parameter (4.96) on both sides and
inserting the equations of motion (4.102), one gets

α̇n = in

N

N∑
j=1

einθj F(α, θj,β). (4.103)

Because F(α, θ,β) is a 2π-periodic functions of the phase θ, it can be expanded
into the Fourier series as

F(α, θj,β) =
∞∑

k=−∞
fk(α,β)eikθj . (4.104)

The real function F(α, θ,β) requires the Fourier coefficients satisfy f−k(α,β) =
−
f k(α,β), where

−
f k is the complex conjugate of fk . Inserting the expansion (4.104)

into (4.103) and by using the definition of αn, one may get the equations of motion
for the order parameters:

α̇n = in
∞∑

k=−∞
fk(α,β)αk+n. (4.105)

It can be found that dynamical behavior of αn(t) depends on all the other order
parameters {αk+n}. Let us consider a truncated case of the system (4.102), i.e. only
the first-order order expansion of the coupling function (4.104) is kept, then



180 Z. Zheng

F(α, θ) = f1(α)eiθ + f−1(α)e−iθ + f0(α), (4.106)

and the order parameter Eq. (4.105) can be greatly simplified. By substituting (4.106)
into the order parameter motion Eq. (4.105) one obtains

α̇n = in
[
f1(α)αn+1 + f 1(α)αn−1 + f0(α)αn

]
, (4.107)

where n ≥ 0, α−n = αn.
One should point out that the solution of (4.105) possesses the same difficulty as

that of the original dynamical Eqs. (4.102). In fact, these two sets of equations are
equivalent descriptions, and the generalized order parameters can be regarded as a
set of collective variables transformed from the phase variables. This set of coupled
order parameter equations are difficult to solve. On the other hand, one can seek for
some specific solutions. One trivial solution is the incoherent/asynchronous solution
αn ≡ 0.

When the coupling strength is increased, oscillatorswill synchronize to each other,
and the microscopic motion will collapse into a low-dimensional phase space. In the
generalizedorder-parameter space, the systemwill also collapse to a low-dimensional
space. Therefore, according to the slaving principle, only a few (or even only one) of
these generalized order parameters will survive to be the dominant order parameters,
and other parameters will be fast variables and can be adiabatically eliminated [20,
21]. Here we will explore this interesting question from a theoretical perspective.

4.4.5 Emergence of Order Parameters

4.4.5.1 The Ott-Antonsen (OA) Ansatz

The above simple three-diagonal iterative form of the order-parameter dynam-
ical equations implies the symmetry of the system and possible low-dimensional
dynamics. One of the simplest possibilities is the case when there exists a certain
relationship between different order parameters.A possible scenario is that all higher-
order parameters {αn≥2} depend on α1. This can be easily understood since our
previous self-consistency approach to the Kuramoto model is based on the study
of α1. By assuming a uniform form of function representing this dependence, let us
look for the following trial solution:

αn = G(α1, n), (4.108)

where G(α1, n) is a differentiable function. The time derivative of (4.108) leads to

α̇n = Gα1(α1, n)α̇1. (4.109)
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where Gα1(α1, n) = ∂G(α1, n)/∂α1. By using (4.107), one obtains

in(f1αn+1 + f 1αn−1 + f0αn) = iGα1(f1α2 + f 1α0 + f0α1). (4.110)

The coefficients of the Fourier expansion terms fi or
−
f i at both sides in (4.110)

are equal, leading to the following relations:

nαn+1 = Gα1α2, nαn−1 = Gα1α0, nαn = Gα1α1.

Because α0 = ∫
ρ(ω, θ, t)g(ω)dωdθ = 1, one obtains

Gα1 = nαn+1

α2
= nαn−1 = nαn

α1
. (4.111)

This naturally leads to

nG = Gα1α1, (4.112)

One thus obtains the following form of the function:

αn = G(α1, n) = αn
1 . (4.113)

By inserting (4.113) to (4.107), one finally gets the equation of motion of α1 as

α̇1 = i[f1(α1)α
2
1 + f 1(α1) + f0(α1)α1]. (4.114)

It is interesting that (4.113) is just the ansatz recently proposed
byOtt andAntonsen [90, 91],whichwas called theOtt-Antonsen (OA)ansatz there-
after. Therefore, an infinite-dimensional dynamical system is reduced to a two-
dimensional order parameter equation. Undoubtedly this is a great reduction and
simplification of a complex system.

