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Chapter 2
Asbestos and Mesothelioma:  
What Is Recent Advance in Research  
on Asbestos- Induced Molecular 
Carcinogenesis?

Marie-Claude Jaurand, Clément Meiller, and Didier Jean

Abstract The relationship between asbestos exposure and malignant mesotheli-
oma is established since the middle of the twentieth century. From this time, scien-
tific researches have progressed investigating the mechanism of action of asbestos 
on mesothelial cells, and more intensively during the beginning of the twenty-first 
century the analysis of the molecular changes in mesothelioma. Indeed, asbestos 
fibers were reported to induce chromosomal and genetic damage in mammalian 
cells. Mesothelioma is characterized by chromosomal alterations, which include 
numerous chromosome rearrangements, gene mutations, and gene deletions. Recent 
studies have enhanced our knowledge of the molecular landscape of mesothelioma, 
emphasizing mutations targeting more specifically tumor suppressor genes, differ-
ential gene expression, and DNA methylation in comparison with normal cells and 
between mesotheliomas, expression of noncoding RNAs, and alterations of regula-
tory pathways. Researches also provided knowledge of susceptibility factors in 
malignant mesothelioma families and relationships with asbestos exposure. It is 
time to review the recent advances in asbestos-induced molecular changes related to 
mesothelial carcinogenesis.
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1  Introduction

The role of asbestos exposure in human mesothelial carcinogenesis is well estab-
lished, but our knowledge on the mechanism of mesothelial carcinogenesis needs to 
be enhanced, as well as on the link between the molecular changes in malignant 
mesothelioma (MM) and the mechanism of action of asbestos on mesothelial cells. 
Over about 10 last years, progresses have made in the field of MM molecular char-
acterization. Some pathological and molecular changes were ascertained and other 
established. These findings encouraged us to review the recent advances in asbes-
tos-induced molecular changes related to mesothelial carcinogenesis.

2  Researches on Malignant Mesothelioma

2.1  Molecular Characteristics of Malignant Mesothelioma

Our knowledge of the molecular characteristics of MM and its pleural form has 
recently progressed. Earlier, chromosome rearrangements and mutations in tumor 
suppressor genes were reported in MPM.  Rearrangements concerned numerous 
chromosomes, especially chromosomes 9 (9p21), 3 (3p21), and 22q, with more 
frequent losses than gains. Gene mutations, especially in the tumor suppressor 
genes CDKN2A, CDKN2B, and NF2 mostly occur via partial or complete deletions, 
and low rates of mutations were detected in TP53, one gene frequently mutated in 
other cancers [1, 2]. Further studies confirmed these findings and increased the list 
of frequently mutated genes, especially adding BAP1 (BRCA1-associated gene) 
and other genes with a lower rate of mutations such as SETD2 (SET domain con-
taining 2) and LATS2 (large tumor suppressor kinase 2) [3–6]. A few genes have 
been inconsistently reported as altered in mesothelioma, CUL1 [7], or at a lower 
rate such as DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51, or genes from 
the SMARC family (SWI/SNF Related, Matrix Associated, Actin Dependent 
Regulator Of Chromatin, Subfamily C), PBRM1, COPG1, MLRP1, INPP4A, SDK1, 
and SEMA5B [4, 8–10].

Gene expression profiles in MPM revealed the differential expression of specific 
genes in comparison with normal mesothelial cells or lung tissues, or other thoracic 
cancers and provided a variety of information on the mechanism of mesothelioma 
carcinogenesis and the prognostic value of the expression level of specific genes 
[4, 11–15].

Recently, three comprehensive genomic studies demonstrated the molecular het-
erogeneity of MPM and allowed to distinguish molecular subtypes of MPM accord-
ing to their gene expression profiles [4, 6, 16]. The molecular classifications were 
partially related to the histological types. Although MPM is classically defined at 
the histological level as epithelioid, mixed, and sarcomatoid types, the gene expres-
sion profiles allowed to define histology-independent or partly dependent subtypes, 
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discriminating especially within epithelioid morphologies. Importantly, molecular 
subtypes were linked to patients’ survival [4, 6, 16].

