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Abstract Although the fragment molecular orbital (FMO) method enables elec-
tronic structure calculations with near-linear scaling behavior with respect to system
size, the computational cost of ab initio methods typically employed in conjunction
with FMO is still prohibitive for routine calculations of very large systems or long
timescale molecular dynamics simulations. We, therefore, combined the FMO and
density-functional tight-binding (DFTB)method, which is one of the emerging semi-
empirical quantum chemical methods, and have demonstrated that FMO-DFTB is
capable of performing geometry optimizations for systems containing up to one mil-
lion atoms using limited computational resources. In this chapter, we will review the
basics of the DFTB method first before introducing FMO-DFTB, focusing on the
relationship with density functional theory and other FMO methodologies. We also
demonstrate the latest scalings of FMO-DFTB2 andDFTB3 using three-dimensional
water clusters, showing that the most favorable scaling is O

(
N 1.16

)
. Applications

of FMO-DFTB to various systems are briefly summarized, and an outlook to future
applications is provided.

Keywords Density-functional tight-binding · Approximate electronic structure
theory · Molecular dynamics · Near-linear scaling

1 Introduction

In performing quantum chemical calculations, finding a reasonable trade-off between
accuracy and computational cost is always inevitable. If an infinitely fast computer
would be available, the choice should always be the full configuration interaction
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method,which allows to compute the exact nonrelativistic solution of theSchrödinger
equationwithin theBorn–Oppenheimer approximation. Such a computer, anticipated
by someas the ultimate goal of current efforts in quantumcomputing, is obviously still
far from realization. With the currently available limited computational resources,
we have to choose a method which (hopefully) yields the highest accuracy with the
lowest computational cost, carefully considering the expected accuracy and cost.
In principle, accurate methods exhibit unfortunate, steep scaling with respect to
system size, such as polynomial or, as in the case of full configuration interaction,
factorial. The scaling of all standard quantum chemical calculations is at least equal
or greater than quadratic. Quadratic scaling in electronic structure calculations can
be achieved by using integral prescreening [1] and density fitting [2] techniques.
If the bottleneck of integral calculation can be overcome, for instance, by efficient
parallelization or parameterization, matrix diagonalization and other linear algebra
related to Hamiltonian and density matrices become dominant, and these operations
are commonly associated with cubic scaling. Thus, one always suffers from rapid
increase of the computational cost as far as we treat dense matrices. This problem
may be actually less severe; we can simply wait for long calculations to finish or,
if the code parallelizes well, we can use more and more CPU cores. However, the
memory requirement is another, and possibly more severe, problem. If we cannot
store a very large matrix in memory, we cannot even execute the calculation. For
instance, storing a 100,000 × 100,000 matrix in memory requires 74.5 GB in double
precision, so some computers with a medium-sized memory space may not handle
this large calculation. In any case, calculations for large systems always suffer from
these problems.

In this context, a number of linear-scaling methods have been developed, and one
of them is the fragment molecular orbital (FMO) method [3], the main theme of
this book. After the first idea by Kitaura et al., it has been combined with various
ab initio methods, and numerous methodological simplifications and advances have
been reported. Various FMO approaches have been successfully applied to a great
many systems. In spite of the usefulness of the approach itself, computational costs
of the ab initio methods themselves are still high, even when they are combined with
FMO. One may find that treating the whole system in a straightforward fashion with
semi-empirical quantum mechanics (QM) methods is sometimes faster than FMO
combined with ab initio methods, if the system consists of less than a few thousand
atoms.

The density-functional tight-binding (DFTB) method [4–8] is one of the semi-
empirical QM methods, and it has been applied to a number of nanomaterials [9],
chemical [10] and biosystems [11]. The method is known as an approximation of
density functional theory (DFT), utilizing tight-binding approximations such as min-
imal Slater-type basis set and two-center approximations for Hamiltonian matrix
elements, and diatomic repulsive potentials. The earliest DFTB development per-
haps began with the seminal works by Porezag et al. [12] and Seifert et al. [13].
This option is known as nonself-consistent-charge DFTB (NCC-DFTB) or DFTB1,
and it has been applied to systems in which charge polarization is not significant.
As the name implies, NCC-DFTB requires only a single diagonalization of a model
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Hamiltonian employing a reference electron density. It is conceptually similar to
extended Hückel-type methods, although the potentials are more sophisticated. The
second generation of DFTB is the self-consistent-charge (SCC) formalism [14], also
recently called DFTB2. This extension is based on the fundamental ideas of Foulkes
and Haydock [15]. In the SCC formalism, interactions between atomic charges are
explicitly taken into account, and the electronic structure is determined as aminimum
of electronic energy with respect to the change of variational parameters, improving
the description of charge–charge interactions. It requires self-consistent treatment of
charge–charge interactions, as is evident from the name. The third generation is the
DFTB3 formalism introduced in 2011 by Gaus et al. [16], which includes a third-
order term related to the charge-dependence of the Hubbard parameter introduced in
DFTB2. More details on DFTB methods are reviewed later.

In termsof the computational cost, even though thepre-factor ofDFTB is relatively
small, all the DFTB generations require matrix multiplications and diagonalization
of the Hamiltonian (roughly equivalently, Fockmatrix in Hartree–Fock) matrix more
than once, so the computational scaling of these steps formally scales as cubic, and
applications to large systems (more than 1000 atoms) are, therefore, not straight-
forward. For instance, a DFTB energy and gradient calculation for a water cluster
containing 4000 molecules take about 6d on a single CPU [17]. To circumvent this
problem, various linear-scaling approaches have been combined with DFTB. One
realization is a rather direct method; large systems are treated as they are, i.e., without
fragmentation. Focusing only on the approaches combined with DFTB, this category
may include the use of an OpenMP sparse matrix solver [18], shift-and-inverse par-
allel spectral transformations (SIPs) [19], and graph-based Fermi operator expansion
[20]. A key of these methods is the exploitation of the sparsity of Hamiltonian and
overlap matrices. Another realization divides large systems into smaller spatial seg-
ments or fragments: modified divide-and-conquer (mDC) [21], fragment molecular
orbital (FMO) [17] and divide-and-conquer (DC) [22, 23]. Although it would be
certainly interesting to compare the performance and the applicability of these linear
scaling methods, our focus in this chapter is the combination of FMO and DFTB, so
we are not going to discuss the DC methods further.