4.4.5.2 Poisson Invariant Manifold

In fact, Ott and Antonsen proposed the above ansatz based on the distribution
function. The distribution function can be expanded into Fourier series, where the
expansion coefficients are the generalized order parameters αn, that is,

ρ(θ, t) = 1

2π

[
1 +

∑∞
n=1

(
αn(t)e

inθ + αn(t)e
−inθ

)]
. (4.115)

Generally, the above summation can be executed to get the distribution function
onlywhen all the Fourier coefficients {αn} are known. Ott andAntonsen assumed that
the coefficients {αn} are not independent of each other, and they are all determined
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by the complex function α1(t) and satisfy the following power law, namely

αn(t) = αn
1(t), αn(t) = αn

1(t). (4.116)

One then gets the following form:

ρ(θ, t) = 1

2π

[
1 +

∑∞
n=1

(
αn
1(t)e

inθ + αn
1(t)e

−inθ )], (4.117)

By satisfying the above power-law relation, the summation (4.117) on the right
side is simply the power series and can beworked out to obtain thePoisson summation
form of the distribution:

ρ(θ, t) = 1

2π

1 − r2

1 − 2r cos(θ − �) + r2
, (4.118)

where r and � are the amplitude and the phase of the parameter α1(t) = rei�,
respectively.

The result (4.118) indicates that the phase distribution is completely determined
by α1(t). Because the solution satisfying the relation (4.113) obeys a degenerate
equation of motion, the relation (4.113) will be satisfied in the evolution process. The
order parameter α1(t) may vary with time, and this consequently leads to the change
of the distribution ρ(θ, t) with the evolution of the system. However, it can be easily
found from that (4.118) that ρ(θ, t) always keeps an invariant form of the Poisson
summation. If the initial phase density distribution of the system ρ(θ, t = 0) satisfies
the Poisson-summation distribution, then the density distribution ρ(θ, t) will always
keep this property. Therefore the order-parameter relation (4.113) and the degenerate
equation of motion (4.114) are also called the invariant Poisson-summation sub-
manifold of the dynamical system (4.107). An important feature of this invariant
manifold is that α1(t) can be either time dependent or time independent.

4.4.5.3 The Inhomogeneous Case

Let us further consider the case of coupled non-identical oscillators. We consider the
natural frequencyof individual oscillator as the inhomogeneous parameter.Assuming
that the natural frequencies obey the distribution G(ω). The dynamical equations of
the system can be written as

θ̇j(t) = F(α, θj,β, ωj), j = 1, 2, . . . ,N (4.119)

whenN → ∞, the density function ρ(ω, θ, t) can be introduced, and the generalized
order parameter is written as
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αn(t) =
∫

αn(ω, t)g(ω)dω, (4.120)

where αn(ω, t) is the local order parameter with the natural frequency ω:

αn(ω, t) =
∫

einθρ(ω, θ, t)dθ, (4.121)

and it can also be understood as the n-order Fourier expansion of ρ(ω, θ, t). The
following recursive equation can be obtained using the continuity equation

α̇n(ω, t) = in
∞∑

j=−∞
fj(α,β,ω)αj+n(ω, t), (4.122)

Similar to (4.106), if the coupling function contains only the first-order Fourier
coefficients, then the Ott-Antonsen ansatz for a given value of the natural frequency
ω

αn(ω, t) = αn
1(ω, t), (4.123)

is a set of special solutions of Eqs. (4.111). Specifically, the first order parameter is

α1(t) =
∫

α1(ω, t)g(ω)dω. (4.124)

When the distribution function g(ω) is the rational fraction of ω, such
as Lorentz distribution, one can analytically extend the realω to the complex regime.
If there is no divergence (|α1(t)| ≤ 1), the evolution equation of α1(t) can be worked
out.