MPM heterogeneity was further investigated by transcriptome analyses using 
deconvolution methods [17]. This approach allowed to define a set of genes that 
define epithelioid-like and/or sarcomatoid-like types of MPM.  Then, an MPM 
tumor can be decomposed as epithelioid-like and sarcomatoid-like components and 
can be defined by an E- and S-score, which refers to the proportion of these compo-
nents. Interestingly, the S-score is strongly associated with prognosis [17]. Besides, 
this study also revealed that markers of the adaptive immune response were pre-
dominant in tumors with a high S-score, whereas markers of the innate immune 
response are found in tumors with a high E-score, consistent with an impact of the 
tumor microenvironment on survival [17]. The interest of associating molecular 
investigations and histological analysis was later proposed in a review recommend-
ing to update the histologic classification of MPM by a more multidisciplinary 
approach to support clinical practice, research investigation, and clinical trials [18]. 
An influence of the microenvironment on patients’ outcome was further suggested 
using deep learning based on MPM histology slides [19]. Contribution of histone 
methyltransferases can be illustrated by the overexpression of EZH2, a component 
of the polycomb complex PRC-2, which silent histone H3 by trimethylation [20]. 
Recent studies highlighted the strong contribution of epigenetic regulation through 
DNA methylation or miRNA expression deregulation in MPM. Integration of miR-
Nome and methylome data revealed the contribution of epigenetic regulation in the 
epithelioid-like and sarcomatoid-like components of the tumors [17, 21]. Some 
genes such as WT1 and PI3KR1, or RUNX1 and PBRM1 were hypermethylated and 
underexpressed in tumors with a high E-score or S-score, respectively [17]. Next- 
generation sequencing analyses linked alterations of histone methylation pathway 
to inactivation of histone lysine methyltransferases, mainly SETD2 and SETDB1 [4].

Long noncoding RNAs (LncRNAs) also play a role in epigenetic regulation 
mechanisms. A number of LncRNAs have been identified as potential regulators of 
MPM, several of them being involved in EMT [22]. Their expression may be modu-
lated by key genes in MPM, such as NEAT1, whose expression is dependent on 
BAP1 expression, or HOTAIR which regulates E-cadherin expression through the 
recruitment of PRC2 chromatin remodeling complex [22].

A few data are available on protein expression in MM. Mass spectrometry analy-
ses were carried out to compare differentially expressed proteins in biphasic MM 
and benign tumors [23]. Pathways analysis revealed a decrease of activation state in 
pathways of reactive oxygen species (ROS), respiratory system and cell death, and 
an increase of activation of phagocytes in MM tumors [23]. Großerueschkamp et al. 
[24] compared epithelioid and sarcomatoid MM using a method integrating FTIR 
(Fourier Transform InfraRed spectroscopy) imaging and laser capture microdissec-
tion, and proteome analysis of the dissected tissue. Laser capture is interesting as it 
allows the selection of specific regions within the tumor. Epithelioid MM overex-
pressed calretinin (CALB2) and several cytokeratins (CKs), and collagen A1 was 
overexpressed in the sarcomatoid form, consistent with the EMT. CKs and CALB2 
are markers of epithelioid MM [25].
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Proteomic approaches were also used to characterize MM secretome and exo-
some. MM secretome was analyzed in six cell lines by iTRAQ® mass spectrometry 
and compared to non-malignant cell lines. Results showed differential expression of 
proteins involved in metabolic energetic pathways, upregulation of proteins involved 
in cancer invasion and metastasis, and downregulation of proteins involved in cell 
adhesion [26]. The protein content of MM-derived exosomes was investigated in the 
four MPM cell lines studied in the previously quoted paper. A majority of proteins 
detected are expressed in various types of cancer, but specific proteins were identi-
fied in MM, either shared with all MM of differential between the MPM [27]. The 
proteomic findings correlated with gene expression reported in transcriptomic stud-
ies of MPM and identified biomarkers known to be expressed from immunohisto-
chemical studies, as well as immunomodulatory components and tumor-derived 
antigens [27].