Since 2014, we have been developing an ultra-fast semi-empirical quantum
mechanical method, FMO-DFTB, which combines FMO and DFTB. The scaling
of the computational cost was close to linear, O

(
N 1.2

)
, even for three-dimensional

water clusters. The performance of the method has been reported several times since
its initial conception, and the largest system it was applied to consisted of 1,180,800
atoms for which each single point gradient calculation took only 22min, using a sin-
gle computer node with 24 CPU cores. In this chapter, we review our FMO-DFTB
method after briefly introducing the DFTB method itself. We will discuss previous
applications of DFTB and FMO-DFTB and finally conclude with a short summary
and future prospect.



462 Y. Nishimoto and S. Irle

2 Basics of the DFTB Method

The basics of the DFTB method are briefly reviewed in this section. The formalism
introduced in this subsection is limited for the purpose of this review chapter, and we
point the reader to more detailed introductions, for instance, in Refs. [4–8] Further-
more, semi-empirical quantum mechanical methods have been compared in detail in
Ref. [10].

As mentioned, the DFTB method is derived from the DFT method itself. Here,
given the (perturbed) total density ρ, the total Kohn–ShamDFT energy can bewritten
as

EDFT =
occ∑

i

fi

〈
ψi

∣∣∣∣−
∇2

2
+ V ext

∣∣∣∣ψi

〉
+ 1

2

∫ ′ ∫ ρρ ′

|r − r′| + Exc[ρ] + Enuc , (1)

where fi is the occupation number of i th orbital ψi , V ext is the external potential,
Exc[ρ] is the exchange–correlation energy, and Enuc is the nuclear repulsion. Addi-
tionally, the following abbreviations were used:

∫ = ∫
dr,

∫ ′ = ∫
dr′, ρ = ρ (r),

and ρ ′ = ρ
(
r′). For convenience, two more abbreviations are introduced later in the

text:
∫ ′′ = ∫

dr′′ and ρ ′′ = ρ
(
r′′).

A series of approximations can then be introduced. The perturbed total density
ρ can be expressed as the sum (superposition) of a reference electron density ρ0

and a density perturbation δρ: ρ = ρ0 + δρ. The reference density ρ0 usually cor-
responds to the density of a free atom in vacuum. Free atoms in a bound molecular
system or solid affect each other, perturbing their density, and this density fluctuation
can be expressed as δρ. Using the density partitioning ρ = ρ0 + δρ, the exchange–
correlation energy can be expanded in a Taylor series around the reference density
in terms of the density perturbation:

Exc[ρ] = Exc[ρ0 + δρ]
= Exc[ρ0]

+
∫

δExc[ρ]
δρ

∣
∣∣∣
ρ0

δρ

+ 1

2

∫ ′ ∫ δ2Exc[ρ]
δρδρ ′

∣∣∣∣
ρ0,ρ0′

δρδρ ′

+ 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣∣∣
∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ + · · · (2)

With this expansion, the DFT total energy in Eq. (1) can be expanded as
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EDFT[ρ0 + δρ] = Enuc − 1

2

∫ ′ ∫ ρ0ρ0′

|r − r′| + Exc[ρ0] −
∫

V xc[ρ0]ρ0

+
occ∑

i

fi

〈
ψi

∣∣∣∣−
∇2

2
+ V ext +

∫ ′ ρ0′

|r − r′| + V xc[ρ0]
∣∣∣∣ψi

〉

+ 1

2

∫ ′ ∫ (
1

|r − r′| + δ2Exc[ρ]
δρδρ ′

∣∣
∣∣
ρ0,ρ0′

)

δρδρ ′

+ 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣
∣∣∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ + · · · (3)

≈ E rep + E1st + E2nd + E3rd , (4)

where V xc is the exchange–correlation potential. Each term in Eq. (4) corresponds
to one line in Eq. (3) and is related to the truncation order of the Taylor expansion in
Eq. (2). The last equation is a simplified expression of the DFTB energy:

EDFTB = E rep + E1st + E2nd + E3rd , (5)

where the truncation of terms distinguishes the level of DFTB: DFTB1, DFTB2, and
DFTB3.

The repulsion energy above is defined by

E rep = Enuc − 1

2

∫ ′ ∫ ρ0ρ0′

|r − r′| + Exc[ρ0] −
∫

V xc[ρ0]ρ0 . (6)

Clearly, the first term takes into account the nuclear repulsion, whereas the other
terms avoid double-counting Coulomb interactions and the exchange–correlation
energy of the reference density. E1st is sometimes referred to as the band structure
or electronic energy, defined by

E1st =
occ∑

i

fi

〈
ψi

∣∣
∣∣−

∇2

2
+ V ne +

∫ ′ ρ0′

|r − r′| + V xc[ρ0]
∣∣
∣∣ψi

〉
. (7)

This term is further simplified to yield

E1st =
∑

i

fi
〈
ψi

∣∣∣Ĥ [ρ0]
∣∣∣ψi

〉
, (8)

where Ĥ [ρ0] is the Hamiltonian, which is only dependent on the reference density.
The second-order contribution

E2nd = 1

2

∫ ′ ∫ (
1

|r − r′| + δ2Exc[ρ]
δρδρ ′

∣∣
∣∣
ρ0,ρ0′

)

δρδρ ′ (9)
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addresses Coulomb interactions and exchange–correlation contributions of the per-
turbed electron density. The third-order contribution

E3rd = 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣
∣∣∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ (10)

originates in the third-order Taylor expansion of the exchange–correlation energy.
Although higher order DFTB models (with fourth- and higher order Taylor expan-
sion) may also be formulated, no efforts for including them have been devoted. The
formulations employed during computation are briefly reviewed in the following
subsections. As usual, the linear combination of atomic orbitals (AOs) is applied:

ψi =
∑

μ

φμCμi , (11)

where φμ represents μth AO and Cμi is the expansion coefficient.

