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Foreword

As electronic structure theory advances and computer performance improves,
ab initio quantum mechanical (QM) calculations have steadily increased their useful-
ness for studying structures, properties, and reactions of molecules and molecular
assemblies. However, even simple ab initio QM theories such as the Hartree—Fock
method (HF) and density functional theory (DFT) require a computation time propor-
tional to the third or fourth power of the system size. The computational scaling
becomes even steeper in more reliable electron correlation theories such as Mgller—
Plesset perturbation theory or coupled cluster theory. The steep scaling of the compu-
tational cost hinders ab initio QM calculations of large systems such as biomolecules.
To overcome this obstacle, lower (ideally linear) scaling computational methods are
required.

A number of fragment-based QM methods have been proposed for large molecular
systems. In these methods, a system is divided into small fragments, QM calcula-
tions are performed on the fragments (and in some methods their multimers), and
properties of the entire system are calculated using the properties of fragments (multi-
mers). Fragments (multimers) can be calculated independently, making fragment-
based methods suitable for modern massively parallel computers. The computational
cost of most fragment-based methods scales almost linearly with the system size
through the introduction of some approximations.

The fragment molecular orbital (FMO) method is one such fragment-based
method. The distinguishing feature of the FMO method is that the total energy of a
system is computed as the sum of fragment energies and inter-fragment interaction
energies. The two-body inter-fragment interaction energy defined in the FMO method
effectively includes higher body effects. By using this approach, the ab initio total
energy of the system is accurately reproduced. If need arises, the contributions of
explicit three-body and higher body interactions can be computed to further increase
accuracy. The properties of systems other than the total energy are calculated in a
similar fashion. In some fragment-based methods, fragments generated by covalent
bond cleavage are capped with hydrogen atoms or appropriate functional groups,
but the FMO method does not introduce such arbitrary atoms. This is another distin-
guishing feature of the FMO method. A description of the FMO method and a
comparison of various fragment-based methods are given in Part I.
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Commonly used electronic structure theories have been incorporated into the FMO
method; namely the Hartree-Fock method and density functional theory, Mgller-
Plesset perturbation theory, coupled cluster theory, configuration interaction, multi-
configuration SCF, time-dependent density functional theory, and so forth. Energy
gradients and Hessian calculations have been developed in some of these methods
that enable geometry optimization and vibrational analysis of very large molecules.
For modeling solvent effects, continuum solvent models such as the polarizable
continuum model (PCM) can be interfaced with the FMO method. A hybrid method
of FMO and molecular mechanics (FMO/MM) has been developed for simulating
chemical and thermodynamical properties of molecular systems. Several computer
programs for FMO calculations have been developed. Part II describes currently
available ab initio programs that can perform FMO calculations.

At the beginning of its development, the FMO method was intended to calculate
the electronic structure of proteins and protein-ligand complexes. A number of FMO
studies of protein-ligand binding aimed at drug design have been conducted so far. In
these works, the inter-fragment pair interaction energy (called IFIE or PIE), which is
a property obtained from FMO calculations, has been extensively used to understand
intermolecular interactions between proteins and ligands. Applications of the FMO
method in drug discovery are discussed in Part III. Parts IV and V describe new
FMO applications and the development of new FMO-related methods that extend
the scope of FMO applications.

The various FMO approaches described in this book are expected to be useful for
studying the structures and properties of very large and complex molecular systems
and for designing drugs and materials in industrial applications.

Kobe, Japan Kazuo Kitaura
February 2020



Preface by Editors

The fragment molecular orbital (FMO) method has been one of promising ways
to calculate the electronic state of large-scale molecular systems such as proteins
in a quantum mechanical framework. The highly efficient parallelism deserves the
principal advantage of FMO calculations. Additionally, the FMO method can be used
as analysis tools by evaluating the inter-fragment (pairwise) interaction energies
and so on, and this feature has been utilized well in the fields of biophysical and
pharmaceutical chemistries. In recent years, the methodological developments of
FMO have been made remarkably, by which both reliability and applicability have
been enhanced even for inorganic systems. Actually, there have been a number of
realistic applications using several FMO-customized programs which are highly
parallelized.

This book covers recent advances of the FMO method, consisting of the following
five parts. Historical review of FMO and comparison to other fragmentation methods
are provided in Part I, and FMO programs are described in Part II. Part III is dedi-
cated to a wide range of drug discovery activities. A variety of new applications
with methodological breakthroughs are introduced in Part IV. Finally, computer and
information science-oriented topics are addressed in Part V. Many color figures and
illustrations are compiled as well.

The editors would like to sincerely thank all the contributors in this book, who
provided their own important and fruitful work in the respective chapters. They are
very sorry for the delay of publication of this book due to a couple of reasons, while
some contributions were submitted in 2018.

Finally, the editors would hope that this book will induce interests in FMO method
for a wide range of people who are involved in not only computational chemistry but
also experimental chemistry.

Tokyo, Japan Yuji Mochizuki
Kobe, Japan Shigenori Tanaka
Tokyo, Japan Kaori Fukuzawa

August 2020
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Fragment Molecular Orbital Method as )
Cluster Expansion

updates

Shigenori Tanaka

Abstract In this chapter, the energy increment scheme employed in the fragment
molecular orbital (FMO) method is systematically analyzed and validated in terms
of a cluster expansion in the framework of the cumulant expansion. Some relation-
ships and similarities among various theoretical approaches concerning the cluster
expansion for fragments are comprehensively addressed.

Keywords Fragment molecular orbital method - Energy increment scheme -
Cluster expansion + Cumulant expansion + Green’s function

1 Introduction

The fragment molecular orbital (FMO) method [1, 2] provides a computational
framework by which ab initio electronic state calculations for large molecular sys-
tems are made feasible with the calculation cost of approximately order-N (O (N))
of electron or fragment number. The energy expansion scheme in the FMO method,
which is nowadays called FMO2, FMO3, etc. [3], is an essential device to realize
the drastic reduction in computational time with keeping high accuracy in the evalu-
ations of energy and other molecular properties. In this article, an overview is given
to illustrate the physical background for this FMO energy expansion scheme.

First, let us review the original FMO2 energy expansion scheme proposed by
Kitauraetal. [1, 2]. Consider a molecular system composed of electrons with electric
charge —e and coordinates r; and nuclei with electric charge Z e and coordinates
R, . Then the whole system is divided into a collection of N fragments (monomers)
with index /. In the FMO2 method, one accounts for the FMO calculations up to the
fragment pairs (dimers). Using the atomic units hereafter, the Hamiltonians for the
fragment monomer (/) and the fragment dimer (I J) are given by

S. Tanaka (B<)
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Here, I, J, K refer to different fragments and p, (r’) represents the number density
of electron with coordinate r’ in the fragment J. The energies and wave functions
of each fragment monomer and dimer are then obtained by solving the Schrédinger
equations as

H W, = E, ¥, 3)

Hi Wi = Er ;. 4

In the FMO2 method, the electronic energy E and the electron density p(r) of the
whole system are approximately given by

E~ZE”—(Nf—2>ZE1, (5)
I<J

p(r) =" pry(r) — (Nf—z)me 6)
I1<J

respectively. Here, Ex (X = I, IJ) and px(r) (X = I, IJ) refer to the energy and
the electron density of fragment monomer (/) or dimer (1 J).

The FMO2 method has successfully been applied to large numbers of molecular
sytems mainly containing biological molecules (proteins, nucleic acids, efc.) and
nano-materials [3]. The energy expansion above may also be written as

E”ZE'JFZAE” ™)

I1<J
with
AE;; =E;jp— Er—Ej. 3

This expansion scheme can further be continued up to the third order (FMO3) as
[3-5]
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Ex) Ei+) AEy+ ) AEux ©)
1

I<J I<J<K
with

AEjx = Ejjx — (AEp) + AEjx + AEg;) — (Ej + Ej + Ek)
=Ejxk—Ejg—Ejx—Ex; +E;+ E; + Eg. (10)

This equation for the FMO3 energy expansion may seem trivial when one considers
a system composed of three fragments. It is also noted that similar expansions can be
continued up to higher orders [3, 6, 7]. Empirically, this kind of energy expansion,
generally known as increment method, converges rapidly in the FMO applications
to biomolecular systems. However, there are a limited number of studies concerning
the perturbative characterization of the FMO energy expansion [8].

In principle, the complexity or degree of freedom of electronic wave function
increases exponentially with the increase of electron number. The FMO method then
provides a practical prescription to overcome this difficulty through the energy rep-
resentation in terms of cluster expansion [9, 10], in which the locality of exchange—
correlation effects of electrons is utilized and the cumulant expansion [11] may be
employed as an underlying mathematical tool to describe the linked clusters. In this
chapter, the intuitive energy expansion (increment) scheme in the FMO method above
is reformulated as a perturbative cluster expansion, thus being justified on a physical
basis. A relationship with Green’s function approach [8, 12] is additionally noted.

2 Cluster Expansion

Let us consider a large molecular system composed of many subsystems called
fragments. The Hamiltonian for the whole system can be expressed as

H = Hy + H,. Y

Here, the “unperturbed” part Hy may be chosen in a fairly arbitrary way. For example,
as a simple choice, one may regard H, as representing the sum of the self-consistent
field (SCF) or Hartree—Fock (HF) Hamiltonians for the isolated electron systems
confined in each fragment. In the usual FMO approach, one may also take into
account the contribution of environmental electrostatic potential from surrounding
fragments to each fragment Hamiltonian [1, 2]. Alternatively, it is also possible to
include the electron correlation effects beyond the SCF or HF approximation in each
fragment Hamiltonian, which is usually performed as a hierarchical energy expansion
in the actual FMO calculations [3]. The “perturbed” part H; can then be expressed
as
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Hi=> H+Y Hy+-- (12)
1 1,J

where the first term on the right-hand side of Eq. (12) refers to the sum of residual
Hamiltonians of each fragment 7, the second term represents the contributions from
the interactions between the two fragments (I, J), and so on. We presume that H
has a ground state |y) with the energy Ey, and consider the canonical ensemble
with the temperature 7 and 8 = 1/kpT.
The partition function for the unperturbed part is given by
Zo = Tr e PHo (13)

with the use of trace Tr. The statistical average of any operator A over the unperturbed
state is expressed as

(Ao = Zy ' Tr(e P A). (14)
Considering a function of a parameter X as
E\) = Zole M Moy g = Tr(e PHoe=4H o Hoy (15)
the partition function for the Hamiltonian H is given by
Z=E(B)=TrePH, (16)
Here, the function Z (1) in Eq. (15) is alternatively expressed as [13]
E(3) = Zo(e i), a7
where the Liouville super-operator L is defined through
LoA = [Hy, Al. (18)

The equivalence between Eqgs. (15) and (17) is proved by the A derivatives of
e M Hi+Lo) and ¢=*H Mo Then, Eq. (17) is rewritten as

E(\) = Zoexp f (1) (19)
with
f) = (e HHTto )¢, (20)

where the superscript ¢ in Eq. (20) means the cumulant average [9, 11].
The free energy of the whole system is written by
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F=F+F QD
with
1
F() = _E In ZO (22)
and
1
Fi=—=f). (23)
p
Through the application of the Laplace transform:
- oo
fer == [ arera 4
0
with Re z < 0, we find
f@ < : 1>C
z) = - -
t—H —Ly 2z

I
le _ 2
e e,
—_—
=
N
+

1 ¢
H , 25
—a))) &
where Ly in () is replaced with Hy, and the contribution of factorizable H, vanishes
therein [9].
The cluster expansion of F) is performed by means of Feddeev’s resummation
technique [14] as follows. Hereafter, we consider the limit of 7 — 0, 8 — oo and

z — 0, thus focusing on the ground state energy [9, 10]. In Eq. (25), we pay attention
to the scattering operator defined in ( ) by

oo

l l n
S = H; = H , 26
—H ! Z(Z—Ho ‘) (20

n=1

where (z — Hp) ! represents Green’s function for Hy. In the lowest order approxima-
tion, the perturbative part of Hamiltonian can be given by the sum of the contributions
of each fragment (I = 1,2, ..., N) as

N
Hy~ Y Vi, (27)
I=1

where V; may contain the effects by the environmental electrostatic potentials from
surrounding fragments and the electron correlations inside the fragment. The scat-
tering operator



n=I I=1
is then expressed in terms of an operator

1
A= Vv
I z—HoI

as

)

n=1 \I=1

:ZAI"'+ZA2"'+ZA3"'+"'

=h+hLh+T5+--

where T; refers to the collection of all the terms that begin with A;.
Since we find a transformed representation as

Ti=(A1+ AT+ )+ (A + AT+ DAy +(A + AT+ Az -

= A+ AT+ U+ T+ T+ )
=850+ +T+--),

we obtain

=S |1+) 1|,
J#1

where S; represents a scattering operator for Hy + V;. Recalling

N
S=Y"T
I=1
and assuming S; to be small, we thus find 7; ~ S; and

Sr.

%]
2
=

~
Il

1

S. Tanaka

(28)

(29)

(30)

€Y

(32)

(33)

(34)

The ground state energy E relative to Ey for the unperturbed state |y) is then given

by
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N
SE=E—Ey~) SE (35)
1=1
with
SE; = (HSp)o = (HiS1)g. (36)

If Hy contains all the energy contributions from the fragment monomers, A; = 0
and 6 E; = 0, as they should be.

Let us next consider the second-order representations. Here, in Eq. (26) for the
scattering operator S, in addition to the intra-fragment contributions,

1
z— Hy

A=A = Vi, 37

we take into account the inter-fragment (I # J) contributions,

Vi, (38)

where V;; refers to the interactions for the fragment pair 7 J. The scattering operator
is then expressed as

S=2 0O A (39)

n=1 1,J

and transformed into

s=3" (ZA’}) +Y T,
I \n=1 I1£]

=D Si+> T, (40)
1

1#]

where T, includes all the terms which begin with A;; or A; followed by A as the
first factor different from A;. 7;; is thus expressed as

Try= (A +AA; + AjA A+ AJA +- ) [ 1+ ) Se+ Y Tk
K#1,J K#I1,J:L
(41)
The summation of 7, and T is then found to be
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Tyy+Ti=Ey—-8S—-8S)|1+ Z Sk + Z Tk | » (42)
K#£LJ K£1J;L

where S;, is the scattering operator for the fragment pair /J. The total scattering
operator of Eq. (40) is then approximated as

S~ZS,+ZK” (43)

1<J
with
Ky =817 —81—S8;. (44)
Thus, we find for the ground state energy
E~ Ey+ ZSE, +) SEu (45)
1<J

with

SE;; =(HS;;)y—8E; — 8E;
= (H\S1;)y —8E; — 8E, (46)

which reproduces the FMO?2 expression.
Analogous procedures can be applied to higher order approximations. Up to the
third-order (fragment trimer) contributions, the scattering operator is expressed as

SNZSI+ZK1J+ Z Lk “47)

1<J I1<J<K

with

Lijxk =Siyxk — Kjg— Kjxk — K1 — 81 — Sy — Sk
= Sryx — S1y — Syx — Sk1 + 51 + S5 + Sk, (48)

where S;;k is the scattering operator for the fragment trimer /J K. The energy of
the whole system is then given by

E~ E0+Z5E1+Z5E11+ Y SEuxk (49)

I<J I<J<K



Fragment Molecular Orbital Method as Cluster Expansion 11
with

8Erjxk = (HSpjk)og—08E;; —8E;jx —8Eg; —8E; —8E; —8Ek
= (HS1jk)o— (HS1))o — (HSyk)o — (HSk1)g
+(HS)o+ (HS;)o+ (HSk)g, (50)

thus reproducing the FMO3 expression.

Summarizing, the cluster expansion formalism above for the ground state energy
can be based on a transformation of wave function from the unperturbed |y) to the
exact one as

|®) = Qo) = (1 + [, (51

where €2 refers to a wave operator employed in the cumulant expansion [9, 10]. The
ground state energy is then given by

E = (YolH| D)

= (

= (Yol HQY)*
= (Yol H (1 + S)|vo)*

= (H(1 + 9))§. (52)

The energy increment due to the fragment interactions is thus expressed as
E — Ey= (HS)j = (HS); (53)

whose expansion accords with the cluster expansion of the scattering operator S.

3 Green’s Function Approach

As seen in Eq. (26) in the preceding section, Green’s functions play a vital role in the
cluster expansion of energy. Actually, Green’s function formalism was employed [8]
to justify and extend the use of FMO expansion scheme, in which Green’s function
is expressed in terms of the fragment expansion as

N
G=) Gi+> AG+-- (54)
I=1 I<J

with

AGry =Gy —Gr—Gy. (55)
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Thus, the two-body approximation,

G:ZG”—(N—Z)ZG,, (56)

I1<J 1

leads to the FMO2 approximation to the ground state energy and other molecular
properties.

