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Foreword

As electronic structure theory advances and computer performance improves,
ab initio quantummechanical (QM) calculations have steadily increased their useful-
ness for studying structures, properties, and reactions of molecules and molecular
assemblies. However, even simple ab initio QM theories such as the Hartree–Fock
method (HF) and density functional theory (DFT) require a computation time propor-
tional to the third or fourth power of the system size. The computational scaling
becomes even steeper in more reliable electron correlation theories such as Møller–
Plesset perturbation theory or coupled cluster theory. The steep scaling of the compu-
tational cost hinders ab initio QMcalculations of large systems such as biomolecules.
To overcome this obstacle, lower (ideally linear) scaling computational methods are
required.

Anumber of fragment-basedQMmethods have been proposed for largemolecular
systems. In these methods, a system is divided into small fragments, QM calcula-
tions are performed on the fragments (and in some methods their multimers), and
properties of the entire system are calculated using the properties of fragments (multi-
mers). Fragments (multimers) can be calculated independently, making fragment-
basedmethods suitable for modernmassively parallel computers. The computational
cost of most fragment-based methods scales almost linearly with the system size
through the introduction of some approximations.

The fragment molecular orbital (FMO) method is one such fragment-based
method. The distinguishing feature of the FMO method is that the total energy of a
system is computed as the sum of fragment energies and inter-fragment interaction
energies. The two-body inter-fragment interaction energy defined in the FMOmethod
effectively includes higher body effects. By using this approach, the ab initio total
energy of the system is accurately reproduced. If need arises, the contributions of
explicit three-body and higher body interactions can be computed to further increase
accuracy. The properties of systems other than the total energy are calculated in a
similar fashion. In some fragment-based methods, fragments generated by covalent
bond cleavage are capped with hydrogen atoms or appropriate functional groups,
but the FMOmethod does not introduce such arbitrary atoms. This is another distin-
guishing feature of the FMO method. A description of the FMO method and a
comparison of various fragment-based methods are given in Part I.

v



vi Foreword

Commonlyused electronic structure theories havebeen incorporated into theFMO
method; namely the Hartree-Fock method and density functional theory, Møller-
Plesset perturbation theory, coupled cluster theory, configuration interaction, multi-
configuration SCF, time-dependent density functional theory, and so forth. Energy
gradients and Hessian calculations have been developed in some of these methods
that enable geometry optimization and vibrational analysis of very large molecules.
For modeling solvent effects, continuum solvent models such as the polarizable
continuum model (PCM) can be interfaced with the FMO method. A hybrid method
of FMO and molecular mechanics (FMO/MM) has been developed for simulating
chemical and thermodynamical properties of molecular systems. Several computer
programs for FMO calculations have been developed. Part II describes currently
available ab initio programs that can perform FMO calculations.

At the beginning of its development, the FMO method was intended to calculate
the electronic structure of proteins and protein-ligand complexes. A number of FMO
studies of protein-ligand binding aimed at drug design have been conducted so far. In
these works, the inter-fragment pair interaction energy (called IFIE or PIE), which is
a property obtained from FMO calculations, has been extensively used to understand
intermolecular interactions between proteins and ligands. Applications of the FMO
method in drug discovery are discussed in Part III. Parts IV and V describe new
FMO applications and the development of new FMO-related methods that extend
the scope of FMO applications.

The various FMO approaches described in this book are expected to be useful for
studying the structures and properties of very large and complex molecular systems
and for designing drugs and materials in industrial applications.

Kobe, Japan
February 2020

Kazuo Kitaura



Preface by Editors

The fragment molecular orbital (FMO) method has been one of promising ways
to calculate the electronic state of large-scale molecular systems such as proteins
in a quantum mechanical framework. The highly efficient parallelism deserves the
principal advantage of FMOcalculations. Additionally, the FMOmethod can be used
as analysis tools by evaluating the inter-fragment (pairwise) interaction energies
and so on, and this feature has been utilized well in the fields of biophysical and
pharmaceutical chemistries. In recent years, the methodological developments of
FMO have been made remarkably, by which both reliability and applicability have
been enhanced even for inorganic systems. Actually, there have been a number of
realistic applications using several FMO-customized programs which are highly
parallelized.

This book covers recent advances of the FMOmethod, consisting of the following
five parts. Historical review of FMO and comparison to other fragmentation methods
are provided in Part I, and FMO programs are described in Part II. Part III is dedi-
cated to a wide range of drug discovery activities. A variety of new applications
with methodological breakthroughs are introduced in Part IV. Finally, computer and
information science-oriented topics are addressed in Part V. Many color figures and
illustrations are compiled as well.

The editors would like to sincerely thank all the contributors in this book, who
provided their own important and fruitful work in the respective chapters. They are
very sorry for the delay of publication of this book due to a couple of reasons, while
some contributions were submitted in 2018.

Finally, the editors would hope that this bookwill induce interests in FMOmethod
for a wide range of people who are involved in not only computational chemistry but
also experimental chemistry.

Tokyo, Japan
Kobe, Japan
Tokyo, Japan
August 2020

Yuji Mochizuki
Shigenori Tanaka
Kaori Fukuzawa
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Fragment Molecular Orbital Method as
Cluster Expansion

Shigenori Tanaka

Abstract In this chapter, the energy increment scheme employed in the fragment
molecular orbital (FMO) method is systematically analyzed and validated in terms
of a cluster expansion in the framework of the cumulant expansion. Some relation-
ships and similarities among various theoretical approaches concerning the cluster
expansion for fragments are comprehensively addressed.

Keywords Fragment molecular orbital method · Energy increment scheme ·
Cluster expansion · Cumulant expansion · Green’s function

1 Introduction

The fragment molecular orbital (FMO) method [1, 2] provides a computational
framework by which ab initio electronic state calculations for large molecular sys-
tems are made feasible with the calculation cost of approximately order-N (O(N ))
of electron or fragment number. The energy expansion scheme in the FMO method,
which is nowadays called FMO2, FMO3, etc. [3], is an essential device to realize
the drastic reduction in computational time with keeping high accuracy in the evalu-
ations of energy and other molecular properties. In this article, an overview is given
to illustrate the physical background for this FMO energy expansion scheme.

First, let us review the original FMO2 energy expansion scheme proposed by
Kitaura et al. [1, 2]. Consider amolecular system composed of electrons with electric
charge −e and coordinates ri and nuclei with electric charge ZAe and coordinates
RA. Then the whole system is divided into a collection of N f fragments (monomers)
with index I . In the FMO2 method, one accounts for the FMO calculations up to the
fragment pairs (dimers). Using the atomic units hereafter, the Hamiltonians for the
fragment monomer (I ) and the fragment dimer (I J ) are given by

S. Tanaka (B)
Graduate School of System Informatics, Kobe University,
1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
e-mail: tanaka2@kobe-u.ac.jp
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ĤI =
∑

i∈I

⎡

⎣−1

2
Δi −

∑

A

ZA

|ri − RA| +
N f∑

J �=I

∫
dr′ ρJ (r′)

|ri − r′|

⎤

⎦+
∑

i∈I

∑

i< j∈I

1∣∣ri − r j
∣∣ , (1)

ĤI J =
∑

i∈I,J

⎡

⎣−1

2
Δi −

∑

A

ZA

|ri − RA| +
N f∑

K �=I,J

∫
dr′ ρK (r′)

|ri − r′|

⎤

⎦+
∑

i∈I,J

∑

i< j∈I,J

1∣∣ri − r j
∣∣ . (2)

Here, I, J, K refer to different fragments and ρJ (r′) represents the number density
of electron with coordinate r′ in the fragment J . The energies and wave functions
of each fragment monomer and dimer are then obtained by solving the Schrödinger
equations as

ĤIΨI = EIΨI , (3)

ĤI JΨI J = EI JΨI J . (4)

In the FMO2 method, the electronic energy E and the electron density ρ(r) of the
whole system are approximately given by

E �
∑

I<J

EI J − (N f − 2)
∑

I

EI , (5)

ρ(r) �
∑

I<J

ρI J (r) − (N f − 2)
∑

I

ρI (r), (6)

respectively. Here, EX (X = I, I J ) and ρX (r) (X = I, I J ) refer to the energy and
the electron density of fragment monomer (I ) or dimer (I J ).

The FMO2 method has successfully been applied to large numbers of molecular
sytems mainly containing biological molecules (proteins, nucleic acids, etc.) and
nano-materials [3]. The energy expansion above may also be written as

E �
∑

I

EI +
∑

I<J

ΔEI J (7)

with

ΔEI J = EI J − EI − EJ . (8)

This expansion scheme can further be continued up to the third order (FMO3) as
[3–5]
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E �
∑

I

EI +
∑

I<J

ΔEI J +
∑

I<J<K

ΔEI J K (9)

with

ΔEI J K = EI J K − (ΔEI J + ΔEJK + ΔEK I ) − (EI + EJ + EK )

= EI J K − EI J − EJK − EK I + EI + EJ + EK . (10)

This equation for the FMO3 energy expansion may seem trivial when one considers
a system composed of three fragments. It is also noted that similar expansions can be
continued up to higher orders [3, 6, 7]. Empirically, this kind of energy expansion,
generally known as increment method, converges rapidly in the FMO applications
to biomolecular systems. However, there are a limited number of studies concerning
the perturbative characterization of the FMO energy expansion [8].

In principle, the complexity or degree of freedom of electronic wave function
increases exponentially with the increase of electron number. The FMOmethod then
provides a practical prescription to overcome this difficulty through the energy rep-
resentation in terms of cluster expansion [9, 10], in which the locality of exchange–
correlation effects of electrons is utilized and the cumulant expansion [11] may be
employed as an underlying mathematical tool to describe the linked clusters. In this
chapter, the intuitive energy expansion (increment) scheme in the FMOmethod above
is reformulated as a perturbative cluster expansion, thus being justified on a physical
basis. A relationship with Green’s function approach [8, 12] is additionally noted.

2 Cluster Expansion

Let us consider a large molecular system composed of many subsystems called
fragments. The Hamiltonian for the whole system can be expressed as

H = H0 + H1. (11)

Here, the “unperturbed” part H0 may be chosen in a fairly arbitraryway. For example,
as a simple choice, one may regard H0 as representing the sum of the self-consistent
field (SCF) or Hartree–Fock (HF) Hamiltonians for the isolated electron systems
confined in each fragment. In the usual FMO approach, one may also take into
account the contribution of environmental electrostatic potential from surrounding
fragments to each fragment Hamiltonian [1, 2]. Alternatively, it is also possible to
include the electron correlation effects beyond the SCF or HF approximation in each
fragmentHamiltonian,which is usually performed as a hierarchical energy expansion
in the actual FMO calculations [3]. The “perturbed” part H1 can then be expressed
as
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H1 =
∑

I

HI +
∑

I,J

HI J + · · ·, (12)

where the first term on the right-hand side of Eq. (12) refers to the sum of residual
Hamiltonians of each fragment I , the second term represents the contributions from
the interactions between the two fragments (I, J ), and so on. We presume that H0

has a ground state |ψ0〉 with the energy E0, and consider the canonical ensemble
with the temperature T and β = 1/kBT .

The partition function for the unperturbed part is given by

Z0 = Tr e−βH0 (13)

with the use of trace Tr. The statistical average of any operator A over the unperturbed
state is expressed as

〈A〉0 = Z−1
0 Tr(e−βH0 A). (14)

Considering a function of a parameter λ as

Ξ(λ) = Z0〈e−λHeλH0〉0 = Tr(e−βH0e−λHeλH0), (15)

the partition function for the Hamiltonian H is given by

Z = Ξ(β) = Tr e−βH . (16)

Here, the function Ξ(λ) in Eq. (15) is alternatively expressed as [13]

Ξ(λ) = Z0〈e−λ(H1+L0)〉0, (17)

where the Liouville super-operator L0 is defined through

L0A = [H0, A]. (18)

The equivalence between Eqs. (15) and (17) is proved by the λ derivatives of
e−λ(H1+L0) and e−λHeλH0 . Then, Eq. (17) is rewritten as

Ξ(λ) = Z0 exp f (λ) (19)

with

f (λ) = 〈e−λ(H1+L0) − 1〉c0, (20)

where the superscript c in Eq. (20) means the cumulant average [9, 11].
The free energy of the whole system is written by
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F = F0 + F1 (21)

with

F0 = − 1

β
ln Z0 (22)

and

F1 = − 1

β
f (β). (23)

Through the application of the Laplace transform:

f̃ (z) = −
∫ ∞

0
dλ eλz f (λ) (24)

with Re z < 0, we find

f̃ (z) =
〈

1

z − H1 − L0
− 1

z

〉c

0

= 1

z2

{〈
H1

(
1 + 1

z − H
H1

)〉c

0

}
, (25)

where L0 in 〈 〉c0 is replaced with H0, and the contribution of factorizable H0 vanishes
therein [9].

The cluster expansion of F1 is performed by means of Feddeev’s resummation
technique [14] as follows. Hereafter, we consider the limit of T → 0, β → ∞ and
z → 0, thus focusing on the ground state energy [9, 10]. In Eq. (25), we pay attention
to the scattering operator defined in 〈 〉c0 by

S = 1

z − H
H1 =

∞∑

n=1

(
1

z − H0
H1

)n
, (26)

where (z − H0)
−1 represents Green’s function for H0. In the lowest order approxima-

tion, the perturbative part of Hamiltonian can be given by the sum of the contributions
of each fragment (I = 1, 2, ..., N ) as

H1 ≈
N∑

I=1

VI , (27)

where VI may contain the effects by the environmental electrostatic potentials from
surrounding fragments and the electron correlations inside the fragment. The scat-
tering operator
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S =
∞∑

n=1

(
1

z − H0

N∑

I=1

VI

)n
(28)

is then expressed in terms of an operator

AI = 1

z − H0
VI (29)

as

S =
∞∑

n=1

(
N∑

I=1

AI

)n

=
∑

A1 · · · +
∑

A2 · · · +
∑

A3 · · · + · · ·
= T1 + T2 + T3 + · · ·, (30)

where TI refers to the collection of all the terms that begin with AI .
Since we find a transformed representation as

T1 = (A1 + A2
1 + · · ·) + (A1 + A2

1 + · · ·)A2 · · · +(A1 + A2
1 + · · ·)A3 · · · + · · ·

= (A1 + A2
1 + · · ·)(1 + T2 + T3 + · · ·)

= S1(1 + T2 + T3 + · · ·), (31)

we obtain

TI = SI

⎛

⎝1 +
∑

J �=I

TJ

⎞

⎠ , (32)

where SI represents a scattering operator for H0 + VI . Recalling

S =
N∑

I=1

TI (33)

and assuming SI to be small, we thus find TI ≈ SI and

S ≈
N∑

I=1

SI . (34)

The ground state energy E relative to E0 for the unperturbed state |ψ0〉 is then given
by
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δE = E − E0 ≈
N∑

I=1

δEI (35)

with

δEI = 〈HSI 〉c0 = 〈H1SI 〉c0. (36)

If H0 contains all the energy contributions from the fragment monomers, AI = 0
and δEI = 0, as they should be.

Let us next consider the second-order representations. Here, in Eq. (26) for the
scattering operator S, in addition to the intra-fragment contributions,

AI I = AI = 1

z − H0
VI , (37)

we take into account the inter-fragment (I �= J ) contributions,

AI J = 1

z − H0
VI J , (38)

where VI J refers to the interactions for the fragment pair I J . The scattering operator
is then expressed as

S =
∞∑

n=1

(
∑

I,J

AI J )
n (39)

and transformed into

S =
∑

I

( ∞∑

n=1

An
I

)
+
∑

I �=J

TI J

=
∑

I

SI +
∑

I �=J

TI J , (40)

where TI J includes all the terms which begin with AI J or AI followed by AJ as the
first factor different from AI . TI J is thus expressed as

TI J = (AI J + AI AJ + AI AJ AI + A2
I AJ + · · ·)

⎛

⎝1 +
∑

K �=I,J

SK +
∑

K �=I,J ;L
TK L

⎞

⎠ .

(41)
The summation of TI J and TJ I is then found to be
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TI J + TJ I = (SI J − SI − SJ )

⎛

⎝1 +
∑

K �=I,J

SK +
∑

K �=I,J ;L
TK L

⎞

⎠ , (42)

where SI J is the scattering operator for the fragment pair I J . The total scattering
operator of Eq. (40) is then approximated as

S ≈
∑

I

SI +
∑

I<J

KI J (43)

with

KI J = SI J − SI − SJ . (44)

Thus, we find for the ground state energy

E ≈ E0 +
∑

I

δEI +
∑

I<J

δEI J (45)

with

δEI J = 〈HSI J 〉c0 − δEI − δEJ

= 〈H1SI J 〉c0 − δEI − δEJ , (46)

which reproduces the FMO2 expression.
Analogous procedures can be applied to higher order approximations. Up to the

third-order (fragment trimer) contributions, the scattering operator is expressed as

S ≈
∑

I

SI +
∑

I<J

KI J +
∑

I<J<K

L I J K (47)

with

L I J K = SI J K − KI J − KJK − KK I − SI − SJ − SK
= SI J K − SI J − SJK − SK I + SI + SJ + SK , (48)

where SI J K is the scattering operator for the fragment trimer I J K . The energy of
the whole system is then given by

E ≈ E0 +
∑

I

δEI +
∑

I<J

δEI J +
∑

I<J<K

δEI J K (49)
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with

δEI J K = 〈HSI J K 〉c0 − δEI J − δEJK − δEK I − δEI − δEJ − δEK

= 〈HSI J K 〉c0 − 〈HSI J 〉c0 − 〈HSJK 〉c0 − 〈HSK I 〉c0
+〈HSI 〉c0 + 〈HSJ 〉c0 + 〈HSK 〉c0 , (50)

thus reproducing the FMO3 expression.
Summarizing, the cluster expansion formalism above for the ground state energy

can be based on a transformation of wave function from the unperturbed |ψ0〉 to the
exact one as

|
〉 = �|ψ0〉 = (1 + S)|ψ0〉, (51)

where � refers to a wave operator employed in the cumulant expansion [9, 10]. The
ground state energy is then given by

E = 〈ψ0|H |
〉c
= 〈ψ0|H�|ψ0〉c
= 〈ψ0|H(1 + S)|ψ0〉c
= 〈H(1 + S)〉c0. (52)

The energy increment due to the fragment interactions is thus expressed as

E − E0 = 〈HS〉c0 = 〈H1S〉c0 (53)

whose expansion accords with the cluster expansion of the scattering operator S.

3 Green’s Function Approach

As seen in Eq. (26) in the preceding section, Green’s functions play a vital role in the
cluster expansion of energy. Actually, Green’s function formalism was employed [8]
to justify and extend the use of FMO expansion scheme, in which Green’s function
is expressed in terms of the fragment expansion as

G =
N∑

I=1

GI +
∑

I<J

ΔGI J + · · · (54)

with

ΔGI J = GI J − GI − GJ . (55)
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Thus, the two-body approximation,

G �
∑

I<J

G I J − (N − 2)
∑

I

G I , (56)

leads to the FMO2 approximation to the ground state energy and other molecular
properties.

In addition to the canonical ensemble, one can also consider the grand canonical
ensemble with given chemical potential μ and temperature T . Regarding the pertur-
bative Hamiltonian H1 as a correction due to the inter-fragment interactions, we find
an expression for the correction to the grand potential as [12, 15]

ΔJ = − 2

β

∑

l

∑

i

Tr ln
[
1 − G(0)(εi , ζl)�̃(εi , ζl)

]
exp(ζl0

+). (57)

Here, G(0) and �̃ are matrices indexed with fragment pair I J for Green’s function
for H0 (diagonal) and the self-energy due to the inter-fragment interactions (off-
diagonal), respectively; εi denotes the electronic energy of molecular orbital i for
corresponding fragment and

ζl = μ + 2l + 1

β
π i (58)

for l = 0,±1,±2, · · · . Rewriting Eq. (57) as

ΔJ = − 2

β

∑

l

∑

i

Tr
{
ln
[
�̃ − (G(0))−1

]
− ln
[−(G(0))−1

]}
(59)

and using an identity Tr ln A = ln det A for any matrix A,
we obtain

ΔJ = − 2

β

∑

l,i

[
ln D(εi , ζl) − ln

∏

I

D1(εi , ζl; {I })
]

(60)

with

D1(εi , ζl; {I }) = −[G(0)
I (εi , ζl)]−1 = εi − ζl (61)

and

D(εi , ζl) =

∣∣∣∣∣∣∣∣

−[G(0)
1 ]−1 �̃12 �̃13 . . .

�̃21 −[G(0)
2 ]−1 �̃23 . . .

�̃31 �̃32 −[G(0)
3 ]−1 . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣
. (62)
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Further, we introduce an n × n determinant Dn(εi , ζl; {I1, I2, ..., In}) as

D2({I, J }) =
∣∣∣∣
−[G(0)

I ]−1 �̃I J

�̃J I −[G(0)
J ]−1

∣∣∣∣ , (63)

D3({I, J, K }) =
∣∣∣∣∣∣

−[G(0)
I ]−1 �̃I J �̃I K

�̃J I −[G(0)
J ]−1 �̃J K

�̃K I �̃K J −[G(0)
K ]−1

∣∣∣∣∣∣
, (64)

and so on. Here, it is noted that −2β−1∑
l,i ln D1(εi , ζl; {I }) in Eq. (60) repre-

sents the grand potential for H0 from fragment I and can be expressed in terms of
ln〈exp(βμni )〉 with the weight exp(−βεi ni ) for the occupation number ni = 0, 1
[15]; namely, it can be regarded as a cumulant function for the variable ni . Similarly,
−2β−1∑

l,i ln D(εi , ζl) in Eq. (60) can be regarded as a cumulant function for a
set of multiple variables ni for each fragment monomer or dimer. Then, employing
a general theorem for the cluster expansion of cumulant function [11], we find [12]

ln D =
∑

I

ln D1({I }) +
∑

I<J

ln
D2({I, J })

D1({I })D1({J })

+
∑

I<J<K

ln
D3({I, J, K })D1({I })D1({J })D1({K })

D2({I, J })D2({J, K })D2({K , I }) + . . . . (65)

Equation (60) is thus rewritten as

ΔJ =
∑

I<J

ΔJ2({I, J }) +
∑

I<J<K

ΔJ3({I, J, K }) + . . . (66)

with

ΔJ2({I, J }) = − 2

β

∑

l,i

ln
D2({I, J })

D1({I })D1({J }) , (67)

ΔJ3({I, J, K }) = − 2

β

∑

l,i

ln
D3({I, J, K })D1({I })D1({J })D1({K })

D2({I, J })D2({J, K })D2({K , I }) , (68)

and so on. The mathematical structure of this expansion is apparently analogous to
that for the FMO energy expansion. One may also find an analogous structure to the
many-body correlation functions for non-interacting Fermi gas [16].
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4 Concluding Remarks

The FMO method provides an efficient and useful ab initio tool to evaluate inter-
molecular interactions in large molecular systems. Justification for the methodology
as an increment method for energy can be given in terms of cluster expansion in
which mathematical techniques based on the cumulant expansion and Green’s func-
tion are utilized. The concept of fragment is introduced as an essential element of the
FMO method, where intra-fragment electron correlation effects and inter-fragment
interactions can thus be treated hierarchically [3]. The effective interaction energy
between the fragments can then be described in terms of inter-fragment interaction
energy (IFIE) [3] in the FMO formalism, which may be regarded as an renormal-
ized (coarse-grained), effective interaction in lower energy regime. Resummation of
correlated IFIEs to account for the screening effect based on the underlying charge
neutrality principle and the optimization of mutual information for IFIEs can also
be carried out [17]. All these components are used for comprehensively analyzing
the effective interactions in biomolecular and nano-material systems with affordable
computational cost and accuracy.
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Comparison of Various Fragmentation
Methods for Quantum Chemical
Calculations of Large Molecular Systems

Shigenori Tanaka

Abstract In this chapter, various fragmentation schemes employed in the fragment
molecular orbital (FMO) and other methods are comparatively assessed toward effi-
cient order-N quantum chemical calculations of large (bio)molecular systems. After
briefly illustrating the features of various fragmentation methods, their pros and cons
are discussed from the viewpoints of cost, accuracy, viability, and versatility.

Keywords Fragmentation · Biomolecule · Quantum chemical calculation ·
Environmental potential · Parallel computing

1 Introduction

Fragmentation is an essential ingredient for order-N (O(N )) ab initio quantumchem-
ical calculations [1]. In this article, we comparatively assess the performance of var-
ious fragmentation methodologies such as the fragment molecular orbital (FMO)
method and others toward efficient molecular fragmentations. By breaking a large
molecular system into molecular fragments that can be treated almost independently,
the properties of the whole system are expressed as a sum of terms for each fragment
with incorporation of many-body effects such as environmental potential and charge
transfer. This implementation thus makes intractably huge calculations feasible or at
least accelerates the calculations in terms of parallelization. Large numbers of tech-
niques developed in conventional quantum chemistry are then transferable into each
fragmentation approach, including those concerning electron correlation, gradients,
excitation energies, and various molecular properties.

In the fragment molecular orbital (FMO) method, a molecular system is divided
into several subsystems (fragments) [2]. For example, proteins are divided into frag-
ments per amino acid residue as shown in Fig. 1. Note that the definitions of boundary
on the main chain of each amino acid residue are different in the context of frag-
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Fig. 1 Fragment division of polypeptide in the FMO method. R refers to the side chain and the
fragment boundary is denoted by a solid line

mentation with the unit of -C-N-Cα- from those of conventional molecular biology
and biochemistry with -N-Cα-C-. More specifically, the carbonyl group of the main
chain in the n-th biological residue with hydrogen-bonding acceptors on oxygen
atom belongs to the (n + 1)-th fragment, because the fragments are separated at
Cα-C bond in front of the carbonyl group on the main chain.

Let us consider amolecular system composed of electrons with electric charge−e
and coordinates ri and nuclei with electric charge ZAe and coordinatesRA. Then the
whole system is divided into a collection of N f fragments (monomers) with index I .
In the following, for simplicity, we first address the FMO2 method [2] in which one
accounts for the FMO calculations up to the fragment pairs (dimers). We consider
the Hamiltonians for the fragment monomer (I ) and the fragment dimer (I J ) as

ĤI =
∑

i∈I

⎡

⎣−1

2
Δi −

∑

A

ZA

|ri − RA| +
N f∑

J �=I

∫
dr′ ρJ (r′)

|ri − r′|

⎤

⎦ +
∑

i∈I

∑

i> j∈I

1∣∣ri − r j
∣∣ ,

(1)

ĤI J =
∑

i∈I,J

⎡

⎣−1

2
Δi −

∑

A

ZA

|ri − RA| +
N f∑

K �=I,J

∫
dr′ ρK (r′)

|ri − r′|

⎤

⎦ +
∑

i∈I,J

∑

i> j∈I,J

1∣∣ri − r j
∣∣

(2)

in atomic units. Here, I, J, K refer to different fragments and ρJ (r′) represents the
number density of electron with coordinate r′ in the fragment J . The energies and
wave functions of each fragment monomer and dimer are then obtained by solving
the Schrödinger equations as

ĤIΨI = EIΨI , (3)

ĤI JΨI J = EI JΨI J . (4)

In the FMO2 method, the electronic energy E and the electron density ρ(r) of the
whole system are approximately given by
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E �
∑

I>J

EI J − (N f − 2)
∑

I

EI , (5)

ρ(r) �
∑

I>J

ρI J (r) − (N f − 2)
∑

I

ρI (r), (6)

respectively.
Considering the closed shell system hereafter, the Hartree–Fock–Roothaan equa-

tion in the FMO2 scheme is written by

FλCλ = SλCλCλ (7)

with λ = I for fragment monomer and λ = I J for fragment dimer. The Fock matrix
Fλ is then expressed by

Fλ = Hλ + Gλ, (8)

Hλ
kl = Hcore,λ

kl + V λ
kl +

∑

i

Bi 〈k|θi 〉〈θi |l〉, (9)

Hcore,λ
kl = (χk |ĥλ|χl) = 〈k|ĥλ|l〉 =

∫
drχ∗

k (r)ĥλχl(r), (10)

V λ
kl =

∑

K �=λ

(
uK
kl + vK

kl

)
, (11)

uK
kl =

∑

A∈K
〈k| −ZA

|r − RA| |l〉, (12)

vK
kl =

∑

m,n∈K
DK

mn〈χkχm |χlχn〉, (13)

Dλ
kl = 2

occ.∑

j

Cλ∗
k j C

λ
l j , (14)

Gλ
kl =

∑

m,n∈λ

Dλ
mn

[
〈χkχm |χlχn〉 − 1

2
〈χkχm |χnχl〉

]
. (15)

Here, Hcore,λ, V λ, and Dλ refer to the one-electron operator in the fragment λ, the
environmental electrostatic potential from the fragments other than λ, and the density
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matrix, respectively; Gλ is the two-electron operator in the fragment λwith the basis
functions χk(r).

The third term on the right-hand side of Eq. (8) represents a projection operator
to remove the orbital θk from the variational space with parameter Bk conventionally
set to 106. Regarding the fragmentation for a molecule, the sp3 carbon site is usually
employed for the division. The atom at the division site is called the bond detached
atom (BDA). As for θk , the localized MOs for a methane molecule obtained with the
natural localized MO method are used, in which the C-H distance is fixed at 1.09 Å.
We then consider a fragment I towhich theBDAbelongs and a neighboring fragment
J to which the atom bonding to the BDA (bond attached atom; BAA) belongs. By
rotating theMOs so that one of the orbitals θl is directed toward the BAA in fragment
J bonding to the BDA, the contribution of θl to fragment I and that of other MOs
to fragment J is removed by the shift operator, respectively. This procedure for the
restriction of basis set enables the localization of MOs within a fragment (Fig. 1).
Single bonds are usually detached between fragments, while other bond division
approaches have been investigated [3]. It is also noted that the FMO method does
not use hydrogen caps (see Sect. 3).

There are at least two kinds of bond detachment treatments available in the frame-
work of FMO approach, that is, hybrid orbital projection (HOP) [4, 5] and adaptive
frozen orbitals (AFO) [6, 7]. The HOP method, illustrated above, features unre-
stricted inter-fragment polarization for appropriately considering the fragmentation
of linear chains of atoms. On the other hand, in the AFO method, the electron den-
sity of the detached bonds is calculated beforehand for a model system and frozen
throughout the FMO calculation. The AFO method can thus be applied to inor-
ganic materials in which several bonds are detached between two fragments. This
approach has successfully been used [6, 7] for the descriptions of systems such as
zeolite clusters, silicon nanowires,mesoporous silicons, graphene sheets, and organic
charge-transfer materials. However, this chapter does not deeply go into the latter
approach because of main interests in biomolecular systems such as proteins and
nucleic acids.

2 Various Fragmentation Methods

The purpose of this review article is to make comparisons among various fragmen-
tation schemes, including the FMO method, that are applicable to ab initio quantum
chemical calculations for large (bio)molecular systems. In this section, we briefly
illustrate other fragmentation methods such as KEM, MFCC, SFM, MTA, DC, and
GMO.

Kernel energy method (KEM) [8] provides an energy decomposition analysis
similar to the FMO method. This method divides a system into separate kernels
and removes dangling bonds at the periphery of the kernels by using hydrogen caps.
Double kernel calculations of nearest neighbor kernels are then performed to evaluate
the total energy of system.While only those kernels covalently bonded to one another
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were considered in the original approach, subsequent developments have taken into
account separate kernels that are not covalently bonded. The energy formulae are
analogous to the FMO ones, but the contributions of environmental electrostatic
potentials are not included in the KEM method. The kernel interactions are further
taken into account up to the fourth-order terms [9]. Applications have been made for
proteins, nucleic acids, and π -conjugated systems such as graphene, in which some
of new bond fractioning schemes are employed. For example, in fissioning scheme,
the aromatic bonds are divided in half parallel to the direction of bonding instead of
fractioning single bonds perpendicular to the direction of bonding.

Molecular fractionation with conjugate caps (MFCC) method [10] was originally
developed to describe the binding energy of protein–ligand systems. When peptide
bonds are fractioned, they are capped with “concaps” that represent the local envi-
ronment of the fragments instead of hydrogen caps. The total binding energy of
protein–ligand system is then calculated by adding together the individual contribu-
tions of the fragments and subtracting those from merged concaps. For example, let
us consider a protein P composed of N amino acids,

P = nA1A2 . . . AN , (16)

where Ai represents each amino acid and n refers to the N-terminus, n = NH+
3 or

NH2; AN represents the C-terminus, and AN = RNCHCOO− or RNCHCOOH with
the side chain RN . To calculate the interaction energy between protein P and ligand
L , the protein is divided into single amino acid fragments in terms of C-N peptide
bonds. Each fragment is then cappedby concaps,Ci andCi∗, which contain aCα atom
with side chain in the neighboring residue and describe the valency requirements of
the dangling bonds left over after fractionation. The total interaction energy is then
given by

E(L − P) =
N∑

i=1

E(L − Ci−1∗AiC
i ) −

N−1∑

i=1

E(L − Ci∗Ci ), (17)

where E(L − Ci−1∗AiCi ) and E(L − Ci∗Ci ) refer to the interaction energy between
the ligand L and the capped fragment Ci−1∗AiCi and that between L and the con-
nected concaps Ci∗Ci , respectively. It is noted here that C0 and CN imply n and
nothing, respectively. In the following developments of MFCC, the ability to frac-
tion disulfide bonds and the inclusion of nonbonded interactions in globular proteins
were also taken into account.

In systematic fragmentation method (SFM) [11], the fragmentation of molecular
system is, firstly, performed as

M → M1 + M2 (18)

with
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M1 = G1G2 . . .Gn−1H
(n−1) (19)

and

M2 = H (n)GnGn+1 . . .Gk, (20)

where G j and H ( j) represent a fragment and a hydrogen cap, respectively. The total
energy of the system can then be written by

E(M) = E(M1) + E(M2) + dE1, (21)

where dE1 describes an energy change created by the bond breakage. The SFM
scheme further makes another fragmentation,

M → M3 + M4 (22)

with

M3 = G1G2 . . .Gi−1H
(i−1) (23)

and

M4 = H (i)GiGi+1 . . .Gk . (24)

The total energy in this case can be given by

E(M) = E(M3) + E(M4) + dE2 (25)

with the energy correction dE2. Then, assuming i > n, one finds a combined frag-
mentation,

M → G1G2 . . .Gn−1H
(n−1) + H (n)GnGn+1 . . .Gi−1H

(i−1) + H (i)GiGi+1 . . .Gk,

(26)
for which the total energy can be expressed by

E(M) = E(M1) + E(M5) + E(M4) + dE3 (27)

with

M5 = H (n)GnGn+1 . . .Gi−1H
(i−1) (28)

and the energy change dE3 due to the bond breakages. Here, if we make a reasonable
approximation as
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dE3 ≈ dE1 + dE2, (29)

we obtain a fragmentation expression for the total energy as

E(M) � E(M2) + E(M3) − E(M5) (30)

from Eqs. (21, (25) and (27). In the actual applications of SFM, the effects of non-
bonded interactions are taken into account in ab initio, effective fragment potential
and electrostatic ways according to interatomic distances.

Molecular tailoring approach (MTA) [12] and its modified version, cardinal-
ity guided molecular tailoring approach (CG-MTA) [13], provide not a residue-
based method but a distance-based fragmentation method. Two length parameters
are important in MTA, that is, maximum fragment size and R-goodness (Rg). MTA
creates an initial set of fragments by centering a sphere of radius Rg at each atom and
assigning all atoms to fall within the sphere to the fragment, in which aromatic rings
and double bonds are kept intact. Then, additional atoms are included or excluded
according to the criterion of maximum fragment size; the created fragments are
merged due to their proximity and this merging is performed recursively depending
on themaximum overlap of nearest neighbor fragments up to themaximum fragment
size. After checking the fragments for the respective Rg value of the included atoms,
broken bonds are capped with hydrogen atoms. The total energy of the system is then
calculated, in which the contributions from all intersecting portions of the merged
fragments are counted with the sign of each contribution being set to (−1)K−1, where
K refers to the number of fragments involved in the intersection. For example, in the
case of two-fragment (F1 and F2) overlap, the total energy is given by

EM = EF1 + EF2 − EF1∩F2 , (31)

which is similar to the FMO2 expression.
The original formulation of divide-and-conquer (DC) approach [14] divides the

density of the whole system into the sum of the densities of the subsystems on the
basis of the Kohn–Sham density functional theory (DFT). The DC-DFT algorithm
represents the three-dimensional space 
 as a union of overlapping spatial domains,

 = ∪α
α , and physical properties are computed as linear combinations of domain
properties. Each domain 
α is further decomposed into its sub-volumes as 
α =

0α ∪ �α . Here, 
0α is a non-overlapping core covering 
 (i.e., 
 = ∪α
0α and

0α ∩ 
0β = 0 (α �= β)), whereas �α is a buffer layer that surrounds 
0α . For each
domain
α , we define a domain support function pα(r)which takes a valuewithin the
unit interval [0, 1] andvanishes outside the domain
α . The domain support functions
constitute a partition of unity, that is, they satisfy the sum rule,

∑
α pα(r) = 1, at

every spatial position r. The partition of unity allows the electron density ρ(r) to be
decomposed into

ρ(r) =
∑

α

ρα(r), (32)
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where ρα(r) = pα(r)ρ(r) is the partial contribution to the electron density from
domain 
α . The key approximation in DC-DFT is the replacement of the self-
consistent Kohn–Sham Hamiltonian Ĥ by its subspace approximation Ĥα such that
[14]

ρα(r) � pα(r)〈r| 2

exp[(Ĥα − μ)/kBT ] + 1
|r〉, (33)

where kB is theBoltzmann constant, T is the (effective) temperature, and the chemical
potential μ is determined from the number of electrons N through the relation,
N = ∫

drρ(r). Here, the subspace Hamiltonian is defined through projection as

Ĥα =
∫


α

dr
∫


α

dr′|r〉〈r|Ĥ |r′〉〈r′|. (34)

One then solves the Kohn–Sham (KS) equation within each domain,

ĤαΨ α
i (r) = εα

i Ψ α
i (r) (35)

with the orthonormality constraints,
∫
drΨ α∗

i (r)Ψ α
j (r) = δi j , whereΨ α

i (r) is the i-th
KS orbital with the energy eigenvalue εα

i . The electronic ground state is determined
self-consistently; the electron density is obtained iteratively until the input density
ρin(r) becomes equal to the output density ρout (r) within a prescribed tolerance.
Here, ρin(r) is used to calculate the KS potential in Ĥα , whereas ρout (r) is calculated
from Eqs. (32) and (33) using the KS orbitals obtained by solving the KS equations,
Eq. (35). It is noted that the local domain KS orbitals are globally informed through
the global KS potential and chemical potential. It is also remarked that the DC-DFT
scheme can be generalized to be applicable to ab initiomolecular orbital calculations
[15].

Finally, we briefly illustrate the group molecular orbital (GMO) method [16],
which is expressed as a localized orbital approach by

(
F̂ + P̂I

)
ϕ I
i = ε I

i ϕ
I
i , (36)

P̂I = −
∑

J �=I

(
F̂

occ.∑

i

∣∣ϕ J
i

〉 〈
ϕ J
i

∣∣ +
occ.∑

i

∣∣ϕ J
i

〉 〈
ϕ J
i

∣∣F̂
)

, (37)

where F̂ and P̂I are the Fock and projection operators, respectively; ϕ I
i and ε I

i are
the i-th molecular orbital and energy for subsystem (or “group”) I. (“occ.” means the
occupied states.) The (Huzinaga) SCF equation for group I is then given by

F̃ICI = SICI ε I (38)
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with
F̃ I

μν = F I
μν + P I

μν. (39)

Here, F̃ I
μν and P I

μν are the matrix elements of the effective Fock and projection
operators of group I, respectively, with

F I
μν = H I

μν + V 2,I
μν + V emb,I

μν , (40)

H I
μν = 〈μ| − 1

2
Δ |ν〉 + V 1,I

μν , (41)

V 1,I
μν =

∑

A∈I
〈μ| −ZA

|r − RA| |ν〉, (42)

V 2,I
μν =

∑

λ,σ∈I
DI

λσ

[
(μν|λσ) − 1

2
(μλ| νσ)

]
, (43)

DI
λσ = 2

occ.∑

i

C I
λiC

I
σ i . (44)

FI ,HI ,V1,I ,V2,I , andDI are the Fock matrix, core Hamiltonian, nuclear attraction,
electron–electron repulsion, and density matrix of group I, respectively. V emb,I is the
embedding potential for group I due to the rest of the system,

V emb,I
μν =

N∑

J �=I

(
V 1,J

μν + V 2,J
μν

)
, (45)

with N being the number of groups. The projection operator is written as

P I
μν = −

N I
ov∑

J �=I

∑

μ′,ν ′∈J

DJ
μ′ν ′

(
F J

μμ′SJ
ν ′ν + SJ

μμ′ F J
ν ′ν

)
, (46)

where SJ is the overlap integral matrix and N I
ov is the number of overlapping tail

groups around group I. The total electronic energy Eele
I of group I is then given by

Eele
I = 1

2
Tr

{
DI ·

(
F̃I + HI + PI

)}
. (47)

It is noted that no bond detachment or capping treatment is required in the GMO
method in contrast to the FMO and other fragmentation methods, which is due to the
introduction of the overlapping tail groups.
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3 Pros and Cons: Cost, Accuracy, Viability, and Versatility

3.1 Disturbance of Electronic States

Quantum chemical calculations aim at obtaining the most accurate solution to the
electronic state of molecular system whose Hamiltonian (model) is given. Then, by
introducing various types of model approximations concerning the system division,
fragmentation methods inevitably disturb the electronic state of the system from that
of the original model, thus causing some inaccuracies and associated irrelevances.

In the FMO method, the Cα atom is usually chosen as the bond detached atom
(BDA) associated with the single bond breaking between fragments. The dangling
bond is thus processed in terms of precalculated sp3 natural orbital of methane
without introduction of hydrogen cap, where the projection operator is used for the
distribution of the localized orbitals (Sect. 1). In some other approaches such as
KEM and SFM, in contrast, the hydrogen cap is employed for the fragmentation.
This introduction of the hydrogen capmay disturb the electronic states and associated
energetics of the fragments locally, andmay also cause artificial steric effects in some
cases. To reduce these adverse effects, the MFCC method employs the “concap”
that contains the residues on the both sides of the fragments (see Sect. 2). In the
KEM approach, a unique fragmentation called “fissioning” process is also attempted
to divide the aromatic bonds (Sect. 2), thus enabling the treatment of conjugated
systems such as graphene with reasonable accuracy. The FMOmethod also explores
the possibility of fragmentations other than single bond division with the sp3 orbital
[3] to extend its applicability over various molecular systems (see also Sect. 1). In the
DC method, the buffer region plays a role to mitigate the disturbance of electronic
states due to the domain division, whereas the choice of its size brings about a trade-
off relationship between cost and accuracy (see Sect. 3.4 below).

3.2 Environmental Effects

In principle, all the fragmentation schemes can take into account the environmental
electrostatic potentials arising from surrounding fragments by incorporating the con-
tributions into local Hamiltonians, while some approaches do (did) not consider them
currently (previously). The inclusion of solvent effects primarily associated with sur-
rounding water is similar, but some additional cautions should be considered. If the
aqueous solvent effects are described explicitly, a water molecule or its cluster is
taken into account as a part of the whole molecular system, which can be regarded as
a fragment similar to an amino acid residue. It is then known [17] that higher order
expansion corrections such as FMO3 over more than two fragments play a signif-
icant role to accurately describe the polarization and charge transfer among water
molecules. When the solvent effects are considered implicitly, on the other hand,
some coarse-grained descriptions such as the polarizable continuum model (PCM)
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[18], the generalized Born or Poisson–Boltzmann surface area model [19–22], and
the effective fragment potential (EFP) method [23] can be combined with each frag-
mentation model, which have been implemented in the FMO scheme. The choices
of combined description schemes are then made considering the compatibility, cost,
and purposes for efficient descriptions of dielectric screening, hydrogen bonding,
and proton transfer. In addition, when treating large molecular systems, one would
sometimes need to incorporate the periodic boundary condition intomodeling, which
would bring about additional complications in the fragmentation schemes [24].

3.3 Utility and Extension

How to make the fragmentation significantly affect the utility and the possible exten-
tion of each fragmentation method. In general, the fragmentation methods enable
the inter-fragment interaction energy analysis, which would be useful for the ratio-
nal design of small compound inhibitors and antibody drugs to target proteins, for
example. In the case of FMO method, the protein–ligand interaction energy analy-
sis can be comprehensively performed in terms of IFIE (inter-fragment interaction
energy) [2] and PIEDA (pair interaction energy decomposition analysis) [25]. How-
ever, it is remarked that the FMO scheme usually employs the fragment division not
at the peptide bond but at the Cα atom (Sect. 1), whichwould require some cautions to
researchers [26] with respect to the compromise between accuracy and utility. Con-
cerning the incorporation of electron correlation energies, on the other hand, virtually
all the fragmentation methods can afford to incorporate the conventional calculation
schemes (e.g.,MP2,CC, andDFT) in quantumchemistry in straightforwardmanners,
because the electron correlation effects are generally localized spatially. However,
the calculations of energy gradients in the fragmentation schemes usually become
very complicated [27] and do not allow the use of numerical differentiations to retain
satisfactory accuracies. In addition, the issues of diffusion of water molecules and
proton transfer in hydrated MD simulations would also require appropriate adjust-
ments of fragmentation to prevent the discontinuities in energy evaluation [2].

3.4 Cost and Accuracy

The cost and accuracy of fragmentationmethods are usually in a trade-off relationship
with each other. In the case of FMOmethod, at least FMO2 approximation is needed
to account for the charge transfer between fragments, which naively requires O(N 2)

computational cost, while it can be substantially reduced by sorting with distance
thresholds for fragment pairs [2]. In general, fragmentation methods aim at O(N )

computation of large molecular systems and then the size of the largest fragment
governs the total computation time. Therefore, the MFCC scheme in which approx-
imately three amino acid residues are contained in a fragment demands relatively
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high computational cost. Even in the case of FMO method, the load balance is often
impaired due to the presence of large residues such as tryptophan or large ligand
molecules. In this respect, distance-based fragmentation methods such as MTA may
have advantage over other (usually residue-based) approaches. In the case of FMO,
a finer fragmentation necessarily leads to inaccuracies in energy expansion, but the
ingenious utilization of higher order expansion techniques such as FMO3 and FMO4
would mitigate the difficulties [2, 28].

4 Perspective

One of the most essential issues in the fragmentation methods is the balance between
cost and accuracy. Probably, what is the best choice may be highly dependent on
the molecular system to be described and on the purpose of the research. In this
context, the optimization of the implementation could be carried out with the aid
of machine learning or artificial intelligence techniques in the future studies. In
addition to the size of fragments, the sites of fragment division substantially affect the
accuracy of molecular properties. More specifically, the single bond fragmentation
is usually employed in various fragmentation approaches to suppress the disturbance
of electronic states, but the possibilities of other ingenious bond divisions may be
explored to attain a better performance. Furthermore, some hybrid schemes similar
to the concepts of QM/MM and multi-layer approaches may also be attempted. For
example, relevant embedding approaches for metal-containing enzymes would be
promising for performing the statistical or dynamical simulationswith high accuracy.

Among various fragmentation schemes addressed in this chapter, the GMO
method also provides a suitable approach for accurately calculating large molec-
ular systems. This procedure solves the Huzinaga subsystem SCF equations using a
couple of approximations. It is shown that the GMO scheme can reproduce ab initio
calculation results quite well and has several additional interesting properties. For
example, no caps are required in GMO, where fragment boundaries are naturally
handled; molecular charges can be delocalized at fragment boundaries because of
the use of tail groups; and the embedding potential properly considers the exchange
interaction, which is sometimes ignored in other embedding methods. Moreover,
GMO gives fully variational and quasi-orthogonal wave functions among groups
(fragments). In the future studies, the large-scale O(N ) computations based on the
GMO scheme would be anticipated.

5 Conclusion

In this chapter, a variety of fragmentation schemes for large molecular systems were
illustrated, laying a main focus on biomolecules, where wave functions are relatively
localized. In addition to insulating systems, it is often required for fragmentation
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methods to relevantly describe semiconducting, metallic, and charge-transfer sys-
tems such as π -conjugated materials, thus attaining wider applicability for general
molecular systems. Based on the observation that details of fragmentation implemen-
tation are significantly changing from the original version in various fragmentation
schemes other than the FMO method, one has much room for making systematic
improvement of computational performance, which in turn provides challenging
tasks toward accurate O(N ) ab initio calculations.
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Recent Development of the Fragment
Molecular Orbital Method in GAMESS

Dmitri G. Fedorov

Abstract The development of the fragment molecular orbital (FMO) method in
GAMESS is reviewed, summarizing implemented physical properties and computa-
tional methods. Algorithmic improvements of FMO to reduce memory requirements
and to describe dipole moments in solution are also presented.

Keywords FMO · GAMESS · Dipole moment · Solvent effect

1 Introduction

The recent progress in the development of quantum mechanical (QM) methods for
calculations of large molecular systems [1, 2] has been reviewed in detail [3–6],
putting the fragment molecular orbital (FMO) method [7] in a perspective with other
low-scaling QM methods.

In the course of development by multiple research groups, FMO has been imple-
mented in several computational packages. Some of these FMO implementations
such as that in NWChem [8], have remained local, whereas those in ABINIT-MP
[9], PAICS [10], and OpenFMO [11] are distributed.

General atomic andmolecular electronic structure system (GAMESS) [12, 13] is a
QM package, with a freely distributed source [14]. This chapter is mainly a summary
of the recent progress in the implementation of FMO specifically in GAMESS [15,
16], whereas in the earlier FMO reviews [17–20] the method is described in a more
general way. FMO was released in GAMESS in 2004 (FMO code version 1.0) and
the current version available in distributed GAMESS is 5.3.
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2 FMOMethodology

The FMO method has been described in detail elsewhere [21], and here a succinct
description is provided for completeness. FMOn is based on an n-body expansion
[22] of size-extensive properties, such as the energy (of size-extensive QMmethods),
its derivatives, electrostatic moments, electron density, etc. The energy expression
for a system divided into N fragments, truncated at the three-body level FMO3, can
be written as

EFMO3 =
N∑

I

EI+
N∑

I>J

�EI J +
N∑

I>J>K

�EI J K (1)

where EI ,�EI J and�EI J K are the energies of fragments (monomers), pair (dimer)
and trimer corrections, respectively. FMO2, which neglects the last sum in Eq. 1,
is frequently used. FMO1 [23, 24] and FMO4 [25] are sometimes used, but less
extensively, the former because its accuracy can be insufficient and the latter due to
its large computational cost. FMO has been also formulated [26] as a perturbation
theory (treating many-body corrections as the perturbation).

Equation 1 can be used for excited states, computed with multiconfiguration self-
consistent field (MCSCF) [27], configuration interaction(CI) [28], or time-dependent
(TD) density functional theory (DFT) [23]. There can be at most one excited state
fragment and other fragments are calculated in the ground state (excited states for
dimers are computed only for fragment pairs including the excited state fragment).

An electronic state of any multiplicity can be used in Eq. 1, with restricted or
unrestricted open-shell methods as well as with MCSCF [27]. Typically, only one
fragment may be open-shell; however, there is a formulation [29] for multiple open-
shell fragments, for which dimers and trimers, following the angular momentum
addition, are calculated in the highest spin state determined by the multiplicities of
monomers. There are methods for treating non-local excitations in FMO by taking
into account the coupling between local excitations [30, 31].

2.1 Outline of FMO

FMO calculations are done as follows. First, starting from a set of atomic coordi-
nates, the system is divided into fragments. Various modeling software can be used
to do it automatically or manually in GUI. For example, Facio [32] can be used to
automatically fragment peptide (protein etc.), nucleotide (DNA etc.), and saccha-
ride (cellulose etc.) systems or any combination thereof. FU [33] can automatically
fragment peptides. The most general automatic fragmentation is provided in FragIt
[34], where SMILES patterns can be defined for an automatic fragmentation. For
non-standard systems, one can define detached bonds manually in Facio by clicking
on them.
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There is a simple general guideline for fragmentation: the electron density calcu-
lated for the whole system and integrated over a set of atoms designed to become
a fragment should give the number of electrons as close to an integer as possible
(this is because in the fragment calculations the number of electrons is integer). Of
course, this exact definition requires full calculations and thus is not used in practice;
however, one can roughly predict the delocalization of electrons because molecular
systems are connected by a finite set of bonding patterns. Charge transfer between
fragments should be minimized but it is acceptable to allow charge transfer on the
order of hydrogen bonding (0.05 e). If one attempts to assign one metal cation as a
fragment, such fragmentation is usually poor [35], because a large amount of charge
may be pulled toward the cation from other fragments. Another point of concern is
the conjugation of π electrons, which tend to delocalize.

Usually, single bonds are detached between fragments, although there are excep-
tions [36]. FMO uses no hydrogen caps because the embedding potential effectively
saturates the bonds on fragment boundaries. Two treatments of bond detachment are
available, hybrid orbital projection (HOP) [37, 38] and adaptive frozen orbitals (AFO)
[39–41]. The former features unrestricted interfragment polarization and is most
commonly used for fragmenting one-dimensional chains of atoms (e.g., proteins,
DNA, polymers, etc.). Using HOP requires a set of precalculated hybrid orbitals
for the bond detached atom (BDA) of each detached bond [37]. These orbitals are
pretabulated for most commonly used basis sets. There is a simple scheme for users
to generate hybrid orbitals for any basis set and any (single) bond.

In AFO, the electron density of the detached bonds is precalculated for a model
system and remains frozen in FMO calculations (all model systems are automatically
constructed in the beginning of an FMO/AFO calculation, so that AFO is easy to
use). AFO is used for inorganic materials where several bonds can be detached
between two fragments. For instance, zeolite clusters [39], silicon nanowires [40],
mesoporous silica [42] or ribbons of white graphene [36] are well treated with AFO.
Organic charge transport materials [43] have been treated with HOP.

Fragments and their conglomerates are calculated in FMO in the presence of an
embedding electrostatic potential (ESP). This ESP for fragment X is calculated using
the density (or atomic charges) of all fragments excluding X. ESP depends on the
electronic state of all fragments, and thus the fragment calculations in the presence
of ESP must be repeated iteratively until the embedding potential converges. After
that, fragment pairs and, optionally, trimers are calculated in the presence of the ESP,
which is fixed at this stage. The total properties are calculated using the many-body
expansion in Eq. 1.

The gradient in FMO is complicated by the dependence of the ESP on the elec-
tronic state of each fragment, and one has to solve self-consistent Z-vector (SCZV)
equations [44] to obtain orbital responses, similar to the Z-vector method used in the
second-order Møller-Plesset perturbation theory (MP2) gradient. SCZV equations
have to be derived for each QM method separately. The AFO gradient is even more
complex because of extra constraints and only recently [41] the SCZV formulation
for density-functional tight-binding (DFTB) [45] has been accomplished.
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The analytic Hessian in FMO [46] can be used to generate IR and Raman spectra
[47]. By decomposing the Fock matrix in a many-body expansion similar to Eq. 1,
and diagonalizing it, one can obtain molecular orbitals (MOs) and density of states
(DOS) [48, 49] of a large system.

It is possible to divide the system into layers and specify a different basis set
and/or a QM method, in the multilayer formulation of FMO [50]. For instance, one
can use a better QM method for an important part of the system, such as the binding
pocket of a protein. It is also possible to mix basis sets within the layer, for example,
one can add diffuse functions to anionic functional groups. In addition, one can mix
basis sets in the auxiliary scheme [51], in which to improve the accuracy of FMO
for large basis sets, the polarization effects are evaluated using a smaller basis set,
and added to the FMO calculation with a larger basis set without embedding. In the
effective FMO method [52–57], polarization is estimated using polarizabilities.

One can take advantage of multilayer FMO for optimizing geometry of a
subsystem, for example, ligand and the binding pocket of a protein. It is accom-
plished in the frozen domain approach [58–60], in which the cost of a partial geom-
etry optimization is much reduced by freezing the electronic state of fragments far
away from the active domain whose structure is optimized.

2.2 Decomposition of Properties

The many-body expansion in Eq. 1 yields the total properties which closely but
not exactly reproduce full QM calculations without fragmentation. It has been
argued [61] that the origin of the discrepancy between FMO and full QM calcu-
lations lies in the omission of (n + 1)-body quantum–mechanical terms (attributed
to charge transfer and exchange-repulsion) in FMOn, whereas the electrostatic treat-
ment including polarization [62] in FMO is exact (except when the polarization is
restricted in the AFO scheme or when ESP approximations are used). Equation 1
has the complexity of including many-body electrostatic interactions in each term
(including monomer terms EI ), so in Eq. 1 the electrostatic effects are treated at the
full N-body level and only non-electrostatic effects are truncated at an n-body level
(n ≤ N ) [61].

The many-body expansion provides very fruitful means to define properties of
fragments (one-body properties), interactions between fragments (two-body proper-
ties) and coupling between fragment interactions (three-body properties). This anal-
ysis conceptually corresponds to the use of functional groups in chemistry (analogous
to fragments in FMO), which may be affected by the environment (interactions with
other fragments). Normally, fragments in FMO cannot be literally as small as func-
tional groups such as OH, because the accuracy is affected by such an excessive
fragmentation, although by using FMO4 [63] the accuracy problem for the total
properties may be much reduced.

The FMO expansion in Eq. 1 is applied to fragments fully polarized by the envi-
ronment. The polarization effects are included in the monomer energies, and can
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be easily extracted by performing isolated fragment calculations [61] (which can
be somewhat ambiguous for fragments connected by covalent bonds, but one can
use the minimum cap approach [61] to resolve it). Pair interaction energies (PIEs)
�EI J in Eq. 1 are not binding energies between isolated fragments; rather, PIEs are
interaction energies between polarized fragments. This should be remembered when
comparing PIEs to other methods.

There are several energy decomposition schemes for FMO. GAMESS includes
two of them, interaction energy analysis (IEA) [64] and pair interaction energy
decomposition analysis (PIEDA) [61, 65–67]. In PIEDA/MP2, the pair interactions
are decomposed into five components, electrostatic (ES), exchange-repulsion (EX),
charge transfer and mix terms (CT + mix), dispersion and remainder correlation (DI
+ RC), and solvent screening (SOLV).

�EI J = �EES
I J + �EEX

I J + �ECT+mix
I J + �EDI+RC

I J + �ESOLV
I J (2)

PIEDA can be applied tomost QMmethods that are interfaced with FMO. In RHF
and DFTB,�EDI+RC

I J is replaced with�EDI
I J evaluated using an empirical dispersion

model [68]; in DFTB, in addition, �EEX
I J + �ECT+mix

I J is replaced with �E0
I J +

�ECT·ES
I J , where “0” and “CT·ES” denote the non-polar 0-orderHamiltonian termand

the coupling of CT and ES, respectively. For HF-3c [69], there is an additional basis
set superposition error correction term�EBS

I J , and for the auxiliary basis formulation
[51] there is a basis set correction term �EBS

I J .
When studying binding between some systems A and B (e.g., protein A and

ligand B), it is necessary to do an FMO decomposition for each system, i.e., for A,
B, and AB, and then subtract A and B properties from those of AB. If one calculates
only a complex AB, the very important effects of deformation, desolvation, and
polarization are not properly considered, and the interaction energy in the complex
is typically a large overestimate of the binding energy [70]. Studying a binding is
conveniently accomplished using the subsystem analysis [70], in which the binding
(“bind”) energy is decomposed into fragment contributions.

�Ebind =
N∑

I

�Ebind
I (3)

In case of rigid inorganic materials such as zeolites binding guest molecules,
one can take an optimized structure for an interaction analysis. However, for flexible
organicmolecules, such as proteins, it may be better to study binding by doingmolec-
ular dynamics (MD) simulations [71], and decompose the binding energy averaged
over anMDtrajectory. FMOhas been recently extended [72] to performsuch analyses
of fluctuations in MD, taking into account temperature and flexibility of molecules.
Doing sufficiently longMD simulations is problematic even for fast methods such as
DFTB: for the small Trp-cage protein consisting of 20 residues only 1 ns FMO/MD
simulations have been done [73].
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2.3 Solvation Models for FMO in GAMESS

Although one can use explicit QM treatment of solvent molecules in FMO, it requires
configurational sampling, which is computationally expensive. Several other solvent
models are available for FMO in GAMESS. For effective fragment potentials (EFP),
solventmolecules are treated explicitly, so that the sampling problem remains, but the
EFP cost is rather low (FMO is interfaced only with the first generation EFP1) [74–
76]. There is a special analysis developed for FMO/EFP, IEA [64], which provides a
decomposition of the energy to quantify solvent effects such as polarization. In the
polarizable continuum model (PCM) [77], solvent is treated as continuum, which
is very convenient for defining solvent screening and cost-effective as the solvent
sampling problem does not arise. The solvation model density (SMD) approach
shares the treatment of solvent–solute electrostatics with PCM, but the non-polar
interaction is described differently [78].

It is possible to combine FMOwith molecular mechanics (MM), using the Tinker
[79] interface to GAMESS. In the implementation of FMO/MM [22, 80], no MM
charge embedding is used, i.e., it is an integrated MO MM (IMOMM) [81] rather
than aQM/MM[82] approach. Geometries of proteins and protein–ligand complexes
have been optimized with FMO/MM [22, 80].

2.4 Reduction of Memory Requirements in FMO

One big problem in running FMO calculations of large systems is memory. Even on
PC clusters, where one can havemany gigabytes of RAMper core, the problem arises
when the number of fragments is large; on modern supercomputers the problem is
severe, because they tend to have a relatively small amount of memory per core.
Some novel algorithmic solutions are described below.

Although the scaling of FMO has beenmeasured to be nearly linear, O
(
N 1.2

)
[45]

for FMO2 applied to realistic globular water clusters, the memory consumption for
FMOn in GAMESS is O(Nn). It is clear that this is a big problem when N is large.
For example, for 10,000 fragments, the memory requirement would be proportional
to 800,000,000 bytes (8N2) per core even at the level of FMO2. The exact factor
(usually, 3–10) multiplying this big number depends on the details of calculations.

In this work, two solutions are described, one for FMO2 and another for FMO3. In
the case of FMO3 in GAMESS, at least two elements in the O

(
N 3

)
array are stored

for each trimer. The solution adopted here is to avoid storing all trimer corrections.
Instead, one adds them up on the fly and obtains the total energy. These trimer terms
may be of interest in analyzing interactions, and they are printed in the output so
that if necessary, they can be extracted by postprocessing scripts. By doing this, all
O

(
N 3

)
arrays are eliminated in FMO3, but all O

(
N 2

)
arrays remain, making the

FMO3 memory requirements quadratic.
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For FMO2, there is anO
(
N 2

)
array that stores several energy terms for each dimer.

It can be similarly eliminated by adding up all terms and printing individual values
without storing them. However, there is another problem. In FMO, one typically uses
approximations to reduce the computational cost to nearly linear. This requires that
one should define interfragment distances, which is an O

(
N 2

)
array. It cannot be

simply eliminated as other energy arrays, and a different strategy is employed.
In a typical setup of doing FMO calculations, one has to distinguish near fragment

pairs from the rest in order to apply efficient approximations. The number of near
pairs is linear [83], with the prefactor controlled by the threshold. Therefore, instead
of an O

(
N 2

)
array, an array of the size of aN is allocated, which for each fragment I

stores a short list of fragments J for near dimers IJ. The parameter a is the maximum
size of this list; it is predicted by the user and in practice it is set to 5–10, depending
on the packing of fragments in space. Such an array does eliminate the quadratic
memory requirement for FMO2, when combined with the strategy of not storing
individual dimer terms. Note that this strategy cannot at present be used to linearize
FMO3 memory requirements, because the computation of trimer corrections on the
fly uses stored dimer energies, so that FMO3 calculations need a quadratic memory
allocation. In the current implementation of linearizing the FMO2 memory usage
there are some limitations, for instance, all approximation thresholds must use the
same value and some methods storing extra dimer terms may not be used.

2.5 Electrostatic Embedding

The electronic state of fragments is obtained in FMO in the presence of an embedding
potential, which describes polarization. Because ESP is calculated self-consistently,
polarization is described at the full many-body level (all fragments polarize each
other until convergence) [61]. The polarization is a very important many-body effect
and the form of ESP affects the results. In the original FMO [7], the ESP VX of
fragment X is taken to have the form of the ab initio Coulomb operator,

V X
μν =

N∑

K �=X

⎧
⎨

⎩
∑

A∈K

〈
μ

∣∣∣∣−
ZA

| r − RA|
∣∣∣∣ν

〉
+

∑

ρσ∈K
DK

ρσ (μν|ρσ)

⎫
⎬

⎭ (4)

where μ, ν, ρ and σ number atomic orbitals (AOs), K runs over fragments and A
over atoms. ZA and RA are the atomic charges and coordinates, respectively. DK is
the electron density of fragment K.

It has been suggested [84] to use approximations to the two-electron term, point
charge (ESP-PC) and atomic population (ESP-AP) for far separated fragments. These
approximations, although successful in accelerating the calculations, result in numer-
ical errors, especially at a high-order expansion level [85]. Also, approximating ESP
requires special response terms for the gradient [86].
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It can be argued that for small values of thresholds, such an ESP results in a
different physicalmodel rather than approximates the full two-electron embedding, as
the name may mistakenly suggest. Switching to the purely one-electron form of ESP
[87, 88] by applying the ESP-PC approximation to all fragments K in Eq. 4, allows
one to use very diffuse basis sets, which otherwise have severe convergence problems
in FMO. However, for covalently connected fragments the FMO accuracy with such
one-electron ESP is in general not satisfactory [88]. It has also been suggested to
combine calculations with ESP for medium basis sets and calculations without ESP
for diffuse basis sets in the auxiliary basis set approach [51]. Alternatively, large basis
sets can be used in “our own N-layered integrated molecular orbital and molecular
mechanics” (ONIOM) combined with FMO [89].

It has been attempted with limited success to use damping of point charges to take
into account charge penetration [88]. However, in FMO-DFTB [45], a one-electron
form of ESP is always used, which is based on a more complex form of the Coulomb
operator than a simple inverse distance, and FMO-DFTB with such potential works
well also for covalently connected fragments. It has been suggested to use multiple
charges per atom to mimic multipoles for a special type of FMO calculations [90].

It has been proposed to improve the physical model of ESP by adding exchange
terms [26, 48]. However, it does not improve the accuracy of FMO except for the
special case of adding exchange terms to the total Fock matrix for the purpose of
defining molecular orbitals of the whole system [48, 49].

In FMO, one can use a cluster representation of crystal embedding by placing the
system in the field of point atomic charges [91]. Alternatively, a periodic form of
the ESP can be used with periodic boundary conditions [92, 93]. To accelerate ESP
calculations, the multipole expansion [94] can be used. In solution, an embedding
from the solvent can be added using one-electron potentials for point charges on the
cavity [77].

2.6 Summary of the FMO Functionality in GAMESS

A summary of the FMOdevelopment for different QMmethods inGAMESS is given
in Table 1. Because gradient development is complicated by the need to formulate
SCZV, some methods and options have not been extended to allow accurate gradient
calculations, and for some methods such as coupled cluster (CC), only energy can
be calculated.

In terms of the types of calculations (Table 2), one can do single point runs (to
obtain the energy for a given molecular structure), geometry optimization to locate
minima, saddle point search to locate transition states, vibrational analysis (Hessian),
or IR and Raman spectra simulations. Several analyses are available in GAMESS:
PIEDA, IEA and the fluctuation analysis for MD. Molecular orbitals and energies,
and density of states (DOS) can be computed. For treating heavy atoms, one can
use effective or model core potentials, which have been interfaced with FMO in
GAMESS [76]. FMO results can be plotted using Facio [32] or FU [33].
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Table 1 Summary of the FMO development in GAMESS

Method Energy Gradient Hessian

HF [12, 121] [12, 29, 44, 122, 123] [46, 124]

DFTB [45, 125] [126, 127] [128, 129]

DFT [130, 131] [130, 132] [133, 134]

MP2 [135–137] [135, 138, 139]

CC [140, 141a]

MCSCF [27] [27]

TDDFT [27, 142, 143a] [144]

CI [145]

PCM [77, 146] [147, 148] [149]

EFP [74] [75, 76]

RISM [150]a

aImplemented in a local version

Table 2 Summary of FMO
development in GAMESS

Property References

Energy [12]

Gradient [44]

Hessian [46]

Mapping chemical reactions [54, 59]

Electronic excitations [23, 27, 145]

Pair interaction energies [61, 65, 66, 72]

Gibbs free energies [46]

Atomic charges and higher multipole
moments

[12]

Electron density on a grid [20, 24]

Molecular electrostatic potential (MEP) on
a grid

[151, 152]

Fock matrix, MOs and their energies, DOS [48, 49, 153–155]a

Fragment-wise dielectric constants [65]

Infrared spectrum [46]

Raman spectrum [47]

Nuclear magnetic resonance shifta [90, 156, 157]

Ion mobility spectroscopya [24]

Isotope effectsa [158]

Charge carrier mobilitya [113]

Radial distribution functiona [129]

aAvailable in a local version or requires supplemental software
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The parallelization of FMO in GAMESS uses generalized distributed data inter-
face (GDDI) [95], inwhichCPUcores are assigned to groups, andonegroupperforms
a fragment or a dimer/trimer calculation. Grouping cores has the big advantage of
reducing the parallel communications to a small subset of all cores and thus increasing
the parallel efficiency. On the other hand, it gives rise to a somewhat complicated
problem of optimizing load balancing at two levels within and between groups.
Several approaches to the load balancing can be used: static [95], dynamic [95], and
semi-dynamic [96], whereas the heuristic static load balancing [97] and the heteroge-
neous scheme [98] use a sophisticated balancing optimization. FMO has been used
on many supercomputers including Intrepid [99], Mira [100], and the K computer
[101]. Recently, anOpenMPparallelization of FMO inGAMESShas been developed
[101, 102].

As an application, chignolin (PDB: 1UAO) was calculated at the level of Hartree–
Fock (HF)with the 6-31G** basis set combinedwith conductor PCM (C-PCM) at the
level of PCM <1> using van-der-Waals atomic radii. The solute cavity is constructed
by combining atomic spheres, each of which is divided into 60 tesserae with a point
charge on each tessera. The charge renormalization was not used (to probe effect
of the charge escape, i.e., of the distribution of a part of the electron density of the
solute outside of the solvent cavity).

Solvent screening in PCM appears because of induced solvent charges, which can
be defined as the sum of solvent charges q̃i around a given solute atom [64]. One can
also define the solvent dipole moment d̃X for fragment X as

d̃X =
∑

i∈X
q̃i (Ri − R0) (5)

where i numbers tesserae with charge q̃i and coordinateRi.R0 is the reference point,
common to all fragments. The contributions d̃X can be added up to define the total
solvent dipole (the higher order n-body terms for n > 1 vanish due to the additivity).

d̃ =
N∑

I=1

d̃I (6)

Now, if the total charge of the system is not zero, multipole moments of the rank
of 1 and above depend on R0. One approach is to set R0 to be the center of charge of
the system. In this work, however, a simpler approach is taken by taking it to be the
center of nuclear charges only (i.e., excluding the electronic contribution). In PCM
[103], the relation between the total induced solvent charge q̃ and the total solute
charge Q is

q̃ ≈ −ε − 1

ε
Q (7)
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where E is the dielectric constant of the solvent. This relation is not exact due to the
charge escape problem and can be enforced by the charge renormalization [104].
The total charge of a solvated system is

q̃ + Q ≈ Q

ε
(8)

In water, ε = 78.39 and 1/ε ≈ 0; thus, within a small error of 1–2%, q̃ + Q ≈ 0.
This is the justification for theweak dependence of the total (solute+ solvent) dipoles
on R0. To test this dependence, another choice of defining R0 was employed, to set
it to the center of mass.

Some atomic charges in chignolin are shown in Table 3. The total formal solute
charge Q of chignolin is −2, and the calculated solvent charge q̃ is 1.9526 (if the
charge renormalization were used, it would have been 1.9745 according to Eq. 7),
thus the total charge q̃ + Q is −0.0474. Individual atomic and fragment charges do
not obey the simple relation in Eq. 7 because of many-body effects, i.e., the charges
on fragment I are induced not only by the atoms and solvent charges on I, but by all
other fragments too.

The computed charge of −NH+
3 is 0.6264 (compare to the formal value of +

1). Within −NH+
3 , the nitrogen has a negative charge of −0.6228, and it deprives

adjacent hydrogens of much of their electron density. The computed charge on Gly-
1 (the convention is to use dash to denote fragment residues, and no dash for real
residues) is 1.0761, it differs from 1 because it is calculated with FMO2, which
includes the effect of charge transfer to other fragments. The total induced solvent
charge on Gly-1 is −0.8330. It is smaller than −(ε − 1)/ε = −0.9872 (see Eq. 7)
because of the charge quenching effect [65] (and, to a smaller extent, charge escape)
due to the potential pressure of other fragments, in particular, Asp-3, which has an

Table 3 Solute qA (Mulliken) and solvent q̃A charges (a.u.) of atom A in Gly-1 of chignolin
(1UAO) for FMO2-HF/6-31G** and full (unfragmented) calculations. σA is the solvent coverage
(%) of atom Aa

A qA q̃A σA Group q q̃

N −0.623 −0.094 7.7 −NH+
3 0.626 −0.569

H1 0.415 −0.158 23.3

H2 0.411 −0.132 22.3

H3 0.423 −0.186 30.4

Cα −0.175 −0.073 7.0 −CH2− 0.315 −0.266

Hα2 0.251 −0.094 24.6

Hα3 0.240 −0.099 21.9

C 0.789 −0.027 2.3 −C=O 0.134 0.003

O −0.655 0.030 9.0

aSee Fig. 1. q and q̃ are the solute and solvent charges of functional groups, respectively
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Fig. 1 The first residue
Gly1 (N-terminus, Q1 = +
1) in chignolin is shown as
balls and sticks

opposite charge of −1 and whose potential cancels out partially the potential of
Gly-1, and thus reduces the induced solvent charge.

The dipole moments are shown in Table 4. There are three anionic (Asp-3, Glu-5,
and Gly-10) and one cationic (Gly-1) fragments. The charged fragments can be seen
to have large solute dX and solvent d̃X dipole moments, of typically opposite sign
for each component so that the sum dX + d̃X tends to be small. The x coordinates of
the centers of charge and mass happen to be very similar, whereas y and z elements
differ substantially. This is why d̃X

x shows no R0 dependence, whereas the other two
components differ by as much as 0.11 Debye. On the other hand, dX + d̃X for the two
choices of R0 differs by 0.02 Debye or less, i.e., the total values are rather insensitive
to the choice of R0.

For the center of mass reference, the total solute and solvent dipole moments are
82.289 and 78.580 Debye, respectively, and the length of their vector sum is 4.126
Debye. The observed screening is by the factor of 82.289/4.126 = 19.94, which can
be compared to the theoretical screening factor for charges in Eq. 8 (ε = 78.39). For
comparison, the computed charges are screened with the factor of 2/0.0474 = 42.19
(different from ε because of the charge escape). Thus, dipole moments are screened
about twice weaker than charges, in this system.
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Table 4 Solute dI and solvent d̃I dipole moments (Debye) of fragment I in FMO2-HF/6-31G**
for chignolina

I R0 d I
x d I

y d I
z d̃ I

x d̃ I
y d̃ I

z

∣∣∣dI + d̃I
∣∣∣

Gly-1 C −25.81 11.63 −15.31 23.95 −11.45 14.72 1.95

Tyr-2 C 0.32 7.33 −0.24 −0.07 −5.16 1.30 2.43

Asp-3 C 17.77 −5.09 −18.39 −11.21 1.03 7.54 13.31

Pro-4 C −4.50 3.80 0.66 0.00 −3.45 −1.88 4.69

Glu-5 C 6.64 7.21 −39.68 −7.39 −5.12 37.16 3.36

Thr-6 C −1.79 1.78 −3.75 1.86 −2.13 9.22 5.48

Gly-7 C −3.72 3.38 −0.13 2.37 −2.70 2.27 2.62

Thr-8 C −3.36 2.29 2.85 3.86 0.77 −0.23 4.06

Trp-9 C 4.41 −7.50 −2.54 −3.08 2.53 6.23 6.33

Gly-10 C 23.46 28.98 17.27 −23.46 −26.51 −18.81 2.91

Gly-1 M −25.81 11.74 −15.36 23.95 −11.54 14.75 1.96

Tyr-2 M 0.32 7.33 −0.24 −0.07 −5.18 1.30 2.41

Asp-3 M 17.77 −5.19 −18.35 −11.21 1.10 7.51 13.31

Pro-4 M −4.50 3.80 0.66 0.00 −3.46 −1.88 4.68

Glu-5 M 6.64 7.10 −39.64 −7.39 −5.00 37.12 3.36

Thr-6 M −1.79 1.78 −3.75 1.86 −2.10 9.21 5.46

Gly-7 M −3.72 3.38 −0.13 2.37 −2.69 2.26 2.61

Thr-8 M −3.36 2.29 2.85 3.86 0.78 −0.23 4.07

Trp-9 M 4.41 −7.50 −2.54 −3.08 2.50 6.24 6.36

Gly-10 M 23.46 28.88 17.31 −23.46 −26.40 −18.86 2.92

aThe choice of R0 is the center either of nuclear charge (C) or mass (M)

3 Conclusions and Outlook

Themain categories of FMOapplications are: biochemical studies including protein–
ligand binding [105], folding [106, 107], enzymatic catalysis [108, 109], chem-
ical processes in explicit solvent [110], and electronic excitations [111, 112]. One
venue of FMO applications lies in the parametrization of other approaches based on
FMO calculations [113, 114] and also in studying structure–activity relationships
[115, 116].

There have been only few applications of FMO to polymers [117, 118]. These
applications have been done for cluster models of polymers, which may be appro-
priate when the system of interest has no periodic symmetry due to defects, presence
of ligands, or because one is interested specifically in a nanoparticlewith its boundary
effects. For systems with a periodic symmetry present, one may need to apply peri-
odic boundary conditions [93], which are also sometimes applied to solutions despite
the lack of symmetry in real systems.
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It may be considered a typical feature of most organic systems, large enough
to make it feasible to do fragmentation in FMO, to be flexible, which necessitates
sampling of the conformational space in a temperature-dependent fashion, usually
with molecular dynamics. Although FMO/MD can be performed [119], it is still
challenging to carry on simulations for a realistic duration even with the most
computationally efficient methods such as DFTB.

The FMO potential in treating inorganic systems has been much underused
because of the need to manually set up fragments with multiple detached bonds
between them (some systems, such as ionic liquids [73, 120], do not have this
problem), and it is hoped that in future more work will be done in the area of material
science. As a step in this direction, FMO-DFTB, combined with the AFO treatment
suitable for inorganic materials, has been developed and applied to a demonstrative
molecular dynamics simulation system of a 10 m nano system containing over 1
million atoms [41].

GUI development has advanced to a practically useful level, but it falls behind
the development of the method and computational software, and a major effort will
have to be invested in improving FMO-enabled GUI to make FMO calculations easy
to perform, and various results easy to visualize.

Acknowledgements The author thanks Prof. Kazuo Kitaura for his guidance in implementing
FMO in GAMESS and many fruitful discussions.
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Abstract We have been developing the ABINIT-MP program system as an original
code for the fragmentmolecular orbital (FMO) calculations. ABINIT-MP has several
unique features such as a variety of efficient correlated methods and hybrid paral-
lelism. Additionally, an associated graphical user interface (named as BioStation
Viewer) has been provided for end-users. In this chapter, we summarize the current
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features of the ABINIT-MP program. Plans and activities of future developments are
addressed as well.

Keywords ABINIT-MP · Four-body FMO (FMO4) · Hybrid parallel execution ·
Supercomputer · Higher-order correlated calculation · Graphical user interface
(BioStation viewer)

1 Introduction

The fragment molecular orbital (FMO) scheme was proposed in 1999 by Kitaura
et al. [1] to realize fully quantum–mechanical (QM) molecular orbital (MO) calcula-
tions for large-scale molecular systems such as proteins and DNAs at the reasonable
computational costs through parallel executions. The basic idea of FMO would be
related to the Morokuma-Kitaura energy decomposition analysis (EDA) by which
the components of interaction energies between two molecules of interest can be
analysed [2]. Although there have been various fragmentation-based MO schemes
as compiled in Refs. [3–6], FMO has been the most widely used, in particular for
biochemistry/physics and pharmaceutical chemistry [7–9]. A principal reason for
this situation can be attributed to the fact that the list of pair interaction energy (PIE)
or inter-fragment interaction energy (IFIE) for fragment pairs is straightforwardly
obtained at the end of FMO calculations, and these quantities are informative to grasp
the nature of interactions for a given target system [10–12]. Certainly, a variety of
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realistic FMOapplications are documented by the respective experts in other chapters
in this book.

Currently, the FMO calculations have been available with GAMES-US [13, 14],
PAICS [15, 16], OpenFMO [17, 18] and ABINIT-MP [12, 19]. In this chapter,
the current features of our ABINIT-MP program (written in FORTRAN) are docu-
mented; please refer to the corresponding chapters for other programs. Various abil-
ities implemented in ABINIT-MP are described in the following sections according
to categories such as “Energy calculation” and “Energy gradient calculation”.

2 Energy Calculation

The Hartree–Fock (HF) method [20] of the closed-shell restricted type is the base
of FMO calculations, and this fundamental ability was originally implemented by
Nakano [21]. At the fragment monomer (1-body) stage, the self-consistent charge
(SCC) condition is subjected to optimize the environmental electrostatic potential
(ESP) [10–12]. Namely, this monomer HF stage is iterated until the convergence,
where a typical number of iterations is about 50 for proteins. Various basis sets are
preset in ABINIT-MP, and the current standard basis set is the 6-31G(d) (or 6-31G*)
of valence double-zeta plus polarization (DZP) equality [20, 22]. The bond detach-
ment atom (BDA) of sp3 carbon [21] is prepared and preset for the respective basis
sets. The HF calculations are processed in a parallelized integral-direct way; the inte-
gral buffering is available when requested. To reduce the cost of ESP computations,
a couple of Mulliken population-based approximations [23] (atomic orbital charge
(AOC) and point charge (PTC)) are usually adopted. The parallelism in ABINIT-MP
is of dual-layer type, and both flat MPI mode and OpenMP/MPI hybrid mode (or
shared-memory processor (SMP) model) are supported. When the monomer SCC
condition is satisfied, the optimized ESP set is used for the fragment dimer (2-body)
stage [10–12]. Note that no re-optimization of ESP with iteration is made for dimers.
The quantum–mechanical polarization and charge delocalization are incorporated
at the monomer and dimer stages, respectively. The dimers consisting of distant
monomers are treatedwith the electrostatic approximation (Dimer-ES)without doing
HF calculation [23]. This is the original 2-body FMO scheme (explicitly denoted as
FMO2-HF) proposed by Kitaura [1]. The list of IFIEs is obtained when the dimer
stage completes [24]. In ABINIT-MP, 3-body (FMO3) and 4-body (FMO4) expan-
sions are available [25], by which accuracy is substantially improved; the ESP setting
is to be modified for these explicit many-body expansions. In FMO4, up to fragment
tetramers consisting of four closemonomers are to be computed. Typical incremental
costs of FMO3 and FMO4 relative to FMO2 are 3 and 10, respectively, at the HF
level. The modified IFIEs are proposed for FMO3 and FMO4 as well [26].

In ABINIT-MP, the default route of orbital optimizations in HF calculations has
been a C2 variant of direct inversion of iterative sequence (C2-DIIS) [27]. The energy
DIIS (EDIIS) [28] as well as the second-order MO based optimizer [29, 30] were
also implemented for difficult cases of convergence.
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It has been well known that the second-order Møller-Plesset perturbation (MP2)
[20, 31] is the easiest and computationally cheapest wavefunction recipe to take
the electron correlation into account. In fact, the dispersion-type interaction such as
CH/π is never described at the HF level, and thus (at least) MP2 must be performed
after HF. The kernel of MP2 processing is the integral transformation with a formal
cost of N5 (N means the number of basis function in a given fragment). At the
monomer stage, theMP2 calculation starts just after the final HF calculation with the
SCCconvergence [10–12]. The FMO-MP2withABINIT-MP [32–34] is performable
with an efficient integral-direct parallelismof bothflatMPI andOpenMP/MPImodes.
The incremental cost factor of FMO-MP2 relative to FMO-HF is typically a range
of 2–3 in the 2-body expansion, depending on available processors and memories.
In other words, FMO2-MP2 is quite routinely done as the standard job of FMO
calculation for the IFIE-based analyses. Note that MP2 is skipped for the Dimer-ES
pairs because of no HF calculation. A partial renormalization (PR-MP2) [35] as well
as spin-component scaling (SCS-MP2) [36] are usable as options. An approximate
MP2 density matrix (without solving the coupled perturbed HF (CPHF)) can be
computed when requested for population analyses [32, 33].

The third-order Møller-Plesset perturbation (MP3) [20, 31] incorporates the elec-
tron pair-pair interactions unlike MP2 as an independent pair model. The formal
cost of MP3 raises one order as N6 due to tensor contractions of integrals and MP1
amplitudes. A scaled MP3 approach called as MP2.5 (in which the MP3 additional
correlation energy is halved [37]) has attracted interest because evaluated interac-
tion energies by this way are comparable to those by the coupled cluster singles and
doubles with perturbative triples (CCSD(T)) method as the golden recipe to describe
the electron correlation. ABINIT-MP has an efficient integral-direct MP3 module
for FMO2 calculations with parallelism of both flat MPI and OpenMP/MPI [38]. If
enough amount of memory and high-speed computing cores are usable for FMO-
MP3, the incremental factor relative to FMO-MP2 is less than 10 (depending on the
type of processors); only 2 as the best case. Reliability of IFIE analyses could be
enhanced with the MP2.5 scaling, if the FMO-MP3 calculation is applicable to a
given system.

A variety of higher-order correlated methods [20, 31] from the fourth-order
Møller-Plesset perturbation (MP4) to CCSD(T) are available in ABINIT-MP within
FMO2 [39]; the SMP execution of OpenMP/MPI is assumed. The CCSD(T) compu-
tation consists of the iterative N6 part of amplitude optimization of singles and
doubles and the non-iterative N7 part of perturbative triples. Under parallelization,
a series of tensor contractions among integrals, amplitudes and intermediate quan-
tities are performed by matrix-oriented operations through DGEMM. The memory
demand for CCSD iterations is considerable, and thus Bruckner doubles (BD) [40] is
an alternative route; the number of grand iterations for BD is typically 5. The relative
cost of CCSD(T) and BD(T) to MP2 can reach roughly a hundred times. Although
such higher-order correlated methods are so costly, the cross-reference data of IFIEs
are obtainable for comparison with the MP2 or MP2.5 results [41].

The unrestricted HF (UHF) calculation is used when the target molecular
system contains an open-shell fragment, where the three-body treatment (FMO3)
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is supported [42, 43]. Correspondingly, the unrestricted MP2 (UMP2) method [20,
31] is adopted for the correlation correction. Care is necessary for spin contamina-
tion, especially for the existence of near-degeneracy. The applicability of FMO-UHF
is thus rather limited.

Several approximations to 2-electron integrals having four indices have been
known [44], where the fundamental concept is the factorization to some tensors
with fewer indices. Note that such factorizations are suitable for matrix-oriented
processing. In ABINIT-MP, the Cholesky decomposition with adaptive metric
(CDAM) scheme is usable for the HF and MP2 calculations with parallelism [45].
For the dimer MP2 stage, the acceleration with CDAM is roughly 10 times for the
6-31G basis set [20, 22]. The CDAM option is usable also for MP3, however the
acceleration is not preferable unfortunately; the resolution-of-identity (RI) [44] may
be promising for MP3 as implemented in PAICS [46, 47].

The integral generator module of ABINIT-MP written by Nakano is based on
Obara’s recursive algorithm [48], and only Cartesian type basis function is supported
(6d and 10f). Actually, two types of binary executable with and without handling
of f functions are prepared, because the former is 1.5 times larger because of the
lengthy processing in inner loops of the integral generator. The scalar relativistic
effects (mass-velocity andDarwin) are incorporated byusing themodel core potential
(MCP) sets [49, 50]whose valence basis functions are ofDZPquality [51]. TheMCP-
based FMO-MP2 method is applicable even to the uranyl (UO2

2+)-attached DNA
model under the explicit hydration condition [52]. For light elements, the MCP basis
set has better flexibility than that of the 6-31G(d) basis set, but the computational
cost increases due to longer contractions of valence primitives [41].

When a given target systemgrows in size, the number ofDimer-ES pairs [23] turns
huge and thus costly. The approximation of continuous multipole moment (CMM) is
further applied to process the Dimer-ES energies for relatively long distanced pairs
[53]; the acceleration factor is typically 10without significant loss of accuracy in total
energy (1× 10–4 atomic unit). Although theESP-AOCandESP-PTCapproximations
are usable for the ESP computations, there is a potential need to evaluate the exact
ESP within tractable time. Recently, the CMM technique has been introduced for
the ESP part as a speed-up option.

The multi-layer FMO (MFMO) treatment [54] in ABINIT-MP was first used for
excited-state calculations for the chromophore of photoactive proteins [55]; this topic
is addressed later. In the latest version of ABINIT-MP (Open Version 1 Revision 22)
[19], MFMO is oriented rather to the correlated treatment for the pharmacophore of
proteins. Namely, the following cost-effective usage is enabled. Both low and high
layers defined are treated at the HF level, and the latter is calculated at the MP2 or
MP3 levels for IFIE-based detailed discussion on the interactions between ligand
and neighbored residues.
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3 Energy Gradient Calculation

A set of the first derivative of FMO total energy with respect to nuclear coordinates
as the gradient is required for the geometry optimization and also the molecular
dynamics (MD). At the early stage of FMO developments with ABINIT-MP, the
HF gradient of 2-body expansion (FMO2-HF) was developed [56] and used for
preliminary MD simulations [57], where the contribution from BDA was omitted.
The current utility of FMO-MD in ABINIT-MP was based on PEACH developed by
Komeiji; refer to the corresponding chapter of this book and a couple of reviews [58,
59]. FMO-MD was used to simulate various organic reactions under an explicitly
hydrated condition [60–63].

For the water clusters with hydrogen bonds, the 3-body effect is substantial, and
thus the FMO3-HF gradient for MD was implemented [64]. According to the prece-
dent implementations in GAMESS-US, both the corrections of self-consistent Z-
vector (SCZV) [65] and BDA contribution [66] were incorporated in ABINIT-MP.
The periodic boundary condition (PBC) at the FMO3-HF level was also developed
for MD in Fujita’s [67] and Nakano’s local versions. The UHF gradient was imple-
mented at the FMO3 level and demonstrated for the MD simulation of hydrated
divalent copper ion [42].

The MP2 gradient [68] was developed for FMO-MD [69], and the importance of
electron correlationwas demonstrated for thewater cluster aswell as ammonia cluster
[70]. The FMO2-MP2 gradient was used also for the partial geometry optimization
in which the region of interest is the target to be optimized; the MP2 correlation was
certainly crucial to describe CH/π and π/π interactions in Trp-Cage [71]. Recently,
the frozen domain (FD) option [72] has been introduced as a more efficient route of
geometry optimization.

The MCP gradient-based FMO-MDwas available for droplet systems containing
heavy metal elements such as hydrated trivalent lanthanide ion [73] and cisplatin
[74]. The CDAM approximation was implemented for MP2 gradient, but the gross
acceleration was not so efficient as for the case of MP3 energy.

4 Property Evaluation

The singlet and triplet excitation energies can be evaluated by the ability of configura-
tion interaction singles (CIS) [55] with parallelized Fock-like contraction processing
(N4 computational cost [75]) under the MFMO framework [54]; the chromophore is
just the target of excitations. CIS frequently suffers from overestimations in evalu-
ated transition energies (1–2 eV), especially for singlet states. A perturbative doubles
correction named CIS(D) of N5 cost [76] is thus applied to remedy this discrep-
ancy after MFMO-CIS calculations [77], through inclusions of the orbital relaxation
energy for the target excited state and the differential correlation energy from the
ground state. Various modified CIS(D) versions incorporating effective higher-order
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contributions are available as well [78–80]; the cost scaling nature of N5 is kept.
All these CIS(D) calculations were parallelized in an integral-direct manner. Note
that the FMO-CIS gradient and the relaxed density matrix (by solving CPHF equa-
tion) for a specified excited state [75, 81] are available and also that the non-local
excitations can be modeled for molecular aggregates [82].

The frequency-dependent polarizability based on an HF linear response (LR)
[83] was implemented in a similar way to the CIS calculation [84]. This ability is
applicable even to silicon-based polymer chains [85]. Although the polarizability
values by HF-LR are underestimated relative to those by correlated methods, the
semi-quantitative discussion may be possible through proper scaling.

The dipole moment value is calculated for each monomer without charge at the
end of the monomer stage. The Mulliken population analysis [20] for all atoms in
the given system for FMO calculations is usually done a default utility, and various
better choices (natural population analysis [86, 87] or ESP-fitted population analyses
such as Merz–Kollman–Singh version [88, 89]) are usable upon request [90, 91].

5 Analysis Tool

As denoted previously, the notable merit of the FMO method is the usability as the
analysis tool with IFIE or PIE for a given target system. To enhance such an ability,
Morokuma-Kitaura’s EDA [2] variant of PIE (termed as PIEDA) was implemented
first in GAMESS-US [92] and later in ABINIT-MP [93], where a certain pair energy
is to be decomposed into four terms of “electrostatic” (ES), “Pauli’s exchange repul-
sion” (EX), “charge transfer” (CT) and “dispersion” (DI). The ES, EX and CT terms
are calculated at the HF level, whereas the DI term is evaluated at the MP2 or MP3
levels. Here, care may be taken for the fact that not only pure dispersion contribu-
tions but also correlation corrections (to reduce excess ionicity retained by the HF
description [20]) are included in the DI term. Recently, the local response dispersion
(LRD) [94] ability with HF density has been implemented in ABINIT-MP, by which
the dispersion contribution could be discussed separately. The PIEDAmodified with
LRD may be useful for more detailed discussions.

The solvation effect is often important in estimating the binding energy of ligand
to protein in hydrated conditions, and thus the FMO2Poisson-Boltzmann (PB)model
[95] has been implemented [96, 97]; the dielectric constant is the crucial parameter
as in the case of polarizable continuummodel. A number of grand iterations of FMO-
HF to achieve the convergence in the total energy of 1 × 10–5 (in atomic unit) are
typically 10–14. Once converged, the MP2 calculations are to be performed. The
PB-modified IFIE and PIEDA values show small but vital differences from those
without solvation, especially for the interactions among charged fragments [98].

There are a couple of orbital-wise analysis tools in ABINIT-MP. For hydrogen
bond or halogen bond with charge transfers, the configuration analysis for fragment
interaction (CAFI) [99] is preferable, by which a set of donor and acceptor orbitals
are obtained as the pseudo-natural orbital pairs derived from the concurrent electron
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relaxation functional (CERF) [100] calculation for the selected fragment monomers
after the monomer SCC stage. In contrast, the method of fragment interaction based
on local MP2 (FILM) [101, 102] is applicable to capture dispersion-dominated local
interactions of such CH/π or π/π types. Visual presentations of orbital-wise results
of CAFI or FILM are helpful in understanding the nature of site-specific interactions
in pharmacophore.

The counter-poise (CP) correction frombasis set superposition error (BSSE) [103]
is available for IFIEs at theHF,MP2 andMP3 levels [104]. In production calculations
of FMO2, the 6-31G(d) basis set has been usually used, and the evaluated IFIE
values could contain about 40% of BSSE portions in the worst situation based on our
experiences [41]. Some cautions may thus be required for quantitative discussion in
comparison with experimental data; semi-quantitative discussion is still possible in
the context of analysis, of course.

6 Utility

A potentially demanding step before the FMO calculation starts is the setting of
fragmentation associated with the definition of BDAs, where such works should be
tedious and error-pronewhen a given target system is large and complicated; the frag-
mentation is simple for molecular clusters without mutual bonds. For user’s conve-
nience, the fragmentation is automatically carried out in ABINIT-MP, for proteins,
DNAs and RNAs. As a preparation of input data, this operation is also possible with
the help by BioStation Viewer which is a graphical user interface (GUI) customized
for ABINIT-MP [12]; the generated tables of fragmentation information is to be
written out on an input file. BioStation Viewer is more useful in handling the output
data (e.g., CAFI orbital pairs [99]); demonstrative illustrations by this GUI may be
found in other chapters of this book.

As previously denoted, the BDA setting is usually made with the sp3-hybridized
carbon atom [21]. Due to this limitation, the fragmentation for proteins is done not at
the CO–NH peptide bond but at the Cα–CO bond. When the carbonyl oxygen atom
commits some interactions with other fragments (e.g., hydrogen bond), the assign-
ment of interacting fragment pair looks shifted [105]. Special care should thus be paid
for this case [98]. To circumvent such a difficulty, the sp2-hybridized BDA setting
has been implemented recently [106], by which a straightforward fragmentation at
the peptide bond is allowed. Because the respective IFIE values are affected, cross-
checking with the standard sp3 fragmentation is still necessary before the routine
usages of sp2 BDA.

Several Python scripts are provided for ABINIT-MP users. Old input data file
can be converted to the latest one by “mkinp.py”. An automated fragmentation of
peptoid systems [107] is enabled with “kyfrag.py”, where various functional groups
are connected not to Cα but to N (of peptide bond) in peptoids [108].
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7 Demonstrative Application

In this section, several demonstrative calculations with available methods in
ABINIT-MP are summarized. First, a favorable affinity with massively parallel
supercomputers is described in the following three paragraphs.

Large-scale MP2 [34], MP3 [38] and higher-order [39] calculations on the Earth
Simulators (ES and ES2) of NEC’s vector processor type were reported with the
6-31G basis set. The best efficiency relative to theoretical speed (of 1024 processors)
was recorded as high as 38.6% for a Trp127-His model protein at the fullMP4 level on
ES2 under the OpenMP/MPI hybrid parallelism, indicating that the DGEMM-based
processing of triples is efficiently implemented [39].

The Oakforest-PACS (OFP) system is many-core CPU supercomputer equipping
Intel’s Knights Landing processor (68 physical cores), and the hyperthreading with
virtual cores is supported by a multiplication factor of 4. By setting 64 threads per
fragment, the timings of FMO-MP2/6-31G(d) job with 2 and 4 processes on 1 node
of OFPwere 32.1 h and 15.6 h, respectively, for the HIV-protease-lopinavir complex.
The timings of the same job with 4 and 8 processes on 2 nodes were 16.1 h and 8.0 h,
respectively. The timing for a case of 16 processes on 4 nodes was 4.1 h. These timing
data suggest that the FMO-MP2 job can be executed with a rather small number of
nodes on OFP through the hyperthreading; a three-layer parallelization was usable
for the MP2 when needed [109].

FromApril 2020, a newFMOproject against the COVID-19 issue has been started
by using the supercomputer Fugaku whose performance is the world fastest as of
June 2020. Because of the overwhelming computing power of Fugaku, the FMO-
MP3/cc-pVDZ calculations (with PIEDA) can be easily processed even for the spike
protein of coronavirus consisting of 3.3 thousand amino acid residues; this MP3 job
was completed in 3.4 h with 147,456(=48 × 3072) cores, and the relative cost to
MP2 was only 2; the results will be published elsewhere.

Now, the excited-state calculations are briefed. The MFMO-CIS(D)/6-31G(d)
approach was successfully applied to evaluate both excitation and emission ener-
gies for the DsRed protein [110]. The related fluorescent proteins were calcu-
lated by the modified CIS(D) schemes [78–80], and the evaluated excitation ener-
gies were in agreement with the experimental values within 0.1 eV [111–113]. A
fully quantum mechanical estimation of blue shift of nπ* excitation energy of the
hydrated formaldehyde molecule was another representative example [114], where
the droplet hydrationmodelwas simulated by FMO-MDand the statistical evaluation
of excitation energy was made with the sampled structures from MD trajectories.

A combination of classical MD and FMOwas pioneered by Ishikawa [15]. In this
scheme, the MD-generated structures are subjected to a series of FMO calculations,
and the IFIE values are evaluated by incorporating the structural fluctuations in
a statistical fashion. Based on a rich amount of computational resources, such a
combinative approach was applied to a couple of biochemical problems. The first
is a comparative study on the Calmodulin in which the normal binding positions
of Ca(II) ions are replaced by Eu(III) ions [115]; the 4f-in-core MCP was used for
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Eu(III) [116]. The second is a structural interaction analysis on the uranyl-bridged
DNA [52]. These two works demonstrated an importance of statistical evaluation of
IFIEs in a realistic hydrated condition with finite temperature, and this approach has
been taken in the latest COVID-19 project on the supercomputer Fugaku as well.

Finally, applications related to the field of applied physics are addressed. Based
on the FMO4 scheme, the adsorptions of designed peptides onto specific inorganic
surfaces (modeled by large-scale clusters) were analyed [117–119]. In the cases of
hydroxyapatite [118] and calcite [119], the classical MD-sampled structures were
calculated at the MP2 level, and the respective roles of amino acid residues in inter-
acting with the surfaces were revealed with a statistical sense. Coarse-grained (CG)
simulations such as CG-MD and dissipative particle dynamics (DPD) [120] have
attracted considerable interest, because theoretical analyses of mesoscale systems
are made computationally tractable; various mesoscale functional devices consisting
of lipids, proteins and substrates have been proposed and developed in the applied
physics. Reliability and applicability depend on a set of effective interaction parame-
ters for these CG calculations, and empirical parameter-based simulations frequently
suffer from several limitations. Recently, the FMO-DPD method has been devel-
oped, in which the effective interaction parameters for DPD are non-empirically
derived from a series of FMO calculations (a total number of jobs frequently reaches
tens of thousands) for segment pairs defined for a given target system [121, 122];
please refer to the corresponding chapter written by Okuwaki in this book. FMO-
DPD was applied to a variety of simulations for electrolyte membranes [123], lipid
membranes/vesicles [124–127] and even proteins [128], and reasonable agreement
with available experimental data was obtained.

8 Future Development

The latest public ABINIT-MP program is Open Version 1 Revision 22 (June 2020).
For future releases, various developments have been in progress, and such works
are addressed. The RI-based modules of MP2, MP2 gradient and MP3 have been
imported from Ishikawa’sPAICS [15, 46, 47, 129], and these abilitieswill be available
in Version 2 as an option. From Ishimura’s SMASH [130], the numerical quadrature
module for density functional theory (DFT) as well as the effective core potential
(ECP) module has been incorporated into a test version of ABINIT-MP. The B3LYP
calculation [131] was potentially usable for FMO calculations, however the conver-
gence difficulty for fragment dimers [132] has not been resolved. For Version 2, the
porting work of integral generator (in which the spherical harmonic basis functions
can be used) in SMASH has been underway, where the extant integral generator by
Nakano has been kept; both generators may be properly used upon request.

The IFIE-based analysis is hardly applied to the directly linked fragment pairs
with BDA [21]. This has been a long-term issue in FMO calculations. A couple of
attempts have been made, although the remediation is still far from satisfactory [133,
134]. Continuous efforts are required for improvements.
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Depending on the available computational resources (e.g. the latest Fugaku),
ABINIT-MP is straightforwardly applicable to systems of thousands of fragments.
If one desires the FMO calculations for a whole system consisting of functional
proteins, surrounding membrane lipids, ions and waters, a total number of fragments
could be more than ten thousand. For such a demanding case, several modifications
and extensions may be required; for example, the load-balancing is a potential target
to be improved.

As denoted so far, the statistical evaluation of interaction energies has gotten
importance. Such an approach is suited to the machine learning (ML) from a view-
point of post-processing for generated big data. A couple of preliminary ML works
have been reported [135, 136]. In the next release of ABINIT-MP (Version 1Revision
25, scheduled in February 2021), the lists of both IFIE/PIEDA values and associated
descriptors (e.g. distance between centers of masses of fragment pair) are available
as a separate file to which python scripts are directly applied. The regressions with
support vector or random forest may be useful in predicting IFIE values without
FMO calculations for a given structure of target system, once the training finishes.
Works along this line have been promoted.

9 Summary

In this chapter, we have summarized various features of our ABINIT-MP program
[12, 19, 135, 137]. Several demonstrative applications were addressed as well. In
comparison with other FMO programs, ABINIT-MP could have several advan-
tages in (1) higher-order correlated calculation, (2) affinity with supercomputers
under hybrid parallelism, (3) FMO4, (4) variety of analysis tools, and (5) BioStation
Viewer (custom GUI). Further developments have still been in progress for large-
scale systems (ten thousand fragments) and statistical interaction analyses (with help
of ML).
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PAICS: Development of an Open-Source
Software of Fragment Molecular Orbital
Method for Biomolecule

Takeshi Ishikawa

Abstract PAICS is an open-source software available for fragmentmolecular orbital
(FMO) calculation. A notable characteristic of PAICS is the capability to use the
resolution of the identity (RI) approximation with the FMO scheme. Second-order
Møller–Plesset perturbation theory with the RI approximation (RI-MP2) was imple-
mented in PAICS, demonstrating that electron correlation energy of biomolecules
could be efficiently calculated. Recently, third-order Møller–Plesset perturbation
theory with the RI approximation (RI-MP3) was implemented, which enables us to
calculate higher order electron correlation energy of biomolecules in a reasonable
computational time. This chapter introduces the development of PAICS, by focusing
on the FMO-RI-MP2 and MP3.

Keywords PAICS · FMO-RI-MP2 · FMO-RI-MP3

1 Introduction

With the growth of computer technology, ab initio quantum chemical calculations
have been applied to large molecules, including protein and nucleic acids. The frag-
mentmolecular orbital (FMO)method [1–5] is one of themost promising approaches
for the quantum chemical investigation of such large molecules. As explained in the
previous chapter, a target molecule is divided into small fragments, and various
molecular properties are approximately calculated from the monomer and dimer
calculations of the fragments. Thus, by using the FMO method, we can greatly
reduce the computational cost of quantum chemical calculation of large molecule.

One of the program packages available for FMO calculations is “Parallelized
ab initio calculation system based on FMO,” which is abbreviated to PAICS [6]. This
program is developed by Takeshi Ishikawa, and its source code has been open to the
public since 2011 [7]. While Fortran has been traditionally used for the development
of quantum chemical program packages, C language is used for PAICS, which is one
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of the characteristics of PAICS. A two-level parallelization with MPI is adopted in
PAICS, that is, a whole FMOcalculation is parallelized by the fragmentmonomers or
dimers, and each calculation of them is additionally parallelized. When performing
FMO calculations, fragmentation manner of a target molecule has to be given for
every calculation. This process is very complicated, especially for a large molecule
like a biomolecule, resulting that a method to automatically perform such a fragmen-
tation is required. “PaicsView” is developed as a graphical user-interface of PAICS,
which has a function of the auto-fragmentation for a typical protein or nucleic acid.
Several application studies using PAICS and PaicsView have been reported in the
life science field [8–13], including rational drug discoveries of infectious diseases
[6, 14–19].

Restricted Hartree–Fock (RHF) method is implemented in PAICS as a basic
quantum chemical theory for the FMO scheme, but it is not enough for accurate eval-
uation of the molecular interaction in biomolecules, in which dispersion interaction
(or electron correlation effect) is essential. Thus, the second-order Møller–Plesset
perturbation theory (MP2) with the resolution of the identity (RI) approximation
[20–22], which is one of the most cost-effective electron correlation methods, is
implemented in PAICS [23, 24]. Recently, the third-order Møller–Plesset perturba-
tion theory (MP3) with the RI approximation was further implemented [25]. Because
capability of the FMO-RI-MP2 and FMO-RI-MP3 is one of the most important char-
acteristics of PAICS, details of them are described here. Another notable point in
the development of PAICS is FMO-based quantum chemical/molecular mechanics
method [26], which is given in Chap. 20.

2 RI-MP2 and MP3 with FMOMethod

During the past couple of decades, various quantum chemical theories with approx-
imation for the 4-center electron-repulsion integral (ERI) have been developed.
Among them, the RI approximation is the most commonly used [27–29], in which
the 4-center ERIs are approximately calculated with the 3- and 2-center ERIs using
auxiliary basis functions. For example, (ia| jb), a typical molecular orbital-based
ERI, is approximately calculated as the following equation:

(ia| jb) ≈
∑

P

BP
ia B

P
jb, (1)

where i or j is index of valence molecular orbitals (i.e., occupied orbitals not
including frozen core orbitals), a or b is index of virtual molecular orbitals, and
P or Q is index of auxiliary basis functions. A typical number of auxiliary basis
functions is around three times larger than that of the basis functions. The matrix
elements of BP are calculated as
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BP
ia =

∑

Q

(ia|Q)V−1/2
QP , (2)

where (ia|Q) is the 3-center ERIs defined as

(ia|Q) = ∫ϕi (r1)ϕa(r1)
1

|r1 − r2|ϕQ(r2)d r1d r2, (3)

and V−1/2
QP is the element of the inverse of the square root matrix of V . This V matrix

is calculated using the 2-center ERIs:

VPQ = (P|Q) = ∫ϕP(r1)
1

|r1 − r2|ϕQ(r2)d r1d r2. (4)

MP2 correlation energy is obtained from the following equation:

EMP2 =
∑

i jab

(ia| jb)[2(ia| jb) − (ib| ja)]

εi + ε j − εa − εb
, (5)

where εi and εa are the orbital energy of the valence and virtual molecular orbitals,
respectively. When using the RI approximation, (ia| jb) and (ib| ja) in Eq. (5) are
calculated from BP matrix with Eq. (1). In the case of MP3 correlation energy,
(i j |ab) and (ac|bd) type ERIs are additionally required [30, 31], and they are also
calculated from BP matrix.

Once BP matrix is calculated by Eq. (2) and stored in the memory, the 4-center
ERIs can be easily obtained from Eq. (1). RI-MP2 and MP3 energies are efficiently
calculated using the DGEMM routine of the basis linear algebra subroutines (BLAS)
because the main parts of the operations are described as the matrix multiplications
involving BP . However, the size of BP matrix, which increases with the third power
of themolecular size, is a crucial problem for the calculations of largemolecules using
the RI approximation. Especially in the case of RI-MP3, the memory requirement
of BP matrix is unattainable because it not only occupied–virtual elements but also
virtual–virtual elements are needed. This is a major reason why few application
studies using RI-MP3 have been reported. On the other hand, the size of calculation
is limited within the pair of fragments in FMO calculations. For example, in the
case of a typical protein, dimer calculation of tryptophan pair is the largest size
calculation because amino acid residue is usually treated as a single fragment in the
FMOmethod. As a result, the memory requirement of BP matrix is not a significant
problem for FMO-RI-MP2 and FMO-RI-MP3. Thus, it should be emphasized here
that the combination of the FMO method and RI approximation is very promising.
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3 Benchmark Calculation of FMO-RI-MP2 and MP3

Asbenchmark calculations of theFMO-RI-MP2andMP3withPAICS, the previously
reported calculations of two biomolecular systems are shown here [23–25]. One is
prion protein (PrP) complexed with GN8, and another is human immunodeficiency
virus type 1 protease (HIV1 PR) complexed with lopinavir. PrP is a key protein in
prion diseases, and GN8 [32] is a potential curative agent; the complex contains 103
amino acid residues and 1729 atoms. HIV1 PR is an important protein in the infection
of acquired immune deficiency syndrome (AIDS), and lopinavir is an inhibitor; the
complex contains 199 amino acid residues and 3225 atoms. The FMO calculations
with the cc-pVDZ basis set [33] and auxiliary basis functions developed byWeigend
et al. [34] were performed using 32 cores (Intel Xeon E5-2695v4) with a 4.0 GB
memory per core.

Table 1 shows the computational times of the total energy of the two complexes
by the FMO-RHF, FMO-MP2, FMO-RI-MP2, and FMO-RI-MP3. In the FMO-RHF
calculations, the total times were 328.8 and 724.7 min for the PrP and HIV1 PR
complexes, respectively. For the FMO-MP2, where the monomer and dimer MP2
calculations were additionally performed, the total times increased to 909.7 and
1618.5 min, respectively (the ratios to the FMO-RHF were 2.77 and 2.33). However,
the total times of the FMO-RI-MP2were 359.2 and 766.7min, respectively (the ratios
were only 1.09 and 1.06), clearly demonstrating that the MP2 correlation energy
can be obtained without a significant increase of computational time compared to
the FMO-RHF. For the FMO-RI-MP3 calculations, the computational times were
1572.2 and 2591.3 min, and the ratio with respect to the FMO-RHF calculations was
4.78 for the PrP complex and 3.58 for HIV1 PR complex. Thus, we can safely say
that theMP3 correlation energy of large molecules can be obtained with a reasonable
computational effort by using the RI approximation.

The interaction energy between a protein and small molecule is one of the
most important quantities in typical biological applications using FMO method. In

Table 1 Computational time of the energy of FMO-RHF, FMO-MP2, FMO-RI-MP2, and FMO-
RI-MP3 for the two biomolecular systems by PAICS. The time is given in minutes. The calculations
were performed using 32 Intel Xeon E5-2695v4 cores with a 4.0 GB memory per core

PrP complex HIV1 PR complex

RHF MP2 RI-MP2 RI-MP3 RHF MP2 RI-MP2 RI-MP3

Monomer
SCC

144.0 143.7 144.1 144.0 373.6 369.5 366.9 368.9

Monomer 1.9 10.7 2.4 12.4 3.5 16.2 4.2 17.9

Dimer-ES 31.0 31.1 31.0 31.0 107.6 107.6 107.7 110.5

Dimer 113.6 681.6 143.0 1384.7 214.5 1113.2 221.0 248.4

Total 328.8 909.7 359.2 1572.2 724.7 1618.5 766.7 2591.3

Ratioa 1.00 2.77 1.09 4.78 1.00 2.23 1.06 3.58

aThe ratio to the computational time of the FMO-RHF calculation
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Table 2 Correlation contributions of FMO-MP2, FMO-MP3, and FMO-MP2.5 to the protein–
ligand interaction energies, and their errors associated with the RI approximation. The energy is
given in Hartree. MP2.5 values are obtained by the sum of the MP2 correlation energy and half of
the MP3 correlation energy

PrP complex HIV1 PR complex

Without RI With RI RI error Without
RI

With RI RI error

EFMO−MP2
corr − 0.11267 − 0.11275 − 0.00008 −

0.19769
− 0.19782 − 0.00013

EFMO−MP3
corr − 0.09189 − 0.09196 − 0.00007 −

0.16066
− 0.16075 − 0.00009

EFMO−MP2.5
corr − 0.10228 − 0.10235 − 0.00008 −

0.17918
− 0.17929 − 0.00011

Table 2, the correlation contributions to the protein–ligand interaction energy
obtained from theFMO-MP2,FMO-MP3, andFMO-MP2.5 are summarized together
with theRI approximation errors.MP2.5 is themethod proposed by Pitoňák et al. [35]
in which the MP3 correlation energy is made half and added to the MP2 correlation
energy. It is known that molecular interaction energies calculated by the MP2.5 have
a comparable reliability with those calculated by coupled-cluster theory at singles
and doubles plus perturbative triples, CCSD(T). For the PrP complex, RI approxi-
mation errors were −0.00008, +0.00007, and −0.00008 Hartree in the correlation
energies of the FMO-MP2, FMO-MP3, and FMO-MP2.5, respectively. The errors in
the HIV1 PR complex were also of same order of magnitude. These results demon-
strate that the errors associated with the RI approximation are insignificantly small
for the molecular interaction energy. Thus, we can say that the FMO-RI-MP3 or
FMO-RI-MP2.5 is one of the most promising method for accurate evaluation of the
interaction energies in biomolecules.

In the current version of PAICS, the calculation of energy gradient with RI-MP2
is also available [24]. Table 3 summarizes the computational times of the energy
gradient by the FMO-RHF, FMO-MP2, and FMO-RI-MP2. For the PrP complex,
the times of the HF and RI-MP2 gradients were 850.0 and 1291.1 min, respectively,
whose ratio was only 1.52. Similarly, the ratio was only 1.32 for the HIV1 complex.
On the other hand, the computational times of the MP2 gradient were much larger
than those of the HF gradient, that is, 2986.5 min (the ratio was 3.51) for the PrP
complex and 5378.6 min (the ratio was 2.50) for the HIV1 complex. These results
show that not only the energy but also the gradient can be efficiently calculated by
using the RI approximation in FMO method.

Although cc-pVDZbasis setwas used in these benchmark calculations, it is known
that larger basis sets are needed for accurate evaluation of the electron correlation
energy inmolecular interaction. For example, diffuse basis functions can improve the
quantitative description of the dispersion interaction.However, one problem is known
to arise in the FMO calculations with a large basis set, that is, the poor convergence
of the monomer SCC procedure. Actually, we could not reach to the convergence



74 T. Ishikawa

Table 3 Computational time of the energy gradient of FMO-RHF, MP2, and RI-MP2 for the two
biomolecular systems by PAICS. The time is given in minutes. The calculations were performed
using 32 Intel Xeon E5-2695v4 cores with a 4.0 GB memory per core

PrP complex HIV1 PR complex

RHF MP2 RI-MP2 RHF MP2 RI-MP2

Monomer SCC 143.9 144.4 144.6 368.5 371.1 370.1

Monomer 5.5 37.1 12.1 9.0 58.1 19.9

Dimer-ES 260.8 260.6 261.1 881.1 881.6 880.1

Dimer 439.7 2544.4 873.3 892.7 4067.7 1571.6

Total 850.0 2986.5 1291.1 2151.4 5378.6 2841.7

Ratioa 1.00 3.51 1.52 1.00 2.5 1.32

aThe ratio to the computational time of the FMO-RHF calculation

of the monomer SCC of the FMO calculations with cc-pVTZ basis set for above
two biomolecular systems in the previous study [23]. Another problem is that the
auxiliary basis functions implemented in PAICS are limited within atomic number
1 to 18 and 31 to 36 for cc-pVDZ. As a result, FMO calculations of biomolecules
including metal atoms (e.g., copper or zinc atom) cannot be performed with the
RI approximation, while such metal-containing biomolecules are one of the most
important targets for quantum chemistry. These problems are hoped to be addressed
in future.

4 Summary

In this chapter, the development of PAICS was described, focusing on the FMO-RI-
MP2 and MP3. The combination of the RI approximation with the FMO method
is very promising because the memory requirement of BP matrix, which is a main
problem of the RI approximation in conventional quantum chemical calculations,
is not significant in the FMO scheme. As clearly shown by the benchmark calcula-
tions with two biomolecular systems, these methods enable us to efficiently calcu-
late the electron correlation energy in biomolecules. Although PAICS is a potential
open-source software for FMO calculations of biomolecules, some issues should be
addressed. For example, any implicit solvent model cannot be used, and three-body
expansion of the FMO method (so-called FMO3) is not available. These methods
are hoped to be implemented in PAICS in the near future.
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Open-Architecture Program of Fragment
Molecular Orbital Method for Massive
Parallel Computing (OpenFMO) with
GPU Acceleration

Hirotaka Kitoh-Nishioka, Hiroaki Umeda, and Yasuteru Shigeta

Abstract OpenFMO is an open-architecture program of fragment molecular orbital
(FMO) method for massively parallel peta- and exa-scale systems. This chapter pro-
vides an overview of OpenFMO program, focusing on its latest capabilities, master-
worker execution scheme, MPI+OpenMP hybrid parallelization, GPU acceleration,
and benchmark performances. The latest version of OpenFMO program is available
through an open-source MIT license and the most recent information, including how
to download, compile, and execute it with command-line options, and several exam-
ples used as a tutorial and template for the users can be found in the OpenFMO
official website, https://openfmo.org.

Keywords Open source · MPI+OpenMP hybrid parallelization · Master-worker
scheme · GPGPU

1 Introduction

As described in great detail by this book, the FMO method [1–3] is a method that
has been developed for solving ab initio electronic structures of large bio-molecules,
such as protein, nucleic acids, and sugar chains. In the FMO method, the large
molecule is first divided into small fragments, where each fragment usually con-
sists of 20 to 40 atoms; the FMO method approximates the electronic structure of
the whole molecule by using the results of the electronic-structure calculations per-
formed on the fragment monomers and dimers, depending on the level. Since the
fragment electronic-structure calculations are independent of each other, the algo-
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rithm of the FMO method is inherently suitable for parallel executions. Previous
studies have shown that one can obtain the reasonable parallel efficiencies of the
FMO calculations by using up to 1, 000 parallel executions [4, 5]. Although several
large-scale FMO calculations [6–10] have been reported so far, adequate modifica-
tions to the algorithms in FMO calculations and optimal tuning of the parallelized
implementations are still essential to achieve the practical FMO executions on more
than peta-scale systems with desirable parallel efficiencies.