2.1 DFTB1

The NCC-DFTB method is sometimes referred to as DFTB1, indicating both its
expansion order, and indicating that it is the first generation of the DFTB hierarchy
of methods. The total energy of DFTB1 can be given by the sum of the repulsion
and one-electron contributions:

EDFTB1 = E rep + E1st

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν . (12)

Here, the density matrix Dμν is defined by

Dμν = 2
occ∑

i

CμiCνi , (13)

and H 0
μν is sometimes referred to as the non-perturbed Hamiltonian. After neglecting

several contributions, the matrix elements of H 0
μν are written as

H 0
μν =

〈
φμ

∣∣∣Ĥ
∣∣∣ φν

〉
=

⎧
⎪⎪⎨

⎪⎪⎩

εneutral free atom
μ if μ = ν〈
φA

μ

∣∣∣−∇2

2 + V A
0 + V B

0

∣∣∣ φB
ν

〉
if A �= B

0 otherwise,

, (14)
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where A and B represent the index of atoms and μ ∈ A and ν ∈ B. The orbital
energy of μth AO is εneutral free atom

μ , and V A
0 is the potential generated by the atom A

at a neutral state. The terms in the right-hand side are obtained from reference DFT
calculations. In most cases, the Perdew–Burke–Ernzerhof (PBE) [24, 25] exchange–
correlation functional is employed in the DFT calculation of atoms and diatomic
molecules in vacuum. For A �= B, the term is determined so that the DFTB calcu-
lations with parametrized H 0

μν reproduce the band structure obtained with DFT. In
actual DFTB calculations, tabulated (discretized) values in the Slater–Koster files
are normally interpolated using cubic or fifth-order polynomials, so no integrals
are explicitly computed. DFTB was originally developed using Slater-type AOs,
although this is only relevant during parametrization, and other choices including
numerical AOs and Gaussian AOs have been used as well.

Applying the standard variational method, the optimum MO coefficients can be
obtained by solving the generalized eigenvalue problem

H 0
μνCνi = SμνCνiεi , (15)

where Sμν is the (non-orthogonal) overlap matrix and εi are the eigenvalues of the i th
vector (molecular orbital). The overlap matrix elements are also parametrized, tabu-
lated, and computed by interpolations, as in the case of H 0

μν . The Hamiltonian, here
corresponding to H 0

μν , is directly constructed with Slater–Koster tables, and is thus
not dependent on the electronic structure. Therefore, a single diagonalization suffices
to determine the electronic structure and to compute the total energy within DFTB1;
no self-consistent field (SCF) cycles are required. Note that the DFTB community
usually uses SCC to refer to SCF in Hartree–Fock. However, when combined with
FMO, SCC formally means monomer iterations to determine electrostatic potential
(ESP). To avoid unnecessary confusion, “SCF” cycles are exclusively used here to
determine MO coefficients.

The repulsive potential E rep
AB is empirically determined to minimize the devia-

tions of geometrical parameters from reference geometries optimized with DFT. It is
usually obtained after having optimized the AOs used to construct the diagonal and
off-diagonal matrix elements of the Hamiltonian. We note in passing that parameter-
ization of both electronic parameters as well as repulsive potentials simultaneously
may lead to instabilities in the optimization procedure.

2.2 DFTB2

DFTB1has been successfully applied to somehomogeneous systems, such as carbon-
based nanomaterials [9] and some bulk systems [14]. Nevertheless, DFTB1 truncates
the Taylor series at the first order and does not include charge–charge interactions in
the formalism, limiting the accuracy for systems with heteroatoms, and is thus not
anymore widely used. Elstner et al. proposed the self-consistent version of DFTB as
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a next-generation model in 1998 [14], DFTB2; the total energy within DFTB2 can
be written by

EDFTB2 = EDFTB1 + 1

2

∑

A,B

γABΔQAΔQB

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB . (16)

The last term represents the second-order contributions, the third line of Eq. (3). The
γAB function is dependent on the distance between atoms A and B and on theHubbard
values of them. TheHubbard values are related to the atomic ionization potentials and
electron affinities or to chemical hardness. At a long distance, γAB closely follows
the inverse of the distance between atoms A and B, RAB and thus corresponds to the
pure Coulomb interaction between two charges. On the other hand, at the RAB → 0
limit, γAB will be the Hubbard valueUA, leading to charge self-interaction on a give
site (atom) [26]. The Mulliken charge ΔQA is the difference between the Mulliken
population QA and the reference density Q0

A of atom A: ΔQA = QA − Q0
A. The

Mulliken population is calculated by

QA =
∑

μ∈A

∑

ν

DμνSμν . (17)

Only valence electrons are considered in DFTB, e.g., the Q0
A of oxygen is six, not

eight. In DFTB2, the Hamiltonian matrix Hμν , conceptually corresponding to the
Fock matrix in Hartree–Fock, is

Hμν = H 0
μν + 1

2
Sμν

∑

C

(γAC + γBC) ΔQC (18)

for A ∈ μ and B ∈ ν. SinceΔQC is dependent on the densitymatrix, theHamiltonian
matrix is dependent on the electronic structure. Therefore, the variational parameters
within DFTB2 are determined iteratively by solving the eigenvalue problem self-
consistently. Consequently, DFTB2 is 5–15 times slower than DFTB1.

2.3 DFTB3

In 2011, Gaus et al. [16] introduced two formal advancements to the DFTB2 as
described in 2006 [11]. First, the third-order Taylor expansion term of the exchange–
correlation energy in Eq. (2) was introduced. Intuitively, the chemical hardness of an
atom should be dependent on its charge state. However, chemical hardness, which
is relevant to Hubbard value, is constant within DFTB2; this has severely limited
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applying DFTB to highly charged systems, such as an anion and cation system. The
third-order term introduced the charge-dependence of the γAB function in the DFTB
formalism. Omitting the detailed derivation, the final energy within DFTB3 was
expressed as

EDFTB3 = EDFTB2 + 1

6

∑

A,B

(ΓABΔQA + ΓBAΔQB)ΔQAΔQB

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB

+ 1

6

∑

A,B

(ΓABΔQA + ΓBAΔQB)ΔQAΔQB . (19)

The last term is derived from the third-order expansion term in Eq. (3). The newly
introduced function ΓAB is dependent on the distance between atoms A and B, the
Hubbard values of them, and the derivative of the Hubbard values with respect to
charge fluctuation:

ΓAB = ∂γAB

∂QA

∣∣∣
∣
Q0

A

= ∂γAB

∂UA

∂UA

∂QA

∣∣∣
∣
Q0

A

(A �= B) . (20)

Analytic expressions of ΓAB and γAB are derived in the Supporting Information
Ref. [16].Historically, theDFTB3was usedwith diagonal terms only;Γ = 0 for A �=
B. Nowadays, this diagonal approximation is not usually employed. TheHamiltonian
matrix in DFTB3 is

Hμν = H 0
μν + 1

2
Sμν

∑

C

(γAC + γBC) ΔQC

+ 1

6
Sμν

∑

C

{2 (ΓACΔQA + ΓBCΔQB) + (ΓCA + ΓCB) ΔQC} ΔQC .

(21)

Thus, DFTB3 also requires iterative treatment. The convergence of SCFwithDFTB3
is usually similar to that with DFTB2, but one or two more cycles may be needed.