In addition to the canonical ensemble, one can also consider the grand canonical
ensemble with given chemical potential u and temperature 7. Regarding the pertur-
bative Hamiltonian H; as a correction due to the inter-fragment interactions, we find
an expression for the correction to the grand potential as [12, 15]

2 -
A =23 YT [1- 6O, 02, o] exp@0h). (57)

l

Here, G and ¥ are matrices indexed with fragment pair 1J for Green’s function
for Hy (diagonal) and the self-energy due to the inter-fragment interactions (off-
diagonal), respectively; &; denotes the electronic energy of molecular orbital i for
corresponding fragment and

20+ 1
B

forl =0, £1, £2, - --. Rewriting Eq. (§7) as

Ag = —% XI:Xi:Tr {m [2 _ (G<°>)—'] —In [—(G<°>)—1]] (59)

G=p+ i (58)

and using an identity Tr In A = In det A for any matrix A,

we obtain
2
Ag = 3 > [m D(ei.¢) —In[ [ Di(ei. ¢: {1})} (60)
1,i I
with
Diei, & (I = — GV o)l =6 — ¢ 61)
and
-6 §(102) i3
4 =
De.oy=| 2 TR (62)

5 X3 —[Géo)]_1 b
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Further, we introduce an n x n determinant D, (¢;, &; {14, I, ..., I,}) as

-IG"17 Sy

Dy({1,J}) = : (63)
: $, —I6P
—[GEO)]f1 I ik
Di({I.J.Kh=| £, —IGPT T |, (64)
Sk Sks —IGR1!

and so on. Here, it is noted that —28~! Z,,i In D(¢;, &; {I}) in Eq. (60) repre-
sents the grand potential for Hy from fragment / and can be expressed in terms of
In(exp(Bun;)) with the weight exp(—pBe¢;n;) for the occupation number n; = 0, 1
[15]; namely, it can be regarded as a cumulant function for the variable n;. Similarly,
—287! Zl’i In D(g;, ¢) in Eq. (60) can be regarded as a cumulant function for a
set of multiple variables n; for each fragment monomer or dimer. Then, employing
a general theorem for the cluster expansion of cumulant function [11], we find [12]

Dy({1,J})
In D=7} In Di({! " DD
I XI: n Di({ })+12<; D)D)

© 3 DAL
Equation (60) is thus rewritten as
AZ = " ANALIN+ Y ASWULT KD+ .. (66)
=1 157K
with
A S, T)) = 22 > In Doz J)) 67)

B 4" DidINDIAIY

2 <~y D3l KDDi TN D () Dy (K D)
A 1,J,K})=—= 1
S B == ,Z " Da(L TN Ds (T, KDDa((K, 1)

. (68)

and so on. The mathematical structure of this expansion is apparently analogous to
that for the FMO energy expansion. One may also find an analogous structure to the
many-body correlation functions for non-interacting Fermi gas [16].
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4 Concluding Remarks

The FMO method provides an efficient and useful ab initio tool to evaluate inter-
molecular interactions in large molecular systems. Justification for the methodology
as an increment method for energy can be given in terms of cluster expansion in
which mathematical techniques based on the cumulant expansion and Green’s func-
tion are utilized. The concept of fragment is introduced as an essential element of the
FMO method, where intra-fragment electron correlation effects and inter-fragment
interactions can thus be treated hierarchically [3]. The effective interaction energy
between the fragments can then be described in terms of inter-fragment interaction
energy (IFIE) [3] in the FMO formalism, which may be regarded as an renormal-
ized (coarse-grained), effective interaction in lower energy regime. Resummation of
correlated IFIEs to account for the screening effect based on the underlying charge
neutrality principle and the optimization of mutual information for IFIEs can also
be carried out [17]. All these components are used for comprehensively analyzing
the effective interactions in biomolecular and nano-material systems with affordable
computational cost and accuracy.
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Comparison of Various Fragmentation )
Methods for Quantum Chemical Oneck o
Calculations of Large Molecular Systems

Shigenori Tanaka

Abstract In this chapter, various fragmentation schemes employed in the fragment
molecular orbital (FMO) and other methods are comparatively assessed toward effi-
cient order-N quantum chemical calculations of large (bio)molecular systems. After
briefly illustrating the features of various fragmentation methods, their pros and cons
are discussed from the viewpoints of cost, accuracy, viability, and versatility.

Keywords Fragmentation + Biomolecule -+ Quantum chemical calculation -
Environmental potential - Parallel computing

1 Introduction

Fragmentation is an essential ingredient for order- N (O (N)) ab initio quantum chem-
ical calculations [1]. In this article, we comparatively assess the performance of var-
ious fragmentation methodologies such as the fragment molecular orbital (FMO)
method and others toward efficient molecular fragmentations. By breaking a large
molecular system into molecular fragments that can be treated almost independently,
the properties of the whole system are expressed as a sum of terms for each fragment
with incorporation of many-body effects such as environmental potential and charge
transfer. This implementation thus makes intractably huge calculations feasible or at
least accelerates the calculations in terms of parallelization. Large numbers of tech-
niques developed in conventional quantum chemistry are then transferable into each
fragmentation approach, including those concerning electron correlation, gradients,
excitation energies, and various molecular properties.

In the fragment molecular orbital (FMO) method, a molecular system is divided
into several subsystems (fragments) [2]. For example, proteins are divided into frag-
ments per amino acid residue as shown in Fig. 1. Note that the definitions of boundary
on the main chain of each amino acid residue are different in the context of frag-
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Fig. 1 Fragment division of polypeptide in the FMO method. R refers to the side chain and the
fragment boundary is denoted by a solid line

mentation with the unit of -C-N-C,- from those of conventional molecular biology
and biochemistry with -N-C,-C-. More specifically, the carbonyl group of the main
chain in the n-th biological residue with hydrogen-bonding acceptors on oxygen
atom belongs to the (n 4 1)-th fragment, because the fragments are separated at
C,-C bond in front of the carbonyl group on the main chain.

Let us consider a molecular system composed of electrons with electric charge —e
and coordinates r; and nuclei with electric charge Z 4e and coordinates R4. Then the
whole system is divided into a collection of N fragments (monomers) with index /.
In the following, for simplicity, we first address the FMO2 method [2] in which one
accounts for the FMO calculations up to the fragment pairs (dimers). We consider
the Hamiltonians for the fragment monomer (/) and the fragment dimer (/J) as

. 1 ,PJ(I'
H’:Z _EA" Z|r—RA|+Z/ v ZZ

iel J#I ,61,>j61| _r1|
(1)
ZEDNEIE N7 Py far |y s
) 27 |r; —RA| [r; —r'| |r; —rj|
iel,J K#1,J iel,Ji>jel,J
2)

in atomic units. Here, 1, J, K refer to different fragments and p; (r’) represents the
number density of electron with coordinate r’ in the fragment J. The energies and
wave functions of each fragment monomer and dimer are then obtained by solving
the Schrodinger equations as

H¥; = E;vy, 3)

Hi Wi = Er ;. €]

In the FMO2 method, the electronic energy E and the electron density p(r) of the
whole system are approximately given by
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E~Y "E; —(Ny—2)) Ey (5)
1>J 1

p(r) =Y pry(X) = (Np=2) Y p(r), 6)
1>J 1

respectively.
Considering the closed shell system hereafter, the Hartree—Fock—Roothaan equa-
tion in the FMO2 scheme is written by

F*c* = s+ c*c* (7)

with A = I for fragment monomer and A = [ J for fragment dimer. The Fock matrix
F* is then expressed by

F* = H* + G, (8)
Hly = H{™" + Vi + ) Biklo @), )
HEe = Gl Ix) = (kIR = / drxE (DR (), (10)
Vi=Y (uf +vf). (1)
K#A
—Z4

K — k| ——2— 1), 12
Ugp Z<||r—RA||> (12)

AeK
vl = Y D Otxmlxixn). (13)

m,nek
Djy=2) CiiCl, (14)

J
1

Gy= > D}, [<xkxm|xlxn> - 5<xkxm|xnxl>]. (15)

m,ner

Here, H°"¢*, V*, and D* refer to the one-electron operator in the fragment A, the
environmental electrostatic potential from the fragments other than A, and the density
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matrix, respectively; G* is the two-electron operator in the fragment A with the basis
functions yy (r).

The third term on the right-hand side of Eq. (8) represents a projection operator
to remove the orbital 6, from the variational space with parameter By conventionally
set to 10%. Regarding the fragmentation for a molecule, the sp? carbon site is usually
employed for the division. The atom at the division site is called the bond detached
atom (BDA). As for 6, the localized MOs for a methane molecule obtained with the
natural localized MO method are used, in which the C-H distance is fixed at 1.09 A.
We then consider a fragment / to which the BDA belongs and a neighboring fragment
J to which the atom bonding to the BDA (bond attached atom; BAA) belongs. By
rotating the MOs so that one of the orbitals 6, is directed toward the BAA in fragment
J bonding to the BDA, the contribution of 6; to fragment / and that of other MOs
to fragment J is removed by the shift operator, respectively. This procedure for the
restriction of basis set enables the localization of MOs within a fragment (Fig. 1).
Single bonds are usually detached between fragments, while other bond division
approaches have been investigated [3]. It is also noted that the FMO method does
not use hydrogen caps (see Sect. 3).

There are at least two kinds of bond detachment treatments available in the frame-
work of FMO approach, that is, hybrid orbital projection (HOP) [4, 5] and adaptive
frozen orbitals (AFO) [6, 7]. The HOP method, illustrated above, features unre-
stricted inter-fragment polarization for appropriately considering the fragmentation
of linear chains of atoms. On the other hand, in the AFO method, the electron den-
sity of the detached bonds is calculated beforehand for a model system and frozen
throughout the FMO calculation. The AFO method can thus be applied to inor-
ganic materials in which several bonds are detached between two fragments. This
approach has successfully been used [6, 7] for the descriptions of systems such as
zeolite clusters, silicon nanowires, mesoporous silicons, graphene sheets, and organic
charge-transfer materials. However, this chapter does not deeply go into the latter
approach because of main interests in biomolecular systems such as proteins and
nucleic acids.

2 Various Fragmentation Methods

The purpose of this review article is to make comparisons among various fragmen-
tation schemes, including the FMO method, that are applicable to ab initio quantum
chemical calculations for large (bio)molecular systems. In this section, we briefly
illustrate other fragmentation methods such as KEM, MFCC, SFM, MTA, DC, and
GMO.

Kernel energy method (KEM) [8] provides an energy decomposition analysis
similar to the FMO method. This method divides a system into separate kernels
and removes dangling bonds at the periphery of the kernels by using hydrogen caps.
Double kernel calculations of nearest neighbor kernels are then performed to evaluate
the total energy of system. While only those kernels covalently bonded to one another
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were considered in the original approach, subsequent developments have taken into
account separate kernels that are not covalently bonded. The energy formulae are
analogous to the FMO ones, but the contributions of environmental electrostatic
potentials are not included in the KEM method. The kernel interactions are further
taken into account up to the fourth-order terms [9]. Applications have been made for
proteins, nucleic acids, and -conjugated systems such as graphene, in which some
of new bond fractioning schemes are employed. For example, in fissioning scheme,
the aromatic bonds are divided in half parallel to the direction of bonding instead of
fractioning single bonds perpendicular to the direction of bonding.

Molecular fractionation with conjugate caps (MFCC) method [10] was originally
developed to describe the binding energy of protein—ligand systems. When peptide
bonds are fractioned, they are capped with “concaps” that represent the local envi-
ronment of the fragments instead of hydrogen caps. The total binding energy of
protein—ligand system is then calculated by adding together the individual contribu-
tions of the fragments and subtracting those from merged concaps. For example, let
us consider a protein P composed of N amino acids,

P:I’lAlAz...AN, (16)

where A; represents each amino acid and »n refers to the N-terminus, n = NH3+ or
NH,; Ay represents the C-terminus, and Ay = RyCHCOO™ or RyCHCOOH with
the side chain Ry . To calculate the interaction energy between protein P and ligand
L, the protein is divided into single amino acid fragments in terms of C-N peptide
bonds. Each fragment is then capped by concaps, C' and C'*, which contain a C,, atom
with side chain in the neighboring residue and describe the valency requirements of
the dangling bonds left over after fractionation. The total interaction energy is then
given by

N N-1
E(L-P)=) E(L-C™AC) =Y EL-C*C, (17)
i=l1

i=l1 i=

where E(L — C'~*A;C") and E(L — C**C") refer to the interaction energy between
the ligand L and the capped fragment C'~'*A;C’ and that between L and the con-
nected concaps C**C', respectively. It is noted here that C° and C" imply n and
nothing, respectively. In the following developments of MFCC, the ability to frac-
tion disulfide bonds and the inclusion of nonbonded interactions in globular proteins
were also taken into account.

In systematic fragmentation method (SFM) [11], the fragmentation of molecular
system is, firstly, performed as

with
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M, =GGy...G,_ H"™V (19)
and
M, = H"G,G,y ... Gy, (20)

where G ; and H' represent a fragment and a hydrogen cap, respectively. The total
energy of the system can then be written by

E(M) = E(My) + E(M>) +dE;, ey

where d E; describes an energy change created by the bond breakage. The SFM
scheme further makes another fragmentation,

M — M;+ M, (22)

with
M3 =G\G,...Gi_ H™Y (23)

and
My =HYG,Giy, ...Gy. (24)

The total energy in this case can be given by
E(M)=EM3)+ E(Ms) +dE, (25)

with the energy correction d E,. Then, assuming i > n, one finds a combined frag-
mentation,

M— GiGy...G,\H" YV + H"G,Gpyy...Gio i HYV + HYG, Gy ... Gy,

for which the total energy can be expressed by 20
EM)=EM;)+ EMs)+ E(Ms) +dE; (27)

with
Ms=H"G,Gny1...GioH'™V (28)

and the energy change d E3 due to the bond breakages. Here, if we make a reasonable
approximation as
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dE3 ~ dE| +dE>, (29)

we obtain a fragmentation expression for the total energy as
E(M) ~ E(M>) + E(M3) — E(Ms) (30)

from Eqgs. (21, (25) and (27). In the actual applications of SFM, the effects of non-
bonded interactions are taken into account in ab initio, effective fragment potential
and electrostatic ways according to interatomic distances.

Molecular tailoring approach (MTA) [12] and its modified version, cardinal-
ity guided molecular tailoring approach (CG-MTA) [13], provide not a residue-
based method but a distance-based fragmentation method. Two length parameters
are important in MTA, that is, maximum fragment size and R-goodness (R,). MTA
creates an initial set of fragments by centering a sphere of radius R, at each atom and
assigning all atoms to fall within the sphere to the fragment, in which aromatic rings
and double bonds are kept intact. Then, additional atoms are included or excluded
according to the criterion of maximum fragment size; the created fragments are
merged due to their proximity and this merging is performed recursively depending
on the maximum overlap of nearest neighbor fragments up to the maximum fragment
size. After checking the fragments for the respective R, value of the included atoms,
broken bonds are capped with hydrogen atoms. The total energy of the system is then
calculated, in which the contributions from all intersecting portions of the merged
fragments are counted with the sign of each contribution being set to (—1)X~!, where
K refers to the number of fragments involved in the intersection. For example, in the
case of two-fragment (F and F,) overlap, the total energy is given by

Ey =Er +Ep, — Efnp, (31

which is similar to the FMO2 expression.

The original formulation of divide-and-conquer (DC) approach [14] divides the
density of the whole system into the sum of the densities of the subsystems on the
basis of the Kohn—Sham density functional theory (DFT). The DC-DFT algorithm
represents the three-dimensional space €2 as a union of overlapping spatial domains,
Q = U, 2y, and physical properties are computed as linear combinations of domain
properties. Each domain €2, is further decomposed into its sub-volumes as 2, =
Qo U Ty. Here, Q2 is a non-overlapping core covering 2 (i.e., 2 = U, Qo, and
Qoo N Qop = 0 (o # B)), whereas I'y, is a buffer layer that surrounds 2¢,. For each
domain 2,, we define a domain support function p, (r) which takes a value within the
unitinterval [0, 1] and vanishes outside the domain €2,,. The domain support functions
constitute a partition of unity, that is, they satisfy the sum rule, ), po(r) = 1, at
every spatial position r. The partition of unity allows the electron density p(r) to be
decomposed into

p(r) =Y pu(D), (32)
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where p,(r) = po(r)p(r) is the partial contribution to the electron density from
domain €2,. The key approximation in DC-DFT is the replacement of the self-
consistent Kohn—Sham Hamiltonian H by its subspace approximation H, such that
[14]

2
exp[(Hy — 1)/ kgT1+ 1

Pa () = pe (r)(r| Ir), (33)

where k is the Boltzmann constant, 7T is the (effective) temperature, and the chemical
potential p is determined from the number of electrons N through the relation,
N = [drp(r). Here, the subspace Hamiltonian is defined through projection as

IfIa=/ dr/ dr'|r)(r|H|r')(r|. (34)
Qy Qg

One then solves the Kohn—Sham (KS) equation within each domain,
H W (r) = e2W2(r) (35)

with the orthonormality constraints, f dr¥**(r) lI/]f" (r) = §;j, where ¥ (r) is the i-th
KS orbital with the energy eigenvalue &7. The electronic ground state is determined
self-consistently; the electron density is obtained iteratively until the input density
pin(r) becomes equal to the output density p,,,(r) within a prescribed tolerance.
Here, p;, (r) is used to calculate the KS potential in ﬁa , whereas p,,; (r) is calculated
from Eqgs. (32) and (33) using the KS orbitals obtained by solving the KS equations,
Eqg. (35). It is noted that the local domain KS orbitals are globally informed through
the global KS potential and chemical potential. It is also remarked that the DC-DFT
scheme can be generalized to be applicable to ab initio molecular orbital calculations
[15].