4.4.5.4 The Mean-Field Kuramoto Model Revisited

Now let us study the synchronization transition of the mean-field coupled
oscillator systems in terms of the Ott-Antonson ansatz by adopting the clas-
sicalKuramotomodel (4.44) as an example.Byusing (4.124) and letting z(t) = α1(t),
one can rewrite the Fourier components in the coupling function (4.104) as

f1 ≡ −Kz/2i, f 1 ≡ Kz/2i, f0 ≡ ω. (4.125)

This means that the coupling function of the Kuramoto model only contains the
first-order Fourier components shown by (4.106). Then by using (4.114) one can get

α̇1(ω, t) = 1

2
[2iωα1(ω, t) + Kz(t) − Kz(t)α2

1(ω, t)]. (4.126)
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If the natural-frequency distribution function g(ω) is the following Lorentz form

g(ω) = 1/[π(ω2 + 1)], (4.127)

then by inserting it into (4.124) one has

z(t) =
∞∫

−∞

α1(ω, t)dω

π(ω2 + 1)
. (4.128)

This integral can be done by extending to the complex plane of ω. Obviously the
extension should be to the upper half complex plane. By using the Cauchy residue
theorem, one obtains

z(t) = α1(ω = i, t). (4.129)

By substituting (4.129) to (4.126)–(4.128), one has

ż(t) = 1

2
z(t)(K − 2 − K |z(t)|2). (4.130)

This is a complex dynamical equation, which describes a two-dimensional real-
space dynamics. It can be seen that there exists a critical point Kc = 2 for the
dynamical system (4.130). When K ≤ Kc, the system has the only one fixed-point
solution z ≡ 0, which denotes the asynchronously disordered state. When K ≥ Kc,
the zero solution becomes unstable, and the system experiences a bifurcation to the
non-zero branch

|z| = √
(K − Kc)/K . (4.131)

This non-zero solution represents the emergence of the self-organized synchro-
nization state. By comparing with the result (4.93) obtained in terms of the self-
consistency approach proposed in Sec. 4.3, one can find that here we obtain the same
results.

An important issue is the stability of theOA invariantmanifolds [92, 93]. Recently,
we studied the stability of the OA manifold by using the analysis in the functional
space of the phase distribution function [102, 103]. We proved that the OA mani-
fold is in fact the two-dimensional invariant manifold in the infinite-dimensional
density functional space. This greatly expands the applicability of the OA ansatz
as an effective method for analyzing the dynamics of globally coupled phase
oscillators [100], where the OA approach has its validity.

Studies on synchronization of the globally coupled phase oscillators can be
naturally extended to the case of complex networks:



4 An Introduction to Emergence Dynamics in Complex Systems 185

θ̇i = ωi +
N∑
j=1

Kij sin(θj − θi), i = 1, 2, . . . ,N (4.132)

This can be considered by considering the coupling weights among oscillators
that depend on their natural frequencies:

Kij =
{
K |ωi|/N , for IN − coupling case
K
∣∣ωj

∣∣/N , for OUT − coupling case
(4.133)

When all weights are identical, i.e. Kij = K/N , the discussion returns to the usual
Kuramoto model. Both the self-consistency approach and the OA ansatz can be
applied to discussions of this type of globally coupled oscillator systems [104–107].
One can obtain a generalized formula of the critical coupling for synchronization.
However, the order parameter dynamics exhibits complicated bifurcations and non-
stationary dynamics.

4.4.6 Synchronizations on Star Networks

As an application of the above dimension-reduction scheme of phase dynamics of
coupled oscillators, let us study the synchronization of coupled phase oscillators on
star networks [108–111]. The star network topology has the typical heterogeneity
property, which is very important in studies of collective dynamics on scale-free
networks. In a heterogeneous network, such as a scale-free network, hub plays a
dominant role. Hence a star motif with a central hub is a typical topology in grasping
the essential property of the heterogeneous networks. It has been revealed that an
abrupt transition, namely the explosive synchronization, can take place on scale-free
networks, which means a large number of oscillators that evolve incoherently can
suddenly become synchronous into a large-size cluster at a critical coupling strength
[112–114]. The key point in understanding this discontinuous synchronization tran-
sition is the dynamical analysis of the multi-stability of miscellaneous synchronous
attractors in phase space [115, 116]. However, it is difficult to get an analytical insight
in a high-dimensional phase space. Recently, we have revealed the mechanism of
synchronization transition by analyzing the collective dynamics in a low-dimensional
complex order parameter space in terms of the above dimension-reduction approach
[48, 108].