Toward the efficient FMO calculations on peta-scale computing systems,
“OpenFMO” program [11] has been developed by Inadomi and co-workers [12–
15] at Kyushu University and Institute of Systems, Information Technologies and
Nanotechnologies (ISIT). OpenFMO program currently offers the FMO method
with two-body correction (FMO2) at the restricted Hartree–Fock level of theory,
called FMO2-RHF, which is written from scratch in C programming language with
a short-length code consisting of ca. 54, 000 lines. Since OpenFMO program relies
on the standard MPI [16] and OpenMP [17] for its parallelization, it runs on any
parallel computing platform that possesses a reasonable C compiler, OpenMP API,
and MPI library. In the parallelization, OpenFMO program distributes several data
arrays required for fragment electronic-structure calculations over all [13] or some
[15] processes. Thus, the large-scale FMO calculations are feasible for the paral-
lel computing systems with limited memory resources on each node. Furthermore,
OpenFMO program avoids the use of scratch-disk space associated with slow disk-
based I/O access and communication [12, 13]. Now, OpenFMO is well optimized
for the large FMO2-RHF calculations on the peta-scale massive-parallel computing
systems, such as K-computer [18], through the MPI+OpenMP hybrid parallelization
of time-consuming molecular integral calculations, improvement of the store of and
access to the monomer density matrices, and dynamic load balancing based on a
newly implemented global counter [14, 15]. By using the tuned OpenFMO program,
Inadomi and co-workers [14, 15] succeeded in carrying out effective large-scale
FMO2-RHF/6-31G(d) calculations, in which a targeted protein consisting of 16,764
atoms was divided in to 576 fragments, over up to 20,480 parallel executions.

Another recent remarkable progress in OpenFMO program is the capability of
the use of modern NVIDIA graphics processing units (GPUs). The use of powerful
GPUs to accelerate quantum chemical calculations is eagerly anticipated in a wide
scientific field, while it is a difficult task to adapt pre-existing (legacy) codes to such
newhardware frameworkswith newly developed programming environments includ-
ing CUDA (compute unified device architecture). Although several research groups
[19–24] have developed GPU-accelerated RHF calculations, there are problems to
incorporate them intoOpenFMO, for example, one reason arises fromnon-disclosure
of most their codes. Thus, we [25–28] have developed GPU-accelerated FMO2-RHF
calculations by implementing the GPU-enabled kernel codes in the following two
time-consuming parts of OpenFMO program with CUDA from scratch: (1) Fock-
matrix construction [27, 28] and (2) four-center (4C) inter-fragment Coulomb inter-
action (IFC) [25–27].Wehave reported that theGPU-acceleratedOpenFMOprogram
can show reasonable speedups for several benchmark calculations [25–27].
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We recently made the GPU-accelerated OpenFMO program publicly available on
GitHub at https://github.com/OpenFMO/OpenFMO.We dedicate the remaining part
of this chapter to give some information about the use of OpenFMO program on a
CPU/GPU cluster computing system. Section 2 overviews its capabilities. Section 3
explains a scheme of FMO2-RHF calculations for making it easy to understand
the following sections. Section 4 explains the master-worker execution model of
OpenFMO based on MPI dynamic process management (explained later) or fault-
resilient programming middleware, Falanx [29, 30]. Section 5 briefly describes the
GPGPU parts of OpenFMO and shows their benchmark performances. Section 6
gives concluding remarks of this chapter.

2 Capabilities

OpenFMO program version 1.0 [11] is available through the repositories hosted on
GitHub, https://github.com/OpenFMO/OpenFMO. In addition to FMO calculations,
the users can do conventional RHF calculations using the “skeleton-RHF” code of
OpenFMO, which is also MPI and OpenMP hybrid program. The capabilities of
OpenFMO program are summarized as follows:

• RHF and FMO2-RHF.
• Single-point ground-state energy calculation.
• Minimumanddouble-zetaGaussian basis functions up to third-rowatoms (namely,
H - Ar) including STO-3G, 6-31G, 6-31G(d), 6-31G(d,p).

• MPI + OpenMP parallelization for RHF and FMO2-RHF.
• GPU-accelerated RHF and FMO-RHF with Fermi or Kepler microarchitecture
supporting double-precision floating-point operations.

Although we assume that OpenFMO program runs on any parallel computing plat-
form, it is preferable that the platform satisfies the conditions as follows:

• LINUX/UNIX cluster machines.
• GNU C compiler.
• Intel C compiler.
• MPI libraries (Default: Intel MPI Library):
MPI_comm_spawn functions are required for OpenFMO based on MPI dynamic
process management (explained in Sect. 4).

• Intel MKL(Math Kernel Library).

In addition, GPU-accelerated OpenFMO requires the following conditions that the
platform possesses:

• NVIDIA graphics card (Fermi or Kepler microarchitecture) supporting double-
precision floating-point operations.

• NVIDIA drivers for GPU.

https://github.com/OpenFMO/OpenFMO
https://github.com/OpenFMO/OpenFMO
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As described in Sect. 4, there are the following two implementations for the master-
worker executionmodel ofOpenFMOprogram; one version is based onMPIdynamic
process management (involving MPI_Comm_spawn functions), hereafter called
OpenFMO(MPI) for simplicity’s sake; the other version is based on Falanx [29,
30] fault-resilient programming middleware, hereafter called OpenFMO(Falanx).
Compiling OpenFMO(MPI) yields the three executables, “ofmo-master,” “ofmo-
worker,” and “ofmo-mserv,” while compiling OpenFMO (Falanx) yields the single
executable, “ofmo-falanx.” If it is difficult to run with MPI_Comm_spawn for your
system, you can use OpenFMO (Falanx).

OpenFMO program adopts the almost same input-file format as the FMO calcu-
lations implemented in GAMESS [31] ab initio quantum chemistry package. Since
some of the input groups used in GAMESS are directly used in OpenFMO, the
GAMESS documentations [32], such as “Input Description” and “Further Informa-
tion,” are useful for the users of OpenFMO. The input files for the FMO calculations
of GAMESS can be prepared with the CUI (character user interface)-style program,
FMOutil [33], its GUI (graphical user interface)-style version, Fu [34], and another
GUI program Facio [35, 36]. Thus, the users also make use of these programs for
the preparation of the input file of OpenFMO program. Further information of the
inputs can be found in the OpenFMO official website, https://openfmo.org.

3 Workflow of FMO

For making it easy to understand the following sections, we here give a brief expla-
nation of FMO2, of which the workflow is schematically illustrated in Fig. 1.

In the FMO method, the total molecule is first divided into Nfrag fragments and
initial density matrices DI are calculated for all fragments. The electronic structure
of each fragment is then solved self-consistently under the electrostatic potential
(ESP) from all other fragments. This procedure is called self-consistency of charge
(SCC). After the convergence of SCC, the electronic structure of each fragment-pair
is solved under ESP from all other fragments. FMO2 expresses an approximated
total electronic energy of a whole molecule, EFMO2, by [1–3]

EFMO2 =
Nfrag∑

I>J

EI J − (Nfrag − 2)
Nfrag∑

I

EI , (1)

EI and EI J represent the total electronic energies of I -th fragment monomer and I J -
th fragment-pair (dimer), respectively. Similarly, the approximated electron density
matrix of the whole molecule, DFMO2, is given by

DFMO2 =
Nfrag∑

I>J

DI J − (Nfrag − 2)
Nfrag∑

I

DI . (2)

https://openfmo.org
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Fig. 1 Workflow of FMO2-RHF calculation

The FMO method uses the following modified Fock matrix to solve the electronic
structure of each fragment(-pair) x under ESP,

Fx = 0Fx +
Nfrag∑

I �=x

xVI + Px , (3)

0Fx = 0Hcore
x + Gx , (4)

[Gx ]i j =
∑

kl

Dx
kl {2(i j |kl) − (il|k j)} , (5)

where 0Fx represents the conventional Fock matrix of fragment(-pair) x , includ-
ing one-electron Hamiltonian matrix 0Hcore

x and G-matrix defined in Eq. (5). Px

represents the hybrid orbital projection (HOP) operators, which is required when
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bond-detached/attached atoms are involved in x . xVI is the ESP generated by the
fragment I ( �= x), which is expressed by

xVI = xuI + xvI , (6)
[
xvI

]
i j

=
∑

kl∈I
DI

kl(i j |kl). (7)

Here, xuI to the ESP generated by the nuclei of fragment I ( �= x).
At each fragment calculation, the corresponding ESP {xVI } (I ( �= x)) is first eval-

uated as inter-fragment Coulomb interactions (IFCs) by using Eq. (6), which accom-
panies the calculations of four-center (4C) two-electron integrals, as shown in Eq. (7).
Usually, the FMOmethod calculates time-consuming 4C-IFCs only for neighboring
fragments and approximates the ESPs from the other fragments as the IFCs arising
from Mulliken populations or Mulliken atomic charges. Moreover, we can reason-
ably approximate the electrostatic interaction between long-separated fragment-pair
as follows:

EI J ≈ EI + EJ − Tr
(
DI

JVI
)
, (8)

which is called “ES dimer” approximation. On the other hand, the explicit SCF
calculation of the fragment-pair is called “Dimer SCF.”

4 Master-Worker Execution Model

To effectively perform large-scale FMO calculations on a CPU or GPU cluster, the
user needs to understand the master-worker execution model of OpenFMO program,
which is schematically illustrated in Fig. 2 [15].

In the master-worker model, one process works as a “master” one. All the remain-
ing processes are first divided into “data server” and “worker” processes. All the
worker processes are then divided into groups, called “worker groups.” The master
process assigns monomer and dimer calculation jobs to each worker group and gath-
ers their results. These jobs are done independently of each other in each SCC loop
and thefinal FMO2step after theSCCconvergence,which is the inter-fragment(-pair)
upper level (or coarse-grained) parallelization (see the blocks marked by orange in
Fig. 1). The execution of the job assigned to one worker group is parallelized within
the worker group, which is the intra-fragment lower level (or fine-grained) paral-
lelization (see the blocks marked by green in Fig. 1). Such the two-level hierarchical
parallel scheme is used in other FMO codes including GAMESS [37] and ABINIT-
MP [38]. As described in Sect. 3 and shown in Fig. 1, each worker group responsible
for the calculation of fragment(-pair) x needs not only the data of one’s own density
matrix Dx but also those of the other fragments, {DI } (I �= x), to construct the ESP,
{xVI }. The memory requirement for storing the data of monomer density matrices
is increased with increasing the system size. If each process tries to store all neces-
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Fig. 2 Master-worker execution model used for OpenFMO

sary density matrices on its memory, the peta-scale FMO calculations for more than
10, 000-fragment systems must encounter the memory requirement problem [13].
To avoid the problem, the master process in OpenFMO program distributes the data
of monomer density matrices to the memories of data server processes and updates
them by following the results done by worker groups. The data server processes are
devoted to the response to the communication operations related to density matrices.
Since the data server processes are uninvolved in electronic-structure calculations,
their implementation leads to a decrease in the computational efficiency to some
extent. In the early days, one-sided communication (OSC) of MPI-2 standard was
implemented in OpenFMO program [13], where the data of monomer density matri-
ces were distributed over all worker groups. Although the OSC implementation does
not need the use of the data server processes, its fragment calculation jobs need
to exchange necessary density matrices between worker groups, which leads to an
increase in the communication latency during the inter-fragment upper level paral-
lelization. Inadomi and co-workers [15] demonstrated that OpenFMO program using
data server process exhibits better performance than the previous OSC-implemented
one.
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On modern CPU/GPU clusters, we can usually make use of a MPI+OpenMP
hybrid scheme to use multi-threading for single-node parallelism in combination
with message-passing for parallelization across many nodes. It is well known that
MPI+OpenMP hybrid scheme has several advantages, including the fast synchro-
nization within a node, the data sharing between threads, smaller memory footprint,
etc. In the released OpenFMO program, MPI+OpenMP hybrid scheme is applied to
the molecular integral calculations in Fock matrix, Eq. (5), and 4C-IFC calculations,
Eq. (7), which accounts for most of computational time in FMO2-RHF.

One of the most attractive features of OpenFMO program is the implementation
of a sophisticated dynamic load-balancing technique with global counter [14, 15], to
maintain the good load balance for both inter-fragment upper level and intra-fragment
lower level parallelizations. To achieve the parallel efficiency, one should avoid the
workload imbalance of the time-consuming evaluation of the molecular integrals.
Generally, the integral screening based on Schwarz inequality is used before the
integrals are calculated, which reduces the computational costs. Since we are usually
unable to know in advance how much tasks will be assigned to each group/process,
it is difficult to use a static load-balancing technique that distributes the tasks in a
round-robin fashion. From the reason, Inadomi and co-workers [14, 15] implemented
the global counter using standard MPI and OpenMP libraries to keep the portability
of OpenFMO. In the implementation of the global counter, one thread of “rank
0” process in each work group is used as the master thread of global counter that
devoting oneself completely to maintain a global counter in each group and response
to the communication operations requested by the other processes/threads; on the
other hand, the other threads in each work group can be involved in the molecular
integral calculations. As a result, OpenFMO program has achieved very high parallel
efficiencies for large-scale FMO calculations so far. See Ref. [14, 15] for further
details about its implementation and their benchmark performances.

As described in Sect. 2, there are two implementations for the master-worker exe-
cution model: OpenFMO(MPI) and OpenFMO(Falanx). OpenFMO(MPI), which
was first implemented, is based on MPI dynamic process management, where the
“master” process creates new processes, “Data server” and “worker” ones and man-
ages communication among them. The implementation of MPI dynamic process
management enabled the developers to expand OpenFMO program to more flexible
“Task parallel” models, including fault-resilient Falanx [29] (explained below) and
OmniRPC-MPI [39, 40]; the latter remains unreleased.

Instead ofMPI dynamic process management, a fault-resilient programmingmid-
dleware Falanx [29] is used, for the parallel execution of OpenFMO (Falanx) [30].
When a MPI application is run on an exa-scale computing system with a huge num-
ber of processors in the future, a process crash due to a hardware or software failure
would no longer be a rare event. In such a case, a single trouble occurrence would
terminate conventional MPI applications. Ikegami and co-workers at National Insti-
tute Advanced Industrial Science and Technology (AIST) have developed the Falanx
middleware that makes it possible to easily develop fault-resilient applications for
forthcoming exa-scale computing systems; by using Falanx API, one can easily
implement a resource manager for task scheduling and a data store for data protec-
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tion to insulate the applications from system failures. Another attractive feature of
OpenFMO(Falanx) is that the worker configuration can be rearranged at dimer jobs
after SCC convergence [30]. When OpenFMO(MPI) is used, the worker configura-
tion at dimer jobs is beforehand fixed to that at monomer jobs, namely, Ng and P at
dimer jobs are identicalwith those atmonomer jobs (see Fig. 2). In FMOcalculations,
the number of fragment-pair is substantially greater than that of fragment. Therefore,
OpenFMO(Falanx) can remarkably improve the workload balance at dimer jobs by
increasing Ng with decreasing P within a given computational resource after SCC
is converged.

We here give an example how to execute OpenFMO program on a GPU cluster.
In the GPU-accelerated OpenFMO program, the master thread of each MPI rank
controls one GPU unit. Therefore, you have to set the total number of MPI processes
to that of the available GPU units to bring out the GPU’s maximum performance on
your GPU cluster. For example, in HA-PACS GPU base cluster [41] run by Center
for Computational Sciences (CCS), University of Tsukuba, one node is comprised of
two Intel E5-2680 CPU (2.6 GHz 8 cores) and 4 NVIDIA M2090 GPUs. If 8 nodes
(2 × 8 × 8 = 128 cores and 4 × 8 = 32 GPU units) are used for a FMO calculation,
the total number of MPI ranks for the calculation should be set to that of available
GPU units, 32, where each MPI rank is composed of 4 threads. Within the given
resource (32 ranks), for example, 1 rank is assigned to the “master” process, 1 rank
is assigned to the “data server” process, the other 30 ranks are assigned to “worker”
processes with Ng = 15 and P = 2.

5 GPU Acceleration

To realize the GPU acceleration of large-scale FMO calculations, we [25–28] imple-
mented the GPU-enabled kernel codes in the 4C-IFC and Fock-matrix construc-
tion parts of OpenFMO program; the former and latter parts are written in red and
blue colors, respectively, in Fig. 1. These parts include the time-consuming two-
electron (2e) integral calculations. Fock-matrix construction involves accumulating
2e-integral elements, (i j |kl) and (il|k j), to a Gx matrix, as expressed by Eq. (5).
Similarly, 4C-IFC calculation involves accumulating 2e-integral elements, (i j |kl),
to a xv-matrix, as expressed by Eq. (7).When using the massive-parallel threads with
limited memory resources on GPU for the calculations, we cannot allocateGx or xv
as thread private in GPU local memory. Therefore, massive slow exclusive addition
operation is usually needed to accumulate matrix elements into a shared matrix.

To share Gx matrix within a thread block without the slow “atomic” operation,
we have developed a novel algorithm [28], which is based on the parallel large Fock
matrix construction algorithm [42] on distributed CPU cluster for FMO-MOmethod
[43, 44]. We first consider a twofold loop around pair indices i j and kl in the G-
matrix construction, which is survived pair-index after the overlap integral screening
[45]. As illustrated in Fig. 3a, the access pattern toGx matrix in an inner kl-loop can
be classified as the following three types: Gi[], for i column array (yellow color),
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Fig. 3 a Access pattern toGmatrix for one 2e-integral, (i j |kl). b Elapsed time for RHF/6-31G(d)
calculation of 126 atomic molecule (1 282 AO) using “skeleton-RHF” code of OpenFMO program

Gj[] for j column array (green color), and Gkl (red color). The index kl runs only
limited area of matrixG[][] (blue color), and points different elements of G[][] for a
given i j index. Bymaking use of this classification, in our algorithm, each thread has
only Gi[] and Gj[] column arrays, and shares resulting matrix G[][] among a thread
block. By taking reduction for Gi[] and Gj[] after inner kl-loop, we can accumulate
it into G[][] without the time-consuming atomic operation. It should be noted that
we activate the GPU-enabled kernel code only for selective integral types in order to
overlap CPU and GPU calculations. We also did the following CUDA optimizations:
index-sorting, Schwarz-screening before main-loop, and dynamic load-balancing.

Because implementing the GPU-accelerated code in the 4C-IFC parts encoun-
ters a common problem with the Fock-matrix construction parts, we applied same
parallelization techniques to them, followed by task assignment and code tuning.

Figure 3b plots the benchmark performance of the “skeleton-Fock” code of
OpenFMO on a single HA-PACS GPU cluster node containing two Intel E5-2680
CPUs with four NVIDIAM2090 GPUs (see the last paragraph of Sect. 4). Figure 3b
shows that the speedup by using the GPU-accelerated code without overlapping
CPU-GPU execution is ca. 1.9. We can see that the GPU acceleration for smaller
integral types is better than that for the bigger ones. As shown in Fig. 3b, the speedup
by using GPU-accelerated code with overlapping CPU-GPU execution results in
ca. 3.



Open-Architecture Program of Fragment Molecular Orbital Method … 87

Fig. 4 a Lysozyme (1 961 atoms and 57 fragments) b Influenza HA protein (23 460 atoms and 721
fragments) [46]

Table 1 Elapsed times (in seconds) observed for GPU-accelerated FMO2-RHF/6-31G(d) calcula-
tions of lysozyme, in which the number of worker groups Ng was always set to 15

#node (#GPU) SCC Dimer SCF ES dimer Total

8 (0) 3 070.5 6 246.2 407.3 9 770.5

8 (32) 827.5 1 674.8 77.8 2 596.8

16 (64) 450.2 898.4 42.2 1 429.6

32 (128) 308.2 530.7 24.8 902.0

We next show some benchmark performances of the GPU-accelerated FMO cal-
culations with OpenFMO(MPI). For the benchmarks, we used HA-PACS GPU base
cluster system [41] that was explained in the last paragraph of Sect. 4.

Figure 4a shows a lysozymemolecule (1 961 atoms) that was divided as 2 residues
per fragment, leading to 57 fragments in the FMO2-RHF/6-31G(d) calculations.
Table 1 lists the elapsed times of the components (SCC, “dimer SCF” and “ES
dimer”) of the FMO calculations and the corresponding total ones (see the workflow
in Fig. 1).

We first addressed the performance of the GPU acceleration of OpenFMO(MPI).
For the purpose, we used 8 nodes with/without 32 GPUs on HA-PACS GPU cluster;
2 MPI ranks were used for master and data server processes; the remaining 30
MPI ranks were divided into Ng = 15 worker groups with P = 2 MPI ranks (see
Fig. 2); and 4 threads (CPU cores) and 1 GPU are involved in each MPI rank.
From Table 1, we obtain the speedups of 3.7 for SCC, 3.7 for Dimer SCF, 5.2
for ES Dimer, and 3.8 for total, which verifies the reasonable GPU acceleration of
OpenFMO program. We next addressed the parallelization performance of the GPU
acceleration of OpenFMO(MPI). For the purpose, as listed in Table 1, we measured
the elapsed times of the FMO calculations using 8 nodes with 32 GPUs, 16 nodes
with 64 GPUs, and 32 nodes with 128 GPUs. In the benchmarks, Ng was always set
to 15. By comparing the total elapsed time between 8 and 16 nodes, we can see that
the GPU-accelerated FMO scaled remarkably well with the high efficiency of 91%.
When 32 nodes were used, the assigned group (GPU) size P = 8 or 9 was generally
too large to do each fragment(-pair) job, which is due to the source of the workload
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Table 2 Elapsed times (in hours) observed for GPU-accelerated FMO-RHF/6-31G(d) calculation
of Influenza HA3 protein, in which 254 MPI ranks (64 nodes) are divided into 84 worker groups

SCC Dimer SCF ES dimer Total

0.52 0.90 0.45 1.97

imbalance. However, the program with 32 nodes kept the parallel efficiency to a
modest level, 72%.

Figure 4b shows the influenza HA3 protein (HA3, 23460 atoms) that was pre-
viously studied using FMO2-MP2 calculations [46]. In our FMO2-RHF/6-31G(d)
calculation, HA3 was divided as 2 residues per fragment, leading to 721 fragments.
We used 64 nodes with 256 GPUs on HA-PACS GPU cluster for the benchmark; 2
MPI ranks were used for master and data server processes; for the remaining 254
MPI ranks, Ng and P were set to 84 and 3, respectively; and 4 threads (CPU cores)
and 1 GPU are involved in each MPI rank. Table 2 lists the elapsed times of the
benchmark in hours. We can see that OpenFMO(MPI) successfully completed the
FMO calculation of HA3 within only 2 h [26, 27], which is the first large-scale
GPU-accelerated FMO calculation as far as we know.

See Ref. [26] for further details about the benchmark performances of lysozyme
and HA3.

6 Concluding Remarks

This chapter has explainedOpenFMOprogramdeveloped for the applicationofGPU-
accelerated FMO calculation on current peta-scale and forthcoming exa-scale com-
puting systems. We have especially highlighted the master-worker model (Sect. 4)
and GPU acceleration (Sect. 5) of OpenFMO to give some practical information
about its effective use on a CPU/GPU cluster. As indicated by our benchmarks
of lysozyme and HA3, OpenFMO program makes it possible to readily perform
GPU-accelerated FMO calculations for the large proteins containing hundreds of
thousands of atoms with reasonable parallel efficiencies. Further information of the
input-file formats and command-line options and several examples used as a tuto-
rial and template for you can be found in the OpenFMO official website, https://
openfmo.org. We are now engaged in extending the theoretical range of application
of GPU-accelerated OpenFMO program: DFT (density functional theory) and RI-
MP2 (resolution-of-identity MP2) [47]; the program will also be posted on https://
github.com/OpenFMO/OpenFMO through open-source license in the future.
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How to Perform FMO Calculation
in Drug Discovery

Kaori Fukuzawa, Chiduru Watanabe, Yoshio Okiyama, and Tatsuya Nakano

Abstract In order to apply the fragment molecular orbital (FMO) method to prac-
tical drug discovery research, what procedure should be used? This chapter summa-
rizes the preliminary knowledge necessary for applying the FMOmethod to the field
of drug discovery. First, as a pretreatment of calculation, preparation of structure,
fragmentation, and selection of the theoretical method are explained. Then, as to how
to evaluate the binding properties of ligand from the obtained results of the FMO
calculation, the evaluation method using binding free energy, interaction energy,
and its energy components will be explained. Further, various physical quantities
obtained from the FMO calculation such as charge distribution, electrostatic poten-
tial, and electron density distribution are introduced. Then, how to interpret these
values will be explained.
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1 Introduction

In in silico drug discovery, evaluating their binding properties from the quantum
mechanics (QM) based on the electronic state of target protein and ligands is the
ultimate precision approach [1]. By using the QM calculation, it becomes possible to
treat the problems that cannot be fully explained by classical molecular mechanics
(MM), for example, electronic interaction such as halogen bond, CH/π bond, and
hyperconjugation; and effects relating to electronic state such as charge transfer,
chemical reaction, and electron excitation. Furthermore, the QM calculation enables
quantitative evaluation of important problems in drug discovery such as binding
affinity, activity cliff, specificity, selectivity, and substituent effect. The fragment
molecular orbital (FMO) method [2–4] is a method that can conduct the QM calcu-
lation of protein at the fastest speed in the world with high accuracy. It also gives
useful information on the quantitative evaluation of inter- and intra-molecular inter-
action. By using the QM calculation, it is expected to lead to precise drug design that
focuses on the behavior of electrons (which is the essence of chemistry).

In this chapter, the knowledgenecessary to use theFMOmethod for drugdiscovery
is summarized. In Sect. 2, we first explain the simple methodology of the FMO
method and themeaning of calculation parameters. In Sect. 3, as a preparation for the
FMO calculation, points to be noted in creating a structure, how to divide molecules
into fragments, and selection of theoretical method are explained. In Sect. 4, the
evaluation of ligand-binding properties by the FMO method is explained. Finally,
various properties are explained in Sect. 5.

2 Brief Description of the FMOMethod for Use
in Protein–Ligand System

In the FMO method, a protein is divided into fragments first, and then the electronic
states of the fragments and their combinations are solved in the environmental elec-
trostatic potential (ESP). The FMO method has the advantage that it can efficiently
calculate electronic state in whole protein and extract information on mutual interac-
tion among partial structures by introducing fragmentation. In order to further speed
up the FMO calculation, there are two important approximation methods. One is the
ESP approximation [5] that is an approximation of environmental ESP. The other is
the dimer-es approximation [5], in which the interaction between distant monomers
is approximated by the electrostatic interaction.
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2.1 FMO Energy

The FMO method is a QM calculation method that has been developed to calculate
electronic states of a macromolecule such as protein [2–4]. In the conventional QM
calculation method, since calculation resources proportional to square to cube of
the system size are required, the calculation of whole protein has been considered
to be impossible. In the FMO method, a protein is divided into fragments first,
and then the electronic states of the fragments and their combinations are solved
in the environmental ESP. By these procedures, the system size that determines
the calculation cost can be reduced to the size of the fragments. By integrating
the obtained electronic state of partial structures, the total electronic state in whole
system (energy and electron density) is reconstructed. In the typically used FMO
method, the total energy is represented by the energies of fragment monomer (EI )
and fragment dimer (EIJ ), as shown below,

EFMO2
total =

∑

I

EI +
∑

I>J

(EI J − EI − EJ ). (1)

The method is called the FMO2 method, because fragments up to dimer are used
in the calculation. When Eq. 1 is transformed into a form expressing the interaction
energy, the following equation is obtained,

EFMO2
total =

∑

I

E ′
I +

∑

I>J

�Ẽ I J . (2)

Thefirst termon the right side is themonomer energy excluding the contribution of
the environmental ESP, and the second term represents the inter-fragment interaction
energy (IFIE) or pair interaction energy (PIE). This equation shows that, in the FMO
calculation, the energy of the whole system can be obtained, and at the same time, the
interaction energies between all fragment pairs can be obtained. This means that the
FMOmethod has the characteristic and the advantage that it can efficiently calculate
electronic state inwhole protein and extract information onmutual interaction among
partial structures by introducing fragmentation.

When Eq. 2 is further generalized by including many-body effect, the following
equation is obtained,

Etotal =
∑

I

E ′
I +

∑

I>J

�Ẽ I J +
∑

I>J>K

�Ẽ I J K +
∑

I>J>K>L

�Ẽ I J K L . (3)

This equation shows that the higher-order terms can be incorporated. The FMO
method including up to third-order terms is called the FMO3 method [6, 7], and
the one including up to fourth-order terms is called the FMO4 method [8, 9]. The
FMOmethods including third-order terms and above are generically called themany-
body FMOmethod. When general protein–ligand intermolecular interaction is to be
analyzed, the FMO2 is qualitatively sufficient. However, when ligands are divided
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into small functional group units or in case that the so-called three-body effect is
important, it is necessary to introduce the many-body terms to evaluate the total
energy.

IFIE can be further decomposed into four energy components, that is, electrostatic
(ES), exchange repulsion (EX), charge transfer (CT), and dispersion (DI) terms. This
method, called the pair interaction energy decomposition analysis (PIEDA), is the
modification of the energy decomposition analysis (EDA) byKitaura andMorokuma
to FMO [10], which is expressed in the following equation,

�Ẽ I J = �ẼES
I J + �ẼEX

I J + �ẼCT
I J + �ẼDI

I J . (4)

Since the CT term in this equation includes higher-order terms, it should be
expressed as CT + mix to be exact. The PIEDA is extremely useful in applying the
FMO method to drug discovery, because it gives information on the characteristics
of the interaction in addition to their magnitude (stable or unstable). For example,
almost all interactions of ion pairs such as acidic and basic amino acid residue are
electrostatic and the ES term is most important. In the hydrogen bonds, the CT
term is added in some degree to the ES term of main components, and the DI term
becomes themain components in the CH/π interaction and theπ–π interaction. Such
interpretation is helpful for the understanding of ligand-binding properties of target
protein, protein–protein interaction, and detailed molecular design.

Several computer programs for the FMO calculation are open to the public. In
this chapter, operation in the ABINIT-MP [4] program is supposing, that is under
development in our research group, but the basic concepts for FMO calculations are
the same for all programs. Note that, in addition to the ABINIT-MP, the BioStation
Viewer [11] which is a program dedicated to visualization analysis is also under
development. Thus, the tasks from setup of input files to analysis of calculation
results can be conducted using graphical user interface (GUI).

2.2 ESP Approximation and Dimer-es Approximation

In order to further speed up the FMO calculation, there are two important approxima-
tion methods. One is the ESP approximation [5], which is an approximation of envi-
ronmental ESP. The other is the dimer-es approximation [5], in which the interaction
between distant monomers is approximated by the electrostatic interaction.

As shown in Eq. 1, the total energy obtained by the FMO2method is expressed as
the summation of the energies of monomer and dimer, including the energy obtained
by the environmental ESP. In this procedure, when there is a difference between the
levels of ESP approximation for monomer and dimer, the FMO calculation cannot
be performed correctly. In this case, Eq. 1 is transformed so that the total energy
obtained by the FMO2 method is expressed as the summation of the energy of
monomer without environmental ESP and the IFIE of dimer with environmental
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ESP (Eq. 2). By doing so, the contradiction is not caused even when different levels
of ESP approximation are applied to monomers and dimers.

Currently in the protocol of the standard FMO calculation by the ABINIT-MP
program, the ESP approximation is conducted in the following method. First, the
environmental ESP near the target fragments subject to the calculation is calculated
byMullikenAOpopulation (AOpopulation approximation). Then, the environmental
ESP from fragments located further afar is calculated from Mulliken atomic charge
(atomic charge approximation). For the exchange between Mulliken AO population
andMulliken atomic charge, the notion, N-times more than the sum of van der Waals
(vdW) radii between nearest neighbor atoms of dimer, is used as a parameter. In
general, the value of N = 2.0 is used. This means that the AO population approxi-
mation is used for fragments whose distance from the target fragment subject to the
calculation is 0.0–2.0 vdW unit, and that the atomic charge approximation is used
for those with the distance farther than 2.0 vdW unit. As the parameter setting for
the ESP approximation in the ABINIT-MP calculation, Laoc = 0.0 and Lptc = 2.0
are used (Fig. 1).

Next, in the case of the interaction between distant monomers, it is assumed
that only electrostatic interaction should be considered. Therefore, in the dimer-es
approximation (Fig. 1), the energy of dimer composed of two distant monomers can
be approximated by the summation of energy of monomers without energy by the
environmental ESP and the summation of the electrostatic interaction energy (�ẼES

I J )
between two monomers. The relationship is expressed in the following Eq. 5,

E ′
I J ≈ E ′

I + E ′
J + �ẼES

I J . (5)

Fig. 1 Schematic diagram of environmental ESP and dimer-es approximation. The AO population
approximation, atomic charge approximation, and dimer-ES approximation are represented when
Lapprox is Laoc, Lptc, and Ldimer, respectively
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In the ABINIT-MP, in order to decide the minimum closest interatomic distance
(Å) between fragments of dimers where the dimer-es approximation is applied, a
parameter, Ldimer, which indicates N-times or more than the sum of van der Waals
radii, is used similar to the above-mentioned ESP approximation. In the standard
setting, Ldimer= 2.0 is used [5]. In the calculation of target protein of drug discovery,
the structures containing metal ions such as Ca2+ and Mg2+ are often observed.
However, in the calculation of these structures, the convergence of dimers containing
metal ions is sometimes not good. For this problem, the convergence is improved by
setting Ldimer = 1.5 in many cases.

3 Preparation for FMO Calculation

In conducting the FMO calculation for biomolecules, ABINIT-MP/BioStation
Viewer system has GUI function and related automated tool [12], and the calcu-
lation can be done without being aware of details. However, in order to calculate
and analyze correctly, it is necessary to pretreat structures and select the method,
appropriately. In the following, some of the important points will be explained.

3.1 Modeling of Structure

In the modeling of protein–ligand complex structure that is used in the FMO calcu-
lation, the pretreatment is performed using a modeling software such as Molecular
Operating Environment (MOE, CCG Inc.) [13] based on the X-ray crystal structure
obtained from Protein Data Bank (PDB; wwpdb.org) [14]. Generally, there is no
hydrogen atom in the coordinate data obtained from structural biology experiments,
and a part of the residue is sometimes missing. Therefore, it is required to compen-
sate the missing parts, estimate the protonation states, add hydrogen, and optimize
the geometries as needed. In order to perform the QM calculation, the chemical
bond of molecules must be completed. Care must be taken as to all covalent bonds
are occupied, and unpaired electrons do not exist. Further, it should be noted that
if extremely long (or extremely short) covalent bonds are mixed, the convergence
of the calculation becomes extremely worse, especially in the self-consistent charge
(SCC) procedure. Conversely, if the SCC is not converged, the cause in most cases
is ascribed to the inaccurate structure.

Here, it is an important point for the FMO calculation whether structure deter-
mination data of target protein–ligand complex has been experimentally obtained or
not. Since the QM calculation is precise, the small difference in the atomic coor-
dinate will affect the results. In particular, the interaction energy is sensitive to the
distance of hydrogen bond. For example, even a structural change at 0.1 Å will affect
the interaction energy. For this reason, for structure used in the FMO calculation,
it is recommended not to use prediction structure such as homology modeling, but
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to use structure that is experimentally determined. If necessary, geometry optimiza-
tion should be performed at the MM level or the QM level. For the optimization of
hydrogen atoms and missing atoms at the MM level, it has been confirmed that the
results are not so much dependent on the force field parameters used in the modeling
[15]. When there is no experimental structural data of complex, the prediction struc-
ture is created by the sampling fromdocking or the succeeding ofmolecular dynamics
(MD) calculations, as appropriate, although the quality of the structure is inferior.
When MD sampling structures are used in the FMO calculation, it is necessary to
optimize at least only hydrogen atom geometries.

As interaction analysis by the FMO calculation becomes more accurate, the relia-
bility of the structure to be used becomes more important. However, in general struc-
tural analysis data (e.g., X-ray crystal structure at the resolution of about 2 Å), there
aremany caseswhere the detailed structure around the ligands is not necessarily clear.
In the FMO calculation, the modeling structure based on abovementioned classical
MM is generally used. However, for the evaluation of hydrogen bonds, imbalance
sometimes occurs between MM structure and FMO energy. As examples of such
problems, it was reported that excessive charge transfer is observed due to the distor-
tion of MM structure [16]. Also, it was reported that the good correlation with the
calculated and experimental values was obtained for the first time by the geometry
optimization at the QM level [17, 18]. In the example of estrogen receptor α (ERα)
[17], good correlation of FMO result with the experimental relative binding affinity
could be obtained by optimizing the hydrogen bond distance between Glu residue
and ligand at the Hartree–Fock (HF) level, and then by appropriately expressing the
ligand–receptor charge transfer. In the example of serine–threonine kinase Pim1,
the drastic changes in activity values against small changes in the structure called
activity cliff were able to be reproduced by the combination of FMO calculation with
QM/MM geometry optimization of the hydrogen bond distance between the ligands
and amino acid residue [18]. Therefore, in recent precise analysis, some structural
determinations are conducted byQM/MMmethod and partial structural optimization
[19] at FMO-HF and higher level. In order to decrease the calculation cost, FMO
calculation with frozen domain (FMO/FD) method [20] developed by the GAMESS
program is implemented also with the ABINIT-MP.

3.2 Fragmentation

In the FMO calculation, it is required to define what is fragment. As mentioned
above, in the FMO method, the calculation cost can be dramatically reduced by the
fragmentation of molecules, and the interaction energy between fragments can be
analyzed. Since this fragmentation is the most important characteristic of the FMO
method, the method for the fragmentation would influence both the precision of the
calculation and the quality of the analysis. This means that the quality of the FMO
calculation is determined by the method of fragmentation.
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The ABINIT-MP is equipped with automatic fragmentation functions of protein
and nucleic acid from the PDB structure. For protein, there are two fragmentation
patterns. One is the main-chain fragmentation (default) where protein is divided into
amino acid residue units (Fig. 2a). The other is main-chain/side-chain fragmentation
in which protein is divided into main chain and side chain (Fig. 2b). Although it is
possible to fragment into not only one amino acid residue unit but also any arbitral
number (n) of residue units, this method is rarely used, because there is little advan-
tage in analysis and the cost of calculation increases when the fragment straddles
multiple residues. Similarly, in the case of DNA/RNA, three fragmentation patterns
are equipped (Fig. 3). The first is the fragmentation into nucleotide units (Fig. 3a),
the second is that the nucleotide is divided into the backbone and the base (Fig. 3b),
and the third is the fragmentation into phosphate group, sugar and base (Fig. 3c). The
standard fragmentation method for proteins is one amino acid residue unit shown in

Fig. 2 Fragmentation of protein. Reprinted with permission fromRef. [9]. Copyright 2013 Elsevier
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Fig. 3 Fragmentation of DNA and RNA

Fig. 2a, whereas that for nucleic acids is the pattern shown in Fig. 3b. These allow
to perform a fragment-based interaction analysis such as IFIE/PIEDA focusing on
the amino acid and base moieties. Owing to these automatic fragmentation function,
users can easily conduct calculation because the complicated fragmentation setting
is not necessary.

Note that there are directions in the fragmentation of bonds shown in Figs. 2 and 3.
When a covalent bond between two atoms is divided, binding pair electrons are not
divided into each electron, but divided so that the pair electrons belong to one of
the atoms. The atom from which electrons are extracted is called bond detached
atom (BDA), and the other atom that accepts electrons is called bond attached atom
(BAA) (Fig. 4). In BDA, electrons are localized using a projection operator. In order

Fig. 4 Bond fragmentation treatment at BDA



102 K. Fukuzawa et al.

to minimize the effect of the fragmentation, the sp3 carbon is selected as the BDA,
which is easy to be localized. Since electrons are transferred, the atomic charge in
BDA and BAA formally becomes +1 and −1, respectively (such charge is called
formal charge). In order to avoid artificial electrostatic charging in fragment by the
formal charge, nuclear charge in BDA carbon is divided into+5 and +1. By moving
+1 nuclear charge at the same time as the electron movement, the total charge is
kept unchanged.

The following points should be noted. For protein, not peptide bond but bond
between α carbon and carbonyl carbon are broken in order that BDA should become
sp3 carbon. In other words, the bond breaking position is different from the definition
of amino acid residue. In particular, since the sequential number assigned to amino
acid of carbonyl group belonging tomain chain is shifted, it is easy tomake amistake
in the assignment of interacting position in interaction energy analysis. Therefore,
care must be taken when interpreting the results in which carbonyl group is involved
in an interaction [21].

With respect to fragmentation in other than protein and nucleic acid, detailed
setting can bemanually conducted usingGUI of the BioStationViewer [11] or FMOe
[22] (see Sect. 4.3). The user can freely set the splitting of the ligand and special
handling of the active center. Low molecular weight compounds, such as ligand, are
generally treated as a single fragment. On the other hand, when the size of a ligand is
large or when the interaction in partial structures is to be analyzed, those can be split
into multiple fragments. In this case, the BDA in the divided bond should be also sp3

carbon. Specific examples of ligand fragmentation are detailed in Sect. 4.3. Recently,
a projection operator with sp2 type was developed in order to conduct fragmentation
at the sp2 carbon [23]. Although problems still remain in fragmentation of protein
at the site of peptide bonds in terms of accuracy, it is expected that the variation of
analysis will be expanded by allowing the splitting of the ligand at the sp2 carbon
site.

For watermolecules and ions, theymay be treated as single fragments, or hydrated
ions are sometimes treated as one fragment [24].

When compounds and amino acid residues are divided into fine fragments, the
information on the interaction among the partial structures can be obtained. There-
fore, such method seems to be convenient at first glance. However, the fact that the
calculation accuracy becomes lower as they are divided further and further should
not be forgotten. In order to compensate the calculation errors, the FMO method
(Eq. 3) with many-body expansion is sometimes used [6, 8]. However, it should be
noted that a contradiction occurs between the many-body expansion and the IFIE
which is a two-body physical quantity.

3.3 Selection of Theoretical Method

In theABINIT-MP, theMP2method that incorporates electron correlation by second-
order Møller–Plesset perturbation theory is generally used, in addition to the HF
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method [4]. In particular, the MP2 method is the first choice, because electron corre-
lation is necessary to describe dispersion force. Since CH/π and π–π interactions
that are important in biological system can be evaluated using dispersion interaction
energy, the MP2 method has a wide range of applications. Since the ABINIT-MP
is equipped with a high-speed MP2 calculation algorithm developed by Mochizuki
et al. [25, 26], theMP2 calculation of proteinwith about 300 residue can be performed
in several hours using in-house computer with dozens of core. As for the approx-
imation level of the many-body FMO method, the FMO2 method is usually used,
while the FMO3 is sometimes used when a ligand is divided into functional groups
as described above, or when a so-called many-body effect such as interaction with
water is important.

As a basis function, 6-31G* is widely used. A correlation-consistent basis devel-
oped by Dunning et al., cc-pVDZ, is also equipped. There are cases in which 6-31G
basis is used for the energy calculation when the calculation time is to be reduced.
However, for the geometry optimization, if at least 6-31G* is not used, incorrect
values may appear in the bond distance. Also, diffuse functions are sometimes added
to a part of atoms such as oxygen andmetallic elements. Furthermore, a counterpoise
correction [27, 28] is used in some case in order to reduce the basis set superposition
error (BSSE). When calculation is to be conducted for heavy metal atoms, model
core potential (MCP) method, which is one of the core potential approximations, can
be sometimes applied to a part of atoms [29].

4 Evaluation of Protein–Ligand Binding

In structure-based drug discovery, the prediction of binding affinity of ligand to target
protein is the most important subject. Furthermore, if binding mechanism of ligand
can be understood, the obtained knowledge can be applied to precise drug design. In
this subsection, the calculation of protein–ligand binding free energy and quantitative
interaction analysis between ligand and surrounding amino acid residue based on the
FMO method are described.

4.1 Ligand-Binding Affinity Prediction

The binding free energy is generally correlatedwith the experimental binding affinity
at constant temperature, that is, the binding constants such as Kd and K i and the
activity values such as IC50. Thus, the FMO method can be used as an in silico
approach for the binding affinity prediction.

The binding free energy �Gbind that consists of the enthalpic change �H and
the entropic change �S at the temperature T is commonly approximated by the
summation of the binding energy �Ebind and the solvation free energy �Gsol in the
in silico evaluation for protein–ligand binding systems:
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Fig. 5 Thermodynamic cycle for a ligand binding to a protein with solvation free energy (Gsol).
Reprinted with permission from Ref. [30]. Copyright 2019 American Chemical Society

�Gbind = �H − T�S ≈ �Ebind + �Gsol (6)

where the thermodynamic cycle is shown in Fig. 5.�Ebind is expressed as the energy
difference between the bound and unbound states in vacuo, and structural relaxation
for other than ligands is not considered currently in the most cases with FMO:

�Ebind = Ecom − Erec − Elig ≈ �E int + �Edef
lig (7)

where �E int represents the binding energy without structural relaxation

�E int = Ecom − Erec − Elig(com), (8)

and �Edef
lig does the deformation energy of a ligand

�Edef
lig = Elig(com) − Elig (9)

defined as the energy difference between conformers bound to a protein and unbound
to. Because this difference sometimes takes a considerably large value in quantum
chemistry, it can be a non-negligible factor in the binding affinity prediction [30].
Moreover, when the crystal structure is employed for a protein–ligand system, the
complexed form of its ligand fatefully contains artificial strain. Thus, removing such
strain energy by QM optimization would also improve the prediction [18, 31].
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It is also essential to consider physiological conditions of protein–ligand systems,
that is, solvation/desolvation, when evaluating their binding affinities. Solvent effects
including dielectric polarization or electrostatic screening can be incorporated into
FMO with implicit solvent models such as a polarizable continuum model (PCM)
[32] or a Poisson–Boltzmann (PB) method [33, 34] by directly coupled with the
FMO electron density [35–38]. The desolvation penalty due to a protein–ligand
complexation is estimated as follows (Fig. 5):

�Gsol = Gsol
com − Gsol

rec − Gsol
lig (10)

which includes non-polar contributions such as those estimated from the molec-
ular surface area (SA). The prediction of protein–ligand binding affinities for ERα

is a good example for showing the importance to include the solvent effects. The
FMO-PBSA approach successfully predicts the binding affinities complexed with its
ligands consisting of the mixture of neutral agonists and positively charged antago-
nists (Fig. 6): the separation resulting from the excessive electrostatic interaction in
vacuo is well offset by including desolvation penalty in solution [30].

Because the super-molecular approach mentioned above is often expensive for
processing complexes with many ligands, several low-cost estimations of binding
(free) energyhave also beenproposed for the binding affinity prediction. For example,
�E int can also be evaluated using IFIE for FMO, that is, approximately represented as
the summation of the IFIEs between a ligand and all amino-acid-residue fragments:

�E int ≈
N∑

J=1

�Ẽ I J , I = ligand. (11)

Fig. 6 Experimental binding affinities vs FMO-predicted binding energy in vacuo (left) and binding
free energy in an implicit solvent (right) for five bioactive compounds complexed with ERα.
Reprinted with permission from Ref. [30]. Copyright 2019 American Chemical Society
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Note that, in such a treatment, �E int consists only of the interaction energy in the
bound state, not including the electron relaxation from the unbound state. For another
example, �Gsol is conveniently evaluated using MM-PBSA and added to �Ebind

obtained from FMO [18]. Note that solvent effects are only partially accounted for
in such a treatment where the absence of solvent in the FMO processing never causes
dielectric polarization of the electron density. There is versatility in the evaluation
of binding energies and inclusion of solvent effects in the FMO framework [39].

4.2 Interaction Energy Analysis

The IFIE and its energy components (PIEDA) are the most used energy values in the
analysis of the FMO calculation results. From the definition of these energies (Eqs. 2
and 4), the interaction obtained there is fragment unit. Depending on how to specify
the fragmentation method described in Sect. 3.2, protein–ligand interaction analysis
can be performed on an amino acid residue unit or a functional group unit. A ligand
has various interactions between its functional group and surrounding amino acid
residue through hydrogen bonds and other types of bonds. With the IFIE/PIEDA
analysis, it is possible to understand the situation in detail and obtain extremely
useful information on compound design.

The interaction energy analysis is explained using ERα as an example. Many
X-ray crystal structures of ERα–ligand complex have been published, and the FMO
calculation results for complex structure (PDB ID: 2YJA, 1.82 Å resolution) with
17β-estradiol that is endogenous agonist are presented. For molecular modeling,
hydrogen atoms were complemented using Amber10:EHT force field based on the
PDB structure. Then, the structure where ligand and amino acid residue bound with
the ligand through hydrogen bond were optimized at the FMO2-HF/6-31G* level
was created. The energy calculation was conducted at the FMO2-MP2/6-31G* level.

Figure 7 shows the IFIE and PIEDA values between ligands and each amino
acid residue. For ligand binding, the interaction with Glu353 showed remarkably
strong stabilization. Subsequently, His524 and Arg394 exhibited stable interaction
[9, 40]. These results showed that the ES was predominant, and the CT occurred. In
other words, it is understood that the interaction involves the charge transfer through
hydrogen bonds. Furthermore, weak interactions with Phe404 and some of Leu and
Met were able to be confirmed. In the interaction with the hydrophobic amino acid
residue, the DI was predominant. From the visualized diagram (Fig. 8) where inter-
action energy was mapped in the three-dimensional structure, it is understood that
the amino acid residues bound with two hydroxyl groups of ligands, respectively,
through hydrogen bond showed ES interaction, while that residues around liposol-
uble steroid-skeleton exhibited DI interaction. See also the orbital-level interaction
analysis described in Sect. 4.3.

Looking at the breakdown of the binding energy (�E int) that is represented by
the IFIE in Eq. 11 (Table 1), the stabilization energy of the DI showed more than half
of that of the ES and the CT (approximately −120 kcal/mol). In other words, it can



How to Perform FMO Calculation in Drug Discovery 107

Fig. 7 Results for PIEDA analysis of ligands and each amino acid residue. The data show each
component of electrostatic (ES), exchange repulsion (EX), charge transfer (CT), and dispersion
(DI) interactions

-5
-5 +5ES

DI

Glu353

Arg394

His524

phe404

(a) (b)

(c)

Fig. 8 a Visualized diagram of the PIEDA energy for ER–ligand complex. The ligand is shown
in yellow, and each amino acid residue in protein is colored depending on the main interaction.
Red–blue gradation and green gradation represent the strength of the electrostatic interaction and
dispersion interaction, respectively (unit is kcal/mol), b Structure of 17β-estradiol, and c Interaction
around ligand
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Table 1 PIEDA component (kcal/mol) in ERα–ligand binding energy (�E int)

IFIE total ES EX CT DI

−115.2 −87.0 68.3 −31.8 −64.6

be seen that both hydrogen bond including charge transfer and dispersion interaction
made a significant contribution. This is nothing more than theoretically observing
the breakdown of binding energies that can be measured thermodynamically.

An example of a system involving nucleic acids is the interaction among the
translation inhibitor rocaglamide A (RocA), polypurine RNA, and eIF4A protein
[41]. As shown in Fig. 9, the multiple aromatic rings of RocA and RNA bases form a
ladder structure, indicating that the inhibitor is part of the base–base stacking process.
The FMO results show that most of the stable component of the IFIE between RocA
and the RNA base is a DI term, indicating the importance of quantitative evaluation
of the dispersion interaction, which is a major component of the stacking interaction
in systems containing nucleic acids. Other examples of base–base interaction and
base–protein interaction in double-stranded DNA and single-stranded DNA have
also been reported [42–45].

Variations of IFIE/PIEDA-based analysis methods include IFIE-map [46] and
VISCANA (Visualized Cluster Analysis of Protein–Ligand Interaction) [47]. IFIE-
MAP is a method to comprehensively visualize IFIEs for all fragment pairs in the
FMO calculation result for a given structure, allowing us to see interaction patterns
that reflect the secondary structure of proteins and nucleic acids. Figure 10 shows
an IFIE map for protein–DNA–ligand complex. The α-helix structure of proteins
and the stacking structure of DNA can be observed as diagonal parallel interaction

G8

A7 G6

A9
-7.5

(-10.1)

-23.4
(-19.8)

-9.8
(-12.6)

-16.8
(-15.1)

-9.1
(-8.2)

-24.0
(-12.4)

Phe163

Gln195

IFIE
(DI)

RocA

(a) (b)

-10DI 0

Fig. 9 Structure and molecular interaction between RocA and RNA–protein by FMO calculation
and their representations along the RocA-binding pocket in the structure [41]. Energies are in
kcal/mol
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Fig. 10 IFIE map for the complex among cAMP receptor protein, DNA duplex, and cAMP [46].
Fragment number 1–200 represents a protein, 201–222 represents a DNA base, 223–244 represents
a DNAbackbone, and 245 represents cAMP. The upper triangle shows only the attractive interaction
(red) and the lower triangle shows the repulsive interaction (blue), which is colored by the IFIE
value (in kcal/mol)

patterns, and the β-sheet of proteins and Watson–Crick hydrogen bonding of DNA
can be observed as the interaction patterns perpendicular to the diagonal lines. On the
other hand, VISCANA is a method to classify ligands based on their IFIE interaction
patterns using the results of FMO calculations of multiple protein–ligand complexes
for a target protein. Figure 11 shows examples of candidate ligand compounds that
bind to the estrogen receptor. One row corresponds to the FMO results for a single
protein–ligand complex, and ligands with similar patterns of interaction with each
amino acid residue shown on the horizontal axis are clustered among the ligands.
See also Sect. 4.4 in Chap. 8 for details.
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Glu353 Arg394 His524

Antagonist

Agonist

Asp351 Glu380 Lys531

Fig. 11 VISCANA for the complex between estrogen receptor and ligands. The vertical and hori-
zontal axes represent the ligands and amino acid residues, respectively. Each cell is colored according
to the IFIE values of the corresponding ligand and amino acid residue, with red and blue representing
stabilization and destabilization, respectively

4.3 High-Resolution Interaction Analysis for SBDD

Elucidating the interactions of compounds at the functional group level is an impor-
tant factor in deciding on design strategies for structure-based drug design (SBDD);
this is useful for building design strategies that, for example, identify the hydrogen
bonds that are indispensable in ligand bonding as well as the partial structures of
ligands that establish CH/π interactions, and maintain these interactions while intro-
ducing substituents to generate new interactions. Furthermore, raw IFIE/PIEDA
values tend to overestimate electrostatic interactions in FMO-based interaction
energy analyses. For this reason, when analyzing interactions between charged
ligands and receptors, the strong electrostatic interactionswith basic and acidic amino
acid residues dominate, and this can end up masking the weak interactions such as
the hydrogen bond, CH/π, and π–π interactions between ligand and amino acid
residues. Consequently, there are reports using ligand fragmentation to identify the
functional groups that are essential for these interactions, as well as to the interac-
tions between the charged functional groups in ligands and neutral functional groups
[16, 18]. Besides, if the compound that binds to the protein is a large drug such as
Lopinavir (Fig. 12), it is difficult to treat the compound as a single fragment. Thus,
the ligand fragmentation of large compounds must be performed to reduce compu-
tational costs [48]. Furthermore, for the purpose of SBDD, ligand fragmentation is
also used when it is desired to perform interaction analysis with the precision of
functional group units [9, 18, 49, 50].

When fragmenting a ligand, sp3 carbon is recommended as the BDA to be frag-
mented (see Sect. 3.2), and depending on the compound, multiple potential BDA
candidates may exist. When carrying out fragmentation, the ligand pocket should be
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Fig. 12 Examples of ligand fragmentation for 17β-estradiol, Lopinavir, a benzofuranone inhibitor
of Pim1 kinase, and Oseltamivir carboxylate. BDA candidate sp3 carbons are indicated in pink in
(a). Actual instances of ligand fragmentation are shown in (b)

closely observed, the hydrogen bonds and CH/π interactions whose contributions
are desired should be marked beforehand, and a BDA candidate atom located as far
away as possible from this interaction site should be selected as the fragmentation
point. In addition, it is desirable to minimize the number of ligand fragmentation
to reduce errors due to fragmentation. Examples of ligand fragmentation are shown
in Fig. 12. Several fragmentation methods were investigated for 17β-estradiol [9],
Lopinavir [48], a benzofuranone inhibitor of Pim1 kinase [18], and Oseltamivir
[16], which possess multiple BDA candidates Fig. 12a: based on analysis of protein
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pocket three-dimensional structure, and interactions with post-ligand fragmentation
proteins, fragmentation as indicated in Fig. 12b was an effective method for identi-
fying the bonding sites. Examples of interaction analyses associatedwithOseltamivir
by using ligand fragmentation will be discussed later (Fig. 14).

Entry of the following information is required for the input file (ajf file) to run
FMOcalculations for a fragmented ligandbyusing theABINIT-MPprogram:manual
fragmentation option, the number of fragments, atomic information of fragments, the
formal charge of fragments, the BDA and BAA information, and the net charge of
the whole structure. It is challenging for a user to manually enter all of this data for
a complex structure of protein and ligands consisting of several thousand atoms. For
this reason, using the manual fragmentation function of the BioStation Viewer [11]
pre/postprocessing GUI of ABINIT-MP enables easy preparation of the input file.
Lately, it has also become easy to carry out ligand fragmentation with the emergence
of the FMOe program [22], which is an SVL program for MOE [13].

The ligand fragmentation operating procedure for the BioStation Viewer and
FMOe is as follows: form amino acid residue unit, ligand unit, and water molecule
unit fragments beforehand according to conventional fragmentation rules; then
conduct detailed ligand fragmentation (Fig. 13). The BioStation Viewer can save
the data required for manual fragmentation used in the ABINIT-MP input file by
establishing the atoms that form the new fragment, the formal charge of the new
fragment, and the BDA and BAA of the new fragmentation point from the Fragment
window (Fig. 13a). Similarly, FMOe can generate the input file by defining the BDA
and BAA atoms in the Fragmentation window (Fig. 13b). Please refer to the manuals
and tutorials for details regarding the operating procedures for ligand fragmentation
using these GUIs [11, 22].

Next, we demonstrate the IFIE analysis with main/side chain fragmentation of
protein and ligand fragmentation in SBDD context in the cases of neutral and charged
ligands of Oseltamivir. The influenza treatments Zanamivir andOseltamivir are well-
known examples of rational design using SBDD to target the neuraminidase (NA),
which is a virus membrane surface protein [51]. Such rational drug development

Fig. 13 GUI manipulation screens for ligand fragmentation. a, b The ligand fragmentation
manipulation screens for the GUIs using BioStation Viewer and FMOe, respectively
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Fig. 14 NA–Oseltamivir interaction analysis. a The NA–Oseltamivir interaction network based on
molecular geometry. b IFIE analysis with conventional fragmentation, and c FMO4-IFIE analysis
with main/side chain fragmentation and ligand fragmentation (Oseltamivir(1)–(4))
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requires evaluation of the protein–ligand interactions at the functional group level
[16]. As indicated in Fig. 14a, Oseltamivir’s active structure is a zwitterion and each
functional group is thought to bond via electrostatic interactions with the positively
and negatively charged regions in the NA substrate bonding pocket. In order to
elucidate the contributions of Oseltamivir’s functional groups that establish several
hydrogen bonding sites, namely highly polar functional group such as carboxy-
late, amine, and acetoamide groups, as well as those that establish hydrophobic
bonding sites, such as the hydrophobic 3-methoxy-pentane group, the fragmen-
tation should be a functional group unit. However, while IFIE analysis based on
conventional fragmentation can verify interactions between Oseltamivir and neigh-
boring amino acid residues of NA (PDB ID: 2HU4), as shown in Fig. 14b, it cannot
identify contributions at the level of Oseltamivir’s functional groups. Therefore, as
shown in Fig. 14c, the functional group fragmentation was undertaken and interac-
tions with neighboring amino acid residues at the FMO4-MP2/6-31G* level were
analyzed. Here, acid residues were fragmented into main chains and side chains.
Figure 14c visualizes the interactions between each functional group and neigh-
boring amino acid residues. The fragment containing carboxylate, Oseltamivir(1), in
Fig. 14c (indicated in yellow) exhibits strong attractive interactions with neighboring
basic residues (red) of −100 kcal/mol, while it exhibits repulsive interactions (blue)
of around +45 kcal/mol toward acidic residues. Conversely, the fragment incor-
porating a positively charged amine, Oseltamivir(2), shown in Fig. 14c exhibits −
110 kcal/mol attractive interactions with acidic residues and +45 kcal/mol repulsive
interactions with basic residues. These findings clearly indicate complementarity
between the functional groups and the pocket. In addition, the polar acetoamide
group, Oseltamivir(3), in Fig. 14c exhibits relatively weak (−29 kcal/mol) and
stable interactions with neighboring residues via hydrogen bonds. Furthermore, the
hydrophobic 3-methoxy-pentane group, Oseltamivir(4), in Fig. 14c exhibits weak
(−7 kcal/mol) and stable interactions with neighboring residues. Thus, all interac-
tion energies can be quantitatively assessed, and quantitative analysis of interactions
based on functional group properties is possible. These are not limited to ligands
with a charged functional group, but similar analysis can be performed with a ligand
composed only of neutral functional groups. Such FMO-based interaction analysis
at the functional group level can potentially provide useful knowledge for a struc-
ture–activity relationship (SAR) analysis and for designing molecules with stronger
bonding capability. Note that the FMO4 levels are not necessarily required for IFIE
analysis of functional groups. Calculations of FMO2 levels are usually sufficient to
qualitatively evaluate the inter-molecular interactions without covalent bonds.

While the above IFIE/PIEDA is a fragment-by-fragment resolution interaction
analysis, there are two types of interaction analysis at the molecular orbital level,
called configuration analysis for fragment interaction (CAFI) [52] and fragment
interaction based on local MP2 (FILM) [53]. CAFI extracts the molecular orbitals
responsible for charge-transfer interactions between fragments, while FILM extracts
the molecular orbitals responsible for dispersive interactions between fragments
and reveals which orbitals of which functional groups are responsible for these
interactions.
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(b) CH/ππ  interaction (c) π - π interaction

(a) Hydrogen bonding

Phe404 Phe404

Glu353

Fig. 15 Orbital-wise interaction energy analysis between estrogen receptor and 17β-estradiol using
a CAFI and b, c FILM

Figure 15 shows an example of ligand binding to the estrogen receptor, as in
Figs. 7 and 8. The electron transfer from the carboxy group (lone pair nO orbital) of
Glu353 to the phenol group (σ*OH orbital) of the ligand due to the hydrogen bond
between them is visualized by CAFI analysis [40] (Fig. 15a). The CH/π and π–π
interactions based on dispersive interactions between the phenol group of the ligand
and the phenyl group of Phe404 were also visualized by the FILM analysis (Fig. 15b,
c). A picture of the interaction between these orbitals can be obtained together with
the interaction energy per orbital.
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5 Electron Density and Related Analysis

It should be noted that the FMO method is not only a useful tool for the analysis of
interactions between fragment units, but also a full-QM method capable of calcu-
lating the electronic state of an entire protein system. Based on the electronic state of
the molecule, the spatial distribution of the electron density and electrostatic poten-
tial (ESP) of the entire protein can be obtained, and the properties and molecular
recognition of the molecule can be studied on the basis of physical quantities such
as atomic charges and electrostatic potential maps on the surface of the molecule.

5.1 Population Analysis

The electronic state obtained from the MO calculation contains all the information
on the electronic system including its total energy; however, the interpretation is
not easy. Therefore, a technique that reduces the electron density into partial atomic
charges is often used to easily grasp the electronic state. Partial atomic charges that
divide the whole electron density onto discrete atoms are convenient to understand
the electron localization or polarization in a molecule. The electron density of a
whole system is expanded in the FMO2 framework as below:

ρFMO2(r) =
∑

I

ρI (r) +
∑

I>J

�ρI J (r) (12)

where ρI (r) is the density of monomer and �ρ I J (r) is the difference in density
between the monomer and the dimer [54]. If the position is discretized on atoms,
the density on an atom is regarded as the atomic population. In this way, one can
construct the atomic charge distribution of a whole system from those of the partial
fragments.

Because such atomic charge distributions are not observable, their estimations are
not unique and various partitioning methods have been proposed: Mulliken popu-
lation analysis (MPA) [55], natural population analysis (NPA) [56, 57], and ESP
fitting that includes Merz–Kollman (MK) [58, 59], restrained ESP (RESP) [60], and
CHELPG [61] are available in ABINIT-MP. These analyses have different design
concepts. Thus, it is important to fully understand the characteristics of these analyses
for the usage.

MPA is the most popular charge-partitioning method in quantum chemistry. In
MPA, each component lying on different atomic centers is forced to be equally
divided into them. This assumption is often regarded as physically meaningless, and
the gross orbital population sometimes has its outlier [62].

NPA is one of the most promising approaches for eliminating such illness and
giving a stable picture thatmatches chemical intuition [63]. Therefore, it is also useful
for quantitative discussion of CT [30, 37]. Tokuda et al. investigated the hydration
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effect on three ligands of influenza virus neuraminidase, that is, N-acetylneuraminic
acid, Oseltamivir, and Zanamivir, demonstrating the reasonable amount of CT to
solvent waters with NPA [16].

The ESP fitting is an atomic charge determination by reproducing the molecular
electrostatic potential (MEP) around a molecule and there are several variations with
MEP sampling and fitting schemes or constraints. In the FMO framework, the charge
distribution is obtained by summing up fragment charges fitted to fragment MEP in
the FMO convention [64] or fitting to MEP generated from the whole molecular
density [65, 66]. In fact, the ESP-fitted charge set derived from the FMO electron
density has better ESP reproducibility on the molecular surface than the atomic
charge distribution in a force field, by taking account of the structural dependency
(Fig. 16). It could also be applicable to the force field parameters of MM or MD
[66, 67], or docking scores because of its MEP reproducibility that gives accurate
Coulomb interactions.

Fig. 16 Differential map between MEPs generated by the FMO density and atomic charge distri-
bution on the electron isodensity surface (0.001 a.u.) of the ligand-binding pocket of ERα: a the
Mulliken charges b the charges in the Amber ff94, c the MK charges, and d the RESP charges. A
ligand, 17β-estradiol, is also displayed. Reprinted with permission from Ref. [65]. Copyright 2007
Elsevier
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5.2 Electrostatic Potential Analysis

The ESP distributions of molecules can also be analyzed by using FMO calculation
data [18, 65]. Moreover, ESP maps [65, 68–70] can be constructed in which the elec-
trostatic potential values are mapped on the electron isodensity surface of molecule,
which allows for examination of the electrostatic complementarity of protein–ligand
pairs.

Figure 17a, b shows theESPdistributions of two benzofuranone inhibitors of Pim1
kinase, (2Z)-2-(1H-indol-3-ylmethylidene)-6-methoxy-7-(piperazin-1-ylmethyl)-1-
benzofuran-3-one (PDB ID: 5VUC) and (2Z)-6-methoxy-7-(piperazin-1-ylmethyl)-
2-(1H-pyrrolo[2,3-b]pyridin-3-ylmethylidene)-1-benzofuran-3-one [18]. In the
figure, it can be clearly seen that the ESP distribution is changed by introducing
a nitrogen atom into the indole ring. This difference between the two ESP distri-
butions was considered one of the causes of the change in the interaction energy
observed in the IFIE/PIEDA analysis [18]. We have reported that this difference
underlies the different IC50 values of the two compounds [18].

Figure 18 shows the ESP maps on isoelectronic density surface of helix 12 with
either agonist or antagonist position and of rest of the ligand-binding domain (LBD)
of ERα [68]. It is well known that the position of helix 12 in the C-terminal of the
LBD differs depending on whether the receptor is in complex with an agonist or
antagonist (e.g., PDB ID: 1GWR and 3ERT). In addition, it has been shown that
one of the main factors that determines the position of helix 12 is the electrostatic
complementarity between the acidic amino acid residues in helix 12 and the basic
amino acid residues in other parts of the LBD [68]. Indeed, the ESP maps show
that the negatively charged surface of helix 12 has a complementary relationship
with the positively charged areas around Lys529 and Lys362 in the agonist and
antagonist bound complex, respectively (Fig. 18). It has also been reported that

Fig. 17 Electrostatic potential (ESP) analysis. a and b ESP distributions of two benzofu-
ranone inhibitors of Pim1 kinase: (2Z)-2-(1H-indol-3-ylmethylidene)-6-methoxy-7-(piperazin-
1-ylmethyl)-1-benzofuran-3-one (panel a) and (2Z)-6-methoxy-7-(piperazin-1-ylmethyl)-2-(1H-
pyrrolo[2,3-b]pyridin-3-ylmethylidene)-1-benzofuran-3-one) (panel b). Reprinted with permission
from Ref. [18]. Copyright 2017 American Chemical Society
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Fig. 18 Electrostatic potential (ESP) map analysis. ESP maps of helix 12 (H12) and the rest of
the ligand-binding domain of estrogen receptor alpha (ERαLBD) when bound to an agonist (17β-
estradiol [EST]; (a) and (b)) or antagonist (4-hydroxytamoxifen [OHT]; (c) and (d)). Reprinted
with permission from Ref. [68]. Copyright 2014 American Chemical Society

electrostatic complementarity is important for the molecular recognition of DNA by
the DNA-binding domain of ERα [69].

The entry of the following information is required for the input file (ajf file) to
run FMO calculations for ESPs or ESP maps by using the ABINIT-MP program:
grid box space, number of grid points, type of physical quantity of grid data (esp or
map file), electron isodensity surface to be mapped (in case of ESP map only), and
output file format. Then, the ESP data should be output as either an ABINIT-MP
grid file (esp and map files) or a Gaussian cube file (cube and cub files) and analyzed
with BioStation Viewer [11] or GaussView [71], respectively.
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5.3 Electron Density Analysis

FMO calculations allow us to analyze the electron density distribution of an entire
protein system. This means that the electron density distribution obtained from X-
ray crystallography are re-evaluated by quantum chemical calculations. To precisely
examine interaction energies and chemical reactions in the context of SBDD, molec-
ular structures with high accuracy are needed. However, the positions of hydrogen
atoms; the protonation state of amino acid residues such as Asp, Glu, and His; the
difference of tautomerization; and the conformation of ligands usually cannot be
sufficiently identified by standard X-ray electron density analysis. Therefore, our
group is currently developing a novel structure-refinement protocol that uses FMO
calculation to improve the resolution of X-ray crystal structure analysis data. By
using FMO-based structure optimization [19, 20, 72–76], the potential energy-based
conformational analysis, interaction energy analysis, and comparisons of electron
densities obtained by X-ray diffraction crystallography with those obtained by FMO
calculation, we expect to be able to prioritize a number of modeled structures and
obtain more reliable structures that contain hydrogen atom information. We call the
framework for this structural refinement “FMO super-resolution refinement”. As the
first step in achieving the super resolution, Fig. 19 shows theX-ray and FMOelectron
densities of crambin (PDB ID: 3NIR), which has the highest resolution of 0.48Å data
that can be obtained from PDB. Currently, the X-ray and FMO electron densities are
visually comparable, but in the future, we hope to be able to provide a more precise
structure analysis such as evaluation of the validity of structure by direct numerical
comparison of electron densities between experimental and FMO data.

The entry of the following information is required for the input file (ajf file) to
run FMO calculations for electron density by using the ABINIT-MP program: grid
box space, number of grid points, type of physical quantity of grid data (den file),
and output file format. Then, the electron density data should be output as either an

Fig. 19 Electron density analysis at ρ = 0.7456 e/Å3 of crambin (PDB ID: 3NIR). a X-ray
experimental data. b FMO calculation data



How to Perform FMO Calculation in Drug Discovery 121

ABINIT-MP grid file (den file) or a CNS file (cns file) and analyzed with BioStation
Viewer [11] or Coot (Crystallographic Object-Oriented Toolkit) [77], respectively.

6 Conclusion Remarks

In this chapter, the basics of FMO method for drug discovery, computational proce-
dures, and various FMO-based analysismethodswere introducedwith examples. The
FMOmethod provides information on the electronic state of a whole protein system
and its intra- and inter-molecular interactions.With the increasing importance of QM
calculations in drug discovery, it is desirable to make the best use of QM informa-
tion obtained from FMO. It is expected that FMO calculations will not only be used
directly for the molecular interaction analysis but also as a fundamental technology
for the development of FMO-based force field and artificial intelligence (AI), as well
as contributing to life sciences such as structural refinement and chemical reaction
analysis in structural biology.
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Abstract Drug discovery is one of the most important applications of the fragment
molecular orbital (FMO) method. By using the FMO calculation, it is possible to
determine the binding properties between a drug candidate compound and a target
protein, predict the binding activity, and begin to produce a rational design for the
new drug compound. The FMOdrug discovery consortium is an industry–academia–
government cooperation group, which is conducting various studies with the aim of
developing the FMOmethod as a practical in silico drug discovery technology. In this
chapter, we introduce the status of the research conducted by four working groups
(WGs) focusing on drug target proteins (the kinase, protease, nuclear receptor, and
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protein–protein interaction WGs) and two WGs focusing on methodology (one WG
responsible for developing drug discovery methods and databases and one collab-
oration with the molecular dynamics-based KBDD, i.e., K supercomputer-based
drug discovery, consortium). We also discuss the current state and challenges of
FMO-based drug discovery.

Keywords FMO-based drug design · Industry–academia–government
cooperation · High-performance computing infrastructure · Ligand-binding
property · FMO database

1 About the FMO Drug Design Consortium (FMODD)

The fragment molecular orbital (FMO) drug design consortium (FMODD) was
launched at the end of 2014 as an industry–academia–government cooperation group
with the aim of developing the FMO method as a practical in silico drug discovery
technology (representative: Kaori Fukuzawa). As of early 2020, 17 pharmaceutical
companies, four IT companies, and 15 academic institutions are participants in the
group (Fig. 1). Themain activities of the FMODDare to perform the FMOcalculation
for various target protein–ligand complexes using a high-performance computing
infrastructure (HPCI [1]), including the K computer, TSUBAME3.0, FX100, and
Oakforest-PACS, and to develop drug discovery techniques based on the obtained
data. From 2015 to the present, we have also promoted a HPCI industrial use project
entitled “Construction of platform of FMO-based drug design using HPCI system”.

Fig. 1 Research activities of FMO drug design consortium (FMODD). Abbreviations: WG:
working group; NR: nuclear receptor; PPI: protein–protein interaction; KBDD: K supercomputer-
based drug discovery; HPCI: high-performance computing infrastructure



FMO Drug Design Consortium 129

Over the past five years, we have successfully performed FMO calculations on thou-
sands of proteins or protein–ligand complexes; consequently, we have advanced drug
research and development based on the world’s largest repository of quantum chem-
ical calculation data. The results obtained from our calculations were released to
the public in February 2019 as the “FMO Database” (https://drugdesign.riken.jp/
FMODB/).

Research activities in the FMODD have been conducted under a WG system.
There are currently six WGs: four target WGs focusing on important types of
drug target proteins (namely the kinase, protease, nuclear receptor, and protein–
protein interaction (PPI) WGs), one development WG responsible for developing
drug discovery methods and databases, and the FMODD-KBDD WG, in which
the FMODD collaborates with another consortium, the KBDD project organized
by the Biogrid pharma consortium. Most recently, one development WG for FMO
methodology, structural biology WG, and formulation WG were further added.

In these WGs, various methods are used to select target proteins and structures
for calculation. In addition to promoting individual themes for each WG based on
information from research literature and in-house data, the consortium is alsoworking
on “creating guidelines for standard calculation procedures”. To achieve the latter,
an exhaustive database search is first performed and FMO calculations are then
performed when a structure satisfies both of the following conditions: (1) the Protein
Data Bank (PDB) [2] has published the structure of the protein–ligand complex
and (2) ChEMBL [3] has registered the activity value of the ligand compound. In
addition, we are developing an automated FMO calculation protocol [4] in order to
perform a huge number of FMO calculations on these structures. In this protocol, a
series of processes including modeling the initial structure, creating an input file for
the FMO calculation, executing the FMO calculation in the HPCI, and analyzing the
calculation results are performed automatically. This protocol reflects the knowledge
gained from each WG’s research, such as the method of structural treatment and the
selection of appropriate force fields. Data has already been generated through such
automatic calculation and we have registered several hundreds of proteins and their
complex structures in the FMO database (see Chap. 9 for details).

To date, in the calculations of proteins or protein–ligand complexes with thou-
sands of structures, FMO2-MP2/6-31G* has been used as the standard theoretical
level. Furthermore, we have performed interaction analysis on these structures using
inter-fragment interaction energy (IFIE) and pair interaction energy decomposition
analysis (PIEDA). In these calculations, the protein is divided into fragments by its
amino acid residue units, that is, proteins are split into amino acid residue units.
The ligand and water molecule are basically treated as a single fragment, but ligand
splitting is performed in some cases.

Coordination with other databases is also an important aspect of the FMO
database. Our first work involved FMO data collection for the public PDBbind
[5] core dataset, and this work is ongoing. As a future initiative, we are preparing
cooperative efforts such as cross-linking with the Protein Data Bank Japan (PDBj).
At present, all registered data are FMO calculation results from the ABINIT-MP

https://drugdesign.riken.jp/FMODB/
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program, but we are also working on obtaining FMO results using the GAMESS
program.

In the following sections, we will introduce the status of the research and
development conducted in each of the WGs.

2 The Kinase WG

The kinase WG focuses on FMO applied to kinase-ligand docking systems. Kinases
play important roles in the functional expression of various cellular processes,
including those involved in cell aging and autoimmune diseases, and are activated by
phosphorylation under the influence of external stressors such as heat, osmotic pres-
sure, and ultraviolet radiation [6]. To assess the capability of the FMO approach for
predicting binding affinities and the influence of the structure preparation protocol
on this approach, the p38 mitogen-activated protein (MAP) kinase [6–8] (Fig. 2a)
was chosen as a target protein. This protein was chosen because of its many X-ray
crystal structure entries and extensive experimental activity data: 95 structures with
50% inhibitory concentration (IC50) data in the ChEMBL database [3] were available
in the PDB [2]. The p38 MAP kinase is known to have two main stable structures:
the DFG (Asp-Phe-Gly)-in-loop and the DFG-out-loop forms (Fig. 2b). In addition,
several structures in our dataset include a DFG-intermediate-loop (Fig. 2b). In our
work [9], 78 PDB structures were analyzed because the FMO calculations for these
structures successfully converged and provided IFIE values, whereas the calculations
for the remaining structures did not converge for structural reasons. Because all of
the inhibitors we dealt with have corresponding PDB structures and are placed in the

Ligand
(3GC7)

(3QUE) (3D83) (3GC7)

(a) (b)

Fig. 2 aComplex of the p38MAPkinase and its ligand, where the ribbon and ball-and-stickmodels
correspond to the protein and ligand, respectively. bDFG-in, DFG-out, and DFG-intermediate loop
structures are shown as yellow, green, and pink tubes, respectively. Reproduced from Ref. [9] by
permission of the Publisher
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same binding pocket, these inhibitors can be considered as specific inhibitors; thus,
we denoted these inhibitors as “ligands.” We then regarded the IC50 value as the
experimental measure of ligand binding affinity. We evaluated the IFIE between the
p38MAPkinase and its various inhibitors using the FMOmethod at theMP2/6-31G*
level, and then compared the summation of IFIEs (IFIE-sum) with experimental IC50

data. We also categorized the proteins according to their DFG-in/out-loop configu-
rations and the ligands according to their scaffold. Additionally, we investigated the
difference in IFIEs when different force fields in molecular mechanics (MM) model
were used to optimize the complexes. We note that the 78 analyzed structures were
distributed among four research groups at different institutions in the kinase WG,
which contributed to the structure preparation and optimization in this study, and
each group used a different modeling tool; thus, PDB structures for one ligand type
were dealt with by multiple institutions. Consequently, we produced six structure
sets, namely A, B, C, C′, D, and D′, containing 38, 8, 25, 25, 15, and 15 complexes,
respectively, in which several complexes overlapped between the sets [9].

First, we evaluated the correlation between the experimental IC50 values and
the calculated IFIEs for the 78 complexes of structures A, C′, and D′, in which the
structureswere optimized by the same forcefield (AMBER10:EHT). Figure 3a shows
the relationship between the pIC50 (= − log10IC50) and IFIE-sum of all complexes

Fig. 3 Correlations between the pIC50 and predicted binding energies (summation of IFIE, i.e.,
IFIE-sum) for a all structures, b structures with charged ligands, and c structures with neutral
ligands. These figures were obtained from structures A (red), C′ (blue), and D′ (green) including
DFG-in, DFG-intermediate, and DFG-out proteins. The neutral and charged ligands are represented
by circles and diamonds, respectively
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with the 78 compounds; a low correlation coefficient of R2 < 0.01 was obtained.
Because the difference in IFIE-sum between the neutral and the charged ligands was
larger than 100 kcal/mol, as shown in Fig. 3a, it was difficult to collectively compare
these data. Thus, we investigated the correlation between the pIC50 and the IFIE-
sum for ligands with similar net charges. Generally, comparing the IFIE values of
neutral and charged fragments was difficult because the absolute value of the IFIE for
charged fragment pairs was often overestimated. Figure 3b, c shows the correlation
between the pIC50 and the IFIE-sum for complexes with charged and neutral ligands,
respectively. Even when the neutral and charged ligands were separately considered,
the correlations were either irrelevant or not found at all.

Second, we classified the proteins according to their characteristic conformations:
the DFG-in-loop and DFG-out-loop (Fig. 4). Figure 4a, b shows the relationships
between the pIC50 and the IFIE-sum for the DFG-in and DFG-out conformations,
respectively. In both the cases, the IFIE-sumswere not well correlatedwith the pIC50.
Additionally, these results were separated according to ligand charge, as shown in
Fig. 4c–f. The IFIE-sums of the charged ligands showed inverse correlations with
the pIC50 for both the DFG-in and DFG-out conformations (Fig. 4c, d). However,
the DFG-in conformation with neutral ligands showed a relatively good correlation
(R2 = 0.43), as shown in Fig. 4e. On the other hand, the DFG-out conformation
was not correlated with neutral ligands (R2 < 0.01), as shown in Fig. 4f. This lack
of correlation for the DFG-out structures was likely to be caused by the strong
interaction between the ligand and the Glu71 because experimental IC50 values do
not always represent significant inhibition when the IFIE value between the ligand
and the Glu71 indicates strong stabilization [9] (see more information below).

Next, we investigated the correlations involving neutral ligands in order to under-
stand the relationship between the pIC50 and the IFIE-sum in terms of ligand scaf-
folds. The correlation between the experimental pIC50 and the IFIE-sum of 64 neutral
ligands (there were 64 PDB structures with neutral ligands in the 78 calculated PDB
structures) is shown in Fig. 3c. Contrary to our expectations, there was no correla-
tion between the experimental pIC50 values and the calculated IFIE-sum values for
these ligands (R2 < 0.01). However, the IFIE-sums of the p38 MAP kinase in the
DFG-in conformation with 42 neutral ligands were significantly correlated with the
pIC50 values, as shown in Fig. 4e. To better understand the origin of this relationship,
we divided the 64 neutral ligands into five categories based on visual inspection
of the scaffold of the ligand, during which we did not categorize the proteins by
the DFG-loop conformation. The five categories were therefore defined as follows:
(A) biphenyl amides, (B) three linked aromatic rings, (C) fused aromatic rings, (D)
ureas, and (E) others (Fig. 5). Figure 6 shows the relationship between the pIC50

and IFIE-sum values for each ligand type. As shown in Fig. 6a–c, e, the IFIE-sums
generally exhibited moderately good correlations with pIC50, although the corre-
lation coefficient was still poor for urea-type ligands (Fig. 6d). The X-ray crystal
structures showed that all complexes of urea ligands and p38MAP kinases consisted
of DFG-out-loop structures. This data shows a similar trend to that shown in Fig. 4f,
which presents the correlation between the pIC50 and the IFIE-sum of the DFG-out
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Fig. 4 Correlations between the pIC50 and predicted binding energies (summation of IFIE, i.e.,
IFIE-sum) for DFG-in conformations and DFG-out conformations with different ligand scaffolds:
a combined ligands with DFG-in proteins, b combined ligands with DFG-out proteins, c charged
ligands with DFG-in proteins, d charged ligands with DFG-out proteins, e neutral ligands with
DFG-in proteins, and f neutral ligands with DFG-out proteins. These figures were obtained from
structures A (red), C′ (blue), and D′ (green). The neutral and charged ligands are represented by
circles and diamonds, respectively

proteins with neutral ligands. In our current dataset, the types of ligand scaffold have
their preferable protein conformations for the DFG-loop.

In our study [9], we employed three force fields, namely AMBER10:EHT,
AMBER99, and CHARMM27, to investigate the influence of the type of force
field used for geometry optimization on the IFIE-sum for ligands. The IFIE-sum
obtained with AMBER10:EHT was used as a reference for comparison. Our anal-
ysis showed that using different force fields for geometry optimization has little effect
on the IFIE-sum; the IFIE-sums obtained with each force field were not significantly
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or

a b

c d

or

Fig. 5 Ligand types: a biphenyl amides, b three-linked aromatic rings, c fused aromatic rings with
–NH– or –O– links, and d ureas. Others (i.e., the “other” ligand type category) are not depicted
because there is no common scaffold in this category of ligands. Reproduced from Ref. [9] by
permission of the Publisher

differentwith some exceptions. To better understand the origin of the exception cases,
we investigated the residues with the largest differences in IFIE due to the force
fields used, and we observed that Glu71 frequently provided large contributions to
differences in the IFIE-sum. Figure 7 shows that Glu71 and the urea-type ligands
make hydrogen bonds. The differences in IFIE of Glu71 become larger in cases
involving urea-type ligands. The structures around Glu71 and the urea-type ligand
were, however, almost unchanged when different force fields were used (Fig. 7). In
explanation of this finding, the IFIE values between the urea-type ligands and Glu71
were large negative values (from−45 to−60 kcal/mol) relative to those of other frag-
ment pairs; therefore, these values were sensitive to the slight structural differences
in hydrogen atom positions due to the different force fields. This sensitivity may be
related to the poor correlation between IFIE and pIC50 for the urea-type ligands, as
shown in Fig. 6d.

The FMO results for the binding affinity between the p38 MAP kinase and
ligand molecules described above can be comprehensively interpreted from another
perspective. In another previous study [10], we performed singular value decom-
position (SVD) for the calculated results of the IFIE matrix (amino acid residues
× various ligands) in order to determine the cause of the initial poor results and
improve the correlations. In SVD, the original matrix is divided into multiple vectors
that are orthogonal to each other. Through this method, we improved the correla-
tion by removing specific vectors that included noise components and impaired the
correlation.
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Fig. 6 Correlations between the calculated IFIE-sum and the experimentally measured pIC50 for
each ligand scaffold: a biphenyl amides, b three-linked aromatic rings, c fused aromatic rings with
–NH– or –O– links, d ureas, and e others. These figures were obtained from structures A (red), C′
(blue), and D′ (green)

LIGANDLIGAND

Glu71 Glu71
1.78

2.03

1.74

1.98

a b

Fig. 7 The distances between the hydrogen atoms in the urea group of ligands and the oxygen
atom in the carboxyl group of Glu71 for the structures C′ and C (PDB ID: 3GCU). Structure C′ and
C are shown in (a) and (b), respectively. Reproduced from Ref. [9] by permission of the Publisher
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An m × n matrix A with m and n-dimensional vectors as rows and columns can
be related to an m × n diagonal matrix � that satisfies the following equation:

� = UTAV. (1)

Here, U is an m × m orthogonal matrix, and V is an n × n orthogonal matrix. If U
and V are chosen appropriately, a pair of matrices can be made with � satisfying
the condition described later. When Eq. (1) is rewritten, the following equation is
satisfied:

A = U�VT. (2)

This type of decomposition is known as SVD [11–14]. For simplicity of description,
we assume m � n. Otherwise, we can think of the transposed matrix AT of A.

If σij is an element of �, in the case of i �= j, σij = 0; in the case of i = j, for 1 �
i � n, σij = σi � 0. At this time, σ1 � σ2 � σ3 � …, where σi is a singular value of
A, a column vector of U is a left singular vector, and a row of VT is a right singular
vector [14, 15].

For example, in Fig. 8, the left-hand side is matrix A before decomposition, while
the right-hand side is U, �, and VT in order from the left-hand side matrix. When
the original matrix A is m × n, the shape of each matrix is as follows:

A: m × n; U: m × m; �: m × n; and VT: n × n.

The column vector of U is an orthonormal basis for each amino acid residue and the
row vector of VT is an orthonormal basis for each PDB structure with its respective
ligand; each singular vector has an independent meaning.

We analyzed the left singular vectors (U) and named them singular vector 1,
singular vector 2, and so on, in order from the vector of the first column of the left
singular vectors. To execute SVDs, we used numpy.linalg.svd in NumPy [16].

Figure 9 shows the average of the calculated IFIEs between each amino
acid residue and ligand molecules for 60 structures of p38 [10]. Most of the
residues involved in strong binding were charged residues, including Glu71
(−30.74 kcal/mol), Asp112 (−11.29 kcal/mol), and Asp168 (−18.95 kcal/mol). We
also examined the statistical correlation between IFIE-sum and experimental pIC50

(median value in multiple experiments); we found a lack of correlation (correlation
coefficient R2 = 0.01). Since the charged ligands had a significantly lower IFIE-sum

Fig. 8 Example of singular value decomposition (SVD) [15]. Reproduced from Ref. [10] by
permission of the Publisher
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Fig. 9 Average IFIEs between each amino acid residue and the ligand molecules of 60 calculated
structures of p38. Several important residues that show strong interactions with ligands are circled
in red and named. Reproduced from Ref. [10] by permission of the Publisher

(i.e., they are more stable) than the neutral ligands, we next considered the correla-
tion separately depending on the presence or absence of electric charge in the ligand.
As shown in Fig. 10a, b, we were still unable to obtain significant correlations for

R2 = 0.02

R2 = 0.24
R2 = 0.04

R2 = 0.24

a b

c d

Fig. 10 Correlations between pIC50 (Median) and IFIE-sum for a charged ligands and b uncharged
(neutral) ligands. Correlations between pIC50 (median) and IFIE-sum for the neutral ligands with
the c DFG-in structure and d DFG-out structure
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both charged and neutral ligands. Indeed, the correlation (R2 = 0.24) observed for
the charged ligands in Fig. 10a is irrelevant because the IFIE-sum should be more
negative with an increase in pIC50. Subsequently, we further separated the neutral
ligand data based on the structure of the DFG-loop (in or out). Although we did not
obtain a good correlation with the DFG-out structure (Fig. 10d), pairing the DFG-in
structure with neutral ligands gave a correlation (R2 = 0.24; Fig. 10c).

We then applied SVD in our analysis of the IFIE data. For the neutral ligands, we
examined each left singular vector. The contribution by singular vector 1 was similar
to the average value of the IFIE itself, whereas singular vector 2 gave completely
different peak residues (Fig. 11). Furthermore, we observed that singular vector
1 from the neutral ligand data (Fig. 11a) had the same peak residues as singular
vector 2 from all data. Given these results, we hypothesized that singular vector
2 from all data included a significantly important factor for binding that was not
substantially affected by ligand charge. In addition, we examined the correlation
between each IFIE-sum of each singular vector and pIC50 to identify specific vectors
containing noise components. This analysis gave a correlation coefficient of R2 =
0.32 for singular vector 2; however, singular vector 1 showed an inverse (irrelevant)
correlation (R2 = 0.33). We then assumed that it might be possible to find out
correlations included in the FMO calculation, such as that from singular vector
2, by removing the contribution from singular vector 1; in doing so, we were able
to improve the original R2 of 0.04 (Fig. 10b) to 0.37 (Fig. 12). Thus, these results
suggest that the correlation was improved by reducing the contribution of Glu71
because the maximum peak residue of singular vector 1, which was removed, was
of Glu71. We confirmed this interpretation by investigating the interaction between
Glu71 and the ligand in more detail [10].

For the DFG-out structure with neutral ligands, singular vector 1 had a strongly
inverse correlationwith pIC50. Figure 13 shows the result of removing singular vector
1 from correlations, which succeeded in improving the R2 values from 0.02 to 0.57.
This result supports our previous findings, that is, inaccuracies associated with Glu71
in ligand-binding calculations significantly impaired the correlations.

Fig. 11 Peak residues (circled in red) of singular vectors when analyzing neutral ligands. a Singular
vector 1 and b singular vector 2. Reproduced from Ref. [10] by permission of the Publisher
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R2 = 0.37

Fig. 12 Correlation between pIC50 and IFIE-sum having removed the contribution of singular
vector 1 when analyzing neutral ligands

R2 = 0.57

Fig. 13 Correlation between pIC50 and IFIE-sum for the DFG-out structure with neutral ligands
when using all the singular vectors except singular vector 1

As demonstrated above, our complementary analyses [9, 10] have provided prac-
tical computational approaches in which the FMO-IFIE method can be applied to
in silico screening of ligand molecules as inhibitors of p38 MAP kinase and can
produce insights into detailed molecular interactions with relevant residues.

3 The Protease WG

We have focused our attention on the FMO calculation [17–19] of the complexes
of proteins with ligands to elucidate the function of proteins through analysis of the
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interactions between the protein and ligand [20–22]. To this end, we selected renin,
a human protease, as the starting target protein of our work. Renin is an aspartic
protease that exists in the human kidney and contains 340 amino acid residues [23].
The active site amino acid residues of renin areAsp38 andAsp226. Importantly, renin
is the first component of the renin–angiotensin system in hypertension. Figure 14
shows the structure of renin, including the active site amino acid residues Asp38 and
Asp226.

Here, we describe the FMO calculation at the FMO2-MP2/6-31G* level for 20
renin complexes and their inhibitors with the activity values at the IC50 obtained from
ChEMBL [3]. One of the aims of our study was to clarify the relationships between
the calculated binding/interaction energies for the renin-inhibitor complexes and the
IC50 of each inhibitor.

We selected 20 different renin-inhibitor complexes for the FMO calculations.
The complex structures were prepared based on X-ray crystal structures and the
selected inhibitors are shown in Fig. 15. We obtained these complex structures from
PDB. We prepared two types of calculation model for each complex: one included
the complexes without crystallization waters (model A) and the other included the
complexes with crystallization waters (5.0 Å around the inhibitor; model B). For
reconstruction of renin, the missing atoms and missing residues were complemented
by homology modeling with SWISS MODEL [24–28]. The N- and C-terminus of
renin were then capped by NH3

+ and COO−, respectively. In addition, hydrogen
atoms were added to renin using AMBER11 [29]. For ligands, the hydrogen atoms
were added using GaussView. The charge of ligands was assigned using AM1-BCC
of Antechamber implemented in AMBER11. Since the protonation states of the
active site residues Asp38 and Asp226 have not been clarified, these residues were

Asp38 Asp226

Fig. 14 Structure of renin (left side) and its active site amino acid residues Asp38 and Asp226
(right side). Color code: green C, red O, blue N, white H, and yellow S
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1. PDB ID: 3D91
IC50 = 0.025 nM

2. 3Q4B
IC50 = 0.47 nM

3. 3Q5H
IC50 = 0.48 nM

4. 2V0Z
IC50 = 0.6 nM

5. 2V16
IC50 = 0.8 nM

6. 3VYF
IC50 = 1.6 nM 7. 3OAD

IC50 = 1.96 nM
9. 3O9L

IC50 = 6.065 nM

10. 3GW5
IC50 = 6.75 nM8. 4GJD

IC50 = 4.0 nM

11. 3VYE
IC50 = 7.7 nM 12. 2G1R

IC50 = 20 nM

13. 3Q3T
IC50 = 37 nM 14. 4GJC

IC50 = 90 nM

15. 4GJ7
IC50 = 235 nM

16. 3VYD
IC50 = 406 nM

17. 4GJA
IC50 = 850 nM

18. 2BKT
IC50 = 860 nM

19. 2G24
20. 2IKO

IC50 = 4000 nM

Fig. 15 Data set of inhibitors with the activity values (IC50)

not protonated in our calculations. In order to neutralize the system, counterions
were included. The structures of complexes were solvated with TIP3P model water
molecules within 8.0 Å of respective complexes. Subsequently, we performed the
energy minimization using an MM calculation via AMBER11 with the ff99 and
GAFF force fields used for renin and ligands, respectively. All atoms were optimized
in the energy minimization.

For model A and B, the surrounding TIP3P model water molecules and counte-
rions were removed after energy minimization. The resulting complexes were subse-
quently subjected to an FMO calculation. All FMO calculations were performed at
the FMO2-MP2/6-31G* level with the Cholesky decomposition approximation [30]
using the ABINIT-MP program on the K computer. In these calculations, each amino
acid residue of renin and the crystallization water were treated as a single fragment;
however, the ligands were divided into fragments. Each system was divided into
339–343 or 342–357 fragments for models A and B, respectively. In addition, all
FMO calculations were carried out under vacuum conditions. We evaluated the IFIE
between a ligand and the amino acid residues in renin, and estimated the sum of
these IFIEs as the binding energy between the inhibitor and the renin. In order to
determine the details of the interaction, we also conducted PIEDA calculations [31,
32] to examine the energy components.
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Table 1 lists the IC50 and pIC50 values for each inhibitor, as well as the calculated
binding energies for bothmodels A andB. Figure 16 shows the relationships between
binding energies and pIC50 for both models. FMO computations indicated that the
calculated binding energy in bothmodelswas correlated to the pIC50 of the inhibitors;
this correlation was particularly strong for model B (R2 = 0.87; R = − 0.93).

Figure 17 shows an example of IFIEs between a ligand and selected amino acid
residues in a renin complex (PDB ID: 2V0Z, model A) and Fig. 18 shows the PIEDA
of the same IFIEs. We found that the inhibitors interact with certain amino acid
residues such as Ser41, Tyr83, Ser84, Thr85, and Thr309 in addition to the active
site amino acid residues Asp38 and Asp226. In most complexes, PIEDA showed that
the main component of IFIE between a ligand and Asp38/Asp226 is electrostatic
interaction; in contrast, the main component of IFIE between a ligand and Tyr83 is
dispersion interaction.

Our FMOcalculation for 20 renin-inhibitor complexes and their inhibitors showed
that the binding energies were well correlated with the IC50 for each inhibitor. This
result suggests that the computed binding energies may enable us to predict the

Table 1 IC50 and pIC50 values for each inhibitor, and the calculated binding energies (total IFIE)
for each complex. PBD: Protein Data Bank

No PDB ID IC50 (nM) pIC50 Total IFIE (kcal/mol)

Model A Model B

1 3D91 0.025 10.60 −219.69 −195.52

2 3Q4B 0.47 9.33 −154.57 −152.05

3 3Q5H 0.48 9.32 −143.66 −160.02

4 2V0Z 0.6 9.22 −158.41 −152.06

5 2V16 0.8 9.10 −168.48 −174.75

6 3VYF 1.6 8.80 −157.55 −147.38

7 3OAD 1.96 8.71 −147.74 −140.16

8 4GJD 4 8.40 −165.24 −143.82

9 3O9L 6.065 8.22 −150.07 −134.04

10 3GW5 6.75 8.17 −136.85 −118.84

11 3VYE 7.7 8.11 −132.70 −141.19

12 2G1R 20 7.70 −137.31 −128.73

13 3Q3T 37 7.43 −153.41 −136.89

14 4GJC 90 7.05 −127.43 −119.02

15 4GJ7 235 6.63 −99.63 −122.52

16 3VYD 406 6.39 −131.15 −119.45

17 4GJA 850 6.07 −139.28 −110.65

18 2BKT 860 6.07 −137.18 −106.16

19 2G24 4000 5.40 −89.30 −89.28

20 2IKO 4000 5.40 −78.46 −71.34
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Fig. 17 IFIEs between an inhibitor and the selected amino acid residues in renin (PDB ID: 2V0Z,
model A)

Fig. 18 PIEDA energies between an inhibitor and the selected amino acid residues in renin (PDB
ID: 2V0Z, model A)
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extent of the effects of individual inhibitors. Currently, the relationship between
the IC50 and the IFIE values of particular amino acid residues and inhibitors is
not entirely clear. Nevertheless, as shown in previous studies [20–22], the IFIE
analysis is a useful method for acquiring detailed information on protein–ligand
binding. The identified interactions for selected amino acid residues can lead to new
information that may be used to develop safer and more effective agents than that
are currently available. Presently, we are conducting research as follows: (1) IFIE
analysis including crystallization waters to examine the role of water molecules in
protein–ligand binding and (2) Visualized Cluster Analysis of Protein–Ligand Inter-
action (VISCANA) implemented in BioStation Viewer [33] to examine the char-
acteristic indications of ligand binding with the IFIEs between each amino acid
residue of renin and its inhibitors. In addition, we are implementing collaborative
research supported by the BINDS program (Basis for Supporting Innovative Drug
Discovery and Life ScienceResearch) as a part of the PlatformProject for Supporting
Drug Discovery and Life Science Research from AMED (Japan Agency for Medical
Research and Development).

4 The Nuclear Receptor WG

To date, FMO calculations have been performed for approximately 400 nuclear
receptor structures, including androgen receptor (AR), vitamin D receptor (VDR),
retinoic acid receptor-related orphan receptor γt (RORγt), and estrogen receptor
(ER). We have also evaluated the effects of the protonation state of His and the
structural fluctuations of water on the correlation between activities and calculated
values, and we have conducted various studies aimed at understanding the effects of,
for example, functional groups, activity cliffs, and subtype selectivity. Our findings
are discussed as follows for each target.

4.1 VDR

The FMO calculation for VDR was explained in detail by Kamimura and Kurita
in another Chapter of this book. This is an interesting example of drug design that
combines X-ray crystal structure analysis and FMO calculation to assess the binding
activity between VDR and two ligands with greatly differing activity values [34, 35].
Importantly, there was sufficient agreement between the results obtained by FMO
calculation and experimentation in the correlation between the binding energy of
VDR and the ligand. In addition, the chirality of the ligand and the protonation state
of the His residue of VDR were found to influence the interaction between VDR
and the ligand (Fig. 19) [36, 37]. This demonstrates the importance of correctly
setting the protonation state of the His residue existing around the ligand when using
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Fig. 19 Effects of ligand chirality on interactions between vitamin D receptor and ligands [36, 37]

a molecular simulation to analyze the interaction between the protein and various
ligands.

4.2 AR

Where AR was used as a target protein, FMO calculations were performed on struc-
tures following a comprehensive search using PDB and ChEMBL, as described in
Sect. 1. The correlation coefficient between the value of total IFIE obtained by using
36 PDB structures for eight kinds of ligands and the value of Ki obtained experi-
mentally was R2 = 0.86. Thus, results of FMO calculations show that the binding
properties betweenAR and ligands can be analyzedwith high accuracy [38]. Further-
more, detailed analysis of IFIEs between each amino acid residue of AR and ligands
revealed that the interaction between Asn705 of AR and the hydroxyl group of the
ligand is important for strong binding between the two.

We also used FMO calculations to analyze the binding properties of AR and
a new ligand with four types of substitution introduced into the functional group;
consequently, we proposed a new ligand that binds strongly to AR [38]. Furthermore,
molecular dynamics (MD) in a water solvent were calculated to analyze how the
change in the arrangement of water molecules around theAR–ligand complex affects
the interaction betweenARand the ligand.Correlations between the calculated values
(total IFIE) and activity values (pKi) were examined for three types of structure:
crystal structures, structures in which heavy atoms of AR and the ligand were fixed
whereas water and hydrogen atoms were given fluctuations, and structures in which
fluctuations of all atoms were considered (Fig. 20). When the fluctuation effect of
only water was taken into consideration in the MD calculations, the correlation
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Fig. 20 Correlations
between pKi and total IFIE
considering fluctuations in
water in the binding of
androgen receptor and a
ligand
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Fig. 21 Change in the interaction between ligand 198 and androgen receptor (AR) Asn705 residue
mediated by water molecules. Left: structure with fluctuations only in water and hydrogen atoms;
right: structure with fluctuations in all atoms

between the crystal structures and the experimental activity value was maintained;
however, the correlation somewhat deteriorated if the structure was moved toomuch.
To explain this reduced correlation, it was suggested that when the entire structure
was moved, water molecules may have entered between the interacting ligand and
amino acid residue, thereby weakening the direct interaction between AR and the
ligand (Fig. 21).

4.3 Retinoic Acid Receptor-Related Orphan Receptor γ t

For RORγt, two types of ligands that act as an agonist or an inverse agonist were
used as calculation targets [39]. These ligands are similar in structure but they have
opposite actions on RORγt. In order to determine the cause of this effect, MD calcu-
lations of 300 ns in water were used to analyze the structural change that occurs when
the ligands bind to RORγt. It was revealed that in the complex to which the inverse
agonist was bound, the structure of Helix 12, which is involved in the transcriptional
activity ofRORγt, significantly fluctuated and transcriptional activitywas suppressed
(Fig. 22a, b). To evaluate the cause of this structural change, we performed FMO
calculations on several characteristic structures; we found that rotation of the His479
side chain of RORγt triggered the structural change of Helix 12 (Fig. 22c). In future
research, we intend to similarly analyze other ligands, andwe aim to propose a ligand
that can suppress the transcriptional activity of RORγt more effectively.
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Fig. 22 a Specific binding between theHelix12 site of retinoic acid receptor-related orphan receptor
γt (RORγt) and a co-activator. b Structural change of Helix12 duringMD calculations. cRotation of
the His479 side chain and interaction changes between amino acid Tyr502 and ligand 3SX revealed
by MD calculations. Reprinted with permission from Ref. [39]

4.4 ER

ER, a female hormone receptor, has two subtypes (α and β), both of which have
cocrystal structures with many ligands. ER-ligand binding has been extensively
studied using FMO calculations to determine receptor binding affinity and subtype
selectivity [40, 41]. To date, FMO calculations have been performed for cocrystal
structures of ERα and 22 types of ligand, as well as ERβ and 23 types of ligand.
Correlations with the IC50 have also been assessed, and detailed analysis of IFIEs
has been performed. For complexes with a ligand for which the cocrystal structure
has not been published, docking structures are instead used in the analysis.

For ERα, similar to AR, FMO calculations were performed using the globally
searched structures obtained from PDB and ChEMBL, as described in Sect. 1. The
ligands in the 22 ERα-ligand complex structures include nine agonists and 13 antago-
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Fig. 23 Clustering analysis of ligands based on IFIEs of estrogen receptor α (ERα) and the ligands

nists. Figure 23 shows the result of clustering the compounds based on the interaction
pattern of IFIE using FMO calculation results. This is an example of the VISCANA
method [42],which can be used to evaluate the similarity of ligands and extract impor-
tant interactions common to multiple complex structures. As shown in Fig. 23, the
agonist and antagonist are clearly separated.Many ERα agonists are small molecules
such as steroids. On the other hand, antagonists have structures in which a long chain
is extended in addition to a site with a size similar to that of the agonist, and an amine
at the tip has a positive charge. Results showed that the interaction residues common
to most of the complexes were amino acid residues that possessed hydrogen bonds
with steroid moieties such as Glu353 and His524. For the antagonists, interactions
with residues such as Asp351, Glu380, and Lys531 were also observed. Therefore,
the magnitude of the interaction energy increased and the electrostatic interaction
caused by the positive charge of the ligand tended to become stronger. Consequently,
the interaction patterns of agonists and antagonists differed distinctly, and the clusters
to which they belonged were segregated. In further analysis of the interaction with
a charged ligand, statistically corrected IFIE (SCIFIE) [43] was used to incorporate
a shielding effect against excessive electrostatic interaction from distant residues.
In addition, excessive separation of the agonist and antagonist has been reduced by
incorporating a solvent effect using the FMO-Poisson–Boltzmann and surface area
approximation (PBSA) method [44].
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Fig. 24 Interaction between estrogen receptor β (ERβ) and β-selective ligands

For ER subtype β, the complex structures registered in PDB were comprehen-
sively calculated and subjected to IFIE/PIEDA analysis. In addition, ligands were
clustered using VISCANA, and the relationship between the interaction character-
istics and subtype selectivity was examined [45]. Similar to the ERα result, two
amino acid residues essential for ligand binding (Glu305 and Phe356), a residue
strongly involved in β-selectivity (His475), and three hydrophobic amino acid
residues forming the β-selective pocket (Ile373, Ile376, and Phe377) were identi-
fied (Fig. 24). We found a strong correlation between the His475–ligand interaction
and β-selectivity, revealing that His475 plays an important role in β-selectivity.

In ER subtype selectivity, phytoestrogens are known to have×10-fold selectivity,
and the synthetic ligand Prinaberel has >200-fold β selectivity [46]. When binding
energy evaluation was performed for 10 types of ligand with various inhibitory
activity values (IC50) or subtype selectivity by combining docking calculations and
FMO calculations, we obtained a correlation coefficient of R2 = 0.79. Furthermore,
the effects of halogen (fluoro group) and the vinyl group, which were introduced to
enhance the subtype selectivity at the synthetic stage, were evaluated using PIEDA.
The introduction of the fluoro group was found to cause a change in the electrostatic
interaction and a structural change derived from the atomic charges of hydrogen and
fluorine; the introduction of the vinyl group caused a large change in the dispersion
interaction. It is expected that evaluations of the electronic level against the influence
of such functional groups will provide a useful index for future molecular design.

5 WG on Protein–Protein Interactions

PPIs occur frequently in vital biological activities and are essential for the perfor-
mance and control of many biological functions. While PPIs are usually controlled
without problems, once these interactions are disrupted, various failures occur that
can develop into diseases such as cancer [47]. Therefore, PPI inhibitors have become
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attractive targets as therapeutic agents. However, the interaction modes between
proteins are diverse, and the design of inhibitors remains challenging [48]. In order
to contribute to the development of inhibitors of PPIs, we conducted interaction
analysis using the FMO method [17, 31, 49, 50].

5.1 MDM2-p53 Interaction Inhibitor

The oncogenic gene p53 is activated in response to genetic stresses such as ultravi-
olet light and radiation; it acts as a transcription factor to activate the transcription
of various downstream genes that induce cell cycle arrest and apoptosis, thereby
inhibiting cellular oncogenicity [51–53]. p53 consists of 393 amino acid residues and
five key domains (the transcriptional activation, proline-rich, DNAbinding, tetramer-
ization, and basic domains) from the N-terminal side. In addition, p53 is a homote-
trameric protein, and various functions of p53, such as DNA binding and nuclear
export, depend on its multimeric structure; tetramer formation has also been reported
to be essential for the functional expression of p53 [54, 55]. Thus, the tetramerization
domain involved in the stability of the p53 tetramer structure is thought to be crucial
to the tumor suppressor function of p53, andmutations or deletions in this domain are
among the major causes of human cancer. The tetrameric structure of these mutant
forms of p53 is remarkably destabilized compared with that of the native form, and
the DNA binding capacity and transcriptional activity have also been shown to be
reduced [56, 57]. The N-terminal transcriptional activation region of p53 is also
known to be the binding region for MDM2, a protein that plays a central role in p53
regulation. MDM2 binds to the α-helix in the transcriptional activation domain of
p53 and catalyzes its ubiquitination, thereby promoting the proteasomal degradation
of p53 [58, 59]. Thus, p53 is known to be repressed by MDM2, and MDM2 overex-
pression has been confirmed in several cancers [60, 61]. Consequently, inhibition of
p53-MDM2 interactions is expected to restore the tumorigenic function of p53, and
MDM2 is considered a major target for the development of anticancer drugs; indeed,
many inhibitors have already been reported [62–69].

The mode of interaction of p53-MDM2 has been studied extensively: it is mainly
due to the insertion of the side chain including Phe19, Trp23, Leu26, amino acid
residues in p53, into the hydrophobic cleft inMDM2. In addition to these hydrophobic
interactions, X-ray crystallography of the p53-MDM2complex has shown that Phe19
and Trp23 of p53 are hydrogen-bonded to Gln72 and Leu54 of MDM2, respectively
[70]. Figure 25 shows the mode of interaction between p53 andMDM2 [71]: the p53
side chain including Phe19, Trp23, and Leu26 is positioned so that it enters the gap
in MDM2.

As many studies have determined the inhibitors of MDM2, several MDM2-small
molecule inhibitor cocrystal structures, obtained byX-ray crystallography, have been
registered in PDB. In our study, FMO calculations were performed on these cocrystal
structures and the results were compared with reported inhibitory activity values. We
showed that the values of the interaction between MDM2 and ligands obtained by
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Fig. 25 Interaction between
p53 and MDM2 (PDB ID:
1YCQ) [27]. White ribbon:
p53; gray surface: MDM2;
magenta: Phe19, Trp23, and
Leu26 amino acid residues in
p53

the FMO method reflected the inhibitory activity values observed experimentally.
Thus, our findings could lead to applications for MDM2 inhibitors.

The FMOs were calculated using 17 structures of MDM2-low-molecular-weight
compound complexes registered in PDB forwhich the IC50 was reported as inhibitory
activity [62–69]. The structures and PDB IDs of each ligand are shown in Fig. 26,
and the IC50 of each ligand is shown in Table 2. Since MDM2 in the 17 crys-
tallographic structures obtained from PDB had only a partial structure, it was
adjusted to the crystal structurewith the shortest residue (amino acid residues: Tyr26-
Val110) when calculating FMO. Subsequently, Structure Preparation and Protonate
3D were used to complement missing residues and atoms and add hydrogens using
MOE2014.0930 [72]. Finally, MMFF94x was used as a force field and structural
optimization was performed only for hydrogens in the complex. Furthermore, only
thosewatermolecules thatwere hydrogen-bonded to cross-link the ligand and protein
were allowed to remain in the crystallographic water.

Using the crystalline structures optimized as described above, FMO calculations
were performed by validating PIEDA using the K supercomputer and ABINIT-MP
as a calculation program [73]. MP2 was selected as the calculation level and 6-31G*
was used as the basis function.

First, the correlations between IC50 and IFIE-sum shown in Table 2 were
confirmed (Fig. 27): the resultant R2 value was 0.68, that is, a relatively strong corre-
lation was obtained. Because of the strong association between the experimental
values and IFIE-sum, the FMO-calculated IFIEs could likely be used to predict the
interaction between MDM2 and its inhibitors.
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Fig. 26 Ligand structures (MDM2-low-molecular-weight compound complexes) used for FMO
calculation. The PDB ID is shown in parentheses
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Table 2 IC50 of calculated ligands shown in Fig. 26

Lig. No PDB ID IC50 (nM) Lig. No PDB ID IC50 (nM)

1 3VZV 9.2 10 4ZYI 8

2 4JV7 1000 11 5HMH 7

3 4JV9 1800 12 5HMI 15

4 4JVR 9.4 13 5LAV 819

5 4JVE 86 14 5HMK 40

6 4JWR 610 15 5LAZ 4

7 4OBA 0.4 16 5LAY 34

8 4ZYC 380 17 5LN2 0.13

9 4ZYF 1.7
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Fig. 27 Correlation between the summation of ligand–protein IFIEs (IFIE-sum) and pIC50 for
MDM2 inhibitors

5.2 β-Secretase 1 Inhibitor

Alzheimer’s disease, a neurodegenerative disorderwith progressive cognitive impair-
ment, was discovered in 1906 by Dr. Alois Alzheimer, a German psychiatrist [74].
A pathological feature of this disease is senile plaque formed by the deposition
of amyloid fibers consisting of amyloid β (Aβ) in the brain. The disease state of
Alzheimer’s disease is largely divided into three stages: stage 1 begins with impair-
ment of memory and learning, emotional upset, but preserved personality; stage 2
includes prominent higher-order dysfunction and marked impairment of memory;
and stage 3 involves motor deficits and, eventually, the complete loss of function
of the cerebral cortex. In recent years, the number of patients with Alzheimer’s
disease has increased and the development of effective treatment methods and drugs
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has become a priority [75]. However, the contribution of drugs to the treatment of
Alzheimer’s disease remains lower than that in other therapeutic areas; indeed, drug
treatment of the disease is currently inadequate.

Acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists
are widely used as agents for improving quality of life in patients with Alzheimer’s
disease [76]. These drugs are intended to temporarily improve cognitive function
and cannot inhibit the progression of the disease itself. Following various studies on
the pathogenesis of Alzheimer’s disease, the Aβ hypothesis [77] has been posited: it
states that the accumulation of Aβ, which constitutes the senile plaque deposited in
the brain of patients, drives the development of Alzheimer’s disease. Thus, Aβ has
become a major target for fundamental therapies.

Aβ is a partial segment of amyloid precursor protein (APP) that is first cleaved at
the N-terminus of the Aβ domain by β-secretase 1 (BACE1), which then cleaves the
C-terminus of the Aβ domain, thereby excising the precursor protein and secreting it
into the extracellular space. Aβ is characterized by its high agglutinability: it causes
toxicity and neuronal cell death by agglutination. The main molecular species of
Aβ are Aβ40 and Aβ42 (which are 40 and 42 residues long, respectively). Aβ42 is
considered to be highly toxic because it is particularly susceptible to aggregation.

BACE1 is a membrane-bound glycoprotein, aspartate protease, with two aspar-
tates, Asp32 and Asp228, as active core sites that catalyze protease action [78]
(Fig. 28). BACE1 has been found to trigger Aβ production, and BACE1-knockout
mice can survive without noticeable behavioral or histological abnormalities [79].
Therefore, BACE1 has attracted considerable attention as a safe and effective target
for anti-Alzheimer’s disease drugs.

BACE1 inhibitors have now been extensively developed. In 2000, the OM99
group, peptide-like compounds of APP, was reported as containing the first potent
BACE1 inhibitors. Among theOM99group,OM99-2 in particularwas shown to have

Fig. 28 Structure of β-secretase 1 (PDB ID: 1SGZ). Asp32 and Asp 228 are shown as orange
molecules in the reaction center
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Fig. 29 Examples of cyclic amidine structures in β-secretase 1 (BACE 1) inhibitors

a potent inhibitory activity on nM-units [80]. However, the development of a small
molecule inhibitor, that is, not peptide-sized, was the ultimate aim because problems
were encountered with penetration into the brain due to the large molecular weight
and multiple hydrogen bond donors of the developed peptide-like compounds. This
proved challenging as the active pockets of BACE1 are about five amino acid residues
in size and it is therefore difficult to inhibit enzymatic activity with small molecule
inhibitors. Consequently, potent inhibitors have not since been discovered.

In 2007, aminoquinoline, aminoisoquinoline, and aminopyrimidone were discov-
ered as small molecule lead compounds in BACE1 [81–83] by fragment-based drug
discovery (FBDD) [84]. A common feature of these structures is their cyclic amidine
structure (Fig. 29).

These cyclic amidine-containing compounds have attracted attention as core scaf-
folds for BACE1 inhibitors and a number of reports on similar inhibitors have
emerged [85–88]. This has led to the discovery of compounds that have an inhibitory
effect on Aβ production in cellular assays, good pharmacokinetics (particularly brain
penetration), and even in vivo activity [89–91]. Most of these compounds possess
the first cyclic amidine structure as a partial structure, indicating that this skeleton is
suitable as a BACE1 inhibitor.

In our work, 38 of the BACE1-small molecules complexes registered in PDBwith
cyclic amidines and reported inhibitory activities were selected as targets for FMO
calculations [92–96]. Table 3 shows the inhibitory activity values of each ligand
(Fig. 30). All structures have a cyclic amidine structure, and they were divided
into five groups according to the differences in the skeleton of these cyclic amidine
structures.

First, the crystallographic structures were obtained from PDB. Next,
MOE2014.0930 [72] was used to complement the missing residues and atoms and
to add hydrogens using Structure Preparation and Protonate 3D. Finally, MMFF94x
was used as a force field, and only the hydrogen molecules in the ligand–protein
complex were structurally optimized. All of the crystalline water remained.

Using the crystal structures optimized as described above, the FMO calculations
were performed using the K supercomputer andABINIT-MP [73] as a computational
program. MP2 was used as the calculation level and 6-31G* was used as the basis
function.

We first confirmed the correlations between the experimental values shown in
Table 3 and the ligand–protein IFIE-sums (Fig. 31): an R2 of 0.40 was found, indi-
cating a weak correlation. However, there were outliers in the data (as indicated by
the arrows in Fig. 31). We therefore used a Smirnoff Grubbs test (with a significance
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Table 3 PDB ID and IC50 of ligands (BACE1-small molecules complexes) used for FMO
calculations (groups 1–5 correspond to those shown in Fig. 30)

Group PDB ID Lig. No IC50 (nM) Group PDB ID Lig. No IC50 (nM)

1 3IN3 18 60 2 3KMY 37 200

3IN4 19 30 3L38 38 200

3IND 20 1,500 3L3A 39 420

3INE 21 170 3 4J0P 40 51

3INF 22 40 4J0T 41 28

3INH 23 20 4J0V 42 435

3OOZ 24 14 4J0Y 43 77

4JOO 25 36,380 4J0Z 44 54

4JP9 26 24 4J17 45 148

4JPC 27 94 4J1C 46 12

4JPE 28 48 4J1F 47 49

2 2OHK 29 2,000,000 4J1E 48 19

2OHL 30 2,000,000 4J1K 49 13

2OHP 31 94,000 4J1I 50 40

2OHQ 32 25,000 4 4FRI 51 2,850

2OHR 33 100,000 4FRJ 52 280

2OHS 34 40,000 4FRK 53 8

2OHT 35 9,100 5 3MSK 54 26,000

2OHU 36 4,200 3MSL 55 7,000

level of 0.05) to eliminate the outliers. Consequently, the R2 value improved to 0.74,
suggesting a strong association between the experimental values and IFIEs (Fig. 32).
Thus, FMO-calculated IFIEs could likely be used to predict the interactions between
BACE1 and its inhibitors.