The second advancement was the modification of the gamma function introduced
in DFTB2: γAB → γ h

AB . The necessity of this modification arose from the difference
of chemical hardness between isolated and covalently bonded hydrogen atoms. Thus,
this modification improved the calculation of the binding energy in hydrogen bond-
ing. Here, γAB and γ h

AB are not explicitly distinguished because the difference only
affects the electronic structure indirectly. ΓAB is a function of γAB and is, therefore,
also affected.
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2.4 Long-Range Corrected DFTB

The most recent and important development in DFTB is the long-range corrected
DFTB (LC-DFTB). The first two practical implementation and benchmark studies
were reported in 2015 by Humeniuk et al. [27] and Lutsker et al. [28], although the
initial formulation was outlined in 2012 by a coauthor of the latter study [29]. The
central idea of LC-DFTB is to add Hartree–Fock-like exchange contributions to the
DFTB formalism. As the DFTB total energy was derived from the DFT energy with a
GGA exchange–correlation functional, the addition of Hartree–Fock-like exchange
terms is not completely straightforward [28]. In its current implementation, the ref-
erence Hamiltonian matrix elements are obtained using the BNL range-separated
functional[30], and the Hartree–Fock-like exchange terms for the density perturba-
tion are obtained using difference density matrices of the one-particle density.

The total energy of LC-DFTB [28] can be written as

ELC−DFTB =
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB

− 1

4
ΔDμνΔDρσ

∑

μνρσ

(μρ|σν)lr , (22)

where

(μρ|σν)lr = 1

4
SμρSσν

(
γ lr
AD + γ lr

AB + γ lr
CD + γ lr

CB

)
, (23)

and ΔDμν is the difference between Dμν and the reference density matrix, D0
μν :

ΔDμν = Dμν − D0
μν . The reference density matrix is a diagonal matrix with the

number of electrons of free neutral atoms in each AO. The last term in Eq. (22) is the
newly addedHartree–Fock-like exchange term. The long-range gamma function γ lr

AB
is similar to γAB in DFTB2 and DFTB3, but with an additional dependence on the
range-separated parameter ω. In LC-DFT literature, the parameter may be written
as μ. This formalism is based on DFTB2; as there is no term with ΓAB , there are no
reports for LC-DFTB3 developments at the moment.

LC-DFTB was shown to be roughly ten times more expensive than conventional
DFTB, although DFT calculations are 50 times slower than LC-DFTB [28]. Never-
theless, LC-DFTB decreases the self-interaction error, and applications to excited-
state calculations [27, 31] have demonstrated that HOMO–LUMO gaps and charge
transfer excitation energies are much improved.

2.5 Parameters

In tight binding calculations, in general, it is essential to prepare Slater–Koster param-
eters prior to simulation, and DFTB is no exception, as already mentioned above.
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These parameters are defined for each pair of elements; for water, four combinations
are needed: O–O, O–H, H–O, and H–H. The two mixed parameters are required
because of possible sign changes in integrals involving orbitals with non-zero angu-
lar momentum. Various parameters are employed in DFTB and a number of these
parameters are available on the DFTBwebsite [32]. To performDFTB1 calculations,
users have to supply H 0

μν , S
0
μν , and E rep

AB parameters. These are already summarized
in Slater–Koster tables, so users simply have to specify the file locations. Users also
need Hubbard values for DFTB2, and these have also been tabulated. For DFTB3,
users need the derivative of the Hubbard values with respect to charge fluctuation,
which has to be given separately. Because many parameters are still missing, not all
elements can be treated with DFTB.

3 Basics of the FMO-DFTB Method

A brief history of the methodological development of FMO-DFTB is first presented.
The first FMO-DFTB study reported the geometry optimization of a one-million-
atom system and was published in 2014 [17]. At that time, only two-body interac-
tions within FMO (FMO2) were considered and the DFTB model employed was
only DFTB2: FMO2-DFTB2. The implemented gradient was not fully analytic and
response terms coming from the use of ESP that are determined in the monomer
cycle were neglected. In the next year, extensions to FMO2-DFTB3 [33] and fully
analytic gradient [34] were implemented. Since then, all FMO-DFTB developments
have included a fully analytic gradient and an extension to DFTB3. In 2016, FMO-
DFTB was combined with the polarizable continuum model (PCM) [35], and an
approximate Hessian with FMO-DFTB was implemented by Nakata [36]. In 2017,
three-body interactions were included, namely FMO3-DFTB [37]. In 2018, FMO-
DFTBwas combined with an alternative fragmentation approach for cutting covalent
bonds, termed as the adaptive frozen orbital (AFO) method [38]. At that time, FMO-
DFTB was the only method using an analytic gradient within AFO because of the
complexity of determining the electronic structure [39].

In the following subsections, only the FMO2-DFTB3 formalism is employed.
DFTB2 formalism can be obtained by setting ΓAB = 0. As the extension to FMO3
is straightforward and there is a large overlap between DFTB and other ab initio
methods, three-body terms are not explicitly introduced here.

All of these features presented in this chapter are publicly available through the
official version of GAMESS-US [40, 41]. DFTB and FMO-DFTB in GAMESS-US
were first officially released in 2014. Major updates were executed in 2016 and 2018,
and the latter release includes almost all developments presented in this chapter.
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3.1 Formalism of FMO-DFTB: Energy

Again, the total energy within FMO2 is given by

E =
N∑

I

E ′
I +

N∑

I>J

(
E ′

I J − E ′
I − E ′

J

) +
N∑

I>J

ΔEV
I J , (24)

where N is the number of fragments and E ′
I is the internal energy of fragment I ,

defined by

E ′
X =

∑

A>B∈X
E rep

AB +
∑

μν∈X
DX

μνH
0,X
μν + 1

2

∑

A,B∈X
γABΔQX

AΔQX
B

+1

6

∑

A,B∈X

(
ΓABΔQX

A + ΓBAΔQX
B

)
ΔQX

AΔQX
B . (25)

This expression is almost identical to Eq. (19) but includes the fragment index.
For convenience, the hybrid orbital projection operator PX

μν is included in the non-
perturbed Hamiltonian H 0,X

μν . PX
μν for FMO-DFTB is computed here similarly as

in other methods. The energy of the charge transfer between fragments I and J in
embedding ESP can be written as

ΔEV
I J = EV

I J,I J − EV
I,I J − EV

J,I J . (26)

In the case of DFTB, the electrostatic interaction between the atoms in fragment X
and the atoms in the total system excluding fragment Y is given by

EV
X,Y =

∑

A∈X

N∑

K �=Y

∑

B∈K

{
γABΔQX

AΔQK
B + 1

3

(
ΓABΔQX

A + ΓBAΔQK
B

)
ΔQX

AΔQK
B

}
.