4.4.6.1 The Star-Networked Phase Model

By adopting oscillators on N leaf nodes with frequencies {ωj} and the hub with ωh,
the equations of motion can be written as
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θ̇h = ωh + K
∑N

j=1
sin(θj − θh − α),

θ̇j = ωj + K sin(θh − θj − α), j ∈ [1,N ], (4.134)

where 1 ≤ j ≤ N , θh, θj are phases of the hub and leaf nodes, respectively, K is
the coupling strength, and α is the phase shift. By introducing the phase difference
ϕj = θh − θj and the natural frequency difference �ωj = ωh − ωi, Eqs. (4.134) can
be transformed to

ϕ̇j = �ωj − K
∑N

j=1
sin(ϕj + α) − K sin(ϕj − α), j ∈ [1,N ] (4.135)

By introducing the mean-field order parameter

z(t) ≡ R(t)eiψ(t) = 1

N

∑N

j=1
eiϕj , (4.136)

Equations (4.135) can be rewritten as

ϕ̇j = feiϕj + g + f e−iϕj , (4.137)

where j = 1, 2, . . . ,N , and

f = iKe−iα/2, g = �ω − NKR sin(� + α). (4.138)

In terms of the OA ansatz, one can obtain the following equation of the order
parameter:

ż = −K

2
e−iαz2 + i[�ω − NKR sin(� + α)]z + K

2
eiα. (4.139)

The following procedure becomes easier in analyzing the collective dynamics of
star-network coupled oscillators in terms of the order-parameter dynamics.

4.4.6.2 Stationary Synchronous States

The above defined order parameter behaves in different ways as oscillators exhibit
different collective dynamics. It can be noticed that only when R(t) = 1 and the
collective phase �(t) = constant, a globally synchronous state on star network can
be achieved. If the amplitude R(t) = 1 while �(t) is temporally periodic, then one
has ϕj(t) = ϕ(t), and this corresponds to the synchrony of leaf nodes while the
hub are asynchronous to them. When R(t) = 0, oscillators behave incoherently,
and 0 < R(t) < 1 corresponds to a partially synchronous state. On the other hand,
R(t) could be time-independent or time-dependent, and the collective motion can be
regular or chaotic, depending on system parameters and initial conditions.
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By introducing z = x + iy, Eq. (4.139) is written as two real equations:

ẋ = K1(N+1/2)y2 − K1x
2/2 + K2(N − 1)xy − �ωy + K1/2,

ẏ = −K2(N − 1/2)x2 − K2y
2/2 − K1(N + 1)xy + �ωx + K2/2. (4.140)

here K1 = Kcosα, K2 = Ksinα. The fixed points (x1∼4, y1∼4) can be worked out by
setting ẋ = 0, ẏ = 0 as

x1,2 = (−�ω ± A) sin α

K(2N cos 2α + 1)
, (4.141a)

y1,2 = (−�ω ± A) cosα

K(2N cos 2α + 1)
, (4.141b)

x3,4 = sin α

K
+ [B ± N (B − 2 sin 2α)] cosα

K(N 2 + 2N cos 2α + 1)
, (4.141c)

y3,4 = −�ω(− cosα ± B sin α − K cosα)

K(N 2 + 2N cos 2α + 1)
. (4.141d)

The stability of these fixed points is summarized as follows:
The parameters in Table 4.1 can be analytically obtained as

Kf
c = �ω/

√
2N cos 2α + 1, (4.142a)

K±
SC = ∓�ω/(N cos 2α + 1), (4.142b)

α±
0 = ± arccos(−/N )/2 (4.142c)

It is interesting that these fixed points correspond to different collective states in
the star-networked systems:

Table 4.1 Fixed points
(x1∼4, y1∼4) and their stable
regions in the α ∼ K
parameter space

Fixed Points Stable regions

(x1, y1) K < Kf
c , α ∈ (α−

0 , 0)

(x1, y1) K > 0, α ∈ (−π/2, α−
0 )

(x2, y2) K > K+
SC , α ∈ (α+

0 , π/2)

(x3, y3) K > K−
SC , α ∈ (α−

0 , 0)

(x3, y3) K < K+
SC , α ∈ (α+

0 , π/2)

(x4, y4) Always unstable
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(1) Synchronous State:
Fixed points (x3,4, y3,4) satisfy |z| = 1, which correspond to the synchronous
state(SS) of the star, i.e. the phase difference between the hub and leaves keeps
constant:

ϕj(t) = const, j = 1, 2, . . . ,N . (4.143)

It can be seen from Table 4.1 that (x4, y4) is always unstable, whilst the state
(x3, y3) is stable in the region shown in Table 4.1.

(2) Splay State:
When the modulo of the fixed points

(
x1,2, y1,2

)
satisfy |z| > 1, these points

are unphysical. Only when |z| < 1 the fixed points
(
x1,2, y1,2

)
are related to the

collective splay state (SPS), i.e.