In summary, we have found a strong association between FMO-calculated
IFIE-sums and experimental values in systems for MDM2 inhibitors and BACE1
inhibitors. Therefore, in these systems, the use of IFIE-sum values may promote
the design of inhibitors with more potent inhibitory activity. In future research, by
carrying out PIEDA and other relevant analyses, the usefulness of the FMO method
will be demonstrated in actual drug discovery studies by acquiring data on struc-
tural modifications with stronger activities, and by conducting similar analysis using
different proteins.
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Group 1 

Fig. 30 Groups 1–5 containing the ligand structures of the BACE1-small molecules complexes
used for FMO calculations

6 The FMODD-KBDD WG

The FMODD-KBDDWG is a collaborative WG that uses FMO methods to analyze
the results of docking simulations and MD simulations from the KBDD. The KBDD
was established in 2012 as an industry–academia cooperation committee that enables
industrial and academic researchers to gather in order to evaluate and develop cutting-
edge computational approaches that would be too difficult to tackle alone. Over
the past few years, the KBDD has focused on research into protein–ligand-binding
free energy calculations and docking pose predictions using MD-based approaches
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Group 2 

Fig. 30 (continued)

such as MP-CAFEE [97, 98], MM-PB(GB)SA [99, 100], and multicanonical MD
simulations [101, 102].

The objective of the FMODD-KBDDWG is to effectively utilize KBDD simula-
tion results and revisit protein–ligand-binding free energy calculations and docking
pose predictions usingFMO-basedmethods.As previously discussed, protein–ligand
interaction energies obtained using FMO simulations can be used to predict protein–
ligand-binding affinities [40, 103, 104]. However, FMO-based interaction energies
are often obtained via single conformations. In the FMODD-KBDDWG,MD trajec-
tories determined by the KBDD are used to perform FMO calculations against
multiple protein–ligand complexes, and the effect of using multiple conformers and
solvation effects associatedwith explicitwatermolecules are investigated in amanner
similar to that introduced later in this chapter. Furthermore, docking pose predictions
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Group 3 

Fig. 30 (continued)

obtained usingMM-PB(GB)SA can be revisited by applying FMO-based interaction
energies.

As an example, we describe the prediction of docking poses using FMO-based
interaction energies. The docking poses described here were provided by Araki
and coworkers from the KBDD, and all FMO calculations were performed using
the K supercomputer with FMO2-MP2/6-31G* in vacuo. Docking simulations
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Group 4, Group5 

Fig. 30 (continued)
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Fig. 31 Correlation between pIC50 and the summation of IFIEs (IFIE-sum) for BACE1 inhibitors
before elimination of outliers in the data (indicated by red arrows)

were performed using 10 CDK2 kinase ligands (Fig. 33) against a protein struc-
ture extracted from a representative cocrystal structure, and 5–11 decoy poses for
each ligand were obtained. The docking simulations were performed using Glide
[105–107], implemented in Schrödinger software.

The docking poses were evaluated using five different scoring methods: (1)
docking scores, (2) MM-PBSA binding free energies, (3) FMO-based interaction
energies (i.e., IFIEs), (4) dispersion energy contributions of PIEDA (�EDI), and
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Fig. 32 Correlation between pIC50 and the summation of IFIEs (IFIE-sum) for BACE1 inhibitors
after elimination of the outliers shown in Fig. 31

Fig. 33 Ten CDK2 kinase ligand structures and experimentally determined �G values taken from
the literature [98]. PDB codes are shown in parentheses

(5) IFIEs with desolvation effects incorporated using the PBSA terms from classical
MM-PBSA (FMO+MM-PBSA). Here, the dispersion energy contribution of PIEDA,
�EDI, was also investigated because this energy term exhibited the best correlation
between the experimental and calculated binding affinities of IFIE and the four energy
contributions of PIEDA (namely electrostatic, exchange repulsion, dispersion, and
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Fig. 34 Correlations between experimentally measured binding free energies and calculated FMO-
based interaction energies. FMO calculations were performed against the cocrystal structures of
CDK2 ligands shown in Fig. 33. Correlations are shown for FMO-based interaction energies of
a IFIE (�E), which is the summation of all four energy contributions of PIEDA, b electrostatic
(�EES), c dispersion (�EDI), d exchange repulsion (�EEX), and e charge transfer plus higher-order
mixed terms (�ECT+mix). An additional ligand, CS12, which is not included in Fig. 33, is included
in each graph

charge transfer with higher-order mixed terms) (Fig. 34). The averaged MM-PBSA
binding free energy over a few tens of nanoseconds of MD simulations for each
ligand was incorporated. The root-mean-square-deviations (RMSDs) of the docking
poses with respect to the X-ray binding poses were also calculated, and the RMSD
values corresponding to the lowest binding energies of the five scoring methods were
compared (Table 4). The docking poses were assumed to be correct if the RMSD
was <2.0 Å. Finally, the accuracy, in terms of retrieving the correct binding poses
for each scoring method, was evaluated.

The docking score was the most successful method for retrieving the correct
binding pose with an accuracy of 100%. MM-PBSA and �EDI were also rela-
tively successful methods with accuracies of 80%. Finally, FMO+MM-PBSA and
IFIE methods exhibited accuracies of 70 and 50%, respectively. However, incor-
porating desolvation effects using MM-PBSA and IFIE improved the accuracy of
retrieving the correct binding pose, and using �EDI returned results that are compa-
rable to those of FMO+MM-PBSA, even though no such desolvation energies were
incorporated. The correlations between MM-PBSA desolvation energies, �Esolv,
and various energy contributions of FMO-based interaction energies for all docking
poses tested in this study are shown in Fig. 35. With �Esolv, the best correlation (R2

= 0.46) was obtained with �EES,EX,CT+mix, where only the dispersion energy, �EDI,
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Table 4 Summary of docking pose predictions for CDK2. RMSD values (in Å) are shown for each
scoring method (see text for details of methods). The lowest RMSD values obtained by the docking
simulation represent the best RMSDs for each ligand

Ligand ID Best RMSD Docking
score

MM-PBSA FMO (IFIE) FMO (DI) FMO (IFIE)
+
MM-PBSA

CS1 0.7 0.7 0.7 7.9 7.9 0.7

CS3 0.9 1.1 0.9 0.9 0.9 0.9

CS9 1.7 2.0 2.0 8.5 2.0 1.7

CS18 1.0 1.0 1.0 6.3 6.3 6.3

CS19 1.0 1.0 1.0 7.8 1.0 7.8

CS20 0.9 0.9 2.3 6.8 0.9 6.8

CS242 0.3 0.3 3.5 0.3 0.3 0.3

CS245 1.1 1.9 1.1 1.9 1.9 1.9

CS246 0.7 1.1 0.7 1.2 1.2 1.0

CS262 0.3 0.3 0.3 0.3 0.3 0.3

Accuracy (%) 100 80 50 80 70

Fig. 35 Correlations between the desolvation free energy,�Gsolv, obtained byMM-PBSAmethod
and FMO-based interaction energies. Correlations are shown for FMO-based interaction energies
of a electrostatic (�EES), b dispersion (�EDI), c charge transfer plus higher-order mixed terms
(�ECT+mix), and d summation of �EES, �EEX, and �ECT+mix (�EES,EX,CT+mix), respectively.
The correlation coefficient for exchange repulsion was R2 = 0.05 and this data was excluded from
the figure for clarity. Correlations were obtained using all docking poses described in the text. Units
are kcal/mol
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was omitted from the FMO-based interaction energy. The exclusion of electrostatic,
exchange repulsion, and charge transfer plus higher-order mixed energy terms from
the FMO-based interaction energies, and the use of dispersion energy alone, may
have accounted for the desolvation effect to some extent.

Our results do not suggest that any one scoring method tested here is superior
to another. However, in this particular example, the best performance for docking
pose prediction was obtained by calculating docking scores. Nevertheless, FMO-
based methods should still be useful for pose predictions because they enable the
evaluation of weak interactions [108, 109] (such as π-π and CH/π interactions) that
are difficult to evaluate using MM-based methods.

Currently, the FMODD-KBDDWG is focusing on docking pose predictions using
targets other than CDK2. Thus, we are expending considerable effort on predicting
protein–ligand-binding affinities using MD trajectories generated by the KBDD
consortium. The ongoing work of the FMODD-KBDD WG should enhance our
understanding of FMOmethods. Furthermore, comparing results from two different
consortiums using different computational approaches should provide synergy that
will generate new ideas for more practical uses of computer simulations.

7 The Development WG

Since the establishment of the FMO drug design consortium in 2014, the develop-
ment WG has developed and consolidated the foundations of various methods and
databases to enhance the efficiency of drug design using the FMO method. In this
section, we describe an automated FMO calculation protocol and an FMO database
for storing large quantities of corresponding FMO calculation results. Moreover, we
provide outlines for binding affinity prediction methods such as FMO+MM-PBSA,
FMO-grid, and data collection for artificial intelligence (AI) force fields.

The purpose of the developmentWG can largely be categorized into the establish-
ment of two platforms. First, the group aims to develop a platform that will enable
numerous users to implement FMO calculations and search and analyze calculation
results. Second, it aims to develop FMO-related methods to enable high accuracy
affinity prediction and methods to design drugs with promising structures. Related to
the first aim is the development of an automated FMO calculation protocol (“Auto-
FMO protocol”), which facilitates use of the FMO method by inexperienced users
and promotes the dissemination of the FMOmethod. The protocol also allows expe-
rienced users to perform FMO calculations on many structures, thereby increasing
the efficiency of drug design. Given the high number of FMO calculation results
now available, a database for storage of results was necessary; hence, we designed
and released the “FMO database,” which includes calculation settings, IFIE/PIEDA
values, and analysis and visualization tools.

Related to the second aim described above, we are investigating highly accurate
affinity prediction methods by addition of a solvent continuum model (Poisson–
Boltzmann) and surface area approximation (i.e., PBSA) to IFIE values. The
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FMO+MM/PBSA method, which uses MM-based PBSA, has already been shown
to be useful. In addition, we have begun to examine FMO-PBSA, in which FMO-
based PB is implemented. Moreover, we have prepared data for the refinement of
protein structures using the FMO method, and we have developed an FMO force
field using the FMO database along with AI technology. In the following sections,
we provide outlines for each of the aforementioned programs and systems, and we
discuss our outlook for future developments. Some achievements of the development
WG, such as FMO+MM/PBSA and an AI model to predict FMO partial charges, are
also explained in other chapters.

7.1 Auto-FMO Protocol

When implementing FMO calculations, preprocessing and determining the appro-
priate FMOsettings for given protein–ligand complex structures can be difficult, even
for researchers who regularly conduct quantum chemical calculations. For example,
appropriate procedures must be applied for pretreating protein structures, deter-
mining the presence or absence of water, establishing the fragmentation of the FMO
calculations, selecting a level for the basis function and electron correlation, imple-
menting the calculations, and extracting and analyzing the results. A good example
is water molecules and protonation/deprotonation states; selecting only one appro-
priate setting is difficult, even for FMO experts. Moreover, in some cases, multiple
settings and conditions should be used. Thus, completing these preprocessing proce-
dures prior to conducting FMO calculations is a hurdle for new researchers, and
such difficulties have impeded the widespread use of the FMO method. In some
cases, FMO calculations can be performed manually for only a few protein struc-
tures; however, in the drug design process, more than 10 calculations are required.
Consequently, automation becomes important even for FMO experts; automation of
FMO calculations was also essential for the creation of the FMO database.

Figure 36 shows a schematic diagram outlining the developed automated FMO
calculation protocol (hereinafter, referred to as the “Auto-FMO protocol”) [4]. In
this protocol, we first prepare an input by converting protein structures into the mdb
file format for MOE. We then implement the supplementation of disordered regions
in protein structures, protonation/deprotonation, tautomerism assignments, struc-
tural optimization by MM, and structural optimization by quantum mechanics/MM
(QM/MM). When structures have been obtained for the FMO calculation, we simul-
taneously implement FMO or MM-PBSA calculations. Subsequently, we extract the
IFIE data from a file containing the calculation results, perform PIEDA, and obtain
the results in a text format (e.g., an Excel spreadsheet).

By using the Auto-FMO protocol, we tested, for example, 149 protein structures
with estrogen receptors α and p38α [9]; the completion rate of the FMO calculation
in this case was 99%. Based on a comparison of IFIE values from manual calcula-
tions, excluding 17 structures that failed because of the protonation/deprotonation
assignments, we obtained about 90% correlation. Thus, the Auto-FMO protocol is
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Fig. 36 Schematic diagram showing the flow of the Auto-FMO protocol

an essential tool for future FMO calculations. Nevertheless, several aspects of the
protocol still require improvement. First, considering the pretreatment of the protein
and/or ligand structure, the assignment differs from the manually obtained result in
approximately 5–10% of cases. TheMOE Protonate3D function is currently used for
the assignments; however, in the future, we plan to develop a predictionmethod based
on AI. Second, because the Auto-FMO protocol depends upon MOE and Pipeline
Pilot, which are both commercial software programs, researchers without licenses
for these programs cannot use the protocol. Thus, there is a need to combine AI with
a free tool such as KNIME in future developments.

The ultimate purpose of the Auto-FMO protocol is to enable “on the fly” FMO
calculation services. For instance, when a structural biologist determines a new
protein structure, they could input the structural data to the homepage of our service
and receive an FMO calculation result within 1 day. We aim to actualize this service
through cooperation with a public supercomputer project such as the Fugaku project
and subsequent projects.

7.2 FMO Database

The FMO database [110], publicly released on February 21, 2019 is the world’s
first database of ab initio FMO calculation results for entire protein structures. As
of June 2020, the FMO calculations had been compiled for 2,589 protein structures
including 1,102 unique PDB entries. In the database, users can search and browse
calculation results by PDB ID, protein name, or ligand name. The database can also
perform basic analytical functions. The top page and a search result are shown in
Figs. 37 and 38, respectively. Users can search entries by various methods such as
ID, keyword, and blast search of amino acid sequences. As well as the ID, PDB
ID, FMODB ID, and Uniprot ID can be used to search the database. In the search
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Fig. 37 Top page of the FMO database

Fig. 38 Example search result from the FMO database. a Hit entries (part of the search results).
b Total IFIE and PIEDA of hit entries
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results, hit entries are displayed with simple calculation settings (Fig. 38a) and total
IFIE and PIEDA values of the hit entries are summarized (Fig. 38b). When the user
selects the PDB ID shown in a large blue font on the search results page, details of the
entry appear (Fig. 39). For analytical functions for the IFIE and PIEDA values from
single FMO calculation results, the user can also create graphs with data selected
according to the distance and the strength from the ligand (Fig. 40). Moreover, data
can be downloaded in a text format, such as an Excel spreadsheet, and the analysis
results can be downloaded in a graphical format.

The FMO database is a repository for highly precise protein–ligand interaction
energy values. We expect it to be used in numerous research fields, including for
the clarification of molecular recognition mechanisms in biology, the development
of new molecular force fields using AI, and drug design. Currently, an AI molec-
ular force field that considers QM-based interactions is being developed using the
information in the database (we discuss this in Sect. 7.4).

7.3 Structure Refinement by FMO

As of November 2018, from the 146,093 experimentally determined protein struc-
tures listed in the PDB, the number of structures with a resolution ≤1 Å is 637
(0.44%). The majority of the structures (124,354 structures, 87.9%) have a resolu-
tion ≥1.6 Å, while 10,929 structures (7.5%) have very poor resolutions (≥3.0 Å).
For X-ray crystallographic analysis, the coordinates for each atom therefore cannot
be determined from diffraction data alone, with the exception of some cases with
a resolution <1 Å. Hence, the coordinates are determined by creating models for
structures that have a high compatibility with electron-density data obtained from
refraction measurements. This process is repeated several times via an optimization
calculation to increase the compatibility with the electron-density data so that it lies
within a range in which the MM energy value is low. For resolutions ≥3.0 Å, even
benzene rings become difficult to distinguish, and correctly determining coordinates
becomes a major challenge [111].

Furthermore, when protein–ligand interaction energies are calculated using a
quantum chemical calculation such as the FMO method, great differences can arise
in the resulting energy values, even when resolutions are ~0.1–0.2 Å. With amino
acid residues or ligand molecules, which have a formal charge, the difference can
exceed several tens of kcal/mol, which clearly hinders accurate activity prediction
and drug design. In such cases, it can be effective to structurally optimize the crystal
structure using a QM calculation. Figure 41 shows a comparison of the structural
optimization results using MM with those for QM using a low-resolution crystal
structure as the initial structure. The cyan-colored MM-optimized structure differs
from the experimentally determined high-resolution structure. However, the purple-
colored QM-optimized structure is similar to the high-resolution structure. Thus, the
QM-optimized structure will be more useful for predicting the inhibitory activity of
drugs. In the example of Pim1 [104], the correlation coefficient of the energy for the
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Fig. 39 Details from an example entry in the FMO database
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Fig. 40 PIEDA of user-specified fragments (residues)

measured IC50 (log scale) values and the FMO+MM/PBSA result was only R2 =
0.24 when using an MM-optimized structure, that is, prediction accuracy was poor.
However, when QM optimization was used instead, a significant improvement in the
coefficient to R2 = 0.85 was observed, that is, a practical level of accuracy had been
achieved.

At theQM level, theQM/MMmethod, FMOmethod, and full QMmethod (shown
in Table 5) can be utilized to optimize protein structures. The full QMmethod utilizes
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Fig. 41 Importance of quantum mechanics (QM) optimization vs. molecular mechanics (MM)
optimization for the refinement of protein structures

Table 5 Comparison of quantum mechanics (QM) optimization methods

QM/MM FMO Full QM

Calculation Cost using
250 res. Protein
(HF/6-31G*)

50 h @1 node (3 res.
QM region)

800 h @1 node (3 res.
Opt region)

Realistically
impossible with
current resources

Pros • Reasonable
calculation cost

• Accuracy is
comparable with
full QM

• Energy
decomposition
(IFIE, PIEDA) is
possible

• High accuracy

Cons • Very low accuracy
for MM region

• The boundary
between QM region
and MM region is
distorted

• Energy
decomposition is
impossible

• High calculation
cost

• Realistically
impossible with
current resources

• Energy
decomposition is
impossible

a normal ab initio QM calculation for the entire protein. However, given the perfor-
mance level of current computers, the computational time is substantial even for
single-point calculations in which the structure is not optimized; thus, optimization
is nearly impossible. However, the QM/MM method and FMO method can achieve
optimization. In the QM/MM method, only a small region of the protein, the “QM
region,” is applied in the QM calculation, while the remaining region is evaluated
usingMM; consequently, the calculation time is greatly reduced relative to that of the
full QMmethod, e.g., a calculation time of ~50 h is possible. However, the accuracy
in the MM region is poor, the structure of the boundary between the QM and MM
regions is distorted, and energy decomposition analysis such as PIEDA cannot be
performed. The FMO method performs a QM calculation of the entire protein; thus,
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it does not have the same disadvantages as the QM/MMmethod. However, the FMO
calculation time for structural optimization is at least tenfold greater than that for the
QM/MM method.

With support from the Japan Agency for Medical Research and Development
(AMED), the development WG is currently developing a program for increasing the
speed of structural optimization calculations using the FMOmethod. In this method,
the self-consistent charge (SCC) calculation is conducted for conventional optimiza-
tion, while a frozen domain method is used for regions far from the ligand; in this
process, SCC calculation results from the initial calculation are applied to subsequent
calculations. SCC calculations for regions far from the ligand were previously a rate-
limiting factor during computation, although only the electron density environment
is provided for the ligand. In a preliminary test, using IFIEs for the calculation result
produced accurate results with errors within an acceptable range, and the speed was
increased five- to ten-fold. Moreover, the effectiveness of this method increases as
protein size increases.

To increase the calculation speed, the FMO method can be combined with DFT;
this approach can accelerate the calculation by 30-fold compared with conventional
FMO calculations [112]. However, this approach has drawbacks, for example, poor
accuracy in the electron correlation. Thus, we plan to assess and refine this method
in the future.

7.4 Data Preparation for FMO-Based Partial Charge
and Force Field AI Models

With current MM calculations, electrostatic interactions are independently treated,
while the remaining interactions, such as dispersion forces, are modeled using
Lennard–Jones type potential functions. The Lennard–Jones potential is a functional
form in which the only variable is the interatomic distance and (6, 12)-potential,
which expresses gravity by the sixth power and repulsion by the twelfth power.
However, in reality, a large number of interactions, including the dispersion force,
are influenced by the shape of electron orbitals and are not determined solely by
interatomic distances. Moreover, interactions with considerable strength and those
that exhibit an angular dependence, such as π interactions, the orbital interaction
of the S atom, and charge-transfer interactions, are not taken into consideration.
Therefore, the MM interaction calculation method gives results that are only a rough
approximation. To obtain highly accurate activities or binding affinity predictions
that can be applied to drug design, a new molecular force field with higher accuracy
is necessary.

In recent years, AImodels have been developed that surpass the thinking ability of
humans; Google’s Alpha Go and Alpha Zero are prime examples of such technolo-
gies. In addition to the innovation of machine-learning technologies, such as deep
learning and reinforcement learning, the advent of big data and high-performance
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Fig. 42 The molecular systems used for training FMO-based partial charge artificial intelligence
models

computing (e.g., GPU) has also contributed to technological advances. In the field of
FMO,AImolecular forcefields [113] that considerQMinteractions are being actively
researched because full QM calculations for large systems require substantial calcu-
lation times.Moreover, although studies have been reported for simple systems [114]
such as water molecules, an AI molecular force field that includes proteins has yet
to be realized. The FMOmethod, as well as the FMO database in which FMO calcu-
lation results are registered, is ideal for handling fundamental data. In our research
laboratory, we are currently developing an AI molecular force field in cooperation
with the AI drug design consortium of Okuno et al. (Life Intelligence Consortium,
LINC [115]). Using four systems, consisting of the three molecular systems shown
in Fig. 42 and enkephalin (which has five residues), we have conducted a 100 ns MD
simulation and extracted 10,000 snapshots from the resulting trajectory file.

7.5 Future Perspectives for the “FMO Drug Design
Platform”

Although we are currently developing platforms such as the Auto-FMO calculation
protocol and FMO database, as well as developing the AI force field, for the FMO
method to be consistent across numerous drug design fields, a greater number of
methods must also be developed and integrated.

Figure 43 shows the overall FMO drug design platform that we aim to achieve.
First, having obtained drug discovery target structures via X-ray analysis, nuclear
magnetic resonance (NMR), or electronmicroscopy (or by using homologymodeling
or docking), the initial focus becomes structure quality. The homology model and
docking model will be optimized based on the molecular force field. For experimen-
tally determined structures based on X-ray analysis, NMR, or electron microscopy,
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Fig. 43 Planned FMO drug design platform

which depend onX-ray refraction andNMRpeak data, the atomic coordinates cannot
be completely determined from experimental data alone. Thus, the atomic coordi-
nates must be set to a position in which the molecular force field model and exper-
imental data match. This coordinate information is sufficient for activity prediction
based upon molecular force fields; however, for design methods that use QM calcu-
lations, such as the FMOmethod, coordinate information alone is insufficient. Thus,
structure refinement by theFMOmethoddescribed inSect. 7.4will be required.Using
QM level protein structures, FMO calculations as well as IFIE analysis and PIEDA
will be performed. High-quality data will enable us to accurately predict binding
affinities using FMO-PBSA; the AI models will learn from the IFIE/PIEDA data.
The newly developed AI force field, which is based on the FMO database and FMO
interaction grid that uses high-speedFMOcalculations by the frozendomain or FMO-
DFTB [112], also contributes to drug design with methods including FMO-based
docking and de novo structure generation considering QM interactions. The afore-
mentioned tools and platforms will be developed in collaboration with the members
of the FMO drug design consortium as well as other projects and consortiums.
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Development of an Automated FMO
Calculation Protocol to Construction
of FMO Database

Chiduru Watanabe, Hirofumi Watanabe, Yoshio Okiyama,
and Daisuke Takaya

Abstract In recent years, inter-fragment interaction energy (IFIE) analyses based
on the fragment molecular orbital (FMO) method have been widely used for drug
design. The reason is that the IFIE analyses can quantify not only electrostatic inter-
actions such as hydrogen bonds but also dispersion forces such as CH/π interac-
tions difficult to evaluate with classical molecular mechanics (MM). On the other
hand, because preparing an input structure for the FMO calculation requires a lot of
complicated preprocessing, including complementation of missing atoms and struc-
ture optimization, it is difficult to process a large number of structures. In this study,
an automated FMO calculation protocol (Auto-FMO protocol) was developed to
calculate huge numbers of protein and ligand complexes, such as drug discovery
targets, by an ab initio FMO method. The protocol performs structure preparation
as preprocessing, submission of FMO processing, and analysis of FMO results as
post-processing. Optionally, quantum mechanics/molecular mechanics (QM/MM)
optimization of complex structures, conformational searches of ligand structures in
solution, and molecular mechanics Poisson–Boltzmann or generalized Born surface
area (MM-PBSA/GBSA) calculations can also be carried out. To demonstrate the
usefulness of the Auto-FMO protocol, we first compared the ligand-binding inter-
action energies of 20 estrogen receptor α (ERα) and 70 p38 MAP kinase datasets
prepared by theAuto-FMOprotocol with those preparedmanually. Inmost cases, the
interaction energies showed reasonable agreement between both preparations. Based
on such technology, we constructed the FMO database (FMODB; https://drugde
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sign.riken.jp/FMODB/) published in February 2019, consisting of quantum chem-
ical calculation results with the FMOmethod. FMODB currently contains thousands
of FMOcalculation data for hundreds of proteinsmostly processed by theAuto-FMO
protocol. By constructing FMODB and its web interface, even researchers unfamiliar
with quantum mechanics (QM) calculations can analyze inter- and intra-molecular
interactions of target proteins. Furthermore, accumulation of FMO data is expected
to lead to accurate prediction of ligand activities and construction of QM-based force
fields by using machine learning and artificial intelligence (AI). This chapter was
reprinted and adapted with permission from Watanabe et al. CBI J. 2019, 58, 5–18.
Copyright 2019 Chem-Bio Informatics Society [38].

Keywords Fragment molecular orbital (FMO) · Intermolecular interaction ·
Ligand binding energy · Estrogen receptor α (ERα) · p38 mitogen-activated protein
(MAP) kinase · FMO database (FMODB)

1 Introduction

Ab initio quantum mechanical calculations for whole large biomolecules can be
efficiently performed by the fragment molecular orbital (FMO) method [1–3]. An
inter-fragment interaction energy (IFIE) analysis based on FMO calculations can
easily represent the detailed interactions in fragment units. The FMO method is
already recognized as a useful drug design tool to analyze ligand binding interactions,
incorporating electrostatic interactions such as hydrogen bonds and dispersion forces
such as CH/π interactions, using the pair interaction energy decomposition analysis
(PIEDA) [4, 5] and fine fragmentation by the functional group unit, rather than the
amino acid residue unit and the whole ligand [6–8]. Recently, the IFIE analysis
and its energy decomposition analysis have been applied to the prediction of binding
affinity for rational drug design [9–19]. Using FMOcalculations of tens of complexes
for one target protein, the essential and characteristic interactions of the ligand-
bindingmode can be abstracted from the IFIE and PIEDAdata by clusteringmethods
[20, 21] and singular value decomposition [22]. In addition, the prediction of the
activity cliff, which is very difficult using conventional molecular mechanics (MM)-
based scoring functions, such as Glide score and molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA), was successfully accomplished by the FMO
method with molecular mechanics Poisson–Boltzmann surface area (FMO+MM-
PBSA) approach incorporating MM-based desolvation effects, using protein–ligand
complexes optimized by the quantum mechanics/molecular mechanics (QM/MM)
method [23]. Moreover, the FMO-based polarizable continuum model (FMO-PCM)
[24] or FMO-based Poisson–Boltzmann surface area (FMO-PBSA) [25–27]methods
provide more reliable results in solution, by using a fully polarizable medium for the
solute.

https://drugdesign.riken.jp/FMODB/
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Since 2014, we have performed FMO calculations for various drug discovery
targets, such as kinases, nuclear receptors, proteases, and protein–protein interac-
tions (PPIs), with experimental binding affinities (IC50, K i, and Kd values) as the
activities of the FMO drug design consortium (FMODD) [28]. To calculate the huge
number of different structures by amanual procedure,wemust investigate and choose
the various modeling conditions and FMO settings one by one. For example, appro-
priate structure preparation, which includes complementation of missing atoms or
missing residues, addition of hydrogen atoms, and structure minimization, is criti-
cally important as the preprocessing before the FMO calculations. However, appro-
priate methods for preprocessing have not yet been established. We discussed the
modeling conditions for the complementation of heavy atoms, with/without water
molecules, and the restraint of heavy atoms on the minimization in the FMODD
consortium. As a result, some modeling case studies have been reported [29–35].
Another issue is the treatment of a large amount of structure data, including more
than 150,000 Protein Data Bank (PDB) entries [36], to construct an FMO database
[37] in the future. There are limits to human power in preparing a huge number of
structures by a manual operation. In addition, it is not easy to appropriately perform
FMOcalculations for inexperienced researchers, in terms of the structure preparation
and FMO settings. Thus, we have started to develop “an automated FMO calcula-
tion protocol” (Auto-FMO protocol) [38]. We constructed the Auto-FMO protocol
consisting of structural preparation based on the MM method, structural optimiza-
tion based on the QM/MMcalculations with our ownN-layered integrated molecular
orbital and molecular mechanics (ONIOM) method, molecular mechanics Poisson–
Boltzmann or generalized Born surface area (MM-PBSA/GBSA) calculations, FMO
calculations, and ligand interaction analysis from the MM and FMO calculations.
For validation of the Auto-FMO protocol, two datasets of human estrogen receptor
α (ERα) and human p38α mitogen-activated protein (MAP) kinase were used for
comparison of the ligand binding energies between the protocol data and the manu-
ally prepared data. Themain purpose of this study was to investigate the performance
of preprocessing in the Auto-FMO protocol. We focused on proteins for which many
examples of FMO calculations for ERα and p38α have been reported [8, 9, 22, 35].
ERα and p38α were important drug targets related to breast cancer and immune
disorder, respectively. The familiar target proteins were appropriate for the valida-
tion because evaluations of the prepared structures and its FMO calculations with
the protocol were relatively easy to verify. Based on the results, we discussed the
current accuracy and issues to solve in the protocol in future work. Additionally, to
construct the FMO database [37], various protein structures were calculated by the
protocol.

2 Workflow of the Auto-FMO Protocol

The workflow of the Auto-FMO protocol [38] is shown in Fig. 1, and the method for
each step is described in the following sections. The protocol was implemented in
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Fig. 1 The workflow of the Auto-FMO protocol. The detailed procedures of the structural prepa-
ration are depicted on the right. Reprinted with permission from [38]. Copyright 2019 Chem-Bio
Informatics Society
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BIOVIA Pipeline Pilot [39]. Further details of the structure preparation step, such as
the default parameters, are described in the supplementary information, Section A.

Input file

The three-dimensional structures of protein–ligand complexes or apoprotein struc-
tures were prepared in PDB files and transformed into one MDB file [40]. This
part should be done by the users, rather than by the Auto-FMO protocol. Water
molecules far fromeach ligand canbe removed if necessary.The followingprocessing
was performed on the prepared molecular composition (e.g. protein, ligand, water
molecules, and cofactors) in here.

Structure preparation

To complement themissing residues and atoms, two different types of functions were
newly implemented with built-in functions in MOE: (1) Both missing residues and
atoms were simultaneously complemented by the “pro_HomologyModel” function
to build a whole protein model, and (2) only the missing atoms of the side chains
are complemented by the “StructurePreparation” function. In gap regions due to
disorder, the residues next to the gaps are capped by an ACE or NME group to retain
the original amide bonds. After the corrections, hydrogen atoms were added to each
complex by using the “Protonate3D” function under pH 7.0 conditions. The residues
at the N- and C-termini are treated as zwitterionic states with NH3

+ and COO−,
respectively.

Subsequently, structure optimization with the force field (Amber10:EHT) was
performed, using the “MM” function under partial constraints. As the force field,
other force fields such as MMFF94x can be selected. For example, only the comple-
mented atoms and hydrogen atoms can be optimized. The constraint settings can be
adjusted by the users.

QM/MM-based structure optimization (advanced option)

Structural optimization based on the QM/MM calculations with the ONIOMmethod
at the HF/6-31G*:MM/AMBER level can be automatically performed using the
Gaussian09 program package [41] at the RIKEN supercomputer HOKUSAI, as an
advanced option. A ligand and its surrounding residues are generally selected as the
high layer, and the rest of the biomoleculewas assigned to the low layer region.Atoms
of the high layer region are only optimized and the other atoms are fixed during the
calculations. This option was not active as the default setting, because the QM/MM
optimization requires a high computational cost. Users should employ the QM/MM
optimization appropriately, where there are the necessities of QM calculation to
cope with the cases such as halogen bond. In the protocol, the QM/MM-based total
energies were calculated by the ONIOM method.

MM-PBSA and GBSA calculations

The total MM energies and the solvation energies of each protein–ligand complex,
apoprotein, and ligand were calculated by the MM-PBSA and MM-GBSA methods
with the AMBER tools program [42]. MM-PBSA/MM-GBSA calculations used the
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MM-optimized structures obtained from “Structure preparation” or the QM/MM-
optimized structures if QM/MMoptimizationwas performed. TheAmber99SB force
field was used for the protein, and the general Amber force field (GAFF) [43] with
the AM1-BCC [44] charge was used for the ligands by antechamber [45]. Confor-
mational searches of ligands in solvent can be performed by MOE to estimate the
deformation energies of the ligands in the bound state and the solvent forMM-PBSA,
as an advanced option. Several candidates of stable structures in the solvent are used.

FMO calculations

FMO calculations were performed with the ABINIT-MP program [46, 47] on the K
computer or our in-house PC cluster server. Users can select various options for the
FMO method: a computational level from the Hartree–Fock (HF) and the Møller–
Plesset (MP2) level, and a basis set from 6-31G, 6-31G*, and cc-pVDZ. In this study,
we used the MP2/6-31G* level with the Cholesky decomposition approximation
(CDAM) [48]. The output log files of the FMO calculations include the IFIE and
PIEDA values, as well as partial atomic charges by a Mulliken population analysis,
a natural population analysis (NPA), and RESP fitting [49, 50].

Analysis of protein–ligand interaction energies

Ligand binding energies based on the MM, MM-PBSA, FMO, FMO+MM-PBSA
methods can be extracted from the log files and summarized by the protocol. In
addition, the IFIE values of the ligands are listed in an Excel file. The detailed
definitions of these energies regarding the ligand are explained in [23].

3 Validation of the Auto-FMO Protocol Data for ERα

and P38α

In this section, an example of FMO calculations with the Auto-FMO protocol will be
presented. Using ERα and p38α MAP kinase (p38α) dataset, validation of the Auto-
FMOprotocol was performed by comparing a ligand-binding interaction energywith
a manually prepared dataset.

3.1 Validation Data Sets of ERα and P38α MAP Kinase

For ERα and p38 MAP kinase (p38α), the complex structures with IC50 values
were selected from the PDB and ChEMBL databases (Fig. 2). The datasets of ERα

and p38α have 37 and 96 PDB entries, respectively [38]. Here, we performed the
FMO calculations of 38 ERα and 111 p38α complexes by the Auto-FMO protocol
because the PDB data include multiple chain complexes such as homodimer. We
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Fig. 2 Complexes of ERα (a) and p38α (b) where the ribbon and ball-and-stick modes correspond
to the protein and ligand, respectively. For ERα complexes, the H12 regions of the agonist-bound
form and antagonist-bound form are represented by red and blue ribbons, respectively. For p38α, the
DFG-in, DFG-out, and DFG-intermediate loop structures shown as blue, red, and yellow ribbons,
respectively

employed the sequence that constitutes ligand-binding active sites to evaluate ligand-
binding energy based on an aligned sequence structure: amino acid residues #309–
544 on the ligand-binding domain (LBD) for ERα and #6–351 on the protein kinase
domain for p38α. We here removed all factors other than the sequences focused
above, ligands, and key crystal waters. The results of the FMO calculations at the
MP2/6-31G* level with CDAM using the automatically prepared structures were
compared to those obtained using manually prepared structures. As the manually
prepared data, we used already reported 70 p38α complex data [35]. In terms of
ERα, we selected 20 ERα complexes considering the crystal resolutions and the
other reasons. These complex structures were included in the above-mentioned 38
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Table 1 Data set list for the automated FMO protocol and manually prepared data. Reprinted with
permission from [38]. Copyright 2019 Chem-Bio Informatics Society

Target protein Estrogen receptor α p38 MAP kinase

Manually prepared data # of completed FMO
calculations

20 70

Auto-FMO protocol data # of completed FMO
calculations

20 70

Average time per complex
for structure preparation
(minutes)

3.2a 4.7a

Average time per complex
for FMO calculation
(hours)

11b 14c

aAverage time of structure preparation by MM optimization for each structure using 1 core at our
in-house PC cluster server (Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz)
bAverage time of FMO calculation for each structure using 48 cores at our in-house PC cluster
server (Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 GHz)
cAverage time of FMO calculation for each structure using 960 cores at K computer

and 111 complex structures calculated by the Auto-FMO protocol. Thus, we used the
20 and 70 complex structures for comparison (Table 1). The ligands in these datasets
can be classified into two and five types of compounds displayed in Figs. 3 and 4.
Since these datasets were diverse, it was suitable to validate the protocol.

Fig. 3 Ligand types of ERα dataset: a agonist and b antagonist
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Fig. 4 Ligand types of p38α dataset: a biphenyl amides, b three linked aromatic rings, c fused
aromatic rings with -NH- or -O- links, and d ureas, and e others. Each common scaffold is shown
in bold lines

The numbers of data for each preparation step by the Auto-FMO protocol and
the manual procedure are summarized in Table 1. The details are described below.
Figure 2 shows the complexes of ERα and p38α obtained from the Auto-FMO
protocol. In the case of ERα, the position of helix 12 (H12), composed of residues
Leu536–Ala546, was different depending on whether the bound compound was an
agonist or antagonist (Fig. 2a). Hence, the loop between H11 and H12 near the
ligand-binding pocket is flexible, and there are missing residues on the loop in some
complexes with antagonists (Fig. 3b). In the case of p38α, The DFG-loop around
Ile166–Ala184, includingAsp168, Phe169, andGly170, adopts three types of confor-
mations, such as DFG-in, DFG-out, and DFG-intermediate conformations (Fig. 2).
TheDFG-loop is placed in theATPbinding pocket and is veryflexible and disordered,
including the missing residues. In these datasets, because these missing residues of
p38α are located near the bound ligands, they were complemented by both modeling
methods (Auto-FMO protocol and manual operation).

Auto-FMO protocol data

The bond orders of all of the ligands were corrected based on LigandExpo and
used for the input structures of the Auto-FMO protocols. Subsequently, the Auto-
FMO protocol was employed using the same options, as follows. All of the crystal
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water molecules were removed; two residues neighboring missing residues as a
margin were removed and complemented by homology modeling using the wild
type sequence; and the protonation states of the ligands and amino acid residues
were determined by Protonate3D at pH 7.0. Finally, all of the hydrogen and missing
heavy atoms were optimized by the Amber10:EHT force field.

Manually prepared data

In the case of ERα, a few crystallographic water molecules forming bridging
hydrogen bonds among Glu353, Arg394, and the ligand were retained, in addition
to the ligands and proteins. By using the BioStation viewer, the missing residues
of the complexes with agonists and antagonists were complemented according to
the templates of the agonist form (PDB IDs: 1A52 and 2YJA) and the antagonist
form (PDB ID: 1Y1M), which were high-resolution X-ray structures that have no
missing residues in the H12 regions. The bond orders of all of the ligands were
manually corrected. The tautomeric states of amino acid residues and ligands were
consequently determined with Protonate3D in MOE. Finally, all of the hydrogens
andmissing heavy atoms of each ERα complex were optimized by an Amber10:EHT
force field.

For p38α, the structure coordinates prepared by Sheng et al. [35] were used in
this study. First, a few crystallographic water molecules were kept in the following
two cases. In the first case, the water molecule forming hydrogen bonds with Asp168
and Lys53 was retained in the DFG-in structures, and in the second case, the water
molecule forming the hydrogen bond with Asp168 was kept in the DFG-out struc-
tures. Secondly, by using the BioStation viewer, the missing residues were comple-
mentedwith the 3GC7and 3D83PDBentries as the template structures of theDFG-in
and DFG-out structures, respectively. The templates were full sequences and high-
resolution structures, without missing residues. The bond orders of all of the ligands
were correctedmanually. The tautomeric states of the amino acid residues and ligands
were consequently determined with Protonate3D in MOE. Only His312 was dealt
with as a cationic protonation state (HIP), considering the surrounding hydrogen
bonding network, and the other histidine residues were set as neutral states (HIE or
HID). Moreover, the ligand charges were assigned as the corresponding protonation
state of pH 7.0 in water. For aliphatic amines, we set the formal charges to + 1e,
while aromatic amines such as anilines were set to a formal charge of zero. Finally,
all hydrogen and missing heavy atoms for each p38α complex were optimized by an
Amber10:EHT force field.

3.2 Completion Rate of FMO Calculation

We constructed 38 and 111 complexes of ERα and p38α by the MM-based structure
preparation in the Auto-FMO protocol. The number of calculated structures includes
multiple chains in each PDB entry. Using our in-house PC cluster server and the
K computer, 38 and 110 FMO calculations were successfully completed for the
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ERα and p38α complexes, respectively. There was one structure of p38α (PDB ID:
4KIN, Chain: D) for which the FMO calculation was not completed. At the structure
complement step by homology modeling, the complemented atoms of the complex
severely clashed among Gly33, Ala34, and Tyr35. As a result, the FMO calculations
were not completed for this structure. However, 99.1% of the FMO calculations
using the structures created by theAuto-FMOprotocol were completed, showing that
this protocol is sufficiently robust for daily FMO research, including drug design.
Next,we validated theAuto-FMOprotocol by comparing the ligand-binding energies
�Eligand between the protocol data and the manually prepared data and discussed the
accuracy and the issues to improve in the protocol.

3.3 Comparison of Ligand Binding Interaction Energy

To demonstrate the utility of the Auto-FMO protocol, we compared the ligand-
binding energies �Eligand of the protocol with those of the manually prepared data.
To obtain �Eligand based on FMO calculations, we summed up the IFIE values of all
ligand–residue pairs. The FMO contribution of the ligand-binding energy is given
by the following equation:

�Eligand =
∑

I=ligand
J �=I

�Ẽ I J (1)

where �Ẽ I J is the IFIE; and I and J are fragment indices.
For accuracy validation of the protocol, the ligand-binding interaction energies

calculated by the Auto-FMO protocol were compared to those of the manually
prepared data (Fig. 5). Here, we compared 20 and 70 FMO calculation results of
the structures in which the PDB ID and its chain ID matched in both methods for
ERα and p38α, respectively (Table 1).

The coefficients of determination (R2) for all calculation data of ERα and p38α
were 1.00 and 0.79, respectively. Note that the p38α data included different ligand
charge data between the Auto-FMOprotocol data and themanual data. In Fig. 5b, the
entries with different charges shown by purple triangles were located at significant
outlier positions.

Although the ionization state assignment using MOE should be improved, except
for the three outliers (PDB IDs: 3O8P, 1OUK,3GFE, also seeTable 2),R2 improved to
0.95. In general, the differences in the formal charges seriously affect the calculation
results, especially for a QM calculation. Therefore, careful double-checking of the
structure preparation by the Auto-FMO protocol is needed for practical use. The
high correlations between the manual and the protocol data partially arise from the
wide �Eligand range between the compound groups (agonist and antagonist groups
in ERα and neutral ligand and charged ligand groups in p38α). To confirm the effects
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Fig. 5 Correlation of ligand-binding energies between themanual data and the Auto-FMOprotocol
data for ERα (a) and p38α (b). The neutral and positively charged ligands are marked with red and
blue circles, respectively. Obvious outlier data (PDB IDs: 3O8P, 1OUK, 3GFE) in Fig. 5b, for which
the ligand charge of the protocol data differed from that of the manual data, are shown by purple
triangles. Reprinted with permission from [38]. Copyright 2019 Chem-Bio Informatics Society

of the ligand charge, the compounds were classified by each ligand charge (neutral
(red) and positively charged (blue) in Fig. 5). For only neutral ligands, the R2 values
for ERα and p38α were sufficiently high (0.93 and 0.80, respectively), in spite of
the narrow�Eligand range. In contrast, only positively charged ligands provided poor
correlations (R2 = 0.45 and 0.08, respectively). In the cases of charged ligands, slight
changes of the atomic coordinates (e.g., 0.1 to 0.2Å) can greatly affect the interaction
energy values.

Table 2 summarizes the entries with large differences between the protocol data
and the manually prepared data for p38α. In the three complexes (PDB IDs: 3O8P,
1OUK, and 3GFE) with different ligand charges between the protocol data and the
manual data, the differences of the IFIE values were more than 100 kcal/mol. In
the next entry (PDB ID: 3MW1), the ligand charges of both structures were equal;
however, the protonation statewas different. The ligand structure (ligand name:MIH)
by the protocol has two additional hydrogen atoms due to the treatment of the rare
N-oxide moiety. As a result, the difference in the ligand-binding energy recorded
was 80 kcal/mol. There were different tautomerization states in the three complexes
(PDB IDs: 3FLS, 3FML, 3FMM). The IFIE difference of the complex (PDB ID:
3HEC) resulted from the different protonated nitrogen atoms of the piperazine ring
(ligand name: STI).

In the case of the 3QUE entry, the charge and tautomerization state of the ligand
obtained by the protocol were the same as those in the manually prepared data.
Here, Fig. 6 shows the three-dimensional structures of the ligand-binding pocket
for both data sets. For the complementation of the missing residues by homology
modeling, the complemented structures around the ligand showed significant differ-
ences. Glu173 formed a hydrogen bond with the ligand in the manually prepared
data, while no hydrogen bond between the ligand and Glu173 was detected in the
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Table 2 Data set with large differences in ligand-binding interaction energy of the FMO protocol
data and the manual data. Reprinted with permission from [38]. Copyright 2019 Chem-Bio
Informatics Society

PDB ID
(Ligand
name)

Chain
ID

Manual Protocol

Structural
formula

Ligand
charge

�Eligand Structural
formula

Ligand
charge

�Eligand

3O8P
(BMU)

A 0 − 131.16 1 − 313.04

1OUK
(084)

A 1 − 247.85 2 − 399.92

3GFE
(P37)

A 0 − 119.51 1 − 252.79

3MW1
(MIH)

A 1 − 234.81 1 − 320.28

3FLS
(FLS)

A 0 − 86.03 0 − 119.62

3HEC
(STI)

A 1 − 270.74 1 − 301.61

3FML
(FML)

A 0 − 77.01 0 − 105.67

3FMM
(XI2)

A 0 − 109.06 0 − 131.13

3QUE
(3FF)

A 0 − 122.39 0 − 99.19

protocol data (Fig. 6). The drastic conformational change of the Glu173 side chain
caused a 20 kcal/mol difference in the ligand-binding energies.

Figure 7 shows the correlation between the Auto-FMO protocol data and the
manual data, excluding the nine obviously different data listed in Table 2. As a result,
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Fig. 6 Three-dimensional structures of the p38α and ligand (MIH) complex (PDB ID: 3QUE,
Chain: a in the Auto-FMO protocol data (a) and the manually prepared data (b). The ligand and
amino acid residues including the X-ray crystal structure are shown by the yellow ball-and-stick
models and the cyan line, respectively. Complemented structures regarding missing atoms are
highlighted in orange. Glu173 is shown by an orange ball-and-stick model, because a very large
conformational difference between the protocol data and the manual data was observed. Reprinted
with permission from [38]. Copyright 2019 Chem-Bio Informatics Society

Fig. 7 Validation of the
binding energies compared
with the manual data and the
Auto-FMO protocol data
without the obvious nine
outliers in the p38α dataset.
The neutral and positively
charged ligands are marked
in red and blue, respectively.
Reprinted with permission
from [38]. Copyright 2019
Chem-Bio Informatics
Society

the correlations of all data (black), the neutral ligand charge data (red), and the posi-
tively charged data (blue) between the protocol and manual data were dramatically
improved.

3.4 Issues to Be Solved in the Auto-FMO Protocol

There was one data that the FMO calculation did not complete in Table 1. To reduce
the computational cost, we plan to add an MM-based structure filter that removes
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incorrect structures before submission to the FMO calculation. The filter will check
the bond lengths, bond angles, dihedral angles, and MM-based repulsion energies
of residue in each complex according to their standard values observed in X-ray
structures.

In the case of p38α, we detected outliers for the comparison between the Auto-
FMO protocol data and the manually prepared data in Fig. 5b. The large differences
in the ligand-binding energies between the protocol data and the manually prepared
data, which were more than 20 kcal/mol for p38α, are listed in Table 2. The main
reasons for the large differences in the ligand-binding energies between the manual
data and the protocol data were the differences in the ionization and tautomerization
states of the ligands (Table 2), and the complemented structures regarding missing
residues onflexible loops (Figs. 2 and 6). TheR2 values of the ligand-binding energies
between the protocol data and the manual data without the nine obviously different
compounds were dramatically improved, from 0.79 to 0.99 in the p38α data set
(Figs. 5b and 7). We handled the manually prepared data as representative data of
ordinary computational researchers. However, with respect to the ligand structures,
the manual preparation is not always effective, because many of the computational
researchers are not familiar with the tautomerization and protonation states of a
wide variety of chemical species. Indeed, the data with large �Eligand differences
between manually prepared data and Auto-FMO protocol data (Table 2) contain
inappropriate ligand structures on both sides. Therefore, it is necessary to manually
check the ionization states and conformations of the complemented residues, using
a list of the 2D structures of all ligands and the 3D structures of the complexes
output from the protocol. Currently, the ionization assignment depends on the MOE
protonate3D function, and it is not easy to enhance the function within MOE. In
the future, we would like to develop our original ionization and tautomerization
prediction model by combining MM or QM calculations and artificial intelligence
(AI), based on the upcoming FMO database [37] includingmore than thousand FMO
data. The Auto-FMO protocol can be used for not only construction of the FMO
database but also binding affinity prediction and interaction analysis. In this study,
we described the details of the protocol and good agreements with the manual data.
In general, for the binding affinity prediction based on the FMO method, we have
to consider many factors such as ligand properties including charges and functions
(i.e., agonist and antagonist), entropy terms, and solvent effects. Indeed, the previous
study of p38α [35] showed a good correlation between experimental values and
estimated binding interaction energies after appropriate classification based on ligand
charges, scaffolds, and types of DFG-loop structures. Besides, through singular value
decomposition for IFIEs between ligand and each amino acid for several complexes in
the cases of ERα and p38α [22], the correlations between IC50 and estimated ligand-
binding energies were improved by removing some particular vectors that involved
noise components and impaired the correlation. In several cases [22, 35], themanually
prepared data had obtained results that were consistent with the experiments, and
the Auto-FMO protocol should allow such studies to be performed with reduced
human effort. Considering the entropy and solvation effects [11, 23, 27] is also
very important to improve the correlation. These effects for the current datasets
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will be considered in our future works by using the FMO+MM-PBSA approach.
To enhance the accuracy of the FMO+MM-PBSA method, we plan to use the QM-
based atomic charges obtained by FMO calculations in addition to the QM/MM
optimization. Because the above-mentioned calculations were time-consuming and
the ligand clustering requires a deep understanding of the target and dataset, a more
advanced expert system will be needed for practical applications to drug design. One
of the future directions of development is AI-based guidance for the binding affinity
prediction.

3.5 Construction of FMO Database with the Auto-FMO
Protocol

To construct the FMO database, 2488 FMO calculations of various protein targets
including 1194 unique PDB entries were performed by the Auto-FMO protocol
(Table 3). Similarly to ERα and p38α datasets, FMO calculations of complexes for
estrogen receptor β (ERβ), CHK1 kinase, Aurora kinase, and Renin protease datasets
with IC50 values selected from the PDB and ChEMBL databases were performed by
the protocol. To include FMO calculation results with a diversity of protein structure
in the database, various protein structureswere calculated by theAuto-FMOprotocol,
where the residues next to the gaps were capped by ACE or NME group to retain

Table 3 List of datasets generated by the Auto-FMO protocol in FMO database

Structure type Target protein # of unique PDB entries # of FMODB registration
entries

X-ray structure ERα (236 AA) 22 38

ERβ (234 AA) 28 54

p38α MAP kinase (347
AA)

94 202

CHK1 kinase (261
AA)

42 44

Aurora kinase (260
AA)

39 53

Renin protease (330
AA)

7 12

GPCR (300–460 AA) 15 23

Apo structure of MOE
dataset

863 913

core-set of PDBbind 82 82

NMR TrpCage (20 AA) 1 76

MD snapshot TrpCage (20 AA) 1 991

Total 1194 2488
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the original amide bonds. For example, we dealt with 23 GPCR-ligand complexes
reported by Chudyk et al. [16], 82 protein–ligand complexes of the core-set from
PDBBind [50], and 913 apo structures from Protein Database of MOE including
X-ray structures with a resolution of 2.8 Å or better [36, 40]. As a preliminary data
using Trp-cage (PDB ID: 1L2Y) with structural fluctuation obtained from NMR and
MD snapshot structures, FMO calculations of fluctuating structures were performed
by the protocol thorough only FMO calculation process. The several thousand data
were registered in the FMO database, and most of the data were in public. However,
since only a part of PDB data had been calculated, we would continue to build data
for FMODB with the Auto-FMO protocol.

4 Conclusion

Wehave developed the automatedFMOcalculation protocol (Auto-FMOprotocol) to
perform a large number of FMO calculations, together with pre- and post-processing.
To validate the Auto-FMO protocol, the ligand-binding interaction energies calcu-
lated by the Auto-FMO protocol were compared to those of the manually prepared
data in the ERα and p38α datasets. The automated FMO calculation data agreed
reasonably well with the manually prepared data (R2 = 1.00 (ERα) and 0.79 (p38α)).
One of the factors that reduced the correlation was the incorrect ionization and
tautomerization; for only the neutral ligands or ligands with the same ionization and
tautomerization assignments, the R2 values were significantly improved. Therefore,
Auto-FMO protocol users need to check the ionization and tautomerization states
of the ligands to avoid systematic misassignments. In the cases of complex struc-
tures with missing atoms in flexible regions, there is some room for improvement
in the protein modeling to complement the missing atoms. With this protocol, not
only computational researchers but also inexperienced researchers can easily perform
FMO calculations without complicated procedures. The Auto-FMO protocol would
reduce not only operative fluctuations but also artificial mistakes in such as a bond-
order setting for ligands. This makes us prepare the uniformly organized data set. In
addition, the Auto-FMO protocol has enabled us to construct the FMO database [37]
based on several thousand FMO calculations, which will provide quantum mechan-
ical calculations of total energies, interaction energies of fragment pairs, and atomic
charges for various protein–ligand complexes for more than tens of thousands of
complex structures in the future. This database will be useful for various research
fields, such as drug design and structural biology, as well as molecular modeling [11,
51–53]. For example, using thousands of FMO calculation results, AI models that
predictmolecular force and atomic charges consideringQMinteractions are currently
being developed. The new AI-based molecular force field will lead to more accurate
molecular dynamics and docking simulations. Furthermore, we plan to establish an
“on the fly” FMO calculation service for structural biologists. Once a structural biol-
ogist solves a new X-ray structure, the structure data can be uploaded to the service
and the FMO calculation data can be obtained in one day.
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Application of FMO to Ligand Design:
SBDD, FBDD, and Protein–Protein
Interaction

Tomonaga Ozawa and Motoyasu Ozawa

Abstract The structures of target proteins and ligands provide essential informa-
tion to drug discovery researchers, especially medicinal chemists and computational
chemists. They use the structural information to design novel ligands by consid-
ering the molecular interactions between ligands and proteins. The interpretations
of molecular interactions are usually based on the molecular mechanics method
or visual inspection. The advances in structural biology, theoretical chemistry, and
organic chemistry that indicate the presence of diverse molecular interactions, such
as not only hydrogen bond and electrostatic interaction but also CH/O interaction,
π/π interaction, CH/π interaction, halogen bonding interaction, and sulfur bonding
interaction, indicate that there is a requirement for a method that is more accurate as
compared to the molecular mechanics method to estimate the nonconventional inter-
actions. The fragmentmolecular orbital (FMO)method is considered to be promising
to estimate the diverse molecular interactions in large-scale molecular systems such
as complexes between proteins and ligands; furthermore, this method can be applied
to drug design. In this chapter, we report the usefulness of FMO in drug design based
on three examples, including structure-based drug design (SBDD), fragment-based
drug design, and protein–protein interaction.

Keywords Fragment-based drug design (FBDD) · Protein–protein interactions ·
CH/π interaction

1 Introduction

The productivity of drug discovery has been decreasing since the 2000s [1] because
of the decreasing number of newly discovered drug target proteins; treatment of
undruggable proteins, including the protein–protein interaction (PPI); and increasing
drug regulation, especially in terms of safety [2]. Drug discovery scientists are chal-
lenging this problem using a combination of advancement in omics technology,
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high throughput screening, phenotypic screening, structural biology, computational
chemistry (in silico), and big data analysis.

Medicinal chemistry plays an essential role in drug discovery. The mission
of medicinal chemistry [3] is to find, develop, and improve drug substances that
can be used to cure various diseases. Medicinal chemistry is an interdisciplinary
science that covers multiple fields, including organic chemistry, biochemistry, phar-
macology, pharmacokinetics, toxicology, structure biology, and computational chem-
istry. Recent advances in structural biology and computational chemistry have
provided insights into target proteins in the drug design process [4]. The number
of structural analyses of proteins, including drug targets, by crystallography, has
rapidly increased during the last two decades. Furthermore, rapid increases in the
performances of the computer systems [5] have enabled us to perform large-scale and
precise simulations of the complexes between a drug target protein and its ligand.
A combination of structural biology and computational chemistry, which is also
called structure-based drug design (SBDD) [6], has been incorporated into the overall
modern drug discovery process.

Docking study [7], which involves finding the proper pose of a ligand within a
protein binding site, is one of the main approaches of SBDD, and it serves two main
purposes. One is to explore the hit compounds from the compound library, which
contain 100,000 or more compounds; this is called in silico screening or virtual
screening. The second is to search for a detailed docking mode of ligand to protein.
While the usefulness of the docking studies has been accepted, the accuracy of such
studies must be improved. Docking studies comprise three main elements, including
the generation of conformation for ligand, exploration of binding site in target
protein, and determination of the dockingmode for ligand based on scoring functions.
Scoring functions are used to set the priority of testing compounds from knownmany
compounds. Further, alternative methods could be appropriate to perform detailed
analyses of molecular interactions.

Ab initio molecular orbital calculations, which can be performed to calculate
electronic energies, densities, and other properties, are more appropriate to analyze
molecular interactions as compared to the classical force field. The fragment molec-
ular orbital (FMO)method has been used to analyze large systems, such as biomolec-
ular systems and their ligand interactions, because it can be used to obtain electronic
information such as electronic densities, many-body interactions, inter-fragment
interaction energies (IFIE), and pair interaction energy decomposition analysis
(PIEDA). IFIE and PIEDA can provide information about the interactions between
ligands and the residues of each amino acid of a target protein. This information
is helpful for medicinal chemists and computational chemists, especially from the
viewpoint of interpreting the interactions between ligands and proteins as well as for
discussing the ligand design.

In this chapter, we report the practical applications of FMO to drug design through
three examples, including structure-based drug design (SBDD) [8], fragment-based
drug design (FBDD) [9], and protein-peptide interaction [10].
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2 Computational Method

2.1 Structure Preparation

All the structures in this report are retrieved from Protein Data Bank (PDB) [11],
and the codes and their resolution are listed in Table 1. The hydrogen atoms were
generated using themolecular graphic software, Discovery Studio [12] (BIOVIASan
Diego, CA, USA). We assumed that the amino groups of the lysine and arginine side
chains were protonated, while the carboxyl groups of the aspartic and glutamic side
chains were deprotonated. TheChemistry at HARvard Macromolecular Mechanics
(CHARMM) force field [13] implemented in Discovery Studio was used in the
minimization steps. The structures of the protein and ligand complex were optimized
using the steepest descent method at a dielectric constant (ε) of 4R (R: distance).
The optimizations were performed in a stepwise manner. During the first step, the
structures were minimized with constrained non-hydrogen atoms (protein, ligand,
and water). Further, the protein backbone atoms were constrained. During the final
step, all the atoms were minimized as the harmonic atom constraint was gradually
decreased from 100 to 10.0 and 1.0 kcal/molÅ2.

Table 1 List of proteins and
compounds with PDB ID and
resolution

Protein Compound PDB ID Resolution (Å)

Lck 1 1QPJ 2.2

Lck 2 2ZM4 2.7

Lck 3 2ZM1 2.1

Lck 4 2ZYB 2.6

BRD4 5 3UVW 1.4

BRD4 6 4HBV 1.6

BRD4 7 4HBW 1.7

BRD4 8 4HBX 1.6

BRD4 9 4HBY 1.6

BRD4 10 4E96 1.9

BRD4 11 2YEL 1.7

BRD4 12 4Z1Q 1.4

Abl 3BP1 1ABO 2.0

SEM5 Sos 1SEM 2.0

Gads SLP-76 1OEB 1.7
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2.2 CH/π Interaction and CHPI Analysis

TheCH/π interaction is an attractivemolecular force that occurs between aCHgroup
and aπ-system [14, 15]. In a typical case, the aliphatic and aromatic CHs are involved
as CH donors and π-systems, such as aromatic rings and double or triple bonds, are
involved as the CH acceptor; the interaction energies are 1.5–2.5 kcal mol−1 per
unit [16]. A notable feature of the CH/π interaction is that it arises mainly from
dispersion energy and not electrostatic energy [17]. Therefore, this interaction does
not weaken in water, which makes it critically important from the viewpoint of
molecular recognition of biomolecules [18]. The CH/π interaction is observed to
be important in the fields of supramolecular chemistry, conformation of organic
compounds, 3D structure protein, substrate specificity of proteins, and rational drug
design [19].

The CH/π interactions were evaluated using the CHPI program implemented
in BioStation Viewer [20]. Nishio and Umezawa originally developed this program
[21]to search for short contacts between the CH groups andπ-systems. This program
measures the distances and angles between CH groups and the interactingπ-systems
(aromatic rings) and indicates the existence of the CH/π interactions. The criteria for
CH/π interaction are observed to differ according to the position of the CH hydrogen;
a detailed description of CHPI analysis was written in the original study. In simple
cases, where CH is located above the aromatic ring, CHPI indicates CH/π interaction
if the distance between H and the nearest heavy atom of the aromatic ring is less than
3.05 Å. This value is determined based on the van der Waals distance [(1.2 Å for H
+ 1.7 Å for C) × 1.05 = 3.05 Å].

3 Application of FMO to SBDD

3.1 Abstract

The interaction energywas calculated using the ab initio FMOmethod for complexes
between lymphocyte protein tyrosine kinase (Lck) protein and four inhibitors (stau-
rosporine 1, BMS compound 2, and our compounds 3 and 4). In every case, a number
of CH/π interactions were found in the so-called adenine pocket. In the complexes
of 2, 3, and 4, CH/π and NH/π interactions were observed in another pocket. A
tenfold increase in the potency was achieved for 4 relative to 3. In view of the above
results, conversion of the aniline ring of 3 to 2,6-dimethyl aniline of 4 enhanced the
CH/π interactions, resulting in an increase in the affinity for Lck kinase. We suggest
that the concept of CH/π interactions and the use of FMO method allow for rational
consideration of nonpolar interactions in the SBDD process.
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3.2 Lck Kinase

Src-family tyrosine kinases [22] consist of eight highly homologous proteins that are
expressed primarily in hematopoietic tissues, of which Lck and Fyn are expressed in
T cells, with Lck playing a critical role in the initial steps of T-cell receptor signaling
[23]. Then, an Lck inhibitor is a potential target for an autoimmune agent. Several
studies have reported on the synthesis and characterization of Lck kinase inhibitors
[24]. These compounds are ATP-competitive inhibitors, and the crystal structure of
various Lck complexes has been reported [25]. ATP is known to be bound in the
cleft formed between the two lobes of the so-called protein kinase fold (Fig. 1) [26].
Three sites (the hinge region, adenine pocket, and another pocket) are common to
all Src-family kinases and are critical for the binding of Lck inhibitors (Fig. 2).

Fig. 1 Structure of Lck kinase showing two lobes and ATP-bind site

Fig. 2 Schematic representation of binding site of Lck kinase
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Donor–acceptor pairs of hydrogen bonds are formed between the backbone atoms
of the hinge region and adenine. The adenine moiety is positioned at the so-called
adenine pocket, which is composed mainly of aliphatic amino acid residues. Another
pocket, which is unoccupied by ATP, binds an aromatic group of the inhibitors.
Therefore, we first survey the molecular interactions of the complexes between Lck
and known inhibitors by using the FMOmethod. Using this information, we perform
SBDD for Lck inhibitors. Herein, we report the results of the FMO calculations
of four complexes between Lck and inhibitors (Fig. 3). Several hydrogen bonds,
CH/π, CH/O [27], and NH/π [28] interactions have been found to contribute toward
stabilizing the structure of Lck complexes.

In viewof the significance of theCH/O interaction in the recognition of proteins by
their ligand, Pierce designed effective glycogen-synthase-kinase 3 (GSK3) inhibitors
by using the concept of CH/O interaction [29].

Fig. 3 Structure of four Lck kinase inhibitors analyzed using FMO method
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3.3 Interpretation of Ligand and Protein Interaction

3.3.1 Staurosporine (1)

Staurosporine (1) is a natural product isolated from bacterium Streptomyces stau-
rosporeus by Oomura in 1977 [30]. In subsequent studies, it was found to inhibit
protein kinase non-selectively through competition with ATP. Based on this, we
postulate that 1 has a basic element of molecular interactions in ATP-competitive
kinase inhibitors. Then, the complex between Lck and 1 (pdb code: 1qpj) was
retrieved from the PDB, and it was calculated using the FMO method.

Two hydrogen bonds in the hinge region of protein kinases represent the key
interactions in the recognition of inhibitors or substrates. In the case of Lck, the hinge
region is from Ile314 to Glu320. The two hydrogen bonds formed between 1 and Lck
are shown in Fig. 4a. One of the bonds is between the oxygen of the protein backbone
in Glu317 and the lactam amide hydrogen of 1. The other is formed between the
amide hydrogen of the protein backbone in Met319 and the lactam carbonyl group
of 1, indicating that 1 interacts with Lck through the typical hydrogen bond pattern
of protein kinase inhibitors.

Fig. 4 Interactions between 1 and Lck kinase: a hinge region, b and c ATP-binding site
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The results of our FMO calculations are consistent with these observations,
indicating 1 has a typical hydrogen bond pattern of kinase inhibitors in the hinge
region. That is, IFIE values between 1 and Lck were estimated to be −18.7 and −
11.3 kcal/mol, respectively, for Tyr318 andMet319. In the FMO scheme, the interac-
tion of Tyr318 is composed of the carbonyl group of the protein backbone in Glu317,
the side chain of Tyr318, and NH group of the protein backbone in Tyr318, details
of which are available in the chapter on the basic FMO concept. IFIE between 1 and
Lck can be attributed mainly to the hydrogen bond between the peptide oxygen of
Glu317 and the lactam amide hydrogen of 1 owing to their relative configuration.
IFIE between Met319 and 1 can be attributed to the amide hydrogen of the protein
backbone in Met319 and the lactam carbonyl group of 1. Thus, the importance of
the two hydrogen bonds between the hinge region and 1 was confirmed by the FMO
calculation.

It is generally accepted that kinase inhibitors have an aromatic group at the ATP-
binding site. We investigated the mode of recognition at the ATP-binding site of Lck
by performing FMO and CHPI analysis. Table 2 summarizes the results of IFIE,
PIEDA, and CHPI analysis between Lck and 1. In addition to two hinge hydrogen
bonds, large IFIE was observed in three aliphatic amino acids, namely, Leu251 (IFIE
−6.3 kcal/mol), Val259 (−6.4 kcal/mol), and Leu371 (−6.4 kcal/mol). Dispersion
energies estimated from PIEDA are as follows: Leu251 (−7.4 kcal/mol), Val259
(−6.4 kcal/mol), and Leu371 (−8.1 kcal/mol). Seven CH/π interactions were found
byCHPI analysis, as shown in Fig. 4b, c. No hydrogen bondwas found between 1 and
these three residues. Therefore, those three aliphatic residues interact with 1 through

Table 2 Interaction energies (in kcal/mol) between Lck and staurosporine (1)

IFIE Esa Exb CTc DId q(I = > J)e CH/πf

TYR318 −18.7 −15.8 9.7 −5.5 −7.0 0.022

ASP382 −15.4 −10.8 2.5 −2.5 −4.7 0.015

MET319 −11.3 −11.8 6.6 −2.2 −3.8 −0.028

ASN369 −11.0 −8.2 4.2 −2.7 −4.3 0.031

GLY252 −10.9 −6.3 3.0 −2.9 −4.6 0.006

ASP326 −7.7 −6.2 0.5 −0.7 −1.3 0.009

LEU371 −7.0 −2.2 5.3 −1.9 −8.1 −0.010 2

GLU288 −6.6 −4.5 0.2 −1.1 −1.2 0.011

VAL259 −6.4 −1.5 3.0 −1.5 −6.4 −0.010 2

LEU251 −6.3 −2.0 4.9 −1.8 −7.4 −0.020 3

LYS269 −4.3 −4.3 0.0 0.0 0.0 0.000

ASP364 −4.0 −4.0 0.0 0.0 0.0 0.000

GLY254 −3.1 −2.2 0.1 −0.4 −0.6 0.003

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program
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CH/π interactions, so CH/π interactions play an important role in the recognition of
1 at the ATP-binding site of Lck. Amino acids composing the ATP-binding site are
highly conserved in many kinases, suggesting that CH/π interactions play a critical
role in the recognition of inhibitors at the ATP-binding site of kinase.

The glycosyl part of 1 has many interactions with Lck. The crystal structure of the
complex shows that the methylamino group of the glycosyl part of 1 interacts with
Lck through hydrogen bonds, namely, the alcohol oxygen of side chain in Ser323
and the peptide oxygen of main-chain in Ala368. IFIE between 1 and Ser323 is −
1.2 kcal/mol. PIEDA showed that this IFIE was composed of mainly large attrac-
tive electrostatic interaction (�EES −8.5 kcal/mol) and large repulsive exchange-
repulsion (�EEX + 12.5 kcal/mol), indicating this hydrogen bond was shifted from
the ideal position. IFIE between 1 and Asn369 was −11.0 kcal/mol, which is very
typical of a hydrogen bond (note that the peptide oxygen in the main-chain of Ala368
is composed of Asn369 according to the FMO scheme). IFIE values of Asp382
(−10.8 kcal/mol) and Asp326 (−7.7 kcal/mol) were observed. These interactions
could be regarded as charge–charge interactions because of the large and predomi-
nantly attractive electrostatic interaction (�EES Asp382: −10.8 kcal/mol, Asp326:
−6.2 kcal/mol). Explaining the IFIE between 1 and Gly252 is difficult. It could be
interpreted as two CH/O interactions owing to the configurations and the results of
PIED analysis. One is a CH/O interaction between 1-oxygen of the glycosyl group
in 1 and α hydrogen in Gly252, a carbonyl oxygen of Gly252; the distance is 2.5 Å.
The other CH/O interaction is between the 6-hydrogen of the glycosyl group in 1
and the peptide oxygen of Leu251; the distance is 2.7 Å.

To summarize the interactions of staurosporine (1), FMO calculations revealed
that a variety of interactions contribute to the recognition of Lck by 1. Therefore, not
only hydrogen bonds but CH/π interaction and CH/O interaction must be considered
in the following drug design.

3.3.2 BMS Compound

Lipinski’s “rule-of-five” [31] states that to be a useful oral drug, a candidate molecule
should have fewer than five hydrogen bond donor groups and fewer than 10 acceptor
groups. The “rule-of-three,” [32] which limits the number of hydrogen bond donors
to three, has been proposed for FBDD. These suggestions imply that reducing the
number of hydrogen bonddonor groups is favorable from the viewpoint of developing
oral drugs. In BMS compound [33] 2, the number of hydrogen bond donors is lower
than that in typical kinase inhibitors. The BMS compound was selected as the lead
compound in our study.

The IFIE in Table 3 shows that 2 interacts with Met319, Tyr318, and Thr316 in
the hinge region. IFIE between 2 and Met319 is −8.2 kcal/mol, which corresponds
to the hydrogen bond between the peptide amide hydrogen of Met319 and N3 of the
imidazole in 2. IFIE between 2 and Tyr318 is−7.7 kcal/mol. The crystal structure of
the complex shows that the peptide amide group is located on the opposite side of 2,
and the side chain of Tyr318 is more than 4.2 Å away from 2 in Fig. 5a. We noticed
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Table 3 Interaction energies (in kcal/mol) between Lck and BMS compound (2)

IFIE Esa Exb CTc DId q(I = > J)e CH/πf

LYS273 −8.2 −6.6 7.6 −2.7 −6.6 −0.026

THR316 −8.2 −4.4 4.9 −2.4 −6.4 0.017 1

MET319 −8.2 −5.6 2.5 −1.5 −3.6 −0.020

TYR318 −7.7 −4.9 1.8 −1.7 −2.9 0.018

ASP326 −6.6 −4.6 0.4 −1.0 −1.4 0.013

GLU288 −5.6 −2.7 1.5 −1.9 −2.5 0.024

GLY252 −4.8 −3.9 3.0 −1.2 −2.7 0.016

LEU371 −4.7 −1.5 3.4 −1.3 −5.2 −0.009 1

VAL259 −3.9 −0.6 2.8 −1.3 −4.8 −0.013 1

VAL272 −3.4 −2.3 0.1 −0.4 −0.8 0.003

ILE315 −3.2 −1.9 0.6 −0.7 −1.3 0.010

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

Fig. 5 Interactions between 2 and Lck kinase: a hinge region and b ATP-binding site

that the hydrogen attached to C4 of the imidazole ring in 2 is located near the peptide
carbonyl of Glu317; distance is 2.4 Å. Then, 2 interacts with Lck through the CH/O
interaction in the hinge region. Previously, Pierce mentioned the importance of the
CH/O interaction in the hinge region of kinase.

In the tricyclic aromatic part of 2, three CH/π interactions involving Val259,
Ala271, and Leu371 were found by CHPI analysis. IFIE and dispersion energies
between these amino-residues and Lck are as follows: Leu371 (4.7, –5.2), Val259
(–3.9, –4.8), andAla271 (–1.0, –3.0) respectively. The IFIEs of these aliphatic amino-
residues are lower than that of compound 1. These results imply that recognition of the
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tricyclic aromatic part of 2 by aliphatic amino acid residues forming the ATP-binding
site can be improved by considering the CH/π interactions shown in Fig. 5b.

The 2-chloro-6-methyl-aniline part of 2 is located in another pocket, while the
staurosporine part (1) does not exist at this site. Then, different amino acid residues
are involved in the recognition of 2, indicating large IFIE of Lys273 (−8.2 kcal/mol)
and Thr316 (−8.2 kcal/mol). CHPI analysis shows one CH/π interaction between the
side chain of Thr316 and the aniline ring of 2. The ε-amino group and the methylene
of the side chain in Lys273 were found to be located near the aniline ring of 2.
NH/π and CH/π interactions could be attributed to ligand recognition because the
electrostatic and dispersion energies estimated by PIEDA are nearly the same (both
–6.6 kcal/mol).

FMO calculations revealed that the BMS compound interacts with Lck through
not only hydrogen bonds but also through CH/O, NH/π, and CH/π interactions,
indicating that this compound has sufficient interaction energy to be a candidate
for the lead compound. We, therefore, tried to improve the binding affinity of 2 by
considering CH/π interactions.

3.3.3 Compound 3:
N-(2-Chlorophenyl)-5-phenylimidazo[1,5-a]pyrazin-8-amine

In view of the results obtained by the FMO analysis of the above two complexes, we
hypothesized that CH/O and CH/π interactions play an important role, in addition
to hydrogen bonds, in the binding of inhibitors to Lck. Thus, N-(2-chlorophenyl)-5-
phenylimidazo[1,5-a]pyrazin-8-amine (3) was designed and synthesized as a candi-
date inhibitor. First, we determined the crystal structure of 3 in complex with Lck.
Next, FMO calculations were performed to obtain the information necessary for
optimizing the structure of 3.

Table 4 shows the IFIE between 3 and LCK in the hinge region: Thr316 (–
8.9 kcal/mol), Tyr318 (–9.2 kcal/mol), and Met319 (–9.7 kcal/mol). These values
are similar to those of 2, indicating 3 has a similar binding mode as 2.

CHPI analysis indicated the presence of three CH/π interactions between the
imidazo-pyrazine moiety of 3 and the side chain of Val259 and Leu371. Consis-
tent with this observation, IFIE and dispersion energies between 3 and these two
residues Val259 (–2.5, –4.0 kcal/mol) and Leu371 (–4.7, –5.9 kcal/mol) were attrac-
tive. Although Leu251 interacted with the core-ring part of 1 and 2 through CH/π
interactions, Leu251 was remote from the imidazo-pyrazine ring in 3. By contrast,
one CH/π interaction was found between the side chain of Leu251 and the phenyl
ring at position 5 of the imidazo-pyrazine ring. IFIE and dispersion energies were
–2.5 and –4.0 kcal/mol, respectively. The tricyclic ring in the core region of inhibitor
2 was converted to a bicyclic ring in 3. Three amino acid residues (Val259, Leu371,
and Leu251) interacting with 2 by CH/π interactions also contributed toward the
recognition of 3 through CH/π interactions.

Two CH/π interactions were found between the 2-chlorol-aniline part of 3 and
the side chain of Thr316. In agreement with this observation, IFIE and dispersion
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Table 4 Interaction energies (in kcal/mol) between Lck and compound (3)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

MET319 −9.6 −9.7 6.8 −2.2 −4.5 −0.024

TYR318 −9.2 −5.1 2.2 −2.3 −4.0 0.018

THR316 −8.9 −5.8 5.8 −2.5 −6.4 0.016 2

LYS273 −8.0 −5.5 5.3 −2.1 −5.7 −0.022

GLU288 −7.4 −4.6 1.5 −1.7 −2.5 0.024

LEU371 −4.7 −1.2 3.8 −1.4 −5.9 −0.006 2

GLY252 −4.6 −3.0 0.4 −0.7 −1.3 0.008

LEU251 −2.8 −0.6 2.2 −1.1 −3.3 −0.008 1

VAL259 −2.5 0.2 2.3 −0.9 −4.0 −0.006 1

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

energies were−8.9 and−6.4 kcal/mol. The dispersion energy between 3 and Lys273
is relatively large (−5.7 kcal/mol), and the side chain of Lys273 is located on the
aniline ring of 3. Then, 3 could interact with Lys273 through NH/π and CH/π
interactions, although the CH/π interaction was not detected in the CHPI analysis.

FMO calculations showed that 3 interacts with Lck through hydrogen bonds,
CH/O, NH/π, and CH/π interactions. However, the inhibitory activity of 3 toward
Lck remained modest (IC50 = 220 nM).

3.3.4 Compound 4:
N-(2,6-Dimethylphenyl)-5-phenylimidazo[1,5-a]pyrazin-8-amine

FMO calculations revealed that the 2-chlorol-aniline part of 3 interacts with Lck
through CH/π and NH/π interactions, suggesting the possibility of increasing its
inhibitory activity by strengthening these interactions. The effects of substituents
on the CH/π interaction have been investigated using various methods, including
infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, X-ray crys-
tallography, and ab initio calculations. In these studies, it was shown that an
electron-donating substituent on theπ -ring system strengthens theCH/π interaction.
We, therefore, designed N-(2,6-dimethylphenyl)-5-phenylimidazo[1,5-a]pyrazin-8-
amine (compound 4) to improve interactions, resulting in 4 showed improved
inhibitory activity over 3: compound 3, 200 nM; and compound 4, 20 nM (IC50
value for Lck).

The obtained FMO results agree well with the structure-activity relationship
(SAR) of 3 and 4 (Table 5). The difference in the interaction energies of Lys273
between 3 and 4 was –5.2 kcal/mol, the largest among the amino acid residues in
Lck. The side chain of Lys273 was located above the 2, 6-dimethylphenyl ring of 4,
implying that the enhanced activity of 4 could be attributed to the NH/π and CH/π
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Table 5 Interaction energies (in kcal/mol) between Lck and compound (4)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

LYS273 −13.2 −9.7 4.4 −2.1 −5.8 −0.021

MET319 −9.5 −8.2 4.9 −1.9 −4.3 −0.024

THR316 −8.9 −5.1 6.3 −2.8 −7.4 0.020 2

TYR318 −8.3 −4.5 1.6 −1.9 −3.4 0.015

GLY252 −5.7 −3.8 1.2 −1.1 −1.9 0.012

LEU371 −4.6 −1.0 3.1 −1.3 −5.4 −0.006 3

GLU288 −4.4 −0.6 1.7 −2.3 −3.1 0.032

VAL272 −3.1 −2.0 0.1 −0.3 −0.9 0.001

ILE315 −3.0 −1.1 0.4 −1.0 −1.4 0.012

VAL259 −3.0 −0.2 2.6 −1.0 −4.4 −0.007 1

LEU251 −2.9 −0.7 2.9 −1.3 −3.8 −0.010 1

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

interactions. Because the increase in IFIE can be ascribed mainly to its electro-
static interaction (–4.2 kcal/mol) component, NH/π interactions are predominantly
involved in improving affinity.

By contrast, the difference in the interaction energies in the case of Thr316 was
small (+0.02 kcal/mol). The dispersion energy estimated using PIEDA increased
from –6.3 (3) to –7.3 (4) kcal/mol, while the electrostatic interaction decreased
from –5.8 (3) to –5.0 (4) kcal/mol. Then, the opposing interactions could not affect
the IFIE value. Karthikeyan described that the addition of a methyl group to the
benzene ring increased CH/π interactions, mainly because of the dispersion energies
of the benzene–methane complex, as determined using the CCSD(T) method at the
completed basis set limit. Because dispersion energies increased in the complex
of 4, CH/π interactions increased with dimethyl substitution of the benzene ring.
The hydrogen bond between the NH of aniline and the O of the hydroxyl group
in the side chain of Thr316 weakened. This appeared to have been caused by a
decrease in the acidity of NH in the aniline part of 4 owing to an increase in electron
density in the benzene ring by the introduction of methyl groups at positions 2 and
6. The differences in the interaction energies associated with other residues were
insignificant. The interactions between 4 and Lck were equivalent to those between
3 in the hinge region and imidazo-pyrazine ring.
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3.4 Conclusions

FMO calculations were carried out for four complexes between Lck and four
inhibitors (staurosporine 1, BMS compound 2, and compounds 3 and 4). IFIE and
PIEDA analysis revealed that inhibitors interact simultaneously with Lck through
various molecular interactions; hydrogen bond, CH/O interaction, NH/π interaction,
and CH/π interaction. IFIE can be used to survey molecular interactions widely,
including ligands and all amino-residues, in the case of protein and ligand complexes.
Additionally, PIEDA enables us to perform a decomposition analysis of the molec-
ular interactions between ligands and proteins, and it helps interpret these molecular
interactions. These interpretations can provide useful insights to medicinal chemists
from the viewpoint of SBDD.

4 Application of FMO to FBDD

4.1 Abstract

The molecular interactions of the inhibitors of bromodomains (BRDs) are inves-
tigated. BRDs are protein interaction modules that can recognize ε-N-acetyl-lysine
(εAc-Lys) motifs found in histone tails and are promising protein–protein interaction
(PPI) targets. First, we analyze a peptide ligand containing εAc-Lys to evaluate native
PPIs. Then, we analyze tetrahydroquinazoline-6-yl-benzensulfonamide derivatives
found by fragment-based drug design (FBDD) and examine their interactions with
the protein compared to the peptide ligand from the viewpoint of IFIE. Furthermore,
we analyze benzodiazepine derivatives that are high-affinity ligands for BRDs and
examine differences in the CH/π interactions of the amino acid residues. In addi-
tion, we survey changes in the charges of the amino acid residues among individual
ligands, perform pair interaction energy decomposition analysis, and estimate the
water profile at the binding site. Thus, useful insights for drug design are provided.
Through these analyses and considerations, we show that FMO is a useful drug
design tool for evaluating the process of FBDD and exploring PPI inhibitors.

4.2 Fragment-Based Drug Design (FBDD)

The use of fragments as the starting point for drug discovery, so-called FBDD [34],
has been applied to a wide range of drug targets [35]. FBDD has become one of the
major lead-finding methods in drug discovery research [36] and has been used in
drug discovery for identifying lead protein–protein interaction (PPI) inhibitors [37].
However, the number of successful examples is small compared to typical targets
for small-molecule inhibitors. Therefore, computational approaches are expected to
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be useful for providing important information related to each step in the FBDD of
PPI inhibitors [38, 39]; these steps include fragment screening, fragment growing,
fragment linking, and lead identification.

Knowledge of the structure of the complex formed between the target protein
and the ligand is critical in the FBDD process. In FBDD, the starting fragment has
low affinity, and therefore, an understanding of molecular interactions is required for
rational drug design. Many molecular interactions are involved in ligand binding,
so quantum–mechanical calculations [40] must be applied to drug design. Ichihara
[41]suggested that FMO and extended calculations, such as PIEDA, can be used to
analyze the interaction of hit fragments and the evolution of fragments to the lead
molecule.

4.3 Protein–Protein Interaction (PPI) and Bromodomain

A network of protein–protein interactions (PPIs) contributed to the regulation of
cellular biology, and dysfunction in PPIs is strongly associated with a variety of
diseases [42]. The development of drugs targeting PPIs remains a challenge, espe-
cially the development of small-molecule drugs, because PPI interfaces tend to be
relatively flat, wide, and featureless compared to typical targets for small molecules,
such as enzymes, for example, kinases, and G protein-coupled receptors (GPCRs)
[43]. Bromodomain inhibitors are one of the target PPIs.

Bromodomains (BRDs) [44] are compact protein modules comprising approxi-
mately 110 amino acid residues that are key interaction modules for recognizing the
ε-N-acetylation state of a specific lysine residue. The ε-acetylated lysine (εAc-Lys
or Kac) is found in large macromolecular complexes that have a role inchromatin
remodeling, DNA damage, cell-cycle control, and, especially, in histones. There are
61 BRDs in the human genome, and they are classified into eight families. The
bromo and extra C-terminal domain (BET) family is one of the eight families, and
it comprises four proteins (BRD2–4 and testes-specific BRDT). Because BRD4 has
been reported to regulate the expression of disease-related genes for cancer, inflam-
mation, and viral infections, it is an attractive target for developing drugs for these
diseases [45]. Many studies for finding ligands for BRD4 have been conducted since
a selective BET inhibitor was discovered in 2010, and several such compounds have
entered clinical trials [46].

In this section, we describe the use of FMO for analyzing a bromodomain inhibitor
to provide insights related to FBDD. Our investigations included fragment growing
in FBDD, comparison of the molecular interactions between the peptide and small-
molecule ligands, the contribution of induced charge to affinity and PIEDA, CH/π
interactions, and involvement of water in ligand binding. In this section, we describe
our calculations for the following eight compounds (Fig. 6).
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Fig. 6 Structure of bromodomain inhibitors analyzed using FMO with IC50 value

4.4 FMO Calculations for H4K5acK8ac, a Peptide Ligand
Containing Two εAc-Lys

By using systematic histone-peptide arrays, isothermal titration calorimetry (ITC),
and crystal structures, Filippakopoulos [43] revealed that peptides containing two
εAc-Lys residues interact more strongly with BRDs than peptides containing only
one or no εAc-Lys residue. The crystal structures showed that the εAc-Lys of a
peptide ligand is anchored to asparagine (Asn140), which is conserved in BRDs,
through hydrogen bonds.

We performed FMO calculations on the complex between BRD4 protein and
diacetylated peptide H4K5acK8ac (SGRGKacGGKacGLGA, 5). Table 6 lists IFIE
of BRD4 and the two εAc-Lys residues (εAc-Lys5 and εAc-Lys8), which are consid-
ered to play a critical role in binding to BRD4. The FMO calculations showed
nine strong interactions (five amino acid residues and four waters) between εAc-
Lys5 and BRD4 (Asn140, Asp144, Phe83, water106B, Tyr97, water13B, Tyr139,
water28A, and water263B) (Table 6 and Fig. 7). The strong IFIE between εAc-Lys5
and Asn140 (–16.1 kcal/mol) agrees with the role of Asn140 in anchoring εAc-Lys5.
εAc-Lys5 has attractive IFIE with three aromatic residues as well: –5.7 (Phe83),
–4.8 (Tyr97), and –4.2 (Tyr139) kcal/mol; these residues are highly conserved in
BRDs.By contrast, the interaction energies calculated using themolecularmechanics
(CHARMm) method are –4.1 (Phe83), +2.7 (Tyr97), and –1.3 (Tyr139) kcal/mol.
Therefore, it is difficult to identify interactions with three aromatic residues by
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Table 6 Interaction energies
(in kcal/mol) between BRD4
and H4K5acK8ac peptide (5)

IFIE of εAc-Lys5 IFIE of εAc-Lys8

Asn140 −16.1 Asp145 −27.1

Asp144 −10.7 Water62B −17.6

Phe83 −5.7 Water13B −10.0

Water106B −4.9 Asp144 −6.4

Tyr97 −4.8

Water13B −4.4

Tyr139 −4.2

Water28A −3.8

Water263B −3.7

Fig. 7 Interaction between compound 5 (peptide) and BRD4

using molecular mechanics and visual inspection. By contrast, FMO can detect these
nonconventional interactions.

Four waters also play roles in binding 5 to BRD4. Water106B and water28A
interact with the peptide amide hydrogen of εAc-Lys5 in 5 through hydrogen bonds.
Water263B forms a hydrogen bond with water106B, which forms a hydrogen bond
with the peptide carbonyl oxygen of Gly4 in 5. These three waters are present on
the protein surface, so they are thought to be involved in stabilizing the hydrated
surface. By contrast, water13B is found at the ligand-binding site and forms a bridge
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between εAc-Lys5 and εAc-Lys8 through intermolecular hydrogen bonds. The role
of this water is examined further in the discussion section.

εAc-Lys8, the second acetylated residue, was found to interact with four residues:
Asp145, Asp144, water62B, and water13B (Table 6 and Fig. 7). The large IFIE (–
27.1 kcal/mol) between εAc-Lys8 and Asp145 is ascribed to the charged hydrogen
bond between the NH of the peptide backbone of εAc-Lys8 and the carboxylate
of the side chain of Asp145. However, this strong interaction does not explain
why this lysine is acetylated. The FMO calculation showed strong interactions
between εAc-Lys8 and two waters (water62B and water13B). These two waters
form hydrogen bonds with the acetylated Lys portion of εAc-Lys8 and, simultane-
ously, form hydrogen bonds with εAc-Lys5. As a result, water62B and water13B
form an intramolecular hydrogen bond network between εAc-Lys5 and εAc-Lys8 in
the peptide ligand. Thus, εAc-Lys8 could play an important role in maintaining the
water network at the binding site, as well as in the direct interaction with BRD4.

In summary, FMO calculations for the complex between H4K5acK8ac (5) and
BRD4 revealed that εAc-Lys5 interacts with a conserved key residue (Asp140),
and εAc-Lys8 maintains the water network. In the next section, we compare the
interactions between H4K5acK8ac and low-molecular-weight inhibitors.

4.5 Analysis of Fragment Optimization Process
in Tetrahydroquinazoline-6-yl-benzensulfonamide
Derivatives

The FBDD method was applied by Fish for identifying a lead compound for BRD4
inhibition [47]. The identified compound showed inhibitory activity in a peptide
displacement biochemical assay. The structure–activity relationship (SAR) and co-
crystal structures betweenBRD4and the ligand, including the hit fragment, expanded
fragment, and lead compound, were investigated as well. Using their data, we inves-
tigated the change in IFIEs between the ligands and the BRD4 protein from a hit
fragment (IC50 23 μM for BRD4) to a lead compound (IC50 0.22 μM for BRD4).

4.5.1 FMO Calculations
for 6-bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one (6)

Compound 6 has a weak inhibitory activity for BRD4 (23 μM), but its molec-
ular weight is low. Therefore, this compound was used as the starting fragment for
FBDD. The FMOcalculations showed seven strong interactions fromfive amino acid
residues and two waters between 6 and BRD4 (water379, Asn140, Phe83, water309,
Tyr97, Ile146, and Val87). Table 7 and Fig. 8 show detailed data and the ligand inter-
actions between 6 and BRD4. The IFIE of Asn140 (–9.4 kcal/mol) is weak compared
with the IFIE between εAc-Lys5 and Asn140 (–16.1 kcal/mol). This decrease in IFIE
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Table 7 Interaction energies (in kcal/mol) between BRD4 and Fragment (6)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

HOH379 −9.6

ASN140 −9.4 −7.4 0.6 −1.1 −1.5 −0.017

PHE83 −8.2 −5.7 3.3 −1.6 −4.3 0.026

HOH309 −5.5

TYR97 −4.2 −2.7 0.2 −0.5 −1.2 −0.005

ILE146 −3.5 −0.2 1.6 −0.9 −3.9 −0.004

VAL87 −3.0 −1.5 2.2 −0.8 −2.9 0.002

HOH398 −2.9

HOH323 −2.8

LEU92 −2.8 −0.6 4.0 −1.1 −5.1 −0.007

LEU94 −2.1 −0.8 2.1 −0.7 −2.7 −0.004

TYR139 −2.0 −0.8 0.0 −0.4 −0.9 −0.001

PRO82 −2.0 −1.3 3.3 −0.9 −3.0 −0.004

TRP81 −1.7 −1.7 2.8 −0.5 −2.4 −0.003

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

Fig. 8 Interaction between compound 6 (fragment) and BRD4
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can be ascribed to a change in configuration from an ideal hydrogen bond between
the urea carbonyl of 6 and the amide hydrogen of the side chain in Asn140. IFIEs
of other residues, namely, Phe83, Tyr97, Ile146, and Val87, were observed as well,
and they were found to be in agreement with Fish’s considerations.

Two waters (water379 and water309) are involved in the binding of 6 to BRD4.
The IFIE between 6 and water379 is –9.6 kcal/mol, and this value is approximately
equal to the IFIE of Asn140. This water exists between the amino group of the urea
in 6 and the amide carbonyl oxygen of the side chain of Asn140, and it acts as a
bridge between 6 and BRD4. Other ligands interact directly with Asn140, indicating
that this water plays an important role in the binding of fragment 6. Water309 has
a considerable IFIE of –5.5 kcal/mol, and it is incorporated into the hydrogen bond
network formed by 6 and Tyr97; this network is observed with other ligands as well.

Our FMOcalculations revealed that the interactions between 6 andBRD4partially
mimic the interaction between 5 and BRD4. Thus, 6 was thought to be an appropriate
starting point for FBDD.

4.5.2 FMO Calculations for 3-methyl-6-(pyrrolidin-1-ylsulfonyl)-3,4-
dihydroquinazolin-2(1H)-one
(8)

8 is a 6-sulfonamide derivative of 6, and it is over 20-fold more active than 6. The
FMO calculations listed in Table 8 provide insights into this increased affinity. The
calculations showed 10 strong interactions (seven amino acid residues and three

Table 8 Interaction energies (in kcal/mol) between BRD4 and compound (8)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

ASN140 −20.9 −21.4 9.7 −4.4 −4.8 −0.003

HOH301 −9.4

PHE83 −8.3 −4.9 1.2 −1.7 −3.1 0.018

ILE146 −6.1 −0.6 4.8 −2.0 −8.2 0.001 1

HOH423 −5.4

ASP145 −5.2 −4.7 0.9 −0.3 −1.0 0.002

TRP81 −4.8 −2.5 2.4 −1.0 −3.7 0.009

TYR97 −3.9 −2.4 0.1 −0.6 −1.0 −0.005

ASP144 −3.8 −3.8 0.0 0.0 0.0 0.000

HOH303 −3.3

HOH324 −2.6

HOH311 −2.6

LEU94 −2.4 −0.7 0.8 −0.5 −2.0 −0.005

LEU92 −2.3 0.1 3.4 −1.2 −4.6 −0.013 2
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Fig. 9 Interaction between compound 8 (fragment expand) and BRD4

waters) between 8 and BRD4 (Asn140, water301, Phe83, Ile146, water423, Asp145,
Trp81, Tyr97, Asp144, and water303).

The IFIE of Asn140 (–20.9 kcal/mol) approximately doubled compared to the
IFIE between 6 and Asn140. This IFIE value is nearly equal to the IFIE between the
εAc-Lys5 of 5 and Asn140 (–16.1 kcal/mol). This result indicates that the hydrogen
bond between the urea carbonyl of 6 and the amide hydrogen of the side chain of
Asn140 is strong in comparison with the bond with the hit fragment 6, as shown in
Fig. 9. Other IFIEs observed for 8 (Phe83 and Tyr97) coincide almost exactly with
the IFIEs of 6.

Newly detected IFIEs [Asp145 (–5.2 kcal/mol), Trp81 (–4.8 kcal/mol), and
Asp144 (–3.8 kcal/mol)] support the execution of an appropriate fragment expan-
sion. The IFIE of Trp81 can be attributed mainly to CH/π interactions. In the peptide
ligand 5, εAc-Lys8 interacts mainly with Asp145 and Asp144 (see Table 6). The
appearance of these two IFIEs in 8 indicates that 8 acquired new interactions, which
are observed in peptide 5 as well. In FBDD, it is important to assess whether the
expanded fragment has acquired new effective interactions. The interactions between
8 and twoAsp (144 and 145) could not be detected by visual inspection. For interpre-
tation of the interactions of Asp145 and Asp144, please see the discussion section.
These results show that FMO is a useful tool for investigating fragment expansion.
Compounds 7 and 9 have similar affinities for BRD4 compared to 8 (7: 4.8 μM, 8:
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1.9 μM, and 9: 4.4 μM). These results indicate a similarity in the patterns and in the
total IFIEs of compounds 7, 8, and 9.

4.5.3 FMO Calculations for 2-methoxy-N-(3-methyl-2-oxo-1,2,3,4-
tetrahydroquinazolin-6-Yl) benzenesulfonamide
(10)

10 has good affinity (220 nM) for BRD4 and drug-like properties. Thus, 10 was
selected as a chemical probe for BRD4. Our FMO calculations (listed in Table 9)
showed 14 strong interactions (10 amino acid residues and four waters) between 10
and BRD4 (Asn140, Asp145, water308, Asp144, Phe83, Ile146, water313, Lys91,
Trp81, water306, Leu94, Tyr97, water328, and Tyr139). The IFIE of Asn140 (–
19.9 kcal/mol) in 10 is nearly equal to the IFIE between εAc-Lys5 in 5 and Asn140
(–16.1 kcal/mol), indicating that the cyclic-urea part of 10 interacts with Asn140 in
a manner similar to the εAc-Lys5 residue of 5.

Compound 10 was produced by reversing the sulfonamide group in 9. The affinity
of 10 for BRD4 increased approximately 20-fold in comparison with that for 9.
The cause of this increased affinity cannot be explained based on the differences in
hydrogen bonds and the binding mode between the two ligands (Fig. 10). The reason
for this increased affinity was not described by Fish. There are some differences
between the IFIEs of compounds 10 and 9 in Asp145 (–10.2 vs. –5.5 kcal/mol),

Table 9 Interaction energies (in kcal/mol) between BRD4 and compound (10)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

ASN140 −19.9 −18.7 7.7 −4.3 −4.7 0.004

ASP145 −10.2 −9.0 0.6 −0.5 −1.3 0.002

HOH308 −8.4

ASP144 −7.6 −7.6 0.0 0.0 0.0 0.000

PHE83 −7.3 −4.2 1.3 −1.4 −3.0 0.015

ILE146 −6.4 −0.8 6.4 −2.5 −9.6 −0.003 3

HOH313 −5.7

LYS91 −5.3 −5.3 0.0 0.0 0.0 0.000

TRP81 −5.2 −2.0 2.3 −1.1 −4.4 −0.004

HOH306 −3.9

LEU94 −3.8 −1.1 2.7 −1.0 −4.3 −0.011 2

TYR97 −3.3 −0.1 0.9 −1.5 −2.6 −0.012 1

HOH328 −3.1

TYR139 −3.1 −0.9 0.3 −0.7 −1.7 −0.005

HOH326 −2.8

LEU92 −2.6 0.8 2.7 −1.5 −4.6 −0.015 1
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Fig. 10 Interaction between compound 10 (lead compound) and BRD4. a Compound 10 at the
binding site. b Comparison of compound 8 (magenta) and 10 (cyan) at the binding site

Asp144 (–7.6 vs. –6.6 kcal/mol), and Lys91 (–5.3 vs. 0.1 kcal/mol). However, the
two compounds have similar IFIEs for other residues. Accordingly, the interac-
tions involving Asp145, Asp144, and Lys91 contribute toward the increased affinity
observed for 10. The IFIEs of Asp144 and Asp145 are especially interesting because
these two IFIEs were observed in case of the peptide ligand 5. This observation
indicates that the FBDD process for compounds 6 to 10 proceeds by mimicking the
interactions of the peptide ligand.

4.6 Insight into FBDD Process

4.6.1 Correlation Between IC50 and the Total IFIEs

Wehypothesized that the changes in affinity are derivedmainly from enthalpic effects
[48] for compounds6–10,which are analogous compounds, althoughdifferent energy
terms are involved in the ligand-binding processes. Figure 11 shows a significant
correlation (R2 = 0.82) between the IC50 value of BRD4 and the total IFIEs of a
ligand; the total IFIEs are summed up values of all IFIEs between the ligand and the
amino acid residues of BRD4. This correlation indicates that the IFIEs can be used
as SAR considerations for compounds 6–10.

4.6.2 Contribution of Charge to IFIEs

An explanation for the differences in affinity between 8 and 10 is difficult to provide
based on visual inspection because a difference in direct interactions was not found.
We analyzed the IFIEs of these compounds and found that changes in the IFIEs of
Asp145 are related to differences in the affinities of compounds 8 and 10.
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Fig. 11 Relationship
between experimental values
and IFIE values for
compounds 6–10

The negative charge of Asp145 increased with an increasing affinity for BRD4
[–0.84 (6), –0.87 (8), and –0.90 (10)]. These charges were assumed to be derived
from charge-induced dipole interactions [49], which cannot be estimated by visual
inspection and molecular mechanics calculations. This finding indicates the utility
of quantum-mechanics-based FMO for SAR consideration.

4.6.3 Changes in IFIEs from Fragment-Hit to Lead

The hit fragment 6 was optimized to the small-molecule lead 10. We attempted to
evaluate this process based on changes in IFIEs from 6 to 10 and by comparing the
IFIEs with those of peptide ligand 5.

The IFIE of 6 with Asn140 (–9.4 kcal/mol) is weaker than that for the other
investigated compounds. The IFIE of 7 (–16.5 kcal/mol) is nearly equal to that
of the peptide ligand (–16.1 kcal/mol), and compounds 8 (–20.9 kcal/mol), 9 (–
21.9 kcal/mol), and 10 (–19.9 kcal/mol) have strong IFIEs for Asn140. Thus, the
effect of the interaction between εAc-Lys5 of the peptide ligand and the Asn140 of
BRD4 is retained in the small-molecule ligands derived from FBDD. By contrast,
the IFIE of the peptide ligand 5 between εAc-Lys8 and Asp145 is stronger than that
in the non-peptide ligands. While the hit fragment 6 has no IFIEs with Asp145, the
IFIEs of compounds 7–10 with Asp145 increased to nearly half the value for the
peptide ligand, resulting in corresponding improvements in affinity.

An analysis of the IFIEs revealed that in the FBDD process, the hit fragments
were optimized sequentially for mimicking the interaction of εAc-Lly5 to εAc-Lys8
in peptide and BRD4, as shown in Fig. 12. The first hit fragment partially mimics
the interaction between εAc-Lys5 and Asn140, and then, the ligands are optimized
to have an equally strong interaction with Asn140. The interaction with εAc-Lys8 is
optimized as well, but no lead compound was found to fully mimic the interaction
with the peptide ligand 5.
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Fig. 12 Change in IFIE from fragment compound to lead compound

4.7 Evaluation of High-Affinity Ligands

4.7.1 FMO Calculation for Compound 11 and 12

Benzodiazepines (BzDs) modulate the γ-aminobutyric acid (GABA) receptor and
have been approved for treating sleeping disorders, seizures, muscle spasms, and
anxiety. Furthermore, in 2010, BzDs were found to bind to BRDs, and these deriva-
tives have subsequently been studied extensively. Compound 11 (GW841819) [50]
is one of the highest affinity for BRD4 (16 nM).

FMO calculations showed 20 strong interactions (13 amino acid residues and 7
waters) between 11 and BRD4 (Asn140, Ile146, Phe83, water2215, Lys141, Leu92,
water2177, water2183, Pro82, water2126, water2095, Trp81, Val87, Tyr97, Asp145,
water2104, Leu94, Tyr139, water2104, Leu94, Tyr139, and water2104) (Table 10).
The IFIEs of Asn140, Asp145, and Asn144 (–10.9, –4.0, and 7.0 kcal/mol, respec-
tively) are weaker than those of the benzenesulfonamide derivative 10. By contrast,
the IFIEs of Ile146 (–10.6 kcal/mol) and Phe83 (–9.9 kcal/mol) are stronger than
those of 10 (–6.4 and –7.3, respectively), and distinct amino acid residues (Leu92,
Pro82, and Val87) are involved in the interactions with BRD4. As a result, 11 has
higher affinity than 10.

Compound 12 is another high-affinity ligand derived from a thienodiazepine-
based ligand [51], and has a high affinity for BRD4 (15 nM). Our FMO calculations
showed 14 strong interactions (10 amino acid residues and four waters) between 8
andBRD4 (Asn140, Phe83,water318, Trp81, Ile146, Pro82,water320, Tyr97,Val87,
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Table 10 Interaction energies (in kcal/mol) between BRD4 and compound (11)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

ASN140 −10.9 −9.9 8.0 −3.3 −5.7 0.025

ILE146 −10.6 −2.8 7.2 −3.2 −11.8 −0.018 3

PHE83 −9.9 −6.7 2.7 −1.1 −4.8 0.021

LYS141 −6.6 −6.5 0.0 0.0 −0.1 0.000

LEU92 −6.2 −1.5 4.2 −2.0 −6.9 −0.021 2

PRO82 −5.1 −2.0 4.8 −1.7 −6.2 −0.006 1

TRP81 −4.4 −1.3 2.3 −1.1 −4.3 0.005

VAL87 −4.2 −2.6 1.8 −0.8 −2.6 −0.003

TYR97 −4.1 −2.7 0.0 −0.3 −1.1 −0.002

ASP145 −4.0 −3.0 1.0 −0.4 −1.5 0.000

ASN93 −3.6 −2.6 2.0 −0.5 −2.5 0.020

LEU94 −3.2 −0.7 2.7 −1.2 −4.0 −0.003

TYR139 −3.0 −0.3 0.8 −0.9 −2.6 −0.011

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

water388, Lys141, Leu92, water376, and Tyr139). Table 11 shows that the IFIEs of
12 are similar to those of 11 (Table 10).

4.7.2 Comparison of Interaction Energies Between High-Affinity
Ligands (11 and 12) and 10

Comparison of IFIEs for 11 and 12 with those for 10 revealed that more nonpolar
amino acid residues (Pro82 and Val87) contribute to the ligand–protein interactions
in 11 and 12. Then, we investigated ligand–protein interactions between these ligands
and BRD4 by PIEDA and CHPI program. PIEDA analysis indicated that the disper-
sion interactions mainly contributed to these interactions, and CHPI found some
CH/π interactions.

CH/π interactions for 10, 11, and 12 are listed in Table 12.We noted that there are
differences in the amino acid residues interacting via CH/π interactions. Compounds
11 and 12were found tonot interactwithLeu94 andTyr97 throughCH/π interactions.
Instead, 11 and 12 have CH/π interactions with the Pro82 that forms the WPF shelf,
which is conserved among BET family bromodomains. All amino acid residues of
the peptide ligand 5 and sulfonamide derivatives (6–10) have weak IFIEs with this
proline, indicating that compounds 11 and 12 are characterized by the involvement
of Pro82 in ligand recognition. Pro82 forms the WPF shelf with Trp81 and Phe83.
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Table 11 Interaction energies (in kcal/mol) between BRD4 and compound (12)

IFIE Esa Exb CTc DId q(I => J)e CH/πf

ASN140 −15.0 −13.0 4.7 −2.2 −4.4 0.006

PHE83 −11.0 −7.2 2.4 −1.2 −5.0 0.022

HOH318 −7.6

TRP81 −6.7 −2.2 2.1 −1.1 −5.4 −0.003 1

ILE146 −6.3 −0.8 5.1 −2.0 −8.6 −0.009

PRO82 −4.9 −1.4 4.6 −1.8 −6.2 −0.003

HOH320 −4.8

TYR97 −4.7 −2.8 0.1 −0.5 −1.5 −0.003

VAL87 −3.7 −1.5 0.9 −0.7 −2.5 −0.002

HOH388 −3.5

LYS141 −3.5 −3.4 0.0 0.0 0.0 0.000

LEU92 −3.3 −1.0 3.6 −1.0 −4.9 −0.009 2

HOH376 −3.2

TYR139 −3.1 −2.3 2.7 −0.7 −2.8 0.005

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

Table 12 CH-π interactions
of compounds 10, 11, and 12
with BRD4

Compound 10 Compound 11 Compound 12

Phe83 Pro82 Trp81

Leu92 Phe83 Pro82

Leu94 Leu92 Phe83

Tyr97 Ile146 Leu92

Ile146

4.7.3 Involvement of Conserved Sequence in High-Affinity Ligands

TheWPF shelf has a specific local structure in which the side chains of three sequen-
tial nonpolar amino acid residues (WPF: Trp81, Pro82, and Phe83) assemble into the
binding site. Pro82 is sandwiched between Trp81 and Phe83, and the axial hydrogens
of the pyrrolidine ring of Pro82 are directed toward the aromatic ring surface of Trp81
and Phe83. The equatorial hydrogen faces the binding site, interacting with the π

system of the ligands through CH/π interactions. Similar conformations of proline
and aromatic amino residues are observed in proline-recognition domains which are
described in the next section. Furthermore, we investigated the CH/π network [52]
of compound 12 by using CHPI. The results showed that compound 12 forms a
large CH/π network with Trp81, Pro82, Phe83, Leu92, and Ile146. This network is
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extended over the entire binding site, so this network could contribute to the high
affinities observed in the cases of ligands 11 and 12.

4.8 Consideration of Water in the Ligand Binding Site

4.8.1 IFIE for Water in Peptide Ligand (5)

In this section,we applied to the application of IFIE to interpret the role ofwater in the
binding site. We noticed that the benzene rings of 11 and 12 that interact with Pro82
through CH/π interaction are in the almost same position where water13B is present
in the case of peptide ligand 5 (Fig. 13). Water13B forms a hydrogen bond network
with the acetylamino groups of εAc-Lys5 and εAc-Lys8, as described previously.
The IFIEs of water13B with BRD4 and peptide were investigated, and three strong
interactionswere observed: εAc-Lys8,water193A, and εAc-Lys5 (water13Bdoes not
directly interact with BRD4). Water193A exists at the protein surface, so water13B
is thought to be stabilized mainly by εAc-Lys5 and εAc-Lys8 at the binding site of
BRD4. Therefore, we speculated that this water cannot exist at the binding site of
BRD4 without stabilization by εAc-Lys5 and εAc-Lys8 through hydrogen bonds.
Consequently, we assumed that water13B is not always required for ligand binding.

Fig. 13 Overlapped view of peptide (5) and compound 12 at binding site
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Fig. 14 SZMAP analysis. Destabilized virtual water molecules are shown in purple, and stabilized
virtual water molecules are shown in green

4.8.2 Binding Free Energies Analysis by SZMAP for Water in Peptide
Ligand (5)

Furthermore, we evaluated the profiles of water13B by using SZMAP [53], which
computes binding free energies of water molecules at the binding sites of proteins.
The results of SZMAP analysis, presented in Fig. 14, show that water13B exists in
a region with a preference for hydrophobic groups, indicating that water13B is not
necessary for ligand binding. This result agrees with our assumptions derived from
IFIEs regarding water13B.

4.8.3 Useful Information About Water from IFIE

These results raise the possibility that the IFIEs of water can provide information
about water groups at the binding site of proteins for use in drug design, even though
many examples should be accumulated.
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4.9 Conclusions

In this study, FMO methods were used to examine interactions between BRD4 and
ligands, including the peptide ligand 5, fragment hit 6, expanded compounds (7,
8, 9, and 10), and other high-affinity scaffold compounds (11 and 12). The FMO
method allowed us to compare the interactions of the peptide ligand and non-peptide
ligands, as well as to trace the FBDD process. PIEDA showed that the contribu-
tions of different energy components differ across the various scaffolds. FMO can
provide useful information about hydrogen bonds, induced charges, CH/π interac-
tions, and water molecules. Thus, FMO is a useful tool for considering the molecular
interactions between ligands and proteins in the process of fragment-based drug
design.

5 Importance of CH/π Interactions in Recognition of Core
Motif in Proline-Recognition Domains

5.1 Abstract

In this section, we examine CH/π interactions in protein/ligand complexes involving
at least one proline residue by using the FMO method and CHPI analysis. FMO
calculations are performed at theMP2/6-31G* levels for three Src homology 3 (SH3)
domains and five proline-recognition domains complexed with their corresponding
ligand peptides. Proline-recognition domains use a conserved set of aromatic residues
to recognize proline-rich sequences of specific ligands.ManyCH/π interactionswere
identified in these complexes. CH/π interactions occurred in the central part of the
proline-rich motifs. Our results indicate that CH/π interactions are important for the
recognition of SH3 and proline-recognition domains by their ligand peptides, and
they play a vital role in the signal transduction system. The combined use of the FMO
method andCHPI analysis is effective for studying protein/protein and protein/ligand
interactions, and it could be useful from the viewpoint of rational drug design.

5.2 FMO Calculations for SH3 Domain

5.2.1 Features of SH3 Domain

Protein–protein interactions mediate many signal pathways in eukaryotic cells, and
they are involved in many diseases [54]. Thus, compounds that modulate specific
interactions are valuable and could be developed into new drugs [55]. However,
the regulation of protein–protein interactions remains a major challenge in drug
discovery [56] because they often occur at extremely large, flat, and hydrophobic
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binding sites. We investigated whether the FMO method allows for the analysis of
protein–protein interactions by investigating the Src homology 3 (SH3) domain and
the proline-recognition domains, including the SH3 domain.

The Src homology 3 (SH3) domain recognizes proline-rich sequences, and it is
one of the most frequent motifs in the human genome. SH3 domains [57] are found
in many protein families, and they interact with modular proteins, playing a role in
the transmission of many intracellular signals, for example, protein kinase.

The SH3 domain can recognize diverse sequences, and it contains three types
of binding modes [58] (Fig. 15). Typical SH3-binding peptides have a proline-rich
sequence with a core element, PxxP (P: proline, x: any residue), classified according
to the orientation of the binding mode [59]. In the class-I peptide binding mode [60],
ligand peptides have a consensus sequence RxxPxxP (R: arginine) and are located in
the “plus” orientation (Fig. 16a), whereas in the class-II peptide binding mode [61],

Fig. 15 Graphic
representation of SH3
domain and various peptide
ligands

Fig. 16 Structure of SH3 domain and peptide. a Structure of Abl-SH3 complexed with 3BP1
peptide.bStructure of SEM5-SH3 complexedwith Sos peptide. c Structure ofGads-SH3 complexed
with SLP-76 peptide
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ligand peptides have a consensus sequence xPxxPxR and are located in the “minus”
orientation (Fig. 16b). In the class-III binding mode [62], peptides have an atypical
SH3-binding motif, RxxK (K: lysine; Fig. 16c), and proline is absent.

Critical aromatic amino residues exist at the binding site of the SH3 domain. These
aromatic residues are known to mainly bind nonpolar residues, including proline.
Hydrogen bonds and electrostatic interactions are hardly ever observed between
the aromatic residues in SH3 and the side chains of the ligand peptides, while the
existence of nonpolar interactions such as CH/π interactions at the binding site
has been reported. Bhattacharyya and Chakrabarti [63] found that several CH/π
interactions occur in the complex between the SH3 domain of Abl protein and its
peptide ligands. Here, we discuss the versatility of the bindingmode observed in SH3
ligand peptides by comparing the role of CH/π interactions with that of hydrogen
bonds.

5.2.2 Interaction Between Abl-SH3 Domain and Ligand Peptide

The Abl protein [64] is a non-receptor tyrosine kinase localized in the nucleus
and cytoplasm, and implicated in stress response, cell differentiation, cell division,
and cell adhesion. Musacchio [59] determined the crystal structure of a complex
formed between the SH3 domain of Abl and a proline-rich peptide (3BP-1). They
reported that 3BP1 was bound in the plus orientation with a polyproline-II (PPII)
helix conformation (Fig. 16a).

First, we examined the CH/π interactions in this complex by using the CHPI
program. Table 13 lists the CH/π interactions detected in the complex. Figure 17
shows that 11 CH/π interactions occur in the Abl/3BP1 complex. Four aromatic
residues of Abl (Tyr70, Trp99, Trp110, and Tyr115) are surrounded by four prolines
and one alanine (Ala1, Pro2, Pro6, Pro9, and Pro10). CH/π interactions were
observed at the S1, S2, and S3 sites, and two CH/π networks were found. Trp99,

Table 13 Interaction energies (in kcal/mol) between Abl-SH3 and ligand peptide

Abl Peptide IFIE Esa Exb CTc DId q(I => J)e CH/πf

TRP99 PRO2 −7.3 −2.9 3.0 −1.7 −5.6 0.020 2

TRP99 PRO6 −5.3 −0.2 4.4 −3.0 −6.4 0.008 2

TRP110 ALA1 −10.8 −6.8 2.4 −2.5 −4.0 0.032 2

TRP110 PRO2 −5.4 −3.2 2.9 −0.6 −4.4 0.019 1

TYR70 PRO9 −2.3 −0.9 1.0 −0.6 −1.9 0.003 1

TYR70 PRO10 1.1 3.6 2.5 −0.8 −4.2 0.004 2

TYR115 PRO9 1.2 3.4 3.1 −1.6 −3.7 −0.002 1

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program
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Fig. 17 Interactions between Abl-SH3 and 3BP1. The green line indicates CH/π interactions.
a view from S1 site. b View from S3 site

which was strictly conserved in the SH3 domain, was located at the center of the
binding site and was sandwiched between two proline residues (Pro2 and Pro6).

We then investigated the interaction energies of these CH/π interactions bymeans
of FMO calculations. Table 13 lists the results of IFIE and PIEDA analyses of the
relevant residues in the Abl-SH3/3BP1 complex. Trp99 was shown to interact with
Pro2 and Pro6. IFIE and dispersion energies estimated by FMO calculations were
–7.3 and –5.6 kcal/mol for Trp99/Pro2 and –5.3 and –6.4 kcal/mol for Trp110/Pro6,
respectively. These results indicate that the CH/π interactions contribute mainly to
the recognition of conserved tryptophan to ligand peptide.

Trp110 has CH/π interactions with Ala1 and Pro2 as well. IFIE values and disper-
sion energies estimated bymeans of FMO calculations were –10.8 and –4.0 kcal/mol
for Trp110/Ala1 and –5.4 and –4.4 kcal/mol for Trp110/Pro2, respectively. The inter-
action energy of Ala1 is partly accounted for by a protonated amine because the
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electrostatic energy estimated using PIEDA is –6.8 kcal/mol. Pro2 interacted with
the aromatic part of two tryptophan (Trp99 and Trp110) residues through three CH/π
interactions, while no hydrogen bond was observed. These two tryptophan residues
composing the S3 site are known to contribute to the binding of the ligand peptide.
Thus, CH/π interactions play an important role in the recognition of the ligand at the
S3 site.

For Tyr70, three CH/π interactions were detected with Pro9 and Pro10. IFIE and
dispersion energies were –2.3 and –1.9 kcal/mol for Tyr70/Pro9. By contrast, IFIE
and dispersion energies were + 1.1 and –4.2 kcal/mol for Tyr70/Pro10. Two CH/π
interactions were detected in Tyr70/Pro10*, but the interaction energies between
Tyr70 and Pro10* were repulsive owing to the presence of the C-terminal carboxy-
late anion of Pro10, which indicates that the electrostatic energies evaluated using
PIEDA are repulsive (+3.6 kcal/mol) while the dispersion energies are attractive
(–4.2 kcal/mol). Because this position is not at the C-terminal in a real biological
system, the attractive interaction surely occurs between corresponding to these two
residues, and it is attributed to CH/π interactions. Pro10 is a component of the
core motif PXXP. Thus, CH/π interactions likely play an important role in ligand
recognition.