Finally, we briefly illustrate the group molecular orbital (GMO) method [16],
which is expressed as a localized orbital approach by

(F+B) gl =clol. (36)

By (ﬁz' I |<pf><¢,-f|ﬁ), &7

J#I i
where F and P; are the Fock and projection operators, respectively; ¢/ and ¢! are
the i-th molecular orbital and energy for subsystem (or “group”) I. (“occ.” means the

occupied states.) The (Huzinaga) SCF equation for group / is then given by

F/C! =S8/Cle! (38)
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with

ol I 1

F//_u = F/Lu + P;w' (39)
Here, F;fu and P,u{v are the matrix elements of the effective Fock and projection
operators of group I, respectively, with

Fl,=H + V3 +vael, (40)
I 1 1,1
Hyy = (ul = 5 A1) + Vi, (1)
—Z4
Vil =Yl —=—1v) (42)
v _ ’
" r =Ry
1
V/f;}l — Z D} [(Wuo) -3 (A va)i|, (43)
roel
Dy, =2 C},Cl,. (44)

F/,H', V! V%! and D! are the Fock matrix, core Hamiltonian, nuclear attraction,
electron—electron repulsion, and density matrix of group I, respectively. V ™/ is the
embedding potential for group / due to the rest of the system,

N
V= Do + ), )
J#1

with N being the number of groups. The projection operator is written as

N,
Plo==>"Y" Di, (Fl.Sh+S.Fl). (46)
J£I W v'el

where S’ is the overlap integral matrix and N/, is the number of overlapping tail
groups around group I. The total electronic energy ES of group / is then given by

1 -
B =T {D’ : (F’ +H + P’)} . (47)

It is noted that no bond detachment or capping treatment is required in the GMO
method in contrast to the FMO and other fragmentation methods, which is due to the
introduction of the overlapping tail groups.
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3 Pros and Cons: Cost, Accuracy, Viability, and Versatility

3.1 Disturbance of Electronic States

Quantum chemical calculations aim at obtaining the most accurate solution to the
electronic state of molecular system whose Hamiltonian (model) is given. Then, by
introducing various types of model approximations concerning the system division,
fragmentation methods inevitably disturb the electronic state of the system from that
of the original model, thus causing some inaccuracies and associated irrelevances.

In the FMO method, the C, atom is usually chosen as the bond detached atom
(BDA) associated with the single bond breaking between fragments. The dangling
bond is thus processed in terms of precalculated sp® natural orbital of methane
without introduction of hydrogen cap, where the projection operator is used for the
distribution of the localized orbitals (Sect. 1). In some other approaches such as
KEM and SFM, in contrast, the hydrogen cap is employed for the fragmentation.
This introduction of the hydrogen cap may disturb the electronic states and associated
energetics of the fragments locally, and may also cause artificial steric effects in some
cases. To reduce these adverse effects, the MFCC method employs the “concap”
that contains the residues on the both sides of the fragments (see Sect. 2). In the
KEM approach, a unique fragmentation called “fissioning” process is also attempted
to divide the aromatic bonds (Sect. 2), thus enabling the treatment of conjugated
systems such as graphene with reasonable accuracy. The FMO method also explores
the possibility of fragmentations other than single bond division with the sp® orbital
[3] to extend its applicability over various molecular systems (see also Sect. 1). In the
DC method, the buffer region plays a role to mitigate the disturbance of electronic
states due to the domain division, whereas the choice of its size brings about a trade-
off relationship between cost and accuracy (see Sect. 3.4 below).

3.2 Environmental Effects

In principle, all the fragmentation schemes can take into account the environmental
electrostatic potentials arising from surrounding fragments by incorporating the con-
tributions into local Hamiltonians, while some approaches do (did) not consider them
currently (previously). The inclusion of solvent effects primarily associated with sur-
rounding water is similar, but some additional cautions should be considered. If the
aqueous solvent effects are described explicitly, a water molecule or its cluster is
taken into account as a part of the whole molecular system, which can be regarded as
a fragment similar to an amino acid residue. It is then known [17] that higher order
expansion corrections such as FMO3 over more than two fragments play a signif-
icant role to accurately describe the polarization and charge transfer among water
molecules. When the solvent effects are considered implicitly, on the other hand,
some coarse-grained descriptions such as the polarizable continuum model (PCM)



Comparison of Various Fragmentation Methods for Quantum ... 25

[18], the generalized Born or Poisson—-Boltzmann surface area model [19-22], and
the effective fragment potential (EFP) method [23] can be combined with each frag-
mentation model, which have been implemented in the FMO scheme. The choices
of combined description schemes are then made considering the compatibility, cost,
and purposes for efficient descriptions of dielectric screening, hydrogen bonding,
and proton transfer. In addition, when treating large molecular systems, one would
sometimes need to incorporate the periodic boundary condition into modeling, which
would bring about additional complications in the fragmentation schemes [24].

3.3 Utility and Extension

How to make the fragmentation significantly affect the utility and the possible exten-
tion of each fragmentation method. In general, the fragmentation methods enable
the inter-fragment interaction energy analysis, which would be useful for the ratio-
nal design of small compound inhibitors and antibody drugs to target proteins, for
example. In the case of FMO method, the protein-ligand interaction energy analy-
sis can be comprehensively performed in terms of IFIE (inter-fragment interaction
energy) [2] and PIEDA (pair interaction energy decomposition analysis) [25]. How-
ever, it is remarked that the FMO scheme usually employs the fragment division not
at the peptide bond but at the C,, atom (Sect. 1), which would require some cautions to
researchers [26] with respect to the compromise between accuracy and utility. Con-
cerning the incorporation of electron correlation energies, on the other hand, virtually
all the fragmentation methods can afford to incorporate the conventional calculation
schemes (e.g., MP2, CC, and DFT) in quantum chemistry in straightforward manners,
because the electron correlation effects are generally localized spatially. However,
the calculations of energy gradients in the fragmentation schemes usually become
very complicated [27] and do not allow the use of numerical differentiations to retain
satisfactory accuracies. In addition, the issues of diffusion of water molecules and
proton transfer in hydrated MD simulations would also require appropriate adjust-
ments of fragmentation to prevent the discontinuities in energy evaluation [2].

3.4 Cost and Accuracy

The costand accuracy of fragmentation methods are usually in a trade-off relationship
with each other. In the case of FMO method, at least FMO?2 approximation is needed
to account for the charge transfer between fragments, which naively requires O (N?)
computational cost, while it can be substantially reduced by sorting with distance
thresholds for fragment pairs [2]. In general, fragmentation methods aim at O (N)
computation of large molecular systems and then the size of the largest fragment
governs the total computation time. Therefore, the MFCC scheme in which approx-
imately three amino acid residues are contained in a fragment demands relatively



26 S. Tanaka

high computational cost. Even in the case of FMO method, the load balance is often
impaired due to the presence of large residues such as tryptophan or large ligand
molecules. In this respect, distance-based fragmentation methods such as MTA may
have advantage over other (usually residue-based) approaches. In the case of FMO,
a finer fragmentation necessarily leads to inaccuracies in energy expansion, but the
ingenious utilization of higher order expansion techniques such as FMO3 and FMO4
would mitigate the difficulties [2, 28].

4 Perspective

One of the most essential issues in the fragmentation methods is the balance between
cost and accuracy. Probably, what is the best choice may be highly dependent on
the molecular system to be described and on the purpose of the research. In this
context, the optimization of the implementation could be carried out with the aid
of machine learning or artificial intelligence techniques in the future studies. In
addition to the size of fragments, the sites of fragment division substantially affect the
accuracy of molecular properties. More specifically, the single bond fragmentation
is usually employed in various fragmentation approaches to suppress the disturbance
of electronic states, but the possibilities of other ingenious bond divisions may be
explored to attain a better performance. Furthermore, some hybrid schemes similar
to the concepts of QM/MM and multi-layer approaches may also be attempted. For
example, relevant embedding approaches for metal-containing enzymes would be
promising for performing the statistical or dynamical simulations with high accuracy.

Among various fragmentation schemes addressed in this chapter, the GMO
method also provides a suitable approach for accurately calculating large molec-
ular systems. This procedure solves the Huzinaga subsystem SCF equations using a
couple of approximations. It is shown that the GMO scheme can reproduce ab initio
calculation results quite well and has several additional interesting properties. For
example, no caps are required in GMO, where fragment boundaries are naturally
handled; molecular charges can be delocalized at fragment boundaries because of
the use of tail groups; and the embedding potential properly considers the exchange
interaction, which is sometimes ignored in other embedding methods. Moreover,
GMO gives fully variational and quasi-orthogonal wave functions among groups
(fragments). In the future studies, the large-scale O (N) computations based on the
GMO scheme would be anticipated.

5 Conclusion

In this chapter, a variety of fragmentation schemes for large molecular systems were
illustrated, laying a main focus on biomolecules, where wave functions are relatively
localized. In addition to insulating systems, it is often required for fragmentation
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methods to relevantly describe semiconducting, metallic, and charge-transfer sys-
tems such as -conjugated materials, thus attaining wider applicability for general
molecular systems. Based on the observation that details of fragmentation implemen-
tation are significantly changing from the original version in various fragmentation
schemes other than the FMO method, one has much room for making systematic
improvement of computational performance, which in turn provides challenging
tasks toward accurate O (N) ab initio calculations.
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Recent Development of the Fragment
Molecular Orbital Method in GAMESS er

Dmitri G. Fedorov

Abstract The development of the fragment molecular orbital (FMO) method in
GAMESS is reviewed, summarizing implemented physical properties and computa-
tional methods. Algorithmic improvements of FMO to reduce memory requirements
and to describe dipole moments in solution are also presented.

Keywords FMO - GAMESS - Dipole moment - Solvent effect

1 Introduction

The recent progress in the development of quantum mechanical (QM) methods for
calculations of large molecular systems [1, 2] has been reviewed in detail [3-6],
putting the fragment molecular orbital (FMO) method [7] in a perspective with other
low-scaling QM methods.

In the course of development by multiple research groups, FMO has been imple-
mented in several computational packages. Some of these FMO implementations
such as that in NWChem [8], have remained local, whereas those in ABINIT-MP
[9], PAICS [10], and OpenFMO [11] are distributed.

General atomic and molecular electronic structure system (GAMESS) [12, 13]is a
QM package, with a freely distributed source [14]. This chapter is mainly a summary
of the recent progress in the implementation of FMO specifically in GAMESS [15,
16], whereas in the earlier FMO reviews [17-20] the method is described in a more
general way. FMO was released in GAMESS in 2004 (FMO code version 1.0) and
the current version available in distributed GAMESS is 5.3.
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2 FMO Methodology

The FMO method has been described in detail elsewhere [21], and here a succinct
description is provided for completeness. FMOn is based on an n-body expansion
[22] of size-extensive properties, such as the energy (of size-extensive QM methods),
its derivatives, electrostatic moments, electron density, etc. The energy expression
for a system divided into N fragments, truncated at the three-body level FMO3, can
be written as

N N N
EMO3 =N"E 4+ > AE, + Y AEx (1)
1 1>J I1>J>K

where E;, AE;; and AEj g are the energies of fragments (monomers), pair (dimer)
and trimer corrections, respectively. FMO2, which neglects the last sum in Eq. 1,
is frequently used. FMO1 [23, 24] and FMO4 [25] are sometimes used, but less
extensively, the former because its accuracy can be insufficient and the latter due to
its large computational cost. FMO has been also formulated [26] as a perturbation
theory (treating many-body corrections as the perturbation).

Equation 1 can be used for excited states, computed with multiconfiguration self-
consistent field (MCSCF) [27], configuration interaction(CI) [28], or time-dependent
(TD) density functional theory (DFT) [23]. There can be at most one excited state
fragment and other fragments are calculated in the ground state (excited states for
dimers are computed only for fragment pairs including the excited state fragment).

An electronic state of any multiplicity can be used in Eq. 1, with restricted or
unrestricted open-shell methods as well as with MCSCF [27]. Typically, only one
fragment may be open-shell; however, there is a formulation [29] for multiple open-
shell fragments, for which dimers and trimers, following the angular momentum
addition, are calculated in the highest spin state determined by the multiplicities of
monomers. There are methods for treating non-local excitations in FMO by taking
into account the coupling between local excitations [30, 31].

2.1 Outline of FMO

FMO calculations are done as follows. First, starting from a set of atomic coordi-
nates, the system is divided into fragments. Various modeling software can be used
to do it automatically or manually in GUI. For example, Facio [32] can be used to
automatically fragment peptide (protein etc.), nucleotide (DNA etc.), and saccha-
ride (cellulose etc.) systems or any combination thereof. FU [33] can automatically
fragment peptides. The most general automatic fragmentation is provided in Fraglt
[34], where SMILES patterns can be defined for an automatic fragmentation. For
non-standard systems, one can define detached bonds manually in Facio by clicking
on them.
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There is a simple general guideline for fragmentation: the electron density calcu-
lated for the whole system and integrated over a set of atoms designed to become
a fragment should give the number of electrons as close to an integer as possible
(this is because in the fragment calculations the number of electrons is integer). Of
course, this exact definition requires full calculations and thus is not used in practice;
however, one can roughly predict the delocalization of electrons because molecular
systems are connected by a finite set of bonding patterns. Charge transfer between
fragments should be minimized but it is acceptable to allow charge transfer on the
order of hydrogen bonding (0.05 e). If one attempts to assign one metal cation as a
fragment, such fragmentation is usually poor [35], because a large amount of charge
may be pulled toward the cation from other fragments. Another point of concern is
the conjugation of 1 electrons, which tend to delocalize.

Usually, single bonds are detached between fragments, although there are excep-
tions [36]. FMO uses no hydrogen caps because the embedding potential effectively
saturates the bonds on fragment boundaries. Two treatments of bond detachment are
available, hybrid orbital projection (HOP) [37, 38] and adaptive frozen orbitals (AFO)
[39-41]. The former features unrestricted interfragment polarization and is most
commonly used for fragmenting one-dimensional chains of atoms (e.g., proteins,
DNA, polymers, etc.). Using HOP requires a set of precalculated hybrid orbitals
for the bond detached atom (BDA) of each detached bond [37]. These orbitals are
pretabulated for most commonly used basis sets. There is a simple scheme for users
to generate hybrid orbitals for any basis set and any (single) bond.

In AFO, the electron density of the detached bonds is precalculated for a model
system and remains frozen in FMO calculations (all model systems are automatically
constructed in the beginning of an FMO/AFO calculation, so that AFO is easy to
use). AFO is used for inorganic materials where several bonds can be detached
between two fragments. For instance, zeolite clusters [39], silicon nanowires [40],
mesoporous silica [42] or ribbons of white graphene [36] are well treated with AFO.
Organic charge transport materials [43] have been treated with HOP.

Fragments and their conglomerates are calculated in FMO in the presence of an
embedding electrostatic potential (ESP). This ESP for fragment X is calculated using
the density (or atomic charges) of all fragments excluding X. ESP depends on the
electronic state of all fragments, and thus the fragment calculations in the presence
of ESP must be repeated iteratively until the embedding potential converges. After
that, fragment pairs and, optionally, trimers are calculated in the presence of the ESP,
which is fixed at this stage. The total properties are calculated using the many-body
expansion in Eq. 1.

The gradient in FMO is complicated by the dependence of the ESP on the elec-
tronic state of each fragment, and one has to solve self-consistent Z-vector (SCZV)
equations [44] to obtain orbital responses, similar to the Z-vector method used in the
second-order Mgller-Plesset perturbation theory (MP2) gradient. SCZV equations
have to be derived for each QM method separately. The AFO gradient is even more
complex because of extra constraints and only recently [41] the SCZV formulation
for density-functional tight-binding (DFTB) [45] has been accomplished.
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The analytic Hessian in FMO [46] can be used to generate IR and Raman spectra
[47]. By decomposing the Fock matrix in a many-body expansion similar to Eq. 1,
and diagonalizing it, one can obtain molecular orbitals (MOs) and density of states
(DOS) [48, 49] of a large system.

It is possible to divide the system into layers and specify a different basis set
and/or a QM method, in the multilayer formulation of FMO [50]. For instance, one
can use a better QM method for an important part of the system, such as the binding
pocket of a protein. It is also possible to mix basis sets within the layer, for example,
one can add diffuse functions to anionic functional groups. In addition, one can mix
basis sets in the auxiliary scheme [51], in which to improve the accuracy of FMO
for large basis sets, the polarization effects are evaluated using a smaller basis set,
and added to the FMO calculation with a larger basis set without embedding. In the
effective FMO method [52-57], polarization is estimated using polarizabilities.

One can take advantage of multilayer FMO for optimizing geometry of a
subsystem, for example, ligand and the binding pocket of a protein. It is accom-
plished in the frozen domain approach [58—60], in which the cost of a partial geom-
etry optimization is much reduced by freezing the electronic state of fragments far
away from the active domain whose structure is optimized.

2.2 Decomposition of Properties

The many-body expansion in Eq. 1 yields the total properties which closely but
not exactly reproduce full QM calculations without fragmentation. It has been
argued [61] that the origin of the discrepancy between FMO and full QM calcu-
lations lies in the omission of (n 4+ 1)-body quantum—mechanical terms (attributed
to charge transfer and exchange-repulsion) in FMOn, whereas the electrostatic treat-
ment including polarization [62] in FMO is exact (except when the polarization is
restricted in the AFO scheme or when ESP approximations are used). Equation 1
has the complexity of including many-body electrostatic interactions in each term
(including monomer terms E;), so in Eq. 1 the electrostatic effects are treated at the
full N-body level and only non-electrostatic effects are truncated at an n-body level
(n < N)[61].

The many-body expansion provides very fruitful means to define properties of
fragments (one-body properties), interactions between fragments (two-body proper-
ties) and coupling between fragment interactions (three-body properties). This anal-
ysis conceptually corresponds to the use of functional groups in chemistry (analogous
to fragments in FMO), which may be affected by the environment (interactions with
other fragments). Normally, fragments in FMO cannot be literally as small as func-
tional groups such as OH, because the accuracy is affected by such an excessive
fragmentation, although by using FMO4 [63] the accuracy problem for the total
properties may be much reduced.

The FMO expansion in Eq. 1 is applied to fragments fully polarized by the envi-
ronment. The polarization effects are included in the monomer energies, and can
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be easily extracted by performing isolated fragment calculations [61] (which can
be somewhat ambiguous for fragments connected by covalent bonds, but one can
use the minimum cap approach [61] to resolve it). Pair interaction energies (PIEs)
AE,; in Eq. 1 are not binding energies between isolated fragments; rather, PIEs are
interaction energies between polarized fragments. This should be remembered when
comparing PIEs to other methods.