ϕj(t) = ϕ(t + jT/N ), j = 1, 2, . . . ,N , (4.144)

where T is the period of ϕ(t). This state indicates that leaf oscillators can achieve
an ordered statewith a fixed time delay between neighboring leaves. All possible
stable regions of the SPS are given in Table 4.1.

4.4.6.3 Periodic Synchronous States

It should be emphasized that the long-term solutions of (4.140) include not only the
stationary states (x1∼4, y1∼4), but also time-dependent states. Because the complex
Eq. (4.139) is two-dimensional in real space, the possible time-dependent solution
should be periodic. Further analysis indicates that the system possesses two types
of periodic solutions, where type I exists in the parameter region 0 < α < π/2
and K < Kec = K2, and the type-II periodic solution can be found for some special
values of frustrations such as α = 0,±π/2. These two types of periodic dynamics
are different. We give a brief discussion of these two solutions.

(1) In-phase State:
Type-I periodic solution can be found by using the polar coordinate z = Rei� ,
and Eqs. (4.140) can be transformed to

Ṙ = −K

2
(R2 − 1) cos(� + α),

�̇ = −K

2
(R + 1

R
) sin(� − α) + �ω − NKR sin(� + α). (4.145)

Equations (4.145) have a limit-cycle solution with a radius R = 1 and a cyclic
evolution of the phase variable �(t). This periodic solution is related to the
so-called in-phase state (IPS), where phases of all oscillators are synchronous
as.
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ϕj(t) = ϕ(t), j = 1, 2, . . . ,N , (4.146)

i.e. all leaf oscillators are synchronous to each otherwhile they are asynchronous
to the hub oscillator. The stability of this limit cycle can be analyzed in terms
of Floquet theory.

(2) Neutral State:
Type-II periodic solution occurs at some certain values of phase shifts. Let us
take the case α = 0 as an example, where Eqs. (4.140) can be simplified as

ẋ = K(
1

2
+ N )y2 − K

2
x2 − �ωy + K

2
ẏ = −K(N + 1)xy + �ωx (4.147)

These two equations keep invariant under the time-reversal transformation.

R : (t, x, y) �→ (−t,−x, y). (4.148)

This leads to an attracting set in the phase plane x > 0 and a repulsing set in the
phase plane x < 0. If an orbit passes the boundary x = 0 in both directions, this orbit
will be a closed type and neutrally stable. Therefore when α = 0 Eqs. (4.145) have
the neutral periodic solution, and this system is called a quasi-Hamiltonian system.
The corresponding collective state is called the neutral state (NS). The NS depends
on initial states, while the IPS is independent of initial states.

We further present the phase diagram in the α ∼ K space in Fig. 4.13, where the
stable parameter regions of some typical collective states such as the SS, the SPS,
and the IPS are shown in the phase diagram, respectively. The coexistence region
of the incoherent state and the splay state is plotted by shadow. Three routes to
synchronization are shown as the splay state to the synchronous state, the in-phase
state to the synchronous state, and the neutral state to the synchronous state.

Fig. 4.13 The phase
diagram of the star-coupled
oscillator system. α is the
phase shift, and K is the
coupling strength. (Adapted
from Ref. [108])
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It can be seen from the above analysis of the two-dimensional order-parameter
dynamics that it is much easier than the original (N + 1)-dimensional dynamics
given by (4.134). Moreover, the dynamics of the order parameter can be completely
solvable. Readers may refer [108–111] for a more detailed discussion.

4.5 Remarks

Collective behavior of a complex system implies the emergence of a macroscopic
order from the organizations of populations of units withmutual interactions. Usually
the number of degrees of freedom at the microscopic level is so large that an exact
description of the system at this level is impossible and also unnecessary. Therefore
a macroscopic study of the complex system is significant. In the description of ther-
modynamics of gas, one only needs to use several variables, e.g. the temperature, the
pressure and the volume to depict the property of a large number of particles moving
in a box. Generally, the macroscopic order of a complex system is originated from
the reduction of degrees of freedom by transiting from microscopic to macroscopic
levels, i.e. and the macroscopic description of the order needs only a few variables.
These macroscopic variables are called the order parameters.