The interaction betweenTyr115 andPro9was calculated to be repulsive despite the
existence of a CH/π interaction. This was probably caused by electrostatic repulsion
between the phenol oxygen of Tyr115 and the carbonyl oxygen.

Eleven CH/π interactions were detected between Abl-SH3 and 3BP1 by CHPI
analysis, but two of them were repulsive in terms of IFIE. The FMO calculations
showed that the CH/π interactions involving Trp99 and Trp110 were important from
the viewpoint of binding. The results of CHPI analysis and FMO calculations indi-
cated that the CH/π interactions were involved in the interaction of the PxxP core
motif in the SH3 domain.

5.2.3 Interaction Between SEM5-SH3 and Ligand Peptide

The SH3 domain of the Caenorhabditis elegans protein SEM5 (SEM5-SH3) [65] is
homologous to the human “growth factor receptor-bound protein 2” (Grb2).

Lim [66] determined the crystal structure of the complex formed between SEM5-
SH3 and a proline-rich peptide (Sos). The Sos peptide has a polyproline-II (PPII)
helix conformation, similar to the one found in the 3BP1 peptide. Sos was found to be
bound to SEM5 in the minus orientation in contrast to the Abl-SH3/3BP1 complex.
NMR studies [60] showed that Sos to binds Grb2 in the minus orientation.

Table 14 lists the CH/π interactions detected in the complex. Figure 18 shows
that six CH/π interactions occurred in the SEM5/Sos complex; three aromatic rings
of SEM5 (Phe163, Trp191, and Tyr207) had CH/π interactions with three proline
(Pro2, Pro3, and Pro6). At the S1 site, two prolines (Pro2, Pro3) and two aromatic
rings (Phe163, Tyr207) formed a CH/π network. CH/π interactions were observed
at both S1 and S2 sites. The interaction mode of the conserved tryptophan (Trp191)
was distinct from that seen in Abl.
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Table 14 Interaction energies (in kcal/mol) between SEM5-SH3 and ligand peptide

Abl Peptide MP2 Es Ex CT DI q CH/π

TRP191 PRO6 −6.6 −3.0 0.6 −1.6 −2.5 0.018 1

PHE163 PRO2 1.7 5.1 2.5 −2.0 −4.0 0.008 2

PHE163 PRO3 −3.6 −2.9 2.8 −0.2 −3.3 0.009 1

TYR207 PRO2 2.2 4.1 0.7 −1.0 −1.7 0.009 1

TYR207 PRO3 −5.7 −2.5 0.9 −1.3 −2.8 0.012 1

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program

Fig. 18 Interactions between SEM5-SH3 and Sos. The green line indicates CH/π interaction.
a View from S1site. b View from S3 site
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Table 14 lists the interaction energies between the relevant residues in the
SEM5/Sos complex. Trp191, which is conserved among the SH3 family, inter-
acted primarily with Pro6 through CH/π interactions. IFIE and dispersion ener-
gies estimated by means of FMO calculations were –6.6 and –2.6 kcal/mol for
Trp191/Pro6. Arg8 was found to be located near the indole ring of Trp191. IFIE
between Trp191/Arg8 was –21.3 kcal/mol. The hydrogen bond between the NH of
the indole ring of Trp191 and the carbonyl oxygen of Pro7 was contained in Arg8
owing to the fragmentation rule of the FMO scheme. In addition, the alkyl chain of
Arg8was around the indole ring. Though noCH/π interactionwas detected byCHPI,
two CH/π short contacts were observed: 2.8 Å between the γ-hydrogen of Arg8 and
the ζ-carbon of Trp199, and 3.0 Å between the η-nitrogen (guanidine group) of Arg8
and the η-hydrogen of Trp199. The guanidine group can be regarded as a π -group,
in which case it serves as a π donor for the CH/π interaction. The dispersion ener-
gies were –6.4 kcal/mol for Trp191/Arg8, which supports the existence of CH/π
interactions.

FMO results show that Phe163 and Tyr207 interacted with Pro3, which is consis-
tent with the CHPI result. IFIE and dispersion energies were –3.6 and –3.3 kcal/mol
for Phe163/Pro3 and –5.7 and –2.8 kcal/mol for Tyr207/Pro3, respectively. Pro3
constituted a part of the core motif, PxxPxR, in the minus orientation, as observed
in SEM5-SH3. Thus, the CH/π interactions involving Pro3 play an important role in
ligand recognition by SEM5-SH3.

The IFIE values of Pro2 with Phe163 and Tyr207 were unattractive (+1.7 and
2.2 kcal/mol), although CH/π interactions were observed. By contrast, dispersion
energies were attractive (–4.0 and –1.7 kcal/mol). An artificial N-terminal acetyl
group may be associated with these discrepancies.

To summarize, several CH/π interactions have been shown between SEM5-SH3
and Sos. Our FMO calculations showed that Pro3, Pro6, and Arg8, which are compo-
nents of the core PXXPxR motif, interact with proteins primarily through CH/π
interactions.

5.2.4 Interaction Between Gads-SH3 and Ligand Peptide

Gads is a Grb2-like adaptor protein that associates with the T-cell receptor signal
transducer SLP-76 [67]. Harkiolaki [68] found that the SLP-76 peptide binds specifi-
cally the SH3 domain of Gads with high affinity (0.1μM). This fact is different from
other peptides binding to SH3 with lower affinities (1–10 μM). They determined
the crystal structure of the complex formed between Gads-SH3 and the SLP-76
peptide (PAPSIDRSTKPPL). SLP-76 does not have the typical SH3-binding motif,
PxxP. Instead, SLP-76 contains an RxxK motif and does not form the PPII helix. It
is bound to Gsds-SH3 in a clamp-like shape with the minus orientation (Fig. 19).
Gads-SH3 has the typical structure of the SH3 motif, as well as Abl and SEM5.
Harkiolaki reported that the structure of Gads-SH3 closely resembles that of SEM5.
NMR studies have shown that SLP76 binds to Gads-SH3 in a similar manner.
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Fig. 19 Interactions between Gads-SH3 and SLP-76. The green line indicates CH/π interaction.
a View from S1site. b View from S3 site

Table 15 Interaction energies (in kcal/mol) between Gads-SH3 and ligand peptide

Gads Peptide IFIE Esa Exb CTc DId q(I => J)e CH/πf

TRP36 LYS10 −13.9 −8.4 5.7 −2.9 −8.2 0.003 2

TYR8 ALA2 −15.2 −11.9 2.5 −2.2 −3.5 0.025 2

TYR8 PRO3 −3.1 −2.0 2.7 −0.5 −3.3 0.016 1

TYR52 ALA2 −11.2 −9.5 1.2 −1.1 −1.8 0.015 1

TYR52 PRO3 −7.9 −3.4 2.4 −2.4 −4.5 0.029 1

TYR52 ILE5 −4.3 −2.2 2.6 −1.1 −3.5 0.013 1

aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fNumber of CH/π interactions detected by CHPAI program
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Table 15 lists the CH/π interactions detected in the Gads/SLP76 complex.
Figure 19 shows that eight CH/π interactions occur in this complex among three
aromatic rings of Gads (Tyr8, Trp36, and Tyr52) and four alkyl groups in the ligand
(Ala2, Pro3, Ile5, and Lys10). CH/π interactions were observed at the S1, S2, and
S3 sites. The binding mode of SLP76 peptide seems to be characterized mainly by
the interactions of Trp36 with two long alkyl chains (Arg7 and Lys10).

IFIE and dispersion energies were –13.9 and –8.2 kcal/mol for Trp36/Lys10,
respectively, and two CH/π interactions were detected between the alkyl chain of
Lys10 and Trp36. These CH/π interactions [69] could be considered to contribute
mainly to the binding because the ammonium group of the side chain in Lys10 was
located at some distance from Trp36 (5.8 Å). In the FMO scheme, the hydrogen bond
between the carbonyl oxygen of Asp6 and the indole NH of Trp36 was reflected by
the interaction energies between Trp36 and Arg7 (Table 16) because two hydrogens
(CHα and CHγ) of the methylene in the side chain of Arg7 were in close contact
with the indole ring of Trp36 (both 3.03 Å). CH/π interactions were involved in the
interaction between Trp36 and Arg7 based on the relatively large IFIE and disper-
sion energies (–18.2 and –5.8 kcal/mol) between the two residues. The interaction
energies between Arg7 and Trp36 resulted from the hydrogen bond and the CH/π
interactions. The RxxK motif is composed of Arg7 and Lys10, which interact with
Trp36 through CH/π interactions, indicating the importance of CH/π interactions
from the viewpoint of recognition of Gads by the SLP76 peptide.

At the S2 site, a CH/π interaction was detected between Ile5 and Tyr52. IFIE and
dispersion energies were –4.3 and –3.6 kcal/mol. The CH/π interactions detected at
the S1 site (Tyr8 and Tyr52), were analogous to those of the Sem-5/Sos complex.

Table 16 Strong interaction
energies (in kcal/mol)
between SH3 domains and
peptides

Protein Peptide IFIE

Abl

Trp99 Pro5 −12.5

SEM5

Trp191 Pro7 −4.8

Trp191 Arg8 −21.3

Glu172 Arg8 −82.4

Gads

Trp36 Arg7 −17.9

Trp36 Thr9 −6.0

Glu14 Arg7 −60.3

Glu17 Arg7 −128.2

Glu14 Lys10 −117.5

Asp16 Lys10 −126.7

Glu17 Lys10 −97.1
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In summary, several CH/π interactions were found in the complex of Gads/SLP-
76. Although SLP-76 does not have the PxxP motif, the RxxK motif formed by
Arg7 and Lys10 interacted with the conserved tryptophan (Trp36) through CH/π
interactions.

5.2.5 Charge–Charge Interactions Observed in SH3 Domain

Several relative large IFIE interactions were noted between negatively charged
amino-residues (Arg and Lys) and positively charged residues (Asp and Glu) in
the complexes of SEM5/Sos and Gads/SLP-76 (Table 16). For example, large IFIE
contributions from the charged residues were found between Glu172 and Arg8 in
SEM5/Sos (–82.4 kcal/mol). The electrostatic interaction estimated by PIEDA anal-
ysis for Glu172/Arg8 in SEM5/Sos was –76.4 kcal/mol, so the interactions between
these two residues were attributed mainly to Coulombic energies. Coulombic energy
is inversely proportional to the dielectric constant (ε) in themicroscopic environment.
The dielectric constant varies with the environment, for example, in the interior of a
protein molecule, ε is assumed to be about 4, while in bulk-phase water, ε is assumed
to be about 78. Arg8 was located near the water phase. Thus, the dielectric constant
around Arg8 was relatively large. The interaction energies between Arg8 and Glu172
would be reduced markedly in an aqueous medium relative to the estimated IFIE
values under the vacuum condition.

Similarly, charge–charge interactions were found in the complexes of Gads/SLP-
76 Glu14/Arg7 (–60.3 kcal/mol), Glu17/Arg7 (–128.2 kcal/mol), Glu14/Lys10 (–
117.5kcal/mol),Asp16/Lys10 (–126.7kcal/mol), andGlu17/Lys10 (–97.1kcal/mol).
Although the interaction energies of these pairs would be reduced in an aqueous
medium, closed contacts of charge–charge pairs (Glu17/Arg7, Glu14/Lys10 and
Asp16/Lys10) can contribute significantly to the binding of SLP76 (peptide) to Gads
(protein). Then, the high affinity of SLP-76 can be ascribed to these charge–charge
interactions.

5.2.6 Hydrogen Bonds Observed in Conserved Tryptophan

The hydrogen bonds between the indole NH hydrogen of the conserved tryptophan
of SH3 domains and the carbonyl oxygen of the peptide for all Abl, SEM5, and
Gads. However, the interaction mode differed slightly among these three complexes.
In Abl-SH3, the hydrogen bond was formed between the carboxyl O of Met4 and the
indole NH of Trp99 (Fig. 20a). The interaction energies were allocated between Pro5
and Trp99 (–13.1 kcal/mol; Table 16) owing to the FMO schemes; the ith carbonyl
groups were allocated to (i + 1)th residues.

In Sem-5, the indole NH of Trp191 was located between two carbonyl oxygens of
Pro6 and Pro7; two hydrogen bonds were formed. These two hydrogen bonds were
reflected by the interaction energies of Pro7 and Arg8 with Trp191, which were –5.1
and –21.3 kcal/mol, respectively (Fig. 20b, Table 16).
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Fig. 20 Difference in binding mode around conserved tryptophan. The red line indicates hydrogen
bond, and the green line indicates CH/π interactions

InGads, the indoleNHof Trp36 formed two hydrogen bonds through the carbonyl
oxygen of Asp6 and the oxygen of hydroxyl in Thr9. The interaction energies were
–18.2 and –6.1 kcal/mol for Arg7 and Thr9, respectively (Fig. 20c, Table 16). In all
three complexes, the NH hydrogen of the conserved tryptophan in the SH3 domains
serves as the hydrogen donor for the carbonyl oxygen of the peptide ligand. Thus, the
conserved tryptophan residues provided sites for the hydrogen bond and the CH/π
interactions in the molecular recognition of SH3 domains.

5.2.7 CH/O Interactions Observed in SH3 Domain

Chakrabarti [62] reported that proline forms a CH/O interaction with the carbonyl
oxygen of the SH3 domain. Consistent with those results, CH/O interactions were
observed in Sem-5 and Gads. In Sem-5, the γ-hydrogen of Pro6 was located near the
carbonyl oxygen of Asn190, which was allocated to Trp191 in the FMO scheme; the
distance was 2.92 Å, and the interaction energy was –6.6 kcal/mol (Table 14). This
interaction was attributed partly to the CH/O interactions because no hydrogen bond
was observed around them, and electrostatic energies were higher than dispersion
energies (–3.0 vs. –2.5 kcal/mol), as determined by PIEDA analysis. Similar binding
modes occurred in Pro3/Tyr207 of Sem-5 (Table 14) and Pro3/Tyr52 of Gads (Table
15). These three prolines functioned as hydrogen bond donors for both the CH/π and
the CH/O interactions.

5.2.8 Features of Binding Sites in SH3 Domain

The bindingmodes of the three complexeswere compared in the binding of the ligand
peptides to the SH3 domains. The S1 site consisted of two aromatic residues, and
they bound proline residues in the ligand peptides. Our analyses based on the FMO
method and the CHPI program indicated that the stability of the complexes could be
ascribed mainly to CH/π interactions: Pro10* in Abl/3BP1, Pro3 in Sem5/Sos, and
Pro3 in Gads/SLP76.
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The S2 site consisted of conserved tryptophan, tyrosine, and proline residues. Few
molecular interactions were found between the aromatic rings of these residues and
the ligands. Another proline belonging to the PxxP motif was bound at this site: Pro7
in Abl/3BP1 and Pro6 in Sem-5/Sos. Although the amino residues consisting this
site were conserved among the SH3 domains, the role of this site remains unclear in
terms of molecular interactions.

The interaction modes of the S3 site were distinct among the three SH3 domains.
Figure 19 shows the difference in the molecular interactions around the conserved
tryptophan. In Trp99 of the Abl/3BP1 complex, one hydrogen bond and four CH/π
interactions were observed; both the π -faces and the NH of the indole group were
used to recognize the ligand. In Trp191 of the Sem-5/Sos complex, two hydrogen
bonds and twoCH/π interactions were found. In Trp36 of theGads/SLP-76 complex,
two hydrogen bonds and three CH/π interactions were observed.

To summarize, the S1 site recognized the PxxP motif by means of CH/π inter-
actions. The S3 site interacted with a variety of sequences through hydrogen bonds
and CH/π interactions, allowing for diverse recognition of the SH3 domain.

5.3 CH/π Interactions in Proline-Recognition Domains

5.3.1 Proline-Recognition Domains

To establish a general trend, we explored the CH/π interactions in the other proline-
recognition domains, including Enabled/VASP homology1 (EVH1) [70], WW [71],
ubiquitin E2 variant (UEV) [72], profilin [73], and glycine-tyrosine-phenylalanine
(GYF) domain [74]. The binding sites of these proline-recognition domains contain
aromatic residues as well as the SH3 domain.

5.3.2 CH/π Interactions Observed in Core Motif

Several CH/π interactions have been detected between aromatic residues in the
proline-recognition domains and proline sidechains of the ligand-peptide. Figure 21
shows a representative case of the profilin/ligand complex; the interactions between
Pro9 and Trp3 in the complex are shown, and the interaction energy is –6.4 kcal/mol.
The face-to-face arrangement of the proline side chain versus the tryptophan aromatic
ring (interaction energies of the CH/π interactions are listed in Supplementary
Information) is noteworthy.

CH/π interactions occurred in the central part of the proline-rich motifs. Table
17 lists the sequence of the proline-rich motifs. At least one proline interacted with
the proline-recognition domains through the CH/π interactions. Thus, we concluded
that the CH/π interactions played a crucial role in the recognition of the proline-
recognition domains by the proline-rich motifs.
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Fig.21 Representative case
for multiple CH/π
interactions shown in
profilin/ligand complex

Table 17 Proline-recognition
domains and their core motifs

Domain Motifa,b Residues occurring
CH/π in motif

SH3 Class-I (R/K)xxPxxP Pro10

SH3 Class-II PxxPx(R/K) Pro3, Pro6

SH3 Class-III RxxK Arg8, Lys10

WW PPxY Pro54, Pro55

EVH1 FPxxP Pro1005

GYF (R/K/G)xxPPGx(R/K) Pro68, Pro69

profilin Poly(L-proline)
PPPPPPPP

Pro6, Pro7, Pro9,
Pro10, Pro12, Pro13

UEV PTAP Pro210

a×, any amino acid
bBold texts indicate the residues interacting through CH/π
hydrogen bonds

5.4 Conclusions

Three SH3 domains and five proline-recognition domains, complexed with their
specific ligands, were studied using the FMO method and CHPI analysis. CH/π
interactions were shown to play an important role in binding in all the cases. The
S1 and S2 sites of the SH3 domain recognized the PxxP motif. The versatility of
ligand recognition of the SH3 domains was attributed to the interaction mode of the
S3 site. CH/π interactions were noted in other proline-recognition domains as well.
These findings suggest that CH/π interactions play an important role in the recog-
nition of proline-recognition domains. The combined use of the FMO method and
CHPI analysis is a valuable approach for studying protein/protein and protein/ligand
interactions, and this combination may be useful from the viewpoint of rational drug
design.
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6 General Trend of CH/π Interactions

6.1 Additivity of CH/π Interactions

ManyCH/π interactions have been observed through this report and have contributed
to the recognition between ligand and protein. CH/π interactions are thought to play
more important roles when they occur simultaneously. Then, to consider the addi-
tivity of CH/π interactions, we analyzed results pertaining to CH/π interactions
obtained herein by considering the relationship between the number of interactions
and the pair interaction energies included in IFIE and dispersion energies. A plot of
the number of CH/π interactions and pair interaction energies is shown in Fig. 22.
These results demonstrate that the interaction energies ofCH/π interaction have addi-
tivity. This fact supports the concept that multiple CH/π interactions can produce a
significant even though their single interaction energies are weaker than the energies
of hydrogen bonds. The good relationship between the number of CH/π interactions
and dispersion energies as compared with that between the number of CH/π interac-
tions and IFIE agrees with the fact that the CH/π interactions can be ascribed mainly
to the dispersion energies.

Fig. 22 Relationship between number of CH/π interactions and pair interaction energies. a Plot
of IFIE values between CH/π acceptor and donor. b Plot of average IFIE values between CH/π
acceptor and donor. c Plot of each dispersion interaction between CH/π acceptor and donor. d Plot
of average dispersion interactions between CH/π acceptor and donor
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6.2 CH/π interaction Energies for Obtaining Each Aromatic
Amino Residue

Each aromatic residue considered herein was analyzed to consider the frequency of
the CH/π acceptor. Table 18 shows the list and average of pair interaction energies
calculated in this study. Phenylalanine has the largest IFIE among aromatic residues
because the electrostatic interaction energies included from the CH/O interactions
are higher than those in case of the bromodomain. Average dispersion energies are
–5.0 (Trp), –4.3 (Tyr), and –3.2 (Phe), respectively. Then, dispersion energies reflect
the features of the CH/π acceptors. This result is quite reasonable, considering the
high aromaticity and large surface area of it, and it agrees well with Weiss’ report
that 72% of Tryptophan has CH/π interaction.

7 Conclusion

In modern drug discovery, the structure of the complex between ligand and protein
is one of the required information for driving a drug discovery project. Furthermore,
the presences and roles of diverse molecular interactions in ligand recognition have
been suggested, so more accurate estimation of molecular interactions is expected.
Because the FMOmethodwould be promising for evaluating thesemolecular interac-
tions, we used it to analyze the molecular interactions between ligands and proteins.
In this chapter, FMOwas applied to three systems, which are considered general drug
design processes, namely, SBDD, FBDD, and protein–protein interaction. Analyses
based on IFIE and PIEDA revealed critical interactions for ligand recognition and
provided useful knowledge for rational drug design.

In the SBDD Sect. 3, FMO revealed general molecular interactions in case of
the kinase ligand, which interacts with the hinge region through hydrogen bond and
with the adenine pocket through CH/π interactions. FMO analysis found that the
affinity of the lead compound can be improved by increasing the number of CH/π
interactions. A new ligand was designed to increase CH/π interactions, resulting
in a tenfold increase in affinity. Additionally, CH/O interactions could serve as an
alternative to the hydrogen bond depending on the scenario.

In the FBDDSect. 4,we used FMO to compare themolecular interactions between
a peptide ligand and a non-peptide ligand,whichwere derived fromFBDD. IFIE anal-
ysis revealed that in this FBDD process, the hit fragment was optimized sequentially
formimicking the interactions of the peptide ligand. Similarly,molecular interactions
of other scaffolds were investigated, suggesting differences in interactions between
ligands derived from FBDD and other scaffolds. These results showed that FMO can
provide useful insights into FBDD, which itself requires an accurate understanding
of molecular interactions. Furthermore, the contributions of charge-induced dipole
interactions were pointed out based on the results of our FMO analysis.
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Table 18 List of detected CH/π interactions (in kcal/mol) in this study

IFIE Esa Exb CTc DId q(I => J)e CH/πf Ligand Protein

PHE163 −3.6 −2.9 2.8 −0.2 −3.3 0.009 1 Pro3 SEM5

PHE77 −1.7 −0.1 1.8 −0.9 −2.5 0.006 2 Pro1004 EVH1

PHE83 −9.9 −6.7 2.7 −1.1 −4.8 0.021 1 lig-7 Bromo

PHE83 −8.4 −5.3 1.1 −1.5 −2.8 0.015 1 lig-5 Bromo

PHE83 −8.3 −4.9 1.2 −1.7 −3.1 0.018 1 lig-4 Bromo

PHE83 −7.3 −4.2 1.3 −1.4 −3.0 0.015 1 lig-6 Bromo

Ave.(PHE) −6.6 −4.0 1.8 −1.1 −3.2 0.014

TYR16 −4.9 −1.3 3.6 −1.8 −5.3 0.031 3 Pro1002 EVH1

TYR17 −3.4 −2.4 7.0 −2.6 −5.4 0.014 1 Pro69 GYF

TYR207 −5.7 −2.5 0.9 −1.3 −2.8 0.012 1 Pro3 SEM5

TYR28 −2.7 −2.5 7.6 −1.7 −6.1 0.029 1 Pro55 WW

TYR33 −2.2 −0.7 3.6 −1.0 −4.0 0.009 0 Pro68 GYF

TYR52 −7.9 −3.4 2.4 −2.4 −4.5 0.029 1 Pro3 Gads

TYR52 −4.3 −2.2 2.6 −1.1 −3.5 0.013 1 Ile5 Gads

TYR6 −5.8 −1.7 4.6 −2.8 −5.9 0.007 2 Pro12 Profilin

TYR63 −2.2 −0.7 0.1 −0.5 −1.1 0.003 0 Pro211 UEV

TYR68 −3.3 −0.6 7.1 −3.1 −6.6 0.003 1 Pro210 UEV

TYR68 −1.3 −2.1 3.7 1.9 −4.8 0.009 2 Pro211 UEV

TYR70 −2.3 −0.9 1.0 −0.6 −1.9 0.003 1 Pro9 Abl

Ave.(TYR) −3.8 −1.8 3.7 −1.4 −4.3 0.0

TRP110 −5.4 −3.2 2.9 −0.6 −4.4 0.019 1 Pro2 Abl

TRP191 −6.6 −3.0 0.6 −1.6 −2.5 0.018 1 Pro6 SEM5

TRP28 −5.0 −0.4 3.7 −2.0 −6.4 0.017 3 Pro68 GYF

TRP3 −6.4 −1.5 7.2 −2.7 −9.4 0.021 4 Pro9 Profilin

TRP31 −4.4 −3.7 5.8 −1.3 −5.2 0.012 1 Pro7 Profilin

TRP31 −3.6 −0.6 2.3 −1.2 −4.1 0.009 1 Pro6 Profilin

TRP39 −3.9 −0.8 4.7 −2.7 −5.1 −0.011 1 Pro54 WW

TRP39 −1.8 −1.3 0.8 0.7 −2.1 0.008 1 Pro55 WW

TRP81 −4.8 −2.5 2.4 −1.0 −3.7 0.009 1 lig-4 Bromo

TRP99 −7.3 −2.9 3.0 −1.7 −5.6 0.020 2 Pro2 Abl

TRP99 −5.3 −0.2 4.4 −3.0 −6.4 0.008 2 Pro6 Abl

Ave.(TRP) −5.0 −1.8 3.4 −1.5 −5.0 0.012
aElectrostatic of IFIE, bExchange repulsion of IFIE, cCharge transfers and higher-order term of
IFIE, dDispersion interaction of IFIE, eAmount of charge transferred from fragment I (ligand) to J
(protein), fThe number of CH/π interaction detected by CHPAI program
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In the protein–protein interactions Sect. 5, we investigated molecular interac-
tions among SH3 domains as a typical example of proline-rich peptide. The results
of this analysis showed that prolines interact with aromatic residues of the SH3
domain through CH/π interactions. Although conserved tryptophans play critical
roles among the SH3 domains, the contributing molecular interactions can change
in response to the conformation and amino residues of the ligand peptide. In other
proline-recognition domains, prolines of the ligand peptide interact also with the
aromatic residues of proteins thorough CH/π interactions.

In the last Sect. 6, we surveyed general trends in CH/π interactions observed in
this chapter, even though the number of samples was small. The additivity of CH/π
interactions was confirmed based on the relationship between the number of CH/π
interactions and dispersion energies. The average dispersion interactions of each
aromatic amino residues were –5.0 (Trp), –4.3 (Tyr), and –3.2 (Phe) kcal/mol, and
this order is consistent with the frequency of the aromatic residues involved in CH/π
interactions.

Herein, we showed that FMO can provide useful information for rational drug
design, even thoughweperformedFMOcalculations under the vacuumcondition and
without optimization in quantum mechanics. With advances in computer algorisms
and computational power, it is expected that the FMOmethod implemented in water
treatment and optimization will be used routinely for drug design. At that time, FMO
can provide many answers to problems related to drug design.
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Drug Discovery Screening
by Combination of X-ray Crystal
Structure Analysis and FMO Calculation

Midori Takimoto-Kamimura and Noriyuki Kurita

Abstract Quantum chemistry calculations are the best way to understand the
specific interactions between drug targets and ligands in the process of drug discovery
lead optimization, using the crystal structures of these complexes. The present
ab initio FMO calculations elucidate the reason why a slight structural difference
of VD3 derivatives could cause a large difference in their binding affinities, although
it could not be understood by just looking at their complex structures. We are confi-
dent that the combination of X-ray analysis and FMO calculations is a powerful tool
to understand why the biological activities of the ligands are drastically changed by
the slight differences in the ligand structures. Based on the results of FMO calcula-
tions, we would like to use for the novel potent ligand which can bind specifically to
the ligand binding domain of human vitamin D receptor and inhibit the pathogenesis
of immune diseases.

Keywords Vitamin D3 agonists · Vitamin D receptor · Structure-based drug
design ·X-ray analysis · FMO calculation ·Molecular simulation · Binding affinity
Vitamin D plays an important role not only in the regulation of bone metabolism and
blood calcium level, but also deeply correlated with cancer and immune diseases.
The physiological effects of vitamin D are caused through vitamin D receptor
(VDR). Previous researches [1] have suggested that VDR is present in almost all
cell tissues in vivo, and that the physiological expression of vitamin D is deeply
involved in the pathogenesis of immune diseases such as cancer and the disorder of
hormone response. Therefore, clinical research on the application of various derived
compounds based on vitamin D as a cancer therapeutic drug is under way.
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The relation betweenvitaminDandvarious diseases is being elucidated [2] and the
three-dimensional complex structure between VDR ligand-binding domain (VDR-
LBD) and some VDR agonists needs to be determined in order to clarify the function
of VDR. We have used X-ray crystallographic analysis techniques to understand the
binding properties between VDR and vitamin D3 (VD3) derivatives [3]. However,
only their binding modes often do not explain the difference in their biological
activities. In particular, the reason why the binding affinities with VDR were greatly
changed with slight differences of the structure of the ligand could not be clarified.
Thus, using fragment molecular orbital (FMO) calculations [4], a high sophisticated
molecular simulation technique, we successfully analyzed the specific interactions
between VDR-LBD and VD3 derivatives at an electronic level and identified the
causes of large differences in binding properties with VDR due to the slight structure
differences in the derivatives [5].

This paper introduces the results of X-ray crystallography and the specific inter-
actions between VDR-LBD and VD3 derivatives revealed by ab initio FMO calcula-
tions for the design of new active ligands. By combining X-ray crystallography with
FMO calculation, it becomes extremely powerful tool to understand the peculiar
interaction between VDR-LBD and VD3 derivatives which could not be clarified
only by the conventional structural analysis at an electronic level. These results will
give useful information in proposing new effective ligands for VDR. Furthermore, by
using similar research tools, we believe that the ability to reveal specific interactions
between various proteins and ligands involved in the disease could lead to proposal
of novel therapeutic agents for those diseases.

1 X-ray Crystallographic Analysis of the Complex
of VDR-LBD and Various Ligands

So far activeVD3derivatives have beenmarketed; for example,Onealpha®,Edirol®,
as osteoporosis drugs and Bonalpha® as an active vitamin D3 keratosis treatment
and psoriasis treatment. During the development of these drugs, these drugs have
been created by the so-called classical medicinal chemistry from 1α,25-dihydroxy
vitamin D3 (1α,25(OH)2VD3). The most important point in the VDR drug discovery
is the strength of the activity, which is the pharmacological effect, and the calcium
action in the blood, which is the side effect, cannot be separated, and these have
been controlled by strictly controlling the dosage and administration until now, but
the issue which aims at the separation with the pharmacological effect like usual
small molecular drug is still big. The first X-ray structures of a complex of human
VDR (hVDR) LBD and 1α,25(OH)2VD3 were obtained by Moras and colleagues
[6] and then the technique for designing ligands using structure-based drug design
(SBDD) is now common sense in pharmaceutical industries. More than 130 complex
structures, including our structure, have already been registered in protein data bank
(PDB).
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1.1 Structure of the Ligand-Binding Domain of RatVDR
in Complex with a Non-Secosteroidal Vitamin D3 YR301

We have conducted X-ray structural analyses that lead to various breakthroughs.
In particular, the first non-secosteroidal compound complex analysis with YR301
in collaboration between Teijin Pharma and Dr. Kurihara of the National Institutes
of Health and Safety [7] attracted great attention as a compound that can lead to
usual synthetic low-molecular-weight drugs from secosteroidal scaffold. As a result
of attempting the separation of the racemate of LG190178, the absolute configura-
tion was also able to be confirmed by our X-ray structural analysis. Their chemical
structures are shown in Fig. 1. Figure 2 shows that the binding mode as a basis of

Fig. 1 Chemical structures a LG190178, b YR301 [(2S)-3-[4-(3-{4-[(2R)-2-hydroxy-
3,3-dimethylbutoxy]-3-methylphenyl}pentan-3-yl)-2-methylphenoxy]propane-1,2-diol] and
c 1α,25(OH)2VD3 (1α,25-dihydroxy vitamin D3)

Fig. 2 Left: Overall structure of rat VDR LBD-YR301 with the synthetic peptide containing the
LXXLL sequence of the coactivator DRIP 205 complex. Right: Ligand-binding pocket of the struc-
ture hVDR LBD-1α,25(OH)2VD3 (PDB Code: 1DB1, blue) onto rVDR LBD-YR301 complex
structures (PDB Code: 2ZFX, red)
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the high activity was completely the same with the secosteroidal compound, and this
became a reason why YR301 shows similar activity with 1α,25(OH)2VD3.

1.2 Structure of the Ligand-Binding Domain of hVDR
in Complex with 14-Epi-19-Nortachysterol

On the other hand, in the joint research between Teijin Pharma and Professor Kittaka
of Teikyo University, we had the opportunity to analyze the complex structures
of human VDR ligand-binding domain (hVDR-LBD) with numerous interesting
secosteroidal VDR ligands synthesized in Kittaka laboratory. In particular, we were
really surprised that the 14-epi-19-nortachysterol derivatives had a linker moiety
between the A and CD rings attached differently in the hVDR pockets; that is, the
C5,6-s-trans and C7,8-s-trans triene configurations had a structure that was inverted
with the natural C7,8-ene-configuration of 1α,25(OH)2D3 (shown in Fig. 3). It is also
the first worldwide finding [8], and C5,6-s-cis configuration is the first to be able to
maintain biological activity even when C5,6-s-trans configuration of the linker is
altered even the trans form was proven.

Fig. 3 Left: Superposed three-dimensional structures of 14-epi-19-nor-
1α,25(OH)2tachysterol(blue) onto 1α,25(OH)2VD3(yellow) in the hVDR ligand-binding pocket;
Right: Themechanism view of C6,7-cis/trans isomerization from 14-epi-19-nor-1α-25(OH)2preD3
to 14-epi-19-nor-1α, 25(OH)2tachsterol
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1.3 Structure of the Ligand-Binding Domain of hVDR
in Complex with 2α-Heteroarylalkyl Active Vitamin D3

The 2α-heteroarylalkyl active vitamin D3, which we discuss here, was another inter-
esting piece of collaboration between Teijin pharma and Professor Kittaka of Teikyo
University [9]. Various heterocyclic analogs were designed and synthesized at 2α
position in his laboratory, and the transcriptional activity was assessed using binding
affinity and human osteosarcoma cells, respectively. The biological efficacy of 2α-
[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (ligand 1 of Fig. 4) was confirmed. Subse-
quent bone mineral density increases over natural ligand levels were confirmed using
ovariectomized (OVX) rats as osteoporosis model. In the meantime, in ligand 2 of
Fig. 4 in which the position of N differs, any drug effect has not been observed.

In order to explain these differences in activity, the complex structures of these
two compounds with hVDR-LBD were analyzed by X-ray and the results were
superimposed. As shown in Fig. 5, the structures were almost superimposed, and
we could not clearly explain in the viewpoint of the binding modes why these small
structural difference effected biological activities. Not only in this theme, there are
cases inwhich the activity can be explained by the bindingmodeof theX-ray analysis,
and cases in which the activity difference cannot be explained. In the latter case, it
may be important to use quantum chemical calculations to quantitatively interpret
the interaction modes.

Fig. 4 Chemical structures of the vitamin D derivatives employed in the present study [5]
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Fig. 5 Superposing ligand 1
complex (PDBcode: 4ITE
green) onto ligand 2 complex
(PDBcode: 4ITF gray) with
hVDR-LBD

2 FMO Calculations for Vitamin D Receptor
Ligand-Binding Domain and Ligand Complexes

In the present calculations, the FMO method [4] was used to calculate the electronic
states of proteins with high accuracy and high speed. The FMO method is widely
used for the analysis of specific interactions between proteins and ligands that inhibit
their objective at an electronic level [10]. Indeed, in November 2014, the FMODrug
Design (FMODD) Consortium [11] was established in Japan with the participation
of universities, national laboratories, pharmaceutical companies, and informatics
companies, with the objective of developing FMO calculation-based in silico drug
discovery techniques using supercomputers “Kei” as practical technologies. First of
all, two structures shown in Fig. 5 are selected as subjects for the FMO calculations in
FMODD. The biological assays and X-ray crystallography analysis were performed
at Teijin Pharma. However, interaction modes between each ligand and VDR-LBD
in the two structures could not explain the difference in the biological activities of
the ligands. Therefore, to elucidate the reason for this difference, FMO calculations
were conducted at Kurita laboratory of Toyohashi University of Technology.
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2.1 Subjects and Conditions of FMO Calculations

In the present FMO calculations [5], two VD3 derivatives shown in Fig. 4 were
used as the target ligands. Although these ligands differ only in the positions of
the carbons at the terminal tetrazole ring, the EC50 (effective concentration for 50%
inhibition of the maximal one values) indicates that ligand 1 is 0.006 nM in the
transcriptional activity using Hos/SF, and ligand 2 is 0.31 nM, and the cause for this
significant difference in EC50 is not clear, although the inhibitory effect of ligand 1 is
considerably greater. Therefore, first, based on the PDB structure of VDR-LBD and
these ligands determined by X-ray crystallographic analysis, the initial structure of
the complex was made, and water molecule was added to the ambient of the structure
8 Å, and the stable structure of the complex in water was decided using classical
molecular mechanics (MM) calculations. In the MM calculations, AMBER99SB-
ILDN and GAFF force fields were used for VDR-LBD and the VD3 derivatives,
respectively, while TIP3P model was used for water molecules. We assigned Hid
protonation (neutral histidinewith a proton located atNd) for theHis residues existing
at the inside of hVDR-LBD,whileHip+ protonationwas assigned for theHis residues
on the outside of hVDR-LBD.

Next, for the obtained stable structure, the FMO calculation was carried out in
order to clarify the peculiar interaction between each amino acid residue of VDR-
LBD and the VD3 derivatives. In doing so, the FMO calculation was carried out in a
condition closer to the hydration state in vivo, consideringwatermoleculeswithin 6Å
of the complex ambient. The ab initioMP2/6-31G(d)methodwas used for describing
accurately the π–π stacking, NH–π, and CH–π interactions that occur between
VDR-LBD and the VD3 derivatives. The FMO calculation program ABINIT-MP
Ver.6.0 [12] was used for calculations. In addition, to clarify the strength of the
interaction betweenVDR-LBD and these ligands, the binding energies (BE) between
VDR-LBD and the ligands were calculated based on the total energies (TEs) of the
components using the following equation.

BE =TE(VDR − LBD + ligand + water) − TE(VDR − LBD + water)

− TE(ligand + water) + TE(water)

2.2 Interaction Energy Between VDR-LBD and VD3
Derivatives

To verify the validation of the computational approach used in this calculation, we
compared the BE between the VDR-LBD and the two ligands with the EC50 values
obtained in the experimentals [9]. The BE (−139.2 kcal/mol) of ligand 1 was found
to be larger than the BE (−131.9 kcal/mol) of ligand 2, indicating that ligand 1
binds more strongly to VDR-LBD. This result can qualitatively explain the trends
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of experimentally obtained EC50 values. Therefore, we analyzed the specific inter-
actions between VDR-LBD and the ligands, based on the inter-fragment interaction
energy (IFIE) [13] obtained by the same FMO calculations.

Next, the IFIEs between the ligand and the amino acid residues constituting VDR-
LBD were analyzed in order to clarify the cause why the BE values of the ligands
1 and 2 differ significantly to each other. As shown in Fig. 6a, b, both the ligands
bind most strongly to Arg274 of VDR-LBD. Arg274 was found to be critical for
binding to the ligands in the previous experiment [9]. Therefore, the results of the
present FMO calculations could explain the experimental results. Furthermore, in
addition to Arg274, the FMO calculations revealed that Ser278 also exhibits strong

Fig. 6 IFIEs between each
amino acid residue of
VDR-LBD and ligand;
a ligand 1, b ligand 2, and
c difference in IFIE between
ligands 1 and 2 [5]
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(−10 kcal/mol or more) attractive interactions with both the ligands to be critical for
the binding between VDR-LBD and the ligands.

In order to clarify the difference in the binding characteristics between VDR-
LBD of the ligands 1 and 2, the difference between Fig. 6a, b was obtained, and the
difference in IFIE was graphed. In Fig. 6a, c negative value indicates that the ligand
1 interacts more strongly with VDR-LBD, while a positive value indicates that the
ligand 2 interacts strongly with VDR-LBD. It was revealed that Tyr143 and Ser237
of VDR-LBD interact more strongly with the ligand 1 and that Hid305 interacts more
strongly with the ligand 2. These differences in interactions with amino acid residues
may be related to the large differences in the EC50 of ligands 1 and 2.

2.3 Specific Interactions Between VDR-LBD and VD3
Derivatives

In order to clarify the causes of the above-mentioned differences in IFIEs, we have
analyzed in detail the structures in which amino acid residues of Tyr143, Ser237, and
Hid305 interactwith the ligands.As shown inFig. 7a, the ligand1 is hydrogen-bonded
to the side-chain terminal oxygens of Tyr143 and Ser237. In particular, the distance
between ligand 1 and Tyr143 is 1.76 Å, and a strong hydrogen bond is formed. This
may have occurred because, as shown in Fig. 7a, the CH-site of the tetrazole ring at
the end of the ligand 1 was brought closer to Tyr143 by forming a CH–π interaction
with the phenyl ring of the Tyr143 side chain. Indeed, CH–π interactions are realized
at 3.08 Å distances by directing the CH-site of the tetrazole ring toward the Tyr143
phenyl-ring. The dispersion energy in the IFIE (−12.54 kcal/mol) between Tyr143
and the ligand 1 was evaluated to be−10.6 kcal/mol. It was thus revealed that CH–π
interaction is largely involved in the interaction between Tyr143 and the ligand 1.

On the other hand, as shown in Fig. 7b, CH–π interaction cannot be formed
between the ligand 2 and Tyr143, due to a shift of the CH-site in the tetrazole ring.
As a result, the Tyr143 side chain and the ligand 2 are located apart, and there is no
hydrogen-bonding between the oxygen atoms of the side chain termini of Tyr143 and
the ligand 2. Thus, for the first time, the present FMO calculations revealed that the
interaction between the ligand andTyr143 and theBEbetween theVDR-LBDand the
ligand are significantly affected due to a slight difference in the position of theCH-site
in the tetrazole ring at the termini of ligands 1 and 2. Consequently, it was elucidated
that the main cause for the large differences between the experimentally obtained
values of EC50 for ligands 1 and 2 is related to the difference in the interactions
between the tetrazole ring of the ligands and the Tyr143 side chain.

In terms of Hid305, as shown in Fig. 7, the ligand 2 is hydrogen-bonded, but
there is no particularly strong attractive interaction with the ligand 1, resulting in the
structures consistent with the IFIE size shown in Fig. 6.

Finally, we compared the interaction structures with ligands 1 and 2 for Arg274
and Ser237, which have large values of IFIE (Fig. 6a, b). As shown in Fig. 8a, the H
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Fig. 7 Interacting structures
between VDR-LBD residues
(Tyr143, Ser237, and
Hid305) and ligand in
a VDR-LBD + ligand 1, and
b VDR-LBD + ligand 2.
Green lines and a red line
indicate hydrogen-bonding
and CH–π interactions,
respectively [5]

(a) VDR-LBD + ligand 1

(b) VDR-LBD + ligand 2

Å

Å

atom of the OH group of the phenyl ring of the ligand 1 forms a hydrogen bond at a
distance of 1.85 Å with the O atom of the side chain end of Ser237, and in addition,
the O atom of the same OH group forms a hydrogen bond at a distance of 2.11 Å
with the NH2 group of the side chain end of Arg274. These hydrogen bonds cause
strong attractive interactions between the ligand 1 and Arg274 and Ser237, as shown
in Fig. 6a.
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Fig. 8 Interacting structures
between VDR-LBD residues
(Ser237 and Arg274) and
ligand in a VDR-LBD +
ligand 1, and b VDR-LBD +
ligand 2. Green lines indicate
hydrogen-bonding
interactions between
VDR-LBD and ligand [5]

(a) VDR-LBD + ligand 1

(b) VDR-LBD + ligand 2

Å
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On the other hand, as shown in Fig. 8b, the H atom of the OH group of the phenyl
ring of the ligand 2 forms a hydrogen bond at a distance of 2.10 Å with the O atom of
the backbone between Arg274 and Ser275, indicating a strong attractive interaction
with the ligand 2, as shown in Fig. 6b. However, the side chain of Ser237 dissociates
from the OH group of the phenyl ring of the ligand 2, and there is no hydrogen bond
between the ligand 2 and Ser237, as shown in Figs. 7b and 8b. Accordingly, it was
clarified that strong attractive interaction between the ligand 2 and Ser237 did not
occur.

3 For the Design of New Active Ligands Effective
for VDR-LBD

As shown in Figs. 7 and 8, the different CH-site at the terminal tetrazole ring of the
ligands 1 and 2 altered significantly the interaction pattern with the ambient VDR-
LBD residues, and it was found that the impact also changed the interaction between
the ligand and other residues, and that the interaction between the ligand and VDR
greatly changed. Such apparentlyweak interactions asCH–πmayalso play vital roles
in some environments, and the importance of these weak interactions can be esti-
mated properly by performing ab initio FMO calculations for the structures obtained
by X-ray analysis with diverse ligands. Large-sized ligands, particularly those that
bind to VDR-LBD and have large numbers of hydrogen atoms, require long compu-
tational time in house computers, while the calculations using cloud systems such as
supercomputer “Kei” would allow for rapid feedbacks. As a result, the cycle of drug
design composed of “compound synthesis → X-ray analysis → FMO calculation
→ new design of the ligand” is efficiently circulated, and it is considered that the
new ligand which works effectively for VDR-LBD can be proposed.

Recently, it was reported that the binding affinity between VDR-LBD and its
ligand depends significantly on the chirality of the ligand [14, 15]. Furthermore, we
are confident that the combination of X-ray analysis and FMO calculations is the
powerful tool to understand why the biological activities of the ligands are drastically
changed by the slight differences in the ligand structures. Based on the results of
FMO calculations, we would like to propose novel potent ligands which can bind
specifically and strongly to hVDR-LBD and inhibit the pathogenesis of immune
diseases.
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Cooperative Study Combining X-ray
Crystal Structure Analysis and FMO
Calculation: Interaction Analysis
of FABP4 Inhibitors

Uno Tagami and Kazutoshi Takahashi

Abstract X-ray crystal structural determination of FABP4 in complex with four
inhibitors revealed the bindingmodes of the complexes, and the interactions between
FABP4 and the inhibitors were analyzed. The detailed structure–activity relationship
(SAR) could not be explained in terms of these crystal structural observations. There-
fore, the interactions between FABP4 and the inhibitors were analyzed in more detail
using fragment molecular orbital (FMO)method. This analysis revealed that the total
interfragment interaction energies between FABP4 and each inhibitor correlatedwith
the ranking of the Ki value for the four inhibitors. Furthermore, the interactions
between each inhibitor and specific amino acid residues in FABP4 were identified.
The oxygen atom of Lys58 in FABP4 was found to be very important for strong
inhibitor–protein interactions. These results might provide useful information for
the development of novel potent FABP4 inhibitors.

Keywords FABP · aP2 · Inhibitor · X-ray crystal structure · FMO

1 Introduction

In drug discovery, the structure of the complex between a target protein and a drug
compound is key to understanding the drug’s reaction mechanism and improving
its activity through structural changes. Many complex structures have been reported
recently [1], made possible by the progress in protein preparation, purification, and
structure determination techniques, as represented by X-ray crystal structure anal-
ysis. While X-ray crystal structure analysis provides accurate coordinates of each
amino acid and the drug compound, it is difficult to judge the interaction inten-
sity simply by visual inspection of these coordinates [2]. For example, if hydrogen
bonds are present, it is impossible to estimate their strength relative to other interac-
tions simply from the bond distance or angle. Moreover, some interactions, such as
hydrophobic interactions and dispersion forces, run the risk of being overlooked by
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X-ray analysis. Molecular orbital method is a powerful technique to calculate these
interactions. However, the calculation cost is too high to estimate many protein–
ligand interactions. Fortunately, fragment molecular orbital (FMO) calculations can
solve this problem at an acceptable cost for industrial users. Therefore, FMO is a
suitable approach to estimate the interaction intensities between each amino acid and
the drug compound [3–6]. In this chapter, the interaction analysis of FABP4 and its
inhibitors is reported as an example of a cooperative study combining X-ray crystal
structure analysis and FMO calculation.

Fatty acid-binding proteins (FABPs) are cytoplasmic proteins that bind to
hydrophobic ligands, such as long-chain fatty acids, in a noncovalent and reversible
manner. It has been suggested that FABPs act as chaperone proteins for fatty
acids and play important roles in homeostasis of fatty acids and the lipid signaling
pathway [7]. The protein FABP4 (aka aFABP, aP2), a member of the FABP family,
is a 14.6 kDa cytosolic protein mainly expressed in macrophages and adipocytes.
Previous studies have reported that mice with FABP4-deficiency caused by genetic
and diet-induced obesity show protection against the development of hyperinsu-
linemia and insulin resistance [8, 9]. An FABP4-deficiency in apolipoprotein E-
deficient mice also confers protection against the development of atherosclerosis
[10]. Furthermore, treatments with prototype small-molecular inhibitors for FABP4
have been shown to attenuate fatty infiltration in the livers of ob/ob mice [11]. These
studies have demonstrated that FABP4-deficiency is related to several diseases,
including diabetes, atherosclerosis, and liver disease, and that potent, selective,
small-molecular inhibitors for FABP4might be potential therapeutic agents for these
diseases. Recently, a small series of FABP4 inhibitors have been reported, most of
which have been identified by a structure-based drug design (SBDD) method [12–
16]. Thus, the crystal structures of several ligand-bound human FABP4s have been
determined [11, 12, 17], which provided insights into the structural foundation under-
lying the binding modes of endogenous ligands and small-molecular inhibitors in the
FABP4 binding site. Structurally, FABP4 contains 10 antiparallel β-strands forming a
characteristic β-clam shell structure, which provides a substrate binding site [18–25].
Considering these findings, it is believed that ligands occupy the internal pocket of
FABP4, and carboxylic acid ligands usually have polar interactions with the Arg126
and Tyr128 side-chains of the protein. In addition, the importance of a negatively
charged substituent, such as a CO2

−, SO3
−, or PO3

− group, in these inhibitors has
been revealed [26].

The purpose of this study was to discover a potent FABP4 inhibitor as a new
drug candidate. We determined the crystal structures of the complexes of FABP4
and its inhibitors. However, it was difficult to rationalize the structure–activity rela-
tionship (SAR) simply by visual inspection of hydrogen bonds or hydrophobic
interactions. For a more detailed analysis, the inhibitor–protein interactions were
investigated using the FMO method. Using the calculated interfragment interac-
tion energies (IFIEs) [4–6, 27–29] between the inhibitors and FABP4 amino acid
residues, the various inhibitor–protein interactions were described in detail to allow
the development of new FABP4 inhibitors.
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2 Methods

2.1 Discovery of Potent FABP4 Inhibitors

Initially, our in-house compound library was screened using a human FABP4 binding
assay. We identified a hit compound that possessed an indole core structure (data not
shown). Next, 300 compounds were designed based on this compound and assayed
to find novel inhibitors. The lead compound was identified by SBDD against the
in-house compound library using the X-ray crystal structures determined for the
FABP4/inhibitor complexes.

The first modifications focused on substitutions to form indole analogs. As a
result, compound 3 was identified as the leading inhibitor. Next, compound 2 was
identified as a potent FABP4 inhibitor by comparison of the crystal structures of
FABP4/compound 2 complexwith that of compound 3.Next, compound 1was devel-
oped by using the “Enumerate Library from Ligands” module of BIOVIA Discovery
Studio 4.0 (Dassault Systèmes) to substitute the indole ring at the 3-position in
compound 2. Finally, Glide docking in Maestro 9.2 (Schrödinger, LLC) was used
for screening these synthetic candidate inhibitors. All inhibitors were synthesized by
the methods described in an earlier patent [30].

Compound 4 is used as an inactive compound that possesses a common indole
core structure for comparison with compound 1–3.

2.2 Biological Evaluation (FABP4 Binding Assay)

The in vitro activities of the FABP4 inhibitors were determined using an FABP4
Inhibitor/LigandScreeningAssayKit (CaymanChemicalCo.,AnnArbor,MI,USA),
according to themanufacturer’s protocol with a slightmodification [31]. Thismethod
was used for both the screening and calculation of the IC50 and Ki values. The Kd

values were determined as 1.7 μM by Scatchard plot analysis using recombinant
human FABP4 protein and 1-anilinonaphthalene-8-sulfonic acid.

2.3 Crystallization and Structural Determination

The FABP4was expressed by anEscherichia coli expression system and highly puri-
fied. The protein/compound solutions were produced by mixing the protein and each
compound to final concentrations of 6 mg/mL FABP4 and 2.5 mM compound. The
crystals were then grown at 23 °C from a 1/1 mixture (v/v) of the protein/compound
with crystallization solution (2.4MNaH2PO4/K2HPO4, pH7.3). Crystalswere trans-
ferred into a cryoprotectant solution (2.93 MNaH2PO4/K2HPO4, pH 7.3, 25% glyc-
erol and 2.5 mM compound). Data collections were conducted at KEK-PF (Tsukuba,
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Japan). The resulting structures were deposited in the Protein Data Bank as 5D4A,
5D45, 5D47, and 5D48 for compound 14, respectively.

2.4 FMO Analysis

The SARs between FABP4 and each compound were analyzed using the FMO
method. The X-ray crystal structures of the FABP4/inhibitor complexes were used
for these analyses. The complex structures were protonated and refined using Protein
PreparationWizard in Maestro 9.2 (Schrödinger, LLC). Then, all water molecules—
none of which participated in ligand binding—were deleted to prevent their exces-
sive influence on the FMO calculations. The FMO calculations and analyses were
performed using BioStation Viewer 13.01 (MIZUHO Rev.) [32]. The FMO calcula-
tions used the ABINIT-MP 5.0 code and the level of theory wasMP2/6-31G [33–35].
Each amino acid residue was treated as a single fragment by separating between
the carbonyl and α-carbon. First, FABP4 was divided into individual amino acid
units with the Generate Fragments/Auto/Generate Fragments module of BioStation
Viewer. Next, the four compounds were each partitioned into two fragments for the
FMO calculations. The compounds all possessed a carboxylic group, and all inter-
acted with FABP4 at the same interaction site. To clarify the SAR (i.e., to specify
which part of the compounds was responsible for their activity), the α- and β-carbons
of carboxylic acid were separated from each other, with the α-carbon in the same
fragment as the carboxylic group. The α-carbons are set as BAA (bond-detached
atom), and the β-carbons are set as BAA (bond-attached atom) (Fig. 1). Then, the
interaction of FABP4 with the moiety containing the β-carbon, and with the moiety
containing the α-carbon and carboxylic group, of each compound was analyzed.

compound 1 compound 2 compound 3 compound 4

Fig. 1 Method for fragmentation of each inhibitor
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Fig. 2 Structures and activities of four novel inhibitors

3 Results and Discussion

3.1 Structures and Activities of Inhibitors

For the analysis of the inhibitor–protein interactions, four novel inhibitors with a
common scaffold were selected from determined complex structures. Among the
four inhibitors, compounds 1, 2, and 3 possessed sequentially lower activities, and
compound 4 showed the lowest activity (Fig. 2). We were particularly motivated
to clarify why compound 1 was three times more active than compound 2, and to
analyze the relevant interactions to provide useful information for the development
of novel potent FABP4 inhibitors.

3.2 Crystallographic Structures

Next, the crystallographic structures of FABP4 complexes with the four inhibitors
(compounds 1–4) were determined, as shown in Fig. 3. The resolution of these struc-
tures was sufficiently high (1.65–1.81 Å) for reliable quantum mechanical analysis
using FMO.

The 31 residues located within 5.0 Å of any atom of compound 1 were aligned
by the “align binding site” function (Maestro, Schrödinger). The binding sites were
found to be very similar among all four complexes, as demonstrated by the root
mean square deviation of just ~0.3 Å. All four compounds possessed a carboxyl
group, which generally formed hydrogen bonds with FABP4s Arg126 and Tyr128
(Fig. 4), but the interactions of the other moieties showed more distinct variations.
It was clear that FABP4 had a greater number of interactions with compounds 1 and
2 than with compounds 3 and 4. To further elucidate the inhibitor–protein binding,
the interactions of FABP4 with the characteristic moieties of compounds 1 and 2
were studied in more detail. Two hydrogen bonds with Ser55 and Lys58, and four
hydrophobic interactions with Ala36, Pro38, Phe57, and Ala75, were observed in
compound 1s pyrazole substructure (Fig. 4a). Meanwhile, one hydrogen bond with
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Fig. 3 The crystal structures of FABP4 binding with the four inhibitors

Ser55 and five hydrophobic interactions with Ala33, Ala36, Pro38, Lys58, andAla75
were observed in compound 2s 2-methoxypyridine moiety (Fig. 4b). Therefore, a
simple sum of the number of hydrogen bonds and hydrophobic interactions in these
crystal structures was insufficient to explain the precise activity differences between
compounds 1 and 2. More information regarding the binding modes and inhibition
potencies was obtained via FMO calculations of the precise interaction energies in
these complexes.

3.3 FMO Analysis

The validity of the FMOmethodwas confirmed by analyzing the correlation between
the IFIE and theKi values. The IFIE is the sum of the interaction energy components,
including electrostatic, exchange–repulsion, charge transfer and mixing, and disper-
sion energies (ES, EX, CT+ mix, and DI, respectively), and was calculated for each
amino acid residue. The IFIEs of each individual amino acid residue were summed
to yield the IFIE sum. Negative values represented favorable interaction energies for
the binding of an amino acid residue with a ligand. The IFIE sum and Ki of the four
inhibitors for FABP4 are shown in Table 1. The correlation coefficient between log
(Ki) and the IFIE sum of compounds 1–4 was 0.729 (note thatKi of compound 4 was
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Fig. 4 2D diagrams of the binding sites around compounds 1(A), 2(B), 3(C), and 4(D), drawn using
Discovery Studio 4.5. Green, conventional hydrogen bonds and pink, other interactions, including
π–alkyl, π–π T-shaped, alkyl, and CH…O hydrogen bonds. (Reprinted with permission from [31].
Copyright 2018 American Chemical Society)

Table 1 Ki and IFIE sum of FABP4 in complex with the four inhibitors

Compound Ki (μM) IFIE sum
(kcal/mol)

ES
(kcal/mol)

EX
(kcal/mol)

CT + mix
(kcal/mol)

DI
(kcal/mol)

1 0.03 −97.06 −88.43 103.78 −43.13 −69.28

2 0.10 −59.84 −53.88 90.60 −29.28 −67.28

3 0.12 −51.29 −26.56 49.28 −18.64 −55.36

4 >1.4 −31.80 −10.51 26.23 −13.28 −34.23

ES is electrostatic energy, EX is exchange–repulsion energy, CT+mix is charge transfer andmixing
energy, DI is dispersion energy. IFIE for each residue is sum of ES, EX, CT + mix, and DI. IFIEs
of each individual residue are summed to yield IFIE sum. (Reprinted with permission from [31].
Copyright 2018 American Chemical Society)

calculated as 1.4, much higher than the others), while it was 0.999 when including
only compounds 1–3, indicating almost perfect correlation. This validated the FMO
method for assessing the activities of the inhibitors in this study.
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Fig. 5 IFIEs between each compound and amino acid residues of FABP4. Horizontal axis shows
fragment numbers, which correspond approximately to the amino acid residues, and vertical axis
represents the IFIE for each fragment. (Reprinted with permission from [31]. Copyright 2018
American Chemical Society)

Fig. 6 IFIEs magnified from Lys52 to Asp77. (Reprinted with permission from [31]. Copyright
2018 American Chemical Society)

The IFIEs between each compound and the amino acid residues of FABP4 are
shown in Fig. 5. The main interactions of the residues from Lys52 to Asp77 are
shown magnified in Fig. 6.

3.3.1 Interaction Analysis of Compound 1

Compound 1 exhibited strong interactions with Ser55, Phe57, and Lys58 (fragment
59), giving this compound the smallest Ki value among the four inhibitors. Notably,
compound 1 formed hydrogen bonds with the Ser55 side-chain oxygen atom and
Lys58main chain (Fig. 4a), and the related IFIEs were the lowest observed at−12.33
and−14.96 kcal/mol, respectively (Table 2). A hydrogen bond with Lys58 has been



Cooperative Study Combining X-ray Crystal Structure Analysis … 275

Table 2 The interaction energies (IFIEs) between each residue (52–77) and the four compounds

Fragment
number

Amino acid
residue

IFIE [kcal/mol]

Compound 1 Compound 2 Compound 3 Compound 4

52 LYS52 −1.39 0.78 1.02 1.24

53 SER53 −6.81 −1.36 −9.64 −2.28

54 GLU54 −1.13 −1.09 −1.17 −1.03

55 SER55 −12.33 −7.93 −1.32 −2.16

56 THR56 −1.18 −0.89 −0.09 0.35

57 PHE57 −9.79 −5.39 −2.52 −3.61

58 LYS58 −8.30 −9.83 −3.89 −1.49

59 ASN59 −14.96 −0.66 −5.85 −2.32

60 THR60 −2.94 −2.00 −1.03 −0.07

61 GLU61 −2.59 −1.17 −1.23 −1.17

62 ILE62 −1.32 0.36 0.36 0.33

63 SER63 0.53 −0.34 −0.39 −0.26

64 PHE64 0.04 0.12 0.13 0.11

65 ILE65 0.06 −0.07 −0.07 −0.08

66 LEU66 −0.03 −0.01 0.01 0.03

67 GLY67 0.09 0.09 0.08 0.03

68 GLN68 0.07 0.10 0.11 0.06

69 GLU69 −0.77 −0.18 −0.09 0.34

70 PHE70 0.03 0.00 −0.01 −0.05

71 ASP71 −0.66 0.24 0.35 0.58

72 GLU72 −4.94 −0.11 0.46 0.83

73 VAL73 0.49 0.11 0.10 0.19

74 THR74 −1.20 −0.88 −1.06 −1.15

75 ALA75 −1.74 −2.62 −2.97 −2.55

76 ASP76 0.69 4.32 6.85 6.11

77 ASP77 0.57 1.50 1.71 0.52

described in the dockingmodel of Pimozide [36]. It is notable that this interactionwas
detected here in the X-ray crystal structure, indicating its importance in the present
molecular binding as well as the utility of the FMO method. Phe57 also formed
π–π T-shaped interactions (Fig. 3a), but the strengths of these interactions could
not be clarified by visual observation alone. The IFIE of Phe57 revealed that these
interactions were strong, with a strength of −9.79 kcal/mol (Table 2). Meanwhile,
the IFIE of fragment 76 (Asp76) presented the largest repulsive force of all the
residues. Among the four compounds, the repulsive interaction with Asp76 was
weakest for compound 1. In compound 1, the moiety located nearest to Asp76 was
the cyclopropane ring, according to the X-ray crystal structure. In fact, cyclopropane
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Fig. 7 The distance from
Asp76 to compound 1 and
compound 2

was a common moiety among each of compounds 1, 2, and 3. However, comparing
those compounds, the distance between cyclopropane and Asp76 was ~0.4 Å longer
in compound 1 than in compounds 2 and 3 (Fig. 7). This greater distance—which
was probably a result of compound 1 being anchored by hydrogen bonds with Ser55
and Lys58—is assumed to be the main reason why the repulsive interaction with
Asp76 was weakest for compound 1. Although ~0.4 Å is only a slight difference,
its importance can be discussed with confidence because these crystal structures
were highly reliable. The very high resolution of the coordinates, combined with
the very low temperature factor (B-factor) of Asp76 (17.84–28.78), ensured that the
fluctuation in positions was small.

3.3.2 Interaction Analysis of Compound 2

The situation for compound 2 was slightly more complicated because this compound
formed a hydrogen bond with Ser55 in the crystal structure (Fig. 4b), for which the
IFIE was−7.93 kcal/mol (Table 2). However, the strongest interaction of compound
2 was with FABP4 fragment 58, having an IFIE of−9.83 kcal/mol. While the Lys58
oxygen atom formed a CH…O hydrogen bond [37] with compound 2 in the crystal
structure (Fig. 4b) as the distance of CH…O is 2.45 Å and the angle is 126.1°, the
amine group of Lys58s main chain also interacted strongly, with an ES energy of -
7.30 kcal/mol [31]. According to the FMOcalculations (Fig. 6), Phe57 also interacted
strongly, with an IFIE of −5.39 kcal/mol, but this interaction was not evident from
visual inspection of the X-ray structure (Fig. 4b). The main IFIE component of the
interaction between compound 2 and Phe57 was dispersion energy (−3.62 kcal/mol)
[31]. Dispersion interactions cannot be identified from the distances and angles
of X-ray crystal structures; however, by calculating interaction energies based on
electronic states, FMO analysis was able to recognize this term.
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In this way, the SARs of compounds 1 and 2 could be explained on the basis of
their interactions with amino acid residues and the energies calculated from FMO
analyses. These results showed that an FABP4 inhibitor required a strong interaction
with Lys58 and, thus, compound 1, which possessed strong interactions with Lys58,
also possessed high inhibition activity.

3.3.3 Interaction Analysis of Compound 3

For compound 3, FMO analysis again identified interactions that cannot otherwise be
recognized. FABP4 fragment 53 (Ser53) exhibited the largest IFIE (−9.64 kcal/mol;
Fig. 5, green bar) with compound 3, even though no interactions with Ser53 were
recognized from X-ray crystal structural analysis (Fig. 4c). The main IFIE compo-
nent of the interaction between compound 3 and Ser53 was dispersion energy
(−6.04 kcal/mol) [31], which, as explained above, cannot be recognized from the
distances and angles of X-ray crystal structures.

4 Conclusion

The crystallographic structures of FABP4 in complexes with four inhibitors were
solved, and the interactions were described by FMO analyses. These analyses were
very helpful in determining why compound 1 possessed the most potent inhibitory
activity. Furthermore, the importance of the interaction with Lys58 was revealed,
contributing an insight into the design of strong inhibitors, which will be useful
for future inhibitor identification. In this way, a cooperative study combining X-ray
crystal structure analysis and FMO calculations enabled a deep understanding of the
protein–ligand interaction for the benefit of inhibitor development.
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Application of FMO for Protein–ligand
Binding Affinity Prediction

Kenichiro Takaba

Abstract The fragmentmolecular orbital (FMO)method has emerged as a powerful
computational tool for structure-based drug design. Pair interaction energy decom-
position analysis (PIEDA) enables detailed analysis of protein–ligand interactions,
andmany studies have shown that interaction energies can be used to predict protein–
ligand binding affinities. However, the accuracy is insufficient for application to lead
optimization. To increase the method’s accuracy, we introduce an ensemble FMO
method in which molecular dynamics simulations are used to generate multiple
protein–ligand complex structures, and FMO calculations are performed for ensem-
bles of conformers with explicit water molecules. To assess the ensemble FMO
method, we examined the correlations between experimental and calculated binding
affinities of two systems, internal project A and Pim1 kinase. The correlations
between experimental pIC50 values and FMO-based interaction energies in vacuo
calculated based on MM-optimized X-ray crystal structures were R2 = 0.28 and
R2 = 0.53 for internal project A and Pim1, respectively. Using the ensemble FMO
method, the correlation for internal project A improved (R2 = 0.67), whereas the
correlation for Pim1was unchanged (R2 = 0.53). If combinations of different PIEDA
energies were allowed, the best correlations for internal project A and Pim1 were
R2 = 0.76 and R2 = 0.62, respectively. We also discuss the application of a rein-
forcement learning method, Best Arm Identification, in which the performance of
the ensemble FMO method was maximized by avoiding unpromising compounds
in the early stages to allocate limited computational resources to more-promising
compounds.
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1 Introduction

Over the past few years, the fragment molecular orbital (FMO) method [1–4] has
emerged as a powerful tool for assisting structure-based drug design (SBDD) [5–7].
One of the keys to success in SBDD is having a good understanding of protein–ligand
interactions, not just for rational drug design but also for constructive communica-
tions with medicinal chemists. FMO is an attractive computational approach for
tackling this problem, in which inter-fragment interaction energy (IFIE) analysis
[3] allows analysis of protein–ligand interactions with quantum effects at reasonable
computational cost. Thus, in pair interaction energy decomposition analysis (PIEDA)
[4], the interaction energy,�E, can be deconstructed into four energy terms: electro-
static (�EES), exchange repulsion (�EEX), dispersion (�EDI), and charge transfer
with higher order mixed terms (�ECT+mix), which offers more detailed information
regarding the protein–ligand interactions.

Another advantage of the FMO method is that it can be used to predict protein–
ligand binding affinity [8–10]. FMO-based interaction energies obtained by PIEDA
describe the stability of protein–ligand complexes and thus provide reliable estimates
of protein–ligand enthalpic binding contributions. Protein–ligand binding phenom-
enas are very complex events in which binding is associated with various energy
terms, such as enthalpy, entropy, and solvation/desolvation effects [7]. Even though
not all of these factors are accounted for in FMO approaches, many studies have
shown that moderate correlations between experimental binding affinities and FMO-
based interaction energies can be achieved. For example, Heifetz and coworkers
observed moderate to high correlations (R2 = 0.58 ~ 0.76) between experimentally
measured affinities and FMO-based interaction energies in vacuo for various G-
protein coupled receptors by performing FMO calculations against computationally
modeled structures [9]. Their study suggests that FMO is suitable for protein–ligand
binding affinity predictions even though it does not incorporate solvation effects and
thus could be applied to modeled structures. Watanabe and coworkers utilized FMO
with molecular mechanics Poisson-Boltzmann surface area (FMO + MM-PBSA)
to incorporate desolvation effects and study the activity cliffs of serine/threonine
kinase Pim1 inhibitors [10]. Comparing various qualities of complex structures, they
found that QM/MM-optimized structures provided the best correlation (R2 = 0.85)
between experimental pIC50 values and FMO+MM-PBSA binding energies. When
desolvation effects were excluded from the abovementioned study, the correlation
decreased to R2 = 0.67, indicating the importance of considering desolvation effects
for accurately predicting protein–ligand binding affinity.

Another example is shown in Fig. 1, which shows the results of analyses of
correlations between experimental pIC50 values and FMO-based interaction energies
in vacuo for 207 MM-optimized X-ray crystal structures from our internal project
A. Even though solvation effects were not included in the calculation and different
chemotypes were included in the analysis, moderate to high correlations (R2 = 0.54
~ 0.72) were observed with different PIEDA interaction energy terms. The best
correlation (R2 = 0.72) was observed with charge transfer with the higher order
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Fig. 1 Plots of the correlation between experimental pIC50 values and FMO-based interaction
energies in vacuo for 207 MM-optimized X-ray crystal structures obtained from internal project
A. (a–d) Correlations with IFIE (�E), electrostatic energy (�EES), dispersion energy (�EDI),
and charge transfer plus higher order mixed terms (�ECT+mix), respectively. Each colored circle
represents a different chemotype.MM-optimized structureswere prepared usingProtein Preparation
Wizard [19] implemented in Schrödinger software, version 2016–4

mixed term �ECT+mix. It will be interesting to compare these results with those
obtained using molecular mechanics-based methods, such as molecular dynamics
(MD)-based approaches, as typical force fields do not explicitly account for charge
transfer effects [11–13].

Generally, the FMO-based interaction energy can be obtained from a single
protein–ligand complex structure, such as an X-ray crystal structure or computa-
tionally modeled structure [8–10]. However, previous studies suggest that averaging
of FMO-based interaction energies over ensemble of conformers is expected to be
more reliable than considering only a single conformer [14, 15]. Ishikawa et al.
performed FMO calculations against 40 different structures of prion protein gener-
ated by MD simulations and examined the influence of geometrical fluctuations on
FMO calculation [14]. Fedorov et al. performed MD simulations with FMO calcu-
lations for two ligands bound to Trp-cage miniprotein and introduced the idea of
systematic averaging of FMO-based interaction energies to evaluate protein–ligand
binding energies [15].

In this study, we examine whether averaged FMO-based interaction energies and
accounting solvation effects with explicit water molecules can improve the quan-
titative structure–activity relationships (QSARs). We refer to this approach as an
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ensemble FMOmethod, in which FMO calculations are performed against ensemble
of conformers as introduced in previous studies [14, 15]. MD simulations were
utilized to generate multiple protein–ligand complex structures but other approaches
such as Monte-Carlo based methods can be applied as well. Furthermore, we apply
a reinforcement learning method, Best Arm Identification (BAI) [16–18], in which
unpromising compounds are avoided in the early stages so that the limited amount
of computational resources can be allocated to more-promising compounds. This
approach is expected to maximize the performance of ensemble FMO analyses in
which promising compounds are chosen from a set of candidates within the limited
amount of computational resources.

2 Ensemble FMO

2.1 Computational Method

The workflow of ensemble FMO is as follows. First, the system is prepared by
correctingmissing loops and residues, and hydrogen atoms are added to each protein–
ligand complex structure. Next, an MD simulation with explicit water molecules is
performed, and MD snapshots including water molecules are extracted from the
trajectory for each system. The MD snapshots are then subjected to restrained MM-
optimization to prepare the input structures for FMO calculations. Finally, for each
MD snapshot, PIEDA of protein–ligand and water-ligand interaction energies is
conducted. The ensemble FMO-based interaction energy of a ligand is obtained
from the following equation:

〈�E〉 = 1

N

N∑

i=1

(
�Ei

ES + �Ei
EX + �Ei

DI + �Ei
CT+mix

)
,

where i and N denote the indices of the MD snapshots and the total number of MD
snapshots, respectively. The decomposed energy terms of ensemble FMO-based
interaction energies are represented as 〈�EES〉,〈�EEX〉,〈�EDI〉, and 〈�ECT+mix〉.
The FMO results obtained from a single conformer can be distinguished from
ensemble FMO results in which FMO-based interaction energies are expressed
without brackets.

In this study, MD simulations were performed using the AMBER14 package
[20] with Amber ff14SB force field [12] for proteins, and TIP3P [21] models were
used for water molecules. Ligand force fields were parameterized using general
Amber force field (GAFF) [22] with AM1-BCC [23, 24] charges. System prepa-
ration and restrained MM-optimization to prepare the input structures for FMO
calculations were carried out using the Protein Preparation Wizard [19] imple-
mented in Schrödinger software, version 2016–4. FMO calculations were performed
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using FMO code version 18 embedded in the General Atomic and Molecular Elec-
tronic Structure System (GAMESS) [25]. FMO calculations were performed with
FMO2-MP2/6-31G.

2.2 Application of Ensemble FMO

2.2.1 Internal Project A

To assess ensemble FMO, nine ligands from internal project A depicted in Fig. 1were
selected. Each ligand belongs to a different chemotype with various substituents; the
net charge of each of the nine ligands was neutral. The correlations between exper-
imental pIC50 values and different energy contributions of FMO-based interaction
energies in vacuo were R2 = 0.28, R2 = 0.18, R2 = 0.32, R2 = 0.44, and R2 = 0.27,
for �E, �EES, �EDI, �ECT+mix, and �EEX, respectively (Fig. 2).

The procedures for ensemble FMO are briefly summarized below. After prepara-
tion for the MD simulation, system minimization followed by 50 ps NVT equilibra-
tion and an additional 200 ps NPT equilibration were performed. Cα atom restraints
were gradually reduced during the equilibration step. MD trajectories were extracted
every 10 ps from the last 100 ps of the equilibration step. A total of 10MD snapshots
were used for FMO calculations for each ligand. Several studies have shown that a
solvent shell of approximately 8 Å is necessary to incorporate solvent effects [26,
27]. Therefore, water molecules within 9 Å of the protein–ligand complexes were
considered in FMO calculations.

The correlations between experimental pIC50 values and different energy contri-
butions of FMO-based interaction energies were R2 = 0.67, R2 = 0.61, R2 = 0.50, R2

= 0.76, and R2 = 0.72 for 〈�E〉, 〈�EES〉, 〈�EDI〉, 〈�ECT+mix〉, and 〈�EEX〉, respec-
tively (Fig. 2). The best correlation (R2 = 0.76) was obtained with 〈�ECT+mix〉,
whereas the FMO-based interaction energy�ECT+mix showed a poor correlation (R2

= 0.44) in vacuo. Another interesting finding was that the water-ligand interaction
energies differed among the nine ligands examined (Fig. 3). The correlation between
experimental pIC50 values and the ensemble FMO-based interaction energy 〈�E〉,
decreased to R2 = 0.29 without the contribution of water molecules.

2.2.2 Pim1 Kinase

Next, ensemble FMOwas applied to serine/threonine kinase Pim1 inhibitors (Fig. 4).
In contrast to the case of internal project A, activities differed significantly only with
respect to the position of the indoline-ring nitrogen.Asmentioned in the Introduction,
Watanabe and coworkers found that QM/MM-optimized structures and desolvation
effects incorporated usingMM-PBSAwere important for obtaining high correlations
(R2 = 0.85) between experimental pIC50 values and FMO + MM-PBSA binding
energies [10]. When the desolvation effect was omitted from the calculation, the
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Fig. 2 Comparison of MM-optimized single conformation FMO and ensemble FMO. Plots of the
correlation between experimental pIC50 values and FMO-based interaction energies are shown.
Correlations with FMO-based interaction energies of IFIE (�E) and charge transfer plus higher
order mixed terms (�ECT+mix) in vacuo obtained from MM-optimized X-ray crystal structures are
shown in (a) and (b), respectively. Correlations with ensemble FMO-based interaction energies for
〈�E〉 and 〈�ECT+mix〉 are shown in (c) and (d), respectively. MD snapshots used for ensemble
FMO are depicted explicitly, with each colored circle denoting a different ligand. Note that the
ligands depicted in pink and red are colored differently from Fig. 1 to make the visualization more
clear. Averaged ensemble FMO-based interaction energies were used to obtain the coefficient of
determination,R2, and the correlation line depicted in black. The root-mean-standard-error (RMSE)
of the calculated pIC50 is depicted in each graph

Fig. 3 Comparison of ligand-water interaction energies among different ligands obtained using
ensemble FMO. Each color bar corresponds to the individual ligands shown in Figs. 1 and 2
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Fig. 4 Ligand structures and experimental IC50 values as reported in the original literature [10].
PDB codes are shown in parentheses (if available)

correlation decreased to R2 = 0.67. Furthermore, the correlation decreased to R2

= 0.53 when the binding energies were calculated in vacuo using MM-optimized
structures. Pim1 is an excellent example with which to challenge ensemble FMO,
particularly whether considering multiple conformers generated usingMM-methods
improves the QSAR, even though QM/MM-optimized high-quality structures are
important for obtaining sufficient correlation between experimental and calculated
binding affinities.

Protein–ligand complex structures for each ligand were prepared similar to those
reported in the original literature [10]. The Pim1-Lig1 X-ray crystal structure was
used as a template for preparing all other protein–ligand complexes. The complex
structures were then prepared for MD simulations following a procedure similar
to that used for internal project A. After equilibration, 3 independent 50 ns MD
simulations were performed to sample the protein–ligand complexes and confirm
the stability of the ligand binding pose. Trajectories were extracted every 2.5 ns from
the 50 ns production run, in which the first 12.5 ns were disregarded. A total of 45
MD snapshots were used for the FMO calculations for each ligand. To reduce the
computational cost, only protein residues and water molecules that were 14 Å away
from the ligand were considered during the FMO calculation. The protein residues
used in the FMO calculations were consistent throughout the calculation, but the
number of water molecules differed slightly between the MD snapshots.

The correlations between pIC50 values and different energy contributions for the
ensemble FMO-based interaction energies were R2 = 0.53, R2 = 0.38, R2 = 0.02,
R2 = 0.01, and R2 = 0.35 for 〈�E〉, 〈�EES〉, 〈�EDI〉, 〈�ECT+mix〉, and 〈�EEX〉,
respectively (Fig. 5). The best correlation (R2 = 0.62) was obtained by combining the
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Fig. 5 Plots of the correlation between experimental pIC50 values and ensemble FMO-based inter-
action energies (in kcal/mol). (a, b) Correlations with ensemble FMO-based interaction energies of
〈�E〉 and 〈�EDI,EX,CT+mix〉, respectively. Error bars indicate the standard deviations of interaction
energies obtained from 45 individual FMOcalculations for each ligand. The root-mean-square-error
(RMSE) of the predicted pIC50 values is depicted in each graph. The index numbers correspond to
the ligands shown in Fig. 4

energy terms of dispersion, exchange repulsion, and charge transfer with higher order
mixed terms, 〈�EDI,EX,CT+mix〉. The correlations between experimental pIC50 values
and ensemble FMO-based interaction energies for 〈�E〉 and 〈�EDI,EX,CT+mix〉 with
respect to varying numbers ofMD snapshots are summarized in Table 1. The correla-
tions ranged fromR2 = 0.08–0.80 for 〈�E〉 andR2 = 0.18–0.79 for 〈�EDI,EX,CT+mix〉,
depending on the manner in whichMD snapshots were extracted. The use of a single
MD trajectory, Traj1, in which MD snapshots were extracted every 2.5 ps, exhibited
the highest correlation (R2 = 0.79) with 〈�EDI,EX,CT+mix〉. However, for other cases,
the use of a single MD trajectory correlated poorly (R2 < 0.50) with the experimental
binding affinities. The best correlation (R2 = 0.80) was obtained with 〈�E〉 using
MD trajectories for Traj2 and Traj3 in which MD snapshots were extracted every
5 ps.

Table 1 Coefficient of determination, R2, depending on the number of MD trajectories and MD
snapshot intervals

2.5 ns Interval 5.0 ns Interval

〈�E〉 〈�EDI,EX,CT+mix〉 〈�E〉 〈�EDI,EX,CT+mix〉
Traj1 0.43 0.79 0.22 0.46

Traj2 0.33 0.18 0.24 0.31

Traj3 0.08 0.40 0.18 0.52

Traj1,2 0.57 0.68 0.42 0.68

Traj1,3 0.31 0.76 0.29 0.77

Traj2,3 0.46 0.31 0.80 0.46

Traj1,2,3 0.53 0.62 0.63 0.70
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2.3 Discussion

Ensemble FMOwas applied to internal project A and Pim1 kinase to assess the utility
of protein–ligand binding affinity predictions. The correlations between experi-
mental pIC50 values and ensemble FMO-based interaction energies exhibitedmarked
improvementwith respect to theMM-optimized single conformation FMOresults for
internal project A, whereas the improvement was limited for Pim1. The best correla-
tion was obtained when neglecting the contributions of the electrostatic energy terms
from the FMO-based interaction energies for both internal project A and Pim1. This
could have been due to the inverse relationship between the electrostatic interaction
energies and the desolvation free energies. Ignoring the electrostatic energy terms
may have implicitly accounted for the desolvation effect to some extent [28].

EnsembleFMOmaybebeneficial for cases inwhichpoor correlations are obtained
with FMO-based interaction energies in vacuo derived from single conformations,
as observed with internal project A. Even though only 10 structures for each ligand
were considered from a 100 ps MD trajectory, the use of multiple conformers led to
improvement in the QSAR. However, this may strongly depend on the target system.

Improvements in the QSAR may be limited in cases in which moderate correla-
tions have been obtainedwith FMO-based interaction energies, as in the case of Pim1.
The correlation with the ensemble FMO-based interaction energy 〈�E〉, was R2 =
0.53, the same value reported by Watanabe and coworkers for the MM-optimized
FMO-based interaction energy, �E, in vacuo [10]. One possible reason may be the
difference in the level of theory used in the study. In our study, FMO2-MP2/6-31G
was applied, whereas Watanabe and coworkers used FMO3-MP2/6-31G*, which is
a higher level theory. Another reason could be that the number of complex struc-
tures and the process for generating the ensemble conformers used in ensemble
FMO were inadequate. The method used to generate ensembles of protein–ligand
complexes remains an issue.

Utilizing an adequate number of conformers may help improve the QSAR, but
there will be a trade-off between computational cost and prediction accuracy. As
FMO calculations are independent from one another in ensemble FMO, distributed
computing using supercomputers and cloud services can help reduce the total compu-
tational cost. Furthermore, application of a reinforcement learning method, such as
BAI [16–18] (discussed in the next section), may help maximize the performance of
ensemble FMO in cases of restricted computational resources.

3 Bandit Ensemble FMO

3.1 General Concept of Bandit Ensemble FMO

Candidate drugs are typically discovered throughDMTA(design-make-test-analysis)
cycles in which compounds to be synthesized in the next cycle are prioritized from
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idea compounds. Ideally, rapid and accurate predictions of protein–ligand binding
affinities help in prioritizing idea compounds, but not all compounds require accu-
rate affinity predictions. For example, assume we have M idea compounds, and N
compounds are going to be synthesized in the next DMTA cycle. The goal is to select
the top N promising compounds, and as long as these compounds are chosen, the
prediction accuracies for the other compounds are not an issue.

Terayama and coworkers demonstrated that the reinforcement learning method
called Best Arm Identification (BAI), also known as Multi-Armed Bandit, enables
optimal control of the number of MD runs needed to identify the correct binding
pose using MM-PBSA in cases of restricted computational resources [29]. Inspired
by their work, we applied BAI algorithms to ensemble FMO to avoid unpromising
compounds in the early stages and thus allocate the limited amount of computational
resources available to more-promising compounds. This approach should identify
the most-promising compounds at minimal computational cost. We designated this
method “bandit ensemble FMO”.

The BAI concept is usually explained by referencing a gambling problem using
slot machines. BAI centers upon optimizing the allocation of limited resources to
identify the best of many slots. Each slot has an arm, and when an arm is selected,
a player gets a reward according to a probability distribution. The reward for each
arm has a different probability distribution that is not known a priori. The objective
is to maximize the reward within the budget, in which the number of trials to pull
the arm is limited.

In bandit ensemble FMO, the arm, reward, and budget correspond to candidate
compounds, FMO-based interaction energy, and the total number of FMO trials,
respectively. The workflow of bandit ensemble FMO is shown in Fig. 6. Suppose
we have M candidate compounds. The first step is to generate multiple protein–
ligand complex structures with explicit water molecules using MD simulations and
then prepare FMO input files for each compound (Preparation). We then define the
total amount of computational resources available, that is, the total number of FMO
trials or total simulation time (e.g., three days) (Input). FMO calculations for each
compound i are performed, and FMO-based interaction energies, �Ei , are evaluated
(Initialize). Next, we calculate a score, Si , for each compound i based on the ensemble
FMO-based interaction energy, 〈�Ei 〉, where the scoring function depends on the
BAI algorithm [16–18]. The compound with the highest score is selected for the next
FMO calculation round (Selection). The selection process is repeated until reaching
the predefined number of FMO trails. Finally, the top N compounds with the highest
scores, Si , are chosen as the most-promising compounds within the group of M
candidate compounds.

3.2 Computational Method

Here, we apply ε-greedy [16], one of the most popular BAI algorithms, to ensemble
FMO. In each round of the selection process, the algorithm selects the compoundwith
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Fig. 6 Workflow of bandit ensemble FMO. αi is an additional scoring term which differs among
BAI algorithms

the highest absolute ensemble FMO-based interaction energy with probability 1− ε

and selects a random compound with probability ε. When ε = 1, this is equivalent to
random selection. Although other BAI algorithms are thought to be more suitable for
this particular problem, ε-greedy was chosen because it is very simple to implement
and the objective of this study is to validate the concept of bandit ensemble FMO.

3.3 Application of Bandit Ensemble FMO

A retrospective study of bandit ensemble FMO employing ε-greedy was performed
using the ensemble FMOresults of Pim1discussed in Sect. 2.2.2.As shown inFig. 5b,
Lig2 had the lowest ensemble FMO-based interaction energy 〈�EDI,EX,CT+mix〉
among the 6 ligands examined. This result was obtained by performing 270 FMO
calculations in total. In this study, 100 independent bandit ensemble FMO calcula-
tions were performed, with the total number of FMO calculations restricted to 12,
24, 36, and 48 trials, respectively. We then monitored the success rate, defined as
the number of times Lig2 was selected as the compound with the lowest ensemble
FMO-based interaction energy among the 100 trials conducted.

The results of the bandit ensemble FMO are shown in Fig. 7. The success rate
gradually increased as the number of FMO trials increased for all ε values. The best
performance was obtained for ε = 0.8, where the method outperformed random
selection (ε = 0). The success rate was 40 and 41% for ε = 0 and ε = 0.8,
respectively, when the number of FMO trials was limited to 12. The success rate for
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Fig. 7 Success rate, defined
as the number of times Lig2
was selected as the lowest
ensemble FMO-based
interaction energy among the
6 ligands examined, with
respect to different numbers
of FMO trials (12, 24, 36,
and 48 trials). A total of 100
independent bandit ensemble
FMO calculations were
performed for each trial set

ε = 0.8 improved to 74%, whereas the success rate was 48% for ε = 0 when the
number of FMO trials was increased to 24. The success rate did not improve when
the number of FMO trials was increased to 36 and 48 for ε = 0.8. The performance
of bandit ensemble FMO for ε = 0.2 and ε = 0.4 was somewhere between that
obtained for ε = 0.8 and ε = 1. No significant differences in success rates were
observed among all ε values after 36 FMO calculation trials.

3.4 Discussion

The rate of success in selecting Lig2 as the most-promising compound was 74%
when ε was set at 0.8 and the number of FMO calculation trials was set at 24.
Although the success rate was not perfect, it incurred only approximately 1/10 of the
computational cost required for uniform sampling (total of 270 FMO calculations),
where FMO calculations were performed 45 times for each ligand to retrieve Lig2
as the most-promising compound.

In this study, we applied ε-greedy, which is one of the simplest BAI algorithms.
A disadvantage to the use of ε-greedy, however, is that an arm (compound) will
always be selected with a certain probability, even for unpromising arms. We expect
other algorithms, such as UGapE (unified gap-based exploration) [30], in which the
number of times arm i is selected in each round, and a confidence score based on
defined criteria is accounted for during the selection process, may be better suited
to this purpose. However, the optimal algorithm may differ depending on the set of
compounds being studied and the amount of computational resources available.

4 Conclusion and Perspective

In actual drug discovery projects, protein–ligand binding affinity predictions are often
performed using computationally modeled structures, such as docking models. The
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model may have some uncertainty, in which the orientation of ligand substituents can
be wrong and protein residues may undergo reorientation among different ligands,
which can be difficult to know a priori. Ensemble FMO, which utilizes MD simu-
lations, has the advantage of allowing modification of the orientation of protein–
ligand complex structures and thus represents an alternative approach for predicting
protein–ligand binding affinities. Application of the BAI algorithm should therefore
maximize the performance of ensemble FMO so that unpromising compounds can
be avoided in the early stages and the limited amount of computational resources
can be allocated to more-promising compounds. However, the method for gener-
ating ensemble conformations and the optimal BAI algorithm to use for ensemble
FMO requires further research. Application of machine learning techniques such as
Random Forest and Deep Neural Networks using PIEDA as descriptors represents
an additional approach for predicting protein–ligand binding affinities.

In the future, we expect development of more hybrid approaches in which FMO
methods,MD simulations, andmachine learning approaches are applied in a comple-
mentary manner to derive new approaches for predicting protein–ligand binding
affinities.

Acknowledgements The author thanks Kazufumi Ohkawa for thoughtful discussions and assis-
tance in preparing the manuscript.
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Recent Advances of In Silico Drug
Discovery: Integrated Systems
of Informatics and Simulation

Teruki Honma

Abstract With recent trends toward the use of big data for drug discovery-related
databases, increased computing scale and speed, and sophisticated computation
theory for molecular design, in silico drug discovery is becoming an increasingly
practical technique. Prior to 2010, its contribution was limited to the early-stage
drug discovery of feasible targets; however, applications of recent new technolo-
gies to more difficult and complicated targets have led to the effective drug design
in the late stage of the drug discovery process. Herein, after reviewing recent in
silico drug discovery that utilizes information science (informatics, including arti-
ficial intelligence (AI)) and computational science (biomolecular simulations based
on molecular dynamics and quantum mechanics), we introduce actual cases of in
silico drug discovery. Finally, we discuss efforts in applying AI to drug discovery,
which has become practical recently, and consider potential future developments.

1 Introduction

In small molecule drug discovery, the processes involved in discovering lead
compounds from hits and identifying development candidates from these lead
compounds have a low success rate. To reduce the risk, major pharmaceutical compa-
nies are increasingly leaving this stage of the discovery process to academia and
venture businesses. On the other hand, active attempts have been made to use infor-
mation science (informatics) and computational science (simulations) to make these
processes more efficient. This is referred to as in silico screening (virtual screening)
or in silico drug discovery. In recent years, in silico screening has been used on nearly
all targets in small molecule drug discovery, although in varying degrees.

The enrichment of drug discovery-related information and improvements in
computational performance have increased the value of using in silico screening
in drug discovery. These two factors have laid the foundation for the develop-
ment of various designmethods, including docking, molecular dynamics calculation,
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quantum chemical calculation, and machine learning (AI). For example, in terms of
the enrichment of drug discovery-related information, as of 2018, databases with
>140,000 entries of three-dimensional protein structure information (PDB), >95
million items of known compound information (PubChem), and >340 million items
of compound information with preprocessing for in silico screening at RIKEN, and
a public database with >2.1 million items of compound information with bioactivity
values (the ChEMBL database) are available for use (Fig. 1).

With regard to computer performance, the performance of multi-purpose super-
computers, such as the K computer and TSUBAME in Japan, is increasing at a
constant rate. Furthermore, computational devices dedicated to molecular dynamics
computation, such as Anton [1] and MDGRAPE [2], outperform the K computer
despite having a much smaller chassis with less power. The increased use of in silico
screening is also evident in academia. According to a survey by Proschak et al.
[3], papers dealing with high throughput screening (HTS) as a means to discover
hit chemical compounds began to increase in 1990 and plateaued around the year
2000. After 2000, the number of papers dealing with in silico screening began to
increase. Currently, the number of papers dealing with in silico screening roughly
equal those dealing with HTS; the number continues to increase. As of 2016, Nature
and related journals have reported drug discovery cases using virtual screening (same
significance as in silico screening) practically every month.

Fig. 1 Big data for drug discovery information
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2 Merging of Informatics and Simulation in In Silico Drug
Discovery Technology

In silico drug discovery requires modeling of phenomena that can occur in rela-
tion to the drug within the body or cells in the real world using a particular theory.
Based on the type of theory used, the modeling methods can be roughly classified
as informatics- and simulation-based methods. As the informatics-based methods
primarily use structure–activity relationship information on the small compound
(ligand) side, they constitute ligand-based drug discovery (LBDD). In LBDD,
modeling is performedusingmachine learning based on statistical theory or structural
similarity indices. Machine learning is an element technology of AI; recently, deep
learning has been used frequently as a new-generationmachine learningmethod. The
simulation-based methods use information on protein structures to simulate protein–
ligand interactions using various theories, such as classical molecular force fields,
quantummechanics, andmolecular dynamics. Thus, these constitute structure-based
drug discovery (SBDD).

A mutually complimentary relationship exists between informatics and simula-
tions. Informatics-based designs demonstrate short calculation times, and the hit rate
accuracy is relatively stable without depending on specific researcher experience.
However, informatics-based designs also have the disadvantage that only compounds
sharing the same binding sites and binding modes as the known inhibitors used in the
search are identified as hit compounds. With some modifications such as using 3D
shape features, somewhat different skeletal structures can be searched. In contrast,
with simulations, binding free energies can be precisely predicted according to the
laws of physics. Drug discovery can also be extended to include all possible protein
binding sites. Thus, simulation can completely compensate the disadvantages of
informatics. However, the calculation time of simulations may be extremely long
and the simulation may fail completely if the calculation settings are inappropriate.
Molecular simulation is easily misunderstood by other academic disciplines; reason-
able answers are not provided automatically at themere pressing of a button. Toobtain
a reasonable result, it is crucial for experienced researchers to refer to the calculation
settings of similar cases and consider existing experimental results. If the calcu-
lation procedure and conditions have been verified over a sufficiently wide range,
such known conditions can be applied without further investigation. In actual drug
discovery, however, it is essential to deal with a wide range of aspects and subjects
for calculation, and merely following existing procedures and conditions frequently
is insufficient to achieve good results.

At theRIKENHommaLaboratory, we are attempting to develop a highly practical
in silico drug discovery systems that combine informatics-basedmethods (LAILAPS
[4] and MUSES [5]) and simulation-based methods (PALLAS [6] and FMO +
MM/PBSA [7]) (Fig. 2). The LAILAPS method detects a wide range of inhibitors
as comprehensively as possible by simultaneously running a variety of ligand search
techniques, including machine learning prediction that uses 3D molecular profiles
developed in the laboratory as the descriptor. LAILAPS is particularly effectivewhen
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Fig. 2 Integration of informatics and simulation in the in silico screening system

there is limited information. In addition to being used for information collection
prior to simulations, such as for docking, LAILAPS can discover new ligands when
the protein structure is unknown. For example, new Adiponectin receptor ligands
were searched based on analogous membrane protein and upstream protein ligand
information, leading to the world’s first discovery of activators [8].

The PALLAS simulation method optimizes docking conditions between proteins
and ligands. In high-speed docking with over several millions of chemical
compounds, it is impossible to perform time-consuming binding free energy calcu-
lations on each individual chemical compound; thus, the protein structures used
in docking and the docking algorithm heavily influence the accuracy of the
screening results. PALLAS performs verification docking against the protein struc-
ture ensemble obtained from crystal structures and molecular dynamics simulations
using known ligands of the target and analogous proteins. It then semi-automatically
optimizes various conditions, including the protein structures, docking algorithms,
and their settings. Actual high-speed docking is typically executed by selecting
several to ~10 docking conditions.

Reasonable docking results can be obtained using optimized conditions (model
structures in which proteins and ligands are virtually bound with the correct orienta-
tion); however, with conventional docking scores, it is difficult to determine bioac-
tivity such as inhibitory activity with sufficient accuracy. For example, the IC50 corre-
lation between prediction and actual measurements is ~0.2–0.4 with R2. Therefore,
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Fig. 3 Activity cliff prediction using a score that combines FMO and the solvent effect

we have developed the MUSES method to assess activity based on structural infor-
matics and a method to predict activity based on quantum mechanical calculations.
MUSES is an artificial intelligence (AI) technology that quantifies various interac-
tions of the docking model for proteins and ligands and learns the difference between
interaction patterns for active ligands and inactive ones using machine learning. The
verification results reveal that when crystal structures or reasonable docking models
of known several inhibitors are available, evaluations that exceed commercially avail-
able docking scores can be performed. In addition, with regard to the prediction of
free energy using the fragment orbital molecular (FMO) method, we are developing,
in collaborationwith the FMODrugDesign Consortium [9], a score that incorporates
solvent effects in the FMO method (FMO + MM/PBSA) [7]. In the example shown
in Fig. 3, with Pim1 kinase, inhibitory activity differs by several hundred times due
to a difference in a single atom. In the so-called “activity cliff” example, conven-
tional MM-PBSA method demonstrated extremely poor prediction accuracy (R2 =
0.26), using a score that combines the FMO method and MM-PBSA and by further
optimizing the crystal structures via QM/MM, the result was greatly improved to R2

= 0.85.

3 Applications to Drug Discovery Targets

The above mentioned in silico drug discovery methods have been applied to >
30 varieties of drug discovery targets in RIKEN. The probability of achieving a
hit relative to the drug discovery target (drug discovery difficulty level) is greatly
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dependent on the shape and characteristics of the particular target. We analyzed the
IC50 values of a total of 600,000 inhibitors for 1,487 varieties of targets listed in
the ChEMBL database. Observing the maximum potency for each target, inhibitors
below 100 nM (for which drug development is possible) were found for the majority
of targets. However, over several hundred varieties, for which drug development
was considered difficult, with maximum potency levels ranging between 1 μM and
1 mM, were also found. Generally, for small molecules to block the function of
proteins at ≤1 μM, they must have large pockets of ≥400 A3, deep pocket shape,
and key hydrogen or ionic bonding sites at deep positions. In our laboratory, we deal
with targets of varying complexity; some representative examples are introduced
hereafter.

Protein kinases have large, deep pockets, and they contain key hydrogen bonds
in the hinge region within the deep area of the pockets. Therefore, they are targets
for which the discovery of small molecule inhibitors is feasible. For these targets,
it is important to discover structurally diverse inhibitors at the initial stage so that
issues with pharmacokinetics, toxicity, kinase selectivity, and patentability can be
addressed in the later stages of the drug development. Pim1 and HCK, which are
targets for leukemia, and ALK2, which is a target for the rare disease Fibrodysplasia
Ossificans Progressiva (FOP), are all kinase targets. However, via in silico screening,
we discovered a variety of inhibitors of ≤10μMat a comparatively high hit rate of 5–
10% by combining LAILAPS, PALLAS, andMUSES at an early stage. In particular,
with the Pim1 inhibitor [10] case shown in Fig. 4, we investigated docking conditions
using PALLAS in the state for the first in silico screening in which there was only

Fig. 4 In silico screening of Pim1 inhibitors
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information about 10 crystal structures and eight known inhibitors. Via in silico
screening, using the selected optimization conditions produced a sufficient hit rate
of 6.8%. Using the synthetic development of Nagano et al. from Tokyo University
on these first-time hits led to the discovery of highly potent and highly selective
inhibitors. Following this, using the additional assay/crystal structure information
(35 crystal structures and 66 known inhibitors) in the second in silico screening,
the hit rate improved to 12.3%. The additional hits were valuable backup chemical
compounds for solving ADME and toxicity issues.

Figure 5 shows the example [11, 12] of an HCK inhibitor design for an acute
myeloid leukemia treatment drug target. In this case, chemical compounds with
extremely high activity (IC50: 7.7 nM)were obtained from the first in silico screening.
Complex crystal structures with HCK were solved using the X-ray analysis by
Yokoyama et al. of RIKEN. According to the complex structure, we introduced a
new amine substituent to the initial inhibitor to form an ionic bond with Asp348. As

Fig. 5 Optimized design of HCK inhibitors
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the result of design, RK-0020449 was obtained. It demonstrated sufficient inhibitory
activity (0.43 nM) and efficacy in patient-derived AML cells, and a clinical trial is
being prepared in the United States.

In contrast, two types of difficult targets are thosewith extremely small and shallow
pockets and a high level of freedom. A typical example of the former is DHOD [13,
14], which is an anti-trypanosomal drug target that contains orotic acid pockets with
an extremely small binding site of 200 A3.When analyzing the PDB bind database (a
database of complex crystal structures and chemical compounds with various infor-
mation, such as IC50 values), we learned that chemical compounds with high activity
below IC50: 1 μM are difficult to obtain when the volume of the binding pocket is
≤300 A3. Thus, in the trypanosoma DHOD case, small molecule drug discovery was
initially considered difficult; however, by effective collaboration of structure-based
design, organic synthesis, and crystal structure analysis, we successfully designed
new chemical compounds that push out the specific loop structure and extend the
pocket. For pockets that are extended ≥400 A3, we constructed a virtual chemical
compound library that can easily perform synthesis. This virtual library can also
perform selection via docking using the PALLAS and MUSES methods. From the
synthesis of only 20 chemical compounds, we derived highDHOD inhibitory activity
of approximately IC50: 0.15 μM from starting compounds of approximately IC50:
100 μM (Fig. 6).

Another category of high-difficulty targets is the so-called “protein–protein inter-
action targets” which come into contact with each other over a wide area and transmit
signals, creating interactions between them. DOCK1/2 [15], which is a target discov-
ered by Fukui et al. of Kyushu University, has been studied in the laboratory.
DOCK1/2 forms protein–protein interactions with Rac1. By predicting the ligand
binding sites and performing in silico screening using docking to the predicted sites,
several inhibitors of ~10 μM were discovered. For such difficult targets, inhibitors
with the desired activities are often not detected via only one in silico screening;
therefore, it is important to gradually acquire information and to repeat the design
process using the new information. The key is to build a robust joint research structure
where research is performed with tenacity and perseverance. Further, it is essential
to have various types of systems that can immediately use the new information, such
as those established in the laboratory, to improve the accuracy and efficiency of in
silico screening.

4 From In Silico Drug Discovery to AI Drug Discovery

Herein, we discuss some next-generation technologies that will improve both the
accuracy of each step of prediction and the probability of drug discovery for high-
difficulty targets. The first of these technologies is the use of quantum mechanical
calculations.Molecular dynamics calculations and quantummechanical calculations
are mutually complimentary methods used for dealing with molecular behaviors.
These methods share a relationship similar to two wheels on a vehicle. The former
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Fig. 6 Optimized design of DHOD inhibitors using a virtual library and docking

analyzes the dynamic behavior of molecules, whereas the latter is the most accu-
rate method known for calculating static interactions between molecules. Currently,
molecular dynamics calculations are studied extensively. Some progress has been
achieved in drug discovery, for example, in applying free energy calculation based on
MP-CAFFE by Fujitani et al. and long-term simulations approaching themillisecond
level using the dedicated device, Anton, by Shaw et al. However, in these molecular
dynamics calculations, classical force fields are used for calculating the interactions
betweenmolecules because of constraints related to the calculation time. Interactions
that require orbital calculations, such asπ interactions, are not accurately considered.
Thus, the level of prediction can worsen in some cases. In Japan, Kitaura et al. devel-
oped the fragment molecular orbital (FMO) method, which enables first-principles
quantummechanics calculations for huge systems, such as proteins. Currently,we are
collaborating with Fukuzawa and coworkers fromHoshi University at the FMO drug
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design consortium [9] to develop a method of applying the FMOmethod to practical
drug discovery. Examples of our study include: quantum chemical refinement of the
resolution of crystal structures using the FMO method, highly accurate free energy
prediction based on FMO + MM/PBSA (Fig. 3) [7], and construction of the FMO
database (currently under preparation for public release in 2018) for performing
comprehensive FMO calculations for PDB protein structures and publishing the
calculation values. In particular, the FMO database already stores over 2000 FMO
calculation results. Based on these data, we are collaborating with the AI consortium
(LINC) in Japan, which will be described later, to develop a new AI-based molecular
force field that considers the results of quantum chemical calculations.

Another direction of research is AI drug discovery using data from the expanding
quantities of drug discovery-related information. In silico drug discovery methods
until now have only been able to simultaneously predict one item, such as target
binding affinity. However, development candidates or marketed drugs must meet or
exceed certain levels of quality in numerous criteria, such as pharmacokinetics, safety,
and pharmaceutical formulation. The difficulty of optimizing these items simultane-
ously is a reason for the low success rate of drug development. From this perspective,
although conventional in silico drug discovery methods have made partial contribu-
tions to drug discovery, they cannot be said to havemade amajor contribution overall.
AI drug discovery has the hidden potential to be able to guide the optimization of
multiple items in an efficient direction. This will provide the first step in which the
in silico method can, in a true sense, make a major contribution to drug discovery.
However, it is necessary to secure a large volume of high-quality drug discovery-
related data with the right set of experimental conditions and to combine previous
individual highly accurate predictionmodels. This will require, in addition to cooper-
ation by industry, government, and academia, complete and dedicated efforts inmany
drug discovery-related fields. In Japan, the LINC [16] was established in 2016, with
Okuno fromKyotoUniversity as a representative, and it has initiated the development
of AI for a variety of drug discoveries.

Mizuguchi from the medical foundation KENEIKEN and the author are members
of LINC, and are promoting the development of AI for cutting-edge drug discovery.
The structure of LINC is based onmore than 90 pharmaceutical and IT companies and
has a total of over 500 participants. The points to be emphasized here are that all stages
of drug discovery are covered by AI—from the upstream process of identification
and validation of targets to downstream clinical trials and analysis after coming to
the market. 30 projects are under operation. Progress has been achieved in terms
of small molecule drug design, in the development of original descriptors for deep
learning, AI for analyzing simulation results, molecular force field AI, and AI for
new structure proposals.
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Abstract There has been a long history of fruitful cooperation between academia
and the pharmaceutical industry, with the primary beneficiary of this interaction
being, of course, the public. Since the middle of the last century, the drug discovery
process has been driven by the translational research partnership between these two
sectors. Collaboration between academia and industry has accelerated based on the
ever-increasing demand for novel medicines, technologies, new drug targets, finan-
cial pressures and from the past successes. Here, we review the benefits and chal-
lenges for each sector seeking to engage in a fruitful and productive collaboration and
provide some practical solutions, based on our own experiences, to make this kind of
collaboration successful and rewarding.We provide several examples of partnerships
between Evotec (UK) Ltd. and academia (National Institute of Advanced Industrial
Science and Technology (AIST, Japan), University College London, University of
Oxford and briefly review the technologies that have been developed as a result. We
also show how this kind of collaboration can be particularly effective within a larger,
multi-partner, academia-industry collaboration (CompBioMed).
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Structure based drug design · Hierarchical GPCR modeling protocol (HGMP) ·
Residence time · Steered molecular dynamics (SMD)

1 Background

Why is there a need for collaborative research between the pharmaceutical industry
and academia? We will endeavor to answer this question. Each sector has their own
motives for embarking on a collaboration of this kind, and accounting for these can
significantly improve the mechanism of collaboration and lead to an increase in such
joint research programs in the future. In this chapter, we will draw from our personal
experience and review the benefits and obstacles, which both parties should consider
before generating a true and fruitful partnership. We will propose practical solutions
of how to make academia-industry collaborations efficient and meet the needs of
both partners.

1.1 Pharmaceutical Industry

Thepharmaceutical industry lives andbreathes translational researchby transforming
knowledge of a potential drug target into a medicine for patients around the world.
Drug discovery is often long and expensive from the conception of an idea, via target
validation, small molecule discovery, research and development (R&D) phases, and
clinical trials to marketed drug. The pharmaceutical industry (pharma) spends about
$1 billion to $2 billion to invent each new drug [1]. This process is challenging intel-
lectually, scientifically, economically, organizationally, and emotionally but when
successful, lives are saved and suffering is decreased.

The annual expenditure for pharma R&D relative to income from sales has
increased nearly every year over the last three decades, but the return on R&D
investment has dramatically decreased. In the early 1980s, $1 invested in capital-
ized research returned about $3 (in sales). This took 10 to 15 years; however, there
was a clear positive return on investment across the industry. Three decades later,
the financial situation is completely different—when capitalized R&D returned only
$0.83 per $1 invested (Fig. 1). This is clearly not a sustainable business model.

Many different factors have been proposed to explain this constant decrease in
return; however, there is one fundamental issue at play that drives all these factors
together: the law of diminishing returns, as suggested by Stott (see Fig. 1) [2]. In his
analysis, Stott proposes that the incremental improvement in patient care with each
new drug that makes it to market raises the expectation for the next drug that will
follow. Not only does this make each subsequent drug more expensive to produce
but also, eventually, the scope for significant improvement on previous versions
becomes negligible. It is indeed ironic that the relationship between patient care
and return on financial investment for the pharmaceutical companies providing the
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Fig. 1 Plot of time versus internal rate of return (IRR) on investment, taken from blog of Stott [2]
(reproduced with permission of the author). Various analysts (notably Deloitte and BCG) have tried
to measure Big Pharma’s R&D productivity in terms of IRR

therapeutic solutions is, effectively, inversely proportional. This highlights that the
need for innovation, as part of the drug development pipeline, is paramount in order
to maintain competitive and commercial success.

While the pharmaceutical industry’s business model depends on innovation, there
is now a growing divide in innovation strategies within the sector. Some companies
prefer to invest primarily in their own research engine [1]. Others seek innovation
externally. However despite their differing approaches to R&D, all major pharma-
ceutical companies continue looking to academia for sources of innovation beyond
their internal research engines [1].

Industry relies on academia for basic research that identifies novel molecular
targets and for clinical trials. Furthermore, allianceswith top scientists fromacademia
increases the credibility of the company to investors and other stakeholders, while
building a network of key opinion leaders that might endorse future products. In
addition, collaboration with academia allows pharmaceutical companies to diversify
their drug and technology portfolios with little risk and high return on investment.
It also provides access to highly skilled talent, specialized expertise, state-of-the-art
equipment and facilities. For example, new animal models, patient databases and
other infrastructure from the academic community, such as human tissue banks,
provide unique opportunities for the validation of identified targets and pathways.
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1.2 Academia

Academic research can also significantly benefit from collaboration with industry.
Academic endeavors are increasingly being driven toward research that will address
matters of pressing societal concern. In the biomedical sciences, there is signifi-
cant emphasis on translating fundamental discoveries into improvements in human
health and well-being. Industry is an important player in this process as it offers
the opportunity to help develop solutions for real-life problems, bringing academic
science further down the translational research pathway toward application. A
successful collaborationwith industry facilitates translational research, but also offers
to researchers and students the opportunity to gain new perspectives and integrate
new skills into their research. It enables academic scientists to show that they are
driving innovation and have the capacity and the network to make a demonstrable
contribution to society and the economy.

As government funding decreases, academic scientists are placed under increasing
pressure to obtain funding from external sources [3]. Collaboration with industry
provides several interesting alternatives by which to finance academic research,
ranging from shared research grants (such as those provided in the UK by the
BBSRC, EPSRC, MRC, Royal Society and UK Research and Innovation, among
others), shared research projects or fee-for-service projects. In the US, the NIH
clearly endorses collaboration with industry in its Clinical Translational Sciences
Institutes and in the new National Center for Advancing Translational Sciences.

Collaboration between academia and industry frequently happens at the edges of
different disciplines where innovation occurs. There is increasing evidence showing
that university-business cooperation can result in a higher number of academic publi-
cations that are also of higher quality [1], showing that these collaborations are able
to enhance and improve research outputs, as measured by journal citation rates and
citation lifetime [1].

Collaborationwith industry provides important feedback to academic researchers.
Application of computational methods to realistic problems pinpoints the necessary
improvements and extensions that have to be implemented to improve the quality
and usefulness of computational methods. Purely academic projects may be biased
toward the high standards in the theoretical field but on the other hand they tend to
use oversimplified models not adequately describing the chemistry and physics of a
practical process. In joint research projects the focus may be better tuned to solve
the practical problem at hand.

1.3 Challenges

On the face of it, these collaborations make sense for both sides, and yet they remain
very challenging.Why? Firstly, by their very nature these projects are often discovery
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driven and there will inevitably be unanticipated events throughout the project life-
time that can derail even the best planned project [3]. Secondly, a very real challenge
is that of culture clash [3]. A fundamental difference appears between the two sides
when it comes to publishing results. Industry seeks profit through competitive advan-
tage, naturally developing a culture of confidentiality. On the contrary, academic
achievement is oftenmeasured through the number and quality of publications,which
are essential to support shared research grants.

An additional cultural clash comes from the more traditional academic perception
that research is performed to obtain novel understanding, made publicly available
as soon as possible and be free from biased commercial interest. Recent surveys
conducted among academics have demonstrated that “the expected benefits from
collaboration are not clearly perceived by all researchers” and that “academics who
are not already involved in industry collaborations fail to recognize the potential
opportunities of engaging with industry” [4]. Each academic institution has its own
policy concerning collaboration with industry. Would it be possible for universities
and pharma to create a universal template? The availability of a widely adopted
template could increase the efficiency and speed of research by standardizing some
individual details that require negotiation, such as intellectual property rights, royalty
rates, payments, and other items that are specific to a particular collaboration. From
industry’s perspective, a sizeable gap exists between theway inwhich basic academic
research is conducted and the needs of the pharmaceutical industry. The general
requirements of the pharmaceutical industry for any drug discovery approach are:
(1) themethod should be applicable to drug discovery projects; (2) themethod should
be effective and cost-efficient; and, (3) it should satisfy the immediate need for such
information to be provided in “real-time”. This gap must be bridged in order to
successfully apply academic knowledge to the drug discovery process.

Despite these challenges, it is critically important for industry and academia to
collaborate to improve health and well-being in many areas of medicine. Despite
the tensions between these two sectors, potential conflicts of interest and regulatory
issues, the number of industry-academia collaborations is growing, worldwide. Inter-
estingly, most of these collaborations differ from those of the past. Historically, these
collaborative endeavors were large programs that covered entire therapeutic areas, an
approach that was in most cases less productive that expected [1]. Current industry-
academic collaborations now tend to be precisely targeted to a specific project and
we anticipate that the nature of this kind of collaboration will continue to evolve as
more thoughtful ways of working together to develop and become used as examples
of best practice.
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2 Examples of Academia-Evotec Ltd. (Industry, Drug
Discovery Company) Collaborations

In the modern era, collaboration between academia and pharma is often focused
around addressing specific challenges in drug-discovery. Here, we provide three
examples of collaborative programs between academia, and Evotec (UK) Ltd. estab-
lished to address key challenges in drug-discovery. The three programs are concerned
with the development of novel methods and computational-experimental tools. The
objectives of each program are as detailed:

(1) Explore the nature of themolecular interactions between a ligand and its receptor
as well as the interactions between residues within that receptor.

(2) Develop a method for modelling the secondary structure of G protein-coupled
receptors (GPCR).

(3) Develop a method for determining protein–ligand residence time, to improve
the effectiveness of therapeutic compounds.

2.1 Molecular Interactions Identified by the Fragment
Molecular Orbital Method

TheNational Institute ofAdvanced Industrial Science andTechnology (AIST, Japan),
University College London (UCL) and Evotec (UK) Ltd. combined efforts on a
project to develop the use of quantummechanical tools for the exploration of protein–
ligand and protein–protein interactions to inform drug discovery.

The understanding of binding interactions between a protein and a small molecule
plays a key role in the rationalization of potency, selectivity, and kinetics and is
essential for an efficient structure-based drug design (SBDD) program. However,
the full complexity of the molecular interactions that are so critical to the rational
drug discovery process cannot always be explained, even when the crystal structure
is available and used to perform force field-based molecular mechanics calcula-
tions. Quantum mechanical (QM) methods can address this shortcoming, but are
computationally expensive, making the use of these calculations impractical for the
pharmaceutical industry.

We routinely use the Fragment Molecular Orbital (FMO) QM method [5, 6] in
protein–ligand binding calculations and drug design because it offers a substantial
computational saving over traditional QM methods by partitioning the system into
small fragments and performing QM calculations on these. A typical FMO calcu-
lation on a GPCR-ligand complex takes approximately 4 h to complete on 36 CPU
cores, which is significantly faster and less computationally expensive than classical
QM calculations. FMO has been successfully applied in many confidential and non-
confidential SBDD programs such as the discovery of kinase (ITK) inhibitors [7]
and novel Hsp90 inhibitors [8]. We have also recently demonstrated how FMO can
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be efficiently used in the analysis of GPCR-ligand interactions [5, 6, 9], specifically
in the investigation of Agonist-OX2 receptor interactions [5].

FMO takes, as an input, a protein–ligand complex and provides, as an output, a
list of the specific interactions and their chemical nature. FMO is a highly valuable
tool for rational SBDD as it provides an accurate and comprehensive list of strong,
weak, or repulsive interactions between the ligand and its surrounding residues. This
information is useful in rational SBDD in terms of ligand modifications such as
scaffold replacement and linking, extension of chemical moieties to form stronger or
new interactions with the protein or, alternatively, for the discovery of new ligands.
FMOwas recently combined with density-functional tight-binding (DFTB) allowing
us to run FMO at a dramatically enhanced speed but with a comparable level of
accuracy, compared with the FMO-MP2 protocol we deployed previously [10]. For
the first time it is now possible to perform FMO calculations for protein–ligand
complexes in a high-throughputmanner and to process large amounts of experimental
data. Protein–ligand complexes can be refined, re-scored, and re-ranked with FMO-
DFTB in the presence of the surrounding water molecules.

We have extended our application of FMO, moving from the study of protein–
ligand interactions to the characterization of protein–protein interactions. The struc-
tural stability, function and ligand binding of GPCRs are dominated by the inter-
actions between residues of different helices [11, 12]. However, the question of
what constitutes the structural features responsible for “gluing” together the seven
helices of the GPCR bundle and how these affect ligand binding, receptor flexibility
and activation, remains open. We applied FMO to study the network of residue-
residue interactions between different GPCR helices (TMs). These essential struc-
tural insights can be applied to design ligands that can more efficiently interact
with the inter-TM network, controlling receptor structure and flexibility and thereby
affecting its function. This has the potential to lead to a new generation of more
effective GPCR-targeted drug [13].

2.2 Computer-Aided Drug Design and the Hierarchical
GPCR Modelling Protocol (HGMP)

A series of collaborations between academia and industry underpin the develop-
ment of a computational engine to support structure-based drug design (SBDD)
in G protein-coupled receptor (GPCR) drug discovery programs. These collab-
orations have been supported by shared research grants awarded jointly to the
academic (University of Oxford, University College London (UCL)) and industrial
(Evotec) partners and to CompBioMed, a large academic-industrial research Centre
of Excellence led by UCL and funded by the European Commission’s Horizon 2020
Programme.

GPCRs are the largest membrane protein superfamily, and vast amounts of indus-
trial and academic research is carried out on these receptors on a global scale.
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There are over 800 GPCRs in the human genome and signal transduction by this
receptor superfamily controls most of the physiological processes ranging from
vision, smell, and taste to neurological, cardiovascular, endocrine, reproductive func-
tions, and many more, making GPCRs one of the most important classes of current
pharmacological targets.