(27)
The first term in Eq. (27) originates from the second-order term, corresponding to
the last term in Eq. (16), which originates in the sum of Coulomb interactions and
the second-order expansion of the exchange–correlation energy (see the third line of
Eq. (3)). The second term in Eq. (27) comes from the third-order term describing an
expansion of the exchange–correlation functional, thus physically corresponding to
exchange–correlation contributions to the ESP.

The Hamiltonian matrix within FMO-DFTB3 (with hybrid orbital projection) is
written as

HX
μν = H 0,X

μν + SX
μνΩ

X (X)
AB + V X

μν (28)

forμ ∈ A and ν ∈ B, where the second and third terms come from the internal (atoms
in fragment X ) and external (atoms outside the fragment X ) embedding, respectively.
By defining for atoms A, B ∈ X as
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Ω
X (Y )
AB =

∑

C∈Y

{
1

2
(γAC + γBC ) + 1

3

(
ΓACΔQX

A + ΓBCΔQX
B

)
+ 1

6
(ΓCA + ΓCB)ΔQY

C

}
ΔQY

C ,

(29)

the external embedding potential can be written as

V X
μν =

∑

K �=X

V X (K )
μν = SX

μν

∑

K �=X

Ω
X (K )
AB . (30)

Again, the second and third terms in Eq. (29) come from exchange–correlation-like
contributions. Since the ESP is already expressed with Mulliken charges, the point
charge approximation is always employed within DFTB.

It is important to analyze the E2nd term for A = B:

1

2

∑

A∈X
γAA

(
ΔQX

A

)2 = 1

2

∑

A∈X
UA

(
ΔQX

A

)2
. (31)

BecauseUA is non-zero, E2nd for A = B is also non-zero. This is a typical symptom
of the self-interaction error. The residual value comes from the second-order term of
the Taylor expansion (the term proportional to the inverse of the distance is canceled
[14]), so the origin of this self-charge interaction seemingly inherits from the self-
interaction error of the exchange–correlation functional in DFT. Special care thus has
to be paidwhen evaluating ESPwithin FMO-DFTB if the systemunder consideration
requires fragmentation across covalent bonds. ESP contributions from the same atom
belonging to different fragments cannot be ignored. This also applies to third-order
terms.

The introductions of two-electron integral-like terms inDFTB3 forμ ∈ A, ν ∈ B,
ρ ∈ C , and σ ∈ D:

(μν||ρσ)X,Y = (μν|ρσ)X,Y

= 1

4
SX

μνS
Y
ρσ (γAC + γBC + γAD + γBD)

+ 1

6
SX

μνS
Y
ρσ

{
(ΓCA + ΓCB)ΔQY

C + (ΓDA + ΓDB) ΔQY
D

}

+ 1

6
SX

μνS
Y
ρσ

{
(ΓAC + ΓAD) ΔQX

A + (ΓBC + ΓBD) ΔQX
B

)
, (32)

allows the ESP to be written as

V X
μν =

∑

K �=X

∑

ρσ∈K
(μν||ρσ)X,K ΔDK

ρσ . (33)

This expression has someconnectionswithFMO-HFandFMO-DFT, althoughFMO-
DFTB benefits from a number of simplifications, resulting in expressions with Mul-
liken charges (Eqs. 29 and 30).
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Efforts are also being made to combine FMO with the recently developed LC-
DFTB [28]. In terms of the formalism, themain difference is the addition of exchange
contributions to the two-electron integral-like term (Eq. 32):

(μν||ρσ)X,Y = (μν|ρσ)X,Y − δXY

2
(μρ|σν)lr,X

= 1

4
SX

μνS
Y
ρσ (γAC + γBC + γAD + γBD)

− δXY

8
SX

μρS
X
σν

(
γ lr
AD + γ lr

AB + γ lr
CD + γ lr

CB

)
(34)

Only intra-fragment exchange contributions are considered, as they are not consid-
ered in other FMO-related methods.

3.2 Formalism of FMO-DFTB: Gradient

As the total energy of FMO is not fully variationally determined, differentiation of the
energy gives rise to response terms of the electronic structure. In FMO, such response
contributions can be efficiently computed by solving self-consistent Z-vector (SCZV)
equations [42]. This approach has been applied to ab initio methods. DFTB is not an
exception; the response terms are computed to obtain accurate first-order derivatives
in a similar manner.

As reported by Ref. [34], the error of the gradient without response contributions
is on the order of 5.0 × 10−4 Hartree/Bohr, is greater than the default convergence
criterion of GAMESS-US, and is particularly severe when combined with the AFO
approach. With FMO2-DFTB3/AFO, the maximum error has been reported as large
as 10−3 Hartree/Bohr. The analytic gradient is 100 times more accurate, and the
remaining error likely stems from the limited accuracy of numerical derivatives.
Approximate gradients are rather accurate with FMO3, but the error is still on the
order of 10−4 Hartree/Bohr.

After derivation, first-order derivatives with FMO-DFTB (with hybrid orbital
projection) may be written as

∂E

∂a
=

N∑

I

E ′a
I +

N∑

I>J

(
E ′a

I J − E ′a
I − E ′a

J

) +
N∑

I>J

ΔEV,a
I J + Ra , (35)

where E ′a
X and ΔEV,a

I J are the terms that come from the derivative of the integrals for
E ′

X and ΔEV
I J , respectively. R

a represents the response and can be written by

Ra = 4
N∑

I

virt∑

m∈I

occ∑

i∈I
L I

miU
a,I
mi , (36)
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where the Lagrangian is

L K
i j =

N∑

I>J (�=K )

(
V K (I J )
i j − V K (I )

i j − V K (J )
i j

)
(37)

and the unitary transformation matrix Ua,I
i j is relevant to the derivative of the MO

coefficient
∂C I

μi

∂a
=

all∑

m∈I
C I

μmU
a,I
mi . (38)

In FMO-DFTB, the coupled-perturbed (CP) DFTB equation for fragment X can be
written as

N∑

K

virt∑

k∈K

occ∑

l∈K
A X,K

i j,kl U
a,K
kl = Ba,X

i j , (39)

where
A X,K

i j,kl = (
εX
j − εX

i

)
δikδ jlδXK − 4 (i j ||kl)X,K (40)

and
Ba,X

i j = F (a),X
i j − εX

j S
a,X
i j . (41)

F (a),X
i j and Sa,X

i j contains the derivative of integrals, and the former also contains the
renormalization terms. After solving the Z-vector equation