On the other hand, the emergence of order parameters in a system is sponta-
neous rather than manually selected. This means the ordered state is the result of
self-organization and competitions of units. In this Chapter, we applied the slaving
principle to discuss the competitions amongvarious state variableswith different time
scales. We showed that at the critical point, only a few slow variables will conquer
the large number of fast variables and dominate the evolution of the system, and these
slow variables grow up to become the order parameters. In this case the dynamics
can be described by the evolution of these small number of order parameters, which
is a great dimension reduction.

It should be stressed that the idea of the reduction scheme can be extensively
applied to various transitions, such as the emergence of spatiotemporal patterns, the
transitions from partial to global synchronization in coupled oscillators, the transi-
tions from non-integrability to integrability in Hamiltonian systems, thermodynamic
phase transitions in condensed matters, and so on. We think the slaving principle and
more generally the principles in synergetic theory and dissipative-structure theory
are exhibiting their great privileges in exploring the order emergence of complex
systems in recent years.

An effective reduction depends strongly on the motivation, and it can be a projec-
tion to a low-dimensional subspace, or a dimension reduction of high-dimensional
systems, or a topology simplification, et al. The reducibility of complex systems
should obey, at least approximately obey the following physical properties:

(1) Symmetry
This is a well-known solvable case in physics, which applies also in the process
of reduction. For example, symmetries in a Hamiltonian system lead to various
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invariances such as invariant integrals and constants of motion, which are
responsible for low-dimensional motions. Another example is the reduction
problem in hydrodynamics, where the hydrodynamic collision invariance leads
to conservation laws and furthermore the deduction of fluid dynamics such as
Navior-Stokes equations and Euler equations.

(2) Distinct time/space scales
The slaving principle we discussed in this chapter is closely related to the sepa-
ration of time scales of different degrees of freedom, which also provides a
scheme in picking up order parameters frommany state variables. This reminds
us the emergence of order at the onset of phase transition in statistical physics,
at which the slowing down effect can be observed and only a few stable modes
become unstable and dominate the global behavior of the system.

Physically, the relaxation time scale is related to the correlation time scale, and the
spatial diffusion scale is related to the spatial correlation scale. A large distinction
time or space scale naturally leads to the separation of state variables. An impressive
example is the theoretical foundation of Brownianmotion, and the Langevin equation
was proposed, which is a stochastic equation of motion including both deterministic
and random forces due to the time-scale separation of the relaxational time and
the rapid thermal fluctuation. Statistical dynamics of Brownian-related processes
distributed from physics to chemistry and biology becomes an important subject.

The above criteria for a reducible system in many cases are constructive. The
invariance and conservation related to symmetry can bring forth various ways
in accomplishing the reduction procedure in terms of transformation invariance,
invariant group, invariant manifold, and invariant subspace. Therefore the most
important mission is to seek for these invariant elements and symmetries. The slaving
principle can be facilitated in terms of adiabatic eliminations, time averaging, or the
central-manifold theorem. In statistical physics, one often applies the projection
operators to obtain the dynamics of a lower-dimensional distribution function.

In this Chapter we also applied the dimension-reduction schemes to study the
emergence of sustained oscillation in networks of excitable units and gene-regulatory
networks. Because collective rhythms are generated by the feedback mechanism, the
topological motifs should be an important source of this feedback. For excitable
networks, the feedback is organized by the loop structure (Winfree loop). One
can apply the DPAD scheme to determine the phase order of units and reveal the
embedded loops in a highly-complicated network. For gene-regulatory networks,
the feedback is formed by an appropriate match of the active and repressive regula-
tions among genes. A computation of functional weights can be applied to evaluate
the dynamical contributions of topological networked links, where small functional-
weight links can be eliminated by keeping dominant links. We should emphasize
that these two techniques can be well applied to practical systems, where only data
or time series are available to measure.

Synchronization of coupled oscillators is another vivid example of dynamical
emergence, which covers a large extent of different topics. The ordered emergence is
accompanied with a dimension reduction of microdynamics, so one may introduce
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and explore the order-parameter dynamics in terms of self-consistency approach,
the Ott-Antonsen ansatz or the ensemble order parameter technique. Symmetries
exist in many networks of coupled phase-oscillator systems, Watanabe and Strogatz
introduced the Mobius transformation (called the WS transformation) to reduce the
high-dimensional dynamics to a three-dimensional space, and the two-dimensional
invariant manifold obtained by using the OA ansatz is in fact a sub-manifold in the
WS space. We will not discuss these topics here. Interested readers may refer [6, 92,
93] for more information.
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