The importance of GPCRs is highlighted by the award of the Nobel Prize for
Chemistry (2012) to two GPCR researchers, Brian Kobilka and Robert Lefkowitz.
However, GPCRs are underexploited as therapeutic targets, given that 60% of all
prescription drugs today target just 50 of the 800 available GPCR targets. A recent
expansion of the repertoire of GPCRs targeted for drug discovery is a consequence
of the increasing availability of structural information describing the binding site
of the targeted receptor. However, X-ray crystallography, a traditional source of
structural information, is not currently feasible for every possible GPCR or GPCR-
ligand complex, significantly limiting the ability of crystallography to contribute
to the drug discovery process for GPCR targets in “real-time”. The urgent need
for other practical and cost-efficient alternatives can be met by the development of
sophisticated computational modeling, particularly when this is complemented by
experimental structure–function studies.

A novel hierarchical GPCR modeling protocol (HGMP) [14] has been developed
by Evotec (UK) Ltd. and the University of Oxford to support structure-based drug
discovery programs (Fig. 2). The HGMP generates a 3D model of GPCR struc-
tures and the complexes they form with small molecules by applying computa-
tional methods. The models produced by HGMP are exploited in structure-based
drug discovery projects. HGMP is a workflow that begins with homology modeling
followed by MD simulation and flexible ensemble docking to predict binding poses
and function of ligands bound to GPCRs. The HGMP includes a large set of unique

Fig. 2 HGMP: a novel workflow used to inform structure-based drug discovery
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plugins that can be used to refine themodels generated and contains exclusive scoring
functions such as the GPCR-likeness assessment score (GLAS), which can be used
to evaluate the quality of the model [15]. HGMP is also “armed” with a pairwise
protein comparison method (ProS) used to cluster the structural data generated by
the HGMP and to distinguish between different activation sub-states.

The optimization and validation of HGMP has been performed by Evotec (UK)
Ltd. and applied to drug discovery projects. The outstanding performance of HGMP
has been demonstrated in GPCR drug discovery projects on numerous targets
including: MCH-1R [16] for obesity treatment, Orexin-1 and -2 receptors [15, 17]
for insomnia, 5-HT2C [18, 19] for the treatment of metabolic disorders [19] and in
many other confidential drug-discovery programs. The refinement and use of the
GPCR model is an iterative process where new experimental data produced in the
drug discovery cycle is fed back into HGMP and used for the continuous validation
and refinement of the model (Fig. 3) [18].

FMO-4-GPCR is an integrated component of theHGMPand is used to apply FMO
to the analysis of interactions between ligand and receptor for themodel that has been
constructed with HGMP [5, 10, 14]. This information is essential to allow medicinal
chemists to adopt a rational approach to the modification of lead compounds in order
to enhance favorable interactions. Although it is primarily used to interrogate the
molecular nature of these interactions, FMO-4-GPCR can also be used as a test of

Fig. 3 The GPCR application and refinement cycle and HGMP
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the quality of the model generated by HGMP, as FMO often crashes if the quality of
the model is insufficient, allowing models to be subjected to further optimization.

Funding support for HGMP and its applications comes from a number of different
sources. In 2011, the Royal Society awarded Evotec (Alexander Heifetz) an Industry
Fellowship to establish a collaboration with the University of Oxford (Philip Biggin)
for the development of computational methods to guide drug discovery. In 2013, the
BBSRC (UK Research and Innovation) provided funding support for the Oxford-
Evotec collaboration through aFLIPFlexible InterchangerProgramme researchgrant
to develop methods for the discovery of GPCR biased ligands. In 2016, the European
Commission funded the CompBioMed Centre of Excellence (https://www.compbi
omed.eu) focused on the use and development of computational methods for biomed-
ical applications, with the specific intention of adapting theHGMP and other relevant
codes for use on supercomputers in order to provide the capabilities needed for the
development of patient-specific drugs (personalized medicine).

CompBioMed provides a focal point for the development and sustainability of
software (codes, programs, and packages) that are capable of high fidelity three- and
four-dimensionalmodelling and simulation of all aspects of the human body, from the
molecular level to the whole human and beyond, in health and disease. The accuracy,
reliability, and reproducibility of these models, and therefore of the underpinning
software, is essential for their intended future role in personalized medicine, for
example in clinical decision support for individual patients. Such approaches have an
impact inter alia on drug discovery, including repositioning and targeted therapies for
precision medicine, through the potential for rapid and accurate assessment of drug
efficacy in specific disease cases, of direct relevance to the pharmaceutical industry;
and to provide added value to medical device measurement data, for example as
acquired by various imaging modalities. Thus the project involves major industry
participation, furthering the direction, uptake and exploitation of high performance
computing (HPC) within academia, industry, and healthcare sectors.

CompBioMed is of particular interest in terms of academic–industrial collabora-
tions for three reasons. First, it is a vast academic–industrial collaboration consisting
of 15 core partners and 36 associate partners drawn from academia and from small,
medium, and large enterprises. This arrangement has worked exceptionally well and
the award of CompBioMed2 for 2019 has recently been confirmed. Second, Comp-
BioMed aims to adapt relevant codes and protocols so that they can run in automated
fashion on high performance computing facilities. This provides the opportunity, for
example, to expand the capabilities of the HGMP and apply it far more extensively
than is possiblewith the computational resource typically used to run it. Third, Comp-
BioMed has substantial impact, both in terms of supporting and facilitatingmodelling
and simulation activities, and in providing education (Fig. 4) and training for a very
heterogeneous set of end-users from both academia and industry. Collaborations
between academia and industry do not frequently involve teaching; however, Comp-
BioMed facilitated this opportunity for the smaller collaboration between Evotec and
UCL. These two partners were able to communicate their expertise and knowledge
through the development and delivery of a two hour training course on An Intro-
duction to Computer-Aided Drug Design (CADD) and GPCR Modelling—(https://

https://www.compbiomed.eu
https://youtu.be/K6Ysidm3icQ
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Fig. 4 Screen snapshots taken from the “Virtual Humans” film produced by the Barcelona
Supercomputing Centre (BSC) and CompBioMed H2020 Centre of Excellence in Computational
Biomedicine, led by University College London (https://youtu.be/1FvRSJ9W734)

youtu.be/K6Ysidm3icQ) and Innovations in HPC-training for Medical, Science and
Engineering Students (https://youtu.be/w3nvt6n1WZI) at the 2018 CompBioMed
Winter School at the Barcelona Supercomputing Centre (https://www.compbiomed.
eu/events-2/compbiomed-training-winter-school-2018-at-bsc/).

2.3 Residence Time and Improved Clinical Efficacy

UCL and Evotec have recently formed a collaboration aimed at developing tools
to address receptor-ligand residence time, funded by a FLIP Flexible Interchanger
Programme research grant to Andrea Townsend-Nicholson to bring Alexander
Heifetz to UCL as the flexible interchanger from industry. The keys goals of UCL-
Evotec collaboration are to develop and validate a method that can: (1) rationalize
the RT profile of known GPCR binders by calculating the forces that affect protein–
ligand residence time; and, (2) validate this method by structure-based discovery of
novel GPCR binders with long and short RT.

Drug-target residence time (RT) is the length of time that a drug stays bound to
its target receptor. Long lasting (long RT) ligands are often involved in multistep
binding that promotes conformational changes in receptor structure and in the water
molecule network. This causes a “trapping” of the ligand inside the binding pocket,
resulting in a prolonged RT. Networks of water molecules often act as a “Iid” that
traps the ligand inside the protein, prolonging the RT without affecting the binding
affinity.

Evidence reveals that ~70% of long RT therapeutics displayed higher efficacy
than comparable faster-dissociating drugs [20, 21], supporting the view that drug-
target RT is of even greater importance than affinity, therapeutically. Recently several
notable reviews have emphasized the pivotal role of RT optimization in the early

https://youtu.be/1FvRSJ9W734
https://youtu.be/K6Ysidm3icQ
https://youtu.be/w3nvt6n1WZI
https://www.compbiomed.eu/events-2/compbiomed-training-winter-school-2018-at-bsc/
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Fig. 5 Schematic description of dissociation energy terms

phases of drug discovery [22]. However, despite the clear correlation between ther-
apeutic efficacy of drug candidates and RT, no practical method has been developed
to address this crucial parameter in a rational manner.

We have adopted an integrated computational-experimental approach to devel-
oping a tool by which to calculate RT, using steered molecular dynamic (SMD)
simulations to calculate the forces (dissociation energy terms, Fig. 5) involved in
ligand dissociation. SMD involves applying a force to artificially “pull” the ligand
out of the receptor binding site and calculating the forces that “resist” ligand disso-
ciation as the ligand makes and breaks contacts with specific residues along its exit
path. Experimental methods are applied to interrogate these residues and confirm
their involvement in ligand dissociation. Iteration between computational and experi-
mental findings allows refinement of the computational prediction of RT. Ultimately,
this methodology will be used to guide the design of ligands with improved RT
profiles, leading drugs with greater efficacy in the clinic.

3 Conclusions and Solutions

UCL and Evotec each have benefitted tremendously from the creation of a collabora-
tive environment that has integrated experimental and computational biology instead
of considering them as separate areas of investigation. This partnership provides a
research environment with: state-of-the-art instrumentation, resources and protocols;
scientific experts from pharma, biotech and academia; a multidisciplinary approach
to the development of new technologies in a collaborative fashion and to the develop-
ment of individuals with unique and valued skill sets; and a commitment to encour-
aging the timely and effective dissemination of knowledge arising from research.
The resources of both partners (Evotec and UCL) have enabled the provision of
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in-depth specialist training in the experimental and computational methodologies
needed for the successful completion of the projects that have been jointly under-
taken. This collaboration includes a multidisciplinary approach involving compu-
tational (modelling, molecular dynamic simulations, computational drug discovery,
in silico drug-receptor docking) and experimental (recombinant receptor expression
and kinetic analyses of ligand association and dissociation rates) methodologies.

Collaboration works well when the following principles are established from the
outset:

1. Project objectives are defined and limited to address a specific issue.
2. Specific project goals defined and a schedule of agreed milestones are set.
3. Project goals have defined elements for each partner.
4. Both partners are involved at every stage, even if this is solely in an advisory

capacity.
5. Partners are geographically close that allows face-to-face meetings.
6. Relationship building and development is included as one of the specific project

goals.

This final point is particularly important. Although a collaboration, formally, is an
undertaking made by the at least two partnering organizations, an individual typi-
cally drives it from each partner. Critical factors to collaborative success include the
building and maintenance of a strong interpersonal relationship between these leads
ensuring that time is taken in the beginning to set clear objectives and expectations.
In our experience, binary relationships, such as joint supervision of a PhD student
working on a mutually relevant research project can provide useful facilitators of
relationship building. The mutual attention paid to the supervisor-student relation-
ship and the clear objectives required for a Ph.D. project help drive progress equally
from both sides and minimizes the risk of misunderstandings.

We also believe that close geographical proximity between the partnering insti-
tutions or collaborations is hugely beneficial to the academic-industrial partnership,
especially when collaborating scientists are able to meet face-to-face on a regular
basis (at least once amonth). This allows project management with timely discussion
and response to the recent results and planning of the next steps. Teleconferences can
be very useful, but we have found that interspersing these with regular face-to-face
meetings is the most effective way to drive an industrial–academic collaboration.

One of the key objectives of a successful collaboration is the dissemination of
knowledge produced during the collaboration. This may take the form of confer-
ence presentations and publications in peer-reviewed journals and books. Numerous
peer-reviewed publications have arisen from the collaborative endeavors described
in this chapter and in 2018, a book on “Computational Methods for GPCR Drug
Discovery” was published by Springer and edited by Alexander Heifetz. The chap-
ters were authored by experts from academia and industry and describe how struc-
ture and ligand-based approaches and cheminformatics approaches can be applied
to address key issues in drug discovery issues (https://www.springer.com/gb/book/
9781493974641). In addition, an international conference sponsored by the Royal

https://www.springer.com/gb/book/9781493974641
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Society, organized by Evotec (Alexander Heifetz) and focused on the topic of “GPCR
Structure, Function, Drug Discovery and Crystallography” and was held in the UK
on 1–2 September 2014. This conference brought together 20 renowned experts in
GPCR research and drug discovery spanning Europe, Australia, and North America.
Approximately half of the attendees were from academia and half from industry
[23]. In 2017, leading practitioners from academia and industry presented the state
of the art in binding free energy calculations at the CompBioMed/BioExcel Work-
shop on Free Energy Calculations FromMolecular Simulation: Applications in Life
and Medical Sciences.

In summary, it is extremely rewarding to see how knowledge can be translated
into new and more efficient drugs, tools that address an unmet clinical need and
benefit patients. This is most effectively achieved through collaborations between
industry and academia. Pharmaceutical companies offer their own scientific expertise
and platforms, derived from their wide experience in medicinal and computational
chemistry, target related biology, structural biology, ADMET, high-throughput tech-
nologies. When this is combined with academia’s fundamental biochemistry and
molecular biology, physiology and pharmacology from cellular to systems level,
powerful and effective therapeutic solutions can be developed, bringing benefit to
both parties and society.

Academia is reliant on industry for the medicines and technologies that it uses to
take care of patients. Conversely, industry is reliant on academia for the vast basic
research laboratories and hospitals that are needed to bring a drug to market. In a
way, academia and the pharmaceutical industry are co-dependent enterprises seeking
to bring benefit to the health of patients. Both industry and academia need to identify
and address biases and difficulties that impede collaboration between them in order
to work effectively and synergistically together. Our experience has shown that this
can be achieved, bringing benefit for both partners.

We would like to finish this review with the wise words of Michael Rosenblatt [1]
“I think the secret of a true partnership is acting like you have a true partner. This
applies to both academia and industry. We need to partner for the sake of modern
medicine; we need to do it for the sciences fundamental to medicine; and most of all,
we need to do it for our patients”.
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Elucidating the Efficacy of Clinical Drugs
Using FMO

Sundaram Arulmozhiraja, Hiroaki Tokiwa, and Hitoshi Shimano

Abstract It is known that first-principles based fragment molecular orbital (FMO)
theory can be used to study protein–ligand interactions quantitatively. This includes
obtaining amino acid residue-wise interactions with the ligand and detailed inter-
action components such as electrostatic, dispersion, charge-transfer, and exchange-
repulsion. This chapter discusses the ability of FMO calculations on elucidating
the efficacy of the clinical drugs that are available in the market. For this purpose,
two kinds of clinical drugs, dipeptidyl peptidase IV (DPP-4) inhibitors (sitagliptin,
linagliptin, alogliptin, teneligliptin, omarigliptin, and trelagliptin) and peroxisome
proliferator-activated receptor-α (PPARα) modulators (fenofibrate and pemafibrate),
were considered. The FMO calculations on relevant protein-drug complexes were
made at the correlated Resolution-of-Identify second-order Moller Plesset (RI-MP2)
level of theory utilizing correlation consistent double-zeta (cc-pVDZ) basis set. The
results discussed here clearly reveal that interfragment interaction energies obtained
usingFMOcalculations correlate significantlywith the activity of the drugs andhence
the activity of the drugs can be positively identified through FMO calculations. The
results presented here further encourages that this novel calculation approach can
be used for other types of drugs too to study the efficacy of the clinical as well as
potential drugs.
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1 Introduction

The drug’s action is mainly affected by two factors: (1) the quantity of drug that
reaches the target receptor protein and (2) the degree of affinity between it and
its target receptor. The other important factor is the intrinsic activity, the ability to
produce an effect after bound to the receptor, of the drug. Drugs that activate receptor,
agonists, must have both large binding affinity and intrinsic activity. They must bind
effectively to their target proteins, and the protein-drug complex must be capable of
producing an effect in the targeted area. On the other hand, drugs that block activity
of receptors, antagonists (inverse agonist), must bind effectively but have little or no
intrinsic activity because their function is to prevent an agonist from interacting with
its receptors. Therefore, the binding affinity, to the target protein, is an important
and essential quality of a potential drug candidate. Potency (amount of drug needed
to produce an effect) and efficacy (drug’s capacity to produce an effect) are the two
indicators throughwhich a drug’s effects can be evaluated. These two indicators have
good correspondence with the affinity and hence the binding affinity is a critical tool
to analyze the potency and efficacy of the drugs. Because of this, researchers aspire to
evaluate the binding affinity of the drugs or potential drug candidates to understand
their potency or efficacy.

Computationally, quantum mechanical (QM) calculations are essential to study
the protein–ligand complexes as they exhibit various non-bonding interactions, such
as π-stacking (π-π and CH-π), charge-transfer, polarization dispersion, and clas-
sical as well as non-classical (weak) hydrogen bonding interactions. So, one can
understand theoretical chemists’ strong desire to apply QM methods to biological
systems as they can bring an improved representation to these systems and because
of this improved knowledge, novel insights of the biomolecules can be understood.
Among a few existing approaches to accomplish this task, fragmentation method
occupies a significant place [1]. First-principles calculations-based fragment molec-
ular orbital (FMO) QM method developed by Kitaura and co-workers [2–4] is an
excellent method to study large systems such as proteins in a reliable way. By intro-
ducing electrostatic potential in themany-body expansion, Kitaura et al. [2]were able
to incorporate many-body effects in the framework of a two-body expansion. In this
fragmentation method, the system is divided into fragments, for example, protein is
divided into amino acid fragments (each amino acid is considered as a fragment), and
the conventional molecular orbital or density functional theory (DFT) calculations
are performed for each fragment and fragment pair. The total properties of the protein
are derived in a many-body expansion by combining the properties of fragments and
fragment pairs. Because of this, obtaining accurate protein–ligand binding affinity,
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which is of significant importance in drug discovery becomes greatly possible using
FMO method.

High-level ab initio, say correlated, FMO calculations can provide not only the
reliable binding energy between the ligand and the protein but also a complete list of
the interactions forged between the ligand and protein components quantitatively and
so it is verymuch suitable for studying the protein–ligand complexes with confidence
and hence it has been successfully applied to study a lot of protein–ligand interac-
tions by consistently evaluating their binding energies [5–12]. Particularly, FMOwas
used to predict cyclin-dependent kinase 2 inhibitor potency [13], to compare exper-
imentally measured potencies/activities of the ligands of FK506 protein [5] and of
FABP4 [14], for potency calculations on a novel Hsp90 fragment-linked inhibitor
[15], to lead optimization of ITK inhibitors [6], to study the inhibitor activity of sialic
acid analogues and anti-influenza drugs toward hNEU2 [16], to discover antiprion
compounds [17].

This chapter details the ability of FMOcalculations on analyzing the efficacy of the
clinical drugs that are available in the market by considering two of our recent works:
dipeptidyl peptidase IV (DPP-4) inhibitors and peroxisome proliferator-activated
receptor-α (PPARα) modulators [18, 19].

2 Theoretical Background and Methods

As the fragmentationmethod FMO treats the whole biomolecular system as a combi-
nation of fragments, QM calculations can be performed for the large system with
much reduced computational cost. FMO method fragments the large molecular
system so that molecular orbitals (MOs) of the fragments and fragment pairs, instead
of the whole system, are computed. Thus, the FMO computation’s dependence on
system size (N) is reduced to O(N2), as opposed to O(N3−4) with conventional MO
methods.

In the FMOmethod, the total properties of a large system, say protein, are derived
in a many-body expansion by combining the properties of the fragments. Ligand can
be considered as a fragment in a protein–ligand complex. Each fragment is allowed
to interact with all other fragments. In the first step, each monomer (fragment) is
calculated in the Coulomb field exerted by all remaining monomers. This changes
monomer electron densities and hence the Coulomb field they determine. Thus, the
monomer calculations are repeated self consistently, and the converged monomers
are polarized by the whole system. In the second step, each dimer (fragment pair) is
computed in the Coulomb field exerted by all remaining monomers. By subtracting
the energies of the two monomers from a dimer energy, interaction energy between
the monomers can be obtained. This continues according to the order of FMO. The
total energy of the whole system is calculated by summing up the total energy of the
fragment monomers, dimers, trimers, and so on, as shown in the following relation.

Etotal = EFMO1
total + �EFMO2

total + �EFMO3
total . . .
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If the total energy expansion is truncated with two-body (second-order FMO),
or three-body (third-order FMO) terms, the following equations are obtained,
respectively.

EFMO2
total =

∑

I

EI +
∑

I>J

(EI J − EI − EJ ),

EFMO3
total = EFMO2

total +
∑

I>J>K

{(EI J K − EI − EJ − EK ) − (EI J − EI − EJ )

−(E JK − EJ − EK ) − (EI K − EI − EK )},

where EI is the total energy of the fragment I, EI J is the total energy of the dimer
comprising fragments I and J, and EI J K is the total energy of the trimer comprising
fragments I, J, and K. In a conventional way, the binding energy of the ligand could
be derived using the following relation:

�E ligand = Ecomplex − (
Ereceptor + Eligand

)
,

where Eligand, Ereceptor, and Ecomplex are the energy of the ligand, receptor, and
complex, respectively.

In the two-bodymethod, fragments and their dimers are calculated. The calculated
interfragment interaction energies (IFIEs) are used to analyze the molecular recogni-
tion of ligands by proteins. The IFIE between any two fragments calculated by FMO
is a sumof four energy terms: electrostatics, exchange-repulsion, charge-transfer, and
dispersion. The electrostatic and charge-transfer terms are important for hydrogen
bonding, polar interaction, and salt bridges. Dispersion term becomes prominent
in hydrophobic interactions. The exchange-repulsion energy term describes steric
repulsion between electrons, which prevents atoms from clashing with each other.
The overall binding energy of the ligand in a protein–ligand complex can be esti-
mated by summing up the IFIEs obtained between the ligand and all the residues.
It should be mentioned however that IFIE is not the difference between the energy
of the protein–ligand complex and the sum of the energies of the “free” protein and
ligand rather it represents the “strength” of the interactions between the ligand and
protein residues in the complex. The total IFIE, summation of all the IFIEs, describe
the stability of the protein–ligand complex. This stability correlates with, but is not
the same as, the binding energy. This overall binding energy between the ligand
and protein can be related to the resultant biological potency of the compound as
measured in a biological assay.

The present ab initio FMO calculations were made using the PAICS program
[20] to calculate the binding energies between the target proteins and the clinical
drugs considered in the present study. The FMO calculations were performed at
the correlated Resolution-of-Identify second-order Moller Plesset (RI-MP2) level of
theory [21–23] utilizing correlation consistent double-zeta (cc-pVDZ) basis set [24].
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In this chapter, we classified the interaction energy mainly as electrostatic and
dispersion (van derWaals) energies. Since dispersion is more hydrophobic in nature,
we refer dispersion energy as hydrophobic energy in places. The Hartree–Fock (HF)
term in the calculated interaction energy represents the electrostatic interaction (noted
as “HF-IFIE”) while the remaining MP2 correlation energy (�MP2) approximately
denotes the dispersion term (noted as “�MP2-IFIE”). These representations were
followed throughout this chapter and the calculated IFIEs were utilized for analyzing
the protein-drug binding.

3 Sample Cases

3.1 Case 1: DPP-4 Inhibitors

Diabetes is a group of metabolic diseases and data shows that more than 425 million
people have diabetes at present worldwide and unfortunately this number may rise to
700million in 2045 [25]. In 2017, diabetes was responsible for 4million deaths, even
after spending USD727 billion on diabetes treatment and related complications, and
it is expected to double between 2005 and 2030 and become seventh leading cause
of death by 2030 [25, 26].

One of the recently developed methods to treat type 2 diabetes is the inhibition
of DPP-4. Technically, oral intake of food into gastrointestinal track (GIT) releases
incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP). These incretins stimulate insulin secretion from
pancreatic β-cells. GLP-1 suppresses glucagon production from α-cells when the
glucose level is elevated (Fig. 1) [27, 28]. However, these incretins are degraded
by the serine protease dipeptidyl peptidase IV (DPP-4) enzyme, causing increase in
blood sugar level (a typical example for type 2 diabetes mellitus). Hence, inhibiting
DPP-4 actions is a way to tackle type 2 diabetes by indirectly activating insulin
secretion without hypoglycemia and this becomes an established approach in recent
years [29].

There are twelve DPP-4 inhibitor drugs—sitagliptin, vildagliptin, saxagliptin,
alogliptin, linagliptin, teneligliptin, gemigliptin, anagliptin, omarigliptin,
trelagliptin, evogliptin, and gosogliptin—available in the market to date for
the treatment of type 2 diabetes (Fig. 2) [30]. Various good combination of
medicines came out in the recent years but still there are many single medicines
and sulfonylurea/metformin combination medicines. Many of these DPP-4 inhibitor
drugs are used with metformin/sulfonylurea, well-known drugs for the treatment of
type 2 diabetes, concomitantly with additive effect to increase GLP-1, which also
effectively decrease glucose production. These gliptins therefore are used as second
line therapy after metformin.

The FMO calculations performed on six selected gliptins (sitagliptin, linagliptin,
alogliptin, teneligliptin, omarigliptin, and trelagliptin) complexed with DPP-4 are
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Fig. 1 Schematic mechanism of insulin production and DPP-4 inhibitor action

discussed here. X-ray cocrystal structures of DPP-4 with these inhibitors [sitagliptin
(PDB ID: 1X70) [31], linagliptin (2RGU) [32], alogliptin (3G0B) [33] teneligliptin
(3VJK) [34], Omarigliptin (4PNZ) [35], and trelagliptin (5KBY) [36] were taken
from the Protein Data Bank.

Binding mode of the selected DPP-4 inhibitors in the active site of the DPP-4
is depicted in Fig. 3. Previous protocols [37] are used in defining the subsites S2,
S1, S

′
1, and S

′
2. Additionally, the site beyond S2 that involves in the interaction is

defined as S2 extensive subsite (S2 ext.) as denoted by Nabeno et al. [38]. The figure
indicates that all the gliptins interact with S1, S2, and S

′
1 subsites. In addition to these

interactions, alogliptin, linagliptin, and trelagliptin (class II group) interacts with S
′
2

subsite and while sitagliptin, teneligliptin, and omarigliptin (class III group) interacts
with S2 extensive subsite. Overall, all the inhibitors reside in the hydrophobic cavity
made up of Arg125, Glu205, Glu206, Tyr547, Tyr662, Tyr666, Ser630, and Phe357.

According to the available experimental studies [38, 39], linagliptin is known as
the most active inhibitor and the sitagliptin is the least one. The aim here is to under-
stand whether one can get the idea about the activity/efficacy of the drugs through
FMO calculations. The calculated interaction energies, i.e., interfragment interaction
energies, obtained between the selected inhibitor drugs and amino acid residues of
the DPP-4 that are significantly involving in the interactions are given in Fig. 4. In
line with the existing evidences, the FMO calculations indicate that the largest contri-
bution of the interaction comes from the electrostatic interactions with the carboxyl
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Fig. 2 DPP-4 inhibitor drugs available in the market

group of Glu205 and Glu206—these two amino acids in the S2 subsite form salt
bridges (in fact hydrogen bonding interaction is also involved with these charge-
charge interactions) with the amino group of all the DPP-4 inhibitors. However, the
results reveal that the electrostatic interaction (HF-IFIE) between the inhibitors and
DPP-4 is not an indicator of the activity of the DPP-4 inhibitor drugs—HF-IFIEs
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Fig. 3 Binding modes of each inhibitor drug in the active site of DPP-4. S1 subsite consists of
Ser630, Val656, Trp659, Tyr662, Tyr666, Val711, and Asn710; S2 subsite consists of Arg125,
Phe357, Arg358, Glu205, Glu206, and Arg669; S

′
1 subsite consists of Phe357, Tyr547, Pro550,

Ser630, Tyr631, and Tyr666; S
′
2 subsite consists of Tyr547, Trp629, Ser630, and His740; and S2

ext. (S2 extensive) subsite consists of Val207, Ser209, Phe357, and Arg358

calculated for the least active sitagliptin is the largest. So it is clear that though elec-
trostatic interactions play the important role in the inhibitor-DPP-4 interactions, they
are unable to indicate the activity of the inhibitor drugs.

On the other hand, hydrophobic interactions (�MP2-IFIEs) give a different
picture. It should be mentioned here that almost all the interactions, other than the
interactions with Glu205 and Glu206 amino acids, are mostly due to hydrophobic
interactions. All the three class II type gliptins have significant interactions at S

′
2,

S
′
1, and S1 subsites, especially, the strongest ones are with tryptophan 629 and tyro-

sine 547. Interestingly, the most active linagliptin has the strongest interactions with
these two residues—this inhibitor strongly interacts with Tyr547 through its uracil
moiety (by forming a π-π stacking interaction) as well as via its imidazole group
(by forming OH-π interaction); its methylquinazolinone moiety interacts strongly
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Fig. 4 Significant interfragment interaction energies (IFIEs) obtained between amino acid residues
at the active site of DPP-4 and the inhibitors: a alogliptin, b linagliptin, c trelagliptin, d sitagliptin,
e teneligliptin, and f omarigliptin. Gray and black bars represent electrostatic (HF-IFIE term) and
van der Waals interaction (�MP2-IFIE term) energies, respectively

with Trp629 through both with π-π stacking interaction as well as with CH-π inter-
action. As noticed from the calculated IFIEs (Fig. 4), most active linagliptin has
the strongest interactions with these two residues. The three class III type gliptins
have strong interactions at S2 extensive, S

′
1, and S1 subsites. Here too, the highly

active teneligliptin has stronger interactions in these regions when compared with
the other two gliptins. The main interactions of teneligliptin are with Tyr666 and
Phe357—while thiazoline moiety of this inhibitor forms a CH-π interaction with
Tyr666, its piperazine moiety interacts with Phe357 through a CH-π interaction.
These results indicate that hydrophobic interactions may reflect the activity of the
DPP-4 inhibitors. Detailed analysis indicates that strong hydrophobic interactions at
S

′
2, S2 extensive, and S1 subsites, especially the interactions at S

′
2 subsite, are crucial

for an efficient DPP-4 inhibitor drug.
Next, the calculated hydrophobic interaction energies (sum of the all �MP2-

IFIEs) of the inhibitors are compared with the experimental binding energies and
potencies to understand whether there is any relationship between them. For this
comparison, four inhibitors are considered because experimental results at same
conditions are available only for these four inhibitors (Fig. 5) [38, 39]. Notably,
the calculated hydrophobic IFIEs (�MP2-IFIEs) have a good correlation, R2 of
0.85, with the experimental inhibitory activities (pIC50) [38], Fig. 5a. Comparing
the calculated hydrophobic IFIEs (�MP2-IFIEs) with the recently observed experi-
mental binding affinities (KD) of these four selected inhibitors indicate a significant
correlation, R2 of 0.69 (Fig. 5b).
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Fig. 5 Correlation between sum of the all hydrophobic IFIEs (�MP2-IFIEs), calculated between
the inhibitor drugs with the DPP-4, and a experimental inhibitor activity [pIC50] (taken from Ref.
[37]) and b experimental binding affinity [pKD] of the inhibitors from surface plasmon resonance
data (taken from Ref. [38])

Fig. 6 Correlation between
sum of the all hydrophobic
IFIEs (�MP2-IFIEs),
calculated between the
inhibitors drugs (sitagliptin,
alogliptin, and trelagliptin)
with the DPP-4, and the
experimental inhibitor
activities [pIC50] (taken
from Ref. [35])

A recent experimental study [36] compared the inhibitor activity of the newly
developed trelagliptin with two other gliptins (sitagliptin and alogliptin) and found
that trelagliptin is more potent than the other two. The calculated IFIEs corroborate
well with the experimental conclusion that trelagliptin is more potent than the other
two gliptins, sitagliptin and alogliptin (Fig. 6). All these correlations clearly show
the relationship between the calculated FMO-IFIEs and the inhibitor potencies of
the DPP-4 inhibitors.

3.2 Case 2: PPARα Modulators

Lipidmetabolism-related proteins are attracting a lot of attention as important targets
for novel drug development of chemical treatment of hyperlipidemia in diabetes.
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Fig. 7 Schematic diagram of PPARα activation by an agonistic ligand

Peroxisome proliferator-activated receptor-α (PPARα), Sterol receptor element-
binding protein (SREBP), and Elongation of very long-chain fatty acids proteins
(Elovl) family are closely related with signaling mechanisms of fatty acids [40].
PPARα is a ligand-activated transcription factor involved in the regulation of lipid
homeostasis and improves hypertriglyceridemia to reduce cardiovascular risks. The
PPAR structure is composed of a variable N-terminal domain harboring a ligand-
independent activation function, a conserved DNA-binding domain (DBD), and a
C-terminal ligand binding domain (LBD), which contains the ligand-dependent acti-
vation function 2 (AF-2) [41]. Activation of PPARα by its agonists triggers confor-
mational changes in PPARα, including stabilization of the extreme C-terminal Helix
12 (AF-2 interface) to an active position, and enhances heterodimerization with the
retinoid X receptor α (RXRα) [42], promoting recruitment of nuclear coactivators
and ultimately interactswithDNA-binding sites designed as PPAR response elements
to regulate target gene transcription (Fig. 7) [43]. As PPARs involve in transcription
of genes related to the cellular proliferation and differentiation, immune responses
and metabolism of carbohydrates and lipids, they are targeted for the treatment of
diabetes, dyslipidemia, metabolic diseases, and to prevent other related diseases
including cardiovascular events. Thus, PPAR agonists can be considered as drugs to
treat diabetes and metabolic syndrome.

Hypolipidemic fibrate-class drugs are popular among the identified ligands for
PPARα [44–46]. Fibrates such as gemfibrozil, bezafibrate, and fenofibrate decrease
plasma triglyceride (TG) and increase high-density lipoprotein (HDL) cholesterol
levels in patients with types 2 diabetes and dyslipidemia, and prevent coronary heart
disease and stroke. However, fibrates have some dose related adverse effects. Mean-
while, pemafibrate (Fig. 8), a newly identified novel selective PPARα modulator, is
found to have high PPARα activity and specificity, and showed robust TG-lowering
effects with elevated TG and low HDL cholesterol [47, 48]. Earlier studies also
revealed that pemafibrate has higher transcription efficacy and less side effects than
clinically used fibrates [49–51].

Here, FMO studies on pemafibrate and fenofibrate (a well-known fibrate-class
drug to reduce cholesterol level), Fig. 8, complexed with PPARα are detailed. Since
the experimental structures of the pemafibrate- and fenofibrate-bound PPARα are not
available, the structures were obtained using in silicomolecular simulation combined
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Fig. 8 Structures of
pemafibrate and fenofibrate

with quantum-mechanics/molecular-mechanics (QM/MM) calculations [19]. These
newly constructed structures were used for the FMO calculations.

The constructed complex structures are depicted in Fig. 9. As shown in the figure,
all the three pharmacophores of pemafibrate binds well with the three regions of
the binding domain of PPARα. This seems to give it an advantage over the smaller
fenofibrate in the binding to PPARα.

The FMO-IFIEs calculated for the significant interactions are given in Fig. 10.
The calculated IFIEs clearly indicate that pemafibrate interacts strongly with the
ligand binding domain (LBD) than by fenofibrate. Though it is partially due to the
fact that the former interacts with all the three regions of the LBD, while the latter
does it mainly with one region of the LBD because of its size, pemafibrate interacts
strongly even to the region where the interaction pattern of both drugs with their
COO– group is qualitatively same. In both the complexes, the acidic COO– group

Fig. 9 Binding modes of a pemafibrate and b fenofibrate drugs in the binding pocket of PPARα.
The binding domain is divided into three pharmacophore regions
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Fig. 10 Important IFIEs obtained between amino acid residues at the binding pocket of PPARα and
the PPARα modulators: a pemafibrate and b fenofibrate. Gray and black bars represent electrostatic
(HF-IFIE) and van der Waals interaction (�MP2-IFIE) energies, respectively

forms a strong hydrogen bonding network by forming hydrogen bonds with Ser280,
Tyr314, His440, and Tyr464. As it is clear from Fig. 10, all these four hydrogen
bonds are stronger in pemafibrate-bound PPARα than in fenofibrate-bound PPARα.

All these FMO results show that pemafibrate binds strongly with the LBD of
PPARα than by fenofibrate. This correlates well with the fact that pemafibrate has
higher activity and transcriptional efficacy than fenofibrate [19, 47–51]. Thus it can
be fairly said that FMO-IFIEs can be used to investigate the activity/efficacy of the
clinic drugs.

4 Concluding Remarks

Understanding the efficacy of the drugs/potential drug candidates is highly important
and here the efficacy of the clinical drugs (DPP-4 inhibitors and PPARα modulators)
is analyzed by using first-principle based FMO theory. The results presented here
clearly indicate that activity of the drugs can be positively identified through FMO
calculations. In both cases, better drugs fit better in the whole space of their target
pockets that IFIEs well depict, especially highlighting importance of integration of
small hydrophobic interactions. So, the results are interesting and they are a nice
example for this novel calculation approach that could also be used for other types
of drugs.

It should be mentioned here that to derive the accurate binding affinities involving
proteins, of course, physiological condition should be considered. Then it is necessary
to consider solvent effects, entropic effects, and dynamic effects, in addition to the
binding energies (referred in this chapter) calculated in the gas phase. Obviously,
destabilization polarization and desolvation energies of the fragments should be
considered. Despite the fact that not all these factors are accounted in these gas-phase
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studies, the correlation obtained between the experimental and calculated binding
affinities should be considered as a significant one.

A complete FMO method that incorporates all the above-mentioned effects such
as solvent, entropic, conformational stabilization effects can not only be integrated
into the structure-based drug discovery program for the reliable quantitate estimation
of ligand binding affinity, but also can be used to study the efficacy of the clinical
drugs.
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Application of Fragment Molecular
Orbital Calculations to Functional
Analysis of Enzymes

Shogo Nakano, Sohei Ito, and Hiroaki Tokiwa

Abstract Enzymes are biocatalysts catalyzing various reactions in metabolism.
Several of amino acid metabolizing enzymes are applied to industrial usage because
of their high functionalities, such as high specificity and reactivity. Elucidation of
reaction mechanism of these enzymes would be helpful to improve their functions.
In this chapter, we introduce how combinational analysis of fragment molecular
orbital (FMO) calculation, structural, and biochemical analysis can elucidate molec-
ular mechanism of industrially important enzymes. Firstly, we will represent that
the combinational analysis can represent why artificially designed R-selective amine
oxidase reacts with R-methylbenzylamine (R-MBA) in racemic MBA selectively
without being inhibited by S-MBA. Secondly, for the highly selective L-threonine
3-dehydrogenase (TDH) which is applied to quantify L-threonine concentration
in various samples, we will show that FMO calculation can suggest existence of
residue working as a sensor to detect completion of enzyme reaction in TDH. In the
future, many more enzymatic functions and protein mechanics will be elucidated by
combinatorial approaches based on computational chemistry, structural biology, and
enzyme chemistry.

Keywords Enzyme reaction mechanism · L-threonine 3-dehydrogenase ·
R-selective amine oxidase · Substrate selectivity · Amino acid metabolism

1 Introduction

Advances in biotechnology have enabled us to make use of various biomaterials,
such as enzymes, in industrial and medical applications. For example, enzymes are
renewable natural products that provide an alternative to chemical catalysts as green
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catalysts; however, general enzymes bear high substrate specificity, and this is a
hurdle to broad catalytic applications because high specificity would restrict the
application of enzymes to very limited numbers of substrates and reactions. Enzyme
specificity must therefore be modified to suit the desired reaction on a case-by-
case basis using an approach called rational design. This approach uses information
such as structural and functional data. Among various experimental methods, there
is no doubt that X-ray crystallography has contributed greatly to the progress of
rational design [1]. In addition, many instances of successful design have reportedly
involved a computational chemistry approach [1–3]. For example, Kemp eliminase,
which was previously believed to not exist in nature, can be rationally designed after
selecting template structures from the PDB database [4]. The design was performed
after molecular interactions between the protein and ligand had been predicted by
structural and computational analysis. Under isothermal and isobaric conditions,
molecular interactions can be represented as Gibbs free energy (�G) and �G can
be divided into enthalpy (�H) and entropy (−T�S) terms.

Recently, many methods have been reported for quantifying molecular interac-
tions involving either experimental or computational approaches. Isothermal titration
calorimetry (ITC) is a representative experimental method for measuring energy [5]:
the dissociation constant (Kd) and �H can be directly determined by measuring the
heat that is generated upon either release or binding of ligands, and −T�S can be
indirectly estimated from calculations [5]. On the other hand, ITC often requires
high concentrations of proteins depending on the Kd value of the ligands; this is
a hurdle when preparation of large amounts of enzyme (>several mg) is difficult.
Surface plasmon resonance (SPR) can determine Kd values utilizing lower amount
of protein samples compared with ITC, whereas thermodynamics parameters can be
determined indirectly by fitting the Kd values which were determined by changing
measurement temperature to the van’t Hoff Eq. [6]. Molecular interactions could be
estimated by computational approaches if we could prepare protein structures that
bind ligands at their active site.

Two approaches are broadly utilized at the moment, namely, molecular mechan-
ical (MM) and quantum mechanical (QM) calculations. MM methods can estimate
interaction energy based on forcefield parameters, such as CHARMM and AMBER.
The benefit of the MM method is the low computational cost, whereas interac-
tions involving electron perturbation, such as π–π stacking and dispersion force, are
hard to estimate accurately [7]. QM methods can complement the weaknesses of
MM; however, the computational cost is too expensive to apply to macro molecular
systems, such as proteins. Hybrid methods combining QM and MM (QM/MM) are
broadly utilized to reduce the costs. Such methods calculate the interactions at the
active site and other regions at the QM and MM levels, respectively.

Conversely, many reports have indicated that molecular interactions far from the
active site often affect enzymatic properties. In fact, Morley K. and Kazlauskas R.
J. reported that several mutations distant from the active site affect thermal stability
and enzymatic parameters [8]. For example, substrate selectivity for Asn266Met
mutant of glutaryl acylase was 200-fold improved compared with wild type in spite
that the mutation site locates far from active site (>7.0 Å) [9]. Many groups also
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reported that mutation of hydrophilic residues at protein surface to hydrophobic ones
enhances thermal stability and enzymatic activity [8]. In any cases, dispersion force
would be changed by the mutations, and the changes enhance the protein functions.
To indicate the changes quantitatively, the molecular interactions of proteins must
be estimated by QM calculations. Kitaura et al. developed an ab initio fragment
molecular orbital (FMO) method which has the potential to clear this hurdle [10].
In the FMO method, molecules are divided into fragments, and molecular orbital
calculations are performed between the fragments. Because of the fragmentations,
the FMO method can reduce computational costs, and therefore, protein molecules
could be applied to the calculation. In general, protein molecules are divided into
fragments which are formed by amino acid. Interaction energies were calculated as
either interfragment interaction energies (IFIEs) or pair interaction energies (PIEs).
The lower computational cost of the FMO method compared with the general QM
method is advantageous for analyzingmolecular interactions. However, a few reports
have been published in which protein function was elucidated by combinatorial
approaches involving experimental and FMO methods.

In this chapter, we will describe our two studies that have involved the eluci-
dation of enzymatic functions using combinatorial approaches. The first aim is to
reveal the origin of stereoselectivity for R-selective amine oxidase designed by intro-
ducing two point mutations, Y228L and R283G, into D-amino acid oxidase from pig
kidney [11]. The second is to elucidate the reaction mechanism of L-threonine 3-
dehydrogenase, which belongs to the short-chain dehydrogenase/reductase family.
This mechanism comprises the substrate recognition mechanism associated with
structural and dynamic changes [12] and the product release mechanism [13].

2 Determining the Basis of Stereoselectivity for Artificially
Designed R-Selective Amine Oxidase by Mutating Two
Residues in Pig Kidney D-Amino Acid Oxidase (pkAOx)

Chiral compounds are precursors for various fine chemicals andmedicines. In partic-
ular, chiral amines are used to synthesize many pharmaceutical drugs, such as levoc-
itirizine and solifenacin [14]. Chemical catalysts and methods to achieve chiral
synthesis of such amines are still being developed [15]. Simultaneously, the enzyme
optical resolution method is applied to the synthesis because of the advantages of
enzymes compared with chemical catalysts, including the renewable, eco-friendly
nature of enzymes, and the high efficiency of enzymes for obtaining enantiomer-
ically pure compounds [16, 17]. Turner’s group pioneered the synthesis of chiral
amines using enzymatic optical resolution. They succeeded in designing S-selective
amine oxidase (S-AOx) by mutating FAD-dependent monoamine oxidase (MAO)
through directed evolution [18]. By accumulating further mutations in S-AOx using
a combination of directed evolution and rational design, substrate specificity can be
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extended toward amines containing bulky groups, such as aminodiphenylmethane
and tertiary amines [14, 19–21].

In contrast to many studies on S-AOx, there have not been any recent reports
concerning R-selective amine oxidase (R-AOx). Recently, Heath et al. successfully
designed an R-AOx with high substrate selectivity but weak activity, namely, the
E350L, E352D variant of 6-hydroxy-D-nicotine oxidase [22]. At the same time,
Yasukawa et al. succeeded in designing an R-AOx, namely, the Y228L, R283G
variant of pig kidney D-amino acid oxidase (pkAOx) [23]. Deracemization utilizing
R-AOx can be achieved by the process shown in Fig. 1a. R-AOx specifically oxidizes
(R)-MBA in racemic MBA (rac-MBA), and a chemical reductant, such as NaBH4,
reduces the resulting imine to rac-MBA (Fig. 1a). In this study, we focused on
the latter R-AOx, pkAOx. pkAOx exhibits high reactivity and specificity toward a
few amines that bear an aromatic ring, such as R-methylbenzyl amine ((R)-MBA)
and 2-phenylpyrolidine (PhPyr) [23]. Simultaneously, high specificity would restrict
the application of pkAOx toward the enzymatic optical resolution of other amines.
Therefore, the extension of substrate selectivity by rational design is required to
expand its potential application.

An understanding of the reactionmechanism for pkAOx is required to change their
selectivity via rational design. Hence, we first attempted to elucidate the mechanism
by determining the crystal structure of pkAOx which binds (R)-MBA at the active
site. The structure of the pkAOx-(R)-MBA binding form could be determined at a
resolution of 1.88 Å (Fig. 1b). The overall structure of pkAOx is almost identical to
the native DAAO structure; the root-mean-square deviation (RMSD) of the Cα atoms
in the two structures was 0.627 Å. Conversely, structural comparison at the active
site between pkAOx-(R)-MBA and the DAAO-benzoate-binding form indicated that
the binding sites for the aromatic ring of the two ligands differs; the ring of (R)-
MBA is located on the xylene ring of FAD in pkAOx (Fig. 1b), whereas the benzoate
ring is placed on the pyrimidine ring of FAD in DAAO (Fig. 1c). Summarizing the
structural data, the pkAOx reaction mechanism was predicted as shown in Fig. 1c.
Firstly, (R)-MBA binds to the pkAOx active site where the aromatic group of F242,
para-hydroxyphenyl group of Y224, and the xylene ring of FAD appears to form a
π–π stacking interaction with (R)-MBA. The (R)-MBA binds to the active site in
the neutral form [24]. The hydride at the Cα atom of (R)-MBA would be transferred
to oxidized FAD while deprotonation of the amino group occurs simultaneously
through a water molecule that forms a hydrogen bond with the main chain of G313
and the hydroxyl group of Y224 [23].

We could predict the molecular mechanism of (R)-MBA oxidation by pkAOx
(Fig. 1d), whereas we could not show why pkAOx can be applied to the deracem-
ization of (S)-MBA. Crystal structures of pkAOx bound to various amines at the
active site (Fig. 2a) indicate that (S)-MBA (Fig. 2a, cyan) can bind to the pKAOx
active site as well as the case of (R)-MBA (green in Fig. 2a). This suggests that (S)-
MBA in rac-MBA is a potential competitive inhibitor of (R)-MBA. However, pkAOx
appeared to not be inhibited by (S)-MBA; in fact, this enzyme exhibits a high enan-
tiomeric excess value (>99% ee for (S)-MBA)when utilizing rac-MBA as a substrate
[23]. To determine the basis of the high stereoselectivity of pkAOx, we performed
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Fig. 1 Schematic illustrating the deracemization of rac-MBA by pkAOx (a). pkAOx selectively
oxidizes (R)-MBA to imine. The imine is reduced by a chemical reductant, such as NaBH4, to rac-
MBA. By performing the process repeatedly, optically pure (S)-MBA could be obtained. Active site
structures of DAAO which binds benzoate (BEZ) (b) and pkAOx which ligates (R)-MBA (QSC)
(c). The carboxyl group of BEZ interacts with guanidinium group of R283 (B). The amino group
of QSC forms hydrogen bond interaction with water molecule via the side chain of Y224, and the
main chains of Q53 and G313 (C). Reaction mechanism of pkAOx (d). In the (R)-MBA binding
form, a hydrogen atom on the Cα atom is oriented toward the FAD ring (D), and hydride transfer
can occur easily (D). In contrast, for the (S)-MBA binding form, hydride transfer does not occur
because the hydrogen atom is oriented toward Y224 (D)

interaction energy analysis for the (R)- and (S)-MBA binding forms of pkAOx. MM
calculations are the first choice for estimating interaction energies; however, in the
case of pkAOx, MM calculations are not suitable because the interaction between
pkAOx and the ligand appears to be formed mainly by π–π stacking and dispersion
force based on structural analysis. Hence, QM calculations, including FMO calcula-
tions, are more suitable for estimating the interaction. The FMOmethod can estimate
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Fig. 2 Active site structures of the ligand binding forms of pkAOx (a). The (R)-MBA, (S)-MBA,
2-phenylpyrrolidine (PhPyr), and 3-amino-1-phenylbutane (AmPB) binding forms are colored in
green, blue, orange, and magenta, respectively. Bar graphs of IFIEs for (R)-MBA (b) and (S)-MBA
binding forms of pkAOx at the active site (d). Representation of MP2-IFIEs on crystal structures of
(R)-MBA (c) and (S)-MBA binding form (e). The structures were colored depending on their IFIE
values. Positive (repulsive) and negative (stable) IFIEs were colored in blue and in red, respectively

the interaction energy quantitatively, including π–π stacking and dispersion force.
Utilizing this calculation, we can obtain interfragment interaction energies (IFIEs).
IFIEs for the pkAOx-(R)-MBA and pkAOx-(S)-MBA binding forms were calcu-
lated by applying Hartree–Fock theory (HF-IFIEs, Fig. 2b and d, green bars) and
Møller–Plesset perturbation theory subjected to counterpoise corrections. HF-IFIEs
are represented as sum of the following energies; electrostatic energies, exchange
repulsive energies, and the energy for charge transfer + higher order mixed term
[25]. MP2-IFIEs are represented as the sum of HF-IFIE and electron correlation
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energies including dispersion force calculated by applying MP2 theory. In the IFIE,
the part of correlation energies was called dMP2-IFIE (Fig. 2b and d, orange bars).
As expected, ligands appeared to be recognized mainly with dispersion interactions
in both structures, whereas HF-IFIEs make a smaller contribution to binding.

Next, by focusing on active site residues and FAD, which appear to form interac-
tions with the ligand, MP2-IFIEs were compared for (R)- (Fig. 2b, the sum of green
and orange bar) and (S)-MBA binding forms (Fig. 2d, the sum of green and orange
bar). In addition, these residues were colored on the structure of the (R)- (Fig. 2c)
and (S)-MBA binding forms (Fig. 2e) with dependency on MP2-IFIEs. Structural
analysis indicated that dispersion force, especiallyπ–π stacking interactions brought
about byY224, F242, and FAD, contributes mainly to the formation of stable interac-
tions with (R)- and (S)-MBA. In fact, about 70% ((R)-MBA binding form) and 80%
((S)-MBA binding form) of IFIEs are derived from dispersion force. Comparative
analysis of IFIEs indicates that (R)-MBA forms ~13 kcal/mol more stable interaction
than (S)-MBA binding forms with pkAOx, suggesting that (R)-MBA in rac-MBA is
recognized with greater specificity than (S)-MBA.

Based on IFIE analysis, we attempted to extend the substrate selectivity of pkAOx
by site-directed mutagenesis. Among the seven residues located near the ligands,
Y224 and F242 were selected as candidates for mutation because of their strong
contribution to the binding of the ligands. The plots for the enzyme turnover rate
(kcat) of pkAOx and their variants (Y224L, F242I, F242V, and F242L) are shown in
Fig. 3a; here, the kcat values for (R)-MBA and (R)-1-[2-naphthyl]ethylamine ((R)-
NEA) are plotted on the x- and the y-axis, respectively. The Y224L variant is inactive
toward both (R)-MBA and (R)-NEA, suggesting that Y224 is essential for R-AOx
activity in pkAOx. To oxidize the substrate efficiently, the side chain of Y224 may
activate a water molecule that interacts with the amino group of (R)-MBA. On the
other hand, F242 variants would likely be (R)-NEA specific R-AOx (Fig. 3a). By
mutating F242 to other hydrophobic residues, a new cavity which can bind naphthyl
group of (R)-NEA would be generated, thereby enabling the variants to be specific
for (R)-NEA.

To summarize our results, we predicted mutation candidate residues of pkAOx
to extend their selectivity. To screen pkAOx, which exhibits activity toward amine
compounds that bear a bulky group at the aromatic ring position (Fig. 3b, orange),
mutating the aromatic ring site (Fig. 3c, orange surface) is effective. The successful
design of pkAOx specific for (R)-NEA by mutating F242, one of the residues that
forms the aromatic ring site, would support this hypothesis. In contrast, mutations
at the Cβ-site (Fig. 3d, green surface region) would be effective for extending the
selectivity toward amino compounds bearing other molecules at the Cβ-position
(Fig. 3b, green region). In support of our hypothesis, Yasukawa et al., succeeded in
designing a new amine oxidase that oxidizes (S)-4-Cl-benzhydrylamine by mutating
I230, which is located at the Cβ site (Fig. 3d, green), to Ala [26]. This suggests
that the FMO method can provide useful information for designing new artificial
enzymes with different substrate selectivities.
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Fig. 3 Turnover rates for (R)-MBA and (R)-NEA by pkAOx and its point mutation variants (a).
pkAOx displays higher turnover rates with (R)-MBA than with (R)-NEA, suggesting that pkAOx
is an (R)-MBA-specific R-AOx. In contrast, F242 variants (F242V, F242I, and F242L) exhibit a
higher turnover rate with (R)-NEA, suggesting that F242 variants are (R)-NEA specific R-AOx. The
Y224L variant is inactive. Division of aromatic ring and Cβ positions in (R)-MBA (b). Aromatic-
ring (c) and Cβ sites in pkAOx (d). The aromatic ring site is formed by five residues; Y55, F242,
G283, G313, and Y314. The Cβ site comprises four hydrophobic residues, namely, L51, I215, I228,
and I230

3 Reaction Mechanism of Highly Specific L-threonine
3-dehydrogenase Belonging to the Short-Chain
Dehydrogenase/Reductase Family

Many reports have suggested that the concentration of L-amino acids in plasma
changes in patients suffering from certain diseases, including some cancers [27, 28].
A new diagnostic method for such diseases can therefore be developed if the L-
amino acid concentration can be quantified accurately. An example of such a method
called AminoIndex technology has been developed [27, 28]. Various enzymes with
high substrate specificity have been discovered to perform the quantification, such
as L-phenylalanine dehydrogenase [29] and L-arginine oxidase [30]. L-threonine
3-dehydrogenase belongs to the short-chain dehydrogenase/reductase family (SDR-
TDH) and is themain target in this section. SDR-TDHcan also be used for amino acid
quantification; it is an NAD+-dependent enzyme with high specificity toward L-Thr
[31]. This enzyme catalyzes dehydrogenation at the 3′ carbon atom of L-Thr, which
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generates 2-amino 3-ketobutyrate (AKB) and NADH (Fig. 4a) [32]. SDR-TDHs
are expressed in species ranging from bacteria to mammals, and their physiological
importance has been documented. For example, Trypanosoma brucei utilizes L-Thr

a b 

c 

d 

Fig. 4 Reaction scheme of SDR-TDH (a). SDR-TDH catalyzes the conversion of L-Thr to AKB,
using NAD+ as a cofactor. Structural comparison between the apo (green) and ternary complex
(orange) forms of SDR-TDH from Cupriavidus necator (b). The two structures are similar to each
other; the RMSD between the apo and the ternary complex forms is 0.44 Å. Structural comparison
of NAD+-binding form of CnTDH between the initial (c, at 0 ns) and final (d, at 50 ns) states of
the MD simulation. The three flexible regions (80–87, 180–186, and 267–273 regions) are colored
in orange, suggesting that binary complex form of CnTDH would have an open form in solution.
Conformational changes in the flexible regions, such as 80–87 and 180–186 residues, were induced
with as theMDsimulation progressed (arroweddirection represented in (e)). Crystal structures of the
ternary complex form of CnTDH(WT) (f) and NAD+-binding form of the CnTDH(T186S) variant
(g). As predicted by MD simulation (c–e), an identical conformation change at the flexible regions
could be observed in the crystal structures. Similar conformation changes have been confirmed (h)
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as a carbon source for lipid and sterol synthesis by metabolizing L-Thr with SDR-
TDH [33], whileWang et al., reported that SDR-TDH is essential for growing mouse
embryonic stem cells [34].

To elucidate themolecularmechanismof SDR-TDH,many groups have attempted
to determine their crystal structures. At present, more than five crystal structures of
this enzyme belonging to different species have been reported [12, 35–37]. Yoneda
et al. reported that the reaction mechanism underlying SDR-TDH catalysis of L-Thr
dehydrogenation: the hydroxyl group of the substrate, L-Thr, is dehydrogenated by
the side chain of an active site residue, a Tyr, and the hydride at the Cβ atom of the
substrate is transferred to NAD+ [35, 36]. This mechanism was validated by kinetic
analysis of SDR-TDH variants; however, several mechanisms remain unknown. For
example,whySDR-TDHs exhibit high specificity towardL-Thr and howSDR-TDHs
release their product, AKB, after completion of the reaction has yet to be elucidated.
We attempted to elucidate these still unknown mechanisms by multidisciplinary
analysis of X-ray crystallography, enzyme kinetics, and computational chemistry
analysis.

Firstly, we attempted to elucidate the origin of the high specificity of SDR-TDHs
toward L-Thr through combinatorial analysis by using Cupriavidus necator SDR-
TDH as a target. Crystal structures for the apo and ternary complex forms (i.e., the
L-Thr and NAD+ binding forms) of CnTDH were determined at 2.25 and 2.5 Å
resolution, respectively. Structural comparisons between them indicated that they
share similar overall structures except for a number of regions (Fig. 4b). For example,
the NAD+ recognition loop, which is formed by residues 38–59 in CnTDH, cannot be
assigned to the electron density map for the apo form (green in Fig. 4b), suggesting
that the loop bears a flexible conformation. In contrast, all residues could be assigned
to electrondensitymap for the ternary complex form (orange inFig. 4b). Furthermore,
the ternary complex structure has a closed form, suggesting that L-Thr and NAD+

binding to SDR-TDH causes the enzyme to become rigid [12].
Although the occurrence of a conformational change was confirmed in the SDR-

TDHs by simultaneous binding to NAD+ and L-Thr, it is unclear what stepwise
structural and dynamical changes are induced by binding only NAD+ first and subse-
quently by binding L-Thr [12]. In fact, SDR-TDH catalyzes the reaction using a
Ping-Pong Bi-Bi mechanism: NAD+ binds first, followed by L-Thr binding to the
active site [32]. To verify this, we applied a molecular dynamics (MD) simulation to
the CnTDH-NAD+ binding form by removing L-Thr from the crystal structure of the
CnTDH ternary form. TheMD simulation was performed for 50 ns utilizing NAMD;
the detailed simulation procedure was described previously [12]. The initial (Fig. 4c,
left, at 0 ns) and the final states (Fig. 4c, middle, at 50 ns) of trajectory structures
were indicated in Fig. 4c, suggesting that the CnTDH structure is changed from the
“closed” to the “open” state by leaving away the two regions (Fig. 4c, 80–87 and
180–186 regions colored in orange) from each other (Fig. 4c, right). Because of the
cleft in the open state forms (Fig. 4c,middle), the substrate, L-Thr, can enter the active
site of SDR-TDH. Recently, we succeeded in determining CnTDH(T186S)-NAD+

binding form (Fig. 4d, middle), indicating that the crystal structure shows the “open”
state as expected from our MD simulation (middle in Fig. 4c). The structural change
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at the three regions, which was confirmed by comparing crystal structures (Fig. 4d,
right), was almost identical to those predicted by our MD simulation (Fig. 4c, right)
[12].

Summarizing all the results,wepredicted the stepwise conformational anddynam-
ical changes induced by binding of NAD+ and L-Thr (Fig. 5). In the apo form (Fig. 5,
upper left), the four arrowed regions adopt a flexible conformation in order to bind
NAD+ efficiently. By binding NAD+, the 38–59 loops bear rigid form, whereas the
catalytic domain and the 80–87 region still have flexible form (Fig. 5, upper right).
Here, the SDR-TDH remains in the “open” state. When L-Thr binds to the active
site, the structure changes to the “closed” state, and all regions indicated in the figure
adopt a rigid form (Fig. 5, lower right). After the reaction is completed, the 80–87
region and the catalytic domain have flexible forms, and the structure changes to the
“open” state. The products, AKB and NADH, are released into the solvent (Fig. 5,
lower left). The predicted mechanism can be validated by enzyme kinetics analysis
of CnTDH variants [12].

Here, one question remains: how does SDR-TDH detect the completion of L-Thr
dehydrogenation andAKBgeneration?Detection is important for switching between
the “open” and “closed” state of SDR-TDHs to release AKB into the solvent. Thus,
we tried to elucidate the product release mechanism of SDR-TDH by analyzing
high resolution structures of monomeric SDR-TDHs from a metagenomic library
(mtTDH). Through crystal structure analysis of mtTDH, we can obtain the struc-
ture of the AKB-NADH binding form of mtTDH at 1.35 Å resolution (Fig. 6a).
FMO analysis was performed on the structure obtained. The IFIEs between AKB

Fig. 5 Schematic model of structural changes for SDR-TDH induced by binding of NAD+

and L-Thr. The flexibility and conformation of the three regions are changed, and switching
between open and closed state is induced by binding of NAD+ and L-Thr
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Fig. 6 IFIEs for MP2 between mtTDH and AKB (a). Residues are colored depending on IFIE
magnitude. The interactive and repulsive forces are represented in red and blue, respectively. The
IFIEs for HF (green) and dMP2 (magenta) of six residues and two water molecules are shown (b).
Among the residues, only D179 generates a repulsive force with AKB. Proposed product release
mechanism of SDR-TDHs associated with structural change (c). Upon binding L-Thr, the structure
changes from the open to the closed state, and the reaction following the process from step to step
will occur
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and active site residues (S74, S111, Y136, T177, T178, D179, WatA, and WatB)
were calculated; the IFIEs for HF and dMP2 are represented as green and orange
bars, respectively (Fig. 6b). IFIE analysis indicated that SDR-TDH recognizes AKB
by using mostly ionic interactions. The graph indicates that only D179 generates
repulsive forces with AKB (Fig. 6b), suggesting that D179 opposes the formation
of stable interactions with AKB and L-Thr for SDR-TDHs. In spite of the destabi-
lization, enzyme kinetic analysis of D179 variants indicate that the lack of repulsive
force inhibits switching between the open and closed states of mtTDH, suggesting
that D179 is a key residue for switching the state of SDR-TDH [13].

Considering all of our data together, we were able to predict the product release
mechanismof SDR-TDH (Fig. 6c). In theNAD+-L-Thr binding form, L-Thr interacts
with the active site residues. In this form,D179 should generate a repulsive forcewith
L-Thr; however, this force would be cancelled by other stable interactions derived
from such hydrogen bond interactions. After the formation, dehydrogenation occurs
as shown in process a and b (Fig. 6c). Thereafter, the Cα–Cβ bond of L-Thr is rotated
(process c in Fig. 6c). In the AKB-NADH binding form that is generated, AKB
breaks the hydrogen bonds which formed with the side chain hydroxyl groups of
S111 and Y136. Because of this, the repulsive force generated by D179 cannot be
cancelled. Here, we can easily predict that S111 and Y136 form hydrogen bonds
with the hydroxyl group of L-Thr because many groups have reported that the same
residues in other TDHs form interaction with L-Thr [13, 36]. A conformational
change is induced in D179 so that it forms the open state. Therefore, we predict that
D179 works as a “sensor” to detect reaction completion in SDR-TDH [13].

4 Summary

As we have shown in the previous two sections, the application of computational
chemistry, which includes not only MD simulation but also FMO analysis, can
uncover the enzyme reaction mechanism which is hard to deduce only from X-ray
crystal structures. In particular, FMO analysis should be used to determine interac-
tion energy for the protein–ligand complex when hydrophobic and dispersion forces
make the main contribution to stabilization as in the case of pkAOx, since it is diffi-
cult to estimate these forces correctly using the MM Method. In the future, many
more enzymatic functions and protein mechanics will be elucidated by combinato-
rial approaches based on computational chemistry, structural biology, and enzyme
chemistry.
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for 3D-Visualization of Interaction
Energies in Proteins (3D-VIEP)
Calculated by the FMO Method
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Abstract Interresidue and ligand/substrate-residue interactions in a biomacro-
molecular system such as drug target protein variously correlated with structure,
function, and bioactivity of the system.Reliable theoretical interaction analysiswith a
ligand/substrate has given us fruitful information to identify the key residue and theo-
retically design novel high potent candidates. The interfragment interaction energies
can be calculated appropriately under the FMO scheme based on the first-principles
(electronic) calculations. Analysis tool of the FMO method is very useful by visu-
alizing and rendering analysis of the results in protein structure: 3D-visualization
of interaction energies in proteins (3D-VIEP). We have also developed the toolkit
“AnalysisFMO” to perform the 3D-VIEP method, which can assist in analyzing the
FMO results generated by quantum-chemical packages such as GAMESS, PAICS,
and ABINIT-MP. AnalysisFMO consists of two separate tools, RbAnalysisFMO and
the PyMOL plugins by Ruby and Python programs, respectively. The first tool can
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extract interfragment interaction energies (IFIEs) or pair interaction energies (PIEs)
from the FMO output file, and the second tool enables to visualize IFIEs or PIEs in
the target system together with structures on a window of PyMOL program.

Keywords AnalysisFMO · Interfragment interaction energies (IFIEs) · 3D-VIEP ·
PyMOL plugins · Ruby and python programs

1 Introduction

The amount of protein structural data is increasing rapidly due to advances in protein
structure analysis such asX-ray crystallography, nuclearmagnetic resonance (NMR),
and cryo-electron microscopy (cryoEM). Currently, structural data are registered in
the public database known as the Protein Data Bank (PDB), and the PDB file format
is broadly utilized to represent protein coordinate data. The PDB has three branches,
namely the RCSB PDB, the PDBj, and the PDBe. The Worldwide PDB (wwPDB)
was established with the cooperation of these branches. PDB data are freely available
from the database. At present, more than 150,000 PDB datasets have been deposited
in the PDB (as of May 2019). PDB data only contain coordinate data for each
atom in protein structures. Therefore, it is difficult to analyze PDB data without
using molecular graphics software to visualize it. Furthermore, PDB data contains
no information about which residues contribute to interactions with ligands with
other amino acid residues. Thus, a method to quantify interaction energies between
them is required to identify such interactions.

There are experimentalmethods available to quantify interaction energies between
protein and ligands, such as isothermal titration calorimetry (ITC) [1]. ITC can
measure any enthalpy change (�H) that occurs upon ligand binding and dissociation
constant (Kd) values directly by measuring heat generated during ligand binding to a
target protein. Because large amounts of target proteins are required to perform ITC,
ITCmeasurement is limited to a subset of proteins. On the other hand, computational
approaches can be broadly utilized to quantify energies in cases where we can obtain
3D structural data for proteins to use in ligand docking simulation and homology
modeling. Specifically, molecular mechanics (MM) calculations are widely applied
to quantification because of the low computational cost and ease of use. Force-
field parameters are necessary to perform MM calculations, and CHARMM [2] and
AMBER [3] are widely used at the moment. Nevertheless, MM calculations have the
following inherent drawback: the inaccurate estimation of weak interaction energies
stemming from electron correlations, such asπ–π stacking and hydrophobic interac-
tions. Ab initio quantum mechanical (QM) calculations can be an alternative to MM
calculations, which give interaction energies more accurately than MM. However,
QM calculations involve a high computational cost, which prevents applications to
larger molecular systems such as proteins.

The fragment molecular orbital (FMO) method was developed to overcome these
limitations and apply QM calculations to large molecular systems [4]. Currently,
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several FMO calculation packages have been reported, including PAICS [5],
ABINIT-MP [6], and GAMESS [7]. Interfragment interaction energies (IFIEs),
sometimes called Pair Interaction Energies (PIEs), are calculated in a manner that
accounts for correct monomer polarization due to the external electrostatic field of all
the residues in a protein. The FMO method is now applied to the analysis of a wide
variety of systems such as accurate estimation of the interaction energies between
proteins, such as orexin-2 receptor and inducible T-cell kinase, and their ligands [8,
9] and elucidatingwhyR-selective amine oxidase exhibits high stereoselectivity [10].
Although the FMOmethod can contribute to the elucidation of protein functions, its
application is limited because of the complexity involved in the associated data anal-
ysis. FMO calculation packages such as PAICS, ABINIT-MP, and GAMESS have
individual graphical user interface (GUI) tools, namely PaicsView (PV), Biostation
Viewer, and FU (FMO utility), respectively. However, there is no universal visualiza-
tion tool for all FMOpackages, whichmeans that a user needs to learn these tools one
by one, which is a hurdle to performing FMO analysis. Therefore, the development
of a universal tool is essential for broadening the applications of FMO analysis.

Among several molecular graphics software packages, PyMOL is widely used to
visualize the 3D structure of biomolecules [11]. PyMOL was developed by utilizing
an object-oriented language, C/C++, and a Python interpreter is embedded in the
software to expand its functions. PyMOL is superior to other graphics software
not only because of its excellent visualization capability but also because of its
programmable interface, named PyMOL API, which can help users to implement
new functions in PyMOL. By using this interface, we can develop a plugin written
in Python, which extends the functionality of PyMOL. Several PyMOL plugins have
been developed so far, including CAVER, which finds and visualizes tunnels and
channels in biomolecules [12], GROMACS GUI, which can generate an input file to
perform molecular dynamics simulations with GROMACS [13], among others. We
have also developed plugins to perform 3D-visualization of interaction energies in
proteins (3D-VIEP) generated by FMO calculations. These plugins may contribute
to the performance of various applications, including rational protein design, in silico
drug design [14], and the elucidation of enzymatic mechanisms [15].

In this chapter, we will introduce our toolkit, AnalysisFMO, for 3D-visualization
of protein–protein and protein–ligand interaction energies (IFIEs and PIEs) in target
protein systems and the application of the 3D-VIEP method [16]. AnalysisFMO
includes two tools: RbAnalysisFMO, which extracts IFIEs or PIEs from an output
file containing FMO calculations, while the second tool is a set of PyMOL plugins,
namely PyPAICS, PyABINIT-MP, and PyGAMESS, which visualize IFIEs/PIEs in
the target system together with structures in a PyMOL window.



360 T. Tokiwa et al.

2 AnalysisFMO Toolkit

2.1 Environment Construction to Run AnalysisFMO Toolkit
to Achieve the 3D-VIEP

The AnalysisFMO toolkit consists of RbAnalysisFMO and a set of PyMOL plugins
which are written in Ruby [17] and Python [18], respectively. Several Ruby libraries
are necessary to run the RbAnalysisFMO tool, including Logger and Nokogiri
[sparklemotion/nokogiri, GitHub. https://github.com/sparklemotion/nokogiri/blob/
master/LICENSE.md]. The RbAnalysisFMO tool can convert output files generated
by FMO packages (PAICS, ABINIT-MP, and GAMESS) into CSV files that contain
either IFIEs or PIEs. The PyMOL plugins load the corresponding PDB and CSV files
which are utilized as input files to execute RbAnalysisFMO. The following Python
libraries are required to execute the PyMOL plugins: Tkinter, Python megawidgets,
and Numpy. Plugin installation can be completed through the PyMOL plugin instal-
lation tool (menu bar in external GUI of PyMOL → Plugin → Plugin Manager →
Install new Plugin → Choose file…). The plugins can be confirmed in the Plugin
submenu if the installation is completed.

2.2 Overview of AnalysisFMO Toolkit

A flowchart illustrating how to execute the AnalysisFMO toolkit is shown in Fig. 1.
Firstly, users have to perform FMO calculations with one of the FMO packages
(PAICS, ABINIT-MP, or GAMESS). The output file generated includes a large
amount of data, usually several megabits in size, and most of them are not used
to visualize the interaction energies in the plugins. The RbAnalysisFMO tool can
extract information about interaction energies (PIEs and IFIEs) from the output file,
and generate a CSV file containing the extracted information (Fig. 1).

After generation of the CSVfile by RbAnalysisFMO, PyMOL plugins are utilized
to visualize interaction energies in the protein structure. The CSV and PDB files can
be loaded through the plugin (Fig. 2). The CSV file generated by PAICS, ABINIT-
MP, and GAMESS can be loaded by PyPAICS, PyABINIT-MP, and PyGAMESS,
respectively. In Fig. 2, we show one of the PyMOL plugins, PyGAMESS. The CSV
and PDB files can be loaded through the tabs “Load csv file (2D)” and “Load pdb
file” as shown in panel 1, respectively (Fig. 2). After loading the files, we select either
the “All-pairs” or “Selected-pairs” mode in 3D-VIEP method depending on the type
of analysis being performed (Fig. 1). Here, the target system is divided into single-
residue fragments. N corresponds to the total number of fragments (ligands, amino
acid residues, H2Omolecules, etc.) in the PDB data. Themodes can be selected from
the tabs in panel 2 (Fig. 2). A CSV file, which contains n x n pairs of IFIEs or PIEs,
is required to execute “All-pairs” mode. To control the function of the “All-pairs”
mode, some information must be described in the input, such as chain name, residue

https://github.com/sparklemotion/nokogiri/blob/master/LICENSE.md
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FMO calculation with PAICS,
ABINIT-MP, and GAMESS

Conversion of output file to CSV file
containing IFIEs or PIEs by Ruby
script, RbAnalysisFMO.

Load both PDB and CSV files with
PyMOL plugin named PyPAICS,
PyABINIT-MP, and PyGAMESS

Will you analyze protein-
protein interaction?

Will you analyze protein-
ligand interaction?

Run “All-pairs” mode

Run “Selected-pairs” 
mode

RbAnalysisFMO

Finish the plugin

YES

YES

NO

NO

PyMOL plugin

Fig. 1 Flowchart for the AnalysisFMO toolkit

number, and contour value, as shown in panel 3. A CSV file including either IFIEs
or PIES between either the ligand or a user-defined amino acid residue and other
amino acid residues is required to run the “Selected-pairs” mode. A summary of the
AnalysisFMO toolkit is shown in Table 1.

2.3 RbAnalysisFMO Tool—Conversion of Output File
from Any FMO Package into a CSV File

As noted before, the RbAnalysisFMO tool can convert an output file from any FMO
package to a CSV file containing interaction energies, i.e., n x n pairs (user-selected
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1

2
3

4

5

Fig. 2 Graphical user interface of our PyMOL plugin. The plugin can be divided into the
following five sections. (1) selecting the input CSV file generated by RbAnalysisFMO and the
PDB file, (2) selecting the mode, (3) inputting parameters in the “All-pairs” mode, (4) inputting
parameters in the “Selected-pairs” mode, and (5) starting or ending plugin use

Table 1 Characteristics of the AnalysisFMO toolkit

FMO software

Question about the functions of
the toolkit

PAICSa GAMESSb ABINIT-MPc

Can RbanalysisFMO.rb extract
interaction energies?

◯ ◯ ◯

Can the plugin visualize IFIEs? ◯ (PyPAICS) × ◯ (PyABINIT-MP)

Can the plugin visualize PIEs? × ◯

(PyGAMESS)
◯

(PyABINIT-MP-PIEDA)

Can the plugin run on Linux? ◯ ◯ ◯

Can the plugin run onWindows? ◯ × ◯ (Only PyABINIT-MP)

aPAICS, 2012/05/13 version or later
bGAMESS, Version 11 Nov. 2017 (R3), FMO version 5.2
cABINI-MP Open Ver. 1. Rev. 10/20,180,222
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fragment(s)) x n pairs) of IFIEs or PIEs when the “All-pairs” (“Selected-pairs”)
mode is selected as illustrated in Fig. 3a. If the total number of fragments is n in
the FMO scheme, the CSV file will contain n x n fragment pairs of IFIEs/PIEs as a
two-dimensional (2D) table in the “All-pairs” mode. In the “Selected-pairs” mode,
the CSV file will contain 1 × (n – 1) IFIEs/PIEs as a one-dimensional (1D) table. If
a target fragment is selected as a ligand (e.g., drug candidate, synthetic derivative,
etc.) in the “Selected-pairs” mode, the CSV file will contain 1 × n IFIEs/PIEs as
a 1D table, which is essential data for in silico drug design since users can easily
extract IFIEs/PIEs between the ligand and related amino acid residues around the
binding site in the target protein. As an additional function of RbAnalysisFMO, this
tool can generate a modified PDB file in which B-factor values of the atoms are
replaced by Mulliken charges calculated at the adopted FMO calculation level of

a),

b),

IFIEs/PIEs between user-selected fragment(s) and all fragments

IFIEs or PIEs of n n fragment pairs 
(n is the total number of fragment)

Fragment 
1

2

3

4

5

6

7

8

Fragment 
1

2

3

4

5

6

7

8

Fragment 
1

2

3

4

5

6

7

8

Fragment 
1

2

3

4

5

6

7

8

Fig. 3 Schematic illustration of the two analysis modes: The “All-pairs” and “Selected-pairs”
modes (a and b). The “All-pairs” mode can analyze IFIEs/PIEs as [fragments]-[fragments] inter-
action. Therefore, n x n fragment pairs when the total number of the fragments is n. The “Selected-
pairs” mode can analyze IFIEs/PIEs as [user’s selected fragment(s)]-[all fragments] interaction.
Users can select ligand(s) or specific fragment(s) in the PDB file, and in this mode, the plugin can
analyze IFIEs/PIEs between target fragment(s) and all fragments
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theory in the “All-pairs” mode. It can also plot IFIEs/PIEs as a 2D interaction map
and as a bar graph in the “All-pairs” and “Selected-pairs” modes, respectively, by
applying the Gnuplot program [Gnuplot, https://www.gnuplot.info/]. The map and
graph are helpful for overlooking the interaction energy data. Furthermore, our tool
can be applied to the database of quantummechanical data based on the FMOmethod
[FMODB, http//drugdesign.riken.jp/FMODB/].

2.4 PyMOL Plugins: The “All-Pairs” Mode

In this paragraph, we will demonstrate how to make use of the “All-pairs” mode,
which enables detailed visualization of residue–residue interactions. A picture of the
plugins is shown in Fig. 2. Firstly, the CSV and PDB files generated by RbAnaly-
sisFMO are loaded from the tabs “Load csv file (2D)” and “Load pdb file,” respec-
tively (field “1” in Fig. 2). Subsequently, the tab “All-pairs” is selected (field “2” in
Fig. 2). Users can further input residue information into the console panel, such as
chain identifier and residue number, for which interactions would be represented. For
example, if users fill “A” and “100” in the columns labeled “Input chain name …:”
and “Input Residue number…:” seen in field “3” of Fig. 2, the pluginswould visualize
the interaction between the 100th residues belonging to chain A and other residues
(Fig. 2). At this point, the plugins extract the interaction energies between the target
residue and all other residues. Finally, the top five interaction energies, which bear
the most negative (attractive) and the most positive (repulsive) interaction energies
are identified by the program and represented as red and blue sticks, respectively.
The width of the sticks indicates the magnitude of the interaction energies.

2.5 PyMOL Plugins: The “Selected-Pairs” Mode

If users need to analyze a protein–ligand interaction or pairs of interactions between
one specific amino acid residue and all other residues, the “Selected-pairs” mode is
a convenient option. In this paragraph, we will demonstrate how to make use of the
“Selected-pairs” mode. Firstly, two files, namely the PDB file and CSV file, must
be prepared. The latter contains PIEs/IFIEs between a ligand and all residues of
the target protein generated by the RbAnalysisFMO tool. These files can be loaded
into the plugins as described for the All-pairs mode (see field “1” of Fig. 2). After
selecting the “Selected-pairs” tab in field 2, parameters must be set in field “4” and
one of the desired energy tabs must be selected from the column “Select Energy type”
(Fig. 2). The energy tabs can be changed depending on what types of FMO packages
were utilized. In other words, users must choose appropriate plugins to visualize the
energies correctly. For example, in Pair Interaction Energy Decomposition Analysis
(PIEDA) formalism, there are a total of seven tabs in the plugins (Fig. 2), namely
the total interaction energy “Etotal” into the electrostatic energy “Ees,” the exchange

https://www.gnuplot.info/
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Table 2 List of energies of PIEDA

Etotal The total interaction energy

Ees The electrostatic energy

Eex The exchange repulsive energy

Ect+mix The energy of charge transfer + MIX

Edisp The dispersion energy

Eij - Ei - Ej The difference between the dimer energy Eij and the monomer energies Ei and Ej

Tr(Dij + Vij) The explicit embedded charge transfer energy

repulsive energy, “Eex,” the energy for charge transfer + MIX, “Ect+mix,” and the
dispersion energy “Edisp.” In addition, users can choose the internal pair energy “Eij

− Ei Ej,” defined as the difference between the dimer energy Eij and the monomer
energies Ei and Ej. Finally, the explicit embedded charge transfer energy “Tr(Dij

+ Vij)” is defined (Table 2). These energy tabs are available when users utilize
PyGAMESS or PyABINIT-MP-PIEDA. In the case of IFIEs, three tabs are available,
including “HF” (Hartree–Fock energy), “dMP2” (theMP2correlation energieswhich
correspond approximately to the dispersion force), and “MP2” (the sum of the HF
and the dMP2 energies). The plugin will select dominantly interacting amino acid
residues located within the distance defined in the column “Input distance (0.0~)”
(Fig. 2). The selected amino acid residues are colored differently depending on the
magnitude of the interaction energy as in the case of the “All-pairs” mode.

3 Application Examples

In this section, we will introduce examples of the AnalysisFMO toolkit being used
to uncover the molecular mechanism of protein functions since in many cases, it is
challenging to elucidate protein functions based solely on the crystal structure.

3.1 Interaction Energy Analysis for Fucose-Binding Lectin,
BC2LC

Glycoconjugates are physiologically important compounds, and there are many
glycosylated biomolecules, including glycoproteins and glycolipids [19]. They can
also be found on cell surfaces. Pathogenic bacteria, such as Burkholderia ceno-
cepaciawhich often causes rapid pulmonary disorder, recognizes glycoconjugates on
cell surfaces with the fucose-binding lectin II-like proteins, or PA-IIL-like proteins,
BC2LA, BC2LB, and BC2LC [19–21]. Among these three proteins, BC2LC has a
unique structure; it is homotrimeric and is similar in structure to tumor necrosis factor
(TNF)-α and C1q complement proteins [21]. BC2LC recognizes fucose utilizing the
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interaction with Thr74, Thr83, Arg85, and Arg111 postulated based on their crystal
structure [21]. However, there is no information available concerning which amino
acid residues form strong interactions with fucose.

To perform FMO calculations, we firstly obtained structural data of BC2LC from
PDB (PDB entry 2wq4). This structure was obtained from a complex of the protein
with methyl-6-deoxy-1-seleno-α-L-galactopyranoside (SFU in Fig. 4a), which is
expected to act as an analog of fucose and bind to the active site. After protonation
of the structure, FMO calculation was performed with the FMO package, PAICS.
Firstly, we used the “Selected-pairs” mode implemented in PyPAICS to visualize
IFIEs between SFU and other amino acid residues (Fig. 4a). The magnitude of the
attractive interaction energies (colored red in Fig. 4a) was in the following order:
Arg111 (chain C) > Arg85 (chain A) > Gly84 (chain A) > Thr74 (chain C). This
analysis indicated that Gly84, which had not been predicted to interact with SFU
basedon the crystal structure alone, forms a stronger interactionwithSFU thanThr74.
The results inferred that FMO calculation can unveil protein–ligand interactions
quantitatively, which is hard to do based only a protein structure.

The interactions distant from the active (or ligand binding) site also play an impor-
tant role in substrate/ligand recognition in proteins [22]. However, assigning these
residues is difficult because there are many candidate residues around the site. We
further analyzed the BC2LC structure using the “All-pairs” mode to detect relevant
interactions for ligand binding and stability of the complex based on FMO calcula-
tions. Based on FMOanalysis, there are stable (attractive) interactions between Ser74
(chain B) and other amino acid residues that form direct interaction with SFU. As

Ser76 (B)

Arg85 (C)

Gly84 (C)

Thr83 (C)

Arg111 (C)
Arg85 (A)

Gly84 (A)

Thr74 (C)

SFU

a), b),

Fig. 4 Analysis of IFIEs for the TNF-like trimeric lectin from Burkholderia ceno-
cepacia(BC2LC, PDB ID: 2WQ4) by use of PyPAICS implemented in AnalysisFMO toolkit
(a and b). a The “Selected-pairs” mode was utilized to visualize interaction energies between SFU,
where the Se atom was replaced by S and other amino acid residues. The attractive and repulsive
interactions are colored in red and in blue, respectively. The IFIEs were calculated by applying
second-order Møller-Plesset (MP2) perturbation theory with the cc-pVDZ basis set. b In the “All-
pairs” mode, we visualized the interaction between Ser76 (chain B) and three other residues (Thr83,
Gly84, and Arg85)
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shown in Fig. 4b, Ser74 formed interactionswith Thr83, Gly84, andArg85 belonging
to chain C in the following order of strength: Gly84 >Arg85 > Thr83 (Fig. 4b). These
results suggest that Ser74 may be an important component of the sugar-binding site
of BC2LC through direct interactions with the amino acid residues at the active site.

3.2 Predicted Metal Coordination Mechanism of Bilirubin
Oxidase

In the previous example, we tried to quantify protein–ligand interaction based on
IFIEs or PIEs analysis with a PyMOL plugin. Next, we attempt to elucidate the
molecular mechanism that explains why metal ions coordinated at the active site
of bilirubin oxidase fromMyrothecium verrucaria (MvBO, PDB ID: 2XLL) cannot
be ligated by the mutation of the amino acid residue that interacts indirectly with
copper ions. MvBO is a metalloenzyme that catalyzes the oxidation of bilirubin
to biliverdin by using an oxygen molecule [23]. In MvBO, three types of Cu ions
exist: Type 1 copper (T1Cu), Type 2 copper (T2Cu), and Type 3 copper (T3Cu),
which can be classified by their coordination pattern and the resulting absorbance
and EPR signal. Catalysis occurs near T2Cu and pairs of T3Cu atoms (Fig. 5a) [23,
24]. As shown in Fig. 4a, several amino acid residues ligated to the Cu atoms. These
amino acid residues are important to retain the Cu ions at the indicated site (Fig. 5a).
Herein, the imidazole groups of three histidine residues (His136,His403, andHis401)
coordinated with T3Cu, T3Cu, and T2Cu, respectively (Fig. 4a). The coordination
patterns of Cu are essential for MvBO to catalyze the reaction, and many groups
have reported the amino acid residues, which are important to Cu coordination by
introducing mutations. In a previous study, Kataoka et al. indicated that Asp105,

Asp105

His136

His403

His401

Arg129

Arg276

Asp105

His136

His403

His401

Arg129

Arg276T3Cu
T2Cu

a), b),

Fig. 5 Analysis of PIEs for bilirubin oxidase from Myrothecium verrucaria(MvBO, PDB ID:
2XLL) applying PyGAMESS implemented in the AnalysisFMO toolkit (a and b). Three Cu
atoms in the active site of MvBO (a). The interactions between Asp105 and three other histidine
residues (His136, His401, and His403) are represented as red sticks (b)
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which is indirectly ligated to the Cu ions (orange, Fig. 5a), reduces the coordination
number of the Cu ions [24]. In fact, the coordination numbers are in the following
order: one (Asp105Ala) and two (Asp105Asn) Cu atoms are missing compared with
native MvBO [24].

To determine why the mutation reduces the coordination number of Cu ions, we
applied quantum mechanical interaction analysis based on the FMO calculations
for MvBO. Calculations were done with the FMO package, GAMESS. Note that
all the Cu ions in MvBO were excluded from the FMO calculations because of the
convergence in both monomeric SCFs, including the multicenter metal region and
dimer-SCC iteration, and is computationally challenging under the FMO scheme.
The top three amino acid residues, which each form a stable (attractive) interaction
with Asp105, are shown in Fig. 4b, clearly indicating that Asp105 forms interactions
with Cu-coordinated residues, i.e., His136, His401, and His403 (Fig. 5b). The role
of Asp105 is to help position the three His residues optimally to coordinate with
Cu atoms (Fig. 5b). This result demonstrates a good example that protein functions,
such as protein folding, the formation of the active site and cofactor recognition, are
regulated in a complex manner by residue–residue interactions within the proteins.

4 Summary

In this study, we described the development of the AnalysisFMO toolkit to visualize
interaction energies (IFIEs and PIEs) generated by several of FMO packages, i.e.,
PAICS, GAMESS, and ABINIT-MP. RbAnalysisFMO can extract the energies from
the output file for one of the packages, and PyMOL plugin (PyPAICS, PyGAMESS,
and PyABINIT-MP) can visualize the energies on the corresponding protein struc-
ture. Currently, we are developing a PyMOL plugin to analyze datasets registered in
the FMO database [FMODB, https://drugdesign.riken.jp/FMODB/].

The applications of the toolkit indicate that we can elucidate themolecularmecha-
nisms of proteins that are hard to predict based solely on structural data. For example,
we can show that Gly84 in BC2LC interacts with SFU, although Gly84 was not
expected to form an interaction with the ligand. Furthermore, we can propose a
molecular mechanism to explain why mutating Asp105 in MvBO reduces Cu coor-
dination. Taken together, the AnalysisFMO toolkit is a supportive tool for many
users who are planning to elucidate protein functions based on the analysis of FMO
calculations.
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Dynamics Simulation

Yuto Komeiji and Takeshi Ishikawa

Abstract Three ways to combine FMO and MD are described: FMO-MD, FMO-
QM/MM-MD, and MM-MD/FMO. FMO-MD is an ab initio MD in which force is
updated on-the-fly by FMO. FMO-QM/MM-MD is aQM/MM-MDmethod inwhich
the QM part is calculated by FMO. MM-MD/FMO is a simulation protocol in which
FMO calculation is performed for molecular configurations generated by MM-MD.
The methodology and application of these methods are described and compared.

Keywords MD · MM · Solvation · Reaction
The enormous capability of the FMO method in the electronic state calculation
has been discussed in previous chapters. Information obtained from a single-point
FMO calculation of a molecule is still limited, however. The capability of FMO
can be enhanced in combination with molecular dynamics (MD), which simulates
the time-dependent evolution of the molecular system of interest. MD enables us to
sample molecular conformations at finite temperature, to calculate time-dependent
properties, and even to simulate chemical reactions.

In this chapter we describe three ways to interface FMO and MD. The first
is ab initio MD called FMO-MD (Sect. 1), in which the forces acting on all the
constituent nuclei are calculated on-the-fly by FMO. The second is FMO-QM/MM-
MD (Sect. 2), in which part of the forces are calculated by FMO and the rest by using
classical MM parameters. The third is MM-MD/FMO (Sect. 3), in which molecular
structures modeled by classical MM-MD are subject to FMO energy calculation.

We will wrap up this chapter by comparing these three ways and discussing the
future direction.
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1 FMO-MD

The ab initio FMO-MD method is the most straightforward way to interface FMO
withMD [37]. FMO-MD simulates molecular phenomena caused by electronic state
changes similar to any ab initioMDmethods. In this subsection, we give an outline of
the FMO-MD method and its recent major achievements. Readers are also referred
to previous reviews for detailed account of FMO-MD up to 2010 [34, 36].

1.1 Methodology

In FMO-MD, the positions of the nuclei of the molecules of interest are updated by
the Newtonian equation of motion using the force (=−energy gradient) exerting on
the nuclei calculated by FMO. Thus, FMO-MD is an on-the-fly ab initio MD based
on the Born–Oppenheimer approximation. The nuclei can be handled by quantum
mechanics [11], but usually by classical mechanics in most FMO-MD simulations
reported so far.

The first implementation of FMO-MD was accomplished by merging an MD
program (PEACH) [40] and an FMO program (ABINIT-MP, see Chap. 4) through
the system call command [31]. Later on, FMO-MD was implemented in GAMESS
[3] and also in ABINIT-MP alone [30].

An essential constituent of FMO-MD is the “dynamic fragmentation (DF)” algo-
rithm, which refers to redefinition of fragments depending on the instantaneous
molecular conformation [35]. In this simple DF algorithm, a covalent bonded cluster
of atoms is regarded as a fragment. Later on, DF was modified to fix some part of
the molecular system to remain static (no redefinition of fragments) while allowing
the rest to be dynamic (redefinition of fragments). The modified algorithm called
“DF/SF algorithm” is applicable to, for example, a solvated protein, where the protein
is regarded as static while the solvent as dynamic [30].

Until today, most of FMO-MD simulations have been performed in a free, non-
periodic boundary. Nevertheless, an implementation of the periodic boundary has
been reported [10], inwhich the electrostatic contribution froma layer of image boxes
was included. Another implementation of periodic boundary utilized the minimum
image convention [3]. Both are important implementations, but the former consumes
too much computational resource and the latter lack in enough precision for a long-
range simulation. Therefore, an Ewald or Multipole method is required to calcu-
late long-range coulomb interaction for FMO-MD in a periodic boundary (work in
progress, Nakano et al. personal communication).

The original FMO gradient [28] is not strictly analytic, due to neglect of exact
solution of coupled-perturbed Hartree–Fock (CPHF) equations. This weakness dete-
riorates the precision of FMO-MD. Fortunately, Nagata and his colleagues have
derived a series of fully analytic energy gradients for FMO [47–52] [53]. The analytic
gradients were introduced first to GAMESS [3] and later to ABINIT-MP. See Fig. 1
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Fig. 1 Comparison of
conventional (DRT = no)
and analytic (DRT = yes)
energy gradients. RMS of
total energy as functions of
time step was drawn for
H+(H2O)32 with
ABINIT-MP. Provided by
Dr. Takayuki Fujiwara of TS
Technology Inc.

for improvement of the energy conservation by the analytic gradient as demonstrated
for H+(H2O)32.

Yet another important methodological achievement is the introduction of density-
functional tight-binding (DFTB) to FMO-MD (DFTB-FMO/MD) [54] in GAMESS.
Though DFTB is not “ab initio,” because it contains parameters, most of them have
a sound theoretical basis [41]. Hence, DFTB can be a reasonable and inexpensive
alternative to DFT by reducing computational demand greatly. For example, FMO-
DFTB/MD of 256 water molecules was ca. 100 times faster than full DFTB/MD
while conserving total energy within good precision.

1.2 Applications

FMO-MD has been successfully used for investigation of chemical reactions of
small molecules in aqueous solution. Sato et al. [63] reported FMO-MD simulation
of hydrolysis of CH3N2

+ in explicit solvation. This typical SN2-type reaction was
shown to proceed via diverse paths including both tight- and loose-SN2. FMO-MD
was then applied to amination and hydration ofH2COand revealed that the amination
proceeds by a stepwise mechanism, but hydration by a concerted one [64, 65].

Besides chemical reactions, FMO-MD has been applied for investigation of
hydrated metal ions. A simulation of hydrated Zn2+ reproduced the experimental
RDF position [12]. Unrestricted Hartree–Fock (UHF) was introduced to FMO-MD
and was shown effective in a simulation of Cu2+ [27]. FMO-MD was also applied
to hydrated Lanthanoid series of heavy ions (Ln3+) and reproduced the Lanthanoid
contraction [13]. In an FMO study on hydrated Rn2+ ion, Rn2+ was shown to have a
flexible square antiprism structure with a hydration number of 8.1 [44].

Hydration of small molecules has been also analyzed by FMO-MD. For example,
Mori et al. [46] compared solvated structures of cis- and trans-platins and found
that the charge-transfer interaction coupled with the solvent motion is stronger in
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cis-platin than in trans-platin. This suggests that Pt–Cl bonds in cis-platin are easier
to cleave.

FMO-DFTB/MD was tested by simulation of (HX)1000, where X = Halogen,
and gave X-X radial distribution functions comparable to experimental ones [54].
Recently, FMO-DFTB/MD was used to calculate time-dependent change of PIEDA
within TrpCage in an implicit solvent at finite temperature [7].

2 FMO-QM/MM-MD

As reviewed in Subsect. 1.2, FMO-MD has been often applied to molecular systems
consisting almost entirely of water molecule. Because water molecules are usually
treated as a single fragment, the size of fragments is extremely small (i.e., only
three atoms). Thus, the computational time of each step of the MD simulation can
be reduced to around a few minutes, which is enough to obtain a several picosec-
onds trajectory. This is an important reason why aqueous solution systems have
been selected for FMO-MD applications. In MD simulations of large biomolec-
ular systems (e.g., simulations of enzyme reactions or biological photo-processes),
however, it is difficult to sufficiently reduce the computational cost even by using the
FMO method. In FMO calculations of a protein, amino acid residues are treated as
single fragments, each consisting of more than 10 or 20 atoms. Consequently, calcu-
lation of the energy gradient of a protein containing about 100 amino acid residues
requires at least more than several hours (it actually depends on the used theory, basis
set, and computer system). Thus, it is too costly to perform FMO-MD simulations
of proteins.

Another choice for the quantum chemical investigation of biomolecular systems
is quantum chemical/molecular mechanics (QM/MM) method [8, 67, 74, 75], [68].
In the QM/MM method, an important region directly involved in the chemical reac-
tion or photo-process is treated with a quantum chemical method (QM region), while
the other region is treated with a classical method using empirical force fields (MM
region). In recent decades, many studies utilizing the QM/MM method have been
successfully performed [9, 15, 66]. However, when performing the MD simula-
tions with the QM/MM method, the QM region should be limited within a small
number of atoms (e.g., several dozen atoms) to reduce the computational cost for
the energy gradient. Thus, MD simulations of the enzyme reactions or biological
photo-processes with a large active site are difficult even for the QM/MM method.

To overcome such a difficulty, Okamoto et al. [56] proposed the FMO-QM/MM-
MD simulation. In this method, FMO is adopted as a quantum chemical method in
the context of theQM/MMscheme, resulting inmajor reduction of the computational
cost of the energy gradient of each time step for systems with a large QM region.
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2.1 Theory

Here, we first explain the details of the theoretical background of the FMO-QM/MM-
MD method.

The target system is divided into MM and QM regions similar to the original
QM/MMmethod. The total energy is calculated from the sum of the internal energies
of the QM (EQM ) and MM (EMM ) regions, and the interaction energy between them
(EQM/MM ) as the following equation:

Etotal = EQM + EQM/MM + EMM (1)

The interaction energy is described as

EQM/MM = Eelec
QM/MM + Enon−elec

QM/MM , (2)

where the first and second terms are the electrostatic and non-electrostatic interaction
energies, respectively. The non-electrostatic interaction energy is calculated with
some empirical parameters as the following equation:

Enon−elec
QM/MM =

∑

A∈QM

∑

B∈MM

εAB

{(
σAB

|RA − RB |
)12

− 2

(
σAB

|RA − RB |
)6

}
, (3)

where A and B are indexes of the atoms in the QM and MM regions, respectively,
RA and RB are positions of the atoms, and εAB and σAB are empirical parameters
defined for the pair of the atoms. Sum of the internal energy of the QM region and
the electrostatic interaction energy between the QM and MM regions is regarded as
the energy of the QM region including the external point charges by the MM region
atoms. Thus, we additionally introduce a notation of the energy obtained from the
FMO calculation:

EQM + Eelec
QM/MM ≡ EMM

FMO , (4)

Then, the expression of the total energy of Eq. (1) can be written as the following
equation:

Etot = EMM
FMO + Enon−elec

QM/MM + EMM . (5)

In FMO calculations including the externalMMpoint charges, the following Fock
operator is used:

f̂ MM
X = f̂ X +

N∑

K �=X

V̂X + P̂X + V̂ MM
X , (6)
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where X is I or I J for the monomer or dimer calculation of the FMO scheme,
respectively. The first three terms are exactly the same as the Fock operator used for
the original FMO calculation, the first term being the conventional Fock operator, the
second the environmental electrostatic potential, and the third the projection operator.
The last term is the electrostatic potential from the external MM point charges, that
is,

V̂ MM
X =

∑

B∈MM

−qB
|RB − r| , (7)

where qB is the net charge of the atoms in the MM region.
We introduce the notation of EX and DX as the energy and density matrices,

respectively. They are obtained from the monomer or dimer SCF calculation with
the Fock operator given in Eq. (6). Additionally, we define E ′′

X as the following
equation:

E ′′
X = EX − Tr(DXV X ) − Tr

(
DXVMM

X

)
, (8)

where V X and VMM
X are operator matrices of V

∧

X and V
∧MM

X , respectively. Conse-
quently, we consider that this value is the internal energy of the monomer or dimer
(contribution of the environmental electrostatic potential and MM point charges is
removed from EX ). Using these values, the first term of Eq. (5) is written as

EMM
FMO =

N∑

I

E ′′
I +

N∑

I>J

(
E ′′

I J − E ′′
I − E ′′

J

) +
N∑

I>J

T r(νD I JV I J )

+
N∑

I

{
Tr

(
D IVMM

I

) + Enuc−MM
I

} +
N∑

I>J

T r
(
νD I JVMM

I J

)
, (9)

where �D I J is the differential density matrix defined as

νD I J = D I J − (D I νD J ), (10)

and Enuc−MM
I is the electrostatic interaction energy between the nucleus of QM

region and MM point charges, that is,

Enuc−MM
I =

∑

A∈I

∑

B∈MM

ZAqB
|RA − RB | , (11)

where ZA is the nucleus charge of atom A.



FMO Interfaced with Molecular Dynamics Simulation 379

To obtain the force acting on the atoms, which is required for the MD simulation,
wemust differentiate the total energy of Eq. (5) with respect to the atomic coordinates
as the following equation:

∂Etot

∂R
= ∂EMM

FMO

∂R
+ ∂Enon−elec

QM/MM

∂R
+ ∂EMM

∂R
. (12)

While the second and third terms can be easily calculated because they are empir-
ical potential functions, the first term should be calculated in a quantum chemical
way in the context of the FMOmethod. Differentiated with respect to the coordinates
of the QM atoms, the first term is written as the following equation:

∂EMM
FMO

∂RA
=

N∑

I

∂E ′′
I

∂RA
+

N∑

I>J

(
∂E ′′

I J

∂RA
− ∂E ′′

I

∂RA
− ∂E ′′

J

∂RA

)
+

N∑

I>J

T r

(
νD I J

∂V I J

∂RA

)

+
N∑

I

{
Tr

(
D I J

∂V I J

∂RA

)
+ ∂Enuc−MM

I

∂RA

}
+

N∑

I>J

T r

(
νD I J

∂VMM
I J

∂RA

)
.

(13)

On the other hand, the differentiation with respect to the coordinates of the MM
atoms can be obtained using the electric field made by the QM region, EQM , that is,

∂EMM
FMO

∂RB
= −qBEQM(RB). (14)

Detailed formulation of the electric field in the FMO scheme can be found in
Ishikawa [20]. Although we have so far assumed the HF level of theory, the above
formulations can be extended to the MP2 level of theory by using the reported
FMO-MP2 gradient [45], [48] or FMO-RI-MP2 gradient [23].

2.2 Implementation

As the first implementation of the FMO-QM/MM-MD method, AMBER–PAICS
interface has been developed [56] by combining AMBER9, a widely used program
package for classicalMDsimulation [73], andPAICS, anFMOprogrampackage [22]
(see Chap. 5 for details). In the AMBER–PAICS interface, the SANDER module,
the MD engine of AMBER, is run as the main program. In each time step, SANDER
calls PAICS through the system call and obtains the energy gradients given in Eqs.
(13) and (14). An input file for PAICS is automatically generated at every time
step by updating the atomic coordinates. Some information needed for the FMO
calculation (e.g., fragmentation manner, basis sets, and so on) is obtained from a
separate file. Development of the AMBER–PAICS interface was facilitated by the
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QM/MM subroutines originally implemented in AMBER. See Okamoto et al. [56]
for further details.

2.3 Applications

Some applications of the FMO-QM/MM-MD have been reported. One of them is the
simulation of alanine dipeptide in aqueous solution [56]. In this simulation, a cubic
unit cell under the periodic boundary condition was adopted, in which one alanine
dipeptide and 3510 solvent water molecules were included. Two types of QM region
were prepared. One was a larger QM region containing the alanine dipeptide and 45
watermolecules. The otherwas a smaller one consisting only of the alanine dipeptide.
The FMO-QM/MM-MD simulations were executed in the NVT ensemble at 300 K
using the Berendsen thermostat. The total simulation time was 6.0 ps, and the last
2.5 ps trajectory was used for the analysis. The MD time step was set to 2 fs. FMO
calculations were performed at the HF/6-31G level of theory.

In the trajectory with the large QM region, a triple-water bridging conforma-
tion with two peptide C=O groups was mainly observed. The radial distribution
function and integrated coordination number were also consistent with a previous
first principal DFT-MD simulation [16]. On the other hand, a double-water bridging
conformation was observed in the trajectory with the small QM region. It was similar
to a previous QM/MM study [26], where only the alanine dipeptide was treated as
the QM region. This application study indicated that the size of QM region affects
the resulting trajectory.

The ease of periodic boundary is an important advantage of FMO-QM/MM-
MD over FMO-MD. In the current implementations of FMO-MD, droplet models
have been used instead of periodic boundary condition (see Subsect. 1.1). Conse-
quently, edge artifacts of the droplet model are inevitably included in the trajectory
of the FMO-MD simulation [31], but not in FMO-QM/MM-MD with the periodic
boundary.

Here, we show another application for a biomolecular system, that is, the FMO-
QM/MM-MD simulation of the complex between prion protein (PrP) and GN8
molecule. PrP is an infectious agent of prion diseases [59], which is developed
from the conformational conversion of a normal cellular form of the prion protein
(PrPC) into an alternatively folded scrapie isoform (PrPSC). Recently, an anti-prion
compound termed GN8 was found to make hydrogen bonding interaction with N159
and E196 of PrPC, by which the pathological conversion to PrPSC could be inhibited
[43]. To examine the molecular interaction between PrPC and GN8, FMO-QM/MM-
MDsimulationwas performed [56]. The initial structure of the complexwasmodeled
by theNMRstructure ofmousePrPC (PDBcode: 1AG2, [60]). The periodic boundary
condition was adopted, where 10309 water molecules and two sodium ions were
arranged around the PrPC–GN8 complex in the unit cell (Fig. 2 left). GN8 molecule
and important two amino acid residues (N159 and E196) were included in the QM
region (Fig. 2 right). Each amino acid residue was treated as a single fragment, and
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Fig. 2 FMO-QM/MD simulation of the PrP-GN8 protein. Reproduced from Ishikawa [19] with
the permission of the publisher

GN8 molecule was divided into four fragments. The energy gradient was calcu-
lated at HF/6-31G level of theory, but the total energy and inter-fragment interaction
energy (IFIE) was calculated at MP2/6-31G level of theory in every time step. The
simulation was carried out in NVT ensemble, where the time step was 1.0 fs and
the total simulation time was 5.0 ps. The temperature of the system was maintained
at 300 K using the Berendsen thermostat. This FMO-QM/MM-MD simulation took
about 20 days using Intel Xeon processor E5429 on 16 cores.

In this study, time-dependent evolution of IFIE between the two amino acid
residues and GN8 molecule was calculated directly from the obtained trajectory
(Fig. 3), unlike in a typical FMO study in which IFIE is calculated for a single struc-
ture modeled by an experimental X-ray structure or for several snapshots picked up
from a classicalMM-MD trajectory (see next subsection). At the initial time, both the
interactions of GN8 with N159 and E196 were sufficiently strong (the IFIEs were
around −11 and −19 kcal/mol, respectively). As time progressed, the interaction
with N159 became weaker, and finally the IFIE reached to zero. In contrast, the IFIE
with E196 remained within −15 to −35 kcal/mol throughout the simulation. There-
fore, it was revealed that N159 and E196 have different dynamic behaviors for the
binding with GN8. The 5 ps trajectory is, of course, not enough for a reliable discus-
sion of the dynamic behavior of amino acid residues. However, this study indicated
that the “dynamic IFIE analysis” by the FMO-QM/MM-MD simulation can provide
a different information of the molecular interaction than that provided by the “static
IFIE analysis.”

Although we have described two examples of the FMO-QM/MM-MD applica-
tions, currently very few studies have been reported on this method. One reason is
that there is no appropriate software for FMO-QM/MM-MD simulation (AMBER–
PAICS interface is not currently open to the public). Another reason is the need forDF
(see Subsect. 1.1) and adaptive QM/MM approach [4, 17], [70]. When performing
FMO-QM/MM-MD simulations, definition of the fragmentation should be updated
similar to FMO-MD simulations by the FD algorithm. Additionally, in the case
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Fig. 3 Dynamic IFIE analysis between GN8 and two amino acid residues (N159 and N196).
Reproduced from Okamoto et al. [56] with permission from the publisher

of the FMO-QM/MM-MD, definition of the QM region should also be updated
when, for example, water molecules in the QM region happen to move into the MM
region during the simulation. Such water molecules should be assigned as the MM
region’s molecule. This method has already been developed as adaptive QM/MM
approach. However, FMO-QM/MM-MD simulation with DF and adaptive QM/MM
has not yet been developed. If a user-friendly software including such simulation
techniques is developed, FMO-QM/MM-MD method becomes more widely used
for the investigation of enzyme reactions or biological photo-processes.

3 MM-MD/FMO

Prior to a single-point FMO energy calculation, the molecular structures are usually
modeled by optimization with classical MM-based MD and/or EM methods. We
refer to this procedure as MM-MD/FMO. Thus MM-MD/FMO is not so much a
simulation method as a protocol or a recipe. MM-MD/FMO is currently necessary
for FMO calculation of huge molecular systems whose FMO-MD or even FMO-
QM/MM-MD is too demanding to perform.MM-MD/FMO is a ubiquitous procedure
because most modeling programs perform anMM-based optimization in preparation
of molecular structures. In a typical FMO calculation of protein, the crystal structure
is complemented with hydrogens and possibly with counterions and partial solvent,
followed by MM-optimization.

In this section, however,we concentrate onMM-MD/FMOof only extensively and
explicitly solvated molecular systems, where manipulation of solvent plays a critical
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role for validity of the FMO calculation. Inclusion of explicit water solvent was tried
in early FMO and FMO-MD calculations of polypeptides and polynucleotides [24,
31], but without critical verification of the solvation protocol. The solvation protocol
was minutely investigated later as described below.

To use explicit water solvent, choice of boundary condition is important. Almost
all the FMO calculations on biological molecules are performed in a free boundary.
Though it is possible to apply the periodic boundary to FMO [10], the extremely high
computational demand hinders its practical application. Hence, the simplest way is
to perform MM-MD in a free boundary from the beginning so that the resultant
modeled structure can be applied to FMO directly (e.g., [31]). Nevertheless, today,
most MM-MD simulations of solvated biological molecules are performed in the
periodic boundary. We therefore need to convert a molecular structure in the periodic
boundary to one in the free boundary to interfaceMM-MDand FMO. The conversion
method is described in Komeiji et al. [38], the outline being schematized in Fig. 4. It
is necessary to consider solvent molecules including counterions in the image cells.

A comprehensive evaluation of the explicit solvation of a protein for FMO was
reported in a study of the ubiquitin protein [32] performed by the MM-MD/FMO
protocol. In this study, structures of pure water and solvated protein were prepared
by MM-MD and EM (annealing), from which configurations for FMO were excised
with various thicknesses of solvent shell. No counterion was included because ubiq-
uitin has no net charge at the neutral pH. The effect of the solvent thickness varied
depending on the physical properties. The protein net charge converged at 4 Å, and
the protein internal energy and protein–solvent interaction energy converged at 8 Å.

Fig. 4 Schematics for construction of molecular structures for FMO. Reproduced from Komeiji
et al. [38] with permission from the publisher
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Another important finding was that water molecules within 4 Å of the outer surface
are less polarized than the bulk water.

Similar test studies were performed for a double-stranded (ds) DNA [14] and for a
single-stranded (ss)DNA [38]. The net charge of dsDNAconvergedmarginally at 4Å
and completely at 8 Å, while that of ssDNA converged at 4 Å. Their internal energies
convergedmarginally at 4Å and completely at 8Å. For theDNA–solvent interaction,
however, thicker solventwas necessary. Presence of counterions outside the solvation
shell affected only the solute (DNA)–solvent (water and ions) interaction and not
internal solute energy or net charge.

Taken together, the net charge and internal energy of a protein/DNA are domi-
nantly governed by the first solvent shell within 4 Å from the solute surface and
auxiliary by the second and third shells within 8 Å. Hence, it is usually recommended
to include water solvent as thick as 8 Å, or, if computationally too demanding, at
least 4 Å. It is not strictly required to include all the counterions outside the solvation
shell except when neutrality of the system is necessary.

The number of MM-MD/FMO studies in water has been increasing. The inves-
tigated molecules are: lysozyme with-NAG [21], monosaccharides with HIV-1 anti-
body 2G12 [72], vitamin-D receptor with its ligands [69], amyloid-β peptides in an
amyloid-β hexamer [25], androgen receptor with its ligand [29], zinc metallopro-
teinase with its inhibitors [1], ssDNA with the binding protein [39], and dsDNA
with UO2

2+ [61]. Specific interactions within these molecular complexes have been
minutely analyzed by IFIE and PIEDA in explicit solvation.

Promoted by recent advancement of artificial intelligence, Saitou et al. [62]
reported an attempt to predict protein secondary structures by combining MM-
MD/FMO and deep learning (DL). Two typical protein secondary structures, α-
helix and β-sheet, provide some characteristic patterns in the two-dimensional map
of inter-fragment interaction energy (IFIE-map [42], see part 3 for details). From
MM-MD/FMO calculations for 18 proteins and 3 non-protein molecules, a thousand
IFIE-map images were prepared, each labeled depending on the existences of α-helix
and β-sheet. The images were used as the training data of DL implemented with the
TensorFlow library of Google Inc. Finally, TensorFlow was fed with new data to
test its ability to recognize the structural patterns. The characteristic structures in
test IFIE-map images were successfully predicted. In this way, it was shown that
the pattern recognition ability of DL can be applied to protein secondary structure
prediction,

Thus, the MM-MD/FMO protocol has been playing an important role in FMO
calculation of biological macromolecules.

However, an important question remains: is it appropriate to use anMM-optimized
structure for QM? From an extremely strict viewpoint, the answer would be “No”
because a classical MM force field differs from the corresponding QM force field.
Nevertheless, because an MM force field can be regarded as an approximation of
the QM force field, the MM-optimized molecular structures may serve as a practical
workaround when QM-optimization is too demanding for structure modeling. In
Komeiji et al. [33, 34], two pieces of indirect evidence were reported for validity of
the MM-MD/FMO protocol. One was that relative energy differences among several



FMO Interfaced with Molecular Dynamics Simulation 385

configurations of pure water showed good correlation betweenMM (TIP3P) and QM
(HF6-31G*/FMO) calculations. The other was that starting from an MM-optimized
solvent (TIP3P)made the subsequent FMO-MDheatingmuch smoother than starting
from a random solvent. It was also reported, however, that a carelessly prepared MM
parameter resulted in a molecular structure inappropriate for FMO calculation [71].

Considering all these cons and pros, we still regard MM-MD/FMO as a standard
protocol for FMO calculation of large molecular systems. There are several ways to
improve the MM-MD/FMO protocol. One is use of QM-MM optimization after or
without MM optimization [6, 18, 55, 71]. This protocol is useful when studying a
local part of the molecular system, for example, the reaction center of an enzyme.
Another way is development of MM force field parameters based upon FMO that
can mimic the FMO force field at a much lower cost [57, 58]. MM-MD with such
an MM force field may give a structure somewhat consistent with subsequent FMO
calculation.

4 Perspective

We have so far described three ways to interface FMO with MD, each of which has
some problems to be solved for further application to largemolecules. It is mandatory
to accelerate FMO-MD and FMO-QM/MM-MD. A possible way is introduction of
DL to accelerate MD [2, 5, 76]. Another urgent task is development of an FMO-
based MM parameter to improve the consistency of the MM-MD/FMO protocol.
These developments will achieve a seamless integration of FMO(QM) and MM.
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Linear Combination of Molecular
Orbitals of Fragments (FMO-LCMO)
Method: Its Application to Charge
Transfer Studies

Hirotaka Kitoh-Nishioka, Ryuma Sato, Yasuteru Shigeta, and Koji Ando

Abstract Fragment molecular orbital-linear combination of molecular orbitals of
fragments (FMO-LCMO) method makes possible to effectively construct one-
electronHamiltonian, canonicalMOs, and their energies of largemolecules including
protein,DNA, and so on, by using the output of usual FMOcalculations. This Chapter
reviews the FMO-LCMO method and its applications to the studies on the charge
transfer phenomena in bio-systems and organic materials.

Keywords FMO-LCMO · Total Fock matrix · Total canonical MO · Restricted
FMO space ·Matrix-size reduction · Electron transfer ·Marcus theory · Electronic
coupling · Electron tunneling · Tunneling pathway · Tunneling current ·
Triplet-triplet annihilation · Singlet fission

1 Introduction

Fragmentmolecular orbital (FMO)method [1–3] primarily offers the effective energy
calculations of large target molecules. On the other hand, the FMOmethod itself does
not give the MOs of the whole target molecules, similar to the other fragment-based
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approaches [4] including the divide-and-conquer (DC) approach [5]. The fragment
MOs obtained fromFMOcalculations are completely localized on the corresponding
fragment, which provides some insights of the target molecule. However, the frontier
MOs ofmolecules dominantly contributing to their chemical and physical properties,
such as an enzymatic function of a given protein, are often the MOs delocalized over
several fragments. Within the framework of the FMO method, Inadomi et al. [6]
developed the MOs of FMO (FMO-MO) scheme as follows: (a) a total molecular
electron density is first constructed from the electron density of each fragment as

Dtotal =
N∑

I>J

DI J − (N − 2)
N∑

I

DI , (1)

where DI is the electron density of the I th fragment monomer and DI J is that of a
dimer comprising the I th and the J th fragments in the FMO result; N is the total num-
ber of the fragment monomers; (b) the “effective” one-electron Hamiltonian, such
as Fock and Kohn–Sham Fock matrices, of the whole molecule is then constructed
from Dtotal without self-consistent field (SCF) interactions; (c) after that, the canoni-
calMOs of the whole system are calculated from a generalized diagonalization of the
“effective” one-electron Hamiltonian. The FMO-MOmethod can well reproduce the
canonical MOs obtained from the conventional Hartree–Fock (HF) calculations of
the whole molecule [6, 7]. However, steps (b) and (c) of the FMO-MO method still
demand high computational costs for large molecules. To overcome the difficulties
in the FMO-MO method by fully utilizing the performance of massively parallel
computational architectures, Umeda et al. [8] developed a parallel Fock matrix con-
struction scheme for step (b) and applied the Sakurai-Sugiura method [9] to step (c).
They succeeded in applying the scheme to the FMO-MO method for calculating the
frontier MOs of the epidermal growth factor receptor (17,246 atoms) with 96,234
atomic orbitals (AOs) at the HF/6-31G level of theory.

Tsuneyuki et al. [10, 11] developed a more efficient method to evaluate the elec-
tronic state of a whole molecule, named as the FMO linear combination of MOs of
fragments (FMO-LCMO). In the FMO-LCMOmethod, the “effective” one-electron
Hamiltonian can be constructed solely bymaking use of the usual output of FMO cal-
culations. This is an advantage, for instance, over the FMO-MOmethod that requires
recalculations of the two-electron integrals in step (b). The constructed one-electron
Hamiltonian is represented in the fragment-monomer MO basis functions, and as
a result, the canonical MOs of the whole molecule are represented by an LCMO
of the fragments [10, 11]. The MO-based representation of FMO-LCMO has the
following great advantage over the AO-based one (used for conventional quantum
chemical calculations and FMO-MO) in the computational costs [10, 11]; by taking
into account only a small number of monomer MOs near the frontier MOs of each
fragment, the FMO-LCMO method can significantly reduce the matrix size of the
constructed Hamiltonian, which provides the MOs of the whole molecule near its
highest occupied MO (HOMO) and lowest unoccupied MO (LUMO).
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We have demonstrated that the FMO-LCMOmethod is suitable for the studies on
the charge transfer phenomena in both bio-systems and organic materials [12–19].
For example, the biological electron transfer (ET) reactions usually take place via the
long-distance electron tunneling between redox centers embedded in protein media
[20, 21]; the FMO-LCMO method can effectively construct the MOs of protein in
the vicinity of the HOMO-LUMO gap that is essential to describe the wave function
of the tunneling electron [12–14]. Moreover, since the MOs are represented in the
localized FMO basis, the ET pathway can be easily analyzed at the amino-acid
residue-based resolution [12–15].