2.2  State of Signaling Pathways in Malignant Mesothelioma

Several signaling pathways are deregulated in human MM, leading to an unmain-
tained mesothelial cell homeostasis. Pathways analyses from transcriptomic data 
have revealed alterations in cell proliferation control, apoptosis, differentiation, cell 
migration, and survival [28, 29]. In cancer, both the MAPKs and PI3K/AKT/mTOR 
pathways are often affected by activating oncogenic mutations in genes involved in 
these signaling pathways, but these mutations are rare in MM [30]. In MM, these 
pathways are activated as assessed with the use of specific inhibitors that reduce cell 
growth or cell viability, and their activation may result from overexpression of spe-
cific growth factors or receptors such as EGFR and MET [29, 30]. Pathway analyses 
carried out in recent comprehensive integrative genomic studies highlighted P53and 
mTOR pathways as deregulated in MPM [4, 6, 17]. Other pathways were identified 
as differentially activated between MPM tumors, depending on the E/S-scores 
(angiogenesis, EMT, immune checkpoints, and metabolic pathways) [17].

One prominent feature in MM is the deregulation of Hippo, an evolutionarily 
conserved pathway involved in the development and control of organ size. When 
turned on, this pathway negatively controls cell proliferation, partly maintaining 
cell–cell contacts. Protein players of the pathway are merlin (NF2), LATS1 and 
LATS2 that silence YAP and TAZ by phosphorylation, and consequently avoid the 
transcription of downstream genes such as CTGF, CYR61, or c-MYC [31]. In MPM, 
several members (NF2, LATS2, LATS1, SAV1, etc.) of the Hippo pathway are inac-
tivated due to gene mutations and/or deletions [5, 32]. This pathway crosstalks with 
other pathways, Hedgehog, Wnt, and P53. This last cross is of particular interest 
regarding the different rates of mutations of NF2 and TP53 in MM, with a possible 
repercussion of alteration of one pathway on the other. A recent review sheds light 
on the interactions between Hippo and P53 pathways, which show both mutated 
member genes in MPM [33]. YAP and P53 can bind to the TP53 and YAP promot-
ers, respectively. Moreover, LATS1/2 binds to MDM2, a negative regulator of P53, 
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and YAP1 can bind to mutant P53 and members of the P53 family [33]. Finally, 
these two pathways may coordinately maintain genomic stability in response to 
stress by the modulation of cell senescence, apoptosis, and growth.

2.3  Gene Susceptibility Factors

The possible role of genetic susceptibility in MM was suggested by recurrent famil-
ial MPM cases in cancer families. They reported increased susceptibility related to 
asbestos exposure [34, 35]. Some polymorphisms were found in genes involved in 
oxidative metabolism such as GSTM1 or participating in base excision repair (BER) 
pathway, XRRCC1 and XRCC3 [36]. Two genome-wide association studies were 
carried out to identify the genetic risk factors that may contribute to the develop-
ment of MPM. In an Australian study, no single nucleotide polymorphisms (SNPs) 
was of statistical significance when compared to Australian resident controls or 
asbestos-exposed control population without MM [37]. However, suggestive results 
for MPM risk were identified in the SDK1, CRTAM, and RAS-GRF2 genes, and in 
the 2p12 chromosomal region [37]. In a case-control Italian study, with a known 
history of asbestos exposure, SNPs were identified in genes SLC7A14, THRB, 
CEBP350, ADAMTS2, ETV1, PVT1, and MMP14 in MPM cases, but without sig-
nificant threshold [38]. All these genes appeared as low risk-predisposing factors for 
MPM, with possible synergistic effect with asbestos exposure [39]. In contrast, 
BAP1 was reported as a high-risk genetic factor for MPM [39]. Germline BAP1 
mutations were observed in families developing MM [40]. Although not occupa-
tionally exposed to asbestos, the family members were exposed in their indoor envi-
ronment [40].