N∑

I

virt∑

i∈I

occ∑

j∈I
Z I
i jA

I,K
i j,kl = L K

kl (42)

for all fragments K (k ∈ virt, l ∈ occ) self-consistently, the response contribution
can be computed by

Ra =
N∑

I

virt∑

i∈I

occ∑

j∈I
Z I
i jB

I,a
i j . (43)

These expressions are similar to those given for FMO-HF.
Employing AFO further complicates the algorithm. The first complication is due

to the frozen and projected orbital terms in the Hamiltonian matrix. This necessitates
solving Z-vector equations in dimers and trimers in addition to SCZV equations. The
second complication comes from the use of localized orbitals determined in model
systems. Consequently, two types of Z-vector equations must be solved, derived
from CP localization and the standard CP equations. In total, four types of Z-vector
equations are solved, as outlined in Ref. [39], which contains 111 equations.
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3.3 Implementation Notes

As all implementations of FMO-DFTB are parallelized with the generalized dis-
tributed data interface (GDDI) [43], FMO-DFTB is parallelized to utilize multiple
computer nodes. In GDDI, all of the CPU cores are divided into groups and inde-
pendent jobs (e.g., fragment calculations) are performed in each group. In principle,
each group may consist of more than one CPU core and can do jobs in parallel.
At present, however, FMO-DFTB is not efficiently parallelized within each group.
Therefore, although it is possible to perform hybrid parallelization (GDDI/DDI;
similar to MPI/OpenMPI), this is not efficient. Thus, the developers of FMO-DFTB
always assign one CPU core per group.

Dispersion corrections are also implemented for FMO-DFTB. Universal force-
field (UFF) [44, 45], Slater–Kirkwood [46], and Grimme’s dispersion [47–49] mod-
els can be combined. Since these dispersion models are not dependent on the elec-
tronic structure of the system, the value computed with FMO-DFTB exactly repro-
duces that of full DFTB (i.e., without fragmentation).

In the most recent implementation, results demonstrated the possibility to signif-
icantly eliminate the ESP evaluation for dimers (and trimers). As ESP evaluation
scales as quadratic, improving this step is of great importance. ESP for dimers may
be written and transformed as

V I J
μν = SI J

μν

N∑

K �=I,J

Ω
I J (K )
AB

= SI J
μν

N∑

K �=I,J

(
Ω

I (K )
AB + Ω

J (K )
AB

)

= SI J
μν

⎛

⎝
N∑

K �=I

Ω
I (K )
AB +

N∑

K �=J

Ω
J (K )
AB − Ω

I (J )
AB − Ω

J (I )
AB

⎞

⎠

= SI J
μν

(
Ω I

AB + Ω J
AB − Ω

I (J )
AB − Ω

J (I )
AB

)
. (44)

Ω I
AB and Ω J

AB are the ESP for fragment I and J , respectively. As they are not
dependent on the combination of I and J , they can be constructed before dimer
calculations begin. The computation ofΩ I J

AB is then reduced to subtracting theΩ
I (J )
AB

and Ω
J (I )
AB terms. They are calculated in the dimer I J and thus can be evaluated

quickly. A native implementation requires the evaluation of ESP Ndimer times, where
Ndimer is the number of dimers, but the transformation above indicates that the number
of the evaluation is decreased to only one. This simplification is only applicable
to FMO-DFTB. In addition, if boundary atoms are bond-detached atoms, double
counting has to be avoided.
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3.4 Computational Efficiency of FMO-DFTB

In 2014, FMO-DFTB scaling for water clusters was reported as O
(
N 1.21

)
with

up to 18,432 atoms. After a number of improvements, new scaling values must
be reported. A comparison between the time required to perform a single point
gradient calculation at the level of full DFTB3 and FMO2-DFTB3 for the same
water clusters is reported in Fig. 1a. The time of full DFTB3 for Nat > 9216 is
an extrapolated estimate. The observed scaling with full DFTB3 is O

(
N 2.97

)
, very

close to the theoretical scaling (cubic). The DSYEVD driver, which is likely the
fastest LAPACK diagonalization, was employed. FMO2-DFTB3 took only 129.0 s.
The observed scaling was O

(
N 1.45

)
, higher than the previously reported scaling.

This is because the most time-consuming step in FMO-DFTB became the evaluation
of ESP during monomer SCC iteration, which scales as purely quadratic. Monomer
SCC and dimer calculations took 48.1 and 20.3 s, respectively. In addition, evaluating
the gradients require solving SCZV equations, which are conceptually similar to
monomer SCC, so this step also involves the quadratic scaling step. Nevertheless,
FMO-DFTB is more than one thousand times faster than full DFTB for the largest
system.

It is also interesting to compare the performance of FMO-DFTB2 and -DFTB3
(Fig. 1b). Overall, FMO-DFTB3 is roughly twice as expensive as FMO-DFTB2,
because the evaluation of ESP, which is the most time-consuming step, involves
more terms (Γ , see Eq. 29). The scaling of FMO-DFTB2 energy isO

(
N 1.16

)
, which

is to be compared with the previous scaling O
(
N 1.21

)
[17]. As mentioned, solving a

set of SCZV equations requires a similar computational effort to solving a monomer
SCC. Therefore, gradient evaluation requires almost twice the computational effort.

The scaling of the computation of the Hessian with FMO-DFTB was O
(
N 2.00

)

and O
(
N 1.98

)
with one and six CPU cores, respectively [36]. With six CPU cores

(Xeon E5-1650 v3), the second-order derivative calculation for 10,041 atoms (water)
finished in only 17.2min, whereas normal mode analysis required 262.4min for
computation. The bottleneck of the analysis was the diagonalization of the Hessian
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matrix. Considering the performance of FMO-DFTB, it could easily be applied to
larger systems; however, as the memory requirement scales as quadratic, this will be
a severe problem.

4 Selected Applications

4.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations with FMO-DFTB have been applied to halo-
gen halides (HF, HCl, HBr, and HI) [34], solvated sodium cation [37], and boron
nitride nano-rings [39]. In all cases, the gradient was computed analytically, as gra-
dient inaccuracy introduces artificial effects such as an energy drift in the energy-
conservative ensemble. In the first example [34], one million MD steps were per-
formed for systems consisting of 2,000 atoms and the first peak of halogen–halogen
radial pair distribution functions obtained experimentally andwith FMO-DFTBwere
compared. Agreement between experimental and computational functionswas rather
dependent on the chosen DFTB and dispersion models. After many test calculations,
FMO-DFTB2 with the UFF-type dispersion model was selected for use. The second
example demonstrated a comparative performance of FMO2- and FMO3-DFTB3
[37]. A sodium cation was placed in the center of 473 water molecules; 100 ps
MD simulations were performed (100,000 steps). Because the charge in the central
sodium cation is prone to delocalize over the surrounding atoms, the inclusion of
three-body effects is essential. The coordination numbers obtained with FMO2 and
FMO3were 8.9 and 6.5, respectively; FMO3 gave a value closer to other simulations
(5–6), whereas FMO2 significantly overestimated it. This is likely because FMO2
tends to overestimate the binding between fragments in the confined relaxation space.
In this simulation, the time step was 1 fs with the help of RATTLE [50] constraints.