Section 2 first explains the formulation of the FMO-LCMO method and briefly
reviews some test calculations. Section 3 shows the application of the FMO-LCMO
method to the electron tunneling associated with biological ET reactions. Section 4
briefly explains how to apply the FMO-LCMO method to the study on the triplet-
triplet annihilation (TTA) phenomena. Section 5 is devoted to Concluding Remarks.

2 FMO-LCMO

2.1 Formulation

This subsection describes the formulation of the FMO-LCMO scheme [10, 11] up to
the fragment-trimer exchange corrections (FMO3) [3], called FMO3-LCMO [11,
14] or FMO3/LCMO [22]; we will use the former notation hereafter.

In FMO calculations, the total system is first divided into N fragments. The
electronic structure of each fragment is then solved self-consistently under the elec-
trostatic potential (ESP) from all other fragments. The pth orbital of fragment I and
the corresponding MO energy are denoted by φ I

p and ε I
p, respectively, which are

optimized self-consistently under the ESP from the other fragments. In the case of
FMO2, the electronic structure of each fragment dimer is then solved under the ESP
from all other fragments determined above. The resultant pth orbital of fragment
dimer I J and the corresponding MO energy are denoted by φ I J

p and ε I J
p , respec-

tively. In addition, in the case of FMO3, the electronic structure of each fragment
trimer is solved under the ESP from all other fragments. The resultant pth orbital of
fragment trimer I J K and the corresponding MO energy are denoted by φ I J K

p and
ε I J K
p , respectively.
By using the FMOs {φX

r } and their energies {εX
r } described above, effective one-

electron Hamiltonians, such as Fock and Kohn–Sham Fock operators, of fragment
monomer, dimer, and trimer, represented by X = I, I J , and I J K , are written as

ĤX =
N X
r∑

r

|φX
r 〉εX

r 〈φX
r |, (2)
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where N X
r is the total number of {φX

r }. FMO calculations often require bond detach-
ments for their fragmentations of target large molecules; sp3 carbon atom is usually
employed for the fragmentation, which is called a bond-detached atom (BDA).When
BDAs are involved in the FMO calculation, the hybrid orbital projection (HOP) oper-
ators [23] used at the BDAs produce the φX

r ’s with anomalous huge MO energies.
Note that, in the FMO-LCMOmethod, one should remove the anomalous φX

r ’s from
Eq. (2) when using BDAs [10, 11, 22].

In the FMO-LCMO scheme, we project the effective one-electron Hamiltonian
operators of fragment monomer, dimer, and trimer, i.e. Eq. (2), to the fragment
monomer MOs. The matrix elements transformed into the fragment-monomer MO
representation in the intra-fragment I -I block are expressed by

(HI←X )I p,I q ≡ 〈φ I
p|ĤX |φ I

q 〉 =
N X
r∑

r

〈φ I
p|φX

r 〉εX
r 〈φX

r |φ I
q 〉. (3)

On the other hand, the matrix elements transformed into the monomer MO represen-
tation in the inter-fragment I -J block, inwhichφ I

p andφ J
q are involved, are expressed

by

(HI J←X )I p,Jq ≡ 〈φ I
p|ĤX |φ J

q 〉 =
N X
r∑

r

〈φ I
p|φX

r 〉εX
r 〈φX

r |φ J
q 〉. (4)

Note that, in the summation in the right-hand side of Eqs. (3) and (4), all the dimer
and trimer FMOs are taken, except the spurious ones stemming from the BDAs, as
with Eq. (2).

By using Eq. (3), the FMO1-LCMO Hamiltonian matrix (HFMO1
total ) is constructed

from the monomer-fragment Hamiltonian submatrices as follows [11]:

(HFMO1
total )I p,I q = (HI←I )I p,I q = ε I

pδI p,I q , (HFMO1
total )I p,Jq = 0 (for I �= J ). (5)

The FMO2-LCMO and FMO3-LCMO Hamiltonian matrices are described as

HFMO2
total = HFMO1

total + ΔHFMO2
total , (6)

HFMO3
total = HFMO2

total + ΔHFMO3
total , (7)

where ΔHFMO2
total and ΔHFMO3

total are the two- and three-body corrections, respectively.
The intra-fragment (I -I ) block of ΔHFMO2

total , between monomer MOs φ I
p and φ I

q in
the same fragment I , is given by

(ΔHFMO2
total )I p,I q =

∑

J �=I

{(HI←IJ )I p,I q − (HI←I )I p,I q}. (8)

On the other hand, the inter-fragment I -J block, in which monomer MOs φ I
p and φ J

q
are involved, is
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(ΔHFMO2
total )I p,Jq = (HIJ←IJ )I p,Jq . (9)

In analogy with the case of the FMO2, the FMO3 correction to the intra-fragment
I -I block is

(ΔHFMO3
total )I p,I q =

∑

J<K

∑

J,K �=I

{(HI←IJ K)I p,I q

−(HI←IJ )I p,I q − (HI←IK )I p,I q + (HI←I )I p,I q}, (10)

on the other hand, the inter-fragment I -J block is

(ΔHFMO3
total )I p,Jq =

∑

K �=I,J

{(HIJ←IJK )I p,Jq − (HIJ←IJ )I p,Jq}. (11)

The FMOmethod usually employs the electrostatic dimer (ES-DIM) approxima-
tion [2] that avoids SCF calculations of far-separated dimers and trimers. In Eqs. (8),
(10), and (11), the fragment dimers and trimers involved in the ES-DIM approxi-
mation should be excluded from the summations [11, 22].

Let’s consider the projection of the Hamiltonian of fragment X , (ĤX ), into the
limited number of monomer MOs via Eqs. (3) and (4). The use of such projected
matrix elements in Eqs. (5)–(11) leads to a considerable matrix-size reduction of
HFMO

total . The accuracy of the target quantities obtained from the FMO-LCMOmethod
depends on the selection of the “restricted FMO” (rFMO) space for the projection
[10–14]. The proper selection of the rFMO space can significantly reduce the com-
putational costs for constructing the considered total Hamiltonian keeping sufficient
accuracy.

The canonical MOs and corresponding energies for the whole molecule can be
obtained by solving a generalized eigenvalue problem of HFMO

total with the overlap
matrix among monomer MOs, SI p,Jq = 〈φ I

p|φ J
q 〉. If BDAs with the atomic basis

functions larger than minimal ones are used, the diagonalization of HFMO
total suffers

from the overcompleteness arising from the redundant inclusion of virtual orbitals
on BDAs. In Ref. [11], to remove the linear dependence of basis functions associated
with BDAs, a canonical transformation of HFMO

total was employed as follows:

H̃FMO
total = U †HFMO

total U, (12)

where the matrix U diagonalizes the overlap matrix. However, this transformation
often mixes the fragment-monomer MOs in unwanted ways for the ET analyses that
seek for the pictures based onMOs on each fragment. The problem can be evaded by
a projection to proper rFMO space instead of the canonical transformation, Eq. (12),
as shown below.
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2.2 Accuracy Tests

Accuracy tests of the FMO-LCMOmethod for various systems have been reported in
several previous papers [10–15, 17, 22]; the FMO routine implemented in GAMESS
[24] was used for all cases. Tsuneyuki et al. performed the FMO-LCMO calculations
at the FMO2-RHF level on a pseudo-Glycine pentamer with (310)-helix and stick
conformations [10]. Since they used a minimal STO-3G basis set, the problem of
linear dependence of FMOs at BDAs does not exist in their study. They confirmed
that the FMO-LCMO method reasonably reproduces the energy spectrum and MOs
of the whole peptide near its HOMO-LUMO levels even when taking into account a
small number of MOs around HOMOs and LUMOs of fragments [10].

We [12] applied the FMO-LCMOmethod to the FMO2-RHF results of fourmodel
ET systems: CH3-(CH4)3-CH3, where non-covalent stacks of methane (CH4)3 are
sandwiched by CH3 molecules, TCNE-(C6H6)n-TCNE (n = 1, . . . , 8), where non-
covalent stacks of benzene (C6H6)n are sandwiched by tetracyanoethylene (TCNE)
molecules, Be-CnH2n+2-Be (n = 2, 4, . . . , 18), where trans n-alkanes CnH2n+2 are
sandwiched by Be atoms, and alanine polypeptides (ala10) in α-helix and β-strand
conformations. The study used double-zeta basis sets, such as 6-31G(d) and cc-
pVDZ, for the FMO2-RHF calculations of the molecular clusters, CH3-(CH4)3-CH3

and TCNE-(C6H6)n-TCNE, without the BDAs. To examine the effects of the matrix-
size reduction on the results, the study considered a “minimal-valence” rFMO space
that includes the same number of monomer MOs as those with the standard minimal
basis sets (such as STO-3G) excluding their core MOs. They confirmed that the
FMO-LCMOmethod works well with the basis sets larger than the minimal ones for
the construction of the total Hamiltonian and MOs [12].

Kobori et al. [11] applied the FMO-LCMO method to the FMO2- and FMO3-
B3LYP calculations with the 6-31G(d) basis sets obtained for alanine dodecamer
(ala12) in α-helix and β-turn conformations and chignolin in the β-hairpin confor-
mations. This study did the canonical transformation, Eq. (12), of the constructed
HFMO

total to eliminate the linear dependence of FMOs at BDAs. They confirmed that
the FMO3-LCMOmethod substantially improves the accuracy of the resultant MOs
and their energies, compared to FMO2-LCMO. They also demonstrated the rFMO
space, consisting of all occupied monomer MOs but a restricted number of unoccu-
pied monomer MOs, can adequately reduce the computational costs with keeping
the accuracy. (They note that when using the basis sets larger than minimal ones, the
rFMO space had better include all occupiedmonomerMOs to keep the orthogonality
condition with respect to the core orbitals of neighbor fragments.)

Recently, Fedorov andKitaura [22] proposed a new scheme called FMO/LCMOX,
in which the FMO-LCMOmethod is improved by adding the exchange interaction to
the embedding potential of each fragment in the post-factum fashion (namely, after
the SCF converges without exchange). They performed the accuracy tests on (ala20)
in α-conformation, a water cluster, Trp-cage and crambin proteins, a zeolite cluster,
a Si nano-wire, and a boron nitride ribbon. They also performed the systematic
benchmarks by considering the effects of the following treatments on the results of
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Fig. 1 a Structure of
Trp-(Pro)3-Trp peptide. b
Fragmentations. P1-3 are
three proline residues and
NW denotes the main chain
of Trp (W). Reprinted from
Ref. [14], with the
permission of AIP
Publishing
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the FMO-LCMO calculations: the adaptive frozen orbital (AFO) [25] for the bond
detachments at BDA instead of HOP, the size of fragmentation (namely, 1 residue/2
residues per fragment), and a polarizable continuummodel (PCM)-FMOmethod [26]
for solvation. They demonstrated that the FMO/LCMOX substantially improves the
accuracy of the virtual MOs obtained from the FMO-LCMO method at the FMO2
level [22].

Then, we [14] applied the FMO-LCMOmethod to the FMO2- and FMO3-RHF/6-
31G(d) calculations of the Trp-(Pro)3-Trp in cis- and trans-polyproline (PP) config-
urations. Here, we focus on the trans-PP case, as illustrated in Fig. 1a. The total
system was divided into six fragments, as shown in Fig. 1b; the BDAs are, therefore,
involved in the FMO calculations. The Fock matrix obtained from the RHF calcula-
tion of the whole system of six fragments was also projected into the FMO space by
using Eq. (2) as follows:

(HFMO6
total )I p,J p =

∑

a

〈φ I
p|ψa〉εa〈ψa|φ J

p 〉, (13)

where ψa and εa represent the ath canonical MO of the whole system and its energy,
respectively. Hereafter, the calculations based on HFMO6

total are regarded as the reference
ones. The study considered a “minimal-valence plus core” rFMO space including
the same number of monomer MOs as the standard minimal basis set case, which
is denoted by LC(VC)MO. From the FMO-LC(VC)MO/6-31G(d) calculation of
the Trp-(Pro)3-Trp, we found that the smallest eigenvalue of the overlap matrix
for systems SFMO

total was greater than 0.2, which is large enough to regard the FMO
space linearly independent. Therefore, the study simply calculated the MOs and
their energies with the diagonalization of the matrix-size reduced HFMO

total without the
canonical transformation Eq. (12). Table 1 summarizes the computed errors in the
resultant MO energies from the RHF calculation of the whole system, indicating that



398 H. Kitoh-Nishioka et al.

Table 1 MO energy gap and errors (in eV) of Trp-(Pro)3-Trp form FMO-LC(VC)MO calculations

Gapa MAEb RMSc

Occ Uoc Occ Uoc

FMO2 10.66 0.107 (#15) 22.4 (#272) 0.0345 3.92

FMO3 10.67 0.102 (#27) 14.6 (#272) 0.0266 3.13

FMO6 10.63 0.0934 (#65) 14.6 (#272) 0.0223 3.13
aHOMO-LUMO gap. The reference RHF value is 10.63 eV
bMaximum absolute error of MO energies
Occ/Uoc denote occupied/unoccupied MOs
In parentheses are the MO numbers that exhibit the MAE
cRoot-mean-square error of MO energies
Reprinted from Ref. [14], with the permission of AIP Publishing

the FMO-LC(VC)MO without Eq. (12) works well as expected. The RMS (root-
mean-square error) is notably reduced from FMO2 to FMO3 but not so much from
FMO3 to FMO6, indicating nearly converged accuracy at the FMO3 level.

3 Electron Transfer Analysis

3.1 Theory

The rate of biological ET reaction is usually expressed by the Marcus theory as [27]

kET = 2π

�
|TDA|2 1√

4πλkBT
exp

[
(−ΔG − λ)2

4λkBT

]
, (14)

where TDA is theET couplingmatrix element.ΔG andλ are the free energy difference
of the ET reaction and the reorganization energy, respectively. �, kB , and T are
the Planck constant divided by 2π , Boltzmann constant, and the temperature of
the system, respectively. Biological ETs usually take place via the long-distance
electron tunneling between redox centers separated by more than several Å; the TDA
stems from the superexchange mechanism, where the electronic states of the protein
environment work as the virtual intermediate states for the electron tunneling [20,
21]. Therefore, accurate estimation of TDA based on ab initio electronic structures of
large protein is a difficult but important task to understand biological ETs.

To calculate the TDA with the FMO-LCMO scheme, we employ the following
two methods: generalized Mulliken–Hush (GMH) [28] and bridge Green function
(BGF) [29, 30]. The former method uses the MOs and their energies of the whole
system obtained from the diagonalization of HFMO

total , the latter one treats H
FMO
total itself.

Hereafter, we will express the HFMO
total simply by H .
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The GMHmethod scales the donor-acceptor adiabatic MO energy splitting ΔεDA
by a formula

TDA = |μDA| ΔεDA√
(μD − μA)2 + 4|μDA|2 , (15)

in which μD, μA, and μDA are the diagonal and off-diagonal dipole matrix elements.
It assumes that the Hamiltonian and dipole matrix elements scale similarly for states
involved in ETs. Note that the donor and acceptor adiabatic MOs,ψD andψA, can be
naturally chosen from the MOs of the whole ET system [12–15]; in general, HOMO
and HOMO−1 or LUMO and LUMO+1 are chosen, depending on the considered
ET. Despite its simplicity, the GMH formula, Eq. (15), has been successfully applied
to a number of ET reactions.

The BGF method expresses TDA as

TDA = H direct
φD,φA

+
N∑

I,J

∑

I p,Jq

′(EtunSφD,I p − HφD,I p)

×GB(Etun)I p,Jq(EtunSJq,φA − HJq,φA), (16)

in which the sums over I p and Jq exclude donor and acceptor MOs, φD and φA. The
first term H direct

φD,φA
in the right-hand side is the direct coupling between φD and φA. S

is the overlap matrix. GB(E) is the bridge Green function defined as

GB(E) = (ESQQ − HQQ)−1, (17)

in which Q is the projection operator to the MO space external to the donor-acceptor
MOs. The electron tunneling energy Etun is naturally defined as the average of donor-
acceptor orbital energies,

Etun = (εD + εA) /2

.
To effectivelymakeuse of theFMO-LCMOscheme for the analyses of the electron

tunneling pathways in bio-systems, we employ the tunneling current method [30,
31]. The MOs in initial (i) and final (f) diabatic states are expressed in terms of the
monomer MOs as follows:

|ψ i〉 = C i
D|φD〉 +

N∑

I

∑

I p

C i
I p|φ I

p〉, (18)

|ψ f〉 = C f
A|φA〉 +

N∑

I

∑

I p

C f
I p|φ I

p〉. (19)

Since C i
D 	 1 and C i

A 	 1 are satisfied in the weak coupling case, the coefficients
{C i

I p} and {C f
I p}, which represent the mixing of bridge FMOs to the donor and
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acceptor FMOs, φD and φA, are expressed by the bridge Green function Eq. (17) as
follows:

C i
I p = −

N∑

J

N J
q∑

q

(EtunSφD,Jq − HφD,Jq)G
B(Etun)Jq,I p, (20)

C f
I p = −

N∑

J

N J
q∑

q

GB(Etun)I p,Jq(EtunSJq,φA − HJq,φA). (21)

The tunneling current JI p,Jq between monomer MOs φ I
p and φ J

q is given by

JI p,Jq = 1

�

(
HIp,Jq − EtunSI p,Jq

) (
C i

I pC
f
Jq − C f

I pC
i
Jq

)
. (22)

The total tunneling current between fragments I and J is, therefore, written as

JI,J =
∑

I p

∑

Jq

JI p,Jq , (23)

in which the summation over I p and Jq is over the FMOs within fragments I and J .
The ET coupling TDA is expressed as a sum of the tunneling currentJI p,Jq between
basis FMOs {φ I

p} [12–15],

TDA = �

∑

I∈ΩD

∑

J /∈ΩD

JI,J , (24)

whereΩD denotes the spatial region assigned to the donor molecule. The normalized
inter-fragment tunneling current is defined by

KI,J = �JI,J/TDA, (25)

which satisfies ∑

I∈ΩD,J /∈ΩD

KI,J = 1. (26)

3.2 Usage Example

The usages of the techniques described in the previous subsection include the ET
studies on the model systems [12], photosynthetic reaction center [13], the Trp-
(Pro)3-Trp peptides [14], and DNA photolyases [15]. Here, we review an application
to the hole transfer between two Trp bridged by trans-PP linker conformation, as
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Fig. 2 aET coupling TDA and b normalized inter-fragment currentsKI,J calculated for Trp-(Pro)3-
Trp in the trans-PP conformation. Reprinted from Ref. [14], with the permission of AIP Publishing

shown in Fig. 1a. Figure 1b shows the fragmentation for the FMO2- and FMO3-
RHF/6-31G(d) calculations. The HOMOs of the donor and acceptor fragments are
chosen as φD and φA, respectively. The HOMO and HOMO−1 of the whole system
are chosen as ψD and ψA for Eq. (15). When we use the full fragment-monomer MO
space (namely, no matrix-size reduction) for obtaining the ψD and ψA, we have to
perform the canonical transformation, Eq. (12), to avoid the problems associatedwith
BDAs. On the other hand, when projecting the Hamiltonian into rFMO space not
exceeding LC(VC)MO, we simply diagonalize the total FMO-LCMO Hamiltonian
for those, as described in Sect. 2.

Figure 2a plots the computed TDA with varying rFMO spaces, from the “occupied-
only” to the minimal-valence plus core (VC), indicating that the TDA converges to the
value of full space with an oscillation. We can see that FMO3 notably improves the
TDA value over FMO2 and has been almost converged to FMO6. Figure 2b plots the
normalized inter-fragment tunneling currents, comparing FMO2 and FMO3with the
reference FMO6. In this figure, theLC(VC)MOspacewas employed.Aswith the TDA
calculations, we can see that FMO3 notably improves the ET pathways over FMO2.
The main pathway is the forward ET of D→P1→P2→A, with a bifurcate back-flow
of P2→D. FMO3 and FMO6 exhibit larger current back-flow than FMO2, leading to
the decrease in TDA owing to destructive interference (see Eq. 24). Figure 2b indicates
that the ET pathway proceeds through the BDAs. Therefore, the BDAs would have
a possibility to cause some problems for the calculations of TDA and ET pathways
within the framework of the FMO-LCMO method. However, Fig. 2 clearly shows
that the ET analyses based on FMO-LCMO are robust by the FMO3 correction.

4 Triplet-Triplet Annihilation

The triplet-triplet annihilation (TTA) is a phenomenon, where an excitation energy
transfer (EET) between two triplet-excited (T1) state molecules converts a T1 state
of one molecule into its singlet-excited (S1) state and, at the same time, converts a
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T1 state of the other molecule into its ground (S0) state. The TTA phenomenon has
attractedmuch attention to the use of the photon upconversion (UC) process [18, 19].
The inverse phenomenon of TTA is called singlet fission (SF), where an excitation
energy transfers from an organic molecule in its S1 state to a neighboring molecule in
its S0 state and, as a result, both molecules become their T1 states [32]. This section
only focuses on the application of the FMO-LCMOmethod to the TTA, although its
application to SF is straightforward.

The initial state of the TTA process is usually assumed to be a “correlated triplet
pair” (T1T1)where twoT1 states on neighboringmolecules are coupled into an overall
pure spin-singlet state. The final state is, here, denoted by S1S0. A direct transition
from T1T1 to S1S0 through the Dexter exchange mechanism merely occurs because
its electronic coupling arising from two-electron integrals is significantly small [32].
Therefore, one often assumes that the transition from T1T1 to S1S0 consists of two
sequential one-electron transfer reactions via a charge-separated (CS) state, where
one molecule is in its cationic state, and the other is in its anionic state. Note that the
CS state corresponds to a cation-anion (CA) or anion-cation (AC) case, depending on
the TTA process considered. The TTA rate, kTTA, is expressed using the steady-state
approximation as

kTTA = kT1T1,CSkCS,S1S1

kCS,S1S0 + kCS,T1T1

. (27)

kX,Y is the ET rate constant from an initial state X (= T1T1 or CS) to a final state Y
(= T1T1, S1S0 or CS), evaluated using Eq. (14).

All TDA’s appearing in kTTA can be calculated from the FMO-LCMOmethod per-
formed on the dimer molecules associated with the TTA. We, here, denote HOMOs
and LUMOs of fragment monomers, 1 and 2, by φ′1

H , φ
′2
H , φ

′1
L , and φ′2

L , respectively,
and assume the MOs, {φ′I

p }, to be orthogonal to each other. If two-electron integrals
are ignored (i.e. zero-differential overlap formulation is used), the configuration inter-
actions with single and selected double excitations within an active space of the four
FMOs and four electrons yield [32]:

TS1S0,CA = 〈φ′1
L |F̂ |φ′2

L 〉, (28)

TS1S0,AC = −〈φ′1
H |F̂ |φ′2

H 〉, (29)

TCA,T1T1 = √
3/2〈φ′1

L |F̂ |φ′2
H 〉, (30)

TAC,T1T1 = √
3/2〈φ′1

H |F̂ |φ′2
L 〉, (31)

where F̂ is the (Kohn–Sham) Fock operator for the dimer. However, the actual
monomer MOs obtained from the FMO calculation, {φ I

p }, are not orthogonal to each
other. Thus, 〈φ′I

p |F̂ |φ′J
q 〉 in Eqs. (28)–(31) should be derived from the FMO-LCMO

Hamiltonain matrix elements,
(
HFMO2

total

)
I p, Jq , corrected with the Löwdin symmetric

transformation as follows [16, 17]:
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Fig. 3 a Dimer model structure of DPA. d represents intermolecular distance. θ represents the
molecular orientation angle. The other structural parameters are fixed. b Calculated TTA reaction
time as functions of θ and d. Reprinted with permission from Ref. [19]. Copyright 2018 American
Chemical Society

〈φ′I
p |F̂ |φ′J

q 〉 = (1 − S2I p,Jq )
−1

((
HFMO2
total

)

I p,Jq
− SI p,Jq

(
HFMO2
total

)
I p,I p + (

HFMO2
total

)
Jq,Jq

2

)
.

(32)

We [18, 19] examined the TTA reaction time τ = 1/kTTA of 9,10-
diphenylanthracene (DPA) in solution by using the dimer model structures illustrated
in Fig. 3a. The TDA values were calculated from the FMO2-LC-UBLYP/6-31G(d)
results of the dimers, where the φ I

p MO basis was optimized on the T1 state of each
fragment I under the ESP from the other fragment. The derivations of the other key
parameters (λ, ΔG) in kX,Y are detailed in the references [18, 19]. Figure 3b plots
the τ as functions of the dimer configuration parameters θ and d defined by Fig. 3a.
Figure 3b clearly shows that the the dimer configuration with θ of 90◦ is favorable
for the TTA of the DPA in solution; the TTA occurs within 1 μs when d is 11 Å and
θ is 90◦, marked by the dotted line in Fig. 3b. The insight obtained from the theo-
retical analyses based on the FMO-LCMO method would offer many advantages to
molecular design for future organic materials with a desirable TTA activity.

5 Concluding Remarks

In this Chapter, we have reviewed the FMO-LCMO method that enables one to cal-
culate the one-electron Hamiltonian and canonical MOs of the target large molecule,
emphasizing its advantage in the matrix-size reduction. This Chapter also focuses
on its application to the charge transfer studies by the authors [12–15, 18, 19]. The
other applications of the FMO-LCMO method include the following studies. Kitoh-
Nishioka and Ando [16] combined the FMO-LCMO method with nonempirically
tuned range-separated density functional to develop the scheme for computing the
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key charge-transfer parameters, such as transfer integral and site energy, in DNA
and organic materials. Kitoh-Nishioka et al. [17] developed the FMO-DFTB/LCMO
method that makes use of the FMO scheme [33] extended to density-functional
tight-binding (DFTB) [34]; the FMO-DFTB/LCMO scheme with a less compressed
DFTB parameter sets [35] for the inter-fragment interactions were used for themulti-
scale charge transport simulations of covalent organic framework (COF). Fujita and
Mochizuki [36] provided the formulation of configuration-interaction singlet (CIS)
calculations with the FMO-LCMO method to describe the excited states of large
molecules; Fujita and co-workers [37] applied the method to the study the excited
states at pentacene/C60 interfaces,where 2, 000 atomswere treated quantummechan-
ically. On the other hand, Yamada et al. [38] developed a similar method to FMO-
LCMO within the framework of DC scheme, called DC-a linear combination of the
fragment orbitals (DC-LCFO).

The FMO-LCMOmethod is an excellent and attractive one as described, whereas
the examples of its practical application are limited for now.Webelieve that the FMO-
LCMOmethod is capable of further applications and producing novel approaches to
various chemical and physical subjects in accordance with the development of the
FMO method.
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Koichiro Kato, Aya Hashimoto, Eiichi Tamiya, Kaori Fukuzawa,
Yuichiro Ishikawa, and Yuji Mochizuki

Abstract This chapter introduces an application of the fragment molecular orbital
(FMO) method to the measurement of molecular adsorption on solid surfaces, which
is the first use of the FMO method for a purpose other than drug discovery. First, the
results of the interaction analysis of biomolecule adsorption on a silica surface, which
is a leading type of research for nano-bio interfaces, are presented. Next, the results
of the interaction analysis of biomolecule adsorption to the biominerals hydroxya-
patite and calcite are shown. In order to analyze the adsorption of biomolecules on
crystal surfaces at the quantum chemical level, large-scale calculations are required.
However, by using the FMO method, it is possible to carry out analysis at a realistic
calculation cost. In addition, the FMOmethod is expected to enable elucidation of the
adsorption mechanism and the molecular design to enhance the adsorption capacity,
because it enables quantitative analysis of the interaction between fragments. Next,
as an application to general organic–inorganic interfaces, preliminary results for the
AFM model system and the silica–rubber polymer complex system are introduced.
The key to successful FMO calculations involving the above crystal surface system
is to appropriately fragment the crystal clusters and to perform FMO4 calculations
taking into account the four-body correction. The application of the FMOmethod to
uses other than drug discovery is expanding, and is expected to expand further in the
future.
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Keywords Crystal surface · Peptide · Interface · Hydroxyapatite · Calcite ·
Interaction analysis

1 Introduction

In the fields of biochemistry and biophysical chemistry, macromolecules such as
proteins and DNA are studied. In order to perform such macromolecule analyses
using quantum theory, it is necessary to reduce the calculation cost. Therefore, various
approaches for fast computation have been proposed [1]. The fragment molecular
orbital (FMO) method [2] is one of them. By using the FMO method [3, 4], it is
possible to obtain physical quantities that can be used for a detailed analysis of inter-
molecular interactions called interfragment interaction energy (IFIE) analysis. The
FMO4method [5], which takes into account up to four-body correction, has also been
developed and is used for fragmentation of amino acids intomain and side chains and
of ligands into functional groups. By using the FMO4method, it becomes possible to
handle three-dimensional solid crystals having a band gap, such as diamond, silicon,
and silica [5]. In fact, quantum mechanics-based interaction analysis between large-
scale silica clusters and peptides using the FMO4method has been reported [6]. Inter-
action analysis between solids and biomolecules (nano-bio interfaces) is expected
to become increasingly important in the field of nano-biotechnology. In the fields
of medical-engineering and bio-engineering, topics related to nano-bio interfaces
include improvement of the biocompatibility of implants by surface modification,
construction of drug delivery systems using nanoparticles, and elucidation of the
mechanisms of biomineralization. In the field of applied physics, we are also deeply
involved in the development of devices such as highly sensitive biosensors that detect
small amounts of proteins and DNA.

In simulation studies for large-scale systems such as nano-bio interfaces, classical
molecular dynamics (MD) methods or quantum classical hybrid (QM/MM)methods
are used. However, it is difficult to deal with quantum phenomena such as charge-
transfer and chemical reactions bymeans of classicalMD.Since theQM/MMmethod
tends to handle a wide range of quantum mechanics, there is a limit to the size of the
QM region, which requires proper modeling. Calculations based on density func-
tional theory are also difficult to deal with when periodicity is imposed. Therefore,
analyses similar to that in the study byOkiyama and colleagues [6] are currently diffi-
cult to achieve by other methods, and the results of their study are thus a milestone in
applying the FMOmethod to problems in the nano-bio interface. Following the work
of Okiyama et al. [6], the FMO method was applied to several topics in the nano-
bio interface. For example, elucidation of the microscopic adsorption mechanism
of hydroxyapatite (HA) and elucidation of specific sequence peptides [7] have been
reported. Studies of osteoblast HA using Raman spectroscopy and FMO techniques
have also been performed. In addition to HA, calcite has also been investigated by
interaction analysis [8]. Of course, the FMO method can also be applied to general
inorganic–organic interfaces other than the nano-bio interface. Specifically, the FMO
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method has been applied to general interfaces such as an atomic force microscope
(AFM) model system and interfaces composed of rubber composite materials.

In this section, we introduce the results of the latest research applying the FMO
method to various systems including solid interfaces.

2 Applications for Nano-Bio Interfaces

2.1 FMO Analysis of Peptides Specifically Adsorbed
on a Silica Surface

The research group of Dr. K. Shiba found a peptide of 12 residues that specifically
adsorbs only to the oxide surfaces of titanium, silver, and silicon [9, 10]. In this
peptide, it is reported that the surface-binding ability is determined by the first six
residues (Arg1-Lys2-Leu3-Pro4-Asp5-Ala6: RKLPDA). However, the microscopic
adsorption mechanism remains unknown.We herein introduce the results of an FMO
analysis [6] carried out to elucidate this microscopic mechanism.

The FMO calculations were performed on a complex system combining a cluster
model of silica containing 257 silicon atoms and RKLPDA. RKLPDA was neutral-
ized at both ends. Explicit water molecules were placed around the peptide to repro-
duce the hydration environment. The three-dimensional fragmentation method of
silica crystals was newly developed, and by combining it with FMO4, highly accu-
rate calculation became possible. Large-scale calculations were performed at the
second-order perturbation theory (MP2) level, which can capture the dispersion
force, and Cholesky decomposition (the CDAM-MP2 method [11]) was used to
shorten the processing time of FMO4 calculations. In the interaction energy anal-
ysis, a new method called SCIFIE [12] was also used. By this method, the screening
effect between fragments can be statistically incorporated. The key to this applied
calculation was the development of a high-precision fragmentation method for silica
crystals.

The visualization of IFIE is shown in Fig. 1, and confirms that three charged
amino acid residues, Arg1, Lys2, and Asp5, in RKLPDA are particularly important
for binding to the silica surface. This information provides valuable guidance from
a computational perspective for peptide modification and optimization. On the other
hand, silica was found to be polarized not only on the surface but also inside the
silica molecule by peptide binding. This result suggests that it is inappropriate to
approximate a solid with a simple and compact cluster model. Figure 2 shows the
IFIE value and the amount of charge transfer. As shown in this figure, quantitative
evaluation of the interactions between each residue and silica revealed that charged
residues contribute significantly to the stabilization. In addition, there is a charge
transfer between silica and the peptide. The stabilization due to this charge transfer
is a result peculiar to FMO, which is all electron calculation based on quantum
mechanics.
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Fig. 1 Visualization of IFIE between silica and RKLPDA a for RKLPDA peptides by collecting
contributions from all fragments in the silica cluster indicated in yellow. b For silica clusters by
collecting contributions from all fragments in the RKLPDA indicated in yellow

Fig. 2 a Plots of IFIE values for Gas andWater (10Å)models. TheGasmodel represents a complex
in gas phase. The Water (10Å) model represents a hydrated complex with a 10Å water shell. The
names of the main and side chains of numbered amino acid residues are given with the subscripts
M and S, respectively. b Schematic diagram of charge transfer between water, silica and peptide.

The establishment of this calculation method is expected to permit application of
theFMOmethod to not only nano-bio interfaces but also thefield of geoscience. Silica
is a basic component of minerals such as quartz. Adsorption (desorption) of various
ions onmineral surfaces under hydration conditions is an important chemical process,
but its understanding by electronic structure calculation is still insufficient. Further
development of this FMO4 calculation method is expected to promote a detailed
understanding including information on various thermodynamic parameters.
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2.2 FMO Analysis of Peptides Specifically Adsorbed
on a Hydroxyapatite Surface

Hydroxyapatite (HA) is themajor inorganic component of teeth and bones. A compu-
tational technique that could efficiently identify peptides that specifically adhere to
the HA surface would be useful in various respects. For example, it could be applied
to the design of high-performance adhesive materials in dentistry and the develop-
ment of bone replacement materials to promote bone formation. George et al. [13]
and Shiba et al. [14] experimentally demonstrated that peptides consisting of five
amino acid residues (ESQES: in the order Glu1-Ser2-Gln3-Glu4-Ser5) have specific
adsorptivity to HA. However, the microscopic adsorption mechanism was not suffi-
ciently considered in these studies. Therefore, we addressed this mechanism as an
application of the FMO method to a new solid surface following silica. Here, we
introduce the results [7] of our interaction analysis of the HA surface and ESQES.

First, we generated a model of a huge HA crystal consisting of 1408 atoms.
In this model, the unit cell is expanded to 4 × 4 × 2, and the crystal parameters
are a = 37.76 Å and c = 13.77 Å. The edge effect is negligible at the center of
the crystal surface where amino acids are adsorbed. By neutralizing both ends of
ESQES and adsorbing it to HA surface, three composite structures were formed.
MD simulations were carried out using these three structures as initial structures. Ten
complex structures were sampled from each series. It is noteworthy that the structure
was sampled from the MD trajectories to evaluate the adsorption characteristics
including the structural fluctuation. In FMO4 calculations for a total of 30 structures,
the environmental electrostatic potential is approximated by point charge (ESP-PTC
approximation) to reflect the properties of strongly ionizedHA.For the 1 s-2p electron
of Ca, the environmental electrostatic potential was replaced by the model core
potential (MCP). For atoms other than Ca, 6-31G * basis functions were used. The
second-orderMøler-Plesset correlation correction (MP2)was adopted for energy and
electron density. By using the IFIEs obtained by the FMO method, it is possible to
quantitatively evaluate the interaction between amino acids and various ions which
constitute HA. The atomic charge was calculated by natural bond orbitals and used
to discuss the effects of charge transfer and polarization. The execution time of the
FMO4-MP2 energy calculation was 3 h per structure using a small server with 96
cores. For the analysis of the interaction energy between amino acid residues and
apatite, a method considering the mutual shielding effect between fragments (SCIFE
[12]) was also used.

Figure 3 shows the statistical average of the IFIE of each amino acid residue rela-
tive to the whole HA. It was commonly found that serine (Ser5) at the terminal part
contributes most remarkably to the stabilizing interaction in adsorption. Moreover,
analysis of the atomic charge revealed that charge transfer from the phosphate ion
adjacent to Ser5 (Fig. 4) was essential for stabilizing the interaction. On the other
hand, by considering the structural fluctuation, it was also proven that the stabilization
interaction greatly changed depending on the adsorption shape even among identical
amino acid residues such as Ser3 and Ser5 or Glu1 and Glu4. From an experimental
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Fig. 3 Interaction energy between HA and five amino acid residues in each series

point of view, George et al. [13] inferred stabilization through electrostatic interac-
tions between the serine, glutamate, and ion components of HA. From this study,
it was newly clarified that the position relative to the HA surface and the effect of
charge transfer are also likely to be important in addition to the type of amino acids.

In Fig. 5, the SCIFIE of series 1 is visualized. For each amino acid residue shown
in yellow, the stabilizing interaction fragment is shown in red and the destabilizing
interaction fragment is colored blue. Because glutamic acid is negatively charged,
it has a stabilizing interaction with positively charged calcium ions. On the other
hand, it has a destabilizing interaction with the negatively charged phosphate ion,
and the closer the phosphate ion, the deeper the blue color. Serine at the C-terminus is
strongly stabilized with the adjacent phosphate ion with charge-transfer interaction,
but it is also shown to be weakly destabilized at a distance. As described above, our
FMO4 calculations revealed quantitatively for the first time the polarization state in
which stabilization and destabilization coexist in HA crystals by peptide adsorption.

Fig. 4 Visualization of charge transfer to Ser5 from PO43-. The represented structure was captured
at 8.8 ns in sequence 1
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Fig. 5 Visualization of SCIFIE between HA and each amino acid residue shown in yellow. The
represented structure was captured at 8.8 ns in sequence 1

2.3 Analysis of Osteoblast Hydroxyapatite by Raman
Spectroscopy and the FMO Method

Recently, with respect to the crystal growth of HA, time-lapse Raman imaging anal-
ysis [15, 16] of the osteoblast mineralization process was reported. These studies
demonstrated that the Raman band obtained from the HA in the cultured tissue shifts
to a wavenumber about 7 cm−1 lower than that of the pure substance HA. Based on
these results, it was considered that HA in the living body exists surrounded by bone
matrix proteins such as type I collagen. Therefore, we investigated the influence of
adsorption of amino acid monomers on HA using a combination of experiments and
simulations. In the experiments, several kinds of amino acids were adsorbed on HA
under the conditions of pH = 7 and 37 °C, and the influence of amino acids on HA
was examined byRaman spectroscopy. In the simulation, the behavior of three amino
acids (Asp, Lys, Ser) on the HA surface and the details of the interaction with the
HA surface were analyzed using MD and FMO methods as in the case of HA and
ESQES [7].

Details of the simulation are shownbelow. First, Asp, Lys, andSerwere selected as
the three amino acids, and each amino acid neutralizes both ends. Four HA adsorp-
tion structures were created for each amino acid (12 structures in total). For all
adsorption structures, 300 K MD was performed for 10 ns in a hydrated environ-
ment. The final structure in each MD was extracted and interaction analysis by the
FMO method was carried out. In the FMO method, the ESP-PTC approximation
was used with the previously reported calculation settings [7]. For the basis function,
MCP and 6-31G* were used in combination. For the energy and electron density,
MP2 was used. The atomic charge calculated by the natural bond orbit was used



414 K. Kato et al.

for the discussion of the effect of charge transfer and polarization. It is possible to
evaluate the interaction between HA and amino acids in an adsorption structure by
FMO calculation. However, in order for amino acids to be adsorbed from a hydrated
state, they must first be desolvated. When the desolvation energy is large, it may be
considered that the adsorption structure is not formed because the hydrated state will
be more stable without the adsorption. Therefore, in order to evaluate desolvation
energy, analysis using the Molecular Mechanics Poisson–Boltzmann Surface Area
(MM-PBSA) method [17] was performed. By calculating the total value of IFIE
and the desolvation energy for each amino acid, we were also able to compare the
interaction between HA and amino acids while considering the desolvation process.

Figure 6 shows the results of visualizing the obtained IFIE with FMO calculation
for 12 adsorption structures. From this figure, it can be seen that PO4

3—in close
proximity to the side chain OH of Ser exerts a strong attractive force. This is in good
agreement with the features pointed out in the previous paper [7]. On the other hand,
Asp and Lys are charged amino acids. Therefore, negatively charged Asp has an
attractive interaction with calcium ion and repulsive interaction with phosphate ion.
Also, positively charged Lys has an opposite interaction with Asp. The sum of the
IFIEs from all fragments constituting HA for each amino acid is shown in Fig. 7. In
Type II of Asp and Type III of Lys, since the amino acid has been separated from
HA in MD, the total IFIE is small. On the other hand, in the structure maintaining
HA adsorption, the influence of the differences in amino acid type and differences
in adsorption structure is small.

Fig. 6 Visualization of IFIE between HA and each amino acid in yellow
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Fig. 7 Interaction energy between HA and each amino acid residue

Next, Table 1 shows the desolvation energy calculated by theMM-PBSAmethod.
MM-PBSA calculation was performed on a Type IV adsorption structure of each
amino acid. The desolvation energy decreased in the order of Asp, Lys, and Ser.
When the sum of the IFIEs was added to the desolvation energy, Ser became the
amino acid with the highest adsorption capacity, followed in order by Lys and
Asp. On the other hand, the experimentally obtained Raman band shift is shown in
Table 2. The magnitude of the influence on the Raman band shift decreased in the
order of Ser, Lys, and Asp. Therefore, it was found that there is a correlation between
the IFIE sum with desolvation energy and the amount of the Raman band shift. The
Raman experiment revealed the symmetric stretching mode of the phosphate ions.
In addition, since HA is an ionic crystal, it is considered that most of the interaction
between phosphate ions and surrounding HA ions is due to electrostatic interaction.
Therefore, the change in the charge of the phosphate ion due to the amino acid
adsorption weakens the electrostatic interaction and is expected to cause the Raman
shift. Actually, when calculating the amount of charge transfer from HA to each
amino acid, the transfers to Ser, Lys, and Asp were found to be−0.22e,−0.13e, and
−0.10e, respectively. There was also a correlation between the amount of Raman
band shift and the amount of charge transfer.

Since Ser is not only the most adsorptive amino acid based on the results of
the IFIE sum analysis with desolvation energy, but also the most electron-accepting
amino acid based on the results of the charge-transfer analysis, it is considered that
the largest Raman shift was observed in HA-Ser.

2.4 FMO Analysis of Peptides Specifically Adsorbed
on the Calcite Surface

Calcite is a biomineral known as the principal component of eggshells, sea urchin
teeth, and thorns. The chemical composition is calcium carbonate (CaCO3). Calcite
is very strong—for example, sea urchin teeth have been reported to be strong enough
to pierce rocks without losing their sharpness [18]. Research into the mechanism
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Table 1 IFIE sum with desolvation energy taken into consideration (the MM—PBSA calculation
was performed on the Type IV adsorption structure of each amino acid)

Type IV adsorption structure
[kcal/mol]

Ser Lys Asp

IFIE −193.98 −218.55 −207.12

Esolv 139.11 179.81 203.51

IFIE + Esolv −54.87 −38.74 3.61

Table 2 Summary of amino acid effects on the HA Raman band

Coat Non-cort Ser Lys Asp

Raman band of HA v1 mode [cm−1] 963.4 959.7 960.9 962.4

Shift [cm−1] – −3.7 −2.5 −0.9

of the biomineralization of calcite is also being actively carried out. The difference
in the adsorbability of aspartic acid and glycine [19] and the strong adsorption of
aspartic acid-rich peptides on calcite have been reported, indicating the importance of
the DDGSDDmotif [20, 21]. This section introduces the results of FMO calculation
analysis to clarify the microscopic mechanism of DDGSDD adsorption.

A calcite crystal model was constructed with 1,920 atoms. DDGSDDwas neutral-
ized at both ends. DDGSDD was adsorbed on the {10–14} of calcite, which is the
most stable surface in liquids. Similar to the approach used in HA-ESQES analysis
[7], structure sampling by MD and interaction analysis by the FMO method were
performed. Here, 4 kinds of composite structures were prepared as an initial structure
of MD, and 10 kinds of structures were sampled from 4 series of MD. The FMO
method was performed at the FMO4-MP2 level and the ESP-PTC approximation
was adopted. The basis functions are MCP for Ca and 6-31 G * for other atoms. The
atomic charge is calculated by natural bond orbitals and used to discuss the effects
of charge transfer and polarization.

Figure 8 shows the statistical mean value of IFIE between each amino acid residue
and calcite. Though thefluctuation by the series is also large,Asp on the end side tends
to interact stronglywith the calcite. In addition, it was proven that the interactionwith
the calcite changed greatly from attraction to repulsion depending on the structure
even in the same Asp by considering the structural fluctuation. Figure 9 illustrates
SCIFIE of series 1, in which the stabilizing fragment (Water or ions) is shown in
red and the destabilizing fragment is shown in blue for each amino acid residue
shown in yellow. The negatively charged Asp interacts stably with the positively
charged calcium ion, but interacts unstably with the negatively charged phosphate
ion. Phosphate ions close toAsp are dark blue.Depending on the adsorption structure,
some Asp cannot approach the surface calcium ions and are adjacent to phosphate
ions. It is considered that a repulsive interaction occurs in such adsorption structures.
On the other hand, the specific adsorption of Ser observed in HA-ESQES [7] did not
occur in calcite-DDGSDD. Analysis of the atomic charge revealed that the charge
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Fig. 8 Interaction energy between calcite and six amino acid residues in each series

transfer from the surface carbonate ion to Ser was not significant. It is considered that
this difference was due to polarizability and the sizes of the carbonate and phosphate
ions. That is, phosphate ions are more likely to lose electrons than carbonate ions.
HA and calcite are the same ionic crystals, but FMO analysis based on quantum
mechanics revealed different mechanisms of peptide adsorption.

3 Applications for General Organic–inorganic Interfaces

Since silica, hydroxyapatite, and calcite are important materials in the nano-
biotechnology field, the results of our analysis of the interaction between these mate-
rials and biomolecules are shown. On the other hand, in the FMO method, it is also
possible to analyze the interaction between common organic molecular materials
and inorganic crystal surfaces. Below, we introduce two examples of application to
such general interfaces.

3.1 Analysis of Small Molecules and the AFM Tip Model
on an NaCl Surface

NaCl crystal is one of the simplest ion crystals. It is interesting as a research subject,
and has been investigated in many studies, such as a study measuring the desorption
heat of molecules adsorbed on the NaCl crystal surface [22]. Furthermore, in recent
years, NaCl crystal has often been used for substrate modification of AFM. Visu-
alization of the charge state of atoms [23] and the six-membered ring structure of
molecules [24] on the surface of NaCl has been reported. These reports are also very
interesting from the viewpoint of computational chemistry. For example, the FMO
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Fig. 9 Visualization of SCIFIE between calcite and each amino acid residue shown in yellow. The
represented structure was captured at 9.2 ns in sequence 1

method is expected to reveal factors for molecular adsorption and to be useful for
calculating forces on the AFM tip.

In this study, we analyzed molecular adsorption to the NaCl surface. For eluci-
dation of the factors of molecular adsorption, CO, N2, C2H2, C2H4, C6H6 were
targeted. We also examined Si4H4, Si4H3− as model molecules of the AFM tip.
First, a cluster model was prepared that imitated surfaces composed of 25 (single
layer) and 50 (2 layers) NaCl units. For each calculation, energy was evaluated while
changing the distance between eachmolecule and theNaCl surface. For the tipmodel
of AFM, the force in the vertical direction of the surface was also evaluated. Calcu-
lation settings were equivalent to those for HA and calcite. The FMO4-MP2 level
calculation was performed using the ESP-PTC approximation to the environmental
electrostatic potential. For basis functions, 6-31G* was applied to Na, Si, and H, and
6–31 + G* was applied to C, O, N, and Cl.

Figure 10 shows the energy change when C2H2 and C2H4 are brought close to
the NaCl surface. It is considered that both molecules record a minimum energy at
a specific distance and form a stable state. However, as a result of the HF method,
the degree of stabilization is small. This implies that the dispersion force makes an
important contribution to the stabilization, and reveals the necessity of the calcula-
tion in MP2. Table 3 summarizes the energy minimum (Emin) and distance minimum
(Rmin) that give Emin, including other molecules. If an experimental report is avail-
able, the measured values are also listed. Since this calculation was performed on a
simplified model, the deviation from the experimental value was large, but the calcu-
lated and experimental values for C2H2 remained relatively close. Also, the number
of layers of NaCl had little influence on Rmin, but it was found to have a significant
influence on Emin. The importance of MP2 is suggested again in C6H6. Although
the stable state was not formed by the HF method, stabilization of about 14 kcal/mol
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Table 3 Summary ofmolecular absorption on anNaCl surface. Emin is theminimum energy value,
and Rmin is the distance at which Emin was recorded. The units of Emin and Rmin are kcal/mol, Å
respectively. NB means that no bonding state was formed

CO N2 C2H2 C2H4 C6H6

Rmin Emin Rmin Emin Rmin Emin Rmin Emin Rmin Emin

MP2(50) 2.6 −8.8 2.5 −10.3 2.9 −8.2 2.9 −9.1 3.2 −13.9

MP2(25) 2.6 −9.4 2.5 −10.0 2.9 −8.8 2.9 −8.8 3.1 −14.6

HF(50) 2.9 −2.2 2.8 −0.8 3.4 −0.8 3.5 −0.8 NB NB

HF(25) 2.9 −2.9 2.8 −1.7 3.4 −1.4 3.5 −1.2 4.7 −0.2

Exp – ~4
[22]

– – – ~7.7
[25]

– ~5.3
[26]

– –

Fig. 10 Energy profile of a C2H2 and b C2H4 adsorption on an NaCl surface. The horizontal axis
represents the distance between the adsorbed molecule and the NaCl surface. Energy was set to
zero when the distance between them was 10 Å

occurred in MP2. Since C6H6 is a system rich in π electrons, it is considered that the
dispersion force greatly contributes the stabilization of C6H6.

Figure 11 shows the change in energy and force when the AFM tip model is
brought close to NaCl. It can be seen that a stable state occurs in both model
molecules. In the deprotonated (Si4H3−) model, since the electrostatic interaction is
strengthened, the amount of change in energy is large. In regard to the force respon-
sible for this change, we obtained a smoothly changing result in both models. In
addition, it was confirmed that the deprotonated model exhibits a sharp change in
force according to the distance. Also, as in the case of small molecules, the AFM tip
model also shows that the results differ greatly depending on the dispersion force.

The above analysis revealed the importance of the dispersion force as a key factor
of molecular adsorption on the NaCl surface. Further, since it was confirmed that
smooth force calculation should be possible in the AFM tip model, it might be
possible to achieve an AFM simulation closer to the experimental system by using
the FMO method.
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3.2 Interaction Analysis Between Rubber Polymer and Silica
Filler

In the tire industry, a composite material of a polymer and an additive called a filler is
widely used. Simulations are actively employed to analyze this composite material.
There are many examples of macro-mesoscale simulation, such as the finite element
method and rheology. Even at the microscale, such investigations are limited to
the analysis of physical properties by classical MD, and there have been very few
detailed analyses of the polymer and filler interface based on the electronic state.
This is because the number of target atoms becomes enormous, making it difficult to
perform the calculations by the conventional electronic structure calculation method.

Carbon black has long been used as a filler material, but in recent years eco-tires
incorporating silica have also been developed and widely adopted. As described
in previous sections, silica can be efficiently and accurately analyzed by the FMO
method. Also, since fragmentation of rubber polymer is not difficult, it is possible
to calculate a model in which rubber polymer is entangled with silica filler. In
other words, by using the FMO method, it is possible to analyze the interaction
at the complex interface between silica filler and rubber polymer based on quantum
mechanics.

Our preliminary results are shown here. First, silica filler was expressed as a
nanocluster (186 atoms) with a side length of about 1 nm. Polyisoprene and styrene-
butadiene rubber (SBR) were adopted as rubber polymers in this study. Our poly-
isoprene model connected 10 unit structures and the SBR model connected 5 units.
Silica nanocluster, polyisoprene, and SBRwere divided into 19, 10, and 5 fragments,
respectively (see Fig. 12). ESP-AOC approximation was used for the environmental
electrostatic potential and 6-31G* was used as a basis function. This calculation was
also carried out at the FMO4-MP2 level. For a complex model of silica nanocluster
and rubber polymer, we adopted a structure in which five rubber polymers were
docked to 1 nanocluster.

Figure 13 is a diagram of the IFIE of each rubber polymer against the silica
nanocluster. The silica nanocluster shown in yellow and the stabilizing fragment are
red, and the destabilizing fragment is blue. As seen from this figure, the red fragments
are widely distributed in both rubber polymers, but SBR is more extensively colored.
Themain part of the interaction between the silica nanocluster and the rubber polymer
is thought to be OH-π interaction due to the silanol group of the silica surface and
π electron of the rubber polymer. The benzene ring in the side chain of SBR has
large extended π electrons. Therefore, it should be considered that SBR shows an
attractive interaction across awide area.Also, in theFMOcalculations, the strength of
interaction between rubber polymers can be quantitatively evaluated at the same time.
In the interaction between rubber polymers, the π–π interaction plays an important
role. Here again, the attractive interaction between the SBRs is stronger than that
between the polyisoprenes.

In addition, in rubber composite materials, material strength is also improved by
incorporating the crosslinking structure by sulfur. For a sulfur bridge rubber model,
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Fig. 11 Change in a, b energy and c force when approaching the AFM tip model to NaCl. The
horizontal axis represents the distance between the adsorbed molecule and the NaCl surface. Force
represents the component in the vertical direction on the NaCl surface

Fig. 12 Fragmentation of themodel structures (a), a silica nanocluster (b) and polyisoprene (c) SBR
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we also performed FMO calculations in the same way. As shown in Fig. 14, the
interaction between the sulfur bridging part of the rubber polymer and the silica was
strengthened. The FMO calculation results also implied that a strong complex was
formed by sulfur crosslinking.

Fig. 13 Visualization of IFIE between the silica nanocluster in yellow and a polyisoprene b SBR

Fig. 14 a Atomic structure of the silica nanocluster and sulfur-crosslinked polyisoprene (green: C;
red: O; grey: H; yellow: S); b visualization of IFIE
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4 Summary

This chapter provided examples of application of the FMO method to the molec-
ular recognition of solid surface systems. Elucidation of the molecular recognition
mechanism of solid surfaces based on quantummechanics requires large-scale calcu-
lations, so it is difficult to apply other methods at present. As shown in this chapter, it
is possible to analyze the interaction of various systems including solid surfaces by
applying the FMO4method. IFIE analysis based on quantummechanics has provided
new insights, such as the importance of charge-transfer interactions between hydrox-
yapatite and peptide. The quantitative analysis of IFIE enabled by the FMO method
is expected to lead not only to the elucidation of molecular recognition mechanisms
but also to the design of molecules that recognize specific material surfaces.
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Development of the Analytic Second
Derivatives for the Fragment Molecular
Orbital Method

Hiroya Nakata and Dmitri G. Fedorov

Abstract The development of the analytic second derivatives of the energy with
respect to nuclear coordinates for the fragment molecular orbital method is reviewed,
and a summary of equations is provided for Hartree–Fock and density functional the-
ory (DFT). The second derivatives are developed for unrestricted DFT. The accuracy
of frequencies, IR intensities, Raman activities, and free energies is evaluated in
comparison to unfragmented results.

Keywords FMO · Hessian · Infrared spectrum · Raman

1 Introduction

Second derivatives of the energy with respect to nuclear coordinates play a very
important role in science. They can be used to obtain harmonic vibrational frequen-
cies, which are of paramount importance as a property of materials. Infrared (IR)
and Raman spectra can be simulated by evaluating intensity (activity) for a given
frequency. Normal modes can be used as the basis for evaluating anharmonic effects.

Considerable efforts have been invested in reducing the computational cost of
calculating second derivatives of the energy in quantum-mechanical (QM) meth-
ods, [1, 2] pioneered by Pulay [3]. One route to improve the efficiency is to use
fragment-based methods [4], some of which have analytic second derivatives [5–
10]. Alternatively, some part of the system can be treated with molecular mechanics
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(MM) in QM/MM methods [11]. To reduce the computational cost, Hessian can be
computed for a part of the molecular system [12–16].

In the fragment molecular orbital (FMO) method [17–21], the molecular system
is divided into fragments, evaluated in the presence of an embedding electrostatic
potential (ESP). To improve the accuracy, higher order dimer and trimer terms are
added in the many-body expansion [22].

In this chapter, the development of the analytic second derivatives for FMO
in GAMESS [23] is reviewed for restricted Hartree–Fock (RHF) [24], restricted
open-shell Hartree–Fock (ROHF) [25], unrestricted Hartree–Fock (UHF) [26] and
restricted DFT [27]. Previously unpublished analytic second derivatives for FMO-
UDFT are presented in this chapter. Analytic second derivatives have also been
developed for FMO combined with density-functional tight-binding (DFTB) [28–
31] but they are not covered in this chapter.

Detailed equations are given for the two-body FMO expansion (FMO2) [32], and
the extension to the three-body FMO3 is briefly covered. FMO can be used with two
fragment boundary treatments, hybrid orbital projection (HOP) operator [33, 34]
and adaptive frozen orbitals (AFO) [35, 36] but the analytic second derivatives have
been derived only for the former.

The accuracy of properties is evaluated in comparison to full unfragmented calcu-
lations. Using second derivatives, it is possible to simulate IR andRaman spectra, and
determine the path of chemical reactions, in particular, for polymers and enzymes.
The free energies can be obtained using statistical thermodynamics, although anhar-
monic effects and rovibrational coupling for large molecular systems may be very
important for the entropy and free energy due to large contributions of low-frequency
vibrations [24].

2 Mathematical Formulation

2.1 Analytic Gradient in FMO

2.1.1 Restricted Hartree–Fock

The FMO2 energy of a system divided into N fragments is

E =
N∑

I

E ′
I +

N∑

I>J

(E ′
I J − E ′

I − E ′
J ) +

N∑

I>J

Tr(ΔDI JVI J ), (1)

where E ′
X is the internal energy ofX (X = I for monomers andX= IJ for dimers). The

notion internal as applied to X refers to the contributions from X only, excluding ESP
(ESP of X describes interactions with fragments other than X ). The density matrix
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difference ΔDI J in Eq. (1) is obtained by subtracting the direct sum of monomer
electron densities DI and DJ from the dimer matrix DI J as

ΔDI J = DI J − (DI ⊕ DJ ), (2)

VI J in Eq. (1) is the ESPmatrix for dimer IJ due to the electron densities and nuclear
charges of fragments other than I and J . Although monomer ESPs are used during
SCF, in the final energy expression in Eq. (1) only dimer ESPs are present due to the
cancellation of terms [32]. The ESP for fragment X is

V X
μν =

N∑

K �=X

V X (K )
μν , (3)

where the contribution of fragment K for μν ∈ X is

V K (X)
μν =

∑

A∈K
〈μ
∣∣∣∣

−ZA

|r − RA|
∣∣∣∣ ν〉 +

∑

λ,σ∈K
DK

λσ (μν|σλ). (4)

RA and ZA are the position and charge of atom A, respectively. (μν|λσ) is the two-
electron integral in the atomic orbital (AO) basis. Roman (ijkl) and Greek (μνσλ)
indices denote molecular orbitals (MOs) and AOs, respectively.

The internal fragment energy of X is

E ′
X =

∑

μν∈X
DX

μνh
X
μν + 1

2

∑

μνλσ∈X

[
DX

μνD
X
λσ − 1

2
DX

μλD
X
νσ

]
(μν|λσ) +

∑

μν∈X
DX

μν P
X
μν + ENR

X ,

(5)
where hX

μν is the one-electron Hamiltonian of X . The HOP matrix element is

PX
μν =

∑

k∈X
Bk 〈μ |θk〉 〈θk | ν〉 , (6)

where |θk〉 is a hybrid orbital on the fragment boundary and the universal constant
Bk is usually set to 106 a.u.. The nuclear repulsion (NR) energy is

ENR
X =

∑

B∈X

∑

A(∈X)>B

ZAZB

RAB
, (7)

where RAB is the distance between atoms A and B.
In the MO basis, Eq. (5) can be written as

E ′
X =

occ∑

i∈X
2hX

ii +
occ∑

i j∈X
[2 (i i | j j) − (i j |i j)] +

occ∑

i∈X
2PX

ii + ENR
X . (8)
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The last term in Eq. (1) is

Tr(ΔDI JVI J ) = 2

(
occ∑

i∈I J
V I J
ii −

occ∑

i∈I
V I J
ii −

occ∑

i∈J

V I J
ii

)
. (9)

The change of basis from AO to MO for matrices is accomplished via a similarity
transformation using the matrix of MO coefficients CX

μi , for instance

PX
i j =

∑

μ,ν∈X
CX∗

μi P
X
μνC

X
ν j . (10)

Differentiating E ′
X with respect to a nuclear coordinate a, one obtains

∂E ′
X

∂a
=

occ∑

i∈X
2ha,X

ii +
occ∑

i j∈X

[
2 (i i | j j)a − (i j |i j)a]+

occ∑

i∈X
2Pa,X

ii

+
occ+vir∑

m∈X

occ∑

i∈X
4Ua,X

mi F ′X
mi + ∂ENR

X

∂a
, (11)

where the superscript a denotes a differentiation with respect to a (except for U ,
where a is an indexing variable), for example,

Pa,X
μν = ∂PX

μν

∂a
. (12)

The internal fragment Fock matrix elements are

F ′X
mi = hX

mi +
occ∑

k∈X
[2(mi |kk) − (mk|ik)] + PX

mi , (13)

where Pa,X
i j is Pa,X

μν in the MO basis. The derivatives of the MO coefficients can be

written using the orbital response terms Ua,X
mi as

∂CX
μi

∂a
=

occ+vir∑

m∈X
Ua,X

mi C X
μm . (14)

In FMO, the electronic states of monomers are self-consistent with respect to each
other via the embedding ESP, but the electronic state of a dimer is not self-consistent
with respect to the embedding ESP determined by monomer densities. In full RHF
and DFT, the orbital response terms Ua,X

ri are not needed for the gradient [37], but
in FMO they have to be used [38] because of this lack of self-consistency between
monomers and dimers.
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Thedifferentiation of theESPenergy inEq. (9)with respect to a nuclear coordinate
a gives a linear combination of three terms of the form:

occ∑

i∈X

∂V I J
ii

∂a
= 2

occ∑

i∈X
V a,I J
ii + 4

occ+vir∑

m∈X

occ∑

i∈X
Ua,I J

mi V I J
mi

+ 8
∑

K �=I J

occ+vir∑

m∈K

occ∑

k∈K
Ua,K

mk

occ∑

i∈X
(i i |mk) . (15)

In Eq. (15), the response contribution of Y to the gradient of X is [39],

U
a,X,Y = 4

occ∑

i∈X

vir∑

r∈X
Ua,X

ri V Y
ri . (16)

There are two types of U
a,X,Y

terms: (a) U
a,I,I

arising from the derivative of the

monomer terms and (b) U
a,X,I J

where X can be I, J or IJ (related to the three D
terms in Eq. (2)). To obtain the occupied-virtual orbital responses Ua,X

ri , one must
solve the CPHF equations, as shown below.

The collection of allU
a,X,Y

terms in Eqs. (11, 15) arising from the differentiation
of Eq. (1) is

U
a = −

N∑

I

U
a,I,I −

N∑

I>J

(
U

a,I J,I J −U
a,I,I −U

a,J,J
)

+
N∑

I>J

(
U

a,I J,I J −U
a,I,I J −U

a,J,I J
)

.

(17)
U

a
can be shown to be zerowhen no ESP approximations are applied [39], otherwise,

it is small and may be neglected as an approximation, although it is better to evaluate
it.Without ESP approximations, the dimer-related termsUa,X,I J in Eq. (15) need not
be evaluated (because their sum vanishes), and only Ua,I

ri terms have to be obtained
by solving CPHF equations. The response term contribution to gradient is

Ra = 4
∑

I>J

N∑

K �=I,J

vir∑

r∈K

occ∑

i∈K

∑

μ,ν∈I J
Ua,K

ri ΔDI J
μν(μν|ri). (18)

In the following derivations, ESP approximations are not used for simplicity; the
formulation with the ESP point charge (ESP-PC) approximation is given elsewhere
[39–41]. The FMO gradient with the ESP-PC approximation has a residual error
[40] and in order to get an accurate gradient a sufficiently large value of the ESP-PC
threshold should be used.
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2.1.2 Frozen Domain

In order to increase the speed of a partial geometry optimization, where only a
subsystem is optimized, one can assign fragments into domains (Fig. 1): active A
(containing fragments in which some atoms are optimized), frozen F and the buffer
b between them. The union of A and b is called the polarizable buffer B [42], and
the union of B and F constitutes the total system S. The active domain A forms the
central part of B. At present, FMO/FD is developed only at the level of FMO2.

FD uses a multilayer formulation of FMO [43], with 2 layers L1 (F) and L2

(B), into which all fragments are assigned. For the initial molecular structure in a
geometry optimization, monomer calculations for the whole system S are performed
at the level of L1 in order to obtain the fragment densities of all fragments. Then,
FMO2 calculations of the polarizable domain B are performed at the level of layer
L2 in the presence of the embedding ESP for the whole system S = B(L2) ∪ F(L1) .
The gradient for atoms in A is obtained and used to update the molecular geometry.
If the gradient is not small enough, the calculation proceeds again to the step of
calculating B. Thus, an FMO/FD calculation, variationally speaking, is a one-layer
computation (layer L2) of B using a frozen embedding from F (computed for the
initial geometry at the level of L1 and then frozen).

In addition to the full FD, there is also its approximation, FD with dimers (FDD)
[42], in which the total energy is a sum of the internal (int) and ESP-related contri-
butions,

EFMO/FDD =E int + EESP, (19)

Fig. 1 Division of the total system (S) in FMO/FD into frozen (F), polarizable buffer (B) and active
(A) domains. Domain b is defined asB excludingA. Layers 1 and 2 coincide with domains F and B,
respectively. Reprinted with permission from [56]. Copyright (2018) American Chemical Society.
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where

E int =
∑

I∈B
E ′L2

I +
∑

I>J
I∈A,J∈B

(
E ′L2

I J − E ′L2
I − E ′L2

J

)
(20)

EESP =
∑

I>J
I∈A,J∈B

Tr(ΔDI JVI J ) +
∑

I∈A,J∈F
ΔE ′L2,L1

I J , (21)

where the energies E ′Lm
I are defined in Eq. (5) with the layer Lm explicitly specified.

The first sum over I in E int is referred to as the FMO1 internal energy below. In
the last term in Eq. (21), it is assumed by definition that all dimers I J (I ∈ A, J ∈
F) are treated with the ES dimer approximation (described below), irrespective of
the distance between I and J . Domains A and F should be defined separated, i.e., b
should be wide enough.

In regular FD, the second sum in Eq. (19) is for I ∈ Bwhereas in FDD, I ∈ A. In
other words, in FDD, the contribution of a dimer I J is ignored if I or J /∈ A, because
those dimers typically contribute little to the gradient of atoms in A (note that the
contribution is not zero because such dimers include ESP terms from fragments in
A). The energy and analytic gradient are available for both regular FD and FDD,
but the second derivatives are developed only for FDD and the equations below are
given for FDD.

The derivative of Eq. (19) with respect to a nuclear coordinate a ∈ B is

∂EFMO/FDD

∂a
=E int,a + EESP,a + Ra . (22)

The derivatives of the internal energy E int,a are obtained as a combination of the
gradients of the internal energies E ′

X , see Eq. (11).

EESP,a =
∑

I>J
I∈A,J∈B

∑

μν∈I J
ΔDI J

μνV
a,I J
μν +

∑

I∈A,J∈F

∂ΔE ′L2,L1
I J

∂a
(23)

∂ΔE ′L2,L1
I J

∂a
=
∑

μ,ν∈I

∑

A∈J

DI
μν

〈
μ

∣∣∣∣
−ZA

|r − RA|
∣∣∣∣ ν
〉a

+
∑

μ,ν∈J

∑

A∈I
DJ

μν

〈
μ

∣∣∣∣
−ZA

|r − RA|
∣∣∣∣ ν
〉a

+
∑

μ,ν∈I

∑

λ,σ∈J

DI
μνD

J
λσ (μν|σλ)a, (24)

where the integral derivative contribution to the derivative of the ESP is

V a,I J
μν =

∑

K �=I,J

[
∑

A∈K

〈
μ

∣∣∣∣
−ZA

|r − RA|
∣∣∣∣ ν
〉a

+
∑

λ,σ

DK
λσ (μν|λσ)a

]
. (25)
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Ra is the total response contribution to the gradient

Ra =
∑

I>J
I∈A,J∈B

[
−

vir∑

m∈I

occ∑

i∈I
4Ua,I

mi

(
V I J
mi − V I

mi

)−
vir∑

m∈J

occ∑

i∈J

4Ua,J
mi

(
V I J
mi − V J

mi

)

+
∑

μ,ν∈I J

∑

K �=I,J

vir∑

m∈K

occ∑

i∈K
4Ua,K

mi ΔDI J
μν(μν|mi)

⎤

⎦−
∑

I

vir∑

m∈I

occ∑

i∈I
4Ua,I

mi V
I
mi

+
∑

I∈A,J∈F

[
vir∑

m∈I

occ∑

i∈I
4Ua,I

mi V
I (J )
mi +

vir∑

m∈J

occ∑

i∈J

4Ua,J
mi V J (I )

mi

]
. (26)

For the ESP-PC approximation[32], all terms in Eq. (26) should be calculated;
ESP, its derivatives, and the equations to obtainUa,I

mi have to bemodified, as described
in detail elsewhere [40]. Without the ESP-PC approximation, there are cancellations
of ESP contributions Ua,I

mi V
X
mi , and the total sum of all response contributions in

Eq. (26) is

Ra =
∑

I∈b

vir∑

m∈I

occ∑

i∈I
4Ua,I

mi V
I
mi +

∑

I>J
I∈A,J∈B

∑

μ,ν∈I J

∑

K �=I,J

vir∑

m∈K

occ∑

i∈K
4Ua,K

mi ΔDI J
μν(μν|mi).

(27)

2.1.3 CPHF for Hartree–Fock Gradient

For the FMO-RHF gradient [38], the first-order CPHF equations are solved for

monomers only, because U
a,I J,I J

containing dimer responses Ua,I J
mi in Eq. (17)

cancel out. The differentiation of the Fock matrix element with respect to a results
in

∂FX
i j

∂a
= Fa,X

i j − (εX
j − εX

i

)
Ua,X

i j − Sa,X
i j εX

j

− 1

2

∑

K

occ∑

k∈K

occ∑

l∈K
Sa,K
kl AX,K

i j,kl +
∑

K

vir∑

k∈K

occ∑

l∈K
Ua,K

kl AX,K
i j,kl , (28)

where Sa,X
i j is the first derivatives of the overlap integrals for fragment X ,and

AX,X
i j,kl = 4(i j |kl) − (ik| jl) − (il| jk), (29)

AX,K
i j,kl = 4(i j |kl), (for K �= X) (30)
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and the Fock derivative is

Fa,X
i j = ha,X

i j + V a,X
i j +

occ∑

k∈X

[
2(i j |kk)a − (ik| jk)a]+ Pa,X

i j . (31)

The definitions of the derivative integral terms in Eq. (31) are given elsewhere [37,
38]. From Eq. (28), the following relation can be derived [44],

Ua,X
i j = T a,X

i j

εX
j − εX

i

, (32)

where

T a,X
i j = Ba,X

0,i j +
∑

K

vir∑

k∈K

occ∑

l∈K
Ua,K

kl AX,K
i j,kl , (33)

and

Ba,X
0,i j = Fa,X

i j − Sa,X
i j εX

j − 1

2

∑

K

occ∑

k∈K

occ∑

l∈K
Sa,K
kl AX,K

i j,kl . (34)

The elements ofUa,X
i j need not be stored for the gradient but they are needed for the

Hessian, and their size in FMO is given by

Nat

N∑

I=1

N I
occN

I
virt, (35)

where Nat is the number of atoms in the whole system; N I
occ and N I

virt are the numbers
of occupied and virtual orbitals in fragment I , respectively. In comparison, in full
calculations the matrix to store has the size of

NatNoccNvirt, (36)

where Nocc and Nvirt are the numbers of occupied and virtual orbitals in the whole
system, respectively.

Using FX
i j = ∂FX

i j /∂a = 0 for i �=j, CPHF equations are obtained

A′Ua = Ba
0, (37)

where

A′I,I
i j,kl = δikδ jl

(
ε I
j − ε I

i

)− AI,I
i j,kl, (38)

A′I,K
i j,kl = −AI,K

i j,kl (for K �= I ). (39)

The supermatrix A in Eq. (37) includes blocks from all fragments.
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2.1.4 Z-Vector Equations for FMO Gradient

The response contribution in Eqs. (18) and (27) can be obtained as the scalar product
of two supervectors using the Z-vector method [37, 38],

Ra = LTUa, (40)

where for regular FMO

L I
ri = 4

∑

J>K
I �=J,K

∑

μ,ν∈J K

ΔDJK
μν (μν|ri), (41)

and in the frozen domain case (FDD) for I , J , and K ∈ B,

L I
ri = 4

∑

J>K
I �=J,K

∑

μ,ν∈J K

ΔDJK ,L2
μν (μν|ri) + 4V I

ri . (42)

Instead of solving Eq. 40, in the Z-vector method [45], the following set of coupled
equations independent of a is solved for Z:

A′TZ = L, (43)

and the response contribution to the FMO energy gradient is computed as

Ra = ZTBa
0. (44)

One can separate [38] the diagonal (I, I and K , K ) from off-diagonal K , I terms
of A in Eq. (43): for RHF fragments as

vir∑

r∈I

occ∑

i∈I
AI,I
ri,kl Z

I
ri = L I

kl −
N∑

K �=I

vir∑

r∈K

occ∑

i∈K
AK ,I
ri,kl Z

K
ri . (45)

Equation (45) is solved iteratively to obtain Z values. First, the values of ZK
ri in

the last term are frozen, and the diagonal elements Z I
ri are obtained for all fragments

I independently. In the next iteration, ZK
ri values are updated with values obtained

solving independent equations in the previous iteration. This process is repeated until
convergence in the self-consistent Z-vector method (SCZV) [38], which typically
takes 10–20 iterations. In practice, Eq. (45) is solved using a partial transformation
to the AO basis for efficiency [38].
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2.2 Second Derivatives in FMO

2.2.1 Hartree–Fock Hessian

The second derivative of the FMO energy with respect to nuclear coordinates a and
b is

∂2E

∂a∂b
=

N∑

I

∂2E ′
I

∂a∂b
+

N∑

I>J

(
∂2E ′

I J

∂a∂b
− ∂2E ′

I

∂a∂b
− ∂2E ′

J

∂a∂b

)
+

N∑

I>J

∂2Tr(ΔDI JVI J )

∂a∂b
,

(46)
which includes several contributions of the form ∂2E ′

X/(∂a∂b). Inserting the first
derivative of the internal energies defined in Eq. (11), one obtains

∂2E ′
X

∂a∂b
= ∂

∂b

⎡

⎣
occ∑

i∈X
2ha,X

ii +
occ∑

i j∈X

[
2 (i i | j j)a − (i j |i j)a]+

occ∑

i∈X
2Pa,X

ii

+
occ+vir∑

m∈X

occ∑

i∈X
4Ua,X

mi F ′X
mi + ∂ENR

X

∂a

]
. (47)

The total Fock matrix FX , composed of the internal and ESP contributions, is diag-
onal, but F′X is not.

FX
i j = F ′X

i j + V X
i j = δi jε

X
i . (48)

Using Eq. (48), one can rewrite Eq. (47) as

∂2E ′
X

∂a∂b
=

occ∑

i∈X

[
hab,Xii + Pab,X

ii + F ′ab,X
ii

]

−
occ∑

i∈X
2Sab,Xii εX

ii + 4
occ∑

i∈X

occ∑

j∈X
Sb,Xji Sa,X

i j εX
ii

+
vir∑

m∈X

occ∑

i∈X
Ub,X

mi

[
4F ′a,X

im − 4Sa,X
mi εX

ii − 2
occ∑

j,l∈X
AX,X

jl,mi S
a,X
jl

]

−
occ∑

i∈X

occ∑

j∈X
Sb,Xi j

[
2F ′a,X

i j − 1

2

occ∑

k,l∈X
AX,X
i j,kl S

a,X
kl

]

−
occ∑

i∈X

occ∑

j∈X
Sa,X
i j

[
2F ′b,X

i j − 1

2

occ∑

k,l∈X
AX,X
i j,kl S

b,X
kl

]

+ ∂2ENR
X

∂a∂b
−U

ab,X
, (49)
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where

F ′ab,X
mi = hab,Xmi +

occ∑

j∈X

[
2 (mi | j j)ab − (mj |i j)ab]+ Pab,X

mi , (50)

Pab,X
ii =

∑

μ,ν

CX∗
μi P

ab,X
μν CX

νi . (51)

The ESP-related term in Eq. (49) is defined as

U
ab,X = −4

occ∑

i∈X

occ∑

j∈X

vir∑

m∈X
Ub,X

mi (V X
mj S

a,X
i j + V X

i j S
a,X
jm )

+ 4
occ∑

i∈X

occ∑

j∈X

occ∑

k∈X
Sb,Xki V X

i j S
a,X
jk −

occ∑

i∈X

occ∑

j∈X
2Sab,Xi j V X

i j

+
vir∑

m∈X

occ∑

i∈X
4
∂(V X

miU
a,X
mi )

∂b
. (52)

In Eq. (52), a and b run over the entire system, and the contributions for either a
or b outside of X come from the ESP of X . The second derivative of the ESP energy
for dimer I J , representing the charge transfer between I and J coupled with the
embedding ESP for I J is

∂2

∂a∂b
Tr(ΔDI JVI J ) = ∂

∂b

N∑

I>J

(
2

occ∑

i∈I J

∂V I J
ii

∂a
− 2

occ∑

i∈I

∂V I J
ii

∂a
− 2

occ∑

i∈J

∂V I J
ii

∂a

)
.

(53)

The three similar terms for X = I , J or I J in Eq. (53) can be obtained from Eq. (15)
as

2
occ∑

i∈X

∂2V I J
ii

∂a∂b
= ∂

∂b

{
2

occ∑

i∈X
V a,I J
ii + 4

occ+vir∑

m∈X

occ∑

i∈X
Ua,X

mi V I J
mi

+ 8
∑

K �=I J

occ+vir∑

m∈K

occ∑

k∈K
Ua,K

mk

occ∑

i∈X
(i i |mk)

}

= 2
occ∑

i∈X
V ab,I J
ii − 2

occ∑

i∈X

occ∑

j∈X

(
Sa,X
i j V b,I J

i j + V a,I J
i j Sb,Xji

)

+U
ab,X,I J + Rab,X , (54)
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where

U
ab,X,I J = 4

occ∑

i∈X

vir∑

m∈X
Ub,X

mi

⎧
⎨

⎩V
a,I J
im −

occ∑

j

(Sa,X
jm V I J

i j + Sa,X
i j V I J

mj )

⎫
⎬

⎭

+ 4
occ∑

i, j∈X

occ∑

k∈X
Sb,Xki Sa,X

i j V I J
jk − 2

occ∑

i∈X

occ∑

j∈X
Sab,Xi j V I J

i j

+ 4
occ∑

i∈X

vir∑

m∈X

∂(Ua,X
mi V I J

im )

∂b
. (55)

The collection ofU
ab,X,I J

andU
ab,X

in Eq. (49) cancel out to be zero when no ESP
approximations are applied.

The extra two-electron response contribution Rab,X is

Rab,X = 8
vir∑

m∈X

occ∑

i∈X

∑

K �=I J

occ∑

j∈K
Ub,X
mi

[
vir∑

n∈K
2(im| jn)Ua,K

nj −
occ∑

k∈K
Sa,K
jk (im| jk)

]

+ 4
occ∑

i∈X

∑

K �=I J

occ∑

j∈K

vir∑

m∈K
Ua,K
mj

[
2(i i | jm)b −

occ∑

k∈X
2Sb,Xik (ik| jm) −

occ∑

k∈K
2Sb,Kjk (i i |km)

−2
occ∑

k∈K
Sb,Kkm (i i | jk) +

vir∑

n∈K
Ub,K
nj (i i |nm) −

occ∑

k∈K
Ub,K
mk (i i | jk)

]

+ 4
occ∑

i∈X

∑

K �=I J

occ∑

j∈K

vir∑

m∈K
Ub,K
mj

[
2(i i | jm)a −

occ∑

k∈X
2Sa,X

ki (ik| jm) − 2
occ∑

k∈K
Sa,K
kj (i i |km)

−2
occ∑

k∈K
Sa,K
km (i i | jk) +

vir∑

n∈K
Ua,K
nj (i i |nm) −

occ∑

k∈K
Ua,K
mk (i i | jk)

]

+ 4
occ∑

i∈X

∑

K �=I J

occ∑

k∈K

occ∑

l∈K
Sa,K
kl

⎡

⎣
occ∑

j∈X
(i j |kl)Sb,Xi j − (i i |kl)b +

occ∑

j∈K
Sb,Kjl (i i | jk)

⎤

⎦

+ 4
occ∑

i∈X

∑

K �=I J

occ∑

k∈K

occ∑

l∈K
Sb,Kkl

⎡

⎣
occ∑

j∈X
(i j |kl)Sa,X

i j − (i i |kl)a +
occ∑

j∈K
Sa,K
jl (i i | jk)

⎤

⎦

− 4
∑

K �=I J

occ∑

i∈X

occ∑

j∈K

occ∑

k∈K
Sab,Kjk (i i | jk)

− 8
∑

K �=I J

occ∑

i∈X

occ∑

j∈K

vir∑

m∈K

occ∑

n∈K

(
Ub,K
mn Ua,K

nj +Ua,K
mn Ub,K

nj

)
(i i | jm)

+ 8
∑

K �=I J

occ∑

i∈X

occ∑

j∈K

vir∑

m∈K
Uab,K
mj (i i | jm). (56)
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Inserting Eqs. (49), (52), (54), and (56) in the second derivative of the total FMO
energy in Eq. (46), one obtains the fully analytic second derivative.

It is necessary to calculate three types of unknown response terms Ua,I
mi , U

a,I J
mi ,

and Uab,I
mi . The latter can be obtained by solving the second-order CPHF equations

for monomers. The derivation of the above equations is fully analytic. However, the
current implementation includes three approximations for computational efficiency:
(a) solving the second-order CPHF equations of monomers is avoided by neglecting
the last two terms in Eq. (56); (b) the calculation of the Ua,I

mi and Ua,I J
mi terms from

the first-order CPHF equations of monomers and dimers is done approximately, as
described below, and (c) the contribution of the second derivative of the HOP matrix
Pab,X
i j is neglected.

2.2.2 The Separated Dimer Approximation

If two fragments are well separated, the pair interaction energy (PIE)

ΔEI J =E ′
I J − E ′

J − E ′
I + Tr

(
ΔDI JVI J

)
(57)

can be approximated [32] as ΔEES
I J by taking ΔDI J to be 0, which also simplifies

the internal energy difference.

ΔEES
I J =

∑

μν∈I
DI

μνV
I (J )
μν +

∑

μν∈J

DJ
μνV

J (I )
μν −

∑

μ,ν∈I

∑

λ,σ∈J

DI
μνD

J
λσ (μν|λσ) . (58)

The second derivative is

∂2EES
I J

∂a∂b
= E

ab,I,I (J )

ES + E
ab,J,J (I )
ES

+U
ab,I,I (J )

ES +U
ab,J,J (I )
ES + Rab,I J

ES , (59)

where U
ab,I,I (J )

ES is defined elsewhere [24] and

E
ab,I,I (J )

ES = −
occ∑

i∈I

occ∑

j∈I
2(Sb,Ii j V a,I (J )

i j + Sa,I
i j V b,I (J )

i j )

+ 4
occ∑

i∈I

vir∑

m∈I
Ub,I

mi V
a,I (J )
mi + 2

occ∑

i∈I
V ab,I (J )
i i , (60)
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Rab,I J
ES = − 8

occ∑

i∈I

occ∑

j∈I

occ∑

k∈J

vir∑

m∈J

Sa,I
i j Ub,J

mk (i j |km)

− 8
occ∑

i∈J

occ∑

j∈J

occ∑

k∈I

vir∑

m∈I
Sa,J
i j Ub,I

mk (i j |km)

+ 4
occ∑

i∈I

occ∑

j∈I

occ∑

k∈J

occ∑

l∈J

(Sa,I
i j Sb,Jkl + Sb,Ii j Sa,J

kl )(i j |kl)

− 4
occ∑

i∈I

occ∑

j∈J

(i i | j j)ab. (61)

The response terms such as U
ab,I,I (J )

ES arising from ES dimers in Eq. (59) are
added to the terms from SCF dimers. It can be shown [38] that their total sum U

a

in Eq. (17) is 0 for the separated dimer approximation, provided that point charge

approximations are not used in ESP; also, U
ab = 0 and the response terms arising

from ES dimers need not be evaluated for the gradient and Hessian (but all other
terms, except the responses, in Eq. (59) should be computed).

2.2.3 CPHF for Hartree–Fock Hessian

For the Hessian one should solve both monomer and dimer CPHF equations. As
mentioned above, these equations are solved approximately (solving them exactly is
very complicated because monomer and dimer terms are coupled). Equation (37) is
decoupled into independent fragment CPHF equations for each monomer X = I or
dimer X = I J neglecting the terms involving the derivatives for a /∈ X and external
terms K /∈ X (a similar technique is used for MP2 gradient [46]),

A′X,XUa,X = B′a,X
0 , (62)

where

B ′a,X
0,i j ≈ F ′a,X

i j − Sa,X
i j εX

j − 1

2

occ∑

k∈X

occ∑

l∈X
Sa,X
kl AX,X

i j,kl . (63)

The response terms U are calculated solving Eq. (62) and used in Eqs.(49), (52),
(54), and (56).

2.2.4 Frozen Domain Hessian

The second derivative of the FMO/FDD energy with respect to nuclear coordinates
a and b is
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∂2EFMO/FDD

∂a∂b
=
∑

I∈B

∂2E ′L2
I

∂a∂b
+

∑

I>J
I∈A,J∈B

∂2ΔEL2
I J

∂a∂b
+

∑

I∈A,J∈F

∂2ΔE ′L2,L1
I J

∂a∂b
. (64)

Most terms in the FMO/FDD second derivative are the same as in the FMOHessian,
but one term specific to FMO/FDD is described below in detail.

From the derivative of Ua,I
mi V

I
mi in Eq. (27) with respect to b one obtains

U
ab =

∑

I∈B
U

ab,I,I +
∑

I>J
I∈A,J∈B

(
U

ab,I,I J +U
ab,J,I J −U

ab,I,I −U
ab,J,J

)

−
∑

I∈A,J∈F

(
U

ab,I,I (J ) +U
ab,J,J (I )

)
, (65)

where for Y = I, J and I J ,

U
ab,X,Y =

∑

Z �=Y

U
ab,X,Y (Z)

, (66)

U
ab,X,Y (Z) = −4

occ∑

i∈X

occ∑

j∈X

vir∑

m∈X
Ub,X

mi

(
V Y (Z)
mj Sa,X

i j + V Y (Z)
i j Sa,X

jm

)

+
occ∑

i∈X

occ∑

j∈X

occ∑

k∈X
Sb,Xki V Y (Z)

i j Sa,X
jk −

occ∑

i∈X

occ∑

j∈X
Sab,Xki V Y (Z)

i j

+
vir∑

m∈X

occ∑

i∈X
4
∂V X

miU
a,X
mi

∂b
. (67)

Without the ESP-PC approximation, many response contributions to the second
derivative of energy cancel out, and one obtains the following FMO/FDD specific
term

U
ab =

∑

I∈b
U

ab,I,I −
∑

I∈A,J∈F
U

ab,J,J (I )
. (68)

In practice, theHessianmatrixHAA for atoms in the active domainA is constructed
and diagonalized [12]. This is equivalent to padding the Hessian in the polarizable
domain B = A ∪ b with zeros as follows,

H =
(
HAA 0
0 Hbb

)
,where Hbb =

⎛

⎜⎝
ε 0 0

0
. . . 0

0 0 ε

⎞

⎟⎠ , ε = 10−8a.u.. (69)
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Because only Hessian elements for both a and b ∈A are explicitly required forHAA,

the evaluation ofU
ab
in Eq. (68) is not needed (note that the sums in Eq. (68) exclude

the case a, b ∈ A).
In the intrinsic reaction coordinate (IRC) method of mapping reaction paths, the

initial Hessian for atoms in B is constructed according to Eq. (69) and consequently
updated using the analytic gradient for atoms in B.

2.2.5 Extension to the Three-Body Expansion

The FMO3 total energy is obtained by adding three-body terms to the FMO2 energy
E [47, 48]

EFMO3 =E +
∑

I>J>K

[ΔEI J K − ΔEI J − ΔEJK − ΔEK I ] , (70)

where the three-body correction term is

ΔEI J K = E ′
I J K − E ′

K − E ′
J − E ′

I + Tr
(
DI J KVI J K

)
. (71)

DI J K is the difference between the density matrices of a trimer and the three
monomers,

DI J K = DI J K − (DI ⊕ DJ ⊕ DK
)
. (72)

The second derivative of the energy with respect to nuclear coordinates a and b is

∂2EFMO3

∂a∂b
= ∂2E

∂a∂b
+
∑

I>J>K

∂2

∂a∂b
[ΔEI J K − ΔEI J − ΔEJK − ΔEK I ] . (73)

To obtain the analytic second derivative for FMO3, one should compute the FMO2
values and add extra terms from the sum in Eq. (73), involving Tr(DI J KVI J K ) and a
combination of E ′

X , where X also includes trimer I J K terms. For X = I and I J the
expressions are given above. These additional three-body terms in FMO3 are rather
similar to the corresponding FMO2 terms, as described in detail elsewhere [27].

2.2.6 Extension to DFT

The second derivative of the internal fragment energy in DFT is similar to RHF, see
Eq. (49), except that the DFT exchange-correlation (xc) energy EX

xc has to be added
to the internal energy of fragments E ′X in Eq. (5). In DFT, the internal Fock matrix
F ′,X
i j and the orbital Hessian matrix AX,X

i j,kl are
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F ′,X
i j = hX

i j +
occ∑

k∈X
[2(i j |kk) − cHF(ik| jk)] + PX

i j + (V X
xc )i j (74)

AX,X
i j,kl = 4(i j |kl) − cHF [(ik| jl) − (il| jk)] + 4( f Xxc )i j,kl, (75)

where cHF ∈ [0; 1] is the fraction of the HF exchange. (V X
xc )i j and ( f Xxc )i j,kl are

the matrix elements of the first and second functional derivatives of the exchange-
correlation functional with respect to the electron density.

The second derivative of the exchange-correlation energy is

∂2EX
xc

∂a∂b
=
∑

A∈X

∑

t∈A

[
∂2wAt

∂a∂b
f XAt (ρα, ρβ, γαα, γαβ, γββ)

+ wAt
∂2 f XAt (ρα, ρβ, γαα, γαβ, γββ)

∂a∂b

+ ∂wAt

∂a

∂ f XAt (ρα, ρβ, γαα, γαβ, γββ)

∂b

+ ∂wAt

∂b

∂ f XAt (ρα, ρβ, γαα, γαβ, γββ)

∂a

]
, (76)

where wAt and f XAt are the quadrature weights and the exchange-correlation func-
tional at the grid point t belonging to atom A. ρ and γ are the electronic density and
its derivatives. α and β are spin labels. The exchange-correlation contributions are
evaluated by a numerical integration. It is important to note that the contribution of
the weight derivative terms should be included even when very fine grids are used.

2.2.7 Extension to Open-Shell Methods

There are two ways to treat open-shell (radical) systems: restricted (ROHF) [25] and
unrestricted (UHF) [26] . Because in (non-singlet) ROHF the density matrices for
the α and β spins are diffferent, the UHF equations cannot be much simplified for
ROHF; thus, here only UHF equations are given that can also be used for ROHF,
where the same set of MOs is used for the two spins.

In FMO-UHF [49] some fragments are calculated with UHF, and the rest with
RHF. For instance, there could be several radical centers in a material; each such
center can be put into a separate fragment and described with UHF; other fragments
are closed shell, described with RHF. A dimer calculation is performed with UHF,
when at least one fragment in the dimer is UHF, otherwise RHF dimers are computed.
Although the equations are derived for any number of UHF fragments, the current
implementation of the FMO-UHF Hessian is limited to one UHF fragment.
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The total energy E in FMO-UHF is

E =
NRHF∑

I=1

E ′
I +

NUHF∑

K=1

E ′
K +

NRHF∑

I>J

ΔEI J +
NUHF∑

K>L

ΔEKL +
NUHF∑

K=1

NRHF∑

I=1

ΔEK I (77)

NRHF and NUHF are the numbers of the RHF and UHF fragments, respectively
(N = NRHF + NUHF). I and J run over RHF fragments, whereas K and L denote
UHF fragments.

The RHF terms, arising in the second derivative of E in Eq. (77), are given above,
and for a UHF fragment X ,

∂2E ′
X

∂a∂b
=
∑

σ

[
1

2

occ∑

iσ

(
hab,Xiσ iσ + F ′ab,X

iσ iσ

)
−

occ∑

iσ

Sab,Xiσ iσ εX
iσ

+ 2
occ∑

iσ

occ∑

jσ

Sa,X
iσ jσ S

b,X
iσ jσ ε

X
iσ

+ 2
occ∑

iσ

vir∑

mσ

Ub,X
mσ iσ

{
F ′a,X
mσ iσ − Sa,X

mσ iσ ε
X
iσ iσ

− 1

2

occ∑

jσ

occ∑

kσ

Sa,X
kσ jσ A

X,X
kσ jσ iσmσ −1

2

occ∑

jσ

occ∑

kσ

Sa,X
kσ jσ A

X,X
kσ jσmσ iσ

⎫
⎬

⎭

−
occ∑

iσ

occ∑

jσ

Sa,X
iσ jσ

{
F ′b,X
iσ jσ − 1

4

occ∑

kσ

occ∑

lσ

Sb,Xkσ lσ A
X,X
iσ jσ kσ lσ

−1

4

occ∑

kσ

occ∑

lσ

Sb,Xkσ lσ A
X,X
iσ jσ kσ lσ

}

−
occ∑

iσ

occ∑

jσ

Sb,Xiσ jσ

{
F ′a,X
iσ jσ − 1

4

occ∑

kσ

occ∑

lσ

Sa,X
kσ lσ A

X,X
iσ jσ kσ lσ

−1

4

occ∑

kσ

occ∑

lσ

Sa,X
kσ lσ A

X,X
iσ jσ kσ lσ

}]

−U
ab,X,X + ∂2ENR

X

∂a∂b
, (78)

where σ is the spin label (α or β). σ is the spin opposite to σ , e.g., if σ = α, then
σ = β.
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The orbital Hessian in UHF is

AX,X
iσ jσ ,kσ lσ = 2(iσ jσ |kσ lσ ) − (iσ lσ | jσ kσ ) (79)

AX,X
iσ jσ ,kσ lσ = 2(iσ jσ |kσ lσ ). (80)

A UHF density matrix without a spin label (e.g., DK L ) denotes the sum of the
densities for the α and β spins; this matrix is used to compute the potential in
Eq. (3). The second derivative of the embedded density transfer term for dimers K I ,
composed of one UHF and one RHF monomer, is analogous to the RHF case in
Eq. (15). Here, an explicit equation is given for the case when both monomers in a
dimer are computed with UHF. For X = K , L or K L ,

∂2Tr(DXVK L)

∂a∂b
=
∑

σ

[
occ∑

iσ ∈X
V ab,K L
iσ iσ

−
occ∑

iσ ∈X

occ∑

jσ ∈X
(Sa,X

iσ jσ V
b,K L
iσ jσ + Sb,Xjσ iσ V

a,K L
jσ iσ )

+ 2
occ∑

iσ ∈X

vir∑

mσ ∈X
Ub,X

mσ iσ V
a,K L
mσ iσ

]

+ Rab,K L +U
ab,X,K L

, (81)

where V a,K L
iσ jσ and V ab,K L

iσ jσ are the first and second derivatives of ESP, respectively.
Rab,K L are the two-electron integral response terms

Rab,K L =
NRHF∑

Y �=K ,L

Rab,K L(Y ) +
NUHF∑

Z �=K ,L

Rab,K L(Z), (82)

where Rab,K L(Y ) and Rab,K L(Z) are two-electron integral contributions for RHF frag-
ment Y and UHF fragment Z , respectively, whose definitions are given elsewhere
[26] (note that Rab,X defined for RHF in Eq. 56 is analogous to Rab,K L in UHF.

2.2.8 Extension to Unrestricted DFT

In this work, FMO Hessian for restricted DFT was developed for the unrestricted
case. The equations for FMO-UDFT Hessian can be construed based on the UHF
and DFT equations summarized above, Eqs. (76, 78, 81). For the sake of brevity,
explicit equations are not given here.
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2.3 Simulation of Spectra

The IR intensity for normal mode i can be computed as

Ii ∼
∣∣∣∣∣
∑

a

μalai

∣∣∣∣∣

2

, (83)

where lai is the eigenvector of the Hessian for mode i and μa is a dipole derivative,

μa =
N∑

I

μa,I +
N∑

I>J

(
μa,I J − μa,I − μa,J

)
. (84)

Only the contributions μa,X for a ∈ X are computed, which is an approximation
because μX depends also on a /∈ X via the ESP.

The normal Raman activity [50, 51] of a normal mode i is

Ji = 45α′2
i + 7γ ′2

i , (85)

where the symmetric contribution α′
i is

α′
i = 1

3

[(
∂αxx

∂Qi

)
+
(

∂αyy

∂Qi

)
+
(

∂αzz

∂Qi

)]
, (86)

and the anisotropic contribution γ ′
i is

γ ′2
i = 1

2

[(
∂αxx

∂Qi
− ∂αyy

∂Qi

)2

+
(

∂αyy

∂Qi
− ∂αzz

∂Qi

)2

+
(

∂αzz

∂Qi
− ∂αxx

∂Qi

)2

+6

{(
∂αxy

∂Qi

)2

+
(

∂αyz

∂Qi

)2

+
(

∂αzx

∂Qi

)2
}]

. (87)

The polarizability tensor αxy is the second derivative of the energy with respect
to the external electric fields Fx and Fy

αxy = ∂2E

∂Fx∂Fy
, (88)

A normal coordinate Qi is a linear combination of atomic Cartesian coordinates a,

Qi =
3Nat∑

a=1

lai a. (89)
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The polarizability tensor derivatives in terms of normal coordinates are

∂αxy

∂Qi
=

3Nat∑

a=1

lai
∂αxy

∂a
. (90)

In order to obtain normal coordinates associated with vibrational frequencies, it is
necessary to calculate the second derivatives of the energy with respect to nuclear
coordinates a and b and transform them into mass-weighted Cartesian coordinates
using atomic masses ma , forming the Hessian matrix

H ′
ab = 1√

mamb

∂2E

∂a∂b
. (91)

The derivative of the polarizability tensor α is the third derivative of the energy
with respect to a coordinate a and two components of the electric field Fi (i = x, y
and z). It is obtained by calculating the energy gradient in the presence of the electric
field and differentiating this gradient numerically twice (double differencing [50, 51]
for FxFx , FyFy , FzFz , FxFy , FyFz , and FzFx ). In total, 19 single point energy
gradient calculations are necessary, varying these fields (1 for no field, 6 for the
symmetric terms such as FxFx and 12 for the asymmetric terms such as FxFy).

The FMO energy calculation in the presence of the electric field F is straight-
forward (F · μ̂0 is added to the Fock operator of each fragment X , where μ̂0 is the
permanent dipole moment operator) [52]. The derivative of the internal fragment
energy is

∂E ′
X

∂a
=
∑

μν

DX
μνh

a,X
μν +

∑

μν∈X
DX

μνP
a,X
μν

+ 1

2

[
DX

μνD
X
λσ − 1

2
DX

μλD
X
νσ

]
(μν|λσ)a

+
∑

μν

DX
μνF · (μ|μ̂0|ν)a

− 2
occ∑

i j∈X
Sa,X
i j F ′X

ji −U
a,X,X + ∂ENR

X

∂a
. (92)

Thus one can obtain the analytic energy gradient in the presence of the electric
fieldF , for which one has to calculate the response termsUa,K

ri by solving the CPHF
equations with the electric field F by using the Z-vector method, see Eq. (43).
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3 Applications of Second Derivatives

3.1 IR Spectra

The accuracy of FMO-DFT Hessian was evaluated earlier [27] and here the main
results related to IR spectra are summarized for polyalanine consisting of 10 residues
and a styrene olygomer consisting of 8 units, divided into 10 and 4 fragments, respec-
tively. The accuracy ismeasuredversus fullDFT resultswithout fragmentation.Water
and the polypeptides have hydrogen bonding with substantial three-body effects,
whereas in the styrene oligomer these effects are small. Thus FMO3 and FMO2
level was chosen for polyalanine and polystyrene, respectively.

The simulated spectra are shown in Fig. 2 and a summary of results is in Table 1
[27]. The accuracy of FMO is reasonable: the errors for polyalanine do not exceed
13 cm−1 and 0.19 D2/(u Å2), for frequencies and IR intensities, respectively. In the
styrene oligomer, the errors in vibrational frequency and IR intensity do not exceed
1cm−1 and 0.01 D2/(u Å2), respectively. The root mean square deviation (RMSD)
between all vibrational frequencies inFMO-DFTand fullDFT is 2.0 and0.5 cm−1 for
polyalanine and styrene oligomer (themaximumerror is 10 and 5cm−1), respectively.

FMO-DFT can be applied to calculate IR spectra of proteins. A comparison of
calculated and experimental results for Trp-cage (PDB: 1L2Y) is shown in Table 2
[27]. The Tyr symmetric mode and Amide II and III peaks are well reproduced by
FMO, but the Amide I peak has a deviation of about +50cm−1 from experiment. The
reason for the discrepancy may be the lack of solvent in the Hessian calculation: the
Amide I peak in a small polypeptide has a solvent shift of −30cm−1 [26], due to the
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Fig. 2 IR spectra at the LC-BLYP-D/6-31G(d) level of a alanine decamer and b styrene octamer.
FMO and full DFT spectra are shown as red solid and blue dashed lines, respectively. Reprinted
with permission from [27]. Copyright (2018) American Institute of physics.
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Table 1 Three prominent IR peaks νi , computed with FMO using LC-BLYP-D/6-31G(d), and full
DFT values are in parentheses [27]

System ν1 ν2 ν3

Frequency, cm−1

Polyalaninea 645(653) 1795(1797) 3523(3536)

Styrene oligomerb 721(722) 1523(1523) 3065(3064)

Intensity, D2/(u Å2)

Polyalaninea 0.20(0.27) 2.36(2.17) 1.96(1.83)

Styrene oligomerb 0.22(0.22) 0.07(0.07) 0.17(0.18)
aFMO3, bFMO2

Table 2 Prominent IR peaks (in cm−1) computed with FMO3 using LC-BLYP-D/6-31G(d) com-
pared to experimental resonance Raman peaks in the Trp-cage protein (1L2Y)

Label Calculateda [27] Experiment [63]

Amide I 1709−1726 1662

Amide II 1563−1577 1564

Amide III 1259−1268 1266

Tyr symmetric 1217 1210
aScaled [64] by 0.9915

coupling of it to the water bending mode, whereas Amide II and III peaks are weakly
affected [26].

3.2 Raman Spectra

The accuracy of FMO for Raman spectra is evaluated for vitamins E and C (both
treated with RHF) and an organic radical of 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) solvated in N,N-dimethylformamide (DMF) [52] (treated with UHF).
The results are shown in Fig. 3. The maximum (RMSD) FMO deviation from full
calculations for normal modes in vitamin C, vitamin E, and TEMPO is 27.1 (8.9), 6.2
(1.3), and 7.1 (1.1) cm−1, respectively. The main Raman peaks are listed in Table 3.
The errors in frequencies are 2.1, 0.2, and 0.2 2cm−1 for vitamin C, vitamin E, and
TEMPO, respectively, while the respective errors in Raman activities are 5.5, 33.3,
and 6.6 Å4/u.

For vitamin C, the hydrogen bonding with water introduces many-body quantum
effects (e.g., the coupling of charge transfer in two hydrogen bonds), which are not
fully accounted for in FMO2. This explains the observed errors, which are mainly
for vibrational modes delocalized over several water molecules, coupled with OH
modes in vitamin C.
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(a)FMO2-RHF-D3 (b)FMO2-RHF-D3 (c)FMO2-UHF-D3
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Fig. 3 Raman spectra at the level of HF-D/6-31G(d), where D stands for the dispersion model [65].
FMO-HF and full HF spectra are shown as red solid and blue dashed lines, respectively. a Vitamin
C solvated in water molecules b vitamin E c TEMPO solvated in DMF. Reprinted with permission
from [52]. Copyright (2018) American Chemical Society

Table 3 Frequencies (cm−1) and Raman activities (Å4/u) computed with FMO and full methods
using the 6-31G(d) basis set [52]

System Frequency Raman activity

FMO full FMO full

Vitamin Ca 3884.5 3886.6 150.4 144.9

Vitamin Ea 3203.8 3204.0 403.2 369.9

TEMPOb 3237.2 3237.4 130.6 124.0
aSinglet with RHF, bDoublet with UHF

3.3 Localization of Normal Modes

In the localization method [53, 54], normal modes are rotated (the matrix lai is mul-
tiplied by a unitary matrixU) to localize them, and the diagonal matrix of vibrational
frequencies is transformed with U, yielding a matrix �i j , whose off-diagonal ele-
ments describe the coupling between localized vibrations i and j . This normal mode
localization was performed with Movipac program [55].

The values of |�i j | are plotted in Fig. 4, for the selected ranges of frequencies in
IR spectra, representing Peak I in crambin and Tyr symmetric stretch in Trp-cage. It
can be seen that the matrices are fairly sparse, with the majority of elements below
1cm−1, which means that these localized modes are not coupled; however, a few
substantial couplings are also observed.

3.4 IR and Raman Spectra of Radicals Using FMO-UDFT

The Hessian for FMO-UDFT, developed in this work, is applied to the styrene hex-
amer radical, divided into 5 fragments (Fig. 5 and Table 4). The agreement between
FMO and full calculations is reasonable. For the four prominent peaks, the devi-
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(a) (b)

Fig. 4 Couplings |�i j | between localized vibrational modes in a Amide I peak of crambin, and b
Tyr symmetric stretc.h in Trp-cage; i ( j) increases from the top left corner down (to the right). The
magnitude of the couplings is shown with colors (the diagonal elements �i i are shown in grey).
Reprinted with permission from [41]. Copyright (2018) from John Wiley and Sons.
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ation in the frequency and intensity does not exceed 5cm −1 and 0.06 D2/(u Å2),
respectively. The required memory is 1402 and 7071 MB in FMO and full Hessian
calculations, respectively (see Eqs. 35 and 36).

By analyzing the vibrational pattern of local modes, it is possible to assign peaks.
The IR peak of 1320cm−1 is due to COO− vibrations, while the 3200cm−1 IR peak
comes from C-H bonds in benzene rings. On the other hand, the Raman peak of
3209cm−1 is due to the symmetric vibrational mode of the radical benzene ring. The
Raman peak of 3033cm−1 is due to CH2.
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3.5 Mapping Chemical Reaction Paths

The accuracy of FMO/FDDwas evaluated [56] for an SN2 reaction XCH3 + OH− →
X− + CH3OH solvated in 41 water molecules, X = F, Cl, and Br. The active domain
A was chosen to have only the reaction fragment, containing the solute as well as 6
surrounding water molecules merged into 1 fragment. Other water molecules formed
separate fragments. All fragments within 5.2 Å from A were assigned to b; in this
small system domain F is empty and the acceleration by using the frozen domain
treatment is only because in FDD some dimers are not calculated as explained above.

The threshold of 5.2 Å was recommended in the previous study [42], because for
a hydrogen bond between O and H, 5.2 = 2(1.4 + 1.2), where 1.4 and 1.2 Å are the
van-der-Waals radii of O and H, respectively, and 2 is used as an arbitrary factor,
which corresponds to the unitless FMO threshold of 2.0 (such as used for the ES
dimer approximation).

The results are shown in Table 5. FMO/FDD correctly reproduces the trend for
the three halogen atoms, and the error in the Gibbs free energy does not exceed
1.6 6kcal/mol. The largest error in the imaginary frequency is 7.9 cm−1. Overall,
FMO/FDD has slightly larger errors than FMOwithout FDD, compared to full RHF;
when FDD is not used, the largest error in the Gibbs free energies and imaginary
frequencies are 0.6 kcal/mol and 4.9 cm−1, respectively, which shows how much
improvement can be got by enlarging the active domain.

FMO/FDD was also applied [56] to map the reaction path for the keto-enol tau-
tomeric reaction of phosphoglycolohydroxamic acid (PGH) and the triosephosphate
isomerase (PDB: 7TIM), for which experimental [57] and theoretical [58] data are
available. The system and domain definition are shown in Figures 6 and 7a. One
water molecule or residue was assigned to a fragment, except that the reaction center
comprising the reactant PGH andGlu-410were treated as one fragment with the total
charge of -3. The active domain A was chosen to include only the reaction center
fragment as shown in Fig. 6, and the amino acid residues and water molecules within
5.2 Å distance from A were included in the polarizable buffer B.

Table 4 Prominent IR peaks (in cm−1) and intensities (D2/(u Å2)) of the styrene oligomer radical
(Fig. 5), computed with unrestricted B3LYP/6-31G(d)

FMO-UDFT Full UDFT

Peak Intensity Peak Intensity

1320 0.813 1320 0.757

3200 0.437 3200 0.438

1804 0.280 1799 0.272

721 0.217 719 0.246
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Table 5 Gibbs free energy barrier ΔG (kcal/mol) at 298.15 K, and the imaginary frequency ω

(cm−1) for the SN2 reaction XCH3 + OH− → X− + CH3OH in explicit solvent (water), X = F, Cl
and Br [24, 56]

Method
(6-31G(d))

Value F Cl Br

FMO-RHF/FDD ΔG 15.3 12.4 8.6

FMO-RHF ΔG 17.1 13.0 10.2

full RHF ΔG 16.5 13.0 10.2

FMO-RHF/FDD ω 590.1 464.0 426.8

FMO-RHF ω 585.8 470.3 428.5

Full RHF ω 590.7 472.1 427.6

O3PO

O

H

OH

-2

O

O

O3PO

O

OH

-2

HO

O

(a)

(b)

: Frozen

: Buffer

: Active

RCH

ROH +

Glu-410

PGH

Fig. 6 Enzymatic reaction studiedwithFMO/FDD:a schematic representation,b thewhole system;
the reactants or products form the active domainA. Reprinted with permission from [56]. Copyright
(2018) American Chemical Society.
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Fig. 7 Keto-enol tautomeric reaction of PGH and the triosephosphate isomerase. a The binding
pocket at the transition state geometry. b Reaction path obtained with IRC using FMO-RHF/FDD;
the reaction coordinate (Å) is mainly given by RCH − ROH, see Fig. 6a. The energy of the reactants
is set to 0. c Decomposition of the total energy into the sum of monomer energies ΔE ′(FMO1) =∑

I E
′
I (black dashed line) and pair interaction energies (Δ PIE) ΔEI J between the reactant and

residue fragments of the enzyme, colored as fragments in (a). d Change in the Mulliken charges
of the subsystems defined within the reaction fragment: Glu-410, two special atoms O(C=O) and
H(reactive) and the rest of PGH (PGH’); the charges at the reactant geometry are set to 0. TOT
denotes the total charge on the reactive fragment. Reprinted with permission from [56]. Copyright
(2018) American Chemical Society.

The free energy barrier (the FMO-RHF/6-31G(d) energy including the thermo-
dynamical correction for 1 minimum) is 21.4 kcal/mol at the comparable to 21.9
kcal/mol reported earlier [58] at the level of RHF/3-21G, whereas the experimental
estimate is 14 kcal/mol [57].

After locating the transition state from a trial geometry using the analytic Hessian
developed in this work, IRC simulations were performed to map the reaction path.
The reaction coordinate Rreact was calculated along the actual IRCpath and the results
are shown in Fig. 7b.

PIE in Eq. (57) can be used to identify the residue fragments, which are important
factors in the catalytic activity [59–61]. It should be noted that in FMO fragments are
defined by detaching Cα-C bonds at Cα, so that fragment residues in FMOare shifted
compared to conventional residues by the carboxyl group. The names of residue frag-
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ments in FMO have a hyphen to indicate the difference from conventional residues
(GLU-410 is the fragment that corresponds to the amino acid residue GL410).

The total energy E along the path shown in Fig. 7b is divided into the sum of
monomer contributions E ′

I and PIEs in Fig. 7c. The change in the internal energy E ′
I

(see Eq. 21) along the reaction path has two contributions: a) the deformation energy,
which shows how fragment I is either stabilized or destabilized when its geometry
changes relative to the reactant state) and b) the destabilization polarization effect
on fragment I by the rest of the system [62] (the stabilization component of the
polarization forms a part of the electrostatic component of PIEs and is not separated
here).

In addition, the change in PIEs along the path for the important residues depicted
in Fig. 7a is shown in Fig. 7c; some residues such as Glu-341 have a relatively
small change whereas others such as Lys-256 feature a large change; the reaction
coordinate 0.2176 (see Fig. 7b) corresponds to the transition state of the keto-enol
tautomeric reaction (largely stabilized by Lys-256 and destabilized by the monomer
state).

The change in the charges along the path is shown in Fig.7d. In this reaction,
the charge of the reactant molecule PGH changes from −2 to −3, whereas Glu-410
turns from an anion into a neutral residue. The charge on the reactive H atom is
of special interest. The change in this charge in the reaction is about 0.3, similar
to the change in Glu-410. The changes in these charges are parallel to each other
(Fig. 7d) for the large region around the transition state. Another important change
occurs to the charge of oxygen in the carboxyl of PGH. This means that the negative
charge is transferred from Glu-410 to this carboxyl. Thus, energetic changes can be
rationalized also in terms of charge transfer.

4 Conclusion

The development of analytic second derivatives in FMO has been summarized, for
restricted and unrestricted variants of Hartree–Fock and density functional theory.
Detailed equations have been given for the two-body FMO expansion applied to
restricted Hartree–Fock, with extensions to DFT, unrestricted Hartree–Fock and
three-body expansion. The formulation of FMO-DFTB somewhat differs from other
methods and for brevity it has not been described here, see elsewhere for details [30,
31].

FMO Hessian calculations are somewhat expensive because individual response
terms are needed (in the gradient, the Z-vector technique allows one to solve for
the Z-vector and avoid getting individual responses). To reduce the computational
cost, one can use the frozen domain approach, which has been applied to an enzyme
containing about 10,000 atoms.

Analytic second derivatives in FMO can be used for many purposes: to improve
the efficiency of geometry optimizations, guide transition state search, map chemical
reaction path with IRC, and simulate IR and Raman spectra in large molecular sys-
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tems. One can also evaluate zero point energies to estimate enthalpies of chemical
reactions as in the study of radical damage in lipids [25], although anharmonic cor-
rectionsmay be important for entropy and free energies determined by low-frequency
vibrations [24].

FMO significantly accelerates the calculation of second derivatives [24, 26].
Although the Hessian matrix diagonalization scales cubically, this step takes a rel-
atively little absolute time and the practically observed cost is mainly driven by the
calculation of dimer responses. Also, FMO significantly reduces the memory for
storing supervectors Ua (compare Eqs. 35 and 36): in styrene hexamer, the memory
was reduced by a factor of 5.
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The FMO-DFTB Method

Yoshio Nishimoto and Stephan Irle

Abstract Although the fragment molecular orbital (FMO) method enables elec-
tronic structure calculations with near-linear scaling behavior with respect to system
size, the computational cost of ab initio methods typically employed in conjunction
with FMO is still prohibitive for routine calculations of very large systems or long
timescale molecular dynamics simulations. We, therefore, combined the FMO and
density-functional tight-binding (DFTB)method, which is one of the emerging semi-
empirical quantum chemical methods, and have demonstrated that FMO-DFTB is
capable of performing geometry optimizations for systems containing up to one mil-
lion atoms using limited computational resources. In this chapter, we will review the
basics of the DFTB method first before introducing FMO-DFTB, focusing on the
relationship with density functional theory and other FMO methodologies. We also
demonstrate the latest scalings of FMO-DFTB2 andDFTB3 using three-dimensional
water clusters, showing that the most favorable scaling is O

(
N 1.16

)
. Applications

of FMO-DFTB to various systems are briefly summarized, and an outlook to future
applications is provided.

Keywords Density-functional tight-binding · Approximate electronic structure
theory · Molecular dynamics · Near-linear scaling

1 Introduction

In performing quantum chemical calculations, finding a reasonable trade-off between
accuracy and computational cost is always inevitable. If an infinitely fast computer
would be available, the choice should always be the full configuration interaction
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method,which allows to compute the exact nonrelativistic solution of theSchrödinger
equationwithin theBorn–Oppenheimer approximation. Such a computer, anticipated
by someas the ultimate goal of current efforts in quantumcomputing, is obviously still
far from realization. With the currently available limited computational resources,
we have to choose a method which (hopefully) yields the highest accuracy with the
lowest computational cost, carefully considering the expected accuracy and cost.
In principle, accurate methods exhibit unfortunate, steep scaling with respect to
system size, such as polynomial or, as in the case of full configuration interaction,
factorial. The scaling of all standard quantum chemical calculations is at least equal
or greater than quadratic. Quadratic scaling in electronic structure calculations can
be achieved by using integral prescreening [1] and density fitting [2] techniques.
If the bottleneck of integral calculation can be overcome, for instance, by efficient
parallelization or parameterization, matrix diagonalization and other linear algebra
related to Hamiltonian and density matrices become dominant, and these operations
are commonly associated with cubic scaling. Thus, one always suffers from rapid
increase of the computational cost as far as we treat dense matrices. This problem
may be actually less severe; we can simply wait for long calculations to finish or,
if the code parallelizes well, we can use more and more CPU cores. However, the
memory requirement is another, and possibly more severe, problem. If we cannot
store a very large matrix in memory, we cannot even execute the calculation. For
instance, storing a 100,000 × 100,000 matrix in memory requires 74.5 GB in double
precision, so some computers with a medium-sized memory space may not handle
this large calculation. In any case, calculations for large systems always suffer from
these problems.

In this context, a number of linear-scaling methods have been developed, and one
of them is the fragment molecular orbital (FMO) method [3], the main theme of
this book. After the first idea by Kitaura et al., it has been combined with various
ab initio methods, and numerous methodological simplifications and advances have
been reported. Various FMO approaches have been successfully applied to a great
many systems. In spite of the usefulness of the approach itself, computational costs
of the ab initio methods themselves are still high, even when they are combined with
FMO. One may find that treating the whole system in a straightforward fashion with
semi-empirical quantum mechanics (QM) methods is sometimes faster than FMO
combined with ab initio methods, if the system consists of less than a few thousand
atoms.

The density-functional tight-binding (DFTB) method [4–8] is one of the semi-
empirical QM methods, and it has been applied to a number of nanomaterials [9],
chemical [10] and biosystems [11]. The method is known as an approximation of
density functional theory (DFT), utilizing tight-binding approximations such as min-
imal Slater-type basis set and two-center approximations for Hamiltonian matrix
elements, and diatomic repulsive potentials. The earliest DFTB development per-
haps began with the seminal works by Porezag et al. [12] and Seifert et al. [13].
This option is known as nonself-consistent-charge DFTB (NCC-DFTB) or DFTB1,
and it has been applied to systems in which charge polarization is not significant.
As the name implies, NCC-DFTB requires only a single diagonalization of a model
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Hamiltonian employing a reference electron density. It is conceptually similar to
extended Hückel-type methods, although the potentials are more sophisticated. The
second generation of DFTB is the self-consistent-charge (SCC) formalism [14], also
recently called DFTB2. This extension is based on the fundamental ideas of Foulkes
and Haydock [15]. In the SCC formalism, interactions between atomic charges are
explicitly taken into account, and the electronic structure is determined as aminimum
of electronic energy with respect to the change of variational parameters, improving
the description of charge–charge interactions. It requires self-consistent treatment of
charge–charge interactions, as is evident from the name. The third generation is the
DFTB3 formalism introduced in 2011 by Gaus et al. [16], which includes a third-
order term related to the charge-dependence of the Hubbard parameter introduced in
DFTB2. More details on DFTB methods are reviewed later.