The frequency of germline mutations was also investigated in 198 MM patients, 
by targeted capture and NGS.  Among 85 cancer susceptibility genes analyzed, 
mutations were identified in 12% of patients, and in 13 genes. A significant enhance-
ment of the frequency of mutations in BAP1, BRCA2, CDKN2A, TMEM127, VHL, 
and WT1 was found in MM cases in comparison with a non-cancer control popula-
tion (Exome Aggregation Consortium) [41]. This study, which collected MM from 
peritoneum, pleura, and tunica vaginalis reported higher germline mutation fre-
quencies in peritoneal MM, in patients with no known asbestos exposure, with a 
second cancer, and in tumors of epithelioid histology, when compared to pleural 
MM, definite exposure, no cancer, and biphasic and sarcomatoid histology, respec-
tively. Other studies identified germline mutations in MPM patients in genes such as 
PALB2, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, and PMS1 [39, 42–44].

Although germline mutations in BAP1 are susceptibility factors in the induction 
of MM in individuals exposed to asbestos, they do not seem to lead to MM in the 
absence of exposure. This hypothesis is supported by experimental studies using 
heterozygous Bap1+/− mutant mice not treated with asbestos showing no or a low 
rate of spontaneous mesotheliomas, despite a high incidence of other types of 
malignant tumors, and an increased incidence Bap1+/− asbestos-exposed mice in 
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comparison with their Bap1+/+ counterparts [45, 46]. Moreover, homozygous condi-
tional knockout mice Bap1−/− generated by the injection of Adeno-Cre in the pleural 
cavity also developed a low rate of pleural mesothelioma (1/32 mice) [47, 48].

3  Asbestos Fibers and Mesothelial Carcinogenesis

Literature data have demonstrated that in addition to asbestos fibers, other types of 
fibers, erionite or fluoro-edenite induce MM due to environmental exposure [11, 
49]. Additionally, it should be mentioned that some synthetic fibers were classified 
as probably (carbon whiskers) or possibly carcinogenic (some type of carbon nano-
tubes) by IARC [50].

3.1  Global Mechanism of Action of Mineral Fibers

Many papers reviewed the mechanism of action of asbestos fibers. Schematically, 
they focused either on the physicochemical properties of asbestos that may trigger 
toxic effects related to their fibrogenic and carcinogenic potency or on the conse-
quences on the cell state in terms of cytotoxicity (cell growth, cell death) and geno-
toxicity (see for review [51–56]). Important discriminating physicochemical fiber 
parameters for asbestos effects are dimensions, surface reactivity, and biopersis-
tence [56].

Hypotheses on the mechanisms accounting for the asbestos effects are based on 
studies with in vitro cell systems and on animal experiments. They will be briefly 
reminded here. Following asbestos inhalation, the mechanism first includes the 
clearance mechanism, which eliminates some fibers from the airways, leaving oth-
ers to deposit in the lung and translocate to the pleura [57–60]. Early effects in the 
mesothelial microenvironment are suggested to be linked to an inflammatory reac-
tion, as in the presence of foreign particles [58, 61, 62]. As reported in several pub-
lications, this reaction produces molecules deleterious for the cells and their 
microenvironment, and potentially carcinogenic such as ROS and nitrogen–oxygen 
species (NOS). Endogenous ROS can be also produced by normal cellular metabo-
lism [63]. Asbestos fibers also induce genomic damages such as DNA and chromo-
some alterations, chromosome missegregation, and mitosis impairment [15]. 
Accordingly, fiber uptake, inflammation, DNA repair, and cell death are processes 
that play a role and modulate the effects and the consequences of asbestos–cell 
interactions on cell homeostasis. At present, one can ask how the molecular features 
identified in MPM can be linked to the mechanism of action of asbestos. We will 
briefly suggest some clues.

M.-C. Jaurand et al.