The last case employed boron nitride nano-rings [39] and demonstrated that FMO-
DFTB may be applicable to MD simulations for one-million-atom systems. Five
hundred MD steps over the course of 181h were performed for the system, which
contained 1,180,800 atoms. Unlike other linear-scaling methods, FMO-DFTB is
uniquely suited to performing on laboratory-scale computers; the calculation was
performed with only 24 CPU cores on a single computer node. Although this simu-
lation was rather short, it demonstrates that, provided more computer resources are
available, FMO-DFTB may be applicable to longer and larger simulations and will
be a useful tool for understanding the dynamics of large systems.
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Fig. 2 Origin of the problem
of charge transfer states in
dimers. a Orbital energies in
monomers I (red solid lines)
and J (blue dashed lines)
b Initial levels in dimer I J c
Population of initial levels in
dimer I J Reproduced from
Ref. [35] by permission of
the PCCP Owner Societies

fragments dimer 
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4.2 Proteins

Due to self-interaction, DFTB cannot accurately describe orbital energies; apply-
ing FMO-DFTB to proteins had thus been problematic until it was combined with
PCM. Specifically, deriving DFTB with DFT causes the electronic structure param-
eters to be fitted to results obtained with the PBE exchange–correlation functional.
Additionally, DFTB also underestimates the gap between the highest occupied MO
(HOMO) and the lowest unoccupied MO (LUMO). This effect is particularly promi-
nent when fragments have a net charge. The use of DFTB3 improved charge–charge
interactions, but not necessarily orbital energies.

A typical consequence of self-interaction is that the orbital levels of fragments
with positive and negative charges are akin to be low and high, respectively, with
FMO-DFTB. This problem does not directly affect calculations during monomer
SCC because orbital levels of fragments do not couple directly. However, in the
dimer calculation, I and J are merged and this causes a problem. For instance, let’s
assume that fragments I and J have a positive and negative charge (both have four
electrons), respectively, and that the LUMOof fragment I is lower than theHOMOof
fragment J when constructing the dimer I J . Next, an initial guess can be constructed
by placing electrons obeying the Aufbau principle. Now, the atoms that belong to
fragments I and J get six and two electrons, respectively, not four and four, resulting
in a charge transfer state. Consequently, a charge-transferred electronic structure or a
lack of SCF convergence is possible. The situation is schematically depicted in Fig. 2.
To combat this, the 1L2Y protein in the original FMO-DFTB paper was neutralized
[17].

Once FMO-DFTB was combined with PCM, no such switch occurs. The origin
of incorrect orbital energies is partially attributed to strong charge–charge interac-
tions within charged residues and could be alleviated by adding solvent screening
effects. This problem is not unique to DFTB; as discussed in Ref. [35], a similar
problem occurs with GGA and some hybrid functionals. A more systematic solution
may employ a long-range corrected functional. At the Hartree–Fock limit, no such
problem occurs, as there is no self-interaction error.
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There are four FMO2/PCM (PCM[1], PCM〈1〉, PCM[1(2)], and PCM[2]) and
six (the former four and PCM[1(3)] and PCM[3]) FMO3/PCM levels, depending on
the construction of ESP on the apparent surface charge (ASC) and the scaling for
the solute–solvent interaction energy. FMO-DFTB can be combined with any PCM
variants. The difference is summarized in Table1 in Ref. [35]. Analytic derivatives
have been developed only when combined with PCM〈1〉.

With FMO2-DFTB3-D(UFF)/PCM〈1〉, medium-sized proteins up to 3,578 atoms
could be optimized. The root-mean-square deviations of the largest optimized struc-
ture (PDB: 2CGA) compared with the experimental structure was 0.720 Å. This
experimental structure was obtained from X-ray crystallography with a resolution
of 1.8 Å. Calculations combined with PCM are somewhat slower than those in a
vacuum because linear equations must be solved to obtain ASCs. Nevertheless, the
observed scaling (FMO2-DFTB3-D/PCM〈1〉 energy + gradient) wasO

(
N 1.39

)
, and

the performance is still useful for medium to large systems.
Although adding solvent effects circumvented the problem, a more promising

and fundamental solution is to apply long-range corrections to DFTB. Ref. [35]
showed that theHOMO–LUMOgapproblemdisappearedwhen long-range corrected
functionals were employed in DFT calculations. Ref. [28] demonstrated that LC-
DFTB allows gas phase calculations of the proteins for which the conventional DFTB
failed because of the underestimation of HOMO–LUMO gap, which originates from
the self-interaction error. Preliminary results demonstrate that FMO-LC-DFTB also
does not suffer from this problem.

4.3 Chemoinformatics

Apart from FMO-DFTB, DFTB has been often applied to biosystems; detailed expo-
sitions may be found in published reviews [4, 5, 10, 51]. Considering that the devel-
opment of DFTB2 and DFTB3 has been motivated by describing proper interac-
tions within charged systems, DFTB should be a promising tool for biosystems.
Moreover, the fast execution of DFTB calculations should be an appealing fea-
ture in the area of chemoinformatics, as the structures and properties of thousands
of molecules can quickly be calculated with DFTB. One important development in
applyingDFTB to biosystems is the combination ofDFTBwithmolecularmechanics
(MM), DFTB/MM.An early implementation has been realized in 2001 [52] by Cui et
al. DFTB/MMwas applied to ATP hydrolysis [53, 54] and cytochrom c oxidase [55].
It was also recently applied to evaluate the binding interactions between proteins and
ligands, including binding interactions between drugs and H1N1 neutraminidase-1
[56] and docking simulations of zinc-bound ligands [57]. A more practical appli-
cation of DFTB to chemoinformatics may be found in a study by Qu et al. [58].
Here, DFTB was used to optimize more than 900 molecules to train machine learn-
ing models. The trained data could then predict bond dissociation energies of 100
molecules.
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Although DFTB is much faster than other ab initio methods, its cubic-scaling
computational cost has been a major limitation in applying DFTB to larger and/or
a large number of systems. Using the QM/MM approach is very useful, especially
when focusing on the reaction center of the protein. However, when treating the
whole system on equal footing, e.g., to investigate interactions between a protein
and ligands, full DFTB or QM/MM approaches may not be the best choice. Further-
more, the combination with FMO is beneficial for the use of pair interaction energy
decomposition analysis (PIEDA). Details of PIEDA are described somewhere in this
book. Recently, FMO-DFTB was also combined with PIEDA [59]. In this context,
in spite of the aforementioned challenge of orbital energies, FMO-DFTB combined
with PCM is seemingly a promising tool to investigate interactions between pro-
teins and ligands. FMO-DFTB was applied to the assessment of receptor-ligand
interactions and total interaction energies [60]. Here, the quantities computed with
FMO-DFTB were validated by comparison with experimental data and FMO-MP2
results; good correlation was found between total interaction energies computed with
FMO-DFTB and FMO-MP2 (R2 > 0.9), while the computational cost was reduced
by 1000 times.