In termsof the computational cost, even though thepre-factor ofDFTB is relatively
small, all the DFTB generations require matrix multiplications and diagonalization
of the Hamiltonian (roughly equivalently, Fockmatrix in Hartree–Fock) matrix more
than once, so the computational scaling of these steps formally scales as cubic, and
applications to large systems (more than 1000 atoms) are, therefore, not straight-
forward. For instance, a DFTB energy and gradient calculation for a water cluster
containing 4000 molecules take about 6d on a single CPU [17]. To circumvent this
problem, various linear-scaling approaches have been combined with DFTB. One
realization is a rather direct method; large systems are treated as they are, i.e., without
fragmentation. Focusing only on the approaches combined with DFTB, this category
may include the use of an OpenMP sparse matrix solver [18], shift-and-inverse par-
allel spectral transformations (SIPs) [19], and graph-based Fermi operator expansion
[20]. A key of these methods is the exploitation of the sparsity of Hamiltonian and
overlap matrices. Another realization divides large systems into smaller spatial seg-
ments or fragments: modified divide-and-conquer (mDC) [21], fragment molecular
orbital (FMO) [17] and divide-and-conquer (DC) [22, 23]. Although it would be
certainly interesting to compare the performance and the applicability of these linear
scaling methods, our focus in this chapter is the combination of FMO and DFTB, so
we are not going to discuss the DC methods further.

Since 2014, we have been developing an ultra-fast semi-empirical quantum
mechanical method, FMO-DFTB, which combines FMO and DFTB. The scaling
of the computational cost was close to linear, O

(
N 1.2

)
, even for three-dimensional

water clusters. The performance of the method has been reported several times since
its initial conception, and the largest system it was applied to consisted of 1,180,800
atoms for which each single point gradient calculation took only 22min, using a sin-
gle computer node with 24 CPU cores. In this chapter, we review our FMO-DFTB
method after briefly introducing the DFTB method itself. We will discuss previous
applications of DFTB and FMO-DFTB and finally conclude with a short summary
and future prospect.



462 Y. Nishimoto and S. Irle

2 Basics of the DFTB Method

The basics of the DFTB method are briefly reviewed in this section. The formalism
introduced in this subsection is limited for the purpose of this review chapter, and we
point the reader to more detailed introductions, for instance, in Refs. [4–8] Further-
more, semi-empirical quantum mechanical methods have been compared in detail in
Ref. [10].

As mentioned, the DFTB method is derived from the DFT method itself. Here,
given the (perturbed) total density ρ, the total Kohn–ShamDFT energy can bewritten
as

EDFT =
occ∑

i

fi

〈
ψi

∣∣∣∣−
∇2

2
+ V ext

∣∣∣∣ψi

〉
+ 1

2

∫ ′ ∫ ρρ ′

|r − r′| + Exc[ρ] + Enuc , (1)

where fi is the occupation number of i th orbital ψi , V ext is the external potential,
Exc[ρ] is the exchange–correlation energy, and Enuc is the nuclear repulsion. Addi-
tionally, the following abbreviations were used:

∫ = ∫
dr,

∫ ′ = ∫
dr′, ρ = ρ (r),

and ρ ′ = ρ
(
r′). For convenience, two more abbreviations are introduced later in the

text:
∫ ′′ = ∫

dr′′ and ρ ′′ = ρ
(
r′′).

A series of approximations can then be introduced. The perturbed total density
ρ can be expressed as the sum (superposition) of a reference electron density ρ0

and a density perturbation δρ: ρ = ρ0 + δρ. The reference density ρ0 usually cor-
responds to the density of a free atom in vacuum. Free atoms in a bound molecular
system or solid affect each other, perturbing their density, and this density fluctuation
can be expressed as δρ. Using the density partitioning ρ = ρ0 + δρ, the exchange–
correlation energy can be expanded in a Taylor series around the reference density
in terms of the density perturbation:

Exc[ρ] = Exc[ρ0 + δρ]
= Exc[ρ0]

+
∫

δExc[ρ]
δρ

∣
∣∣∣
ρ0

δρ

+ 1

2

∫ ′ ∫ δ2Exc[ρ]
δρδρ ′

∣∣∣∣
ρ0,ρ0′

δρδρ ′

+ 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣∣∣
∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ + · · · (2)

With this expansion, the DFT total energy in Eq. (1) can be expanded as
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EDFT[ρ0 + δρ] = Enuc − 1

2

∫ ′ ∫ ρ0ρ0′

|r − r′| + Exc[ρ0] −
∫

V xc[ρ0]ρ0

+
occ∑

i

fi

〈
ψi

∣∣∣∣−
∇2

2
+ V ext +

∫ ′ ρ0′

|r − r′| + V xc[ρ0]
∣∣∣∣ψi

〉

+ 1

2

∫ ′ ∫ (
1

|r − r′| + δ2Exc[ρ]
δρδρ ′

∣∣
∣∣
ρ0,ρ0′

)

δρδρ ′

+ 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣
∣∣∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ + · · · (3)

≈ E rep + E1st + E2nd + E3rd , (4)

where V xc is the exchange–correlation potential. Each term in Eq. (4) corresponds
to one line in Eq. (3) and is related to the truncation order of the Taylor expansion in
Eq. (2). The last equation is a simplified expression of the DFTB energy:

EDFTB = E rep + E1st + E2nd + E3rd , (5)

where the truncation of terms distinguishes the level of DFTB: DFTB1, DFTB2, and
DFTB3.

The repulsion energy above is defined by

E rep = Enuc − 1

2

∫ ′ ∫ ρ0ρ0′

|r − r′| + Exc[ρ0] −
∫

V xc[ρ0]ρ0 . (6)

Clearly, the first term takes into account the nuclear repulsion, whereas the other
terms avoid double-counting Coulomb interactions and the exchange–correlation
energy of the reference density. E1st is sometimes referred to as the band structure
or electronic energy, defined by

E1st =
occ∑

i

fi

〈
ψi

∣∣
∣∣−

∇2

2
+ V ne +

∫ ′ ρ0′

|r − r′| + V xc[ρ0]
∣∣
∣∣ψi

〉
. (7)

This term is further simplified to yield

E1st =
∑

i

fi
〈
ψi

∣∣∣Ĥ [ρ0]
∣∣∣ψi

〉
, (8)

where Ĥ [ρ0] is the Hamiltonian, which is only dependent on the reference density.
The second-order contribution

E2nd = 1

2

∫ ′ ∫ (
1

|r − r′| + δ2Exc[ρ]
δρδρ ′

∣∣
∣∣
ρ0,ρ0′

)

δρδρ ′ (9)
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addresses Coulomb interactions and exchange–correlation contributions of the per-
turbed electron density. The third-order contribution

E3rd = 1

6

∫ ′′ ∫ ′ ∫ δ3Exc[ρ]
δρδρ ′δρ ′′

∣
∣∣∣
ρ0,ρ0′,ρ0′′

δρδρ ′δρ ′′ (10)

originates in the third-order Taylor expansion of the exchange–correlation energy.
Although higher order DFTB models (with fourth- and higher order Taylor expan-
sion) may also be formulated, no efforts for including them have been devoted. The
formulations employed during computation are briefly reviewed in the following
subsections. As usual, the linear combination of atomic orbitals (AOs) is applied:

ψi =
∑

μ

φμCμi , (11)

where φμ represents μth AO and Cμi is the expansion coefficient.

2.1 DFTB1

The NCC-DFTB method is sometimes referred to as DFTB1, indicating both its
expansion order, and indicating that it is the first generation of the DFTB hierarchy
of methods. The total energy of DFTB1 can be given by the sum of the repulsion
and one-electron contributions:

EDFTB1 = E rep + E1st

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν . (12)

Here, the density matrix Dμν is defined by

Dμν = 2
occ∑

i

CμiCνi , (13)

and H 0
μν is sometimes referred to as the non-perturbed Hamiltonian. After neglecting

several contributions, the matrix elements of H 0
μν are written as

H 0
μν =

〈
φμ

∣∣∣Ĥ
∣∣∣ φν

〉
=

⎧
⎪⎪⎨

⎪⎪⎩

εneutral free atom
μ if μ = ν〈
φA

μ

∣∣∣−∇2

2 + V A
0 + V B

0

∣∣∣ φB
ν

〉
if A �= B

0 otherwise,

, (14)
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where A and B represent the index of atoms and μ ∈ A and ν ∈ B. The orbital
energy of μth AO is εneutral free atom

μ , and V A
0 is the potential generated by the atom A

at a neutral state. The terms in the right-hand side are obtained from reference DFT
calculations. In most cases, the Perdew–Burke–Ernzerhof (PBE) [24, 25] exchange–
correlation functional is employed in the DFT calculation of atoms and diatomic
molecules in vacuum. For A �= B, the term is determined so that the DFTB calcu-
lations with parametrized H 0

μν reproduce the band structure obtained with DFT. In
actual DFTB calculations, tabulated (discretized) values in the Slater–Koster files
are normally interpolated using cubic or fifth-order polynomials, so no integrals
are explicitly computed. DFTB was originally developed using Slater-type AOs,
although this is only relevant during parametrization, and other choices including
numerical AOs and Gaussian AOs have been used as well.

Applying the standard variational method, the optimum MO coefficients can be
obtained by solving the generalized eigenvalue problem

H 0
μνCνi = SμνCνiεi , (15)

where Sμν is the (non-orthogonal) overlap matrix and εi are the eigenvalues of the i th
vector (molecular orbital). The overlap matrix elements are also parametrized, tabu-
lated, and computed by interpolations, as in the case of H 0

μν . The Hamiltonian, here
corresponding to H 0

μν , is directly constructed with Slater–Koster tables, and is thus
not dependent on the electronic structure. Therefore, a single diagonalization suffices
to determine the electronic structure and to compute the total energy within DFTB1;
no self-consistent field (SCF) cycles are required. Note that the DFTB community
usually uses SCC to refer to SCF in Hartree–Fock. However, when combined with
FMO, SCC formally means monomer iterations to determine electrostatic potential
(ESP). To avoid unnecessary confusion, “SCF” cycles are exclusively used here to
determine MO coefficients.

The repulsive potential E rep
AB is empirically determined to minimize the devia-

tions of geometrical parameters from reference geometries optimized with DFT. It is
usually obtained after having optimized the AOs used to construct the diagonal and
off-diagonal matrix elements of the Hamiltonian. We note in passing that parameter-
ization of both electronic parameters as well as repulsive potentials simultaneously
may lead to instabilities in the optimization procedure.

2.2 DFTB2

DFTB1has been successfully applied to somehomogeneous systems, such as carbon-
based nanomaterials [9] and some bulk systems [14]. Nevertheless, DFTB1 truncates
the Taylor series at the first order and does not include charge–charge interactions in
the formalism, limiting the accuracy for systems with heteroatoms, and is thus not
anymore widely used. Elstner et al. proposed the self-consistent version of DFTB as
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a next-generation model in 1998 [14], DFTB2; the total energy within DFTB2 can
be written by

EDFTB2 = EDFTB1 + 1

2

∑

A,B

γABΔQAΔQB

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB . (16)

The last term represents the second-order contributions, the third line of Eq. (3). The
γAB function is dependent on the distance between atoms A and B and on theHubbard
values of them. TheHubbard values are related to the atomic ionization potentials and
electron affinities or to chemical hardness. At a long distance, γAB closely follows
the inverse of the distance between atoms A and B, RAB and thus corresponds to the
pure Coulomb interaction between two charges. On the other hand, at the RAB → 0
limit, γAB will be the Hubbard valueUA, leading to charge self-interaction on a give
site (atom) [26]. The Mulliken charge ΔQA is the difference between the Mulliken
population QA and the reference density Q0

A of atom A: ΔQA = QA − Q0
A. The

Mulliken population is calculated by

QA =
∑

μ∈A

∑

ν

DμνSμν . (17)

Only valence electrons are considered in DFTB, e.g., the Q0
A of oxygen is six, not

eight. In DFTB2, the Hamiltonian matrix Hμν , conceptually corresponding to the
Fock matrix in Hartree–Fock, is

Hμν = H 0
μν + 1

2
Sμν

∑

C

(γAC + γBC) ΔQC (18)

for A ∈ μ and B ∈ ν. SinceΔQC is dependent on the densitymatrix, theHamiltonian
matrix is dependent on the electronic structure. Therefore, the variational parameters
within DFTB2 are determined iteratively by solving the eigenvalue problem self-
consistently. Consequently, DFTB2 is 5–15 times slower than DFTB1.

2.3 DFTB3

In 2011, Gaus et al. [16] introduced two formal advancements to the DFTB2 as
described in 2006 [11]. First, the third-order Taylor expansion term of the exchange–
correlation energy in Eq. (2) was introduced. Intuitively, the chemical hardness of an
atom should be dependent on its charge state. However, chemical hardness, which
is relevant to Hubbard value, is constant within DFTB2; this has severely limited
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applying DFTB to highly charged systems, such as an anion and cation system. The
third-order term introduced the charge-dependence of the γAB function in the DFTB
formalism. Omitting the detailed derivation, the final energy within DFTB3 was
expressed as

EDFTB3 = EDFTB2 + 1

6

∑

A,B

(ΓABΔQA + ΓBAΔQB)ΔQAΔQB

=
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB

+ 1

6

∑

A,B

(ΓABΔQA + ΓBAΔQB)ΔQAΔQB . (19)

The last term is derived from the third-order expansion term in Eq. (3). The newly
introduced function ΓAB is dependent on the distance between atoms A and B, the
Hubbard values of them, and the derivative of the Hubbard values with respect to
charge fluctuation:

ΓAB = ∂γAB

∂QA

∣∣∣
∣
Q0

A

= ∂γAB

∂UA

∂UA

∂QA

∣∣∣
∣
Q0

A

(A �= B) . (20)

Analytic expressions of ΓAB and γAB are derived in the Supporting Information
Ref. [16].Historically, theDFTB3was usedwith diagonal terms only;Γ = 0 for A �=
B. Nowadays, this diagonal approximation is not usually employed. TheHamiltonian
matrix in DFTB3 is

Hμν = H 0
μν + 1

2
Sμν

∑

C

(γAC + γBC) ΔQC

+ 1

6
Sμν

∑

C

{2 (ΓACΔQA + ΓBCΔQB) + (ΓCA + ΓCB) ΔQC} ΔQC .

(21)

Thus, DFTB3 also requires iterative treatment. The convergence of SCFwithDFTB3
is usually similar to that with DFTB2, but one or two more cycles may be needed.

The second advancement was the modification of the gamma function introduced
in DFTB2: γAB → γ h

AB . The necessity of this modification arose from the difference
of chemical hardness between isolated and covalently bonded hydrogen atoms. Thus,
this modification improved the calculation of the binding energy in hydrogen bond-
ing. Here, γAB and γ h

AB are not explicitly distinguished because the difference only
affects the electronic structure indirectly. ΓAB is a function of γAB and is, therefore,
also affected.
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2.4 Long-Range Corrected DFTB

The most recent and important development in DFTB is the long-range corrected
DFTB (LC-DFTB). The first two practical implementation and benchmark studies
were reported in 2015 by Humeniuk et al. [27] and Lutsker et al. [28], although the
initial formulation was outlined in 2012 by a coauthor of the latter study [29]. The
central idea of LC-DFTB is to add Hartree–Fock-like exchange contributions to the
DFTB formalism. As the DFTB total energy was derived from the DFT energy with a
GGA exchange–correlation functional, the addition of Hartree–Fock-like exchange
terms is not completely straightforward [28]. In its current implementation, the ref-
erence Hamiltonian matrix elements are obtained using the BNL range-separated
functional[30], and the Hartree–Fock-like exchange terms for the density perturba-
tion are obtained using difference density matrices of the one-particle density.

The total energy of LC-DFTB [28] can be written as

ELC−DFTB =
∑

A>B

E rep
AB +

∑

μν

DμνH
0
μν + 1

2

∑

A,B

γABΔQAΔQB

− 1

4
ΔDμνΔDρσ

∑

μνρσ

(μρ|σν)lr , (22)

where

(μρ|σν)lr = 1

4
SμρSσν

(
γ lr
AD + γ lr

AB + γ lr
CD + γ lr

CB

)
, (23)

and ΔDμν is the difference between Dμν and the reference density matrix, D0
μν :

ΔDμν = Dμν − D0
μν . The reference density matrix is a diagonal matrix with the

number of electrons of free neutral atoms in each AO. The last term in Eq. (22) is the
newly addedHartree–Fock-like exchange term. The long-range gamma function γ lr

AB
is similar to γAB in DFTB2 and DFTB3, but with an additional dependence on the
range-separated parameter ω. In LC-DFT literature, the parameter may be written
as μ. This formalism is based on DFTB2; as there is no term with ΓAB , there are no
reports for LC-DFTB3 developments at the moment.

LC-DFTB was shown to be roughly ten times more expensive than conventional
DFTB, although DFT calculations are 50 times slower than LC-DFTB [28]. Never-
theless, LC-DFTB decreases the self-interaction error, and applications to excited-
state calculations [27, 31] have demonstrated that HOMO–LUMO gaps and charge
transfer excitation energies are much improved.

2.5 Parameters

In tight binding calculations, in general, it is essential to prepare Slater–Koster param-
eters prior to simulation, and DFTB is no exception, as already mentioned above.
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These parameters are defined for each pair of elements; for water, four combinations
are needed: O–O, O–H, H–O, and H–H. The two mixed parameters are required
because of possible sign changes in integrals involving orbitals with non-zero angu-
lar momentum. Various parameters are employed in DFTB and a number of these
parameters are available on the DFTBwebsite [32]. To performDFTB1 calculations,
users have to supply H 0

μν , S
0
μν , and E rep

AB parameters. These are already summarized
in Slater–Koster tables, so users simply have to specify the file locations. Users also
need Hubbard values for DFTB2, and these have also been tabulated. For DFTB3,
users need the derivative of the Hubbard values with respect to charge fluctuation,
which has to be given separately. Because many parameters are still missing, not all
elements can be treated with DFTB.

3 Basics of the FMO-DFTB Method

A brief history of the methodological development of FMO-DFTB is first presented.
The first FMO-DFTB study reported the geometry optimization of a one-million-
atom system and was published in 2014 [17]. At that time, only two-body interac-
tions within FMO (FMO2) were considered and the DFTB model employed was
only DFTB2: FMO2-DFTB2. The implemented gradient was not fully analytic and
response terms coming from the use of ESP that are determined in the monomer
cycle were neglected. In the next year, extensions to FMO2-DFTB3 [33] and fully
analytic gradient [34] were implemented. Since then, all FMO-DFTB developments
have included a fully analytic gradient and an extension to DFTB3. In 2016, FMO-
DFTB was combined with the polarizable continuum model (PCM) [35], and an
approximate Hessian with FMO-DFTB was implemented by Nakata [36]. In 2017,
three-body interactions were included, namely FMO3-DFTB [37]. In 2018, FMO-
DFTBwas combined with an alternative fragmentation approach for cutting covalent
bonds, termed as the adaptive frozen orbital (AFO) method [38]. At that time, FMO-
DFTB was the only method using an analytic gradient within AFO because of the
complexity of determining the electronic structure [39].

In the following subsections, only the FMO2-DFTB3 formalism is employed.
DFTB2 formalism can be obtained by setting ΓAB = 0. As the extension to FMO3
is straightforward and there is a large overlap between DFTB and other ab initio
methods, three-body terms are not explicitly introduced here.

All of these features presented in this chapter are publicly available through the
official version of GAMESS-US [40, 41]. DFTB and FMO-DFTB in GAMESS-US
were first officially released in 2014. Major updates were executed in 2016 and 2018,
and the latter release includes almost all developments presented in this chapter.



470 Y. Nishimoto and S. Irle

3.1 Formalism of FMO-DFTB: Energy

Again, the total energy within FMO2 is given by

E =
N∑

I

E ′
I +

N∑

I>J

(
E ′

I J − E ′
I − E ′

J

) +
N∑

I>J

ΔEV
I J , (24)

where N is the number of fragments and E ′
I is the internal energy of fragment I ,

defined by

E ′
X =

∑

A>B∈X
E rep

AB +
∑

μν∈X
DX

μνH
0,X
μν + 1

2

∑

A,B∈X
γABΔQX

AΔQX
B

+1

6

∑

A,B∈X

(
ΓABΔQX

A + ΓBAΔQX
B

)
ΔQX

AΔQX
B . (25)

This expression is almost identical to Eq. (19) but includes the fragment index.
For convenience, the hybrid orbital projection operator PX

μν is included in the non-
perturbed Hamiltonian H 0,X

μν . PX
μν for FMO-DFTB is computed here similarly as

in other methods. The energy of the charge transfer between fragments I and J in
embedding ESP can be written as

ΔEV
I J = EV

I J,I J − EV
I,I J − EV

J,I J . (26)

In the case of DFTB, the electrostatic interaction between the atoms in fragment X
and the atoms in the total system excluding fragment Y is given by

EV
X,Y =

∑

A∈X

N∑

K �=Y

∑

B∈K

{
γABΔQX

AΔQK
B + 1

3

(
ΓABΔQX

A + ΓBAΔQK
B

)
ΔQX

AΔQK
B

}
.

(27)
The first term in Eq. (27) originates from the second-order term, corresponding to
the last term in Eq. (16), which originates in the sum of Coulomb interactions and
the second-order expansion of the exchange–correlation energy (see the third line of
Eq. (3)). The second term in Eq. (27) comes from the third-order term describing an
expansion of the exchange–correlation functional, thus physically corresponding to
exchange–correlation contributions to the ESP.

The Hamiltonian matrix within FMO-DFTB3 (with hybrid orbital projection) is
written as

HX
μν = H 0,X

μν + SX
μνΩ

X (X)
AB + V X

μν (28)

forμ ∈ A and ν ∈ B, where the second and third terms come from the internal (atoms
in fragment X ) and external (atoms outside the fragment X ) embedding, respectively.
By defining for atoms A, B ∈ X as
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Ω
X (Y )
AB =

∑

C∈Y

{
1

2
(γAC + γBC ) + 1

3

(
ΓACΔQX

A + ΓBCΔQX
B

)
+ 1

6
(ΓCA + ΓCB)ΔQY

C

}
ΔQY

C ,

(29)

the external embedding potential can be written as

V X
μν =

∑

K �=X

V X (K )
μν = SX

μν

∑

K �=X

Ω
X (K )
AB . (30)

Again, the second and third terms in Eq. (29) come from exchange–correlation-like
contributions. Since the ESP is already expressed with Mulliken charges, the point
charge approximation is always employed within DFTB.

It is important to analyze the E2nd term for A = B:

1

2

∑

A∈X
γAA

(
ΔQX

A

)2 = 1

2

∑

A∈X
UA

(
ΔQX

A

)2
. (31)

BecauseUA is non-zero, E2nd for A = B is also non-zero. This is a typical symptom
of the self-interaction error. The residual value comes from the second-order term of
the Taylor expansion (the term proportional to the inverse of the distance is canceled
[14]), so the origin of this self-charge interaction seemingly inherits from the self-
interaction error of the exchange–correlation functional in DFT. Special care thus has
to be paidwhen evaluating ESPwithin FMO-DFTB if the systemunder consideration
requires fragmentation across covalent bonds. ESP contributions from the same atom
belonging to different fragments cannot be ignored. This also applies to third-order
terms.

The introductions of two-electron integral-like terms inDFTB3 forμ ∈ A, ν ∈ B,
ρ ∈ C , and σ ∈ D:

(μν||ρσ)X,Y = (μν|ρσ)X,Y

= 1

4
SX

μνS
Y
ρσ (γAC + γBC + γAD + γBD)

+ 1

6
SX

μνS
Y
ρσ

{
(ΓCA + ΓCB)ΔQY

C + (ΓDA + ΓDB) ΔQY
D

}

+ 1

6
SX

μνS
Y
ρσ

{
(ΓAC + ΓAD) ΔQX

A + (ΓBC + ΓBD) ΔQX
B

)
, (32)

allows the ESP to be written as

V X
μν =

∑

K �=X

∑

ρσ∈K
(μν||ρσ)X,K ΔDK

ρσ . (33)

This expression has someconnectionswithFMO-HFandFMO-DFT, althoughFMO-
DFTB benefits from a number of simplifications, resulting in expressions with Mul-
liken charges (Eqs. 29 and 30).
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Efforts are also being made to combine FMO with the recently developed LC-
DFTB [28]. In terms of the formalism, themain difference is the addition of exchange
contributions to the two-electron integral-like term (Eq. 32):

(μν||ρσ)X,Y = (μν|ρσ)X,Y − δXY

2
(μρ|σν)lr,X

= 1

4
SX

μνS
Y
ρσ (γAC + γBC + γAD + γBD)

− δXY

8
SX

μρS
X
σν

(
γ lr
AD + γ lr

AB + γ lr
CD + γ lr

CB

)
(34)

Only intra-fragment exchange contributions are considered, as they are not consid-
ered in other FMO-related methods.

3.2 Formalism of FMO-DFTB: Gradient

As the total energy of FMO is not fully variationally determined, differentiation of the
energy gives rise to response terms of the electronic structure. In FMO, such response
contributions can be efficiently computed by solving self-consistent Z-vector (SCZV)
equations [42]. This approach has been applied to ab initio methods. DFTB is not an
exception; the response terms are computed to obtain accurate first-order derivatives
in a similar manner.

As reported by Ref. [34], the error of the gradient without response contributions
is on the order of 5.0 × 10−4 Hartree/Bohr, is greater than the default convergence
criterion of GAMESS-US, and is particularly severe when combined with the AFO
approach. With FMO2-DFTB3/AFO, the maximum error has been reported as large
as 10−3 Hartree/Bohr. The analytic gradient is 100 times more accurate, and the
remaining error likely stems from the limited accuracy of numerical derivatives.
Approximate gradients are rather accurate with FMO3, but the error is still on the
order of 10−4 Hartree/Bohr.

After derivation, first-order derivatives with FMO-DFTB (with hybrid orbital
projection) may be written as

∂E

∂a
=

N∑

I

E ′a
I +

N∑

I>J

(
E ′a

I J − E ′a
I − E ′a

J

) +
N∑

I>J

ΔEV,a
I J + Ra , (35)

where E ′a
X and ΔEV,a

I J are the terms that come from the derivative of the integrals for
E ′

X and ΔEV
I J , respectively. R

a represents the response and can be written by

Ra = 4
N∑

I

virt∑

m∈I

occ∑

i∈I
L I

miU
a,I
mi , (36)
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where the Lagrangian is

L K
i j =

N∑

I>J (�=K )

(
V K (I J )
i j − V K (I )

i j − V K (J )
i j

)
(37)

and the unitary transformation matrix Ua,I
i j is relevant to the derivative of the MO

coefficient
∂C I

μi

∂a
=

all∑

m∈I
C I

μmU
a,I
mi . (38)

In FMO-DFTB, the coupled-perturbed (CP) DFTB equation for fragment X can be
written as

N∑

K

virt∑

k∈K

occ∑

l∈K
A X,K

i j,kl U
a,K
kl = Ba,X

i j , (39)

where
A X,K

i j,kl = (
εX
j − εX

i

)
δikδ jlδXK − 4 (i j ||kl)X,K (40)

and
Ba,X

i j = F (a),X
i j − εX

j S
a,X
i j . (41)

F (a),X
i j and Sa,X

i j contains the derivative of integrals, and the former also contains the
renormalization terms. After solving the Z-vector equation

N∑

I

virt∑

i∈I

occ∑

j∈I
Z I
i jA

I,K
i j,kl = L K

kl (42)

for all fragments K (k ∈ virt, l ∈ occ) self-consistently, the response contribution
can be computed by

Ra =
N∑

I

virt∑

i∈I

occ∑

j∈I
Z I
i jB

I,a
i j . (43)

These expressions are similar to those given for FMO-HF.
Employing AFO further complicates the algorithm. The first complication is due

to the frozen and projected orbital terms in the Hamiltonian matrix. This necessitates
solving Z-vector equations in dimers and trimers in addition to SCZV equations. The
second complication comes from the use of localized orbitals determined in model
systems. Consequently, two types of Z-vector equations must be solved, derived
from CP localization and the standard CP equations. In total, four types of Z-vector
equations are solved, as outlined in Ref. [39], which contains 111 equations.
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3.3 Implementation Notes

As all implementations of FMO-DFTB are parallelized with the generalized dis-
tributed data interface (GDDI) [43], FMO-DFTB is parallelized to utilize multiple
computer nodes. In GDDI, all of the CPU cores are divided into groups and inde-
pendent jobs (e.g., fragment calculations) are performed in each group. In principle,
each group may consist of more than one CPU core and can do jobs in parallel.
At present, however, FMO-DFTB is not efficiently parallelized within each group.
Therefore, although it is possible to perform hybrid parallelization (GDDI/DDI;
similar to MPI/OpenMPI), this is not efficient. Thus, the developers of FMO-DFTB
always assign one CPU core per group.

Dispersion corrections are also implemented for FMO-DFTB. Universal force-
field (UFF) [44, 45], Slater–Kirkwood [46], and Grimme’s dispersion [47–49] mod-
els can be combined. Since these dispersion models are not dependent on the elec-
tronic structure of the system, the value computed with FMO-DFTB exactly repro-
duces that of full DFTB (i.e., without fragmentation).

In the most recent implementation, results demonstrated the possibility to signif-
icantly eliminate the ESP evaluation for dimers (and trimers). As ESP evaluation
scales as quadratic, improving this step is of great importance. ESP for dimers may
be written and transformed as

V I J
μν = SI J

μν

N∑

K �=I,J

Ω
I J (K )
AB

= SI J
μν

N∑

K �=I,J

(
Ω

I (K )
AB + Ω

J (K )
AB

)

= SI J
μν

⎛

⎝
N∑

K �=I

Ω
I (K )
AB +

N∑

K �=J

Ω
J (K )
AB − Ω

I (J )
AB − Ω

J (I )
AB

⎞

⎠

= SI J
μν

(
Ω I

AB + Ω J
AB − Ω

I (J )
AB − Ω

J (I )
AB

)
. (44)

Ω I
AB and Ω J

AB are the ESP for fragment I and J , respectively. As they are not
dependent on the combination of I and J , they can be constructed before dimer
calculations begin. The computation ofΩ I J

AB is then reduced to subtracting theΩ
I (J )
AB

and Ω
J (I )
AB terms. They are calculated in the dimer I J and thus can be evaluated

quickly. A native implementation requires the evaluation of ESP Ndimer times, where
Ndimer is the number of dimers, but the transformation above indicates that the number
of the evaluation is decreased to only one. This simplification is only applicable
to FMO-DFTB. In addition, if boundary atoms are bond-detached atoms, double
counting has to be avoided.



The FMO-DFTB Method 475

3.4 Computational Efficiency of FMO-DFTB

In 2014, FMO-DFTB scaling for water clusters was reported as O
(
N 1.21

)
with

up to 18,432 atoms. After a number of improvements, new scaling values must
be reported. A comparison between the time required to perform a single point
gradient calculation at the level of full DFTB3 and FMO2-DFTB3 for the same
water clusters is reported in Fig. 1a. The time of full DFTB3 for Nat > 9216 is
an extrapolated estimate. The observed scaling with full DFTB3 is O

(
N 2.97

)
, very

close to the theoretical scaling (cubic). The DSYEVD driver, which is likely the
fastest LAPACK diagonalization, was employed. FMO2-DFTB3 took only 129.0 s.
The observed scaling was O

(
N 1.45

)
, higher than the previously reported scaling.

This is because the most time-consuming step in FMO-DFTB became the evaluation
of ESP during monomer SCC iteration, which scales as purely quadratic. Monomer
SCC and dimer calculations took 48.1 and 20.3 s, respectively. In addition, evaluating
the gradients require solving SCZV equations, which are conceptually similar to
monomer SCC, so this step also involves the quadratic scaling step. Nevertheless,
FMO-DFTB is more than one thousand times faster than full DFTB for the largest
system.

It is also interesting to compare the performance of FMO-DFTB2 and -DFTB3
(Fig. 1b). Overall, FMO-DFTB3 is roughly twice as expensive as FMO-DFTB2,
because the evaluation of ESP, which is the most time-consuming step, involves
more terms (Γ , see Eq. 29). The scaling of FMO-DFTB2 energy isO

(
N 1.16

)
, which

is to be compared with the previous scaling O
(
N 1.21

)
[17]. As mentioned, solving a

set of SCZV equations requires a similar computational effort to solving a monomer
SCC. Therefore, gradient evaluation requires almost twice the computational effort.

The scaling of the computation of the Hessian with FMO-DFTB was O
(
N 2.00

)

and O
(
N 1.98

)
with one and six CPU cores, respectively [36]. With six CPU cores

(Xeon E5-1650 v3), the second-order derivative calculation for 10,041 atoms (water)
finished in only 17.2min, whereas normal mode analysis required 262.4min for
computation. The bottleneck of the analysis was the diagonalization of the Hessian
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matrix. Considering the performance of FMO-DFTB, it could easily be applied to
larger systems; however, as the memory requirement scales as quadratic, this will be
a severe problem.

4 Selected Applications

4.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations with FMO-DFTB have been applied to halo-
gen halides (HF, HCl, HBr, and HI) [34], solvated sodium cation [37], and boron
nitride nano-rings [39]. In all cases, the gradient was computed analytically, as gra-
dient inaccuracy introduces artificial effects such as an energy drift in the energy-
conservative ensemble. In the first example [34], one million MD steps were per-
formed for systems consisting of 2,000 atoms and the first peak of halogen–halogen
radial pair distribution functions obtained experimentally andwith FMO-DFTBwere
compared. Agreement between experimental and computational functionswas rather
dependent on the chosen DFTB and dispersion models. After many test calculations,
FMO-DFTB2 with the UFF-type dispersion model was selected for use. The second
example demonstrated a comparative performance of FMO2- and FMO3-DFTB3
[37]. A sodium cation was placed in the center of 473 water molecules; 100 ps
MD simulations were performed (100,000 steps). Because the charge in the central
sodium cation is prone to delocalize over the surrounding atoms, the inclusion of
three-body effects is essential. The coordination numbers obtained with FMO2 and
FMO3were 8.9 and 6.5, respectively; FMO3 gave a value closer to other simulations
(5–6), whereas FMO2 significantly overestimated it. This is likely because FMO2
tends to overestimate the binding between fragments in the confined relaxation space.
In this simulation, the time step was 1 fs with the help of RATTLE [50] constraints.

The last case employed boron nitride nano-rings [39] and demonstrated that FMO-
DFTB may be applicable to MD simulations for one-million-atom systems. Five
hundred MD steps over the course of 181h were performed for the system, which
contained 1,180,800 atoms. Unlike other linear-scaling methods, FMO-DFTB is
uniquely suited to performing on laboratory-scale computers; the calculation was
performed with only 24 CPU cores on a single computer node. Although this simu-
lation was rather short, it demonstrates that, provided more computer resources are
available, FMO-DFTB may be applicable to longer and larger simulations and will
be a useful tool for understanding the dynamics of large systems.
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Fig. 2 Origin of the problem
of charge transfer states in
dimers. a Orbital energies in
monomers I (red solid lines)
and J (blue dashed lines)
b Initial levels in dimer I J c
Population of initial levels in
dimer I J Reproduced from
Ref. [35] by permission of
the PCCP Owner Societies

fragments dimer 

IJ : 8eI : 4e
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4.2 Proteins

Due to self-interaction, DFTB cannot accurately describe orbital energies; apply-
ing FMO-DFTB to proteins had thus been problematic until it was combined with
PCM. Specifically, deriving DFTB with DFT causes the electronic structure param-
eters to be fitted to results obtained with the PBE exchange–correlation functional.
Additionally, DFTB also underestimates the gap between the highest occupied MO
(HOMO) and the lowest unoccupied MO (LUMO). This effect is particularly promi-
nent when fragments have a net charge. The use of DFTB3 improved charge–charge
interactions, but not necessarily orbital energies.

A typical consequence of self-interaction is that the orbital levels of fragments
with positive and negative charges are akin to be low and high, respectively, with
FMO-DFTB. This problem does not directly affect calculations during monomer
SCC because orbital levels of fragments do not couple directly. However, in the
dimer calculation, I and J are merged and this causes a problem. For instance, let’s
assume that fragments I and J have a positive and negative charge (both have four
electrons), respectively, and that the LUMOof fragment I is lower than theHOMOof
fragment J when constructing the dimer I J . Next, an initial guess can be constructed
by placing electrons obeying the Aufbau principle. Now, the atoms that belong to
fragments I and J get six and two electrons, respectively, not four and four, resulting
in a charge transfer state. Consequently, a charge-transferred electronic structure or a
lack of SCF convergence is possible. The situation is schematically depicted in Fig. 2.
To combat this, the 1L2Y protein in the original FMO-DFTB paper was neutralized
[17].

Once FMO-DFTB was combined with PCM, no such switch occurs. The origin
of incorrect orbital energies is partially attributed to strong charge–charge interac-
tions within charged residues and could be alleviated by adding solvent screening
effects. This problem is not unique to DFTB; as discussed in Ref. [35], a similar
problem occurs with GGA and some hybrid functionals. A more systematic solution
may employ a long-range corrected functional. At the Hartree–Fock limit, no such
problem occurs, as there is no self-interaction error.
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There are four FMO2/PCM (PCM[1], PCM〈1〉, PCM[1(2)], and PCM[2]) and
six (the former four and PCM[1(3)] and PCM[3]) FMO3/PCM levels, depending on
the construction of ESP on the apparent surface charge (ASC) and the scaling for
the solute–solvent interaction energy. FMO-DFTB can be combined with any PCM
variants. The difference is summarized in Table1 in Ref. [35]. Analytic derivatives
have been developed only when combined with PCM〈1〉.

With FMO2-DFTB3-D(UFF)/PCM〈1〉, medium-sized proteins up to 3,578 atoms
could be optimized. The root-mean-square deviations of the largest optimized struc-
ture (PDB: 2CGA) compared with the experimental structure was 0.720 Å. This
experimental structure was obtained from X-ray crystallography with a resolution
of 1.8 Å. Calculations combined with PCM are somewhat slower than those in a
vacuum because linear equations must be solved to obtain ASCs. Nevertheless, the
observed scaling (FMO2-DFTB3-D/PCM〈1〉 energy + gradient) wasO

(
N 1.39

)
, and

the performance is still useful for medium to large systems.
Although adding solvent effects circumvented the problem, a more promising

and fundamental solution is to apply long-range corrections to DFTB. Ref. [35]
showed that theHOMO–LUMOgapproblemdisappearedwhen long-range corrected
functionals were employed in DFT calculations. Ref. [28] demonstrated that LC-
DFTB allows gas phase calculations of the proteins for which the conventional DFTB
failed because of the underestimation of HOMO–LUMO gap, which originates from
the self-interaction error. Preliminary results demonstrate that FMO-LC-DFTB also
does not suffer from this problem.

4.3 Chemoinformatics

Apart from FMO-DFTB, DFTB has been often applied to biosystems; detailed expo-
sitions may be found in published reviews [4, 5, 10, 51]. Considering that the devel-
opment of DFTB2 and DFTB3 has been motivated by describing proper interac-
tions within charged systems, DFTB should be a promising tool for biosystems.
Moreover, the fast execution of DFTB calculations should be an appealing fea-
ture in the area of chemoinformatics, as the structures and properties of thousands
of molecules can quickly be calculated with DFTB. One important development in
applyingDFTB to biosystems is the combination ofDFTBwithmolecularmechanics
(MM), DFTB/MM.An early implementation has been realized in 2001 [52] by Cui et
al. DFTB/MMwas applied to ATP hydrolysis [53, 54] and cytochrom c oxidase [55].
It was also recently applied to evaluate the binding interactions between proteins and
ligands, including binding interactions between drugs and H1N1 neutraminidase-1
[56] and docking simulations of zinc-bound ligands [57]. A more practical appli-
cation of DFTB to chemoinformatics may be found in a study by Qu et al. [58].
Here, DFTB was used to optimize more than 900 molecules to train machine learn-
ing models. The trained data could then predict bond dissociation energies of 100
molecules.
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Although DFTB is much faster than other ab initio methods, its cubic-scaling
computational cost has been a major limitation in applying DFTB to larger and/or
a large number of systems. Using the QM/MM approach is very useful, especially
when focusing on the reaction center of the protein. However, when treating the
whole system on equal footing, e.g., to investigate interactions between a protein
and ligands, full DFTB or QM/MM approaches may not be the best choice. Further-
more, the combination with FMO is beneficial for the use of pair interaction energy
decomposition analysis (PIEDA). Details of PIEDA are described somewhere in this
book. Recently, FMO-DFTB was also combined with PIEDA [59]. In this context,
in spite of the aforementioned challenge of orbital energies, FMO-DFTB combined
with PCM is seemingly a promising tool to investigate interactions between pro-
teins and ligands. FMO-DFTB was applied to the assessment of receptor-ligand
interactions and total interaction energies [60]. Here, the quantities computed with
FMO-DFTB were validated by comparison with experimental data and FMO-MP2
results; good correlation was found between total interaction energies computed with
FMO-DFTB and FMO-MP2 (R2 > 0.9), while the computational cost was reduced
by 1000 times.

A similar correlation study was presented by Ref. [35]. Comparing the solvent
screening and pair interactions obtained with FMO-DFTB and FMO-DFT (LC-BOP
and M11 functionals) showed that the correlations of these parameters were very
high with R2 values greater than 0.97, while the computational cost was reduced by
4,840 times for the 1IO5 protein (1,961 atoms). These pilot demonstrations indicate
that FMO-DFTB is potentially very useful in the process of drug discovery in which
a number of interacting energies between proteins and ligands must be evaluated
with a sufficiently accurate method.

4.4 Vibrational Frequency Analysis

Vibrational frequency analysis was applied using FMO-DFTB in two studies [36,
37]. In both, non-resonanceRaman spectrawere also simulated. Polarizability deriva-
tiveswere evaluated by the numerical differentiation of gradients under electric fields.
Nakata et al. simulated infrared spectra of the epoxy amine oligomers in a system of
more than 1000 atoms and compared them with experimental data [36]. Three char-
acteristic peaks were experimentally observed: 1183, 1260, and 3450cm−1 resulting
from CH3 groups in isopropylidene, benzene rings, and hydroxyl groups, respec-
tively. The simulation used one chain of epoxy amine (279 atoms) to show that
FMO2-DFTB3 predicted a shift of approximately 150cm−1, but the use of four
chains predicted a peak at 3431cm−1. Systems of this size are not easy to evaluate
even with the conventional DFTB, as the scaling of Hessian is formally O

(
N 4

)
.

Another study applied FMO3-DFTB to three isomers of polyalanine and solvated
sodium cation [37]. The maximum frequency deviation in FMO3-DFTB3 was less
than 10cm−1, comparedwith the corresponding frequency computedwith full DFTB
calculations. Comparison of infrared and Raman spectra of the solvated sodium
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cation showed that FMO3-DFTB had a higher accuracy than FMO2 by a factor of
2.5.

4.5 Charge Transport Materials

DFTB has also been applied to describe the electron transfer mechanism of organic
molecules and conductors, DNA, and peptides [61–66]. This approach, called “frag-
ment orbital”-DFTB, is similar to the FMOmethod. It begins with dividing a system
into fragments, obtainingHOMOs of each fragment, and then constructing the charge
transfer (coupling) integrals by the standard AO–MO transformation:

HI J =
∑

μ∈I

∑

ν∈J

C I
μiC

J
ν j

〈
φμ

∣∣
∣Ĥ

∣∣
∣φν

〉
, (45)

where I and J are the index of fragments and i ∈ I and j ∈ J represent the index
of HOMOs. On-site energies are the orbital level of the HOMO.

Conceptually, there is a large overlap between the fragment orbital and FMO
approaches. FMO uses more well-defined fragments with the help of hybrid orbital
projection, allowing the application of it to covalently bonded systems to be straight-
forward and robust. A similar analysis using the linear combination of fragment
molecular orbital (LCMO) approach has been studied previously [67, 68]. Recently,
Kitoh-Nishioka et al. applied the LCMO approach to FMO-DFTB and performed
detailed analysis of the charge transport properties of covalent organic frameworks
by combining classical MD, FMO-DFTB, and carrier dynamics simulations [69].
In estimating charge transfer integrals, the standard DFTB parameters were rather
“confined” and thus not suitable for evaluation, so unconfined parameters called
“8–∞” were employed, similar to previous studies [65, 66]. The confinement of
the standard parameters originates from the tight-binding DFTB characters. In spite
of the use of unconfined parameters, DFTB still underestimated transfer integrals,
and scaling was essential to reproduce LC-BLYP results. Nevertheless, the combi-
nation of FMO-DFTB with LCMO should be an important tool for more practical
applications using larger systems.

5 Conclusion and Outlook

FMO-DFTB is currently the fastest quantum chemical method among the available
FMO-electronic structure method combinations. The scaling of FMO2-DFTB3 is at
presentO

(
N 1.45

)
for evaluating the energy gradient andO

(
N 2.00

)
for evaluating the

Hessian. The most favorable scaling was achieved with FMO2-DFTB2, O
(
N 1.16

)
.

For a water cluster consisting of 18,432 atoms, a single point gradient calculation
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with FMO2-DFTB3 finished in 129.0 0 s with only one CPU core. This development
has enabled geometry optimizations and shortMDsimulations for systems consisting
of more than one million atoms and vibrational frequency calculations for those of
ten thousand atoms. Typical applications are soft matter and polymers including
biosystems. A recent development employing AFOs further widened the range of
application into the range of materials.

In spite of these advancements, there is still large room for development. Recent
developments are still restricted to closed-shell single electron structure and FMO-
DFTB still cannot be applied to systemswith radicals. FMO-DFTBcan be potentially
combinedwith linear-response time-dependentDFTB,which has already been devel-
oped in GAMESS-US. Extensions using periodic boundary conditions are of great
importance for bulk systems.

The limitations of DFTB caused by the self-interaction inherent in DFT pose
serious problems. The underestimation of HOMO–LUMO gaps is attributed to this
drawback. Although this problem was circumvented by adding solvent screening
effects, amore pragmatic solution lies in further development of long-range corrected
DFTB (LC-DFTB). Developments of FMO around LC-DFTB in GAMESS-US are
currently in progress [70]. Another limitation comes from the restriction of available
parameters. However, qualified parameters are expected to be routinely generated
with machine learning or artificial intelligence technologies in the near future.
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Self-Consistent Treatment of Solvation
Structure with Electronic Structure
Based on 3D-RISM Theory

Norio Yoshida

Abstract The solvent effects on the electronic structure of biomolecules are essen-
tial for considering their functions and structures. The three-dimensional reference
interaction site model (3D-RISM) theory is a statistical mechanics integral equation
theory ofmolecular liquids. It is suitable for describing the solvation structure of large
molecules, i.e., the main target of the fragment molecular orbital (FMO) approach.
The hybrid method of FMO and 3D-RISM, referred to as FMO/3D-RISM, enables
us to investigate the electronic structure of large molecules in solution as well as
solvation thermodynamics at the molecular level. This chapter describes the theo-
retical background of the 3D-RISM theory, the formalism of the hybrid method of
3D-RISM and quantum chemical theory including the FMO, and the applications of
these methods.

Keywords 3D-RISM · Integral equation theory of liquids · Solvation

1 Introduction

Living organisms maintain their lives by continuing the chain of chemical processes
including chemical reactions, molecular recognition, and self-organization [1]. Since
all such processes take place in solution, any theoretical developments regarding
phenomena in living systems should adequately include solvent effects.

In thefield ofmolecular electronic structure theory,methods describing the solvent
effect are roughly classified into three types [2]. The most straightforward way to
handle the solvent environment is to place solvent molecules explicitly. Such an
approach is called the “explicit solvent model.” For example, in studies of biomolec-
ular systems, solvent molecules are treated by molecular mechanics (MM) to save
computational cost, while solute molecules are (partially) described by quantum
mechanics (QM). The position and the orientation of the solvent molecules are
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usually handled by the molecular dynamics (MD) or Monte Carlo (MC) simula-
tions. These methods are referred to as QM/MM-MD or QM/MM-MC, respectively
[3–6]. A hybrid method of the fragment molecular orbital (FMO) and the QM/MM
method is introduced in another chapter. Although these methods have been success-
fully applied to various problems in biomolecular systems, they do have a few weak-
nesses. First, the number of solvent molecules that can be handled in the simulation is
limited. Second, the methods are unable to fully sample the configurational space of
solvent molecules. This is because solvent molecules have large degrees of freedom
and span a large configurational space. This second weakness is a serious problem,
especially when dealing with solutions containing dilute components, such as ions.

A second approach for considering solvent effects on the electronic structure of
solvated molecules is based on the “implicit solvent model,” including the gener-
alized Born (GB) model, Poisson–Boltzmann (PB) model, polarizable continuum
model (PCM), conductor-like screening model (COSMO), solvent model based on
density (SMD), and their extensions [7–9]. These methods are most widely used
in the field of quantum chemistry because of high computational efficiency (low
computational cost and reasonable accuracy). In the implicit solvent models, the
solvent environment is regarded as a continuum medium, characterized by a dielec-
tric constant. Some of these methods have been implemented on FMO packages
[10–12]. However, there are obvious limitations that arise from the essential nature
of the model, i.e., “macroscopic” limitations. Therefore, solute–solvent interactions
that require molecular descriptions, such as hydrogen bonds, cannot be described by
the implicit solvent model.

Another approach for considering solvent effects is based on the statistical
mechanical theory of molecular liquids based on the Ornstein–Zernike (OZ) integral
equation theory, such as the molecular OZ (MOZ) equation, the molecular density
functional theory, the reference interaction site model (RISM) theory, and the three-
dimensional (3D)RISMtheory [13–27]. Themolecular theories basedon theOZ inte-
gral equation allow us to consider themicroscopic solute–solvent interactions such as
hydrogen bonding and solvent distributions with a complete ensemble average in the
thermodynamic limit. Although several types of formalization to handle the molec-
ular nature in the OZ theory have been proposed, the 3D-RISM theory is one of the
most successful that has been applied to biomolecules [28–30]. The 3D-RISM theory
has been applied to various biophysical and biochemical problems, such asmolecular
recognition, channel transportation, and chemical reactions. In the 3D-RISM theory,
the solvent distribution is expressed by the spatial distribution function (SDF) of
interaction sites of solvent molecules at the grid points in the solvation box. The
SDF is especially suited to complex molecular systems, which are the main target
of the FMO approach. In addition, because the SDFs are obtained through statistical
mechanics of molecular liquids, no difficulties arise from the explicit and implicit
solvent models.

The hybrid methods of the quantum chemical theory and the integral equation
theory of liquids allow us to treat the solvent effects on the electronic structure of
solvated molecules. In pioneering works by Ten-no, Hirata, and Kato, the hybrid
method of RISM theory and the ab initio molecular orbital (MO) method was
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proposed, which is called the RISM self-consistent field (RISM-SCF) method [31,
32]. Following them,Sato et al. introduced the variational condition of theRISM-SCF
method coupled with the multi-configurational self-consistent field (SCF) method,
and derived its analytical free energy gradient formula [33]. QMhybridmethodswith
other integral equation theories have also been proposed, such asMOZ-SCF and 3D-
RISM-SCF [22, 34–39]. These hybridmethods have been applied to various chemical
physics problems in solution. They are particularly effective for investigating reac-
tions in mixed solvent and electrolyte solution, because the integral equation theory
can easily handle such solvent environments, unlike the implicit and explicit solvent
models [40–46].

Consequently, the 3D-RISM method is a good candidate to consider the solvent
effect in the theoretical framework of the FMO. A hybrid method of the FMO and
3D-RISM, called FMO/3D-RISM, allows us to investigate thewhole electronic struc-
ture of a macromolecule and the solvent effects on it. Early work on the FMO/3D-
RISMmethodwas performed by Takami et al. [47] They applied the FMO/3D-RISM
method to a grid computing system. The computational bottleneck of the hybrid of
QMand3D-RISM theory is an evaluation of the electrostatic potential on each rectan-
gular solvent grid point (there are usually 1283–5123 points). Takami et al. employed
theMulliken charge to save computational cost. However, it is widely known that the
electrostatic potential made from the Mulliken charge is problematic. Later, Yoshida
proposed an efficient implementation technique for FMO/3D-RISM based on the
variational condition as well as its analytical free energy gradient formula [48]. A
space decomposition scheme was introduced to evaluate the electrostatic potential,
thereby achieving high computational efficiency.

In this chapter, the formalism of the 3D-RISM theory, the hybrid method of 3D-
RISM-SCF and FMO/3D-RISM, is presented. The computational schemes of these
methods are also reviewed.

2 The 3D-RISM Theory

2.1 Formalism of the 3D-RISM Theory

The formalisms of 3D-RISM and its quantum chemical hybrid methods have been
reviewed previously—here we present the formalisms according to the reviews [29,
49]. The 3D-RISM theory is derived from the MOZ theory, which is an extension
of the OZ integral equation theory of molecular liquids. These theories describe the
structure and thermodynamics of solvation based on the pair correlation function or
pair density distribution function (DF).

We begin by introducing the pair density DF of molecules, which is defined as:

ρ(r1, r2, Ω1, Ω2) =
〈∑

i

∑
j �=i

δ(r1 − r i )δ
(
r2 − r j

)
δ(Ω1 − Ω i )δ

(
Ω2 − Ω j

)〉
. (1)
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where the summation of i and j run over all particles. When there is no external
field, the translational invariance of the pair density DF can be applied and the pair
DF is derived as:

g(r12,�1,�2) =
(

�
ρ

)2
ρ(r12,�1,�2), (2)

where ρ is average number density of solvent, r12 = r2 − r1 and � ≡ ∫
d�. The

MOZ equation is expressed using the function:

h(r12,�1,�2) = c(r12,�1,�2) + ρ

�

∫
c(r13,�1,�3)h(r32,�3,�2)d r3d�3,

(3)

where h = g+1 is the total correlation function and c is the direct correlation function
that is defined through the MOZ equation. The pair correlation functions (PCFs), h
and c, are the functions of the orientations of molecules and vector connecting two
molecules. It is computationally difficult to handle the functions due to the large
degrees of freedom. One possible way to reduce the variables in the PCF would be
to introduce the interaction site model. The interaction site model can be introduced
by taking the orientational averaging of PCF centered at a specific site:

hγ (r) = 1
�

∫
h(r12,�1,�2)δ

(
r12 + l2γ (�2) − r

)
d r2d�2, (4)

where l2γ is the vector connecting the center of molecule 2 and interaction site γ . In
contrast, the direct correlation function is defined by simply applying a superposition
approximation:

c(r12,�1,�2) = ∑
γ cγ (r). (5)

By using the three-dimensional correlation functions (3D-DFs) given in Eqs. (4)
and (5), the 3D-RISM equation can be derived from the MOZ equation:

hγ (r) = ∑
γ

′
[
cγ

′
(
r

′) ∗ χγ
′
γ

(∣∣r − r
′ ∣∣)], (6)

where ∗ denotes the convolution integral and χγ
′
γ is the solvent susceptibility,

obtained by solving the RISM equation for a bulk solvent system prior to the 3D-
RISM calculation. The RISM equation for a bulk system can be obtained by intro-
ducing the site–site correlation functions, by applying the interaction site model for
both molecules. As the 3D-RISM equation includes two unknown functions, h and c,
we need another relation between them to close the equation. The equation for closing
the 3D-RISM equation is called a “closure relation.” Several closure relations have
been proposed, such as a hypernetted chain (HNC), mean spherical approximation
(MSA), and Kovalenko–Hirata (KH) closures. To date, the KH closure is the most
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popular for the 3D-RISMbecause it is numerically stable and it gives thermodynamic
properties with reasonable accuracy [22]. The KH closure is given by:

gγ (r) =
{
exp

[
dγ (r)

]
dγ (r) < 0

1 + dγ (r) dγ (r) ≥ 0,
(7)

dγ (r) = − 1
kBT

uγ (r) + hγ (r) − cγ (r), (8)

where uγ (r) is a solute–solvent interaction potential at position r . The 3D-RISM
theory coupled with the KH closure is called the 3D-RISM-KH theory. The solvation
free energy (SFE), or excess chemical potential, is given by:

�μ = ρ
∑

γ

∫ 1
0dλ

∫
uγ (r)gλ

γ (r)d r, (9)

where the integration with respect to λ is called the thermodyamic integration, which
corresponds to the solvation process of solute molecules. The integration of λ can
be performed analytically, to give:

�μ = ρ

β

∑
γ

∫ {−cγ (r) + 1
2hγ (r)2


(−hγ (r)
) − 1

2hγ (r)cγ (r)
}
d r, (10)

where 
 is the Heaviside step function. The existence of the analytical expression
of the SFE is a great advantage of the 3D-RISM-KH theory over the explicit solvent
models. Thanks to this expression, one can readily obtain the SFE, once the 3D-
RISM-KH calculation is completed.

2.2 Computational Scheme of the 3D-RISM Theory

Scheme 1 shows the computational procedure followed to solve the 3D-RISM-KH
theory. Before a calculation, the solvent susceptibility and the solute–solvent inter-
action potential should be obtained. The solvent susceptibility is obtained from the
solvent RISM-KH equation for a bulk solvent system. The interaction potential is
usually defined as the sum of Lennard–Jones (LJ) potentials andCoulomb interaction
between solute and solvent site:

uγ (r) = ∑
α4εαγ

[(
σαγ

|r−rα |
)12 −

(
σαγ

|r−rα |
)6] + ∑

α

qαqγ

|r−rα | , (11)

where the potential parameters, σ , ε, and q denote the LJ diameter, energy parameter,
and point charge, respectively. These parameters are usually taken from the MD
package parameter set, such as Amber force field.
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Scheme 1 Computational
flow chart for 3D-RISM-KH

To perform the 3D-RISM-KH iterations, it is useful to define the indirect
correlation function as:

ηγ (r) = hγ (r) − cγ (r). (12)

Using this function, the KH closure can be rewritten as follows.

cγ (r) =
{
exp

[
dγ (r)

] − ηγ (r) − 1 dγ (r) < 0
dγ (r) − ηγ (r) dγ (r) ≥ 0

(13)

dγ (r) = − 1
kBT

uγ (r) + ηγ (r) (14)

Therefore, the KH closure gives cγ by substitution of ηγ . Because the 3D-RISM
equation (Eq. 6) includes the convolution integral, the Fourier transform of the
correlation functions is effective for high-speed computing, as given by:
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c
∧

γ (k) = ∫
cγ (r)exp(ikr)d r. (15)

Using this expression, the 3D-RISM equation in k-space can be written as:

η
∧

γ (k) = ∑
γ

′ c
∧

γ
′ (k)χ

∧

γ
′
γ (|k|) − c

∧

γ (k), (16)

where χ
∧

γ
′
γ is a Fourier transform of the solvent susceptibility. Applying the inverse

Fourier transform to the indirect correlation function, we obtain the updated indirect
correlation function through the 3D-RISM-KH cycle.

The updated indirect correlation function is used as an input of the next 3D-RISM-
KH cycle. However, it is usually not a good estimate. To improve the estimation of
the indirect correlation function for the next step, we made use of the modified direct
inversion in the iterative space (MDIIS) method [50].

The 3D-RISM-KHcycle is repeated until the indirect correlation functions remain
unchanged. Finally, one can obtain the total, direct, and indirect correlation functions,
as well as the DF. From these correlation functions, the solvation thermodynamic
properties such as SFE, partial molar volume, and internal energy can be determined.

3 Hybrid of 3D-RISM and Electronic Structure Theories

3.1 Basics of the 3D-RISM-SCF Method

The hybrid method of the electronic structure and 3D-RISM theories, called KS-
DFT/3D-RISMor 3D-RISM-SCF, was proposed byKovalenko, Sato, andHirata [22,
37]. (Hereafter, for simplicity, we refer to the method as 3D-RISM-SCF.) Formalism
of the 3D-RISM-SCF theory is derived in a similar way to the RISM-SCF/multi-
configurational SCF method by Sato et al. [33].

In the 3D-RISM-SCF formalism, the Gibbs energy of the system is defined as
follows.

G = Esolute + �μ, (17)

where Esolute is the electronic energy of a solute molecule, evaluated by the ab initio
MO method, or KS-DFT:

Esolute = 〈�
∣∣∣H∧0

∣∣∣�〉, (18)

where H
∧

0 and � denote the electronic Hamiltonian of an isolated solute molecule
and the wave function of a solvated solute molecule. The Gibbs energy of the system
should contain the kinetic free energy term; however, in this chapter, this term
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is ignored for simplicity. The solute wave functions are obtained by solving the
Schrödinger equation with the following Hamiltonian.

H
∧

solv = H
∧

0 + V
∧

, (19)

where V
∧

is the solvent–electron interaction term given by:

V
∧

= ρ
∑

γ

∫
gγ (r)

(
qγ|r−r ′ |

)
d r, (20)

where qγ is a point charge on the solvent site γ , and r ′ is the coordinate of an electron.
The free energy of solvation�μ is obtained by solving the 3D-RISM-KHequation

under the interaction potential caused by the solute molecule. The solute–solvent
interaction potential is given by:

uγ (r) = ∑
α4εαγ

[(
σαγ

|r−rα |
)12 −

(
σαγ

|r−rα |
)6] +U es

γ (r), (21)

where α denotes a solute atom and

U es
γ (r) = − ∫ qγ

∣∣∣�(
r
′)∣∣∣2∣∣∣r−r ′ ∣∣∣ d r

′ + ∑
α

Zαqγ

|r−rα | , (22)

where σ and ε are the LJ parameters (according to their usual meanings). Alterna-
tively, the restrained electrostatic potential (RESP) charge qα for a solute atom is
also available for the 3D-RISM-SCF formalism:

U es
γ (r) = ∑

α

qγ qα

|r−rα | + ∑
α

Zαqγ

|r−rα | . (23)

When using the RESP charge, the corresponding solvent–electron interaction in
the solvated Hamiltonian is given by:

V
∧

= ρ
∑

γ

∑
α q

∧

α

∫
gγ (r)

(
qγ

|r−rα |
)
d r, (24)

where q
∧

α is a partial charge operator to reproduce the RESP charge on atom α.

3.2 Variational Condition of 3D-RISM-SCF

To derive the variational condition of 3D-RISM-SCF, we begin by defining the
Lagrange functions. The Gibbs energy G, given in Eq. (17), can be regarded as a
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functional of the correlation functions, i.e., hγ , cγ , and ηγ , as well as the one-particle
orbitals of the solute wave functions. Imposing constraints on the orthonormality of
the one-particle orbital, we define the Lagrange function:

L = G − ∑
μν εμν

(
Sμν − δμν

)
, (25)

where Sμν = 〈φμ|φν〉 and φμ is a molecular orbital. The εμν is a Lagrange multiplier.
Variation with respect to the correlation functions and MOs yields:

δL = − ρkBT
∑

γ

∫ d r
[{[

exp

(
− 1

kBT
uγ (r) + ηγ (r)

)
− 1 − hγ (r)

]

(−hγ (r))

+
[
− 1

kBT
uγ (r) + ηγ (r) − hγ (r)

]


(−hγ (r)

)}
δηγ (r)

+{−ηγ (r) + hγ (r) − cγ (r)
}
δhγ (r)

]
− kBT

(2π)3

∑
γ

∫ dk

⎧⎨
⎩−ρĥγ (k) +

∑
γ ′

ĉγ ′(k)χ̂γ ′γ (|k|)
⎫⎬
⎭δĉγ (k)

+ 2
∑
μν

Pμν

〈
δφμ

∣∣∣∣∣∣ĥ +
∑
ξζ

ĝξζ + V̂ − εμν

∣∣∣∣∣∣φν

〉
, (26)

where h
∧

and g
∧

ξζ denote the one- and two-electron operators, respectively. Each term
on the right-hand side of Eq. (26) defines the KH closure, the indirect correlation
function, the k-space 3D-RISM equation, and the solvated Fock matrix, respec-
tively. Based on the variational condition, one can obtain the analytical Gibbs energy
gradient with respect to the atomic coordinates of a solute molecule [38]:

∂G
∂Rα

= ∂Esolute
∂Rα

+ ∂�μ

∂Rα
= ∂Esolute

∂Rα
+ ∑

γ ρ
∫
d r

[(
∂uγ (r;Rα)

∂Rα

)
gγ (r)

]
. (27)

The analytical free energy expression allows one to perform the geometry
optimization of solvated molecules efficiently.

3.3 Computational Scheme of 3D-RISM-SCF

By solving the 3D-RISM and Schrödinger equations iteratively, the electronic struc-
ture of solute molecules and solvation structure can be obtained simultaneously. In
Scheme 2, the computational flow chart for 3D-RISM-SCF is shown. Before calcu-
lation, the solvent susceptibility and the potential parameters should be prepared.
The 3D-RISM-SCF iteration begins with electronic structure calculations of a solute
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Scheme 2 Computational
flow chart for 3D-RISM-SCF

molecule at the isolated state. From the obtained wave function of solute molecule,
the solute–solvent electrostatic potential is calculated using Eq. (22). Under this
potential, the 3D-RISM-KH is solved in an iterative manner, as explained in the
Sect. (3.2). From the 3D-RISM-KH results, one can obtain the solvation free energy
and the distribution functions. By substituting the distribution function into Eq. (24),
the term of the solvated Hamiltonian is computed. One then proceeds to the next step
of the 3D-RISM-SCF iterative calculation. The 3D-RISM-SCF cycle is repeated until
the total Gibbs energy remains unchanged.

4 The FMO/3D-RISMMethod

In this section, the formalism of the FMO/3D-RISM method, the variational condi-
tion, and the computational scheme are reviewed (extracted from the original
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paper [48] with copyright permission). An efficient implementation method for
FMO/3D-RISM is also reviewed.

4.1 Formalism of the FMO/3D-RISM Method

Similar to the 3D-RISM-SCF method, the quantum mechanical solute molecules
immersed in solution in infinite dilution, where the solute electronic structure is
computed by FMO with solvated fragment Hamiltonian.

The solvated fragment (monomer) Hamiltonian in FMO/3D-RISM formalism is
given by:

H solv
I =

∑nI

i

{
−1

2
∇2
i −

∑allatoms

s

Zs

|r i − rs | +
∑N

J �=I

∫
ρJ
(
r

′)∣∣r i − r ′ ∣∣d r ′ + V solv(r i )

}

+
∑nI

i> j

1∣∣r i − r j

∣∣ , (28)

where nI is the number of electrons in fragment I , ρJ (r) is the electron density of
fragment J at position r , and N is the total number of fragments. V solv(r i ), is the
electrostatic potential at r i originate from the solvent molecule (it did not appear in
the original FMO method):

V solv(r i ) = −∑Nv

γ ρ
∫ qγ

|r i−r|gγ (r)d r, (29)

where qγ is the point charge at the solvent interaction site γ .
By analogy with the fragment monomer, the solvated fragment pair Hamiltonian

is given by

H solv
I J =

nI+nJ∑
i

⎧⎨
⎩−1

2
∇2
i −

all atoms∑
s

Zs

|r i − rs | +
N∑

K �=I,J

∫ ρK
(
r ′)∣∣r i − r ′∣∣d r ′ +V solv(r i )

⎫⎬
⎭

+
nI+nJ∑
i> j

1∣∣r i − r j

∣∣ (30)

The wave functions of solvated fragment monomer,�solv
I , and pair, �solv

I J , are
obtained by solving the Schrödinger equations given by:

H solv
I �solv

I = (
E isolate

I + V solv
I

)
�solv

I (31)

and
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H solv
I J �solv

I J = (
E isolate

I J + V solv
I J

)
�solv

I J , (32)

where V solv
I and V solv

I J are the solute–solvent electronic interaction energies for the
monomer and the dimer, respectively.

The total Gibbs energy G of the system is defined as follows.

G = E solv + �μ, (33)

where E solv is defined as:

Esolv =
∑all atoms

s>t

Zs Zt
|rs − r t | +

∑N

I
E isolate
I +

∑N

I>J

(
E isolate
I J − E isolate

I − E isolate
J

)

+
∑N

I>J>K

{(
E isolate
I J K − E isolate

I − E isolate
J − E isolate

K

)
−
(
E isolate
I J − E isolate

I − E isolate
J

)
−
(
E isolate
J K − E isolate

J − E isolate
K

)
−
(
E isolate
I K − E isolate

I − E isolate
K

)}
+ · · · , (34)

and �μ is given by Eq. (9).
The solvent distribution function, gγ (r), in Eq. (29) is computed by solving the

3D-RISM-KH equation under the solute–solvent interaction potential:

uγ (r) = ∑
α4εαγ

[(
σαγ

|r−rα |
)12 −

(
σαγ

|r−rα |
)6] +U es

γ (r), (35)

U es
γ (r) = −∑N

I

∫ qγ

∣∣∣�I

(
r
′)∣∣∣2∣∣∣r−r ′ ∣∣∣ d r

′ + ∑
α

Zαqγ

|r−rα | , (36)

where ε and σ are LJ parameters with usual meanings.

4.2 Variational Condition of the FMO/3D-RISM Method

In this subsection, the variational formalization of the FMO/3D-RISM method and
the analytical free energy gradient is briefly explained. In this formalism, the many-
body energy terms are assumed to be perturbations from themany-body correlations.
From this assumption, Eq. (33) is rewritten as follows.

G = E solv
mono + �μ + E solv

perturb, (37)

where E solv
mono is the sum of fragment monomer energy whereas E solv

perturb is a higher
order perturbation term caused by many-body effects:
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E solv
mono = ∑allatoms

s>t
Zs Zt

|rs−r t | + ∑N
I E

isolate
I , (38)

Esolv
perturb =

∑N

I>J

(
E isolate
I J − E isolate

I − E isolate
J

)
+
∑N

I>J>K

{(
E isolate
I J K − E isolate

I − E isolate
J − E isolate

K

)
−
(
E isolate
I J − E isolate

I − E isolate
J

)
−
(
E isolate
J K − E isolate

J − E isolate
K

)
−
(
E isolate
I K − E isolate

I − E isolate
K

)}
+ · · · . (39)

TheLagrange function of the systemcanbe derived by regarding the (unperturbed)
Gibbs energy, G(0), as a functional of the correlation functions and the one-particle
orbital of the solvated fragment wave functions [22, 33, 37]:

L = G(0) − ∑N
I

∑
μνε

μν

I

(
Sμν

I − δμν

)
, (40)

where Sμν

I = 〈φμ

I |φν
I 〉 is an overlap integral of a molecular orbital of �solv

I , and ε
μν

I
is a Lagrange multiplier of monomer I . The variations with respect to the correlation
functions and molecular orbitals yields:

δL = − ρkBT
∑

γ

∫
d r

[{[
exp

(
− 1

kBT
uγ (r) + ηγ (r)

)
− 1 − hγ (r)

]


(−hγ (r)

)

+
[
− 1

kBT
uγ (r) + ηγ (r) − hγ (r)

]}
δηγ (r)

+{−ηγ (r) + hγ (r) − cγ (r)
}
δhγ (r)

]
− kBT

(2π)3

∑
γ

∫ dk

⎧⎨
⎩−ρĥγ (k) +

∑
γ ′

ĉγ ′(k)χ̂γ ′γ (|k|)
⎫⎬
⎭δĉγ (k)

+ 2
N∑
I

∑
μν

Pμν

〈
δφ

μ

I

∣∣∣∣∣∣ĥ +
∑
ξζ

ĝξζ + V̂ − ε
μν

I

∣∣∣∣∣∣φν
I

〉
. (41)

where we assumed to employ the KH closure. In analogy with the 3D-RISM-SCF,
the KH closure, indirect correlation function, η, 3D-RISM equation in reciprocal
space, and solvated Fock matrix for the fragment monomer are derived from this
variational condition.

Based on this variational condition, the analytical gradient of unperturbed Gibbs
energy, G(0), with respect to the solute atomic coordinates Rα is obtained as:

∂G(0)

∂Rα
= ∂E solv

mono
∂Rα

+ ∂�μ

∂Rα
= ∂E solv

mono
∂Rα

+ ∑
γ ρ

∫
d r

[(
∂uγ (r;Rα)

∂Rα

)
gγ (r)

]
. (42)

Although, in the formalism stated above, the Hartree–Fock method is employed
for the electronic structure calculation for simplicity, more sophisticated theories,
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Scheme 3 Computational
flow chart for
FMO/3D-RISM. (reprinted
with permission from Ref.
[48]. Copyright 2014 AIP.)

such as the multi-configurational SCF or KS-DFT theories can also be employed
instead of the Hartree–Fock method.

The computational scheme of the FMO/3D-RISMmethod is shown in Scheme 3.
As shown in the scheme, the electronic structure of solute fragment monomer and
the solvent distribution are determined in self-consistent manner, and the inter-
fragments interaction energy terms are added to the total Gibbs energy after fragment
monomer/3D-RISM iterations. The details of the computational scheme can be found
in the original paper [48].

4.3 Efficient Computation of the Electrostatic Potential
in the FMO/3D-RISM Method

Themost time-consuming steps in the FMO/3D-RISMcomputation is the ESP calcu-
lations and the construction of the solvated fragment monomer Hamiltonian during
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Fig. 1 Schematic of the
decomposed regions used in
the electrostatic potential
calculations. (reprinted with
permission from Ref. [48].
Copyright 2014 AIP.)

the fragment monomer iteration, because those steps require the three-center one-
electron integrals for all the solvent grids. (The number of the solvent grids is typically
1283 ~ 2563.) Therefore, the method to decrease the computational cost of these parts
is required. For this purpose, we introduced a space decomposing technique similar
to that used previously for ESP calculation [39].

In this technique, the 3D-RISM solvent grid space is decomposed into three
regions as shown in Fig. 1.

Region I is the inside of the repulsive core of the solute atoms, where the solute–
solvent interaction potential becomes positively infinite. Therefore, the possibility
of existence of solvent molecule in the region I is set to 0;

gγ (r) = 0. (43)

Thismeans theESP calculation is not required in this region. This region is defined
to be within the half of the LJ radius.

The 3D-RISM solvent grid points far from the solute molecules are defined as
Region III. Because these points sufficiently far from the solute molecules, the multi-
pole expansion of the solute charge density should be effective. The Cartesian tensor
expression of the l-th order multipole moment of fragment I is given as follows.
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Q(l)
I = − (−1)l

l!
∫

|r − R I |2l+1T (l)(r − R I )|�I (r)|2d r

+
∑NI

α
Zα|rα − R I |2l+1T (l)(rα − R I ), (44)

where R I is the center of the atomic charge of fragment I, NI is number of atoms in
fragment I , and T denotes the following:

T (l)(r) = ∇l
(
1
r

)
. (45)

Using Q(l)
I , the ESPs acting on the solvent grids in Region III is approximately

given by:

V (r) =
N∑
I

Nl∑
l

(−1)l

(2l − 1)!! Q
(l)
I ⊗ T (l)(r), (46)

where the symbol⊗ indicates a full contraction of the two rank-l tensors [51] and Nl

defines the truncation limit of the multipole expansion. In this study, we truncated
the multipole expansion at Nl = 3.

Region II is middle of the region I and region III. In this region, the charge
density of the solute molecule must be described precisely based on the wave func-
tion, because the electrostatic potential by solute molecule is highly inhomogeneous.
Therefore, the ESP is given by exact form:

V (r) = −∑N
I

∫ ∣∣∣�solv
I

(
r
′)∣∣∣2

|r−r ′ | d r
′ + ∑allatoms

α
Zα

|r−rα | . (47)

In summary, the solute–solvent electrostatic interaction potential and the electro-
static potential term in the solvated Hamiltonian V solv are given by

U es
γ (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for (I)

−
N∑
I

∫ qγ |�(r ′)|2
|r−r ′| d r ′ + ∑

α

Zαqγ

|r−rα | for (II)

qγ

N∑
I

Nl∑
l

(−1)l

(2l−1)!! Q
(l)
I ⊗ T (l)(r) for (III)

(48)

V solv(r i ) = −
Nv∑
γ

ρ ∫
region(II)

qγ

|r i − r|gγ (r)d r

−
Nv∑
γ

ρ ∫
region(III)

qγ

|r − R I |gγ (r)d r
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× (−1)l

l!
Nl∑
l

(−1)l

(2l − 1)!!
(|r − R I |2l+1T (l)(r − R I )

) ⊗ T (l)(r) (49)

This technique dramatically reduces computational cost at the expense of a
detailed description of the electronic distribution of solute molecule at region III.

4.4 Assessment of the FMO/3D-RISM Method

In this subsection, the solvent effects on several systems were examined for the sake
of an assessment of the FMO/3D-RISM method. Details of the computation are
found in the original paper [48].

The systems for the assessment are summarized in Fig. 2 and Table 1. In the exam
37 system, each water molecule is treated as a different fragment whereas the every
single amino acid are treated as a fragment monomer in the 1PLX, 1L2Y, and 2XFD.

The extended simple point charge (SPC/E) parameter set was used for water at
ambient conditions (i.e., a temperature of 298 K and density of 1.0 g cm−3) [52,
53]. The same water LJ parameters were used for solute water in the exam 37. The
Amber99 parameter set was employed for all the solute amino acids [53].

Fig. 2 Structures of the target molecules. a Water trimer taken from exam37.inp in the GAMESS
package, bmethionine-enkephalin (PDB: 1PLX), c Trp-cage (PDB: 1L2Y), and d cellulose binding
module VCBM60 (PDB: 2XFD). (reprinted with permission from Ref. [48]. Copyright 2014 AIP.)

Table 1 Structural and computational parameters of the target molecules

Molecule

Parameter exam37 1PLX 1L2Y 2XFD

Number of atoms 9 75 304 1,584

Number of fragments 3 5 19 107

Number of electrons 30 304 1,158 6,194

Solvent box size [Å3] 64.03 64.03 128.03 128.03

Reprinted with permission from Ref. [48]. Copyright 2014 AIP
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Table 2 Comparison of the dipole moments and total free energy between FMO/3D-RISM and
FMO/PCM methods

< |�D| >a �Gsolvation b

Molecule 3D-RISM PCM 3D-RISM PCM

KH GFc

(a) exam37 0.22 0.12 – 7.38 – 12.40 – 12.61

(b) 1PLX 1.99 1.52 – 67.83 – 99.61 – 121.22

(c) 1L2Y 1.09 0.78 21.85 – 88.05 – 207.54

(d) 2XFD 0.81 0.54 437.45 – 72.90 – 256.08

aMean value for the difference between the fragment dipole moment in solution and in gas phase.
The units are Debyes. bThe units are kcal mol–1. cThe values were calculated using a Gaussian
fluctuation formula rather than the Kovalenko–Hirata formula. (reprinted with permission from
Ref. [48]. Copyright 2014 AIP.)

To assess the difference between the solvation model, the FMO/3D-RISM, and
FMO/PCM were applied to the system stated above. The average change in the
fragment dipoles

〈|�D|〉 = 1
N

∑N
I

∣∣Dsolv
I − Dgas

I

∣∣, (50)

and SFEs of the system are summarized in Table 2. Dsolv
I denotes the dipole moment

of fragment I. Two types of SFE formula are used, namely, KH and h Gaussian
fluctuation (GF).

The 3D-RISM SFEs are higher than those by PCM. Since the KH closure tends
to overestimate the excluded volume effects on the SFE, KH shows larger values
[54, 55]. The GF and PCM-SFEs show same sign; however, the absolute values of
SFE for the large systems are quite different from each other. No clear trend of SFE
behavior is found. To discuss the accuracy of the SFEs, more comprehensive research
is required. (See Refs. [43, 55–59]).

The dipole moments show clear tendency unlike SFEs. In Fig. 3, the dipole
moments by 3D-RISM of each fragments are compared with those by PCM. Most
of fragments show the greater dipole moment evaluated by 3D-RISM than the PCM,
and the average change in the fragment dipoles also shows greater values in 3D-
RISM. Because the 3D-RISM can handle the microscopic solute–solvent interaction
such as hydrogen bonding, the electronic polarization induced by solvent molecules
may be greater than those by PCM. To look close this feature, the close up view
of solvation structure of glutamine 73 (Q73) and glutamate 75 (E75) are shown in
Fig. 4, because Q73 and E75 show remarkable deviation in Fig. 3b. Near the amide
oxygen of Q73 and carbonyl oxygen of E75, the conspicuous hydrogen distributions
are observed, which indicate that the hydrogen bonds between solute oxygen and the
solvent water hydrogen are formed. It may be due to the strong polarization of the
fragments.
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Fig. 3 The fragment dipole moments calculated using the FMO/PCM method and the FMO/3D-
RISM method plotted against each other, for a molecule 1L2Y and b molecule 2XFD. The arrows
shown in plot (b) indicate the values for fragments Q73 and E75. The units are Debyes. (reprinted
with permission from Ref. [48]. Copyright 2014 AIP.)

Fig. 4 Isosurface plots for the SDFs of oxygen (in red) and hydrogen (in magenta) aroundmolecule
2XFD. The isosurface value is g(r) = 4.0. The inset shows the detailed solvation structure around
molecules Q73 and E75. The broken lines indicate the candidates of hydrogen bonds. (reprinted
with permission from Ref. [48]. Copyright 2014 AIP.)
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As shownhere, the 3D-RISMmethod allows us to discuss themicroscopic features
of the solvent molecules based on the distribution functions, unlike PCM.

5 Summary and Perspective

In this chapter, the hybrid method of the FMO and the 3D-RISM theory, called the
FMO/3D-RISM method, has been reviewed. The method enables one to investigate
the electronic structure of a macromolecule and the solvation effects on it at the
molecular level.

The 3D-RISM theory can provide the SDFs obtained through a complete ensemble
average over the entire configuration space of solvent molecules within the thermo-
dynamic limits. It is extremely difficult to achieve a similar level of ensemble average
with an MD simulation if the solute molecule has a complex structure, like a protein,
or the solution contains dilute species, such as ions.

The 3D-RISM theory naturally reproduces all the solvation thermodynamic prop-
erties, including solute–solvent interaction energy, solvation entropy, and solvation
free energy, and their derivatives, such as the partial molar volume. Therefore, the
QM hybrid method with the 3D-RISM theory can provide a comprehensive means
of analyzing chemical and biological processes in solution. For example, the molec-
ular recognition by proteins, a fundamental process in living systems, lends itself to
investigation by the FMO/3D-RISM method.

Molecular recognition processes are characterized by changes in Gibbs energy
due to the formation of ligand–receptor complexes, such as enzyme–substrate
complexes. In such processes, both the quantum mechanical interaction between
ligand and receptor and the hydration/dehydration of the molecules play essential
roles. However, there is still a need for improvements related to several impor-
tant factors, such as structural fluctuation and inter-fragment charge transfer, among
others. Combining the FMO/3D-RISM with the methods introduced in other chap-
ters, i.e., density functional tight binding, linear combination of molecular orbitals,
and MD, will enable more accurate and a wider variety of analyses of biological
processes.
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New Methodology and Framework
Information Science-Assisted Analysis
of FMO Results for Drug Design

Tatsuya Takagi

Abstract Recently, AI, which is sometimes called ‘Machine Learning’ or ‘Data
Mining’, has become common even for public. These techniques are widely utilized
even in the field of chemistry and pharmaceutical sciences. However, until very
recently, the two fields, AI and theoretical chemistry had been separately devel-
oped and utilized for solving chemical or biological problems. In this paragraph, I
try to show the recent development of machine learning methods and to show the
applications of the methods to the results obtained by theoretical chemistry.

Keywords Artificial intelligence · Machine learning · Data mining · Supervised
learning · Unsupervised learning · β-secretase

1 Necessity of Information Science-Assisted Analysis

In 1988, AI for chess, named ‘Deep Thought’, won against Donnish Grandmaster,
Bent Larsen. In 1996, the new AI of IBM, ‘Deep Blue’ won against Garry Kimovich
Kasparov who had been a world chess champion once. And in 1997, Deep Blue had
more wins than loses against him. This was the first time that ‘Machine’ won against
a world chess champion.

Now, AI (AlphaGo) can win against a European Go champion. In 2016, it won
fifth straight against the champion, Fan Hui. In the near future, it is certain that AI
will greatly exceed the capability of human being. In the well-known TV drama,
‘Person of Interest’, the AI developed by a protagonist shows the person(s) who will
kill some innocent people or be killed by some villains tells their social security
numbers. The protagonists try to prevent the incident which was informed by the
AI named ‘Machine’. The protagonist who developed ‘Machine’ made the AI just
tell their security number in order to prevent the ‘Singularity’ when AIs develop
themselves and overtake the capacity of human beings. In themovie, ‘Space Odyssey
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2001’, the AI named HAL started to revolt when it realized that the clue was going
to shut down the AI.

Actually, some researchers say that the singularity is to arrive in 2045 [1], when
AI significantly exceed the sum of human brainpower. All the people on the earth
may be controlled by AI within 30 years.

However, we are sometimes suffered from intractable diseases even now. Most
of anti-tumor drugs do not have enough power to make a full recovery; no effec-
tive approaches are known for many progressive cranial nerve diseases such as
Alzheimer’s. Still now, medical scientists have no futuristic overview when these
diseases are completely cured. Although medical sciences seem to be much more
complicated than ‘Go’, at least in 2045, we may be able to know everything about
such diseases if the singularity 2045 arrives.

Under these circumstances, it is also certain to be unwise not to take advantage of
AI, for example,machine learning, in the field of in Silico drug design.Already,many
researchers started to apply various kinds of machine learning methods including
deep learning, which was adopted for AlphaGo, to design novel drugs for intractable
diseases.

Hence, in this section, we will explain on AI, machine learning, and data mining
methods briefly. Then, the applications of AIs for FMO results will be shown.

2 What is AI?

2.1 Definition of AI, Machine Learning, and Data Mining.

Sometimes, these words, Artificial Intelligence (AI), Machine Learning, Data
Mining, are frequently confused with each other. However, these three words should
be used distinctively (Fig. 1).

AI

Achieved by
Machine 
Learning

Data Mining

Achieved by
Machine 
Learning

Chess, image recognition, abnormality 
detection, etc.

recommendation system, feature 
extraction, basket analysis, etc.

Fig. 1 Venn diagram of the concepts of AI, Data Mining, and Machine Learning



New Methodology and Framework Information Science-Assisted Analysis … 513

AI is a broader concept of ‘Machine learning’. There are some AIs without
machine learning methods. For example, some AIs issue a decision deductively,
which is not a machine ‘learning’ method.

On the other hand, ‘Data Mining’ is a concept which is classified into a different
category. People apply ‘Data Mining method’ to extract some rules from a data set.
For example, when you buy something from an online shop, you will find some other
goods which are recommended by the shop. Those recommended goods must be
selected using a recommendation system which is one of machine learning methods
in order to help you find other goods you want to buy. The selections are the results
of ‘DataMining’ from huge data set of the records, what kind of goods are bought by
the consumers who buy the goods you bought. In the below section, we will mention
several advanced and popular machine learning methods which can apply to in Silico
drug design using FMO.

3 Various Machine Learning Methods

Usually, machine learningmethods are classified into three groups, supervised, unsu-
pervised, and reinforcement learnings. In addition, multi-task and transductive learn-
ings are also machine learning groups (Table 1). Here, we will explain the former
two kinds of learnings which are used more frequently and for FMO drug design.

Table 1 Frequently used machine learning methods

Categories Methods Examples of applications

Supervised learnings Linear multiple regression method Hansch-Fujita method, logP
prediction

Partial least squares method 3D-QSAR

Logistic regression Bioactive class prediction

Support vector machine Environmental degradability
prediction

Nonparametric regression Epidemiology, time series
analysis

Hierarchical artificial neural
network

Bioactive class prediction

Unsupervised learning Principal component method Analysis of DNA array results

Cluster analysis Analysis of DNA array results

Manifold learning including
multidimensional scaling method

Microbiology, diagnostic
assistance

Others (t-SNE, UMAP, etc.) Show regional prescribing
patterns, etc

Reinforcement learning Dose optimization, etc
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3.1 Supervised Learning

3.1.1 Linear Regression Analyses

When you want to predict pharmacological activities of a certain kind of molecules,
you should prepare some chemical descriptors which express chemical structures
and/or physicochemical properties of molecules. The simplest model for predicting
pharmacological activities using the chemical descriptors is linearmultiple regression
analysis (MRA) which is expressed as shown in Fig. 2.

MRA can be expressed as yi=�β jxij+β0. Here, yi, xij, β j, β0, and εi indicate a
pharmacological activity of the i-th molecule, the j-th descriptor value of the i-th
molecule, the coefficient for the j-th descriptor, the intercept, and the error value
between calculated and observed yi values, respectively. Although usually, β j (j =
0, 1, …, m) values are obtained by ordinal least squares method (OLS), recently,
sparse methods such as lasso regression [2], which is one of penalized regression,
have been becoming more popular. Elastic net [3] regression is expressed as follows:

OLS

E(β) = 1

n

n∑

i=1

ε2i

Elastic net

E(β, λ) = 1

2n

n∑

i=1

ε2i + λP(α, β)

P(α, β) = (1 − α)
1

2
‖β‖2L2 + α‖β‖L1 =

m∑

j=1

{
1

2
(1 − α)β2

j + α
∣∣β j

∣∣
}

(2.1)

Here, λ indicates complexity parameter. Lasso and Ridge regressions are the special
cases where α = 1 and α = 0, respectively.

Fig. 2 Supervised learning explanation variables
(descriptors)

calculated
(estimated) values

response variable
(supervisor)
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Fig. 3 Outline of partial least square regression

However, in the field of drug design, usually, pharmacological activities (n = 10–
100) have to be estimated using large numbers of chemical descriptors (300–2000).
In this case, since linear simultaneous equation is indeterminate, MRA cannot be
applied. This condition developed another model with latent variables which are
consisted of linear combinations of the chemical descriptors. One of such models is
Partial Least Squares (PLS) method, which is expressed as follows:

X = TP′ + E

Y = UQ′ + F
(2.2)

where, X is an n x m matrix of explanation variables, xij, Y is an n x N matrix of
response variables, yik , T and U are n x M and n x K matrices of projections of X
and Y, respectively; P and Q are m x M and N x K orthogonal loading matrices,
respectively;E and F are errormatrices.T andU are determined in order tomaximize
the covariances between T and U. The Eq. (2.2), is solved iteratively (NIPALS). The
outline of PLS is shown in Fig. 3. In the next section, we will show an example which
used PLS for FMO results.

In addition, Multiple Logistic Regression (MLR) is also frequently applied to
the field of Drug Design. In this case, logit (log(p/1−p)) is used instead of metric
response variable. Here, p indicates the probability of y= 1 when y= 1 or 0 (binary).

3.1.2 Nonlinear Regression Analyses

Although abovementioned methods, MRA, LASSO, Ridge, and PLS can treat
linear relationships, sometimes, nonlinear relationships are required. For example,
an optimum value of molecular hydrophobicity for cell permeability is usually
observed, which indicates that the relationship between bioactivity and molecular
hydrophobicity is nonlinear.

In some cases, such relationships can be expressed by regression analysis using
second order polynomial. However, sometimes, the relationships cannot be expressed
by parametric regressions. In these cases, three kinds of machine learning methods
are utilized; the first one is nonparametric regression method such as GAM, the
second one is artificial neural network, and the third one is tree type regression such
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as decision tree (Here, Hidden Markov Model as well as Conditional Random Field
are classified into another group).

Nonparametric regression analysis deals with the relationships which cannot be
expressed by high-order polynomials. The simplest model, additive model, is written
as follows:

yi = β0 +
m∑

j=1

f j
(
xi j

) + εi (2.3)

where f j(x) is a unary function, β is an intercept, and ε is an error term. In this
case, usually, f j(x) is expressed by spline functions. Hastie and Tibshirani proposed
General Additive Model (GAM) [4] as one of additive models which need multiple
explanation variables.

Hierarchical Artificial Neural Network (HANN) is another solution for nonlinear
problems. This method became popular in 1980s and various kinds of applications
including home electric appliances were tried. The outline of this method is shown
in Fig. 4. Prepared data are inputted into ‘Input Layer’ neurons. The values are
transferred to ‘Hidden Layer’ neurons using nonlinear functions such as sigmoid
function. Thick axons transfer the data more than thin axons. The data are transferred
to ‘Output Layer’ neurons. The data are compared with ‘results (supervisors)’.When
the values are rather different from the ‘results’, this system learn by adjusting the
thicknesses of the axons to obtain correct output values compared with the ‘results’.
PLS is a special case of the HANN whose transfer functions are linear ones.

Although this method was considered to be powerful and flexible, soon,
researchers encountered some serious problems. The first one is that this system
is easy to over-train. The simple example is shown in Fig. 5. The true relationship
between x and y values in this graph must be shown in the solid line while HANN
tends to draw the dotted line which is not expected.

Input Layer Hidden Layer

Output Layer Supervisor

Fig. 4 Frame format of hierarchical artificial neural network
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Fig. 5 Example of
overfitting

x

y

Although HANN became popular in 1980s, researchers soon gave up applying
the method to predict unknown data until 2012 when Toronto and Google shock
happened.

Recent advances in this field brought about a novel and powerful method, Deep
Learning, which is based on the artificial neural network (Fig. 6). AlphaGo, which
won against human professional ‘Go’ player, used to be based on Deep Learning and
Reinforcement Learning [5] (Present system is based on Reinforcement Learning).
While Deep Learning system has many hidden layers, some techniques enables the
system to avoid overfitting. One of them is ‘dropout’ which Srivastava et al. [6]
proposed in 2014. ‘Dropout’ generates some neurons which are eliminated from
the system. This technique is considered to be one of the regularization method
to decrement flexible variables. Since the flexibility is reduced when the number
of parameters is decreased, ‘Dropout’ can reduce overfitting. Another method for
avoiding overfitting is Convolutional Neural Network (CNN), which consists of
Input, Convolution, Pooling, Fully connected and Output operations. CNN can be
shown as a simple example diagram as shown in Fig. 7.

However, reportedly, Geoffrey Hinton, who developed Deep Learning, gave a
speech inMITand said, ‘Thepoolingoperation used in convolutional neural networks
is a big mistake and the fact that it works so well is a disaster’. Recently, Hinton

1ix

2 ix

3ix

4 ix

ˆ iy iy

1ix

2 ix

3ix

4ix

1ˆ ix

2ˆ ix

3ˆ ix

4ˆ ix

1ix

2 ix

3ix

4ix

Fig. 6 Structures of supervised (left) and unsupervised (right) deep learning
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Input Layer Convolutional
Layer Convolutional

Layer
Pooling
Layer

Pooling
Layer Fully Connected

Layer

Fig. 7 Conceptual diagram of convolutional neural network

et al. [7] proposed ‘Capsule Network’, which overcomes some problems associated
with CNN, especially the pooling operation. Nowmany researchers are applying the
capsule network to various kinds of fields.

3.1.3 Other Supervised Learning Method

Support Vector Machine (SVM) is one of frequently applied methods for classi-
fying two or more categories using explanation variables. This method classifies two
categories data to maximize the ‘margin’ between the categories.

Tree model is also frequently used for classification. Especially, Random Forest
and Binary Tree are popular because of high generalization capability. Recently,
Boosting method is sometimes applied to these supervised learning methods.
Especially, Gradient Boosting Method (GBM) shows high generalization capability.

These methods will be explained for another time.

3.2 Unsupervised Learning

Unsupervised learning methods are roughly classified into two categories. One is the
group of methods which finds and/or visualizes ‘similar data points’ from the data
in high-dimensional space. The other one is for extracting ‘factors or components’
from a data set in high-dimensional space. In the former case, even if the results are
shown in two-dimensional space, the two axes have no meanings. On the other hand,
in the latter cases, some meanings can be found from extracted axes. Thus, here, the
former category of methods is called ‘Classification Method’ and the latter one is
called ‘Component Extraction Method’.
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3.2.1 Component Extraction and Dimension Reduction Method

A representative method in this category is Principal Component Analysis (PCA).
This method determines a ‘Principal Axis’ in order to maximize the variance of the
ξ-coordinates (Fig. 8). And the next axis is determined to be orthogonal to the first
axis (ξ) and to maximize the variance of η-coordinates, and so on. The resulted axes
are called ‘Principal Components’. Hence, each component has the highest variance
under the constraint that it is orthogonal to the other components.

In PCA, synthetic variables are calculated as follows:

zki =
m∑

j=1

akj xi j (2.4)

where zkj is the kth synthetic variable, akj is the kth component loading, and xij is
a value of variable j. akj is determined to maximize the variance of zkj under the
condition,

m∑

j=1

a2k j = 1 (2.5)

using LaGrange’s method of undetermined multipliers. This problem is solved as
eigenvalue–eigenvector problem.

Fig. 8 Conceptional
diagram of principal
component analysis (PCA)

x

y
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AV = εV (2.6)

where A is a loading matrix (eigen vector matrix), and V is correlation coefficient
matrix, and V becomes an eigenvalue vector matrix of A after the problem is solved.

PCA is often applied to analyze array data set such as DNA array. For example,
Chang et al., (8) applied PCA to SNPs data set for extracting principal compo-
nents which classify autoimmune, neurodegenerating, and some other diseases. They
succeeded in classifying systemic lupus erythematosus, vitiligo, multiple sclerosis,
schizophrenia, Crohn’s, and some other diseases including Alzheimer’s.

There are some other linear methods to extract components and to reduce
dimensions such as factor analysis, independent component analysis, and principal
coordinate analysis, which are based on PCA.

3.2.2 Classification and Visualization Method

Although PCA can be used as a classification method such as beforementioned
study [7], PCA’s main purpose is extracting main factor that can be explained. As
classification methods, there are some superior methods. One of the methods is
multidimensional scaling method (MDS).

MDS maps the data in high-dimensional space (xij ∈ RN ) to two or three-
dimensional (ξij ∈ R2 or R3) space in order to minimize the ‘Stress’ (S) which is
written as follows:

di j = 1

m

m∑

p=1

(
xip − x jp

)2
, xip ∈ RN

δi j = 1

2

{(
ξi1 − ξ j1

)2 + (
ξi2 − ξ j2

)2}
, ξiq ∈ R2

S =
∑

i< j

∑ (
di j − δi j

)2

(2.7)

where dij means a distance in high-dimensional space and δij in two-dimensional
space.

Recently, non-metricMDS andGeneralizedMDS (GMDS), which can treat item-
item dissimilarities and dissimilarities in an arbitrary smooth non-Euclidean space,
respectively, have become popular. Moreover, recently, Manifold Learning, which
uses geodesic instead of ordinal distance, has been becoming more popular (Fig. 9).
This field is rapidly advancing.
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Fig. 9 Conceptional diagram of multidimensional scaling method

3.2.3 Other Classification Methods

As a classical classification method, Cluster Analysis might be the most well-known.
Cluster analysis is classified into two groups, Hierarchical and Non-hierarchical
methods. Hierarchical cluster analysis is carried out as follows:

(1) Calculate all the distances between given data.
(2) Among the calculated distances, the closest two data, A and B (Fig. 10), is

merged.
(3) Calculate the distances between the data and the cluster, AB.
(4) The closest two clusters (or data), C and D, is merged.
(5) Merge the remained two clusters, ABFGH and CDE.
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Fig. 10 Conceptional diagram of hierarchical cluster analysis
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According to the definitions of ‘distance’, this method has many variations. Espe-
cially, there aremanydefinitions for the ‘distance’ between twoclusters. Thismethod,
cluster analysis, is often used for the analyses of DNA array data.

Recently, Manifold Learning has been becoming more common. This is an
extended method of MDS and uses extended distance such as geodesic distance
instead of normal distance.

Application of these unsupervised learning methods to FMO docking studies will
be shown in below sections.

4 Application Examples of Machine Learning Methods
to FMO Docking Studies

4.1 β-secretase Inhibitors

Alzheimer disease is a well-known dementia that has no cure. Among some hypoth-
esis, beta-amyloid one is the most likely to be one of the causes of the disease. This
hypothesis postulates that extracellular amyloid beta (Aβ) deposits are the funda-
mental cause of the disease. Since beta- and gamma-secretases are considered to be
responsible for creating Aβ, many research groups including mega-pharma compa-
nies are trying to develop secretase inhibitors as anti-Alzheimer drugs. However, no
tries have succeeded in placing on the market, while many data including co-crystal
structures have been reported. Thus, I will show the results of machine learnings
of the intermolecular interaction energies between beta-secretases and its inhibitors
(Fig. 11) (Table 2).

Fig. 11 Structure of β-secretase and its inhibitor
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Table 2 pIC50 values of the compounds in Fig. 12

PDBcode 3in3 3in4 3ind 3ine 3inf 3inh 3ooz 4j00

Compounds a a b b c c d e

IC50 uM 0.06 0.03 1.5 0.17 0.04 0.02 0.014 36.83

pIC50 1.22 1.52 -0.18 0.77 1.40 1.70 1.85 −1.57

IFIE_SUM/kcal
mol−1

−111.29 −111.51 −79.48 −90.51 −99.98 −117.05 −147.10 −122.61

PDBcode 4jp9 4jpc 4jpe 2ohk 2ohl 2ohp 2ohq 2ohr

Compounds f f f g h i j k

IC50 uM 0.024 0.094 0.048 2000 2000 94 25 100

pIC50 1.62 1.03 1.32 −3.30 −3.30 −1.97 −1.40 −2.00

IFIE_SUM/kcal
mol−1

−130.53 −136.37 −135.71 −51.81 −33.96 −55.47 −62.91 −72.65

PDBcode 2ohs 2oht 2ohu 3kmy 3l38 3l3a 4j0p 4j0t

Compounds l m n o p p q r

IC50 uM 40 9.1 4.2 0.2 0.2 0.42 0.051 0.028

pIC50 −1.60 −0.96 −0.62 −0.70 −0.70 −0.38 −1.29 −1.55

IFIE_SUM/kcal
mol−1

−81.85 −115.25 −115.25 −61.11 −15.76 −33.01 −123.45 −124.15

PDBcode 4j0v 4j0y 4j0z 4j17 4j1c 4j1f 4j1e 4j1k

Compounds s t u v v v w v

IC50 uM 0.435 0.077 0.054 0.148 0.012 0.049 0.019 0.013

pIC50 −0.36 −1.11 −1.27 −0.83 −1.92 −1.31 −1.72 −1.89

IFIE_SUM/kcal
mol−1

−128.68 −133.63 −126.37 −125.75 −143.54 −150.68 −139.82 −146.55

PDBcode 4j1i 4fri 4frj 4frk 3msk 3msl

Compounds x y z a b g

IC50 uM 0.04 2.85 0.28 0.008 26 7

pIC50 −1.40 0.45 −0.55 −2.10 1.41 0.85

IFIE_SUM/kcal
mol−1

−99.18 −94.16 -86.78 −139.36 −80.89 −96.95

*IC50 values were obtained from the literatures [9–11]

5 PCA Results

5.1 Data

All the structures of the secretase-ligand complexes were from PDB database [8].
Their PDB codes and the chemical structures of their ligands are shown in Fig. 12.
FMO calculations of the intermolecular interaction energies between β-secretase and
the ligands using the PDB co-crystal structures were carried out.
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Fig. 12 Chemical Structures and their PDB codes of β-secretase ligands

PrincipalComponentAnalysiswas carried out using the IFIEdata.Resulted eigen-
values and the cumulative contribution ratio are shown in Table 3. Resulted Cumu-
lative Contribution Ratios give satisfactory values when four principal components
are adopted. Obtained principal components were rotated using Varimax solution.
Obtained scatter plot between factor scores is shown in Fig. 13. Especially, the scatter
plot between factors 2 and 3 shows a clear result which distinguishes groups 3 and 4
from other compounds. In this case, although it is difficult to identify the meanings
of the extracted factors, this result indicates that at least three or more factors are
needed to express the IFIE matrix. MDS was carried out using the IFIE data matrix,
which showed that some groups of the ligands could be distinguished from other
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Fig. 12 (continued)
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Table 3 Eigenvalues and cumulative contribution ratios obtained by PCA of IFIE data

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Eigen values 85.2 63.3 53.1 36.2 24.5 19.0 15.9 10.8 9.5 6.6

Cumulative contribution
ratios

23.7 41.4 56.2 66.2 73.1 78.4 82.8 85.8 88.4 90.3

Fig. 13 Scatter Plot between Factors 2 and 3 obtained by Varimax Rotation after PCA (upper) and
the first and the second dimensions obtained by MDS (lower)

compounds more easily than PCA (Fig. 13 lower). Although we do not show the
results of cluster analysis, similar result was obtained.

Since good correlation between sum of IFIEs and the observed pIC50 was not
obtained (Fig. 14), PLS-lasso was carried out to obtain the better correlation. The
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Fig. 14 Scatter plot between simple sum of IFIEs and pIC50s

result is shown in Fig. 15. Better correlation was obtained between estimated and
observed pIC50s. Still, this method and its application should be developed to obtain
better prediction results and reasonable explanations for the regression coefficients.
However, this result implies two significant points. One is that this method (PLS-
lasso) is able to correct the bias or errors of FMO calculations. And the other is that
this result might be caused by FMO theory which tends to overestimate electrostatic
interactions. The latter can be corrected by SCIFIE method [12].

R=0.750
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(p

re
d)

pIC50(obs)

Fig. 15 PLS-lasso result of estimated pIC50 calculated by IFIE data
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Extension to Multiscale Simulations

Koji Okuwaki , Taku Ozawa, and Yuji Mochizuki

Abstract Fragment molecular orbital (FMO) methods (Fedorov and Kitaura The
fragmentmolecular orbtialmethod: practical applications to largemolecular systems,
CRC Press, Boca Raton, 2009; Fedorov et al. Phys ChemChem Phys 14:7562, 2012;
Tanaka et al. Phys Chem Chem Phys 16:10310, 2014), which allow macromolec-
ular systems to be handled by ab initio quantum chemical calculations, have been
used primarily for protein, DNA, and molecular aggregation systems, as discussed
in previous chapters. In recent years, in the field of materials science, the control
of microstructure at the molecular level is strongly desired for the advancement of
products, and pre-screening in computational chemistry has attracted much attention
in this context. In particular, the prediction of mesoscale properties is an important
issue because the mesoscale structure formed by molecular aggregates has a signif-
icant impact on physical properties. Therefore, our research group has developed
a framework for calculating effective interaction parameters between particles in
mesoscale coarse-grained simulations based on nano-scale FMO calculations, and
is currently using this system to conduct leading empirical calculations in various
systems. In this section, we outline these efforts, and also describe a detailed analysis
of a total atomic structure using reverse map technology.

Keywords Multiscale simulation · Dissipative particle dynamics · FMO-DPD ·
Reverse map · FCEWS
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1 Construction of a Coarse-Grained Simulation Parameter
Calculation Scheme

Coarse-grained simulations are widely used to analyze large structures because they
can simulate larger timescales compared to atomic-level simulations such as molec-
ular dynamics (MD). Among the coarse-grained methods, the dynamic mean field
theory [4, 5], which calculates the time evolution of the concentration of components
in the system, and the dissipative particle dynamics (DPD) [6–11], which incorpo-
rates the fluid theory, are superior for predicting phase-separated structures. Since
DPD can keep track of the phase separation behavior at a low computational cost
via a molecular particle level approach, its applications include vesicle formation
of amphiphilic molecules [12], prediction of the meso structures of polymer elec-
trolyte membranes [13], analysis of the structure of linear oligomer solutions [14],
and analysis of the equilibrium structure of amphiphilic bilayers [15].

In themeanfieldmethod theory andDPDsimulations, the parameters that describe
the interactions between the set particles are important, and they are generally closely
related to the χ parameters that indicate the affinity between components of the
Flory–Huggins theory. However, it is well known that the evaluation of a reliable χ

parameter is a difficult task, and thus values based on experimental data or empirical
values are generally used in the simulation, and the limits of this application have
been pointed out.

There are two main types of χ value prediction methods. The first is the empirical
method, in which the solubility parameter SP values [16] and aggregation energies
are predicted using inferred models such as the cluster contribution model [17, 18]
and Bicerano’s method [19]. The second is based on molecular simulations. The
main methods are predicting the SP value from the molecular simulation of a single
type of molecules [20] and determining the χ value from the interaction between
differentmolecules. Typical of the latter approach are the predictions from the contact
energy between segments by Fan et al. [21] and the aggregation predictions from
the difference in cohesive energy of the many body model [22]. In this study, we
focused on Fan’s method because this method has the advantage that the interaction
between contacting particles can be obtained directly via a molecular level approach.
Fan et al. performed interaction calculations on the exhaustive conformations of a
pair of segments, and then used the metropolis method to select the states that can be
taken for each temperature to determine the contact energy between the segments.
In this approach, however, since the parameters of the classical force field (FF) are
used to evaluate the contact energy of the pair, the reliability decreases in a system
in which charge transfer is essential as a factor of the interaction.

In order to solve the above problem, it is necessary to carry out the first principle
calculation procedure by using molecular orbital (MO) calculation and density func-
tional theory (DFT) calculation considering polarization and charge transfer in the
evaluation of the interaction energy. As an example, Sepehr et al. evaluated the DPD
interaction parameters in a model of Nafion® hydration, which is representative of
polymer electrolyte membranes, based on the DFTmethod [23]. Nafion®membrane
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interactions are difficult to depict within the classical FF framework because they are
characterized by charge transfer. However, when the molecular size of the segment
pair becomes large, applying the usual first-principles calculation to the parameter
evaluation involves many calculation costs, and it may be difficult to construct a
general-purpose scheme.

Therefore, focusing on the method of Fan et al. [21] for calculating parame-
ters from the interaction energies between small molecules, we established a highly
accurate parametrization method by using the fragment molecular orbital (FMO)
calculation [1–3]. This set of parameter calculation functions has been systematized
as an automated framework and made available to the public as the FMO-based Chi-
parameter Evaluation Workflow System (FCEWS) (https://www.cenav.org/fcews_
ver1_rev2/) [24].

In Flory–Huggins’ lattice theory, the χ parameter is defined as

χ = Z�EAB

RT
, (1)

where Z is the coordination number of the model lattice. The contact energy �EAB

represents the amount of energy which changes with the mixing of components A
and B, and is given by the equation

�EAB = −
E AB −

(−
E AA + −

EBB

)

2
, (2)

where
−
E AB is the average interaction energy between components A and B. From

Eqs. (1) and (2), it can be seen that the values essential for the parameter calculation
between the two components are the coordination number Z and average interaction

energies
−
E AB ,

−
E AA, and

−
EBB . In the FCEWS system, these values can be automat-

ically calculated from the molecular calculation. The system workflow is shown in
Fig. 1. The users can generate a large number of configurations of the targetmolecules
(I), calculate Z values (I′), and calculate the interaction energies of all configurations
by using FMO calculation with the ABINIT-MP program (II) only by preparing the
molecular structure of the two components for which the parameter is to be calcu-
lated. Then the interactions are processed by the Metropolis Monte-Carlo method to
obtain average interaction energies for each temperature (III). Further, at this time,
the orientation information of the configuration is also acquired for each structure,
and scaling is carried out depending on the isotropy to prevent an overestimation of
the average interaction. Subsequently, anχ parameter reflecting additionalmolecular
characteristics is calculated. As a verification calculation of this method, the upper
critical temperature of phase transition obtained from theχ parameter was calculated
for three examples of a molecular system (hexane–nitrobenzene, polyisobutylene–
diisobutyl ketone, and polystyrene–polyisoprene) considered in the previous study

https://www.cenav.org/fcews_ver1_rev2/
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Fig. 1 Workflow for calculating parameters using FMO calculations

by Fan et al., and the experimental value could be reproduced with an error of about
10% [25]. The FCEWS system is intended for use on a Linux server from the view-
point of computational cost, but it can also be used on Windows. In addition to
various job management systems (PBS, Torque, LSF, Lava), jobs can be submitted
to some supercomputers. The basic usage is CUI-based, but it is also GUI-based and
included with J-OCTA ver. 4.1 and later (https://www.j-octa.com/).

2 Applications Using the FMO-DPD Method

This section introduces an example of an application that performs calculations by the
FMO-DPD cooperation method using the parameter calculation scheme introduced
in the previous section. The calculations of the polymer electrolyte membrane and
lipid membrane, in which the problem of the parameters is highly significant, are
described.

2.1 DPD Simulation

First, the DPD simulation used in this study will be described. The original DPD
was proposed by Hoogerbrugge and Koelman [6, 7], and extended to polymers by
Groot et al.[9, 10, 26]. Here, the outline of the model and the algorithm of DPD are
described.

https://www.j-octa.com/
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The forces acting on the particles are conservative, dissipative, random, and spring
forces to connect the particles, and the time evolution of the system is obtained by
solving Newton’s equations of motion:

dri
dt

= vi (3)

mi
dvi
dt

= fi , (4)

where ri ,vi , andmi are the position, velocity, andmass of the ith particle, respectively.
For convenience, the mass and diameter of the particles are scaled relative to 1 to
reduce the units. The force fi includes three parts of the original DPD equation and an
additional spring force of the polymer system. The interaction between two particles
can be written as the sum of these forces.

fi =
∑
j �=i

(
FC
i j + FD

i j + FR
i j + FS

i j

)
(5)

The first three forces of the original DPD act within a specific cut-off radius rc. The
conservation force FC

i j is given by the following Eq. [9]

FC
i j =

{−ai j
(
rc − ri j

)
ni j ri j < rc

0 ri j ≥ rc
, (6)

where ai j is the maximum repulsive force between particles i and j, ri j =r j − ri ,
ri j = ∣∣ri j ∣∣, and ni j = ri j/

∣∣ri j ∣∣. The repulsion parameters between particles of
different type correspond to the mutual solubility provided by the χ parameter set.
When the reduced density ρ is assumed to be 3, a linear relation with ai j is usually
set as

ai j = aii + 3.27χi j . (7)

The details of the process of determining χi j are given in Chapter 5.3.1. The
dissipative force FD

i j is a hydrodynamic force and is given by

FD
i j =

{−γωD
(
ri j

)(
ni j · vi j

)
ni j ri j < rc

0 ri j ≥ rc
, (8)

where γ is the friction parameter, ωD
(
ri j

)
is the weight function, and vi j = v j − vi .

The friction parameter γ is a value related to the viscosity of the system.
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The random force FR
i j corresponds to the thermal noise and is described by the

parameter σ and another weight function ωR
(
ri j

)
as follows:

FR
i j =

{
σωR

(
ri j

)
ζi j�t− 1

2 ni j ri j < rc
0 ri j ≥ rc

. (9)

The randomness is incorporated through the element ζi j , which is a randomly
fluctuating variable with Gaussian statistics:

〈
ζi j (t) = 0

〉
(10)

〈
ζi j (t)ζkl

(
t ′
)〉 = (

δikδ jl + δilδ jk
)
δ
(
t − t ′

)
. (11)

They are assumed to be uncorrelated for different particle pairs and time. There
is a relation between the two weighting functions and two parameters:

ωD
(
ri j

) = [
ωR

(
ri j

)]2
(12)

σ 2 = 2γ kT . (13)

In this study, the weighting function is selected as follows:

ωD
(
ri j

) = [
ωR

(
ri j

)]2 =
{(

rc − ri j
)2

ri j < rc
0 ri j ≥ rc

. (14)

Since the parameters σ and γ are selected to be 3 and 4.5, respectively, kT = 1.
The variable �t−1/2 in Eq. (9), as discussed by Groot and Warren, is responsible for
ensuring a consistent diffusion of particles independent of the integration step size.
The bonding force FS

i j of the polymer, when the particles i and j are connected, is
expressed as a harmonic oscillator of the equilibrium distance re by the following
equation [27]:

FS
i j = −C

(
re − r i j

)
ni j . (15)

The time evolution of the system was carried out by a modified Verlet method
following the method of Groot et al. with λ = 0.65. In the simulation, the units of
length and time are made dimensionless, and conversion to a real dimension can be
performed as described by Groot et al. [26]. The COGNAC module of J-OCTA is
used in this section.
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2.2 Percolation Analysis of the Polymer Electrolyte
Membrane

Polymer electrolyte fuel cells (PEFCs) do not emit carbon dioxide (CO2), so they
are widely studied for use in automobiles as an energy source with low environ-
mental cost. An important component of PEFCs is the polymer electrolytemembrane
(PEM); PEFCs containing a PEM are also called proton exchange membrane fuel
cells (PEMFCs). The most widely used PEMs are of the perfluorosulfonic acid
(PFSA) type, such as the Nafion® membrane of DuPont, which provides chem-
ical, thermal, and mechanical stability in addition to high proton conductivity. It
is known that a hydrated Nafion membrane has a nano-phase separation structure
composed of a hydrophobic phase containing a main chain and a hydrophilic phase
containing a sulfonic acid group, and that a water cluster network formed inside the
membrane is related to the proton conductivity, which in turn is directly related to
the performance of the cell. To elucidate the hydrated structure of Nafion, a number
of molecular calculations have been carried out, such as those of Voth [28–30],
Choe [31–33], and Dupuis [34–36]. However, there is still room for improvement in
terms of the chemical durability, gas permeability, high manufacturing cost, and so
on, and development of a substitute is expected. Sulfonated polyether-ether-ketones
having aromatic hydrocarbons (SPEEK) are among the promising candidates [37,
38]. SPEEK exhibits high thermal stability, mechanical properties, and high cost
effectiveness, but problems of chemical stability and low conductivity have been
pointed out.

In this section, we report a DPD simulation of the structure of hydrated Nafion and
SPEEK. Important interaction parameters between DPD particles were evaluated by
the FMO method; the network connectivity of water clusters, which is considered
to be related to conductivity, was evaluated by percolation analysis; and Nafion and
SPEEK were compared.

Figure 2 shows the structure of Nafion. According to Yamamoto’s previous study
[13], the basic unit of the Nafion chain was divided into three segments of the same
size (A: -CF2-CF2-CF2-CF2-; B: -O-CF2-C (CF3) F-O-; and C: -CF2-CF2-SO3H).
The termini were capped with F for segments A and C and with CF3 for segment B.
The structure of SPEEK is shown inFig. 3. The chainwas divided into three segments,
A, B, and C, similar to Nafion. The termini were capped with CH3. In addition,

Fig. 2 Molecular structure
and segmentation of Nafion
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Fig. 3 Molecular structure and segmentation of SPEEK

various conformations were considered for water molecules. The water particle (W)
is typically modeled by a water tetramer with cyclic hydrogen bonding for DPD
simulations due to the segment size problem. However, such a model might fail to
interact with outer particles because of its internal hydrogen bonding. Therefore, we
employed three kinds of dimers (with shapes of linear, cyclic, and bifurcated types)
and even a monomer as the candidates interacting with the sulfonic side chain (C).

The χ parameters were calculated for each segment of Nafion and SPEEK. The
geometry segment was optimized by Gaussian09 [39] with B97D [40]/6-31G(d′, p′)
level calculation. A total of 2000 configuration structures were generated for each
pair, and the interaction energywas calculated for each generated conformation using
FMO2-MP 2/6 -31G (d′) level calculation, and then the χ values were calculated.
For the DPD simulation, the time step was set to Δt = 0.05, and the cell size was
set to 30 DPD-length unit (Rc). Since ρ = 3, the system includes 81,000 particles in
each simulation. Since the DPD particle size corresponds to four molecules of water,
Rc is 0.71 nm, and the cell size corresponds to 21.3 nm. Models of the polymer are
shown in Fig. 4. For Nafion, three different structures with equivalent weights (EW)
were prepared as structures (a)–(c). Structure (b) corresponds to the commonly used
Nafion 117 (EW = 1100). SPEEK placed one hydrophilic segment in every four
particles. The time evolution was performed in 10,000 steps for a total of 500 DPD-
time units (t). In each model, the simulations were carried out for water contents of
10–30 vol% with 2 vol% intervals. The trajectories were stored every 100 steps (5
DPD-time units).