There are several energy decomposition schemes for FMO. GAMESS includes
two of them, interaction energy analysis (IEA) [64] and pair interaction energy
decomposition analysis (PIEDA) [61, 65-67]. In PIEDA/MP2, the pair interactions
are decomposed into five components, electrostatic (ES), exchange-repulsion (EX),
charge transfer and mix terms (CT 4 mix), dispersion and remainder correlation (DI
+ RC), and solvent screening (SOLV).

AE;; = AEFS + AEFX + AESTT™X + AEPIRC 4 AESOW 2)

PIEDA can be applied to most QM methods that are interfaced with FMO. In RHF
and DFTB, AE ?JHRC is replaced with AEP} ; evaluated using an empirical dispersion
model [68]; in DFTB, in addition, AEEX + AEICJTJ”“"ix is replaced with AE?, +
AE ,CJTES , where “0” and “CT-ES” denote the non-polar 0-order Hamiltonian term and
the coupling of CT and ES, respectively. For HF-3c [69], there is an additional basis
set superposition error correction term A EP?, and for the auxiliary basis formulation
[51] there is a basis set correction term AE?JS

When studying binding between some systems A and B (e.g., protein A and
ligand B), it is necessary to do an FMO decomposition for each system, i.e., for A,
B, and AB, and then subtract A and B properties from those of AB. If one calculates
only a complex AB, the very important effects of deformation, desolvation, and
polarization are not properly considered, and the interaction energy in the complex
is typically a large overestimate of the binding energy [70]. Studying a binding is
conveniently accomplished using the subsystem analysis [70], in which the binding
(“bind”) energy is decomposed into fragment contributions.

Ebmd Z A Ebmd (3)

In case of rigid inorganic materials such as zeolites binding guest molecules,
one can take an optimized structure for an interaction analysis. However, for flexible
organic molecules, such as proteins, it may be better to study binding by doing molec-
ular dynamics (MD) simulations [71], and decompose the binding energy averaged
over an MD trajectory. FMO has been recently extended [72] to perform such analyses
of fluctuations in MD, taking into account temperature and flexibility of molecules.
Doing sufficiently long MD simulations is problematic even for fast methods such as
DFTB: for the small Trp-cage protein consisting of 20 residues only 1 ns FMO/MD
simulations have been done [73].
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2.3 Solvation Models for FMO in GAMESS

Although one can use explicit QM treatment of solvent molecules in FMO, it requires
configurational sampling, which is computationally expensive. Several other solvent
models are available for FMO in GAMESS. For effective fragment potentials (EFP),
solvent molecules are treated explicitly, so that the sampling problem remains, but the
EFP cost is rather low (FMO is interfaced only with the first generation EFP1) [74—
76]. There is a special analysis developed for FMO/EFP, IEA [64], which provides a
decomposition of the energy to quantify solvent effects such as polarization. In the
polarizable continuum model (PCM) [77], solvent is treated as continuum, which
is very convenient for defining solvent screening and cost-effective as the solvent
sampling problem does not arise. The solvation model density (SMD) approach
shares the treatment of solvent—solute electrostatics with PCM, but the non-polar
interaction is described differently [78].

It is possible to combine FMO with molecular mechanics (MM), using the Tinker
[79] interface to GAMESS. In the implementation of FMO/MM [22, 80], no MM
charge embedding is used, i.e., it is an integrated MO MM (IMOMM) [81] rather
than a QM/MM [82] approach. Geometries of proteins and protein—ligand complexes
have been optimized with FMO/MM [22, 80].

2.4 Reduction of Memory Requirements in FMO

One big problem in running FMO calculations of large systems is memory. Even on
PC clusters, where one can have many gigabytes of RAM per core, the problem arises
when the number of fragments is large; on modern supercomputers the problem is
severe, because they tend to have a relatively small amount of memory per core.
Some novel algorithmic solutions are described below.

Although the scaling of FMO has been measured to be nearly linear, O (N ! '2) [45]
for FMO2 applied to realistic globular water clusters, the memory consumption for
FMOn in GAMESS is O(N"). It is clear that this is a big problem when N is large.
For example, for 10,000 fragments, the memory requirement would be proportional
to 800,000,000 bytes (8N 2) per core even at the level of FMO2. The exact factor
(usually, 3—10) multiplying this big number depends on the details of calculations.

In this work, two solutions are described, one for FMO2 and another for FMO3. In
the case of FMO3 in GAMESS, at least two elements in the O (N?) array are stored
for each trimer. The solution adopted here is to avoid storing all trimer corrections.
Instead, one adds them up on the fly and obtains the total energy. These trimer terms
may be of interest in analyzing interactions, and they are printed in the output so
that if necessary, they can be extracted by postprocessing scripts. By doing this, all
O(N?) arrays are eliminated in FMO3, but all O(N?) arrays remain, making the
FMO3 memory requirements quadratic.
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For FMO2, there is an O (N 2) array that stores several energy terms for each dimer.
It can be similarly eliminated by adding up all terms and printing individual values
without storing them. However, there is another problem. In FMO, one typically uses
approximations to reduce the computational cost to nearly linear. This requires that
one should define interfragment distances, which is an O(N 2) array. It cannot be
simply eliminated as other energy arrays, and a different strategy is employed.

In a typical setup of doing FMO calculations, one has to distinguish near fragment
pairs from the rest in order to apply efficient approximations. The number of near
pairs is linear [83], with the prefactor controlled by the threshold. Therefore, instead
ofan O (N 2) array, an array of the size of a N is allocated, which for each fragment /
stores a short list of fragments J for near dimers 1J. The parameter a is the maximum
size of this list; it is predicted by the user and in practice it is set to 5-10, depending
on the packing of fragments in space. Such an array does eliminate the quadratic
memory requirement for FMO2, when combined with the strategy of not storing
individual dimer terms. Note that this strategy cannot at present be used to linearize
FMO3 memory requirements, because the computation of trimer corrections on the
fly uses stored dimer energies, so that FMO3 calculations need a quadratic memory
allocation. In the current implementation of linearizing the FMO2 memory usage
there are some limitations, for instance, all approximation thresholds must use the
same value and some methods storing extra dimer terms may not be used.

2.5 Electrostatic Embedding

The electronic state of fragments is obtained in FMO in the presence of an embedding
potential, which describes polarization. Because ESP is calculated self-consistently,
polarization is described at the full many-body level (all fragments polarize each
other until convergence) [61]. The polarization is a very important many-body effect
and the form of ESP affects the results. In the original FMO [7], the ESP V¥ of
fragment X is taken to have the form of the ab initio Coulomb operator,

N
Za
vE=3" Z<u’—m v>+ > D (uvlpo) “
k+x | Aek r—Xa paek

where u, v, p and o number atomic orbitals (AOs), K runs over fragments and A
over atoms. Z4 and R, are the atomic charges and coordinates, respectively. DX is
the electron density of fragment K.

It has been suggested [84] to use approximations to the two-electron term, point
charge (ESP-PC) and atomic population (ESP-AP) for far separated fragments. These
approximations, although successful in accelerating the calculations, result in numer-
ical errors, especially at a high-order expansion level [85]. Also, approximating ESP
requires special response terms for the gradient [86].
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It can be argued that for small values of thresholds, such an ESP results in a
different physical model rather than approximates the full two-electron embedding, as
the name may mistakenly suggest. Switching to the purely one-electron form of ESP
[87, 88] by applying the ESP-PC approximation to all fragments K in Eq. 4, allows
one to use very diffuse basis sets, which otherwise have severe convergence problems
in FMO. However, for covalently connected fragments the FMO accuracy with such
one-electron ESP is in general not satisfactory [88]. It has also been suggested to
combine calculations with ESP for medium basis sets and calculations without ESP
for diffuse basis sets in the auxiliary basis set approach [51]. Alternatively, large basis
sets can be used in “our own N-layered integrated molecular orbital and molecular
mechanics” (ONIOM) combined with FMO [89].

It has been attempted with limited success to use damping of point charges to take
into account charge penetration [88]. However, in FMO-DFTB [45], a one-electron
form of ESP is always used, which is based on a more complex form of the Coulomb
operator than a simple inverse distance, and FMO-DFTB with such potential works
well also for covalently connected fragments. It has been suggested to use multiple
charges per atom to mimic multipoles for a special type of FMO calculations [90].

It has been proposed to improve the physical model of ESP by adding exchange
terms [26, 48]. However, it does not improve the accuracy of FMO except for the
special case of adding exchange terms to the total Fock matrix for the purpose of
defining molecular orbitals of the whole system [48, 49].

In FMO, one can use a cluster representation of crystal embedding by placing the
system in the field of point atomic charges [91]. Alternatively, a periodic form of
the ESP can be used with periodic boundary conditions [92, 93]. To accelerate ESP
calculations, the multipole expansion [94] can be used. In solution, an embedding
from the solvent can be added using one-electron potentials for point charges on the
cavity [77].

2.6 Summary of the FMO Functionality in GAMESS

A summary of the FMO development for different QM methods in GAMESS is given
in Table 1. Because gradient development is complicated by the need to formulate
SCZV, some methods and options have not been extended to allow accurate gradient
calculations, and for some methods such as coupled cluster (CC), only energy can
be calculated.

In terms of the types of calculations (Table 2), one can do single point runs (to
obtain the energy for a given molecular structure), geometry optimization to locate
minima, saddle point search to locate transition states, vibrational analysis (Hessian),
or IR and Raman spectra simulations. Several analyses are available in GAMESS:
PIEDA, IEA and the fluctuation analysis for MD. Molecular orbitals and energies,
and density of states (DOS) can be computed. For treating heavy atoms, one can
use effective or model core potentials, which have been interfaced with FMO in
GAMESS [76]. FMO results can be plotted using Facio [32] or FU [33].
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Table 1 Summary of the FMO development in GAMESS

39

Method Energy Gradient Hessian

HF [12,121] [12,29, 44, 122, 123] [46, 124]

DFTB [45, 125] [126, 127] [128, 129]

DFT [130, 131] [130, 132] [133,134]

MP2 [135-137] [135, 138, 139]

cc [140, 1413]

MCSCF [27] [27]

TDDFT [27, 142, 143%] [144]

CI [145]

PCM [77, 146] [147, 148] [149]

EFP [74] [75,76]

RISM [1507?

4Implemented in a local version

developmentin GAMESS. FroPery References

Energy [12]
Gradient [44]
Hessian [46]
Mapping chemical reactions [54, 59]
Electronic excitations [23, 27, 145]
Pair interaction energies [61, 65, 66, 72]
Gibbs free energies [46]
Atomic charges and higher multipole [12]
moments
Electron density on a grid [20, 24]
Molecular electrostatic potential (MEP) on | [151, 152]

a grid

Fock matrix, MOs and their energies, DOS

[48, 49, 153-155]*

Fragment-wise dielectric constants [65]

Infrared spectrum [46]

Raman spectrum [47]

Nuclear magnetic resonance shift? [90, 156, 157]
Ton mobility spectroscopy?® [24]

Isotope effects® [158]

Charge carrier mobility? [113]

Radial distribution function? [129]

2 Available in a local version or requires supplemental software
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The parallelization of FMO in GAMESS uses generalized distributed data inter-
face (GDDI) [95], in which CPU cores are assigned to groups, and one group performs
a fragment or a dimer/trimer calculation. Grouping cores has the big advantage of
reducing the parallel communications to a small subset of all cores and thus increasing
the parallel efficiency. On the other hand, it gives rise to a somewhat complicated
problem of optimizing load balancing at two levels within and between groups.
Several approaches to the load balancing can be used: static [95], dynamic [95], and
semi-dynamic [96], whereas the heuristic static load balancing [97] and the heteroge-
neous scheme [98] use a sophisticated balancing optimization. FMO has been used
on many supercomputers including Intrepid [99], Mira [100], and the K computer
[101]. Recently, an OpenMP parallelization of FMO in GAMESS has been developed
[101, 102].

As an application, chignolin (PDB: 1UAO) was calculated at the level of Hartree—
Fock (HF) with the 6-31G** basis set combined with conductor PCM (C-PCM) at the
level of PCM <1> using van-der-Waals atomic radii. The solute cavity is constructed
by combining atomic spheres, each of which is divided into 60 tesserae with a point
charge on each tessera. The charge renormalization was not used (to probe effect
of the charge escape, i.e., of the distribution of a part of the electron density of the
solute outside of the solvent cavity).

Solvent screening in PCM appears because of induced solvent charges, which can
be defined as the sum of solvent charges g; around a given solute atom [64]. One can
also define the solvent dipole moment d* for fragment X as

d* = ZCZ' (R; —Ry) &)

ieX

where i numbers tesserae with charge g; and coordinate R;. Ry is the reference point,
common to all fragments. The contributions d* can be added up to define the total
solvent dipole (the higher order n-body terms for n > 1 vanish due to the additivity).

N
i=ya ©)
I=1

Now, if the total charge of the system is not zero, multipole moments of the rank
of 1 and above depend on Ry. One approach is to set Ry to be the center of charge of
the system. In this work, however, a simpler approach is taken by taking it to be the
center of nuclear charges only (i.e., excluding the electronic contribution). In PCM
[103], the relation between the total induced solvent charge g and the total solute
charge Q is

e—1

i~-"1o @)

&
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where ¢ is the dielectric constant of the solvent. This relation is not exact due to the
charge escape problem and can be enforced by the charge renormalization [104].
The total charge of a solvated system is

~ 2

&

q+0Q )

In water, & = 78.39 and 1/& = 0; thus, within a small error of 1-2%, g + Q ~ 0.
This is the justification for the weak dependence of the total (solute + solvent) dipoles
on Ry. To test this dependence, another choice of defining Ry was employed, to set
it to the center of mass.

Some atomic charges in chignolin are shown in Table 3. The total formal solute
charge Q of chignolin is —2, and the calculated solvent charge g is 1.9526 (if the
charge renormalization were used, it would have been 1.9745 according to Eq. 7),
thus the total charge g + Q is —0.0474. Individual atomic and fragment charges do
not obey the simple relation in Eq. 7 because of many-body effects, i.e., the charges
on fragment [ are induced not only by the atoms and solvent charges on /, but by all
other fragments too.

The computed charge of —NH7 is 0.6264 (compare to the formal value of +
1). Within —NHJ, the nitrogen has a negative charge of —0.6228, and it deprives
adjacent hydrogens of much of their electron density. The computed charge on Gly-
1 (the convention is to use dash to denote fragment residues, and no dash for real
residues) is 1.0761, it differs from 1 because it is calculated with FMO2, which
includes the effect of charge transfer to other fragments. The total induced solvent
charge on Gly-1 is —0.8330. It is smaller than —(¢ — 1) /e = —0.9872 (see Eq. 7)
because of the charge quenching effect [65] (and, to a smaller extent, charge escape)
due to the potential pressure of other fragments, in particular, Asp-3, which has an

Table 3 Solute g, (Mulliken) and solvent g, charges (a.u.) of atom A in Gly-1 of chignolin
(IUAO) for FMO2-HF/6-31G** and full (unfragmented) calculations. o, is the solvent coverage
(%) of atom A?

A qy dy oy Group q q

N —0.623 —0.094 7.7 —NHf 0.626 —0.569
H! 0.415 —0.158 233

H? 0.411 —0.132 223

H3 0.423 —0.186 30.4

c —0.175 —0.073 7.0 —CH,— 0.315 —0.266
H*? 0.251 —0.094 24.6

H® 0.240 —0.099 21.9

C 0.789 —0.027 2.3 —C=0 0.134 0.003
0 —0.655 0.030 9.0

4See Fig. 1. g and g are the solute and solvent charges of functional groups, respectively



42 D. G. Fedorov

Fig. 1 The first residue
Glyl (N-terminus, Q1 = +
1) in chignolin is shown as
balls and sticks
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opposite charge of —1 and whose potential cancels out partially the potential of
Gly-1, and thus reduces the induced solvent charge.

The dipole moments are shown in Table 4. There are three anionic (Asp-3, Glu-5,
and Gly-10) and one cationic (Gly-1) fragments. The charged fragments can be seen
to have large solute d* and solvent dx dipole moments, of typically opposite sign
for each component so that the sum d¥ + d* tends to be small. The x coordinates of
the centers of charge and mass happen to be very similar, whereas y and z elements
differ substantially. This is why Elff shows no R dependence, whereas the other two
components differ by as much as 0.11 Debye. On the other hand, d¥ + d* for the two
choices of R differs by 0.02 Debye or less, i.e., the total values are rather insensitive
to the choice of Ry.