A similar correlation study was presented by Ref. [35]. Comparing the solvent
screening and pair interactions obtained with FMO-DFTB and FMO-DFT (LC-BOP
and M11 functionals) showed that the correlations of these parameters were very
high with R2 values greater than 0.97, while the computational cost was reduced by
4,840 times for the 1IO5 protein (1,961 atoms). These pilot demonstrations indicate
that FMO-DFTB is potentially very useful in the process of drug discovery in which
a number of interacting energies between proteins and ligands must be evaluated
with a sufficiently accurate method.

4.4 Vibrational Frequency Analysis

Vibrational frequency analysis was applied using FMO-DFTB in two studies [36,
37]. In both, non-resonanceRaman spectrawere also simulated. Polarizability deriva-
tiveswere evaluated by the numerical differentiation of gradients under electric fields.
Nakata et al. simulated infrared spectra of the epoxy amine oligomers in a system of
more than 1000 atoms and compared them with experimental data [36]. Three char-
acteristic peaks were experimentally observed: 1183, 1260, and 3450cm−1 resulting
from CH3 groups in isopropylidene, benzene rings, and hydroxyl groups, respec-
tively. The simulation used one chain of epoxy amine (279 atoms) to show that
FMO2-DFTB3 predicted a shift of approximately 150cm−1, but the use of four
chains predicted a peak at 3431cm−1. Systems of this size are not easy to evaluate
even with the conventional DFTB, as the scaling of Hessian is formally O

(
N 4

)
.

Another study applied FMO3-DFTB to three isomers of polyalanine and solvated
sodium cation [37]. The maximum frequency deviation in FMO3-DFTB3 was less
than 10cm−1, comparedwith the corresponding frequency computedwith full DFTB
calculations. Comparison of infrared and Raman spectra of the solvated sodium
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cation showed that FMO3-DFTB had a higher accuracy than FMO2 by a factor of
2.5.

4.5 Charge Transport Materials

DFTB has also been applied to describe the electron transfer mechanism of organic
molecules and conductors, DNA, and peptides [61–66]. This approach, called “frag-
ment orbital”-DFTB, is similar to the FMOmethod. It begins with dividing a system
into fragments, obtainingHOMOs of each fragment, and then constructing the charge
transfer (coupling) integrals by the standard AO–MO transformation:

HI J =
∑

μ∈I

∑

ν∈J

C I
μiC

J
ν j

〈
φμ

∣∣
∣Ĥ

∣∣
∣φν

〉
, (45)

where I and J are the index of fragments and i ∈ I and j ∈ J represent the index
of HOMOs. On-site energies are the orbital level of the HOMO.

Conceptually, there is a large overlap between the fragment orbital and FMO
approaches. FMO uses more well-defined fragments with the help of hybrid orbital
projection, allowing the application of it to covalently bonded systems to be straight-
forward and robust. A similar analysis using the linear combination of fragment
molecular orbital (LCMO) approach has been studied previously [67, 68]. Recently,
Kitoh-Nishioka et al. applied the LCMO approach to FMO-DFTB and performed
detailed analysis of the charge transport properties of covalent organic frameworks
by combining classical MD, FMO-DFTB, and carrier dynamics simulations [69].
In estimating charge transfer integrals, the standard DFTB parameters were rather
“confined” and thus not suitable for evaluation, so unconfined parameters called
“8–∞” were employed, similar to previous studies [65, 66]. The confinement of
the standard parameters originates from the tight-binding DFTB characters. In spite
of the use of unconfined parameters, DFTB still underestimated transfer integrals,
and scaling was essential to reproduce LC-BLYP results. Nevertheless, the combi-
nation of FMO-DFTB with LCMO should be an important tool for more practical
applications using larger systems.

5 Conclusion and Outlook

FMO-DFTB is currently the fastest quantum chemical method among the available
FMO-electronic structure method combinations. The scaling of FMO2-DFTB3 is at
presentO

(
N 1.45

)
for evaluating the energy gradient andO

(
N 2.00

)
for evaluating the

Hessian. The most favorable scaling was achieved with FMO2-DFTB2, O
(
N 1.16

)
.

For a water cluster consisting of 18,432 atoms, a single point gradient calculation



The FMO-DFTB Method 481

with FMO2-DFTB3 finished in 129.0 0 s with only one CPU core. This development
has enabled geometry optimizations and shortMDsimulations for systems consisting
of more than one million atoms and vibrational frequency calculations for those of
ten thousand atoms. Typical applications are soft matter and polymers including
biosystems. A recent development employing AFOs further widened the range of
application into the range of materials.

In spite of these advancements, there is still large room for development. Recent
developments are still restricted to closed-shell single electron structure and FMO-
DFTB still cannot be applied to systemswith radicals. FMO-DFTBcan be potentially
combinedwith linear-response time-dependentDFTB,which has already been devel-
oped in GAMESS-US. Extensions using periodic boundary conditions are of great
importance for bulk systems.

The limitations of DFTB caused by the self-interaction inherent in DFT pose
serious problems. The underestimation of HOMO–LUMO gaps is attributed to this
drawback. Although this problem was circumvented by adding solvent screening
effects, amore pragmatic solution lies in further development of long-range corrected
DFTB (LC-DFTB). Developments of FMO around LC-DFTB in GAMESS-US are
currently in progress [70]. Another limitation comes from the restriction of available
parameters. However, qualified parameters are expected to be routinely generated
with machine learning or artificial intelligence technologies in the near future.
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