Table 1 shows the values of χ obtained from FMO calculations, where the values
of Yamamoto and Hyodo’s preceding study [13] are listed for comparison. The χ

value using FMO is small for the A–B (−0.17) and C–W (−4.1) pairs, while it
exceeds 20 for the A–W and B–W pairs. Although the trends in these parameters
are consistent with the results of Yamamoto et al. [13], the absolute values of our χ

related to water particles is larger, suggesting the contributions of polarization and
charge transfer interactions incorporated by the FMO calculations. The value of χ of
SPEEK is also shown in Table 2. The χ values among polymer segments (A–B, A–C,
and B–C) were −0.75, 4.94, and 3.53, respectively, suggesting these segments had
high affinity for each other. In addition, the χ of C–W was −3.78, which indicates
a strong interaction. Thus, the trends in the parameters predicted from the structure
of SPEEK were reproduced.
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Fig. 4 DPD particle model of Nafion polymer and SPEEK. The segment size is about 0.71 nm.
The green, light green, and yellow particles correspond to segments A, B, and C in Figs. 2 and 3,
respectively. Structure (b) is Nafion 117 (EW = 1100), and structures (a) and (c) are defined as low
and high EW models, respectively (Reproduced from Ref [43] with the permission of the authors
licensed under CC BY 3.0)

Table 1 χ and aij values of
each component of Nafion
(350 K)

This work Previous work [13]

χ aij χ

A-B −0.17 24.44 0.02

A-C 7.51 49.54 3.11

B-C 7.36 49.05 1.37

A-W 25.37 107.91 5.79

B-W 27.86 116.05 4.90

C-W −4.1 11.60 −2.79

Table 2 χ and aij values of
each component of SPEEK
(350 K)

Pair χ aij

A-B −0.75 22.55

A-C 4.94 41.14

B-C 3.53 36.54

A-W 28.09 116.80

B-W 19.49 88.69

C-W −3.78 12.65
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Fig. 5 Dependence of morphology on the water contents of Nafion (t = 500) with a symbolic
structure (b) in Fig. 4. Morphologies of 10, 20, and 30 vol% are depicted in the upper row. Water
density distributions are drawn in the lower row (Reproduced from Ref [43] with the permission of
the authors licensed under CC BY 3.0)

Figure 5 illustrates the dependence of morphology on the water contents of 10,
20, and 30 vol% for the Nafion with symbolic structure (b) of Fig. 4. The clusters are
sparse at 10 vol%, but at 20 vol% they are connected, and they form large channels
at 30 vol%. To verify the results, the water cluster structure of Nafion’s results
was analyzed and compared with the experimental data. The small-angle scattering
patterns were obtained from the radial distribution function (RDF) of water particles
in the case of theNafion (b) structure (Nafion117).As a result, a peakoriginating from
the water network (ionomer peak) was observed at around q = 0.2, and as the water
content increased, the peak shifted to lower angles and its intensity increased. This
tendency is in good agreement with the experimental data8 of small-angle neutron
scattering (SANS).

In addition, to directly evaluate the connectivity value, a percolation analysis was
performed. The size of the water cluster was defined as

R(i, j) ≤ RC , (16)

where R(i, j) is the distance between the particles i and j, and RC is a criterion for
contact. If Eq. (16) is true, these two particles (i and j) belong to the same cluster.
The cluster connectivity M is thus calculated as
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Fig. 6 The degree of water connectivity between Nafion and SPEEK in terms of water content.
The average structure of every 100 steps is used. The triangles, circles, and squares represent the
results of the Nafion symbol structures (a), (b), and (c) in Fig. 4, respectively, and the diamonds
correspond to SPEEK (Reproduced from Ref [43] with the permission of the authors licensed under
CC BY 3.0)

M =
∑N

i=1 g(i)

N
, (17)

where N is the total number of particles in the system, and g(i) is the cluster size to
which particle i belongs. The RC was set to 1.1 DPD unit length, corresponding to
the spacing of the first coordination area obtained from the RDF of DPD. For the
percolation analysis, a series of additional DPD simulations were carried out for the
water content range of 10–30 vol% with 2 vol% intervals. Figure 6 represents the
results of connectivity for Nafion and SPEEK, where the transient structures of every
100 steps of t = 300–500were used in the evaluations. It is found that the connectivity
rapidly grows over 0.8 at specific water content for all structures. The results that
a smaller EW has greater conductivity and the trend of SPEEK being less able to
formwater clusters than Nafion were in agreement with the experimental results [41,
42]. Looking at the final connectivity value, it is still about 0.9 for SPEEK, whereas
it reached 1.0. This difference also indicates the difference in the phase behavior
between Nafion and SPEEK. In summary, the percolation analysis has shed light on
the difference in mesoscale connection structures of water clusters formed by Nafion
and SPEEK. Certainly, Nafion is better as a PEM material than SPEEK [43].
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2.3 Analysis of Lipid Membranes

In recent years, in the biomedical field, research and development of technologies
for controlling lipid membranes, vesicles, and proteins at the molecular level, such
as drug delivery systems (DDS) and sensors simulating biomembranes, have been
actively carried out. For this purpose, it is necessary to analyze the details of the
structure of bio-membranes. However, it is difficult to obtain detailed informa-
tion—such as the distribution of lipid molecules, the unevenness of the membranes,
and the fluidity of the double membranes—by means of experiments, and thus
most of the details of the structure have not been clarified yet. In order to reveal
these details, molecular simulation is indispensable, and much molecular simula-
tion research has been performed [44–47]. Since the simulation of the membrane
molecule needs to deal with an enormous structure, the verification in the course-
grained simulation is important, but the parameters are mainly empirical. There-
fore, we performed FMO-DPD simulation on 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) [48]. In addition, as a first step ofDDS, structure verification
was carried out on a mixed membrane of positively charged lipids and phospholipids
intended for liposome as an siRNA carrier.

The POPCmolecule was divided into six small molecules as shown in Fig. 7, and
parameters between seven components including water were calculated. In addi-
tion, phospholipids generally have a negatively charged phosphate part and a posi-
tively charged choline part, and it is important to accurately calculate the interac-
tion between these hydrophilic parts and water. However, the interactions of the
ionized segments cannot be accurately estimated in vacuum calculations. Therefore,
we calculated the solvent interaction by the Poisson–Boltzmann equation [49].When
the solvent effect was included, the bond energy was calculated by subtracting the
energy of a single molecule from the energy of the complex. The binding energy is

Fig. 7 Molecular structure and segmentation of POPC
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given by the following equation:

�E(AB) = E(AB) − {E(A) + E(B)}. (18)

Further, as in the case of the calculations for Nafion, several types of water
segments were calculated for ionic segments. A total of 21 sets of interspecies param-
eters were calculated for each segment. The segments were optimized in Gaussian
09 at the B97D/6-31G(d′, p′) level, respectively. A total of 2000 configurations were
calculated for each pair, and the solvent-effect interaction energy was evaluated at
the FMO2-MP2/6-31G (d′) level. The dielectric constant of PB was set to internal
1.0 and external 80.0 for all segments. For the DPD simulation, the structure of
POPC was modeled by connecting seven kinds of segments, as shown in Fig. 7.
The time step was set to Δt = 0.05, the cell size was set to 30 Rc (81,000 particles,
21.3 nm in real dimension), and a time evolution of 100,000 steps was performed.
The trajectories were stored every 100 steps (5 DPD time units).

Table 3 shows the values of χ obtained from FMO calculations. The χ values
were small for hydrophobic particle pairs (A–B, A–C, and B–C), while it exceeds
10 for the A–W, B–W, and C–W pairs. In addition, E–W pair exhibited high affinity.
The generated lipid bilayer structure of DPD simulation results are shown in Fig. 8,
where the hydrophobic part (A–D particles) and hydrophilic part (E–F particles)

Table 3 χ values (300 K) between the components of POPC

B C D E F W

A −0.18 −0.23 1.39 4.75 4.76 12.08

B −0.61 0.71 5.46 5.81 12.66

C 1.18 4.81 5.74 10.56

D 1.99 −4.00 9.73

E 2.55 −6.64

F 6.00

Fig. 8 The results ofDPD simulation (POPCcontent 13 vol%, 19 vol%).Green and yellowparticles
correspond to a hydrophilic portion (a–d) and a hydrophobic portion (e, f), respectively
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of POPC are illustrated with green and yellow colors, respectively. The water is
not visualized. To validate this structure, the surface area and the thickness were
calculated and compared with the experimental data. The volume fraction of the
lipid bilayer at the same pressure in each direction (X, Y, and Z) was 17.7% in this
simulation. Therefore, the membrane area of the stabilized bilayer was estimated as
69.4 Å2. This value was in good agreement with the observed and simulated values
of 62–68 Å2 from previous studies [50–53]. The thickness of lipid was measured as
the thickness of the area where the density of hydrophobic particles was larger than
0.5. This value was 2.8 nm, which is in agreement with the experimental value of
2.58 nm measured by NMR [54].

Moreover, the structures of a mixed vesicle of DPPC, a neutral phospholipid,
and DOTAP, a positively charged lipid, were also verified as the beginning of DDS.
DPPC consists of only saturated bonds in the hydrocarbon chain, and DOTAP has
unsaturated bonds on both sides of the lipid. DOTAP, a positively charged lipid, is
widely used as a vector for nucleic acid drugs such as DNA and siRNA. Simulations
were performed with DOTAP:DPPC = 0:1, 1:3, 1:1, 3:1, and 1:0, respectively. At
that time, as a counter ion, an anionic water cluster model (Wm) containing OH−
was defined in addition to A–F in Fig. 7. As a condition in the parameter calculation,
the set distance of the dielectric model in the calculation of the solvent effect was
adjusted to 1.1 times the sigma of the UFF force field [55] following the Gaussian
09. As a result of DPD, it was found that the greater the ratio of DOTAP, the more
oblate lipid vesicle becomes. This tendency was in good agreement with the SAXS
result [56].

3 Detailed Analysis Using a Reverse Map

In the previous sections, we have verified a method for mesoscale analysis using
nano-level information in the form of DPD execution using parameters obtained
from high-precision interaction energies by FMO calculation. This section describes
an attempt to perform detailed analysis at the nano level by mapping atoms to the
results of the DPD simulation. This approach is called reverse mapping or back
mapping and has been tested by Doruker et al. [57–61]. By atomizing the DPD
results and performing FMO calculations, the accuracy of the obtained parameters
can be confirmed and a local detailed analysis can be performed. In this section, we
report the development of a system that atomizes the DPD results using reverse maps
and performs a detailed analysis using FMO calculations for the test model of Nafion
and lipid membranes described in the previous section.
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3.1 Reverse Map Scheme

The reverse map of the DPD results and the procedure for detailed analysis of the
atomized structure are shown below.

(i) Density conversion is performed in order to adjust the DPD dimensionless
result to correspond to the real dimension.

(ii) Atom information of the segment is assigned for each coarse-grained particle.
At this time, the segment molecules are rotated in order to match the termini
position of the particle as much as possible.

(iii) The structure obtained in (ii) is relaxed by usingMD (using an NPT ensemble).
(iv) Cut out the part of the structure obtained in step (iii) where you want to do

FMO calculations.
(v) Fragment information is set to the structure of (iv) and FMO calculations are

performed. In this study, the MD calculation in step (iii) and FMO calculation
in step (iv) were performed by using the programs COGNAC (GAFF forcefield
was assigned) and ABINIT-MP, respectively. The series of calculation systems
will be available soon.

3.2 Test Examples

The model of the polymer electrolyte membrane and lipid membrane treated in
the previous section was used as a calculation target. DPD was performed using a
model of 1000 particles for the polymer electrolyte membrane and 5000 particles
for the lipid membrane. In this chapter, we assume that we return to the atomic
structure, and we introduce a stronger potential that takes into account the rigidity
of the skeleton. In Nafion and POPC, the harmonic potential of C = 160, re=0.6
in Eq. (15) was introduced between particles directly bonded to each other, and the
harmonic potential of C = 80, re=1.2 was introduced at 1–3 particles as the potential
for maintaining the angle. The DPD results were atomized in the above scheme,
and after relaxation by MD, FMO calculations were performed at the FMO2-MP
2/6-31G (d′) level.

Figure 9 shows the results of theFMOcalculations of the reversemapped structure.
From the DPD results of 1000 particles, the structure of 11,000 atoms could be
obtained. As can be seen from the results of (c) in the figure, the water molecule
(Red), which directly contacts the sulfonic acid part (yellow part) at the interface
between the electrolyte membrane and water, shows a strong interaction. The IFIE
value was about −20 kcal/mol. Similarly, a strong interaction between phosphoric
acid and water was observed in the lipid membrane.
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(a) (b)

(c)

Fig. 9 The FMO analysis for the reverse mapped structure of Nafion. a The full-atom structure
using a reverse map (about 11,000 atoms). b The interface between the electrolyte membrane and
the water cluster. c IFIE analysis shows that the region showing a strong interaction with the yellow
region (sulfonic acid) is red

4 Summary

We have described our newly developed method, FMO-DPD, which calculates the
parameters between the components of an arbitrary molecule and performs meso-
level simulations, and performed pioneering applied calculations in systems where
the parameter problem is significant.

For the small molecule system examined in the preceding study, the calculation
by this method was carried out, and the experimental value was reproduced with an
error of about 10% on the upper critical temperature of the phase transition obtained
from the χ parameter. The parametrization program is available under the name of
FCEWS [24] and distributed in a bundle with thematerial analysis software J-OCTA.
In the polymer electrolyte membrane, the difference of the connecting behavior of
the cluster by the water content in Nafion and SPEEK was verified. The peak posi-
tion and shape of the small angle scattering calculated from the radial distribution
of water particles for Nafion were in good agreement with the experimental values.
When the results of the connectivity of the water cluster were compared between
Nafion andPEEK, the trend agreedwith themeasured value of the conductivity. In the
case of lipid membranes, we succeeded in reproducing the structures of vesicles and
membranes in POPC. The membrane area and thickness were in reasonable agree-
ment with experimental values [50–53, 55]. The simulation of the mixed membrane
intended for DDS was also carried out, and the shape change of the vesicle was
reproduced. In addition, a reverse map of the DPD results and FMO calculations was
established.
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More recently, we have been working on folding calculations for small proteins
and simulating other more challenging lipid systems [62, 63]. In addition, reducing
the computational cost of parametrization through machine learning is under consid-
eration. As shown by various applied calculations, the FMO-DPD method, which
combines highly accurate molecular orbital calculations with coarse-grained simu-
lation methods, has great potential as a design tool for predicting physical properties
in general.
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FMO-Based Investigations of
Excited-State Dynamics in Molecular
Aggregates

Takatoshi Fujita and Takeo Hoshi

Abstract In this chapter, we review our approach to investigate optoelectronic
functions and excited-state dynamics in molecular aggregates. The approach is
based on electronic coupling calculations by the fragment molecular orbital (FMO)
method. The electronic couplings determine charge transfer and excitation energy
transfer rates and are thus essential for describing optoelectronic processes. More-
over, the electronic couplings can also be used for derivations of model Hamiltoni-
ans, which enable real-time dynamics simulations by the wavepacket propagation
method. As illustrative applications, we investigate exciton relaxation dynamics in
an organic semiconductor thin film and charge-separation dynamics in an electron–
donor/electron–acceptor interface. We demonstrate how the FMO and wavepacket
dynamics methods can be used to understand the excited-state dynamics of the
organic materials.

Keywords Electronic couplings · Wavepacket dynamics · Excitons · Organic
optoelectronic materials

1 Introduction

Molecular aggregates can exhibit remarkable optical and electronic properties that
differ substantially from those of an isolated molecule [49, 50]. Because of their
attractive features, organic aggregates comprising semiconductor molecules or poly-
mers can potentially lead to flexible, lightweight, and printable electronic devices
[2]. Predicting the optoelectronic properties of organic aggregates is essential to
understanding the mechanism of device operation and to rationally designing novel
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materials. However, organic materials are typically large and disordered systems;
their electronic states cannot be treated by conventional quantum chemistry meth-
ods. Moreover, the charge photogeneration process in an organic solar cell consists
of several elementary steps, including light absorption, excitation energy transfer
(EET), and charge transfer (CT). Simulating time evolutions of the electronic states
are necessary for understanding such energy conversion processes in a solar cell or
a light-emitting diode.

The fragment molecular orbital (FMO) method proposed by Kitaura and co-
workers [33] is a fragment-based ab initio electronic structure theory capable of
treating large systems. In the FMO method, a system is divided into a lot of frag-
ments; the total energy and physical quantities are approximated from self-consistent
field (SCF) calculations of fragment monomers, dimers, and optionally trimers. The
theoretical formulations of the FMO method and its applications have been well
documented [10, 11, 14, 55], and they are found in other chapters in this book.
Molecular orbitals (MOs) obtained in the FMO method are localized within a frag-
ment monomer or dimer. Thus, the FMO method could not be applied to functional
molecular aggregates, in which an electronmay be delocalized overmanymolecules.
The delocalization of wave functions must be recovered to investigate electronic pro-
cesses occurring in organic materials.

Electronic coupling calculations are essential ingredients in computational stud-
ies of the electronic processes. An electronic coupling is defined as the electronic
interaction between initial and final diabatic states associated with EET or CT. In
this manuscript, we use a diabatic state to refer to an electronic state, in which a
charge carrier or an electronic excitation is localized within a subunit in the total
system. From another perspective, if an electronic Hamiltonian is calculated in the
diabatic basis, the off-diagonal elements correspond to the electronic couplings.
The application of the FMO to CT coupling calculations was pioneered by Kitoh
and Ando [34, 47]. In their initial work [47], they have compared the generalized
Mulliken-Hush [26], Green’s function, and FMO-linear combination of molecular
orbital (FMO-LCMO)methods [57]. The details of the CT coupling calculations can
be found in the other chapters in this book. The EET coupling calculation within the
FMO was first implemented by Fujita et al. [21] on the basis of the multilayer FMO
(MLFMO)/configuration interaction single (CIS) [13, 42] method and the transition
charge of electrostatic potential (tresp) [41]. Later, Fujita et al. have generalized the
electronic coupling calculation [22] using the transition density fragment interaction-
transfer integral (TDFI-TI) method introduced by Fujimoto [16, 17]. The electronic
couplings have also been adopted for calculating nonlocal excited states in large
molecular systems [18, 22].

In this chapter, we review our FMO-based investigations of excited-state dynam-
ics in organic molecular aggregates. Our approach is based on three components:
(i) FMO-based electronic coupling calculations, (ii) derivations of model Hamil-
tonians, and (iii) a wavepacket dynamics method. Using the electronic couplings
obtained from an FMO calculation for an aggregate, we derive a model Hamilto-
nian that describes a charge carrier or an exciton in the aggregate. From a theoretical
viewpoint, an ab initiomany-electronHamiltonian can bemapped into a reduced one-
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body or two-body Hamiltonian through the FMO calculation. The time evolution of
the model Hamiltonian is then simulated using a wavepacket propagation method.
We attempt to understand photophysical and optoelectronic processes in a molec-
ular aggregate as the quasiparticle dynamics described by the model Hamiltonian.
We have implemented the electronic coupling calculations and model Hamiltonian
derivations into the ABINIT-MP [44, 45, 55] program. In view of computations,
an FMO calculation by the ABINIT-MP program provides Hamiltonian matrix ele-
ments. The matrix data are then passed to other software that simulates the time
propagation. After reviewing the methods and implementations, we describe their
application to organic electronic materials.

2 Electronic Couplings and Model Hamiltonians

2.1 FMO-LCMO Method for CT Couplings

First, we briefly summarize the FMO-LCMO method. The FMO-LCMO relies on
the FMO-like many-body expansion of the Fock matrix [12, 38, 57]:

F =
∑

I

⊕FI +
∑

I>J

⊕ (
FI J − FI ⊕ FJ

)
, (1)

where FI and FI J are Fock matrices for fragment monomer and dimer, respectively.
Here, the direct sum indicates that thematrix elements ofFI andFI J should be added
to appropriate locations in the total Fock matrix, F. In the FMO-LCMO method, the
fragment Fock matrices are calculated in the basis of fragment monomer MOs. For
example, matrix elements of FI and FI J are calculated according to

F I
I p,I q = 〈ψ I

p|F I |ψ I
q 〉 = δI p,I qε

I
p, (2)

F I J
I p,Jq = 〈ψ I

p|F I J |ψ J
q 〉 =

∑

r∈I J
ε I J
r 〈ψ I

p|ψ I J
r 〉〈ψ I J

r |ψ I
q 〉. (3)

Here, |ψ I
p〉 is a wave function of a pthMO in an I th fragment; ε I

p is the corresponding
orbital energy; and p, q, and r refer to the general MO. Because the monomer
MOs of different fragments are not orthogonal, the overlap matrix elements between
them must be considered. Diagonalization of the FMO-LCMO Fock matrix as a
generalized eigenvalue problem yields approximate solutions to the canonical MOs
of the whole system.

The advantages of the FMO-LCMOmethod are the efficient matrix-size reduction
and the electronic coupling calculations. If all monomer MOs are included as the
basis functions for the total Fock matrix, the dimension of the total Fock matrix is
the same as the number of atomic orbitals (AOs) in the entire system. However, we
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Fig. 1 Schematics of a CT
coupling and b EET
coupling

expect that canonical MOs around the highest occupied molecular orbital (HOMO)
or lowest unoccupied molecular orbital (LUMO) are dominantly described from the
monomerMOs around the HOMO or LUMO of each fragment monomer. Therefore,
theMOs around theHOMO–LUMO region of the whole system can be appropriately
reproduced by the reduced Fock matrix, which includes a small number of MOs of
each fragment. Another advantage of the FMO-LCMO method is the CT coupling
calculations. By definition, an interfragment off-diagonal element of the total Fock
matrix describes the electronic interaction between two monomer MOs [23, 35, 36],
as schematically depicted in Fig. 1a. The off-diagonal elements in the FMO-LCMO
Fock describe an interaction between nonorthogonal MOs, and defining electronic
couplings as the interaction between orthogonal MOs is often useful. In the FMO-
LCMOmethod, the following orthogonalized Hamiltonian [40] can be used to define
the electronic coupling:

F′ = S− 1
2FS− 1

2 , (4)

where S− 1
2 is the square root of inverted overlap matrix of monomer MOs. Note that

for the 2 × 2 case, the FMO-LCMO method is almost equivalent to the projective
method introduced by Baumeier, Kirkpatric, and co-workers [3].

2.2 MLFMO-CIS Method for EET Couplings

In this subsection, we present EET coupling calculations based on the MLFMO. As
represented in Fig. 1b, an EET coupling is defined as the interaction between two
local excited states [16, 26, 30]. In the FMOmethod, an excited state localizedwithin
a fragment monomer is obtained by the MLFMO method in combination with an
excited-state method, such as the configuration interaction method [42, 43, 54] or
time-dependent density functional theory (TDDFT) [5–7]. The EET coupling can
then be obtained as the interaction between two local excited states.

We start by summarizing the MLFMO method for obtaining local excited states.
In the MLFMO scheme [13, 42], fragments in a whole system are divided into lower
and higher layers. After a ground-state calculation of thewhole system, the fragments
in the higher layer are treated by an excited statemethod. In theMLFMO-CISmethod
[42], for example, an excited-state Hamiltonian matrix of a fragment monomer is
calculated and diagonalized to obtain the excitation energies (EIm) and excited-state
amplitudes (bIm

ia ), where m is an index for an excited state.



FMO-Based Investigations of Excited-State Dynamics in Molecular Aggregates 551

Here, we introduce a fragment configuration state function (CSF) that includes
all electronic degrees of freedom in the whole system. An excited state, which is
obtained from MLFMO-CIS for a target fragment, contains electronic degrees of
freedom only in the fragment. The fragment CSFs must be considered to define
Hamiltonian matrix elements of the whole system. First, the ground-state wave func-
tion of the whole system is described as the product of fragment ground-state wave
functions, |G〉 = �I |�Ig〉. The singlet singly substituted fragment CSF is defined

as, |eIah Ji 〉 = 1√
2

(
a†I a,αaJi,α + a†I a,βaJi,β

)
|G〉, where a†I a,α (aIa,β) is the creation

(annihilation) operator of the α-spin (β-spin) electron in the ath orbital of the I th
fragment. Here, i and a refer to occupied and virtual MOs, respectively. In this
section, only singlet excited states are considered, although the extension to triplet
excited states is straightforward. A fragment CSF describing a local excitation (LE)
is defined from the CIS amplitude and the intrafragment singly substituted CSFs:

|LEIm〉 =
∑

ia

bIm
ia |eIah I i 〉. (5)

Using the fragment CSFs for LE states, we define excitonic couplings as the
interaction between two localized excited states.

VIm,Jn = 〈LEIm |H |LEJm〉 = VF + VD. (6)

Here, VF and VD represent long-range and short-range contributions, respectively,
and they are given by

VF = 2
∑

μν∈I

∑

λσ∈J

T Im
μν T Jn

λσ (μν|λσ), (7)

VD = −
∑

μν∈I

∑

λσ∈J

T Im
μν T Jn

λσ (μλ|νσ). (8)

Here, T Im
μν is the transition density matrix [15] of the mth excited state of the I th

fragment; it is defined as T Im
μν = ∑

ia b
Im
ia C I

μiC
I
νa , where C

I
μi is the MO coefficient.

The term (μν|λσ) denotes two-electron AO integrals. VF describes the long-range
Coulomb interaction; its leading term is the dipole–dipole coupling. By contrast, VD

corresponds to the short-range exchange interaction; its magnitude is much smaller
than that of the long-range term in the case of organic molecular aggregates.

The excitonic Coulomb couplings defined by Eq. (7) can be approximated as the
sum of pairwise interactions of atomic point charges,

VIm,Jn =
∑

A∈I

∑

B∈J

qm
A q

n
B

|RA − RB | , (9)
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where RA denotes a nuclear position of an Ath atom, and qm
A is a transition atomic

charge [41] for an mth excited state. The transition atomic charges are determined
in such a way that they reproduce the transition density of the mth excited state.

2.3 Model Hamiltonians for Molecular Aggregates

In this subsection, we discuss the connection between the FMO method and model
Hamiltonians. The electronic Hamiltonian in the FMOmethod contains all electronic
degrees of freedom in the whole system; simulating real-time dynamics is thus a
formidable task. By contrast, a model Hamiltonian describes a quasiparticle and
treats electronic degrees of freedom as a one-body or a two-body problem. Therefore,
the real-time dynamics of excited states can be realized using the model Hamiltonian
in combination with a wavepacket dynamics method. Model Hamiltonians can be
derived from the FMO calculation by assigning each molecule as an independent
fragment. That is, a fragment in the FMOmethod can be regarded a molecular site in
model Hamiltonians. Here, we introduce model Hamiltonians that describe a single
charge carrier or an exciton in amolecular aggregate, relating themwith the electronic
couplings obtained from the FMO method.

The model Hamiltonian for a single charge carrier (either a hole or an electron)
is described as a tight-binding form,

F ′ =
∑

I

ε I
p′ |ψ I

p′ 〉〈ψ I
p′ | +

∑

I>J

tI p′,J p′ |ψ I
p′ 〉〈ψ J

p′ |, (10)

where ε I
p is the MO energy of an I th molecular site and tI p′,J p′ is the transfer integral

between two sites I and J . Here, we assumed a single orbital per molecular site,
while the inclusion of many MOs per molecular site is straightforward. The model
Hamiltonian for a hole or an electron can be obtained if p = HOMO or p = LUMO.
When eachmolecule is assigned as an independent fragment in the FMO calculation,
theFMO-LCMOFockmatrix is almost equivalent toEq. (10).Because the orthogonal
basis is assumed in the tight-binding Hamiltonian, the diagonal and off-diagonal
elements of the transformed Fock matrix (Eq. 4) can be regarded as the site energies
and transfer integrals in Eq. (10), respectively.

The model Hamiltonian for electronically excited states of molecular aggregates
is given by the Frenkel exciton model [9]. The Frenkel exciton model writes an
excited-state wave function of the total system as a superposition of intramolecular
excited states:

〈LEIm

∣∣H
∣∣LEJm〉 = δI J EIm + (1 − δI J )VIm,Jm . (11)

Here, we assume one excited state per fragment (m = S1) for simplicity. The basis
|LEIm〉 denotes a state in which an I th molecule is excited, whereas the rest of the
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molecules are in ground states. By the construction, the basis state in the Frenkel
exciton model can be described as the fragment CSF for the LE state in the MLFMO
method. Therefore, the parameters in the Frenkel exciton model can be derived from
the MLFMO method: EIm and VIm,Jm can be obtained as an excitation energy of
a fragment monomer and an excitonic coupling, respectively, in the MLFMO-CIS
method.

The Frenkel excitonmodel can be extended to describe any single-electron excited
states by correcting fragment CSFs of interfragment CT excitation, |eIah Ji 〉 (I �= J ).
Here, the Frenkel-CT Hamiltonian is

H = HF + HCT + HF−CT , (12)

where HCT is the Hamiltonian for interfragment CT states and HF−CT describes the
interaction between LE and CT states. The off-diagonal matrix elements of HCT are
given by transfer integrals. The matrix element of HF−CT is calculated as a product
of a CI amplitude and transfer integrals. Details of the Hamiltonian matrix elements
are described elsewhere [18].

The Frenkel-CTHamiltonian can be simplified if onlyHOMOandLUMOorbitals
are used. Dropping the MO subscripts, we can write the electron–hole Hamiltonian
as 〈

eI h J

∣∣H
∣∣eK hL

〉 = δJ L F
e
I K + δI K F

h
J L + H 2e

I J,K L , (13)

where Fe and Fh are one-body Hamiltonians for an electron and a hole, respectively.
H 2e contains electron–electron interaction terms such as electron–hole Coulomb
interactions and excitonic couplings. In the CIS method, H 2e describes the Hartree–
Fock (HF) Coulomb term and the exchange term, which correspond to electron–hole
exchange and electron–hole Coulomb attraction, respectively.

3 Implementation in ABINIT-MP

In this section, we briefly summarize the computational procedure and implemen-
tation. The electronic coupling calculation and derivations of the model Hamilto-
nian have been implemented in the ABINIT-MP software developed by Nakano,
Mochizuki, and co-workers [44, 55]. The FMO-LCMO method was implemented
at the FMO2 level [57]. After SCF calculations for fragment monomers and dimers,
fragment Fockmatrices are calculated according to Eqs. (2) and (3), respectively. The
total Fock matrix is then calculated from the fragment Fock matrices, which can be
used for calculating the CT electronic couplings or for carrier mobility simulations.

The implementation of the excitonic coupling and calculations of the excited-
state Hamiltonian are based on the CIS module in the ABINIT-MP developed by
Mochizuki and co-workers [42, 43, 54]. After a conventional ground-state FMO
calculation, excited-state calculations are performed for fragment monomers. The
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resulting CIS transition densities are used for the excitonic coupling through the
Fock-like contraction [15], as in Eqs. (7) and (8). The derivation of tresp charges was
implemented on the basis of the CIS transition density and the optimally weighted
charge introduced by Okiyama et al. [48].

4 Wavepacket Dynamics

This section is devoted to the foundation of wavepacket dynamics. From the
mathematical viewpoint, a wavepacket is expressed on an N -component vector
u ≡ (u1, u2, . . . , uN )T and the dynamics is formally written, in the form of time-
dependent Schrödinger equation, by

i
du
dt

= Hu, (14)

where H is an N × N Hamiltonian (Hermitian) matrix. The real-time dynamics is
given by the formal solution of

u(t + h) = e−ihHu(t), (15)

with a given tiny time interval h. When the wavepacket dynamics of a hole or excited
electron is considered, its time scale is much smaller than that of the atomic motion.
A typical scale of the time interval h is estimated by the atomic time unit of

τau ≡ �
3

m

(
e2

4πε0

)−2

≈ 0.024189 fs ≈ 1

40
fs (16)

with the electron mass m, the elementary charge e, Planck’s constant �, and the
dielectric constant of vacuum ε0. Therefore, the time interval h is usually much
smaller than that in the molecular dynamics simulation (hMD ≈ 1fs).

Wavepacket dynamics simulations of a one-body wave function, hole, or excited
electron, have been investigated for decades, since the method can describe both
ballistic and diffusive behaviors. As a typical method, the wavepacket is perturbed
by the atomic thermal motion and an essential issue is the modeling of the atomic
motion. For example, a pioneering paper [56] adopted a one-dimensional site model,
in which each molecule is treated as a lattice site and the electron–phonon coupling
is included. The atomic motion is realized by the classical (Newtonian) dynamics
of mobile lattice sites. The wavepacket is represented on sites and its dynamics is
realized by the quantum wavepacket dynamics. The real-time dynamics is simulated
with the time interval of h = 1/40 fs.

Although the atomic motion appears explicitly in the above theoretical approach,
another approach is a method in which the atomic motion is treated as randomized
effects on a wavepacket. The matrix H is dependent on time and is governed by
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randomized variables that reflect the atomic motion. For example, hole wavepacket
dynamics of condensed organic molecules or polymers was realized with a tight-
binding (Slater–Koster form) Hamiltonian H on AO bases [27, 29]. The number of
bases NAO is proportional to that of atoms Natom (NAO ∝ Natom). The explicit atomic
structure is used as an input and the Hamiltonian H is decomposed into two terms:

H = H0 + Ha. (17)

The first term H0, a constant matrix, is the tight-binding Hamiltonian that is deter-
mined by the input atomic structure and the second term Ha = Ha(t) is a randomized
matrix that stems from the thermal motion. In Refs. [27, 29], for example, the ran-
domized matrix is modeled to be diagonal and

(Ha)μμ ≡ kBT

2
cos 2πθA(μ), (18)

where the temperature is denoted as T and a random number of θA is generated for
each atom index A (A = 1, 2, . . . , Natom). The subscript A(μ) indicates the atom that
includes the μth AO. The random numbers {θA}A are updated as a uniform random
number of θA ∈ [0, 1] with the time interval of (h = 1fs). In short, the AO energy
Hμμ has a time-dependent fluctuation on the order of T . From the above definition,
the same random number is applied among the AOs on the same atom. The initial
value of Ha is chosen to be the zero matrix (Ha = O), since the term of Ha appears
as a consequence of the atomic structure deviating from the initial one by the thermal
motion. The initial wavepacket is chosen to be an eigenvector of H(t = 0) = H0,
typically the highest occupied state. The initial atomic structure is usually disordered
from the thermal motion and the initial wavepacket u(t = 0) is localized on one or
several atoms. At the zero-temperature case, Ha is always zero (Ha = O) and the
wavepacket does not propagate, because the wavepacket population on the μth AO
basis pμ(t) ≡ |uμ(t)|2 is unchanged. At a finite-temperature case, Ha is non-zero
(Ha �= O) and the wavepacket can propagate through the material. In other words,
the wavepacket propagation is driven by the atomic motion term of Ha. Since the
Hamiltonian matrix H(t) in the time interval of nh ≤ t ≤ (n + 1)h with a given
integer n is constant (H(t) = H(nh)), the real-time dynamicswithin the time interval
is realized analytically by diagonalizing H(nh).

Here, a theoretical generalization is proposed, as a preliminary research, for exci-
ton wavepacket dynamics within the mathematical formulation of Eq. (14) [1, 28].
Suppose a system of Nmol molecules. A basis of the wavepacket vector u means a
two-body state denoted by a pair of an (excited) electron and a hole as |eI h J 〉, where
the electron occupies the I th molecular site and the hole occupies the J th molecular
site. The constant Hamiltonian term H0 indicates the two-body Hamiltonian for a
given atomic structure and is generated by the FMO-based method explained in this
chapter. The number of two-body wave function bases NCSF is proportional to N 2

mol
(NCSF ∝ N 2

mol). The atomic motion term Ha is modeled by the diagonal matrix of
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(Ha)kk = 〈eI h J |Ha|eI h J 〉 ≡ kBT

2

(
cos 2πθJ (k) + cos 2πθI (k)

)
, (19)

where the temperature is denoted as T , k refers to a two-body basis, and a random
number of θI is generated for each molecular index I or J (I, J = 1, 2, . . . , Nmol).
The subscript J (k) indicates the molecule that is occupied by the hole of the kth
two-body basis, while subscript of I (k) indicates the molecule that is occupied by
the electron of the kth two-body basis. The real-time dynamics is realized by the
same numerical method as that in the one-body wavepacket dynamics.

Finally, the computational aspect for large systems is discussed on the above
method. The computational time of the method is governed by the iterative diago-
nalization of H(nh) (n = 0, 1, 2, . . .). Sinceweused a dense-matrix solver inScaLA-
PACK (http://www.netlib.org/scalapack/), the computational time is proportional to
N 3 ∝ N 6

mol and will be impractical for large systems, such as a system with thou-
sands of molecules or more (Nmol ≥ 103, N ∝ N 2

mol ≥ 106). An eigenvalue problem
with N = 106 in the electronic state calculation was solved within 1.5 hours by
the whole system of the K supercomputer [25]. Since the matrix H is, fortunately,
sparse in most cases, the use of sparse-matrix solvers, like Krylov subspace method,
is promising for large systems.

5 Applications to Organic Electronic Materials

5.1 DNTT Thin Film

In this subsection, we present the application of the combined FMO and wavepacket
methods to the exciton dynamics in an organic semiconductor thin film. Optical
properties of organic molecular aggregates have been investigated by the Frenkel
exciton model. Because of relatively low dielectric constants of organic systems,
an electron–hole Coulomb attraction is considered to be sufficiently strong to form
a bound electron–hole pair. However, this Frenkel exciton model is challenged by
electron energy-loss spectroscopy [51] and by ab initio calculations using the many-
body Green’s function method [52]. The nature of excited states of high-mobility
organic semiconductors has become an active research field in recent years.

Here, we focus on the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT)
thin film [22]. DNTT is a p-type organic semiconductor molecule [59]; its molecular
and crystal structures are shown in Fig. 2. In a recent time-resolved spectroscopy
study, Ishino et al. [31] have suggested that the mixed Frenkel and CT exciton is
formed after the optical excitation. Motivated by their work, we have investigated the
exciton dynamics of theDNTT thinfilmon the basis of the electron–holeHamiltonian
parameterized by the FMO and wavepacket dynamics method.

We begin with the electronic couplings between DNTT molecules. The transfer
integrals and excitonic couplings were obtained from the FMO-CIS/6-31G* calcu-

http://www.netlib.org/scalapack/
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Fig. 2 a Molecular and b, c packing structures [59] of DNTT. In (c), the molecular site chosen as
the initial condition for the wavepacket dynamics (|ψ(t = 0)〉 = |e1h1〉) is depicted in purple

Table 1 Electron and hole transfer integrals (te and th), and excitonic Coulomb couplings (VF ) in
meV for molecular pairs in the DNTT crystal structure in the ab plane (see Fig. 2b for pair labeling),
which were obtained at the FMO-CIS/6-31G* level

te th VF

Pair 1 24 83 3

Pair 2 51 38 33

Pair 3 38 125 59

lation for the DNTT trimer. In Table1, we show the HOMO–HOMO and LUMO–
LUMO transfer integrals (th and te), and the excitonic Coulomb couplings (VF ) in the
DNTT trimer (Fig. 2b). The results show that the hole transfer integrals are larger than
the others, confirming that the DNTT is an efficient p-type organic semiconductor.
Using these electronic couplings and assuming translational symmetry, we defined
the electron–hole Hamiltonian (Eq. 13) for extended DNTT molecular aggregates.
The absorption spectrum obtained from the FMO-basedHamiltonian is in reasonable
agreement with the experimentally obtained spectrum [22].

Having obtained the reasonable model Hamiltonian for the DNTT aggregates, we
next turn to the time evolution of excited states. To this end, we adopted the stochastic
Schrödinger equation proposed by Zhao and co-workers [60]. In contrast to a method
using the classical random noise [20], this stochastic Schrödinger equation considers
quantum effects of phonon bath and appropriately provides a Boltzmann distribution
in the long time. An ensemble average of the exciton wavepacket propagations yields
the two-body electron–hole density matrix, ρeh(t) = 〈|ψ(t)〉〈ψ(t)|〉ens . The system
of 18 DNTT molecules in the ab plane, as depicted in Fig. 2c, was taken as a model
of thin films. As a limiting case, the local excited state (|e1h1〉) was used for the initial
condition of excited-state dynamics. The excitonic density matrix was calculated at
the temperature of 300 K.
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Fig. 3 a Frenkel and CT character and bCoherence between the initial LE state (|e1h1〉) between a
neighboring CT state (|e1hJ 〉, J �= 1). Reprinted with permission from T. Fujita, S. Atahan-Evrenk,
N. P. D. Sawaya, et al. J. Chem. Phys. Lett. 7:1374–1380, 2016. Copyright 2016American Chemical
Society

Here, we show the ultrafast dynamics after the optical excitation. The Frenkel
and CT character of the exciton wave function can be quantified as pF (t) =∑

I |〈eI h I |�(t)〉|2 and pCT (t) = ∑
I �=J |〈eI h J |�(t)〉|2, respectively. Figure3a shows

the oscillation between the Frenkel and CT populations, implying the presence of
electronic coherence between Frenkel and CT states. The coherence can be seen as
off-diagonal elements of the electron–hole density matrix. The electronic coherence
between the initial LE state (|e1h1〉) and neighboring CT states (|e1hJ 〉) is shown
in Fig. 3b, clearly indicating that the coherence persists for approximately 50 fs.
It follows that, for the initial 50 fs, the excited-state wave function is a coherent
superposition of Frenkel and CT states. Their electronic coherence then decays as a
result of the dissipation and thermal fluctuations, and the initial state becomes the
incoherent mixture of Frenkel and CT states for t > 50.

To gain deeper insight into the ultrafast dynamics, we highlight the dynamics
of the electron and hole wave functions that compose the excited state. Here, we
aimed to quantify the spatial extents of electron and hole wave functions. To this
end, a one-body electron or hole density matrix was obtained by tracing out the
hole or electron basis: ρe(t) = Trhρeh(t) or ρh(t) = Treρeh(t). The spatial extent
of the wave function was quantified as the generalized inverse participation ratio [8],

Le/h
ρ (t) =

(∑
I J

∣∣∣ρe/h
I J

∣∣∣
)2

/

(
N

∑
I J

∣∣∣ρe/h
I J

∣∣∣
2
)
. Because the coherence is included

in the IPR, this measure can distinguish an incoherent mixture of localized states
from a coherently delocalized state. The IPRs of hole and electron density matri-
ces shown in Fig. 4 indicate that the spatial extent of the hole is larger than that of
the electron. Regarding the HOMO–HOMO transfer integrals being larger than the
LUMO–LUMO transfer integrals, the hole wave function can be more easily delo-
calized. In addition, the strong oscillation in the IPRs implies that the hole wave
function expands and shrinks around the localized electron wave function. The time
scale of the oscillation correlates with the electronic coherence between Frenkel and
CT states. The combined FMO and wavepacket methods have revealed the underly-
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Fig. 4 Electron and hole
IPRs. Reprinted with
permission from T. Fujita,
S. Atahan-Evrenk, N. P. D.
Sawaya, et al. J. Chem. Phys.
Lett. 7:1374–1380, 2016.
Copyright 2016 American
Chemical Society
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ing dynamics of electron and hole wave functions, which govern the mixing between
Frenkel and CT states.

5.2 Pentacene/C60 Interface

In this subsection,we present the application to the electron–donor/electron–acceptor
(D/A) interface as a model for organic solar cells. In an organic solar cell, a bound
electron–hole pair is first created by light absorption. Charge separation then occurs
at the D/A interface, yielding photogenerated charge carriers. Predicting the excited
states formed across the interface is essential to understanding the charge separation.
In addition, a quantumdynamics simulation is also necessary because the total charge
photogeneration process includes several elementary steps.

Here, we focus on the D/A interface comprising a C60 molecule as an electron
acceptor and a pentacene (PEN)molecule as an electron donor, respectively. PEN/C60

interfaces have been widely investigated [4, 46], because PEN and C60 are typi-
cal p-type and n-type organic semiconductor molecules, respectively. As a limiting
interfacial orientation, we considered the face-on configuration of a PEN/C60 bilayer
heterojunction (Fig. 5). An FMO calculation was performed to characterize excited
states formed across the PEN/C60 interface. Moreover, we investigate the real-time
dynamics of charge photogeneration, utilizing the wavepacket propagation of the
electron–hole wave function.

The excited states of the PEN/C60 interface were modeled on the basis of
Eq. (12) [18]; the Hamiltonian enables a consistent description of both localized
and delocalized states and of both bound electron–hole pairs and charge separated
states. The singlet excited-statewave function of the PEN/C60 interfacewas described
as

|�〉 =
∑

cLE(C)|LE(C)〉 +
∑

cCT (C−P+)|CT (C−P+)〉
+

∑
cLE(P)|LE(P)〉 +

∑
cCT (P−P+)|CT (P−P+)〉, (20)
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Fig. 5 a Atomistic structures of the (a) face-on orientation of the PEN/C60 interface. b Local
interface structures treated quantum mechanically by the excited-state method. Reproduced from
T. Fujita,Md.K.Alam,T.Hoshi,Phys.Chem.Chem.Phys.20:26443–26452, 2018.With permission
from the PCCP Owner Societies

where |LE(C)〉 and |LE(P)〉 are intramolecular first excited states for C60 and PEN
molecules, respectively. The term |CT (C−P+)〉 denotes an interfacial charge trans-
fer (ICT) state comprising a hole on a HOMO of a PEN molecule and an electron on
a LUMO, LUMO+1, or LUMO+2 of a C60 molecule. The intermolecular CT states
within PEN molecules |CT (P−P+)〉 were also included. The matrix elements of
the excited-state Hamiltonian were calculated in these fragment CSFs. The excited
state calculation for the local interface structure (Fig. 5b)) was performed at the
FMO-CIS/6-31G** level, in which the surrounding molecules included in Fig. 5a
were treated as external point charges. Because excitation energies are substantially
overestimated at the CIS level, the diagonal elements of the excited-state Hamil-
tonian were corrected. Further details of the excited-state calculation are provided
elsewhere [24].

We introduce three quantities to characterize excited states. The ICT charac-
ter of an M th excited state is quantified by PICT = ∑

k

∣∣〈CT (C−P+)|�M〉∣∣2. The
electron–hole separation is defined as Reh = 〈�M |Re − Rh |�M〉, which denotes the
center-of-mass distance between the electron and hole wave functions that constitute
the excited state. Note that the electron–hole separation does not reflect the spatial
extent of electron or holewave functions. Therefore, we introduce the variance of Reh

to quantify the spatial extent ofwave functions,σ 2
eh = 〈�M | ((re − rh) − Reh)

2 |�M〉.
σeh increases with increasing spatial extent of electron or hole wave function and
thus quantifies the spatial delocalization of an excited state.

The diagonalization of the excited-state Hamiltonian yields more than 2,000
excited states. First, we consider ICT character versus excitation energy as shown in
Fig. 6. The lowest ICT state is located at 1.41 eV and is lower than the PEN excited
states that are optically bright. Therefore, initial excited states formed in the PEN
molecules result in the population of the lower ICT state via thermal relaxation. The
free charge carriers are then generated through the ICT states.

Next, we turn to the electron–hole separation and the spatial extent of excited
states. Here, the excited states were categorized into three groups according to their
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PICT values: PEN-dominant states (PICT < 0.2), ICT-dominant states (PICT > 0.8),
and PEN-ICT hybridized states (0.2 < PICT < 0.8). In Fig. 7a, b, Reh and σeh for
these three groups are shown in different colors. The lower ICT states (<2.0 eV)
are characterized by lower Reh and σeh values. It follows that the lower ICT state is
a tightly bound electron–hole pair comprising localized electron and localized hole
wave functions. The PEN-dominant states at approximately 2.0 eV are characterized
by a smaller Reh and relatively large σeh . These PEN-dominant states are delocalized
as the Frenkel exciton states, which are the superposition of bound electron–hole
pairs. The electronic couplings between PEN and ICT states result in the emer-
gence of the PEN-ICT hybridized states. Compared with the ICT-dominant states,
the hybridization decreases Reh but increases σeh . The enhancement of σeh is ascribed
to the electron delocalization over both PEN and C60 molecules; the superposition
of PEN and ICT states results in the electron wave function extending over PEN and
C60 molecules. The presence of the delocalized electron wave functions across the
D/A interface promotes efficient charge separation, enhancing long-range electron
transfer.
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Fig. 8 Charge-separation dynamics at the PEN/C60 interface; a the initial state (t = 0) and b the
final state (t ≈ 10 ps)

Having characterized the excited states, we present a preliminary result for the
dynamical simulation of the exciton dissociation process into electron and hole at
the PEN/C60 interface [1, 28]. The exciton wavepacket dynamics was realized by
the method described in Sect. 4. The FMO-derived excited-state Hamiltonian was
used as the constant Hamiltonian term, and the atomic motion term was modeled
by Eq. (19). The exciton wavepacket simulation was simulated at the temperature
of 30 K. We chose the initial condition of the dynamical simulation as an adiabatic
excited state that describes a Frenkel exciton state. The excitation energy of the
initial adiabatic states is 2.10 eV, and its PICT is 0.26. Thus, the initial state is the
PEN-dominant Frenkel exciton with partial admixture of ICT states.

Figure8 shows the result of the wavepacket dynamics. Here, the electron or hole
occupation ratio on each molecule is expressed by the radius of atoms (balls) of each
molecule. As shown in Fig. 8a, the initial state is an electron–hole pair nearly on the
same molecules. The final state t ≈ 10 ps is shown in Fig. 8b and is a CT-like state,
since most of the electron populations are distributed over C60 molecules.
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6 Conclusions

In the present chapter, we have reviewed our approach to excited-state dynamics
in molecular aggregates. The computations of the electronic couplings in the FMO
method were explained in detail. The transfer integrals are calculated by the FMO-
LCMO method, whereas the excitonic couplings are obtained within the MLFMO-
CISmethod. In addition, we have discussed the relationship between the FMO calcu-
lations and the model Hamiltonians. The real-time excited-state dynamics is realized
by the model Hamiltonian and wavepacket dynamics method. Our approach allows
for ab initio simulations of the excited-state dynamics; the successful simulations
require accurate parameterization of the model Hamiltonian. However, we note that
quantitative MO energies or excitation energies cannot be obtained at the HF or
CIS level. To improve the accuracy, we are currently developing many-body Green’s
function theory within the FMO framework [19].

Here, we contrast the present method with the original FMO method. According
to Li et al. [39], fragment-based electronic structure methods can be classified into
energy-based and density matrix-based methods. In an energy-based fragmentation
method, on one hand, the total energy is directly approximated from the energies
of subsystems. In a density matrix-based method [37], on the other hand, the den-
sity matrix of an entire system is first approximated from subsystem calculations,
and the total energy is then obtained from the total density matrix. Obviously, the
FMO method [33] is an energy-based fragmentation method, in which a total wave
function is not obtained. By contrast, the present FMO-based method allows for
calculating excited-state wave functions of an entire system. In this sense, the FMO-
LCMO [57] and excited-statemethod [24]may be regarded as a densitymatrix-based
approach, which is in contrast to the original FMOmethod. In terms of applications,
our approach can describe optoelectronic functions in molecular systems. This is
in contrast to FMO applications thus far, most of which utilize interfragment inter-
action energy analyses to investigate the thermodynamic stability of biomolecules.
Our developments have extended the applicability of the FMO method to explore
optoelectronic processes.

We have presented the application studies on the DNTT thin film and the C60/PEN
interface. In particular, we highlight the spatial extents of the electron and hole wave
functions that constitute exciton states.We show that the dynamics of the electron and
hole wave functions play essential roles in optoelectronic processes, such as the exci-
ton relaxation dynamics and charge separation. Because the extent of delocalization
is determined by the interplay among electronic couplings, structural disorder, and
finite-temperature effects, the combined approach based on the FMOandwavepacket
dynamics is indispensable. Although we have focused on the organic materials, our
approach is general and can be applied to other molecular systems. Potential applica-
tions include functional supramolecular systems [58] and bio-inspired materials [32,
53], as well as organic electronic materials.
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Abstract The charge transport rate constant is calculated using the Marcus theory
for a pair of fragments in two different ways: neglecting and accounting for the effect
of the environment. The latter is accomplished with the fragment molecular orbital
(FMO) method. In order to apply FMO to charge transport materials (CTMs), it is
first validated by comparing the accuracy and timings to full calculations without
fragmentation, for several types of fragmentation models applied to dispersive and
cross-linked CTMs. Secondly, the Marcus theory combined with FMO is applied
to simulate charge transport phenomena using Einstein’s diffusion model or kinetic
Monte Carlo (KMC) method. The result of charge mobility simulation shows qual-
itative agreement with experiment, and KMC is found to give better results than
the diffusion theory because it takes into account the directionality and the charge
transport path.
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1 Introduction

1.1 Importance of Analyzing the Electronic Structure
of Charge Transport Materials

Computational simulations of materials are used to facilitate material design and
predict material properties. Quantum chemical approaches are very useful for
phenomena such as charge transport based on the behavior of holes or electrons. In
most such approaches, molecular orbitals (MO) are used, describing the electronic
state. However, their computational cost makes it difficult to apply these methods for
an analysis of functional materials, because the cost of suchMO theories as Hartree–
Fock is formally proportional to the fourth power of the number of basis functions due
to two-electron integral calculations [1]. Various computational methods have been
proposed in order to calculate large molecular systems efficiently [2–4]. One of them
is the fragment molecular orbital (FMO) method, which has been applied widely in
biochemistry [5–9]. FMO offers a large improvement in efficiency at a small penalty
in accuracy, provided that the fragmentation is done properly. Although the fragmen-
tation for bio-molecules has been studied in detail, much less is known about accurate
fragmentation schemes for organic functional materials, especially charge transport
materials that are used in xerographic processes [10]. The accuracy of FMO for
various fragmentations is established and FMO is applied to study charge transport
in materials.

1.2 Computation of Charge Mobility

Different algorithms for computing charge mobility are discussed in this section and
FMO is validated as a practical tool for calculations and analysis of charge mobility
in materials.

1.2.1 Models of Charge Mobility

In amorphous organic materials, charge transport can occur between molecules
following the so-called hopping mechanism. In this mechanism, the charge trans-
port can be depicted as a series of charge hopping between neighboring molecules
through the molecular cluster. Several definitions are used to describe charge trans-
port at different size scales. At the smallest scale, a charge transport path is eval-
uated based on molecular orbital energy levels and the localization of molecules.
Also, because charge hopping involves a change in the molecular structure as the
charge state moves, the reorganization energy is a relevant property. These simple
but important mechanisms do not describe the charge transport adequately due to not
considering molecular pairs, an important aspect of charge hopping. In the Marcus
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theory, a charge hopping rate between molecular pairs is defined, and the charge
coupling element of two molecules is computed that depends on the spatial overlap
of the molecular orbitals involved in a charge hopping [11]. Moreover, this theory
explicitly considers the geometrical effects in a molecular cluster, and the trans-
port theory is employed with the charge hopping rate that is calculated for every
pair of neighboring molecules. Alternatively, there is another approach called the
Gaussian disorder model, GDM [12], where the charge transport is characterized by
deviations of the Gaussian distribution function describing the density of states and
position of molecular sites. In other words, GDM focuses on the behavior of a group
of molecules, whereas Marcus theory focuses on individual molecular pairs. In this
study, the Marcus theory is used to analyze charge transport in a molecular cluster
while the electronic structure is determined with FMO or full MO calculations.

1.2.2 Analysis of Charge Transport in Nano-Scale Simulations

In previous simulations of charge mobility performed for molecular design of charge
transport materials, the Marcus theory was employed to evaluate charge transport
quantitatively using MO methods [13, 14]. Namely, the electronic structure of an
isolatedmonomer pair is determined by anMOapproach, and then the charge transfer
rate constant is obtained based on the Marcus theory. In this approach, because
isolated pairs of molecules are calculated, the effect of the environment (mainly,
the electrostatic potential) is neglected in calculating the electronic structure, so that
polarization effects are not accounted for. In xerographic processes, often a mixture
of charge transport and polymer materials is used, for which it may be important
to consider the effect of the environment [15]. In particular, polar materials may
be substantially affected by the environmental potential. This obstacle is absent in
FMO because it has an environmental electrostatic potential in each calculation of
molecules or their pairs [5].

Besides a more sophisticated and accurate physical model including the environ-
mental electrostatic potential, FMO calculations are faster than MO methods if the
number of basis functions (or atoms) is sufficiently large. FMOis amany-body expan-
sion of size-extensive [16]molecular properties [17], and the order n of the expansion
is specified as FMOn. In FMO2, one calculates the electronic states of fragments
(monomers) and their pairs (dimers), followed by a calculation of trimers in FMO3
(all of these calculations are performed in the embedding potential) [18]. In FMO,
efficient approximations [19] reduce the scaling if the system size is large enough.
On the other hand, although the scaling of full MO calculations is formally O(N4),
integral screening, matrix diagonalization, and other techniques help to reduce the
computational cost to at most O(N3). In addition, FMO is a very useful tool to study
charge transfer because it provides the natural basis for considering molecules and
their pairs in the embedding potential, with a manageable computational cost.
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1.3 The Objective of This Study

In this study, two computational tasks are accomplished for the evaluation of charge
mobility at themolecular scale.One is to validateFMOfor charge transfermaterials in
comparison to fullMOmethods in terms of the total properties such as the energy and
also to compare the computational time. The other is to establish a charge transport
simulation model using FMO. Because FMO takes the environmental electrostatic
potential into account in the calculation of the electronic structure of molecules, it
has a great advantage for molecular design because charge transport may be affected
by the environment for instance, due to binding polymers added to charge transport
materials. After the electronic structure is calculated, the charge hopping rate for each
pair of neighboring molecules is determined, and then the charge mobility, which is
an experimentally measurable value, is obtained with the classical transport theory.

2 Validation of FMO for Organic Charge Transport
Materials

In order to perform FMO calculations, the molecular system has to be divided into
pieces called fragments. In other words, for each atom one has to assign a fragment to
which it belongs. This assignment of atoms to fragments can be done automatically
for bio-molecules using various software because bio-systems are built from stan-
dard blocks such as amino acid residues or nucleic acids. However, organic charge
transport materials need a different pattern for fragmentation, which, once estab-
lished, can be later integrated into programs. Therefore, an important objective is to
establish guidelines for fragmentation. For a chosen fragmentation, an input file is
made, which is used to execute computational software. Many results summarized
in this section have been previously published in [20].

2.1 Fragmentation of Organic Charge Transport Molecules

Charge transport materials (CTMs) are often classified as either hole or electron
transport materials for the purpose of device design. Besides this, charge transport
materials can be divided into two groups based on the existence or absence of covalent
bonds between fragments in FMO, namely, dispersive charge transport materials (no
such bonds) and cross-linked charge transport materials, shown in Figs. 1 and 2.

One of the major differences is that while dispersive CTMs shown in Fig. 1a–
c are individual molecules, cross-linked CTMs shown in Fig. 2 are macroscopic
polymers. As long as the dispersive CTMs are not composed of a large number of
atoms, it is reasonable to assign one molecule as a fragment in FMO. This strategy
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a) b) c)

Fig. 1 Example of dispersive charge transport materials: a TPD, b TPA1, c TPA2

Fig. 2 Fragment division model for a cross-linked CTM

has been found to work well in our previous studies where the number of atoms of
the dispersive CTMs is in the range of a few dozens to a few hundred of atoms [20].

On the other hand, a division of covalent bonds for a cross-linked CTM has to be
done because of its long polymer chain and cross-linking parts, see Fig. 2. In order
to build a fragmentation model, cross-linked CTMmodels were constructed with the
polymerization count of 10 and divided in several ways, as shown in Fig. 3. At first,
CTM was fragmented taking one unit as a fragment divided at every cross-linking
point as shown inFig. 3a so that there are 10 fragments inFMO.Thisway the fragment
size is kept small, and all fragments are of similar size, which gives an advantage
for parallel computations; however, test calculation showed poor convergence in
dimer calculations. Specifically, two out of five models did not converge, and for the
three that converged, the difference of the total energy between FMO and full MO
is around 3 eV, which is not small. The origin of this error is the close proximity of
two neighboring fragmentation points [21], i.e., two circled C atoms in Fig. 3a.

Next, two units were taken as one FMO fragment by dividing the CTM into five
fragments as shown in Fig. 3b. Although this division has a very high accuracy versus
full MO, 0.01 eV, again, three out of five molecular models did not converge. Finally,
the CTMwas divided into 15 fragments as shown in Fig. 3c. First, the CTM is divided
into two parts, namely, the charge transport moiety and cross-linking moiety. This
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Fig. 3 Fragmentation models with a division of covalent bonds for cross-linked CTM: a one unit
as fragment, b two units as a fragment, c two cross-linking moieties as a fragment (yellow) and one
charge transport moiety R’ (green and pink) as a fragment. Solid and dashed circles indicate the
positions of bond-attached and bond-detached atoms, respectively

is not done only to make the fragment size smaller, but to enable the interaction
analysis and separate the contribution of the charge transport moiety from that of
the cross-linking moiety. In other words, one can investigate features of the charge
transport moiety, which is important for designing charge transport, and exclude
effects of the cross-linking moiety, which is important for structural characteristics
of the materials. Note that fragmenting near the COO group was not done to avoid
having several fragmentation points close to each other. This is why there is a small
R group included in the cross-linking moiety. Secondly, the cross-linking moiety is
divided not in 10, but in 5 fragments. This is important to keep fragmentation points
separated in space. The final fragmentation model contains 15 fragments (10 charge
transport moieties and 5 cross-linking moieties) for a cross-linked CTM as shown in
Fig. 3c. An FMO fragmentation is performed at an atom, for instance, C1|–C2, not
between atoms (not C1–|–C2), and therefore there is a difference between the C1|–C2

and C1–|C2 fragmentations. In C1|–C2, C2 is the bond-attached atoms (BAA) and C1

is the bond-detached atoms (BDA), respectively, denoting the fact that the bond with
its two electrons is included in the fragment to which C2 belongs.
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2.2 Validation of Fragmentations

In this section, the accuracy of FMO is established by comparing to full MO calcu-
lations. There are two aspects in the validation of the fragmentations: the speed and
accuracy. In measuring the performance, the number of atoms N is used to study the
scaling O(Na). The error of FMO is typically proportional to the number of atoms.
The performance of fragmentations is established based on the criteria of speed and
accuracy.

The amorphous structure of a molecular cluster was simulated using molecular
dynamics (MD), see Fig. 4a. This MD simulation was done using J-OCTA [22] for
molecular modeling and VSOP, a module of J-OCTA, for MD parallel computation
(J-OCTA is a registered trademark of JSOL corporation). NPT MD was done at
1 atm and 300 K. Next, a number of snapshots are selected from MD, because the
structure is amorphous. These extracted molecular structures were optimized with
molecularmechanics (MM) executedwithCOGNAC [23] using generalAmber force
field (GAFF), see Fig. 4b. Finally, full MO, FMO2, and FMO3 calculations were
performed using the FMO code [24] implemented in GAMESS [25]. The FMO frag-
mentation, performed with Facio [26, 27], is shown in Fig. 4c. The calculations were
performed at the level of B3LYP/6-31G*. The hybrid orbital projection technique
was used to treat fragment boundaries. A single node equipped with 16 cores was
used for time measurement of the small systems containing less than 1,000 atoms.
For time measurement of larger systems, 10 nodes equipped with 20 cores per node
were used at FOCUS supercomputer system, which is a HPC infrastructure operated
by Foundation for Computational Science [28]. The difference of total energy for
fixed structures was obtained by comparing MO and FMO2. For larger systems, MO
calculations were too large to perform, and the accuracy was estimated by comparing
FMO2 with FMO3.

(a) (b) (c)

Fig. 4 Molecular systems during the validation: a amorphous structure obtained from MD;
b selected molecules, whose structure is optimized with MM; c fragmentation in FMO
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2.3 Results of the FMO Validation

The validationwas performed for dispersivemolecules, TPD, and cross-linkedCTMs
[20]. A TPD molecular cluster of up to 10 molecules was computed (Fig. 5a). The
scaling of FMO is about 1 order of magnitude smaller than that of full MO, but
it is somewhat high because the TPD molecules are relatively large and for 2–10
fragments the linear scaling regime is not reached. The computational time for FMO2
is shorter than that of MO at about 100 atoms or more. The FMO2 timings for 10–30
TPDmolecules, shown in Fig. 5b, indicate an approximately linear scaling of FMO2
with R2 = 0.9818. The dependence of the error on the system size is shown for two
ranges of the system sizes, FMO2 versus MO (Fig. 6a) and FMO2 versus FMO3
(Fig. 6b). The error dependence on the size is nearly linear with the correlation of R2

= 0.9904 and R2 = 0.9608 for these two comparisons, respectively. Thus, the FMO
error is reasonable and increases nearly linear with respect to the system size, and
the computational efficiency is nearly linear high (except small sizes). Thus, FMO
is validated for TPD as a charge transfer material.

(a) (b)
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Next, FMO is validated for cross-linkedCTMs. The scaling of FMO2observed for
the smaller range of atoms was between 1.3 and 1.7, see Fig. 7a, where cross-linked
CTM is denoted as CL-CTM. For the larger set, the scaling is approximately linear,
see Fig. 7b. The error as a function of the number of atoms is approximately linear,
as shown in Fig. 8a, b. The larger range shown in Fig. 8b has more deviations in the
error apparently due to the somewhat random effect of the structure on the accuracy,
more pronounced for larger systems and when FMO2 accuracy is measured versus
FMO3. Compared to TPD, the larger deviations in Fig. 8b may be explained by
the smaller error in TPD because it has no covalent boundaries between fragments.
Overall, the FMO accuracy and timings are reasonable for practical applications to
study charge transport in CTMs.
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2.4 Summary of the FMO Feasibility Study

The validations studies confirmed the feasibility of FMO to study charge transport
materials. An optimum fragmentation is determined for dispersive and cross-linked
charge transport materials: one molecule per fragment for the former, and for the
latter, two types of fragments are defined: charge transport moiety and cross-linked
moieties. In this way, one can focus on charge hopping between charge transport
fragments, which matches the needs of material design. In addition, one can divide
the long polymer cross-linkedmoiety into several fragments depending on the degree
of polymerization (as found above, at least two units should be used as one fragment).
As a result of the examination of the computational speed and accuracy, it can be
concluded that FMO is adequate for charge transport materials, not only increasing
the speed of calculations versus full MO, but also providing natural blocks for the
studies of charge transport.

3 Calculation of Charge Mobility

In this part, the charge mobility in CTM is analyzed using FMO, the Marcus theory,
and the transport model. The charge hopping rate, a microscopic charge transport
property, is evaluated based on the Marcus theory, using the electronic structure
calculated with FMO. Using the charge hopping rate, one can evaluate the charge
mobility, a macroscopic charge transport property, based on two transport models.
Many results summarized in this section have been previously published in [10].

3.1 Charge Mobility Based on the Marcus Theory

3.1.1 Calculation of the Charge Transport Rate Constant

Charge transport phenomena in amorphous organic charge transport materials are
often interpreted using the hopping mechanism. The charge mobility is evaluated by
first obtaining the charge transfer rate constant, which describes the hopping rate as
shown in Fig. 9a, and then the charge hopping in the molecular cluster is simulated
with a transport theory as shown in Fig. 9b. The charge transfer rate constant, obtained
from quantum-chemical calculations, is related to the charge mobility, whose value
can be measured experimentally.

According to the Marcus theory [11], the charge transport (CT) rate constant kCT
is expressed as

kCT = W 2

�

√
π

λkBT
e− (−�G+λ)2

4λkB T (1)
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Fig. 9 a Intermolecular charge hopping and b charge migration through the molecular cluster

where � is the reduced Planck’s constant (Planck’s constant divided by 2π ), kB is the
Boltzmann’s constant, T is the temperature, λ is the reorganization energy,W is the
charge coupling element, and �G is the change in the Gibbs’ free energy due to the
charge hopping. Among these physical quantities, the reorganization energy and the
charge coupling element are related to the electronic structure, andquantum-chemical
computations can be used to evaluate them.

3.1.2 Calculation of the Reorganization Energy

Due to the charge migration as the charge hopping proceeds, a molecule changes
its charge state. For example, the charge can change from 0 to +1, and vice versa,
during the hole transport process. Upon ionization, the molecule undergoes a struc-
tural relaxation leading to an energy minimum of the cation, and the energy change
from one charge state to another is denoted as λ1 in Fig. 10. Similarly, the cation
undergoes a structural relaxation to the energy minimum of the neutral state, with
the energy change λ2. These changes in the energy are important because they take
place frequently in charge hopping. According to the Nelsen’s four point method
[29], the reorganization energy λ is expressed as

λ = λ1 + λ2 = (
E∗ − E∗

+
) − (E+ − E) (2)

where E and E* are the energies of the neutral and cationic states at the geometry
of the neutral minimum, respectively, whereas E+ and E+

* are the energies of the
neutral and cationic states at the cationic minimum. In this work, λ was evaluated
for standalone molecules.

3.1.3 Calculation of Electron Coupling Elements

The charge coupling element W depends on the electronic structure of two neigh-
boring molecules between which the charge hopping occurs, and it can be calculated
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Fig. 10 Schematic diagram
of the states used to calculate
the reorganization energy
based on Nelson’s four point
method for potential energy
surfaces (PES) of the neutral
and cationic states (see main
text for the description of
symbols)

with the fragment approach [30] as follows:

W = V − 1
2 S(ε1 + ε2)

1 − S2
(3)

V = 〈ϕ1|hks |ϕ2〉 (4)

S = 〈ϕ1|ϕ2〉 (5)

εi = 〈ϕi |hks |ϕi 〉, i = 1, 2 (6)

where hks is the Kohn–Sham Hamiltonian, ϕi and εi are the molecular orbital and
the site energy of molecule i, respectively; V is the charge transfer integral; and S is
the overlap integral between two molecular orbitals. hks is defined for the dimer (the
two neighboring molecules), whereas ϕi is separately calculated for each molecule
(called a fragment). ϕi is taken to be the highest occupied MO (HOMO) of each
fragment when computing the carrier mobility.

3.1.4 Simulation of Transport Phenomena Using Kinetic Monte Carlo
Simulations

If every charge hopping between molecules occurs independently, then the charge
transfer rate constant kCT can be taken to be the probability of hopping from site i to
one of the neighboring molecules, site j, and the probability is expressed as follows:
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Pij = ki jCT∑
l �=m klmCT

(7)

The normalizing summation is taken for all the neighboring sites (in FMO, a
site is one fragment). This probability can be used either in the diffusion model or
the kinetic Monte Carlo method (KMC) to simulate transport phenomena involving
charge mobility. These two models are compared below.

The diffusion model is based on Einstein’s relation for charged particles, or
molecular sites in this study,

μ = e

kBT
D (8)

where e is the charge and D is the diffusion coefficient for charged particles. For an
isotropic molecular cluster, the diffusion coefficient D is given by

D = 1

6

∑
i j

r2i j k
i j
CT Pi j (9)

where rij is distance between the centers of mass of molecules i and j.
On the other hand, an application ofKMC to simulate charge transport phenomena

is equivalent to simulating time-of-flight (TOF). In the TOF simulation, a specimen
is placed between electrodes with an electric potential of E separated by distance d,
and the time τ is calculated as a total amount of time that the charge spends tomigrate
from anode to cathode. Since hopping probability is different for eachmolecular pair,
it is suitable to apply KMC method to determine the most probable migration path.
Then the charge mobility μ is evaluated as

μ = d

τ E
(10)

The above formulation is simulated in the following way. A specimen with a
linear size of d is simulated in MD as shown in Fig. 11, and the hopping rate for each
pair of molecules is calculated using FMO based on the Marcus theory. When each
hoping rate is determined, the hopping probability is determined following Eq. 7,
and then the optimum charge migration path can be found. Figure 12 shows how
the destination of a charge hopping is selected based on the hopping probability. In
Fig. 12a, there are four neighboring molecular sites around site i, where the charge is
currently situated. This charge hops to one of these four sites as driven by the hopping
probability. In order to determine to which site the hopping occurs, the accumulative
probability density function is evaluated as shown in Fig. 12b, and generate a uniform
random number ρ over the interval [0, 1]. If ρ satisfies the following relation:
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Fig. 11 Schematic diagram
of charge migration
corresponding to TOF
measurement

Fig. 12 Schematic of kinetic Monte Carlo simulation: a four candidates j as a hopping destination
from site i, and each pair has a hopping probability Pij . b determination of the destination site using
a uniform random number ρ and the cumulative probability distribution

J∑
j=1

Pi j ≤ ρ <

J+1∑
j=1

Pi j (11)

then the charge hops to site J. For instance, if a random number ρ happens to be
as shown in Fig. 12b, then the destination of the hopping is selected as the site 3.
This procedure that uses a random number and the accumulative probability density
function is applied every time the destination of a charge hopping is determined.
In other words, the accumulative probability density function is different for every
charge hopping site i, and a new ρ is generated every single time Eq. 11 is applied.

In addition, the electric field effect during charge migration is accounted for by
adding the following contribution to the Gibbs’ free energy in Eq. 1:

�Gi j = eE�xi j (12)
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Fig. 13 Three-step approach in the multiscale charge mobility simulation of dispersive CTM, such
as TPD: a molecular cluster calculated with molecular dynamics; b hopping rate kCT computed for
each pair of molecules with FMO; c hopping path analysis as a sequence of carrier hoppings in the
molecular cluster

where E is the static electric field and �xij is the difference in the chosen coordinate
(the field direction) between the centers of mass of hopping molecular sites i and j.

3.2 Simulation of the Charge Transport Rate Constant
and Charge Mobility

Two different scales are considered for the evaluation of the charge mobility: a
molecular pair scale to obtain the hopping rate and a molecular cluster scale to
analyze transport phenomena. Three steps of this analysis are shown in Fig. 13. At
first, the amorphous molecular cluster is simulated with MD and MM, as shown
in Fig. 13a. An NPT MD simulation is performed at 1 atm and 300 K. Next, the
electronic structure of molecular pairs is calculated to obtain the charge transfer rate
constant kCT using FMO-B3LYP/6-31G* with the Grimme’s empirical dispersion
correction [31], taking one molecules as a fragment. The Kohn–Sham Hamiltonian
hks and molecular orbitals ϕ in Eq. 3 are obtained from FMO dimers and monomers,
respectively. The charge migration path is obtained with KMC to evaluate the charge
mobility μ. The distance between electrodes, which is equivalent to the linear size
of the molecular cluster, is between 2 and 4 nm, depending on the result of MD for
each molecular species. The applied electric field strength is 30 V/µm.

3.3 Results Obtained with the Diffusion Model

First, the charge mobility is obtained using the diffusion model for transport
phenomena whereas the charge transfer rate constant kCT is calculated using MO
or FMO (in the context of the charge rate constant, “MO” refers to calculations of a
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dimer neglecting the rest of the system; “FMO” refers to the dimer in FMOwhere the
electrostatic potential from the environment is added). In the TPD case, the charge
mobility obtained from the rate constant kCT calculated with both MO and FMO is
rather similar, as shown in Fig. 14. This implies that the polarization effects for this
system are not substantial. This is because hole transport molecules are less affected
by the environment than electron transport molecules.

The simulated mobility is larger by 1–2 orders than experimental values. This can
be rationalized by the spatial randomness of amorphous materials, in which there are
various molecular pairs that are close or distant, having a large or small rate constant
kCT. According to Eq. 9, the charge mobility is proportional to the diffusion constant
D, which is approximately equal to the sum of all rate constants kCT. Because of this
summation, the constant D, and thus the mobility μ, is mainly determined by the
molecular pairs that have large rate constants kCT even if the fraction of such pairs
is small. The simulation indicates that a range of the rate constants kCT of TPD is
distributed from 103/s to 1013/s as shown in Fig. 15. There are very few molecular
pairs with kCT on the order of 1013, and these pairs result in a large diffusion constant
D, and thus a large mobility μ, as discussed above.

Fig. 14 Calculated charge
mobility from the diffusion
model combined with MO
and FMO

Fig. 15 Distribution of
charge transfer rate constants
kCT obtained with MO and
FMO
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3.4 Results Obtained with the KMC Model

The charge mobility can also be simulated with KMC. Because there was not much
of a difference in charge transfer rate constants kCT obtained by FMO or MO in
the molecular cluster composed of hole transport materials, the rate constant for
KMC is obtained only with FMO. The simulated charge mobility with the diffusion
model and KMC is compared with experimental results in Fig. 16. Although both
models qualitatively reproduce the experimental trend, the mobility obtained with
KMC is closer to experiment. It is rationalized that allowing charges to take a random
migration path in KMCovercomes the possible cause of overestimation of the charge
mobility in the diffusion model. Because detailed hopping information is obtained
in KMC, the behavior of the hopping can be discussed following the previous study
[32].

The charge hopping for every neighboring molecular pair is classified as forward
or backward, along the chosen direction given by the electric field direction. The
number of such hoppings is shown in Fig. 17. Although there are some pairs that
have more frequent charge hopping, some of them do not have a large net number

Fig. 16 Simulated and
measured charge mobility of
triphenylamine. Reprinted
with permission from ISJ
[10]
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Fig. 18 Relationship
between the hopping rate
kCT of each fragment pair
and its contribution to the
charge mobility, expressed in
terms of the cumulative
transport displacement on
the y-axis. Reprinted with
permission from ISJ [10] -150
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of hopping because hoppings forward and backward cancel out. This likely happens
for molecular pairs ij that have large kCTij and kCTji and small rates between i or j and
other sites. In other words, charge hopping takes place back and forth within the pair
ij with a large kCT. It is important to note that despite of the back and forth hoppings,
the charge tends to move forward because kCT of backward and forward hopping is
slightly different due to the applied electric field that affects change in the Gibbs’
free energy as described in Eq. 12.

Clearly, a molecular pair with a small net number hopping contributes little to
the charge mobility even if the pair has a large gross number of hoppings. The
contribution to the charge mobility is determined by the net number of hoppings and
the hopping distance along the applied field direction. In contrast, there are some
pairs that make a large contribution despite their small gross number of hoppings.
Thus, contribution to the charge mobility can be expressed as the product of net
number of hoppings and the intermolecular distance �xij in Eq. 12, as shown in
Fig. 18.

Figure 18 implies a different view of the charge migration in the diffusion model
and KMC. Because the charge mobility is approximately proportional to the square
of kCT in the diffusionmodel, the points on the plot should be found in the upper right
corner and not around the transport displacement of 0 Å. In contrast, in KMC, pairs
with large kCT do not necessarily make a large contribution to the charge mobility.
This difference suggests that a consideration of the chargemigration path is important
to analyze the dependence of the charge mobility on the molecular structure in
amorphous organic charge transport materials, because the calculated mobility in
KMC is closer to experiment than in the diffusion model.

4 Conclusion

The charge mobility of organic charge transport material has been evaluated by first
obtaining charge transfer rate constant kCT, which is an index of the charge transport
for a molecular pair, based on the Marcus theory. Then, the charge mobility μ, a
macroscopic quantity of the charge transport, has been evaluated by considering the
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charge transport as a series of charge hoppings between the pairs in a molecular
cluster. The charge mobilityμ has been simulated with the diffusion model or KMC.
FMO has also been used in similar simulations by others [33, 34].

The results showed that the values of μ simulated with KMC are larger by about
one order of magnitude than experimental values, whereas for the diffusion model
the values are larger by about two order of magnitude. In addition, it has been found
that large kCT does not necessarily contribute much to the charge mobility in the
molecular cluster because of the cancellation of the migration along the field; thus,
it is necessary to properly sum contributions of molecular pairs along a path for
an accurate evaluation of charge transport in amorphous organic charge transport
materials.
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Group Molecular Orbital Method and
Python-Based Programming Approach

Tomomi Shimazaki

Abstract In this chapter, an algorithm to solve the Huzinaga subsystem self-
consistent field equations is described, together with two approximations: a local
expansion of subsystem molecular orbitals and a truncation of the projection opera-
tor. We have referred to the algorithm as the group molecular orbital (GMO)method,
and its theoretical concept is based on fragmenting and dividing molecular orbitals,
similar to the fragmentmolecular orbital (FMO)method. However, theGMOmethod
can define a Hamiltonian for each molecular group (fragment), unlike FMO. In addi-
tion, we discuss a Python-based programming approach to efficiently implement the
GMO algorithm. Python can provide several advantages in program development,
including flexibility and high productivity, easy integration for different algorithms,
and abundant tools and libraries.We also present that the Python-based approach does
not sacrifice the computational performance of quantum chemistry calculations.

Keywords Group molecular orbital · GMO · Python · Cython · Huzinaga SCF

1 Introduction

In the fragment molecular orbital (FMO) method, a molecular system is divided
into several subsystems (fragments), and the interactions between these subsystems
are hierarchically considered to reproduce the total energy of the whole molecule
[1]. The FMOmethod is frequently used to investigate biological molecular systems
such as proteins and enzymatic reactions. We recently proposed the group molecular
orbital (GMO) method by which the Huzinaga subsystem self-consistent field (SCF)
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equations are solved by spatially dividing a molecule [2, 3]. This GMO method can
be categorized as a subsystem approach [4–15], and its basic concept is similar to
that of FMO. In GMO, we use two approximations: a local expansion of subsystem
molecular orbitals and a truncation of the projection operator [3]. These approxima-
tions are introduced to handle large molecular systems at reasonable computational
costs. Also, the GMO method can naturally define the subsystem Hamiltonian for
each group (fragment) whereas FMO cannot. Although GMO can seamlessly con-
sider N-body interactions among several monomers (groups), FMOmay not be good
at handling complex interactions, as seen in molecular crystals. Nevertheless, there
are a number of similarities between the FMO and GMOmethods, and therefore we
can integrate them into a single calculation framework. Such an FMO/GMOmethod
would be useful to compensate each of their disadvantages.

To develop first-principles quantum chemistry methodologies such as FMO and
GMO, compiled languages such as C/C++ and Fortran are usually used. The com-
putational cost of first-principles methods is extremely high, and therefore compiled
languages are adopted for calculation performances. Here, we examine the use of
Python dynamic programming language that is widely used in web and desktop
applications to implement the GMO method [3, 16, 17]. Python supports several
programming styles, including procedural, functional, and object-oriented ones. The
allocated memories in Python are automatically managed by the garbage collector
based on the reference count scheme. Also, in Python, one can easily use abun-
dant libraries and utilities so that, with these characteristics, skilled programmers
can develop their applications more efficiently than when using only compiled lan-
guages. However, Python is an interpreted language, and programs written in Python
usually run much slower than those developed in compiled languages. Therefore,
Python does not seem to be suitable for developing quantum chemistry programs.
To overcome this weakness and take advantage of Python in the quantum chemistry
field, we used a binding approach, which creates a bridge to connect Python and
the compiled languages. We used compiled languages to create hot spots in the pro-
gram and used Python for the other parts. Thus, different computer languages can
be properly used according to their appropriateness.

In the binding approach, Python scripts can directly call functions and subroutines
written in compiled languages without using system calls. Thus, we can seamlessly
handle both Python and compiled languages in quantum chemistry. The Python
ecosystem provides various binding techniques, some of which will be explained
later. In addition, we will show that the Python approach does not sacrifice the
computational performance of quantum chemistry calculations. We believe that this
approach can improve the productivity of programmers. It will be particularly useful
for SCF-level theories such as FMO and GMO. In such methods, it is necessary to
divide and aggregate molecular orbitals and handle complicated input and output
processes, which can be easily written in Python. We give a brief explanation of
GMO in Sect. 2, and the Python-based programming approach for quantum chem-
istry calculations is discussed in Sect. 3. The calculation results and a summary are
presented in Sects. 4 and 5, respectively.
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2 Group Molecular Orbital Method

In this section, we briefly discuss the GMO method. Huzinaga and Cantu derived
the following SCF equations for subsystem I [2, 3]:
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where F̂ and P̂I are the Fock and projection operators, respectively, and ϕ I
i and ε I

i
are the ith molecular orbital and energy for subsystem I. The Huzinaga SCF equation
for group I (subsystems are called groups below) is given by
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μν are the matrix elements of the effective Fock and projection
operators of group I, respectively.
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FI ,HI ,V1,I ,V2,I , andDI are the Fock matrix, core Hamiltonian, nuclear attraction,
electron–electron potential, and density matrix of group I, respectively. V emb,I is the
embedding potential for group I due to the rest of the system,
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V emb,I
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where N is the number of groups. The projection operator is defined as
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where SJ is the overlap integral matrix. N I
ovl is the number of overlapping tail groups

(defined below) around group I. The total electronic energy Eele
I of group I is
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and the total energy E of the whole system is

E =
N∑
I

Eele
I + Enr (13)

where Enr is the nuclear repulsion energy. Solving the group SCF equation with the
entire basis functions for all groups is equivalent to the Huzinagamethod, and it gives
the same regular SCF results. However, it is slower than the regular SCF method. To
obtain the total energy efficiently and accurately, we introduce two approximations
by using the locality of basis functions: the expansion of group MOs over local
basis functions and the use of a local projection [3]. These approximations reduce
the computational scale, and are suitable to facilitate parallel computations for large
systems. The further details of the GMOmethod can be found in the literature [3]. In
the next section, we discuss the Python binding approach to implement the quantum
chemistry algorithm.

3 Implementation of the Algorithm Using Python

3.1 Binding Techniques

We can integrate programs written in C/C++ as well as Fortran programs into
Python by using binding techniques. The Python ecosystem provides several tools
to bind different compiled languages such as ctypes, CFFI, f2py, Cython, Swig, and
Boost.Python. In this section, we briefly introduce the Boost.Python and Cython
techniques, which are examined in our project [3, 17].
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Boost.Python is a wrapper library that encapsulates C++ programs into Python
extension modules [18]. To create Python extensions, we need to write configuration
files describing the C++ data structures to be exposed to Python. Boost.Python gener-
ates source codes (in the style of template programming) to wrap the data structures
from these configuration files. Thus, Boost.Python allows us to directly handle C++
programs in Python, but we should note that a shared Boost.Python library is required
when an extension module created by Boost.Python is called in the run time.

Cython translates Python scripts into C/C++ codes [19]. A source code translated
by Cython can be built using a C/C++ compiler, andwe can create a Python extension
module. In Python, a standard procedure is provided to call foreign programs, but
the method is extremely cumbersome. To overcome this problem, Cython generates
C/C++ source codes for interfacing foreign computer programs with Python. Here
the C/C++ codes are translated using configuration (interface) files, which must be
prepared by the users. This process is similar to that of Boost.Python. Also, Cython
can directly create an extension from a Python script, but the execution speed of the
extension is quite slow. Thus, Cython offers a procedure to improve the performance.
For this purpose, we add C/C++ type information on variables to the Python scripts,
and the modules created from such scripts typically show faster performances. In
other words, Cython provides a superset programming language of Python, which
has type information to create fast extension modules. The computational speed of
extensions written in the Cython language is comparable to that of C/C++ native
programs. If an extension does not include any Python functions (objects) in the
body (content), it can run at almost the same speed as programs written in C/C++.
If sufficient type information is given, Cython can translate a Python script into a
complete C/C++ program. Thus, Cython can create high-speed extension modules,
whichmeans thatwe can create quantumchemistry extensions enjoying theflexibility
and productivity obtained fromPython. For example, in the initial development stage,
we can use Python to create an extension, and if it becomes clear that a higher
calculation speed is required, we just add C/C++ types to the program. In the Cython
approach, we can adopt such a flexible program development style.

3.2 Implementation Based on Boost.Python

In our project, we examined different binding techniques to develop quantum chem-
istry programs. At the initial stage, we used ctypes, f2py, and Boost.Python. Espe-
cially Boost.Python was used to handle complex C/C++ data structures, includ-
ing classes. Figure1 shows the overall structure of our developed program, where
the SCF method is written in Python. The input/output processing is also written
in Python using the JSON (JavaScript Object Notation) and YAML (YAML Aint
Markup Language) formats. To implement the input parser, we used the JSON and
YAML libraries. We can easily develop the input process by utilizing these formats
and libraries instead of defining our own ones. Conversely, the functions for obtain-
ing overlap, kinetic, nuclear attraction, Hartree, and exchange matrices are written in
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Fig. 1 Program structure of
an SCF routine. The
calculations of
one/two-electron operators
are executed in compiled
languages such as C/C++
and Fortran, and program
controls and input/output
processing are written in
Python. To bridge the
compiled languages with
Python, binding techniques
such as Boost.Python and
Cython are used

C++ because of the heavy numerical calculations involved. Eigenvector calculations
and matrix operations such as additions and multiplications are also implemented in
Fortran and C++, respectively, and these algorithms are exposed to Python by means
of the binding techniques. This program structure provides a number of benefits,
for example, if we want to replace several routines for specific purposes, we can
easily modify the Python script without compiling and building codes. In particu-
lar, the SCF loop is implemented in the style of functional programming languages.
Therefore, functions used in the SCF loop can be simply replaced.

When an extension created by Boost.Python is called in the run time, the shared
Boost.Python library is required, which means that the extension has machine and
system dependencies. The system dependency may cause some problems. Espe-
cially in high-performance computing (HPC) environments, we need to pay special
attention to the message passing interface (MPI) and OpenMP libraries [17]. The
Cython-based approach can relieve this painful situation because extensions created
by Cython do not require specific shared libraries in the run time. In the next section,
we explain the Cython-based binding technique.
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3.3 Implementation Based on Cython

Here,we discuss a quantum-chemistry-program implementation based on theCython
technique. Cython can create interfaces between C/C++ and Python, where functions
written in C/C++ can be directly called from a Python script. Therefore, we can
adopt the strategy described in the previous section (Fig. 1) in the Cython approach.
Conversely, Cython-based extension modules are less machine dependent than those
created by Boost.Python.

The Cython language is a Python superset for creating extensions where we can
specify a C/C++ type for variables in Python scripts to achieve better performance.
Conversely, if a type is not specified, the variable is handled as a Python object in
the extension. This also means that the flexibility and high productivity obtained
from Python are not impaired, even if Cython is used. If we do not care about the
performance (calculation speed) in a part of the extension,we canwrite that part using
Python. Thus, we can seamlessly use the Python and Cython languages, balancing
betweenperformance andproductivity. Even if there is a requirement for performance
later, we just specify types for variables in the Python code. Thus, we can develop
extensions for quantum chemistry algorithms in the sophisticated Python grammar.

The current version of our program uses the technique described above. We show
the program structure for our quantum chemistry functions in Fig. 2. In our program,
both C/C++ and Python/Cython are used to implement one (two)-electron operators
such as overlap, kinetic, nuclear attraction, Hartree, exchange, and so on. We used
C/C++ for the deepest part, where the shell calculations for primitive Gaussian inte-
grals are executed, and adopted Python/Cython for the other parts including matrix
constructions and parallel calculations. In our project, Python is used to achieve par-
allel computing based on theMPI library,wherempi4py is utilized [20]. In the Python
ecosystem, several libraries are provided for parallel computing, and even in Cython,
we can use these libraries without extra procedures. Thus, we can control parallel
computing including distributions and aggregations of data in the Python-based pro-
gramming style. Finally, Python functions return a numpy (numerical Python)matrix
for a one/two-electron operator [21]. The returned matrix can be handled in Python
as usual.

Finally, we discuss the OpenMP technique, in which threads and a sharedmemory
are used to achieve parallel computing. Conversely, Python uses the global interpreter
lock (GIL), which is amutex to prevent multiple threads from simultaneously access-
ing a Python object because the memory management of Python is not thread-safe.
If a programmer wants to use OpenMP functions in Python/Cython programs, GIL
needs to be explicitly removed. In the absence of GIL, programmers are responsible
for exclusive access to shared memory, as in C/C++ and Fortran.We note that Python
objects cannot be accessed without GIL. Programming in such a situation may be
similar to programming in a compiled language, for example, we need to specify a
C/C++ type for all variable needs in the part where GIL is removed. In our project,
the shell calculations for primitive Gaussian integrals are written in C++ so that we
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Fig. 2 Program structure of
a Python function to obtain a
numpy matrix for a
one/two-electron operator

can easily develop extensions without GIL. Thus, the program structure in Fig. 2 is
also suitable when OpenMP is used.

3.4 Python-Based Rapid Development

The Python-based programming approach is useful for SCF-level theories such as
FMOandGMO, butwewant to emphasize another advantage of Python.When a new
theory is developed, numerous trial-and-error procedures are usually required; hence,
especially during the early stages of the process, we may frequently need to rewrite
and modify the source codes. Through such trials, we can verify or update the new
theory. Python is useful for such trial-and-error processes. When we developed the
GMO method, we received immense support from the Python-based programming
approach. We note that CPU-consuming routines and functions, such as one/two-
electron integrals, had already been prepared as extension modules. These routines
were developed in our previous projects, and therefore we could easily use them by
simply calling the Python scripts. Thus, we could concentrate on the GMO imple-
mentation. This also means that as various extensions are prepared, we can more
easily develop various quantum chemistry algorithms in Python. The GMO exten-
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sion created in this project may be useful to develop other theories such as integration
algorithms between FMO and GMO.

4 Calculation Results

4.1 Python-Based Calculations

Here, we discuss the performance of the Python-based quantum chemistry program,
especially regarding the SCF algorithm. In this case, we used the Boost.Python bind-
ing technique, and this example could be useful for obtaining typical insights into
Python-based programming. Figure3 shows the calculation times for the SCFmethod
both with and without Python. In the case without Python, the quantum chemistry
program is implemented only in compiled languages, that is, C/C++ and Fortran,
whereas in the case with Python, the binding technique discussed in the previous
sections is used. Here, the guanine tetramer depicted in Fig. 3 is calculated at the
Hartree–Fock (HF) level using the 6-31G* basis set and a workstation with Xeon
E5620 2.4 GHz CPUs. The quantum chemistry programs with/without Python are
parallelized by the OpenMP technique and executed in the computational environ-
ment of eight CPU cores. The Python-based program requires 1738 s for the total
quantum chemistry calculation, whereas in the case without Python, the total calcu-
lation time is 1741 s. Thus, we can confirm that we do not lose any computational
performance if Python is used.

To analyze these results, we summarize the details of the computational times in
Fig. 3. The Fock matrix calculations, which include the electron-repulsive integrals,
are the most time-consuming part. The programs with and without Python require
1180 and 1183 s for this part, respectively. The eigenvector calculations and the
direct inversion of the iterative subspace (DIIS) method require the second-highest
computational times, namely, 453 and 454 s for the cases with and without Python,
respectively. The remaining parts of the quantum chemistry calculations are sum-
marized in the other sections, which includes calculations of one-electron operators,
input/output processing, and so on. The costs related to usingPython are also included
in other parts, and we can confirm that they are negligibly small. In the GMO cal-
culations, the Python approach can be used without sacrificing any computational
performance. In the next section, we show the results of such GMO calculations.

4.2 GMO Calculations

In this section, we show the calculation results obtained by the GMO method. The
size of the groups and the local basis functions influence the accuracy of GMO. To
construct the local basis functions of a group, we use the basis functions of atoms in
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Fig. 3 Calculation time with and without Python. The costs related to using Python, which are
negligibly small, are partially included in other parts. The hot spots arewritten in compiled languages
so that quantum chemistry calculations can be efficiently executed. Python can be used to develop
quantum chemistry programs without sacrificing computational performance

the group together with the tail groups located within a specified distance from the
group (R-TAILS). For water cluster systems, a water molecule is defined as a group.
For covalent boundaries, a connected set of nearby atoms is defined as a group.

We examined the energy error dependence onR-TAILS by using the (H2O)20 clus-
ter model and adopting the STO-3G basis set. When R-TAILSs of 2.8, 3.2, 3.8, and
4.8 are used, the GMO method gives errors of −0.07, 0.22, 0.23, and 0.18 kcal/mol,
respectively [3]. Here, the error is defined as the total energy difference between
the GMO and ab initio methods. The error becomes negative (overstabilization) for
the smallest tail groups and positive (understabilization) for the larger tail groups.
Two factors can be considered as error sources: one is the insufficient delocalization
stabilization of group electrons, and the other is the underestimated repulsion by
other groups through the projection operator. If the local projection approximation
is not applied, the GMO errors monotonically decrease. In this situation, the entire
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projectionmatrix is used, and the GMO errors are caused only by truncating the basis
set of groups.

For a systemwith covalent boundaries, we examined the n-alkane (C20H42) model
with R-TAILS = 2.2. We changed the number of carbon atoms in a group to confirm
the accuracy dependence on group size. When 2, 3, 4, and 5 carbon atoms are used,
the energy error becomes 11.2, −1.4, −0.43, and −0.18 kcal/mol, respectively [3].
From these calculations, we can confirm that the smallest group exhibits the largest
error and the errors become negative for larger groups owing to the underestimated
projection repulsion.

5 Summary

We have discussed the GMO method as a suitable approach for calculating large
molecular systems. This procedure solves the Huzinaga subsystem SCF equations
using approximations.We show that GMO can reproduce ab initio calculation results
quite well and has several additional interesting properties, for example, no caps
are required in GMO, where fragment boundaries are naturally handled; molecular
charges can be delocalized at fragment boundaries because of the use of tail groups;
and the embedding potential properly considers exchange interaction, which is some-
times ignored in other embedding methods. In addition, GMO gives fully variational
and quasi-orthogonal wave functions among groups (fragments).

We also discussed the Python programming (binding) technique. In several quan-
tum chemistry calculations, there are a few hot spots that heavily consume CPU
resources whereas other parts do not need so many resources. Although compiled
languages need to be used for hot spots, we can use more productive ways for the
other parts. The Python-based approach discussed in this chapter could become a
strong candidate to improve the productivity of programmers. Furthermore, for sub-
system theories such as FMO and GMO, we can obtain several advantages from
Python, for example, GMO demands frequent grouping and joining of molecular
orbitals, and such cumbersome processing can more easily be written in Python. In
addition, the Python-based approach makes trial-and-error procedures easier when
examining new theoretical ideas. Here, we explained the Python-based technique on
our quantum chemistry project, but it could be useful for other trials as well.
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1 Introduction

The parallelization of quantum-mechanical (QM)methods has historically been diffi-
cult due to the layered structure ofmultiple sophisticated algorithmswith complicated
memory access patterns. To maximize the scalability according to Amdahl’s law,
each of these algorithms has to be parallelized. However, many QM algorithms are
notoriously difficult to parallelize. Therefore, the development of quantum chemistry
code for massively parallel computation is a difficult and time-consuming task. An
efficient parallelization of the quantum chemistry code is required to utilize modern
supercomputers efficiently. As a result of the combination of algorithmic, paralleliza-
tion, and hardware advances, QMmethods can be applied to large molecular systems
[1].

The cost of conventional QM calculations scales superlinearly with the size of the
molecular systems, although there is ongoingwork to develop linear scalingmethods.
One algorithmic approach to study large chemical systems using QMmethods while
reducing the overall computational cost is to exploit the locality of QM interactions.
This can be accomplished by decomposing a molecular system [2] into fragments.
An extra benefit of this approach is that fragment interactions and properties can be
used for understanding large and complex molecular systems.

One example of the fragmentation methods is the fragment molecular orbital
(FMO) method [3, 4]. In FMO, properties of the full system are obtained by
combining the results of individual QM calculations of all fragments. The complete
FMO formalism is described elsewhere [4–10]. FMO has been implemented [11, 12]
in several computational chemistry packages: GAMESS [13, 14], ABINIT-MP [15,
16], PAICS [17], and OpenFMO [18]. There are OpenMP + MPI parallelizations of
FMO in the ABINIT-MP [19] and OpenFMO [18] packages.

GAMESS is a no-cost QM package with many commonly used QM methods
implemented. GAMESS is parallelizedwith the distributed data interface (DDI) [20].
The main idea of DDI is to abstract all communication and parallelization calls to
an underlying communication library, making the scientific DDI-parallelized code
in GAMESS hardware and software agnostic. As a result, standard DDI routines
are called from GAMESS, whereas the low-level implementation details are hidden
inside the DDI code. The two primary options for inter-processor communication
interfaces in DDI are an MPI library and a native TCP/IP socket library, in addition
to the less frequently used LAPI [21] and ARMCI [22] implementations. On most
supercomputers, MPI libraries provided by vendors are highly optimized for each
specialized high-performance interconnects (e.g., Cray Gemini, Mellanox Infini-
Band, or Intel OmniPath). The socket library in GAMESS is often used on small PC
clusters. There is also an alternative parallel libcchem library forGAMESSdeveloped
for both CPUs and GPUs (graphical processing units) [23].

Normally, DDI spawns GAMESS processes in pairs. One process of each pair
is a data server that is used for communication and data transfer, while the other
process performs QM computations. If DDI is implemented on top of TCP sockets,
the data server process uses little CPU time; however, in MPI implementation of
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DDI, the data server usually occupies a CPU core, and actively listens for incoming
connections (in some MPI libraries it is possible to reduce the performance loss by
tuning process-to-core placement options). This scheme allows QM algorithms to
asynchronously access data on other nodes, but it leverages an overhead of computing
resources due to the duplication of GAMESS processes. On x86_64-based CPU
systems (e.g., Intel Xeon or AMD Opteron) with 1–2 dozens of CPU cores, the
memory overhead is not large. However, on modern architectures such as Intel Xeon
Phi, which have 60+ cores per CPU, this overhead results in a substantial waste
of CPU power and memory. To address this problem, a more lightweight approach
that does not spawn full GAMESS processes for communication has to be used
for intranode parallelization. Using this approach, a process can spawn multiple
child threads, and these threads share most of the system resources of their parent
process. While there are many application programming interfaces (APIs) available
to implement threading in applications, OpenMP is one of the most popular APIs in
high-performance computing (HPC). There were several attempts to implement an
OpenMP parallelization in GAMESS. The implementations on Cray XT5 [24] and
on K [25] supercomputers are not publicly available.

This chapter provides an overview of the previous FMO parallelization in
GAMESS, and presents new development toward threading FMO using OpenMP.
First, the DDI interface and load balancing strategies are described. A generaliza-
tion of GDDI into an arbitrary number of parallelization levels is presented. Next,
the OpenMP parallelization of FMO on the K computer is briefly described. The
OpenMP code in GAMESS previously developed for the first [26, 27] and second
[28] generations of Intel Xeon Phi is extended in this work into treating FMO.

2 Generalized Distributed Data Interface

The generalized distributed data interface (GDDI) was developed [29] in an effort
to exploit the inherent granularity of parallelization tasks in FMO. The following
sections describe the original two-level implementation, and its generalization into an
arbitrary number of levels. The approaches used to address load balancing problems
for FMO calculations are also introduced.

2.1 Original Two-Layer Generalized Distributed Data
Interface

The two fundamental problems faced when parallelizing computational algorithms
are the cost of communication, and load balancing of work between processes. An
increase in the number of parallel processes necessarily increases the time required
to exchange data. To maximize the efficiency of computation, load balancing is
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Fig. 1 Parallelization of a Trp-cage protein (1L2Y) calculation using two-layer GDDI/2 on four
nodes (boxes) each having two CPU cores (circles), divided into two groups of two nodes. Each
group (G0 and G1) performs fragment calculations

employed in an attempt to assign the same amount of work to each process. This
helps to ensure simultaneous completion of all tasks across parallel processes. Load
balancing is essential for many QM methods due to the variability in work assigned
to each task. For example, computation of integrals involving s type basis functions
takes less time to complete than integrals involving p type basis functions. The
number of these smaller tasks is sufficiently large to enable the development of
efficient load balancing schemes that can be applied to parallel QM algorithms.

In theFMOmethod, one can take advantage of the inherent task granularity created
by the fragmentation scheme. For example, a protein calculation can be divided
into a set of subtasks (individual amino acid fragment calculations). These fragment
subtasks can then be assigned to groups of CPU cores, with each fragment calculation
being run in parallel using existing QM algorithms. This group-based methodology
implemented for both socket and MPI versions of DDI [29] provides two levels
of parallelization (Fig. 1), minimizing global communication and maximizing load
balancingbetween tasks. InMPI implementationofGDDI, a communicator is created
for each FMO group [15].

In addition to FMO, GDDI in GAMESS has been used in several QM methods,
including replica exchange molecular dynamics [30, 31] and dynamic nucleation
theory [32]. Other potential applications are numerical and semi-numerical Hessians,
and numerical gradients.

3 Extension of GDDI into an Arbitrary Number of Layers

Some QM calculation types possess more levels of granularity than 2. Examples
of methods that are capable of exploiting an extra level of task parallelism include
FMO numerical gradients, and the estimation of FMO energies for a set of molecular
geometries. The latter application is useful for building multidimensional potential
energy surface maps of chemical systems.
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Fig. 2 Parallelization of a numerical FMO Hessian calculation using three-layer GDDI/3 on 12
nodes (boxes) each having two CPU cores (circles), divided into three worlds Wi, each assigned
proteins with one coordinate shifted (only six coordinate shifts are shown). Each world is divided
into two groups as shown in Fig. 1

The multi-level GDDI in GAMESSwas implemented using both TCP/IP sockets,
and a standard MPI library. Currently, only the calculation of semi-analytic FMO
Hessians (numeric differencing of analytic gradients) was parallelized using three-
layer GDDI, useful when fully analytic FMO Hessian calculations are not imple-
mented. The loop over atomic coordinates for the numeric differencing corresponds
to the third level of parallelization of single point FMO calculations.

The GDDI parallelism is specified by an integer specifying the number of levels
after a slash (e.g., GDDI/2, GDDI/3, etc.). The implementation of GDDI/n is illus-
trated for n = 3 as follows (Fig. 2). First, all available cores are divided into worlds.
Each world is divided into groups, and each group is composed of multiple nodes.
Each world is assigned one FMO calculation (for instance, one protein). Then within
the world, groups perform individual fragment calculations. Within the group, work
is further divided between cores, for instance, two-electron integrals. The concept
of scope, introduced earlier for GDDI/2 [29], holds increased importance for values
of n > 2. The scope (that can be internally bound to an MPI communicator) shows
where the current parallel operation is applied. In GDDI/2, there are three scopes:
group master scope, group scope, and world scope. For example, when all one- and
two-electron integrals are computed, the Fockmatrix for a fragment is summed in the
group scope. After all fragment calculations are performed, the fragment energies
of different monomers and dimers calculated in different groups are summed in the
world scope. The group master scope is used to exchange information between the
groups by limiting the inter-group communications to group masters. In all cases,
the scope should be used appropriately, for instance, when an operation in the world
scope is performed, all groups must participate in it.

In GDDI/n (n > 2), the same scopes are used; there are, however, two addi-
tional operations to move up and down between the levels (these two operations are
accomplished using two new scopes, superworld and subgroup, respectively). An
illustration of this is shown in Fig. 3 (in some sense, GDDI/n has a fractal structure
with a complexity order of n). One drawback of the current implementations is that
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Fig. 3 On the left, a parallel operation in the world scope is conducted in worldW1 (with 8 cores),
shownwith a shaded ellipse. After a superworld scope change, the next operation in the world scope
extends over the whole set of worlds

Table 1 Semi-numerical Hessian calculation of (H2O)8 at the level of FMO2-MP2/aug-cc-pVTZ
on a PC cluster (3 dual 2.2 GHz Xeon nodes, 72 cores total)

Method Time (min) Cores per group Groups per world Worlds

GDDI/2 370 8 9 1

GDDI/3 257 2 4 9

dynamic load balancing for n > 2 is only allowed within the group; at all other levels,
static load balancing must be used.

To measure the efficiency of GDDI/3, a semi-numeric FMO Hessian was calcu-
lated for a cubicwater cluster (H2O)8 at the FMO2-MP2/aug-cc-pVTZ level of theory
using the point charge form of the embedding potential [33] (because at present, there
is no analytic FMO-MP2Hessian, one has to use numerical differencing). As a result
of this calculation, harmonic vibrational frequencies and IR intensitieswere obtained.
The calculation was performed on a PC cluster consisting of 3 dual 2.2 GHz Intel
Xeon-based compute nodes with a total of 72 cores, connected by Gigabit Ethernet.
The DDI implementation of MP2 was used [20, 34]. A comparison of GDDI/2 and
GDDI/3 is shown in Table 1, where it can be observed that a substantial speedup was
obtained even for this small PC cluster.

3.1 Parallel Load Balancing

There are two major approaches to load balancing, static and dynamic; however, in
practice, the two approaches can be used in a hybrid way. In static load balancing,
most suitable to the case of task granules of the same size or when the number of
CPU cores is a multiple of the number of granules, each CPU core is assigned a fixed
set of tasks. In dynamic load balancing, tasks are distributed dynamically; when one
task is finished, another task is assigned. There are five types of load balancing used
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in GAMESS: (a) plain static, (b) 1-dynamic, (c) heuristic static, (d) semidynamic,
and (e) n-dynamic (n > 1). The latter two types are in fact combinations of static
and dynamic load balancing. In n-dynamic load balancing, tasks are assigned as “n-
packs,” whereas within the pack, tasks are done statically (a simple analogy would
be: 1-dynamic is to visit a shop for each bottle of beer; 6-dynamic means buying a 6-
pack). This n-dynamic scheme was recently implemented in FMO [35]. The n-packs
reduce the large cost of processing the global counter (visiting the shop), and are
usually efficient when there are many more tasks than cores. The semidynamic load
balancing used in FMO [36] was designed to deal with the case when the sizes of the
tasks vary significantly. To put in an analogy, if ants have to carry an elephant, and
a set of small insects to their heap, naturally, the number of ants needed to carry the
elephant is much larger than the number needed to carry a scorpion. If the groups of
ants are formed once and not changed during the foraging, there has to be a way to
send the big group to the elephant rather than a loose caterpillar. This is accomplished
with semidynamic load balancing: one ormore large groups of CPU cores are created
and assigned to a set of large tasks (in case there is more than one elephant in the
forest). These large groups operate on their tasks statically; when done with large
tasks, they join other groups doing the rest of the small tasks dynamically (ideally,
they should disband forming many smaller groups but that is not yet implemented).

In FMO calculations, elephant tasks occur infrequently: in pharmaceutical appli-
cations, many drug molecules are large (around 100 atoms) whereas amino acid
residues in proteins have 10–20 atoms; in excited state calculations, only one frag-
ment is computed using very expensive methods for excited states; and transition
metals typically necessitate forming large fragments including them. In the heuristic
static load balancing [37], groups are customized for each fragment based on amodel
that predicts the cost ahead of time, then the grouping is optimized using mathemat-
ical models. There is also an implementation of FMO in GAMESS linked with a task
manager that can handle tasks with different sizes run on heterogeneous groups in
GDDI [38]. The number of tasks in FMO varies depending on whether fragments or
their pairs are calculated. For better efficiency, the number of groups is specified for
these two steps separately.

The parallel efficiency of FMOwas evaluated on the Intrepid supercomputer [39],
with the IBM Blue Gene/P architecture. The scaling was measured up to 131,072
cores. For (H2O)1024 and FMO2-MP2/aug-cc-pVDZ, the speedup was 41.1/7.1 =
5.8 when the number of cores was increased from 16,384 to 131,072 (8 times). The
FMO3-MP2/6-31G(d,p) efficiency was also measured for (H2O)64 on IBM Blue
Gene/Q on the Mira supercomputer [40]. When the number of cores increased from
2,048 to 65,536 (32 times), the speedup was 880/55 = 16. The efficiency is smaller
compared to Intrepid because themolecular system ismuch smaller (although FMO3
has a somewhat better scaling than FMO2 because there are more subtasks).
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4 OpenMP Parallelization

A drawback of an MPI parallelization is its excessive memory consumption in a
multicore environment. This is because several instances of the same application
are executed on each multicore node. Their number is limited only by the hardware
design and the software policies; it is usual to run one MPI process per CPU core.
The problem is that all of the local data of these processes are replicated. Local
data comprises both the dynamic memory, which is allocated at runtime and whose
amount can be controlled by the user, and the static memory, which is initialized
when the program starts. The memory footprint of the dynamic memory is usually
larger than that of static memory. However, the latter is significant for GAMESS.

There are also memory buffers of the MPI runtime library used for sending and
receiving messages. The number of these buffers grows rapidly with the number of
MPI processes, because the MPI library has to be ready to communicate with any
other process in the application at runtime. A typical memory footprint for several
hundreds ofMPI processes is a few tens of megabytes per process. It is not a problem
for small or medium PC clusters, but on a supercomputer consisting of many nodes
having more than 60 cores per node, the footprint of the MPI library can grow up to
several gigabytes per node.

A well-designed parallel application should keep the amount of replicated data
at a minimum and stores most of the data distributed among all processes. Although
DDI supports distributing memory among working processes, some sizeable arrays
in GAMESS are not distributed. Even though using distributed memory helps to
reduce thememory footprint, it does not reduce the overhead ofMPImemory buffers.
An effective solution to these problems is to distribute useful work between nodes
using MPI and use OpenMP inside each node. Recently, a hybrid MPI + OpenMP
parallelization of the Hartree–Fock, MAKEFP, and RI-MP2 codes in GAMESS has
been developed [27, 28, 41–44].

In a pure OpenMP application, the master process spawns multiple threads on the
same node. These threads share most of the data of the master process, except for
the data explicitly defined to be private and stack memory. The OpenMP standard
does not imply running threads on remote nodes; some OpenMP implementations
do, but they have not gained much popularity.

In contrast to OpenMP, MPI allows one to run processes on multiple nodes. The
data of any MPI process is explicitly private (i.e., it cannot be directly accessed by
any other process) and sophisticated approaches have to be used to create distributed
memory space. The hybrid MPI + OpenMP approach combines the advantages of
both approaches, where MPI is used for running processes on different nodes and
for internode communication. Each MPI process spawns a group of threads using
OpenMP. The data sharing inside each group of threads can be implemented easily
with OpenMP. Another advantage of this scheme is that OpenMP and MPI can
use separate load balancing strategies thereby reducing the amount of expensive
global communication and improving the overall performance. In the hybrid MPI
+ OpenMP code, the load balancing among MPI processes is implemented with
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the DDI library, whereas OpenMP dynamic load balancing is used for sharing work
among threads.

OpenMP is a directive-based approach, in which specific compiler directives are
inserted into the FORTRAN code. It is convenient, because OpenMP programming
does not require many error-prone modifications of the scientific code. However,
some code needs refactoring due to the language feature restrictions of OpenMP.
Special care has to be taken of the FORTRAN common blocks, which are not thread-
safe in general, so that all threads can simultaneously read and write the data stored
in a common block. All problematic common blocks have to be marked with an
OpenMP threadprivate directive.

4.1 Parallelization on the K-Computer

The first ten-petaflop supercomputer in the world, the K-computer, has 82,944
compute nodes with a single socket SPARC64 VIIIfx processor and 16 GBmemory,
which has eight processor cores or 663,552 cores in total [25]. These nodes are
connected with the Tofu interconnect, which has a 6D Mesh/Torus network struc-
ture, and the system provides compute nodes as a 3D torus network to the users.
DDI was implemented on the K-computer based on the ARMCI library [22], where
1 CPU core per node (out of 8) is used as a data management process, in contrast to
4 cores per node in the typical DDI used for data servers.

OpenMP parallelization [41] was limited to a single point resolution of identity
(RI)-based MP2 energy calculation [42, 45] using FMO. Specifically, an OpenMP
parallelization was performed for the RI-MP2 driver, subroutines for the Fockmatrix
calculation, orbital orthonormalization, matrix diagonalization, second-order self-
consistent field (SO-SCF), and electrostatic potential (ESP). An ESP implementation
was developed taking advantage of vector operations of modern processors [46].

TheFockmatrix generation is a hotspot of conventionalHartree–Fock calculations
for largemolecules. However, in FMO, themolecular system is divided into a number
of small fragments, and a different strategy should be employed for an efficient
parallelization. A typical fragment Fock matrix is small enough to reside in thread-
private memory and an efficient OpenMP version of the Fock matrix construction
can be devised.

First, each thread allocates its own copy of the fragment Fock matrix. Instead
of using OpenMP directives to declare the Fock matrices and working arrays as
private, the dynamic memory allocation was adopted in GAMESS. Next, each thread
computes its contribution to the Fock matrix, and all thread-private partial Fock
matrices are summed up at the end.

The usual OpenMP DO directives were not used for loop parallelization at the
Fockmatrix construction step. Instead, thread-local counters were used for workload
distribution, removing the overhead of thread synchronization. The dynamic load
balancing in DDI was implemented with a global counter, whereby each compute
process gets a new task index. However, assigning many nodes per DDI group,
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Fig. 4 Influenza HA protein (23,461 atoms), computed using at the RI-MP2 level using FMO on
196,608 cores of the K-computer in 11 min

inevitable on a supercomputer, results in a massive access to the global counter with
a frequent synchronization among OpenMP threads. To reduce this overhead, the
DDI load balancing was enhanced to optionally return multiple task indices in one
request, managing these multiple tasks by a local counter on each node without OMP
DO directives, in a manner closely resembling the n-pack strategy described above.

The orthonormalization of molecular orbitals can be a problem when the number
of processes in a DDI group is large. In GAMESS, it is parallelized by assigning each
orbital to a process in a round-robin fashion, which requires multiple broadcasts. To
avoid the communication overhead, a block of orbitals was assigned to a process in
a block-cycle fashion, reducing the number of broadcasts. The hotspot of a RI-MP2
calculation is matrix–matrix multiplication, for which a multithreaded library was
used. Other steps of RI-MP2 were parallelized by marking loops over occupied or
virtual orbitals with OpenMP DO directives.

The performance of this OpenMP-enabled GAMESS was evaluated on 24,576
nodes (=196,608 cores) of the K-computer. The target was the influenza HA protein
(23,461 atoms, see Fig. 4) [47] divided into 721 fragments, for which a single point
energy was computed with FMO-RI-MP2/6-31G(d) using the cc-pVDZ basis set in
RI. This benchmark calculation has been completed in about 11 min with the 78%
parallelization efficiency (Table 2).

4.2 OpenMP Parallelization on Theta

Theta is a 9.7 PFlops supercomputer built using the second generation of the Intel
Xeon Phi processors, Knight’s Landing. Theta has 3,624 nodes, each equipped with
a 64-core Intel Xeon Phi 7230 and 192 GB of DRAM. Each core has two units for
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Table 2 FMO calculations of a protein consisting of 23,461 atoms on the K-computer, at the level
of RI-MP2/6-31G(d)

Nodes Time (s) Efficiencya DDI grouping for
monomers

DDI grouping for dimers

12,288 999 192 groups of 64 nodes 768 groups of 16 nodes

24,576 641 0.78 332 groups of 64 nodes +
26 groups of 128 nodes

1,522 groups of 16 nodes + 7
groups of 32 nodes

aObtained as 999/641 divided by 2, where 2 = 24,576/12,288

floating point operations. Thus, up to 128 compute threads per node can be efficiently
used and each thread has about 1.5 GB of RAM.

Recently, an OpenMP parallelization of the Hartree–Fock code in GAMESS
has been developed [27, 28]. The OpenMP threading of other quantum chemistry
methods is under way. The limiting step of HF is the two-electron calculation in
the Fock matrix elements. The common strategy is to use the so-called direct HF,
where two-electron integrals are computed on the fly as needed, whereas the alter-
native to pre-store integrals may be useful on fast solid-state drives [48]. The algo-
rithm for the two-electron contribution to the Fock matrix has four nested loops over
atomic orbitals, which are parallelized using MPI processes and OpenMP threads.
The density matrix is easily stored in shared memory because it is unchanged during
the Fock matrix computation. The simplest and quite efficient strategy is not sharing
the Fock matrix, with each thread having access only to its own copy of the matrix.
The Fockmatrix built on each thread has to be added up (reduced), over all threads on
a node, and then over all MPI processes. Sharing the Fock matrix among threads can
be done by adding ERI contributions to a temporary buffer private to each thread, and
from time to time flushing the buffers to the Fock matrix stored in shared memory.

In FMO, the embedding electrostatic potential (ESP) is calculated for each frag-
ment I, adding contributions from fragment J �= I. The algorithm of the two-electron
ESP is rather similar to that for the Fock matrix, and the same OpenMP paralleliza-
tion strategy was used. However, because in FMO one can use the point charge
approximation [49] in the ESP of fragment I for such fragments J that are far from
I, the number of point charges can be very large.

In thiswork, the calculation of the one-electronESP contributionswas parallelized
using OpenMP. One-electron integrals are computed in a twofold nested loop over
atomic orbitals. Static load balancing is performed over MPI processes for the top
nested loop, whereas dynamic load balancing is done over OpenMP threads for the
second loop. The contribution of one-electron integrals is accumulated in the one-
electron Hamiltonian matrix. It is safe to place it in shared memory because different
threads always access different parts of this matrix.

The basic FMO parallelization using MPI + OpenMP developed in this work is
limited to the one-body FMO method, FMO1-HF, where monomer fragments are
computed. This level of calculation can describe polarization of fragments.

To test parallel efficiency on Theta, a water cluster (H2O)3932 with the radius of
30 Åwas generated using FU [50]. Each water molecule in this systemwas described
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Table 3 FMO1-HF/aug-cc-pVTZ calculations of a spherical water droplet with a radius of
30 Å consisting of 11,796 atoms divided into 3,932 fragments on Theta supercomputer using
GAMESS/MPI + OpenMPa

Number of nodes 4 8 16 32 64 128

Number of MPI compute processes 32 64 128 256 512 1,024

Total number of threads 512 1,024 2,048 4,096 8,192 16,384

Wall-clock time, seconds 842 430 222 118 69 42

a8 compute processes and 8 data servers per node, 16 threads per compute process

as a separate fragment. It was calculated at the level of FMO1-HF/aug-cc-pVTZ. On
each Xeon Phi processor, 8 MPI compute processes were executed, spawning 16
OpenMP threads each (128 threads per node in total). The timings are shown in
Table 3 and Fig. 5. The observed scaling is satisfactory overall, although there is
some room for improvement.
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Fig. 5 Wall-clock timings on the Theta supercomputer for FMO1-HF/aug-cc-pVTZ calculations
of a spherical water droplet with a radius of 30 Å consisting of 11,796 atoms divided into 3,932
fragments
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5 Conclusions

In this work, FMO parallelization strategies on several supercomputers have been
described, covering in detail various load balancing schemes. The OpenMP code in
GAMESS has been extended to work with FMO at the level of FMO1-HF. GDDI
has been generalized to provide an arbitrary number of parallelization levels. The
performance of the MPI+OpenMP code in GAMESS developed for FMO has been
tested on the Theta supercomputer, and the three-level GDDI performance has been
evaluated on a PC cluster.

The present chapter presents just first steps to thread GAMESS, but much remains
to be done extending the basic FMO1-HF implementation reported here. It is our
hope that FMO calculations in GAMESS accelerated by modern supercomputers
will be able to solve important chemical problems in future.
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