For the center of mass reference, the total solute and solvent dipole moments are
82.289 and 78.580 Debye, respectively, and the length of their vector sum is 4.126
Debye. The observed screening is by the factor of 82.289/4.126 = 19.94, which can
be compared to the theoretical screening factor for charges in Eq. 8 (¢ = 78.39). For
comparison, the computed charges are screened with the factor of 2/0.0474 = 42.19
(different from ¢ because of the charge escape). Thus, dipole moments are screened
about twice weaker than charges, in this system.
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Table 4 Solute d! and solvent d’ dipole moments (Debye) of fragment / in FMO2-HF/6-31G**
for chignolin®

1 Ry |d! dl d! dl dl d! ’dz i ;11‘
Gly-1 |C | —2581 | 1163 |—1531 | 2395 |—1145 | 1472 | 195
Tyr2 | C 032 | 733 | —024 | —007 | —5.16 130 | 243
Asp3  |C 1777 | =509 |—18.39 |—1121 1.03 754 1331
Pro4 |C | —450 | 3.80 0.66 000 | —345 | —1.88 | 4.69
Glu-5 |C 6.64 | 721 | —-3968 | —739 | —5.12 | 37.16 | 336
Thr-6 |C | —179 | 178 | 375 186 | —2.13 9.22 | 548
Gly-7 |C | =372 | 338 | —0.13 237 | =270 227 | 262
Thr-8 |C | —336 | 229 2.85 3.86 077 | —023 | 4.06
Tip-9 | C 441 | =750 | —254 | —3.08 2.53 623 | 6.33
Gly-10 |C 2346 | 2898 | 1727 |-2346 |-2651 |—1881 | 291
Gly-1 |M | —2581 | 1174 |—1536 | 2395 |—11.54 | 1475 | 1.96
Tyr2 | M 032 | 733 | —024 | —007 | —5.18 130 | 241
Asp3  |M 1777 | =519 |—1835 |—1121 1.10 751 1331
Pro4 |M | —450 | 3.80 0.66 000 | —346 | —1.88 | 4.68
Glu-5 | M 6.64 | 710 | —-39.64 | —739 | —500 | 37.12 | 336
Thr-6 |M | -179 | 178 | 375 186 | —2.10 921 | 546
Gly-7 |M | —372 | 338 | —0.3 237 | —2.69 226 | 261
Thr-8 |M | —336 | 2.29 2.85 3.86 078 | —023 | 4.07
Tip-9  |M 441 | =750 | —254 | —3.08 2.50 624 | 6.36
Gly-10 |M | 2346 | 2888 | 1731 | —2346 | —2640 |—18.86 | 292

2The choice of Ry is the center either of nuclear charge (C) or mass (M)

3 Conclusions and Outlook

The main categories of FMO applications are: biochemical studies including protein—
ligand binding [105], folding [106, 107], enzymatic catalysis [108, 109], chem-
ical processes in explicit solvent [110], and electronic excitations [111, 112]. One
venue of FMO applications lies in the parametrization of other approaches based on
FMO calculations [113, 114] and also in studying structure—activity relationships
[115, 116].

There have been only few applications of FMO to polymers [117, 118]. These
applications have been done for cluster models of polymers, which may be appro-
priate when the system of interest has no periodic symmetry due to defects, presence
of ligands, or because one is interested specifically in a nanoparticle with its boundary
effects. For systems with a periodic symmetry present, one may need to apply peri-
odic boundary conditions [93], which are also sometimes applied to solutions despite
the lack of symmetry in real systems.
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It may be considered a typical feature of most organic systems, large enough
to make it feasible to do fragmentation in FMO, to be flexible, which necessitates
sampling of the conformational space in a temperature-dependent fashion, usually
with molecular dynamics. Although FMO/MD can be performed [119], it is still
challenging to carry on simulations for a realistic duration even with the most
computationally efficient methods such as DFTB.

The FMO potential in treating inorganic systems has been much underused
because of the need to manually set up fragments with multiple detached bonds
between them (some systems, such as ionic liquids [73, 120], do not have this
problem), and it is hoped that in future more work will be done in the area of material
science. As a step in this direction, FMO-DFTB, combined with the AFO treatment
suitable for inorganic materials, has been developed and applied to a demonstrative
molecular dynamics simulation system of a 10 m nano system containing over 1
million atoms [41].

GUI development has advanced to a practically useful level, but it falls behind
the development of the method and computational software, and a major effort will
have to be invested in improving FMO-enabled GUI to make FMO calculations easy
to perform, and various results easy to visualize.

Acknowledgements The author thanks Prof. Kazuo Kitaura for his guidance in implementing
FMO in GAMESS and many fruitful discussions.
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features of the ABINIT-MP program. Plans and activities of future developments are
addressed as well.

Keywords ABINIT-MP - Four-body FMO (FMO4) - Hybrid parallel execution *
Supercomputer - Higher-order correlated calculation - Graphical user interface
(BioStation viewer)

1 Introduction

The fragment molecular orbital (FMO) scheme was proposed in 1999 by Kitaura
etal. [1] to realize fully quantum—mechanical (QM) molecular orbital (MO) calcula-
tions for large-scale molecular systems such as proteins and DNAs at the reasonable
computational costs through parallel executions. The basic idea of FMO would be
related to the Morokuma-Kitaura energy decomposition analysis (EDA) by which
the components of interaction energies between two molecules of interest can be
analysed [2]. Although there have been various fragmentation-based MO schemes
as compiled in Refs. [3-6], FMO has been the most widely used, in particular for
biochemistry/physics and pharmaceutical chemistry [7-9]. A principal reason for
this situation can be attributed to the fact that the list of pair interaction energy (PIE)
or inter-fragment interaction energy (IFIE) for fragment pairs is straightforwardly
obtained at the end of FMO calculations, and these quantities are informative to grasp
the nature of interactions for a given target system [10-12]. Certainly, a variety of
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realistic FMO applications are documented by the respective experts in other chapters
in this book.

Currently, the FMO calculations have been available with GAMES-US [13, 14],
PAICS [15, 16], OpenFMO [17, 18] and ABINIT-MP [12, 19]. In this chapter,
the current features of our ABINIT-MP program (written in FORTRAN) are docu-
mented; please refer to the corresponding chapters for other programs. Various abil-
ities implemented in ABINIT-MP are described in the following sections according
to categories such as “Energy calculation” and “Energy gradient calculation”.

2 Energy Calculation

The Hartree—Fock (HF) method [20] of the closed-shell restricted type is the base
of FMO calculations, and this fundamental ability was originally implemented by
Nakano [21]. At the fragment monomer (1-body) stage, the self-consistent charge
(SCC) condition is subjected to optimize the environmental electrostatic potential
(ESP) [10-12]. Namely, this monomer HF stage is iterated until the convergence,
where a typical number of iterations is about 50 for proteins. Various basis sets are
preset in ABINIT-MP, and the current standard basis set is the 6-31G(d) (or 6-31G*)
of valence double-zeta plus polarization (DZP) equality [20, 22]. The bond detach-
ment atom (BDA) of sp® carbon [21] is prepared and preset for the respective basis
sets. The HF calculations are processed in a parallelized integral-direct way; the inte-
gral buffering is available when requested. To reduce the cost of ESP computations,
a couple of Mulliken population-based approximations [23] (atomic orbital charge
(AOC) and point charge (PTC)) are usually adopted. The parallelism in ABINIT-MP
is of dual-layer type, and both flat MPI mode and OpenMP/MPI hybrid mode (or
shared-memory processor (SMP) model) are supported. When the monomer SCC
condition is satisfied, the optimized ESP set is used for the fragment dimer (2-body)
stage [10—12]. Note that no re-optimization of ESP with iteration is made for dimers.
The quantum-mechanical polarization and charge delocalization are incorporated
at the monomer and dimer stages, respectively. The dimers consisting of distant
monomers are treated with the electrostatic approximation (Dimer-ES) without doing
HF calculation [23]. This is the original 2-body FMO scheme (explicitly denoted as
FMO2-HF) proposed by Kitaura [1]. The list of IFIEs is obtained when the dimer
stage completes [24]. In ABINIT-MP, 3-body (FMO3) and 4-body (FMO4) expan-
sions are available [25], by which accuracy is substantially improved; the ESP setting
is to be modified for these explicit many-body expansions. In FMOA4, up to fragment
tetramers consisting of four close monomers are to be computed. Typical incremental
costs of FMO3 and FMOA4 relative to FMO2 are 3 and 10, respectively, at the HF
level. The modified IFIEs are proposed for FMO3 and FMO4 as well [26].

In ABINIT-MP, the default route of orbital optimizations in HF calculations has
been a C2 variant of direct inversion of iterative sequence (C2-DIIS) [27]. The energy
DIIS (EDIIS) [28] as well as the second-order MO based optimizer [29, 30] were
also implemented for difficult cases of convergence.
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It has been well known that the second-order Mgller-Plesset perturbation (MP2)
[20, 31] is the easiest and computationally cheapest wavefunction recipe to take
the electron correlation into account. In fact, the dispersion-type interaction such as
CH/m is never described at the HF level, and thus (at least) MP2 must be performed
after HE. The kernel of MP2 processing is the integral transformation with a formal
cost of N° (N means the number of basis function in a given fragment). At the
monomer stage, the MP2 calculation starts just after the final HF calculation with the
SCC convergence [10—12]. The FMO-MP2 with ABINIT-MP [32-34] is performable
with an efficient integral-direct parallelism of both flat MPT and OpenMP/MPI modes.
The incremental cost factor of FMO-MP?2 relative to FMO-HF is typically a range
of 2-3 in the 2-body expansion, depending on available processors and memories.
In other words, FMO2-MP2 is quite routinely done as the standard job of FMO
calculation for the IFIE-based analyses. Note that MP2 is skipped for the Dimer-ES
pairs because of no HF calculation. A partial renormalization (PR-MP2) [35] as well
as spin-component scaling (SCS-MP2) [36] are usable as options. An approximate
MP2 density matrix (without solving the coupled perturbed HF (CPHF)) can be
computed when requested for population analyses [32, 33].

The third-order Mgller-Plesset perturbation (MP3) [20, 31] incorporates the elec-
tron pair-pair interactions unlike MP2 as an independent pair model. The formal
cost of MP3 raises one order as N° due to tensor contractions of integrals and MP1
amplitudes. A scaled MP3 approach called as MP2.5 (in which the MP3 additional
correlation energy is halved [37]) has attracted interest because evaluated interac-
tion energies by this way are comparable to those by the coupled cluster singles and
doubles with perturbative triples (CCSD(T)) method as the golden recipe to describe
the electron correlation. ABINIT-MP has an efficient integral-direct MP3 module
for FMO2 calculations with parallelism of both flat MPI and OpenMP/MPI [38]. If
enough amount of memory and high-speed computing cores are usable for FMO-
MP3, the incremental factor relative to FMO-MP2 is less than 10 (depending on the
type of processors); only 2 as the best case. Reliability of IFIE analyses could be
enhanced with the MP2.5 scaling, if the FMO-MP3 calculation is applicable to a
given system.

A variety of higher-order correlated methods [20, 31] from the fourth-order
Mgller-Plesset perturbation (MP4) to CCSD(T) are available in ABINIT-MP within
FMO2 [39]; the SMP execution of OpenMP/MPI is assumed. The CCSD(T) compu-
tation consists of the iterative N® part of amplitude optimization of singles and
doubles and the non-iterative N7 part of perturbative triples. Under parallelization,
a series of tensor contractions among integrals, amplitudes and intermediate quan-
tities are performed by matrix-oriented operations through DGEMM. The memory
demand for CCSD iterations is considerable, and thus Bruckner doubles (BD) [40] is
an alternative route; the number of grand iterations for BD is typically 5. The relative
cost of CCSD(T) and BD(T) to MP2 can reach roughly a hundred times. Although
such higher-order correlated methods are so costly, the cross-reference data of IFIEs
are obtainable for comparison with the MP2 or MP2.5 results [41].

The unrestricted HF (UHF) calculation is used when the target molecular
system contains an open-shell fragment, where the three-body treatment (FMO3)
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is supported [42, 43]. Correspondingly, the unrestricted MP2 (UMP2) method [20,
31] is adopted for the correlation correction. Care is necessary for spin contamina-
tion, especially for the existence of near-degeneracy. The applicability of FMO-UHF
is thus rather limited.

Several approximations to 2-electron integrals having four indices have been
known [44], where the fundamental concept is the factorization to some tensors
with fewer indices. Note that such factorizations are suitable for matrix-oriented
processing. In ABINIT-MP, the Cholesky decomposition with adaptive metric
(CDAM) scheme is usable for the HF and MP2 calculations with parallelism [45].
For the dimer MP2 stage, the acceleration with CDAM is roughly 10 times for the
6-31G basis set [20, 22]. The CDAM option is usable also for MP3, however the
acceleration is not preferable unfortunately; the resolution-of-identity (RI) [44] may
be promising for MP3 as implemented in PAICS [46, 47].

The integral generator module of ABINIT-MP written by Nakano is based on
Obara’s recursive algorithm [48], and only Cartesian type basis function is supported
(6d and 10f). Actually, two types of binary executable with and without handling
of f functions are prepared, because the former is 1.5 times larger because of the
lengthy processing in inner loops of the integral generator. The scalar relativistic
effects (mass-velocity and Darwin) are incorporated by using the model core potential
(MCP) sets [49, 50] whose valence basis functions are of DZP quality [51]. The MCP-
based FMO-MP2 method is applicable even to the uranyl (UO,*)-attached DNA
model under the explicit hydration condition [52]. For light elements, the MCP basis
set has better flexibility than that of the 6-31G(d) basis set, but the computational
cost increases due to longer contractions of valence primitives [41].

When a given target system grows in size, the number of Dimer-ES pairs [23] turns
huge and thus costly. The approximation of continuous multipole moment (CMM) is
further applied to process the Dimer-ES energies for relatively long distanced pairs
[53]; the acceleration factor is typically 10 without significant loss of accuracy in total
energy (1 x 10~ atomic unit). Although the ESP-AOC and ESP-PTC approximations
are usable for the ESP computations, there is a potential need to evaluate the exact
ESP within tractable time. Recently, the CMM technique has been introduced for
the ESP part as a speed-up option.

The multi-layer FMO (MFMO) treatment [54] in ABINIT-MP was first used for
excited-state calculations for the chromophore of photoactive proteins [55]; this topic
is addressed later. In the latest version of ABINIT-MP (Open Version 1 Revision 22)
[19], MFMO is oriented rather to the correlated treatment for the pharmacophore of
proteins. Namely, the following cost-effective usage is enabled. Both low and high
layers defined are treated at the HF level, and the latter is calculated at the MP2 or
MP3 levels for IFIE-based detailed discussion on the interactions between ligand
and neighbored residues.
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3 Energy Gradient Calculation

A set of the first derivative of FMO total energy with respect to nuclear coordinates
as the gradient is required for the geometry optimization and also the molecular
dynamics (MD). At the early stage of FMO developments with ABINIT-MP, the
HF gradient of 2-body expansion (FMO2-HF) was developed [56] and used for
preliminary MD simulations [57], where the contribution from BDA was omitted.
The current utility of FMO-MD in ABINIT-MP was based on PEACH developed by
Komeiji; refer to the corresponding chapter of this book and a couple of reviews [58,
59]. FMO-MD was used to simulate various organic reactions under an explicitly
hydrated condition [60—-63].

For the water clusters with hydrogen bonds, the 3-body effect is substantial, and
thus the FMO3-HF gradient for MD was implemented [64]. According to the prece-
dent implementations in GAMESS-US, both the corrections of self-consistent Z-
vector (SCZV) [65] and BDA contribution [66] were incorporated in ABINIT-MP.
The periodic boundary condition (PBC) at the FMO3-HF level was also developed
for MD in Fujita’s [67] and Nakano’s local versions. The UHF gradient was imple-
mented at the FMO3 level and demonstrated for the MD simulation of hydrated
divalent copper ion [42].

The MP2 gradient [68] was developed for FMO-MD [69], and the importance of
electron correlation was demonstrated for the water cluster as well as ammonia cluster
[70]. The FMO2-MP2 gradient was used also for the partial geometry optimization
in which the region of interest is the target to be optimized; the MP2 correlation was
certainly crucial to describe CH/m and mt/m interactions in Trp-Cage [71]. Recently,
the frozen domain (FD) option [72] has been introduced as a more efficient route of
geometry optimization.

The MCP gradient-based FMO-MD was available for droplet systems containing
heavy metal elements such as hydrated trivalent lanthanide ion [73] and cisplatin
[74]. The CDAM approximation was implemented for MP2 gradient, but the gross
acceleration was not so efficient as for the case of MP3 energy.

4 Property Evaluation

The singlet and triplet excitation energies can be evaluated by the ability of configura-
tion interaction singles (CIS) [55] with parallelized Fock-like contraction processing
(N* computational cost [75]) under the MFMO framework [54]; the chromophore is
just the target of excitations. CIS frequently suffers from overestimations in evalu-
ated transition energies (1-2 eV), especially for singlet states. A perturbative doubles
correction named CIS(D) of N> cost [76] is thus applied to remedy this discrep-
ancy after MFMO-CIS calculations [77], through inclusions of the orbital relaxation
energy for the target excited state and the differential correlation energy from the
ground state. Various modified CIS(D) versions incorporating effective higher-order
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contributions are available as well [78-80]; the cost scaling nature of N’ is kept.
All these CIS(D) calculations were parallelized in an integral-direct manner. Note
that the FMO-CIS gradient and the relaxed density matrix (by solving CPHF equa-
tion) for a specified excited state [75, 81] are available and also that the non-local
excitations can be modeled for molecular aggregates [82].

The frequency-dependent polarizability based on an HF linear response (LR)
[83] was implemented in a similar way to the CIS calculation [84]. This ability is
applicable even to silicon-based polymer chains [85]. Although the polarizability
values by HF-LR are underestimated relative to those by correlated methods, the
semi-quantitative discussion may be possible through proper scaling.

The dipole moment value is calculated for each monomer without charge at the
end of the monomer stage. The Mulliken population analysis [20] for all atoms in
the given system for FMO calculations is usually done a default utility, and various
better choices (natural population analysis [86, 87] or ESP-fitted population analyses
such as Merz—Kollman—Singh version [88, 89]) are usable upon request [90, 91].

5 Analysis Tool

As denoted previously, the notable merit of the FMO method is the usability as the
analysis tool with IFIE or PIE for a given target system. To enhance such an ability,
Morokuma-Kitaura’s EDA [2] variant of PIE (termed as PIEDA) was implemented
first in GAMESS-US [92] and later in ABINIT-MP [93], where a certain pair energy
is to be decomposed into four terms of “electrostatic” (ES), “Pauli’s exchange repul-
sion” (EX), “charge transfer” (CT) and “dispersion” (DI). The ES, EX and CT terms
are calculated at the HF level, whereas the DI term is evaluated at the MP2 or MP3
levels. Here, care may be taken for the fact that not only pure dispersion contribu-
tions but also correlation corrections (to reduce excess ionicity retained by the HF
description [20]) are included in the DI term. Recently, the local response dispersion
(LRD) [94] ability with HF density has been implemented in ABINIT-MP, by which
the dispersion contribution could be discussed separately. The PIEDA modified with
LRD may be useful for more detailed discussions.