23

3.2  Molecular Features of MPM Possibly Related 
to the Mechanism of Action of Mineral Fibers

3.2.1  Genetic Damage in MPM

Remembering that carcinogenesis is a multistep process, the effects observed on 
cultured cells, and in short-term animal experiments can tell us on the initial dam-
ages from early effects, inflammatory response of cells, and genotoxicity of asbes-
tos fibers. In that context, the production of ROS and NOS play a role, inducing base 
oxidation and nitration [53]. Inflammation is thought to play a key role in genotox-
icity, due to the production of ROS by macrophages and neutrophils. Based on stud-
ies of the relationship between dose-dependent inflammation and genotoxicity of 
particles in animal lungs, no direct experimental evidence suggests that inflamma-
tion is a prerequisite for oxidative damage of DNA in the lung, but the association 
might be due to the use of high doses of particles [53]. In MPM, transversions 
C  >  A, which are lesions resulting from unrepaired 8-oxo-7,8-dihydroguanine 
(8-oxoGua) oxidation by ROS are not the most frequent lesions, but C > T transi-
tions occurring by deamination of 5-methylcytosine in CpG islands [4]. This does 
not demonstrate a predominant role of ROS to account for gene alterations. It is 
noteworthy that alterations of genes frequently inactivated in MPM, such as BAP1, 
CDKN2A, CDKN2B, SETD2, consist often in partial or complete large deletions of 
exons, likely linked to other types of damage and repair systems [6, 32]. DNA alter-
ations may occur in later stages, as a result of chronic inflammation, which can be 
induced by many physical and chemical [64].

DNA double-strand breaks (DSB) are other forms of DNA damage that can be 
caused by different sorts of clastogenic agents, by mechanical stress on chromo-
somes or in case of replication stress, and also promoted by abnormal mitosis [65, 
66]. Several experimental works carried out with different types of cultured cells, 
including mesothelial cells, have shown that asbestos may interfere with mitosis 
[67–69]. Abnormal mitoses are revealed by various observations including the 
occurrence of aneuploidy, chromosome and chromatin damages, defects in spindle 
formation, lagging chromosomes, centrosome amplification, multipolar mitoses, 
and alterations of cytokinesis [36, 51, 70–74]. Cell cycle investigations have shown 
an accumulation of asbestos-treated cells in the G2/M phases of the cell cycle, con-
sistent with a protracted mitosis [75–77]. It is known that mitosis impairment may 
promote chromosome missegregation, rearrangements, and aneuploidy, and delayed 
mitosis may promote DNA breakage, as shown with agents interacting with micro-
tubule dynamics and other different conditions [66]. Therefore, the impact of asbes-
tos on mitosis, which is due to the fiber internalization and the interaction with cell, 
is also an important effect to consider in the mechanisms of asbestos-induced 
carcinogenesis.
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Repair processes are very important to resolve DNA damages. They include 
homologous and non-homologous recombination that may result in error-prone 
repair [78]. They may play a role in the genesis of MPM. On one hand, asbestos 
induces DNA breakage, as shown by the genotoxicity data in experimental assays. 
On the other hand, several publications reported pathogenic variants in DNA repair 
systems including recombination repair genes [39, 42].

3.2.2  Cell and Molecular Heterogeneity in MPM

A second MPM feature stands in its heterogeneity revealed at the cell and molecular 
levels. Pathological observations of MPM demonstrated a great morphological het-
erogeneity of the tumors [79]. This may reflect cell differentiation or different cell 
origin, as two main types of normal mesothelial cells, flattened and cuboidal, are 
distinguished and differentially distributed on the pleural sheets [80, 81]. In the 
same vein, recent data suggested that a tumor can be composed as a combination of 
epithelioid-like and sarcomatoid-like components, so-called histo-molecular gradi-
ents that encompass the tumor morphology and the molecular specificities [17]. 
This would be compatible with the in situ differences between normal mesothelial 
cells. Further analyses are needed to determine to what extent in situ normal meso-
thelial cell heterogeneity is pertinent to account for the origin of tumor 
heterogeneity.