The solvation effect is often important in estimating the binding energy of ligand
to protein in hydrated conditions, and thus the FMO2 Poisson-Boltzmann (PB) model
[95] has been implemented [96, 97]; the dielectric constant is the crucial parameter
as in the case of polarizable continuum model. A number of grand iterations of FMO-
HF to achieve the convergence in the total energy of 1 x 107 (in atomic unit) are
typically 10-14. Once converged, the MP2 calculations are to be performed. The
PB-modified IFIE and PIEDA values show small but vital differences from those
without solvation, especially for the interactions among charged fragments [98].

There are a couple of orbital-wise analysis tools in ABINIT-MP. For hydrogen
bond or halogen bond with charge transfers, the configuration analysis for fragment
interaction (CAFI) [99] is preferable, by which a set of donor and acceptor orbitals
are obtained as the pseudo-natural orbital pairs derived from the concurrent electron
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relaxation functional (CERF) [100] calculation for the selected fragment monomers
after the monomer SCC stage. In contrast, the method of fragment interaction based
on local MP2 (FILM) [101, 102] is applicable to capture dispersion-dominated local
interactions of such CH/m or nt/m types. Visual presentations of orbital-wise results
of CAFI or FILM are helpful in understanding the nature of site-specific interactions
in pharmacophore.

The counter-poise (CP) correction from basis set superposition error (BSSE) [103]
is available for IFIEs at the HF, MP2 and MP3 levels [ 104]. In production calculations
of FMO2, the 6-31G(d) basis set has been usually used, and the evaluated IFIE
values could contain about 40% of BSSE portions in the worst situation based on our
experiences [41]. Some cautions may thus be required for quantitative discussion in
comparison with experimental data; semi-quantitative discussion is still possible in
the context of analysis, of course.

6 Utility

A potentially demanding step before the FMO calculation starts is the setting of
fragmentation associated with the definition of BDAs, where such works should be
tedious and error-prone when a given target system is large and complicated; the frag-
mentation is simple for molecular clusters without mutual bonds. For user’s conve-
nience, the fragmentation is automatically carried out in ABINIT-MP, for proteins,
DNAs and RNAs. As a preparation of input data, this operation is also possible with
the help by BioStation Viewer which is a graphical user interface (GUI) customized
for ABINIT-MP [12]; the generated tables of fragmentation information is to be
written out on an input file. BioStation Viewer is more useful in handling the output
data (e.g., CAFI orbital pairs [99]); demonstrative illustrations by this GUI may be
found in other chapters of this book.

As previously denoted, the BDA setting is usually made with the sp>-hybridized
carbon atom [21]. Due to this limitation, the fragmentation for proteins is done not at
the CO-NH peptide bond but at the Ca—CO bond. When the carbonyl oxygen atom
commits some interactions with other fragments (e.g., hydrogen bond), the assign-
ment of interacting fragment pair looks shifted [105]. Special care should thus be paid
for this case [98]. To circumvent such a difficulty, the sp?>-hybridized BDA setting
has been implemented recently [106], by which a straightforward fragmentation at
the peptide bond is allowed. Because the respective IFIE values are affected, cross-
checking with the standard sp* fragmentation is still necessary before the routine
usages of sp> BDA.

Several Python scripts are provided for ABINIT-MP users. Old input data file
can be converted to the latest one by “mkinp.py”. An automated fragmentation of
peptoid systems [107] is enabled with “kyfrag.py”’, where various functional groups
are connected not to Ca but to N (of peptide bond) in peptoids [108].
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7 Demonstrative Application

In this section, several demonstrative calculations with available methods in
ABINIT-MP are summarized. First, a favorable affinity with massively parallel
supercomputers is described in the following three paragraphs.

Large-scale MP2 [34], MP3 [38] and higher-order [39] calculations on the Earth
Simulators (ES and ES2) of NEC’s vector processor type were reported with the
6-31G basis set. The best efficiency relative to theoretical speed (of 1024 processors)
was recorded as high as 38.6% for a Trp;,7-His model protein at the full MP4 level on
ES2 under the OpenMP/MPI hybrid parallelism, indicating that the DGEMM-based
processing of triples is efficiently implemented [39].

The Oakforest-PACS (OFP) system is many-core CPU supercomputer equipping
Intel’s Knights Landing processor (68 physical cores), and the hyperthreading with
virtual cores is supported by a multiplication factor of 4. By setting 64 threads per
fragment, the timings of FMO-MP2/6-31G(d) job with 2 and 4 processes on 1 node
of OFP were 32.1 h and 15.6 h, respectively, for the HIV-protease-lopinavir complex.
The timings of the same job with 4 and 8 processes on 2 nodes were 16.1 h and 8.0 h,
respectively. The timing for a case of 16 processes on 4 nodes was 4.1 h. These timing
data suggest that the FMO-MP?2 job can be executed with a rather small number of
nodes on OFP through the hyperthreading; a three-layer parallelization was usable
for the MP2 when needed [109].

From April 2020, anew FMO project against the COVID-19 issue has been started
by using the supercomputer Fugaku whose performance is the world fastest as of
June 2020. Because of the overwhelming computing power of Fugaku, the FMO-
MP3/cc-pVDZ calculations (with PIEDA) can be easily processed even for the spike
protein of coronavirus consisting of 3.3 thousand amino acid residues; this MP3 job
was completed in 3.4 h with 147,456(=48 x 3072) cores, and the relative cost to
MP2 was only 2; the results will be published elsewhere.

Now, the excited-state calculations are briefed. The MFMO-CIS(D)/6-31G(d)
approach was successfully applied to evaluate both excitation and emission ener-
gies for the DsRed protein [110]. The related fluorescent proteins were calcu-
lated by the modified CIS(D) schemes [78-80], and the evaluated excitation ener-
gies were in agreement with the experimental values within 0.1 eV [111-113]. A
fully quantum mechanical estimation of blue shift of nmt* excitation energy of the
hydrated formaldehyde molecule was another representative example [114], where
the droplet hydration model was simulated by FMO-MD and the statistical evaluation
of excitation energy was made with the sampled structures from MD trajectories.

A combination of classical MD and FMO was pioneered by Ishikawa [15]. In this
scheme, the MD-generated structures are subjected to a series of FMO calculations,
and the IFIE values are evaluated by incorporating the structural fluctuations in
a statistical fashion. Based on a rich amount of computational resources, such a
combinative approach was applied to a couple of biochemical problems. The first
is a comparative study on the Calmodulin in which the normal binding positions
of Ca(Il) ions are replaced by Eu(IIl) ions [115]; the 4f-in-core MCP was used for
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Eu(IIl) [116]. The second is a structural interaction analysis on the uranyl-bridged
DNA [52]. These two works demonstrated an importance of statistical evaluation of
IFIEs in a realistic hydrated condition with finite temperature, and this approach has
been taken in the latest COVID-19 project on the supercomputer Fugaku as well.

Finally, applications related to the field of applied physics are addressed. Based
on the FMO4 scheme, the adsorptions of designed peptides onto specific inorganic
surfaces (modeled by large-scale clusters) were analyed [117—-119]. In the cases of
hydroxyapatite [118] and calcite [119], the classical MD-sampled structures were
calculated at the MP2 level, and the respective roles of amino acid residues in inter-
acting with the surfaces were revealed with a statistical sense. Coarse-grained (CG)
simulations such as CG-MD and dissipative particle dynamics (DPD) [120] have
attracted considerable interest, because theoretical analyses of mesoscale systems
are made computationally tractable; various mesoscale functional devices consisting
of lipids, proteins and substrates have been proposed and developed in the applied
physics. Reliability and applicability depend on a set of effective interaction parame-
ters for these CG calculations, and empirical parameter-based simulations frequently
suffer from several limitations. Recently, the FMO-DPD method has been devel-
oped, in which the effective interaction parameters for DPD are non-empirically
derived from a series of FMO calculations (a total number of jobs frequently reaches
tens of thousands) for segment pairs defined for a given target system [121, 122];
please refer to the corresponding chapter written by Okuwaki in this book. FMO-
DPD was applied to a variety of simulations for electrolyte membranes [123], lipid
membranes/vesicles [124—127] and even proteins [128], and reasonable agreement
with available experimental data was obtained.

8 Future Development

The latest public ABINIT-MP program is Open Version 1 Revision 22 (June 2020).
For future releases, various developments have been in progress, and such works
are addressed. The RI-based modules of MP2, MP2 gradient and MP3 have been
imported from Ishikawa’s PAICS [15, 46,47, 129], and these abilities will be available
in Version 2 as an option. From Ishimura’s SMASH [130], the numerical quadrature
module for density functional theory (DFT) as well as the effective core potential
(ECP) module has been incorporated into a test version of ABINIT-MP. The B3LYP
calculation [131] was potentially usable for FMO calculations, however the conver-
gence difficulty for fragment dimers [132] has not been resolved. For Version 2, the
porting work of integral generator (in which the spherical harmonic basis functions
can be used) in SMASH has been underway, where the extant integral generator by
Nakano has been kept; both generators may be properly used upon request.

The IFIE-based analysis is hardly applied to the directly linked fragment pairs
with BDA [21]. This has been a long-term issue in FMO calculations. A couple of
attempts have been made, although the remediation is still far from satisfactory [133,
134]. Continuous efforts are required for improvements.
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Depending on the available computational resources (e.g. the latest Fugaku),
ABINIT-MP is straightforwardly applicable to systems of thousands of fragments.
If one desires the FMO calculations for a whole system consisting of functional
proteins, surrounding membrane lipids, ions and waters, a total number of fragments
could be more than ten thousand. For such a demanding case, several modifications
and extensions may be required; for example, the load-balancing is a potential target
to be improved.

As denoted so far, the statistical evaluation of interaction energies has gotten
importance. Such an approach is suited to the machine learning (ML) from a view-
point of post-processing for generated big data. A couple of preliminary ML works
have been reported [ 135, 136]. In the next release of ABINIT-MP (Version 1 Revision
25, scheduled in February 2021), the lists of both IFIE/PIEDA values and associated
descriptors (e.g. distance between centers of masses of fragment pair) are available
as a separate file to which python scripts are directly applied. The regressions with
support vector or random forest may be useful in predicting IFIE values without
FMO calculations for a given structure of target system, once the training finishes.
Works along this line have been promoted.

9 Summary

In this chapter, we have summarized various features of our ABINIT-MP program
[12, 19, 135, 137]. Several demonstrative applications were addressed as well. In
comparison with other FMO programs, ABINIT-MP could have several advan-
tages in (1) higher-order correlated calculation, (2) affinity with supercomputers
under hybrid parallelism, (3) FMO4, (4) variety of analysis tools, and (5) BioStation
Viewer (custom GUI). Further developments have still been in progress for large-
scale systems (ten thousand fragments) and statistical interaction analyses (with help
of ML).
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PAICS: Development of an Open-Source
Software of Fragment Molecular Orbital | @@
Method for Biomolecule

Takeshi Ishikawa

Abstract PAICS is an open-source software available for fragment molecular orbital
(FMO) calculation. A notable characteristic of PAICS is the capability to use the
resolution of the identity (RI) approximation with the FMO scheme. Second-order
Mgller—Plesset perturbation theory with the RI approximation (RI-MP2) was imple-
mented in PAICS, demonstrating that electron correlation energy of biomolecules
could be efficiently calculated. Recently, third-order Mgller—Plesset perturbation
theory with the RI approximation (RI-MP3) was implemented, which enables us to
calculate higher order electron correlation energy of biomolecules in a reasonable
computational time. This chapter introduces the development of PAICS, by focusing
on the FMO-RI-MP2 and MP3.

Keywords PAICS - FMO-RI-MP2 - FMO-RI-MP3

1 Introduction

With the growth of computer technology, ab initio quantum chemical calculations
have been applied to large molecules, including protein and nucleic acids. The frag-
ment molecular orbital (FMO) method [1-5] is one of the most promising approaches
for the quantum chemical investigation of such large molecules. As explained in the
previous chapter, a target molecule is divided into small fragments, and various
molecular properties are approximately calculated from the monomer and dimer
calculations of the fragments. Thus, by using the FMO method, we can greatly
reduce the computational cost of quantum chemical calculation of large molecule.
One of the program packages available for FMO calculations is “Parallelized
ab initio calculation system based on FMO,” which is abbreviated to PAICS [6]. This
program is developed by Takeshi Ishikawa, and its source code has been open to the
public since 2011 [7]. While Fortran has been traditionally used for the development
of quantum chemical program packages, C language is used for PAICS, which is one
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of the characteristics of PAICS. A two-level parallelization with MPI is adopted in
PAICS, that is, a whole FMO calculation is parallelized by the fragment monomers or
dimers, and each calculation of them is additionally parallelized. When performing
FMO calculations, fragmentation manner of a target molecule has to be given for
every calculation. This process is very complicated, especially for a large molecule
like a biomolecule, resulting that a method to automatically perform such a fragmen-
tation is required. “PaicsView” is developed as a graphical user-interface of PAICS,
which has a function of the auto-fragmentation for a typical protein or nucleic acid.
Several application studies using PAICS and PaicsView have been reported in the
life science field [8—13], including rational drug discoveries of infectious diseases
[6, 14-19].

Restricted Hartree—-Fock (RHF) method is implemented in PAICS as a basic
quantum chemical theory for the FMO scheme, but it is not enough for accurate eval-
uation of the molecular interaction in biomolecules, in which dispersion interaction
(or electron correlation effect) is essential. Thus, the second-order Mgller—Plesset
perturbation theory (MP2) with the resolution of the identity (RI) approximation
[20-22], which is one of the most cost-effective electron correlation methods, is
implemented in PAICS [23, 24]. Recently, the third-order Mgller—Plesset perturba-
tion theory (MP3) with the RI approximation was further implemented [25]. Because
capability of the FMO-RI-MP2 and FMO-RI-MP3 is one of the most important char-
acteristics of PAICS, details of them are described here. Another notable point in
the development of PAICS is FMO-based quantum chemical/molecular mechanics
method [26], which is given in Chap. 20.

2 RI-MP2 and MP3 with FMO Method

During the past couple of decades, various quantum chemical theories with approx-
imation for the 4-center electron-repulsion integral (ERI) have been developed.
Among them, the RI approximation is the most commonly used [27-29], in which
the 4-center ERIs are approximately calculated with the 3- and 2-center ERIs using
auxiliary basis functions. For example, (ia|jb), a typical molecular orbital-based
ERYI, is approximately calculated as the following equation:

(ialjb) ~ Y BB}, (1)
P

where i or j is index of valence molecular orbitals (i.e., occupied orbitals not
including frozen core orbitals), a or b is index of virtual molecular orbitals, and
P or Q is index of auxiliary basis functions. A typical number of auxiliary basis
functions is around three times larger than that of the basis functions. The matrix
elements of B’ are calculated as
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= (ialQ)Vg,”, @)
o
where (ia|Q) is the 3-center ERIs defined as

1
(ialQ) = [@i(r1)e.(r1))———@o(r2)dridr, 3)
|ry —rol

and V,, ,1,/ % is the element of the inverse of the square root matrix of V. This V matrix
is calculated using the 2-center ERIs:

1
Veg = (P|Q) = [op(r 1)| |¢Q(r2)d'“1dr2 “4)

MP2 correlation energy is obtained from the following equation:

EMP2 _ Z (ial jb)[2(ia|jb) — (iblja)]’ 5)

ijab & t&j =& —¢
where ¢; and ¢, are the orbital energy of the valence and virtual molecular orbitals,
respectively. When using the RI approximation, (ia|jb) and (ib|ja) in Eq. (5) are
calculated from B” matrix with Eq. (1). In the case of MP3 correlation energy,
(ijlab) and (ac|bd) type ERIs are additionally required [30, 31], and they are also
calculated from B matrix.

Once BY matrix is calculated by Eq. (2) and stored in the memory, the 4-center
ERIs can be easily obtained from Eq. (1). RI-MP2 and MP3 energies are efficiently
calculated using the DGEMM routine of the basis linear algebra subroutines (BLAS)
because the main parts of the operations are described as the matrix multiplications
involving BT . However, the size of B matrix, which increases with the third power
of the molecular size, is a crucial problem for the calculations of large molecules using
the RI approximation. Especially in the case of RI-MP3, the memory requirement
of B matrix is unattainable because it not only occupied—virtual elements but also
virtual-virtual elements are needed. This is a major reason why few application
studies using RI-MP3 have been reported. On the other hand, the size of calculation
is limited within the pair of fragments in FMO calculations. For example, in the
case of a typical protein, dimer calculation of tryptophan pair is the largest size
calculation because amino acid residue is usually treated as a single fragment in the
FMO method. As a result, the memory requirement of B” matrix is not a significant
problem for FMO-RI-MP2 and FMO-RI-MP3. Thus, it should be emphasized here
that the combination of the FMO method and RI approximation is very promising.
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3 Benchmark Calculation of FMO-RI-MP2 and MP3

Asbenchmark calculations of the FMO-RI-MP2 and MP3 with PAICS, the previously
reported calculations of two biomolecular systems are shown here [23-25]. One is
prion protein (PrP) complexed with GN8, and another is human immunodeficiency
virus type 1 protease (HIV1 PR) complexed with lopinavir. PrP is a key protein in
prion diseases, and GN8 [32] is a potential curative agent; the complex contains 103
amino acid residues and 1729 atoms. HIV1 PR is an important protein in the infection
of acquired immune deficiency syndrome (AIDS), and lopinavir is an inhibitor; the
complex contains 199 amino acid residues and 3225 atoms. The FMO calculations
with the cc-pVDZ basis set [33] and auxiliary basis functions developed by Weigend
et al. [34] were performed using 32 cores (Intel Xeon E5-2695v4) with a 4.0 GB
memory per core.

Table 1 shows the computational times of the total energy of the two complexes
by the FMO-RHF, FMO-MP2, FMO-RI-MP2, and FMO-RI-MP3. In the FMO-RHF
calculations, the total times were 328.8 and 724.7 min for the PrP and HIV1 PR
complexes, respectively. For the FMO-MP2, where the monomer and dimer MP2
calculations were additionally performed, the total times increased to 909.7 and
1618.5 min, respectively (the ratios to the FMO-RHF were 2.77 and 2.33). However,
the total times of the FMO-RI-MP2 were 359.2 and 766.7 min, respectively (the ratios
were only 1.09 and 1.06), clearly demonstrating that the MP2 correlation energy
can be obtained without a significant increase of computational time compared to
the FMO-RHF. For the FMO-RI-MP3 calculations, the computational times were
1572.2 and 2591.3 min, and the ratio with respect to the FMO-RHF calculations was
4.78 for the PrP complex and 3.58 for HIV1 PR complex. Thus, we can safely say
that the MP3 correlation energy of large molecules can be obtained with a reasonable
computational effort by using the RI approximation.

The interaction energy between a protein and small molecule is one of the
most important quantities in typical biological applications using FMO method. In

Table 1 Computational time of the energy of FMO-RHF, FMO-MP2, FMO-RI-MP2, and FMO-
RI-MP3 for the two biomolecular systems by PAICS. The time is given in minutes. The calculations
were performed using 32 Intel Xeon E5-2695v4 cores with a 4.0 GB memory per core

PrP complex HIV1 PR complex

RHF MP2 RI-MP2 | RI-MP3 | RHF MP2 RI-MP2 | RI-MP3
Monomer | 144.0 143.7 | 144.1 144.0 |373.6 369.5 |366.9 368.9
SCC
Monomer 1.9 10.7 24 12.4 35 16.2 4.2 17.9
Dimer-ES | 31.0 31.1 31.0 31.0 |107.6 107.6 | 107.7 110.5
Dimer 113.6 681.6 |143.0 1384.7 |214.5 1113.2 | 221.0 248.4
Total 328.8 909.7 |359.2 15722 | 724.7 1618.5 |766.7 2591.3
Ratio® 1.00 2.77 1.09 4.78 1.00 223 1.06 3.58

2The ratio to the computational time of the FMO-RHF calculation
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Table 2 Correlation contributions of FMO-MP2, FMO-MP3, and FMO-MP2.5 to the protein—
ligand interaction energies, and their errors associated with the RI approximation. The energy is
given in Hartree. MP2.5 values are obtained by the sum of the MP2 correlation energy and half of
the MP3 correlation energy

PrP complex HIV1 PR complex
Without RI With RI RI error Without | With RI RI error
RI
EFMO=-MP2 | _ 011267 |—0.11275 | —0.00008 | — —0.19782 | —0.00013
0.19769
EFMO-MP3 | _ 009189 |- 0.09196 | —0.00007 |— —0.16075 | — 0.00009
0.16066
EFMO-MP25 | _ 010228 |- 0.10235 | —0.00008 | — —0.17929 | —0.00011
0.17918

Table 2, the correlation contributions to the protein-ligand interaction energy
obtained from the FMO-MP2, FMO-MP3, and FMO-MP2.5 are summarized together
with the RI approximation errors. MP2.5 is the method proposed by Pitondk et al. [35]
in which the MP3 correlation energy is made half and added to the MP2 correlation
energy. It is known that molecular interaction energies calculated by the MP2.5 have
a comparable reliability with those calculated by coupled-cluster theory at singles
and doubles plus perturbative triples, CCSD(T). For the PrP complex, RI approxi-
mation errors were —0.00008, 4+0.00007, and —0.00008 Hartree in the correlation
energies of the FMO-MP2, FMO-MP3, and FMO-MP2.5, respectively. The errors in
the HIV1 PR complex were also of same order of magnitude. These results demon-
strate that the errors associated with the RI approximation are insignificantly small
for the molecular interaction energy. Thus, we can say that the FMO-RI-MP3 or
FMO-RI-MP2.5 is one of the most promising method for accurate evaluation of the
interaction energies in biomolecules.

In the current version of PAICS, the calculation of energy gradient with RI-MP2
is also available [24]. Table 3 summarizes the computational times of the energy
gradient by the FMO-RHF, FMO-MP2, and FMO-RI-MP2. For the PrP complex,
the times of the HF and RI-MP2 gradients were 850.0 and 1291.1 min, respectively,
whose ratio was only 1.52. Similarly, the ratio was only 1.32 for the HIV1 complex.
On the other hand, the computational times of the MP2 gradient were much larger
than those of the HF gradient, that is, 2986.5 min (the ratio was 3.51) for the PrP
complex and 5378.6 min (the ratio was 2.50) for the HIV1 complex. These results
show that not only the energy but also the gradient can be efficiently calculated by
using the RI approximation in FMO method.

Although cc-pVDZ basis set was used in these benchmark calculations, it is known
that larger basis sets are needed for accurate evaluation of the electron correlation
energy in molecular interaction. For example, diffuse basis functions can improve the
quantitative description of the dispersion interaction. However, one problem is known
to arise in the FMO calculations with a large basis set, that is, the poor convergence
of the monomer SCC procedure. Actually, we could not reach to the convergence
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Table 3 Computational time of the energy gradient of FMO-RHF, MP2, and RI-MP2 for the two
biomolecular systems by PAICS. The time is given in minutes. The calculations were performed
using 32 Intel Xeon E5-2695v4 cores with a 4.0 GB memory per core

PrP complex HIV1 PR complex

RHF MP2 RI-MP2 | RHF MP2 RI-MP2
Monomer SCC | 143.9 144.4 144.6 368.5 371.1 370.1
Monomer 55 37.1 12.1 9.0 58.1 19.9
Dimer-ES 260.8 260.6 261.1 881.1 881.6 | 880.1
Dimer 439.7 2544.4 873.3 892.7 4067.7 | 1571.6
Total 850.0 2986.5 |1291.1 |21514 5378.6 |2841.7
Ratio® 1.00 3.51 1.52 1.00 2.5 1.32

4The ratio to the computational time of the FMO-RHF calculation

of the monomer SCC of the FMO calculations with cc-pVTZ basis set for above
two biomolecular systems in the previous study [23]. Another problem is that the
auxiliary basis functions implemented in PAICS are limited within atomic number
1 to 18 and 31 to 36 for cc-pVDZ. As a result, FMO calculations of biomolecules
including metal atoms (e.g., copper or zinc atom) cannot be performed with the
RI approximation, while such metal-containing biomolecules are one of the most
important targets for quantum chemistry. These problems are hoped to be addressed
in future.

4 Summary

In this chapter, the development of PAICS was described, focusing on the FMO-RI-
MP2 and MP3. The combination of the RI approximation with the FMO method
is very promising because the memory requirement of B” matrix, which is a main
problem of the RI approximation in conventional quantum chemical calculations,
is not significant in the FMO scheme. As clearly shown by the benchmark calcula-
tions with two biomolecular systems, these methods enable us to efficiently calcu-
late the electron correlation energy in biomolecules. Although PAICS is a potential
open-source software for FMO calculations of biomolecules, some issues should be
addressed. For example, any implicit solvent model cannot be used, and three-body
expansion of the FMO method (so-called FMO3) is not available. These methods
are hoped to be implemented in PAICS in the near future.
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Open-Architecture Program of Fragment )
Molecular Orbital Method for Massive Oneck o
Parallel Computing (OpenFMO) with

GPU Acceleration

Hirotaka Kitoh-Nishioka, Hiroaki Umeda, and Yasuteru Shigeta

Abstract OpenFMO is an open-architecture program of fragment molecular orbital
(FMO) method for massively parallel peta- and exa-scale systems. This chapter pro-
vides an overview of OpenFMO program, focusing on its latest capabilities, master-
worker execution scheme, MPI+OpenMP hybrid parallelization, GPU acceleration,
and benchmark performances. The latest version of OpenFMO program is available
through an open-source MIT license and the most recent information, including how
to download, compile, and execute it with command-line options, and several exam-
ples used as a tutorial and template for the users can be found in the OpenFMO
official website, https://openfmo.org.

Keywords Open source + MPI+OpenMP hybrid parallelization - Master-worker
scheme - GPGPU

1 Introduction

As described in great detail by this book, the FMO method [1-3] is a method that
has been developed for solving ab initio electronic structures of large bio-molecules,
such as protein, nucleic acids, and sugar chains. In the FMO method, the large
molecule is first divided into small fragments, where each fragment usually con-
sists of 20 to 40 atoms; the FMO method approximates the electronic structure of
the whole molecule by using the results of the electronic-structure calculations per-
formed on the fragment monomers and dimers, depending on the level. Since the
fragment electronic-structure calculations are independent of each other, the algo-
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rithm of the FMO method is inherently suitable for parallel executions. Previous
studies have shown that one can obtain the reasonable parallel efficiencies of the
FMO calculations by using up to 1, 000 parallel executions [4, 5]. Although several
large-scale FMO calculations [6—10] have been reported so far, adequate modifica-
tions to the algorithms in FMO calculations and optimal tuning of the parallelized
implementations are still essential to achieve the practical FMO executions on more
than peta-scale systems with desirable parallel efficiencies.

Toward the efficient FMO -calculations on peta-scale computing systems,
“OpenFMO” program [11] has been developed by Inadomi and co-workers [12—
15] at Kyushu University and Institute of Systems, Information Technologies and
Nanotechnologies (ISIT). OpenFMO program currently offers the FMO method
with two-body correction (FMO?2) at the restricted Hartree—Fock level of theory,
called FMO2-RHF, which is written from scratch in C programming language with
a short-length code consisting of ca. 54, 000 lines. Since OpenFMO program relies
on the standard MPI [16] and OpenMP [17] for its parallelization, it runs on any
parallel computing platform that possesses a reasonable C compiler, OpenMP API,
and MPI library. In the parallelization, OpenFMO program distributes several data
arrays required for fragment electronic-structure calculations over all [13] or some
[15] processes. Thus, the large-scale FMO calculations are feasible for the paral-
lel computing systems with limited memory resources on each node. Furthermore,
OpenFMO program avoids the use of scratch-disk space associated with slow disk-
based I/O access and communication [12, 13]. Now, OpenFMO is well optimized
for the large FMO2-RHEF calculations on the peta-scale massive-parallel computing
systems, such as K-computer [18], through the MPI+OpenMP hybrid parallelization
of time-consuming molecular integral calculations, improvement of the store of and
access to the monomer density matrices, and dynamic load balancing based on a
newly implemented global counter [14, 15]. By using the tuned OpenFMO program,
Inadomi and co-workers [14, 15] succeeded in carrying out effective large-scale
FMO2-RHF/6-31G(d) calculations, in which a targeted protein consisting of 16,764
atoms was divided in to 576 fragments, over up to 20,480 parallel executions.

Another recent remarkable progress in OpenFMO program is the capability of
the use of modern NVIDIA graphics processing units (GPUs). The use of powerful
GPUs to accelerate quantum chemical calculations is eagerly anticipated in a wide
scientific field, while it is a difficult task to adapt pre-existing (legacy) codes to such
new hardware frameworks with newly developed programming environments includ-
ing CUDA (compute unified device architecture). Although several research groups
[19-24] have developed GPU-accelerated RHF calculations, there are problems to
incorporate them into OpenFMO, for example, one reason arises from non-disclosure
of most their codes. Thus, we [25-28] have developed GPU-accelerated FMO2-RHF
calculations by implementing the GPU-enabled kernel codes in the following two
time-consuming parts of OpenFMO program with CUDA from scratch: (1) Fock-
matrix construction [27, 28] and (2) four-center (4C) inter-fragment Coulomb inter-
action (IFC) [25-27]. We have reported that the GPU-accelerated OpenFMO program
can show reasonable speedups for several benchmark calculations [25-27].
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We recently made the GPU-accelerated OpenFMO program publicly available on
GitHub at https://github.com/OpenFMO/OpenFMO. We dedicate the remaining part
of this chapter to give some information about the use of OpenFMO program on a
CPU/GPU cluster computing system. Section 2 overviews its capabilities. Section 3
explains a scheme of FMO2-RHF calculations for making it easy to understand
the following sections. Section 4 explains the master-worker execution model of
OpenFMO based on MPI dynamic process management (explained later) or fault-
resilient programming middleware, Falanx [29, 30]. Section 5 briefly describes the
GPGPU parts of OpenFMO and shows their benchmark performances. Section 6
gives concluding remarks of this chapter.

2 Capabilities

OpenFMO program version 1.0 [11] is available through the repositories hosted on
GitHub, https://github.com/OpenFMO/OpenFMO. In addition to FMO calculations,
the users can do conventional RHF calculations using the “skeleton-RHF” code of
OpenFMO, which is also MPI and OpenMP hybrid program. The capabilities of
OpenFMO program are summarized as follows:

RHF and FMO2-RHF.

Single-point ground-state energy calculation.

e Minimum and double-zeta Gaussian basis functions up to third-row atoms (namely,
H - Ar) including STO-3G, 6-31G, 6-31G(d), 6-31G(d,p).

MPI + OpenMP parallelization for RHF and FMO2-RHF.

GPU-accelerated RHF and FMO-RHF with Fermi or Kepler microarchitecture
supporting double-precision floating-point operations.

Although we assume that OpenFMO program runs on any parallel computing plat-
form, it is preferable that the platform satisfies the conditions as follows:

LINUX/UNIX cluster machines.

GNU C compiler.

Intel C compiler.

MPI libraries (Default: Intel MPI Library):

MPI_comm_spawn functions are required for OpenFMO based on MPI dynamic
process management (explained in Sect. 4).

e Intel MKL(Math Kernel Library).

In addition, GPU-accelerated OpenFMO requires the following conditions that the
platform possesses:

e NVIDIA graphics card (Fermi or Kepler microarchitecture) supporting double-
precision floating-point operations.
e NVIDIA drivers for GPU.
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As described in Sect. 4, there are the following two implementations for the master-
worker execution model of OpenFMO program; one version is based on MPI dynamic
process management (involving MPI_Comm_spawn functions), hereafter called
OpenFMO(MPI) for simplicity’s sake; the other version is based on Falanx [29,
30] fault-resilient programming middleware, hereafter called OpenFMO(Falanx).
Compiling OpenFMO(MPI) yields the three executables, “ofmo-master,” “ofmo-
worker,” and “ofmo-mserv,” while compiling OpenFMO (Falanx) yields the single
executable, “ofmo-falanx.” If it is difficult to run with MPI_Comm_spawn for your
system, you can use OpenFMO (Falanx).

OpenFMO program adopts the almost same input-file format as the FMO calcu-
lations implemented in GAMESS [31] ab initio quantum chemistry package. Since
some of the input groups used in GAMESS are directly used in OpenFMO, the
GAMESS documentations [32], such as “Input Description” and “Further Informa-
tion,” are useful for the users of OpenFMO. The input files for the FMO calculations
of GAMESS can be prepared with the CUI (character user interface)-style program,
FMOutil [33], its GUI (graphical user interface)-style version, Fu [34], and another
GUI program Facio [35, 36]. Thus, the users also make use of these programs for
the preparation of the input file of OpenFMO program. Further information of the
inputs can be found in the OpenFMO official website, https://openfmo.org.

3 Workflow of FMO

For making it easy to understand the following sections, we here give a brief expla-
nation of FMO2, of which the workflow is schematically illustrated in Fig. 1.

In the FMO method, the total molecule is first divided into Nfy,, fragments and
initial density matrices D; are calculated for all fragments. The electronic structure
of each fragment is then solved self-consistently under the electrostatic potential
(ESP) from all other fragments. This procedure is called self-consistency of charge
(SCCQ). After the convergence of SCC, the electronic structure of each fragment-pair
is solved under ESP from all other fragments. FMO2 expresses an approximated
total electronic energy of a whole molecule, EFMO2 by [1-3]

Nfrag Nfrag
E™M?=3"E;; = (Nwg —2) Y E1, (1)
1>J 1

E; and Ej; represent the total electronic energies of /-th fragment monomer and 7 J -
th fragment-pair (dimer), respectively. Similarly, the approximated electron density

matrix of the whole molecule, D™©2 ig given by
Nirag Nirag
D™MO2 =% "D — (Njug —2) ) _Dy. )

I1>J 1
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Fig. 1 Workflow of FMO2-RHF calculation

The FMO method uses the following modified Fock matrix to solve the electronic
structure of each fragment(-pair) x under ESP,

Nfrag
F, =F+> "V, +P, 3)
I#x
oF, = "H*" + G,, 4)
[G.)i; = ) Dy (2GjIkD) — (l1kj)} ®)
kl

where °F, represents the conventional Fock matrix of fragment(-pair) x, includ-
ing one-electron Hamiltonian matrix OH;‘“G and G-matrix defined in Eq. (5). P,
represents the hybrid orbital projection (HOP) operators, which is required when
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bond-detached/attached atoms are involved in x. *V; is the ESP generated by the
fragment I (# x), which is expressed by

Vi="u + v, (6)
[*vi],; =D DiGjlkD). (7)
klel

Here, *u; to the ESP generated by the nuclei of fragment 7 (# x).