Molecular heterogeneity of MPM is attested both by mutations and deregulation 
of signaling pathways. Molecular heterogeneity, in terms of mutations, is likely 
linked to the polyclonal and sub-clonal evolution of tumor cells, as shown by the 
intra-tumor heterogeneity [82–84]. Hippo pathway inactivation is a characteristic of 
some MPM. The role of the Hippo pathway is possibly linked to the structure of the 
pleura and to the mechanism of action of asbestos fibers. First, normal mesothelial 
cells form a monolayer at the serosal surface and are joined by junctions, which 
assure cell–cell and cell–basal membrane contacts [85, 86]. Hippo pathway activity 
is regulated by mechano-transduction and cell–cell adhesion and controls tight 
junctions [31, 87]. Its inactivation may abolish control of claudins, which are 
expressed in tight junctions, and differentially expressed in epithelioid compared to 
nonepithelioid MPM, and in MPM compared to healthy tissue [4, 17, 88–90]. 
Second, asbestos fibers provoke numerical chromosome changes and alteration of 
mitosis, especially the abolishment of cytokinesis, leading to in aneuploid cells 
including tetraploid cells. Interestingly, the Hippo pathway regulates the prolifera-
tion of tetraploid cells and blocks their proliferation. Asbestos fibers avoid cell 
abscission, and tetraploid and near-tetraploid cells are observed in asbestos-treated 
mesothelial cells and in MPM [91, 92]. Therefore, knockout of proliferation control 
may facilitate chromosome instability and the appearance of hypo-tetraploid or 
hyperdiploid cells, and lead to neoplastic evolution. It may be paradoxical that NF2 
seems more frequently mutated in nonexposed patients than in exposed patients, but 
NF2 mutations in asbestos-exposed cells would lead to catastrophic mitosis [32]. 
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Conversely, BAP1, the most frequently mutated gene in MPM, might prevent chro-
mosome instability, by the regulation of γ-tubulin ubiquitination in BAP1 wild-type 
cells [93, 94].

4  Conclusions

MPM remains thoroughly associated with asbestos fibers exposure in humans. For 
therapeutic purposes, numerous molecular studies have been carried out on human 
MPM to identify genomic alterations and activation state of signaling pathways. 
Experimental studies have been performed in knockout mice to assess the role of 
genes altered in human MPM. BAP1 has been identified as a susceptibility gene in 
asbestos-exposed patients, and the Hippo pathway is the noteworthy pathway in 
MPM, among other frequently altered pathways in cancer.

Studies on human tumors have shown shared features between MPM tumors 
characterized by a high rate of chromosome rearrangements and recurrent muta-
tions in a limited number of genes. Oppositely, a heterogeneity was evidenced 
between MPM at the morphological and molecular levels. Transcriptomic and 
proteomic studies have defined the MPM heterogeneity by the identification of 
individual MPM characteristics highlighting acknowledged neoplastic evolution 
like EMT, but so far without well-established steps of progression. Nonetheless, 
the original description of a histo-molecular continuum based on transcriptomic 
data linked to immunologic context and to patients’ outcome was estab-
lished [21].

Toxicology studies have documented the chromosome damage and the occur-
rence of potentially DNA-damaging inflammatory processes linked to asbestos 
exposure. The causal relationship between MPM and the mechanism of action of 
asbestos was consolidated by the occurrence of MPM in asbestos-exposed mice 
deficient in genes representative of human MPM.

Our present level of knowledge allows us to formulate hypotheses to link the 
identified MPM features to the mechanism of action of asbestos. In terms of genet-
ics, the generation of abnormal mitoses in asbestos-interacting cells is likely pre-
ponderant. Improvement of our knowledge of the inflammatory microenvironment 
of the tumor cells should precise the role of inflammation in MPM evolution. 
Concerning heterogeneity, the pleural anatomy may account for the morphological 
heterogeneity, in addition to the neoplastic evolution. In terms of signal pathways 
alteration, an involvement of the Hippo pathway is likely related to its role in the 
regulation of membrane dynamics and growth [95, 96]. At least two elements should 
be considered. First, Hippo pathway components localize at cell junctions, which 
are important structures of the mesothelium that is formed by a monolayer of tightly 
joined mesothelial cell. Second, the Hippo pathway controls membrane junctions 
and cytoskeleton dynamics, and growth. The presence of solid material inside or 
near mesothelial cells impairs the chromosome and membrane dynamics during the 
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mitotic process. Further studies will likely clarify the relationships between mecha-
nisms of action of asbestos and the molecular mechanism of mesothelial 
carcinogenesis.
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