At each fragment calculation, the corresponding ESP {*V,} (1 ( x)) is first eval-
uated as inter-fragment Coulomb interactions (IFCs) by using Eq. (6), which accom-
panies the calculations of four-center (4C) two-electron integrals, as shown in Eq. (7).
Usually, the FMO method calculates time-consuming 4C-IFCs only for neighboring
fragments and approximates the ESPs from the other fragments as the IFCs arising
from Mulliken populations or Mulliken atomic charges. Moreover, we can reason-
ably approximate the electrostatic interaction between long-separated fragment-pair
as follows:

E]j%EI-FE]—TI'(D]jV]), (8)

which is called “ES dimer” approximation. On the other hand, the explicit SCF
calculation of the fragment-pair is called “Dimer SCE.”

4 Master-Worker Execution Model

To effectively perform large-scale FMO calculations on a CPU or GPU cluster, the
user needs to understand the master-worker execution model of OpenFMO program,
which is schematically illustrated in Fig. 2 [15].

In the master-worker model, one process works as a “master” one. All the remain-
ing processes are first divided into “data server” and “worker” processes. All the
worker processes are then divided into groups, called “worker groups.” The master
process assigns monomer and dimer calculation jobs to each worker group and gath-
ers their results. These jobs are done independently of each other in each SCC loop
and the final FMO2 step after the SCC convergence, which is the inter-fragment(-pair)
upper level (or coarse-grained) parallelization (see the blocks marked by orange in
Fig. 1). The execution of the job assigned to one worker group is parallelized within
the worker group, which is the intra-fragment lower level (or fine-grained) paral-
lelization (see the blocks marked by green in Fig. 1). Such the two-level hierarchical
parallel scheme is used in other FMO codes including GAMESS [37] and ABINIT-
MP [38]. As described in Sect. 3 and shown in Fig. 1, each worker group responsible
for the calculation of fragment(-pair) x needs not only the data of one’s own density
matrix D, but also those of the other fragments, {D;} (I # x), to construct the ESP,
{*V;}. The memory requirement for storing the data of monomer density matrices
is increased with increasing the system size. If each process tries to store all neces-
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Fig. 2 Master-worker execution model used for OpenFMO

sary density matrices on its memory, the peta-scale FMO calculations for more than
10, 000-fragment systems must encounter the memory requirement problem [13].
To avoid the problem, the master process in OpenFMO program distributes the data
of monomer density matrices to the memories of data server processes and updates
them by following the results done by worker groups. The data server processes are
devoted to the response to the communication operations related to density matrices.
Since the data server processes are uninvolved in electronic-structure calculations,
their implementation leads to a decrease in the computational efficiency to some
extent. In the early days, one-sided communication (OSC) of MPI-2 standard was
implemented in OpenFMO program [13], where the data of monomer density matri-
ces were distributed over all worker groups. Although the OSC implementation does
not need the use of the data server processes, its fragment calculation jobs need
to exchange necessary density matrices between worker groups, which leads to an
increase in the communication latency during the inter-fragment upper level paral-
lelization. Inadomi and co-workers [15] demonstrated that OpenFMO program using
data server process exhibits better performance than the previous OSC-implemented
one.
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On modern CPU/GPU clusters, we can usually make use of a MPI+OpenMP
hybrid scheme to use multi-threading for single-node parallelism in combination
with message-passing for parallelization across many nodes. It is well known that
MPI+OpenMP hybrid scheme has several advantages, including the fast synchro-
nization within a node, the data sharing between threads, smaller memory footprint,
etc. In the released OpenFMO program, MPI+OpenMP hybrid scheme is applied to
the molecular integral calculations in Fock matrix, Eq. (5), and 4C-IFC calculations,
Eq. (7), which accounts for most of computational time in FMO2-RHF.

One of the most attractive features of OpenFMO program is the implementation
of a sophisticated dynamic load-balancing technique with global counter [14, 15], to
maintain the good load balance for both inter-fragment upper level and intra-fragment
lower level parallelizations. To achieve the parallel efficiency, one should avoid the
workload imbalance of the time-consuming evaluation of the molecular integrals.
Generally, the integral screening based on Schwarz inequality is used before the
integrals are calculated, which reduces the computational costs. Since we are usually
unable to know in advance how much tasks will be assigned to each group/process,
it is difficult to use a static load-balancing technique that distributes the tasks in a
round-robin fashion. From the reason, Inadomi and co-workers [ 14, 15] implemented
the global counter using standard MPI and OpenMP libraries to keep the portability
of OpenFMO. In the implementation of the global counter, one thread of “rank
0” process in each work group is used as the master thread of global counter that
devoting oneself completely to maintain a global counter in each group and response
to the communication operations requested by the other processes/threads; on the
other hand, the other threads in each work group can be involved in the molecular
integral calculations. As a result, OpenFMO program has achieved very high parallel
efficiencies for large-scale FMO calculations so far. See Ref. [14, 15] for further
details about its implementation and their benchmark performances.

As described in Sect. 2, there are two implementations for the master-worker exe-
cution model: OpenFMO(MPI) and OpenFMO(Falanx). OpenFMO(MPI), which
was first implemented, is based on MPI dynamic process management, where the
“master” process creates new processes, ‘‘Data server” and “worker” ones and man-
ages communication among them. The implementation of MPI dynamic process
management enabled the developers to expand OpenFMO program to more flexible
“Task parallel” models, including fault-resilient Falanx [29] (explained below) and
OmniRPC-MPI [39, 40]; the latter remains unreleased.

Instead of MPI dynamic process management, a fault-resilient programming mid-
dleware Falanx [29] is used, for the parallel execution of OpenFMO (Falanx) [30].
When a MPI application is run on an exa-scale computing system with a huge num-
ber of processors in the future, a process crash due to a hardware or software failure
would no longer be a rare event. In such a case, a single trouble occurrence would
terminate conventional MPI applications. Ikegami and co-workers at National Insti-
tute Advanced Industrial Science and Technology (AIST) have developed the Falanx
middleware that makes it possible to easily develop fault-resilient applications for
forthcoming exa-scale computing systems; by using Falanx API, one can easily
implement a resource manager for task scheduling and a data store for data protec-
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tion to insulate the applications from system failures. Another attractive feature of
OpenFMO(Falanx) is that the worker configuration can be rearranged at dimer jobs
after SCC convergence [30]. When OpenFMO(MPI) is used, the worker configura-
tion at dimer jobs is beforehand fixed to that at monomer jobs, namely, N, and P at
dimer jobs are identical with those at monomer jobs (see Fig. 2). In FMO calculations,
the number of fragment-pair is substantially greater than that of fragment. Therefore,
OpenFMO(Falanx) can remarkably improve the workload balance at dimer jobs by
increasing N, with decreasing P within a given computational resource after SCC
is converged.

We here give an example how to execute OpenFMO program on a GPU cluster.
In the GPU-accelerated OpenFMO program, the master thread of each MPI rank
controls one GPU unit. Therefore, you have to set the total number of MPI processes
to that of the available GPU units to bring out the GPU’s maximum performance on
your GPU cluster. For example, in HA-PACS GPU base cluster [41] run by Center
for Computational Sciences (CCS), University of Tsukuba, one node is comprised of
two Intel E5-2680 CPU (2.6 GHz 8 cores) and 4 NVIDIA M2090 GPUs. If 8 nodes
(2 x 8 x 8 = 128 cores and 4 x 8 = 32 GPU units) are used for a FMO calculation,
the total number of MPI ranks for the calculation should be set to that of available
GPU units, 32, where each MPI rank is composed of 4 threads. Within the given
resource (32 ranks), for example, 1 rank is assigned to the “master”” process, 1 rank
is assigned to the “data server” process, the other 30 ranks are assigned to “worker”
processes with Ny = 15 and P = 2.

5 GPU Acceleration

To realize the GPU acceleration of large-scale FMO calculations, we [25-28] imple-
mented the GPU-enabled kernel codes in the 4C-IFC and Fock-matrix construc-
tion parts of OpenFMO program; the former and latter parts are written in red and
blue colors, respectively, in Fig. 1. These parts include the time-consuming two-
electron (2e) integral calculations. Fock-matrix construction involves accumulating
2e-integral elements, (ij|kl) and (il|kj), to a G, matrix, as expressed by Eq. (5).
Similarly, 4C-IFC calculation involves accumulating 2e-integral elements, (ij|k/),
to a *v-matrix, as expressed by Eq. (7). When using the massive-parallel threads with
limited memory resources on GPU for the calculations, we cannot allocate G, or *v
as thread private in GPU local memory. Therefore, massive slow exclusive addition
operation is usually needed to accumulate matrix elements into a shared matrix.

To share G, matrix within a thread block without the slow “atomic” operation,
we have developed a novel algorithm [28], which is based on the parallel large Fock
matrix construction algorithm [42] on distributed CPU cluster for FMO-MO method
[43, 44]. We first consider a twofold loop around pair indices ij and k!l in the G-
matrix construction, which is survived pair-index after the overlap integral screening
[45]. As illustrated in Fig. 3a, the access pattern to G, matrix in an inner k/-loop can
be classified as the following three types: Gi[], for i column array (yellow color),
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Fig.3 a Access pattern to G matrix for one 2e-integral, (ij|k/). b Elapsed time for RHF/6-31G(d)
calculation of 126 atomic molecule (1 282 AO) using “skeleton-RHF” code of OpenFMO program

Gj[] for j column array (green color), and Gkl (red color). The index &/ runs only
limited area of matrix G[][] (blue color), and points different elements of G[][] for a
given ij index. By making use of this classification, in our algorithm, each thread has
only Gi[] and Gj[] column arrays, and shares resulting matrix G[][] among a thread
block. By taking reduction for Gi[] and Gj[] after inner kl-loop, we can accumulate
it into G[][] without the time-consuming atomic operation. It should be noted that
we activate the GPU-enabled kernel code only for selective integral types in order to
overlap CPU and GPU calculations. We also did the following CUDA optimizations:
index-sorting, Schwarz-screening before main-loop, and dynamic load-balancing.

Because implementing the GPU-accelerated code in the 4C-IFC parts encoun-
ters a common problem with the Fock-matrix construction parts, we applied same
parallelization techniques to them, followed by task assignment and code tuning.

Figure 3b plots the benchmark performance of the “skeleton-Fock™ code of
OpenFMO on a single HA-PACS GPU cluster node containing two Intel E5-2680
CPUs with four NVIDIA M2090 GPUs (see the last paragraph of Sect. 4). Figure 3b
shows that the speedup by using the GPU-accelerated code without overlapping
CPU-GPU execution is ca. 1.9. We can see that the GPU acceleration for smaller
integral types is better than that for the bigger ones. As shown in Fig. 3b, the speedup
by using GPU-accelerated code with overlapping CPU-GPU execution results in
ca. 3.
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Fig.4 aLysozyme (1 961 atoms and 57 fragments) b Influenza HA protein (23 460 atoms and 721
fragments) [46]

Table 1 Elapsed times (in seconds) observed for GPU-accelerated FMO2-RHF/6-31G(d) calcula-

tions of lysozyme, in which the number of worker groups Ny was always set to 15

#node (#GPU) SCC Dimer SCF ES dimer Total
8 (0) 3070.5 6246.2 407.3 9770.5
8 (32) 827.5 1674.8 77.8 2596.8
16 (64) 450.2 898.4 422 1429.6
32 (128) 308.2 530.7 24.8 902.0

We next show some benchmark performances of the GPU-accelerated FMO cal-
culations with OpenFMO(MPI). For the benchmarks, we used HA-PACS GPU base
cluster system [41] that was explained in the last paragraph of Sect. 4.

Figure 4a shows a lysozyme molecule (1 961 atoms) that was divided as 2 residues
per fragment, leading to 57 fragments in the FMO2-RHF/6-31G(d) calculations.
Table 1 lists the elapsed times of the components (SCC, “dimer SCF” and “ES
dimer”) of the FMO calculations and the corresponding total ones (see the workflow
in Fig. 1).

We first addressed the performance of the GPU acceleration of OpenFMO(MPI).
For the purpose, we used 8 nodes with/without 32 GPUs on HA-PACS GPU cluster;
2 MPI ranks were used for master and data server processes; the remaining 30
MPI ranks were divided into Ny = 15 worker groups with P = 2 MPI ranks (see
Fig. 2); and 4 threads (CPU cores) and 1 GPU are involved in each MPI rank.
From Table 1, we obtain the speedups of 3.7 for SCC, 3.7 for Dimer SCF, 5.2
for ES Dimer, and 3.8 for total, which verifies the reasonable GPU acceleration of
OpenFMO program. We next addressed the parallelization performance of the GPU
acceleration of OpenFMO(MPI). For the purpose, as listed in Table 1, we measured
the elapsed times of the FMO calculations using 8 nodes with 32 GPUs, 16 nodes
with 64 GPUs, and 32 nodes with 128 GPUs. In the benchmarks, N, was always set
to 15. By comparing the total elapsed time between 8 and 16 nodes, we can see that
the GPU-accelerated FMO scaled remarkably well with the high efficiency of 91%.
When 32 nodes were used, the assigned group (GPU) size P = 8 or 9 was generally
too large to do each fragment(-pair) job, which is due to the source of the workload
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Table 2 Elapsed times (in hours) observed for GPU-accelerated FMO-RHF/6-31G(d) calculation
of Influenza HA3 protein, in which 254 MPI ranks (64 nodes) are divided into 84 worker groups

SCC Dimer SCF ES dimer Total
0.52 0.90 0.45 1.97

imbalance. However, the program with 32 nodes kept the parallel efficiency to a
modest level, 72%.

Figure 4b shows the influenza HA3 protein (HA3, 23460 atoms) that was pre-
viously studied using FMO2-MP2 calculations [46]. In our FMO2-RHF/6-31G(d)
calculation, HA3 was divided as 2 residues per fragment, leading to 721 fragments.
We used 64 nodes with 256 GPUs on HA-PACS GPU cluster for the benchmark; 2
MPI ranks were used for master and data server processes; for the remaining 254
MPI ranks, N and P were set to 84 and 3, respectively; and 4 threads (CPU cores)
and 1 GPU are involved in each MPI rank. Table 2 lists the elapsed times of the
benchmark in hours. We can see that OpenFMO(MPI) successfully completed the
FMO calculation of HA3 within only 2 h [26, 27], which is the first large-scale
GPU-accelerated FMO calculation as far as we know.

See Ref. [26] for further details about the benchmark performances of lysozyme
and HA3.

6 Concluding Remarks

This chapter has explained OpenFMO program developed for the application of GPU-
accelerated FMO calculation on current peta-scale and forthcoming exa-scale com-
puting systems. We have especially highlighted the master-worker model (Sect. 4)
and GPU acceleration (Sect. 5) of OpenFMO to give some practical information
about its effective use on a CPU/GPU cluster. As indicated by our benchmarks
of lysozyme and HA3, OpenFMO program makes it possible to readily perform
GPU-accelerated FMO calculations for the large proteins containing hundreds of
thousands of atoms with reasonable parallel efficiencies. Further information of the
input-file formats and command-line options and several examples used as a tuto-
rial and template for you can be found in the OpenFMO official website, https://
openfmo.org. We are now engaged in extending the theoretical range of application
of GPU-accelerated OpenFMO program: DFT (density functional theory) and RI-
MP2 (resolution-of-identity MP2) [47]; the program will also be posted on https://
github.com/OpenFMO/OpenFMO through open-source license in the future.
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How to Perform FMO Calculation )
in Drug Discovery i

Kaori Fukuzawa, Chiduru Watanabe, Yoshio Okiyama, and Tatsuya Nakano

Abstract In order to apply the fragment molecular orbital (FMO) method to prac-
tical drug discovery research, what procedure should be used? This chapter summa-
rizes the preliminary knowledge necessary for applying the FMO method to the field
of drug discovery. First, as a pretreatment of calculation, preparation of structure,
fragmentation, and selection of the theoretical method are explained. Then, as to how
to evaluate the binding properties of ligand from the obtained results of the FMO
calculation, the evaluation method using binding free energy, interaction energy,
and its energy components will be explained. Further, various physical quantities
obtained from the FMO calculation such as charge distribution, electrostatic poten-
tial, and electron density distribution are introduced. Then, how to interpret these
values will be explained.
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1 Introduction

In in silico drug discovery, evaluating their binding properties from the quantum
mechanics (QM) based on the electronic state of target protein and ligands is the
ultimate precision approach [1]. By using the QM calculation, it becomes possible to
treat the problems that cannot be fully explained by classical molecular mechanics
(MM), for example, electronic interaction such as halogen bond, CH/x bond, and
hyperconjugation; and effects relating to electronic state such as charge transfer,
chemical reaction, and electron excitation. Furthermore, the QM calculation enables
quantitative evaluation of important problems in drug discovery such as binding
affinity, activity cliff, specificity, selectivity, and substituent effect. The fragment
molecular orbital (FMO) method [2-4] is a method that can conduct the QM calcu-
lation of protein at the fastest speed in the world with high accuracy. It also gives
useful information on the quantitative evaluation of inter- and intra-molecular inter-
action. By using the QM calculation, it is expected to lead to precise drug design that
focuses on the behavior of electrons (which is the essence of chemistry).

In this chapter, the knowledge necessary to use the FMO method for drug discovery
is summarized. In Sect. 2, we first explain the simple methodology of the FMO
method and the meaning of calculation parameters. In Sect. 3, as a preparation for the
FMO calculation, points to be noted in creating a structure, how to divide molecules
into fragments, and selection of theoretical method are explained. In Sect. 4, the
evaluation of ligand-binding properties by the FMO method is explained. Finally,
various properties are explained in Sect. 5.

2 Brief Description of the FMO Method for Use
in Protein—Ligand System

In the FMO method, a protein is divided into fragments first, and then the electronic
states of the fragments and their combinations are solved in the environmental elec-
trostatic potential (ESP). The FMO method has the advantage that it can efficiently
calculate electronic state in