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Abstract. Key reconciliation protocols are critical components to
deploy secure cryptographic primitives in practical applications. In this
paper, we demonstrate on these new requirements and try to explore
a new design routine in solving the key reconciliation problem in large
scale p2p networks with automatic intelligent end user under the notion
of evolvable cryptography. We design a new evolvable key reconciliation
mechanism (KRM) based on two tricks for the AI user: the observation of
shared beacons to evolve based on a deep auto-encoder, and the exchange
of observed features as a hint to reconcile a shared key based on a deep
paired decoder. For any passive adversary, the KRM is forward provable
secure under the linear decoding hardness assumption. Compared with
existing schemes, the performance evaluation showed our KRM is prac-
tical and quite efficient in communication and time costs, especially in
multi-party scenarios.

Keywords: Evolvable cryptography · Key exchange protocol ·
Automatic learning · Peer-to-peer network · Security model

1 Introduction

While the Internet is entering into the era of artificial intelligence, the develop-
ment pace of cryptography seems to be delayed. When we focus on designing
post-quantum cryptographic primitives, new pattern of requirements and secu-
rity threats in AI application scenarios boom. Countless of intellectual devices
and AI terminals have access to the Internet to share data, features and models,
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which require communication based on large scale of secure sessions. How to effi-
ciently and delicately share a session key in a peer-to-peer AI network is totally
a new topic. The main applying environment of current KEM schemes and key
negotiation protocols are all heavy deployment based on the terminal browsers,
more specially, embedded in the TLS handshake protocols [22]. Why don’t deploy
the traditional KEM based on DH or encryption key exchange? Technically, we
sure can do that, but the KEM would become a performance bottleneck and
the advantages of AI users, such as evolvable and cheap in computing power
while costly in communication channels, is neglected in KEM design. In net-
works involving large scale of AI users like auto-pilots or smart sensor devices,
for the sake of efficiency and global cost of key reconciliation, the current KEM
primitives such as the post-quantum candidates of NIST [2] and current stan-
dard schemes of ISO/IEC cannot be directly deployed in p2p scenarios with large
scale of AI users.

The deployment of traditional key exchange protocol in a vast scale p2p
network is awkward and inefficient, because of the high cost of maintaining
independent parameters for each key reconciliation, which brings communica-
tion inefficiency, inconvenience and security issue in the long run. In practical
applications like multi-user p2p networks, communication cost is always much
higher than computing cost, so that new KRM construction should occupy lower
message exchange cost. Besides, current KEM and KRM solutions including the
NIST’s post-quantum candidates [2] only support fixed system parameters and
configurations in real scenarios, in which the deployment in multi-user p2p net-
works is clumsy and awkward, and its security cost is expensive to reconcile a
session key in a short slice of connection slot. To solve the above obvious draw-
backs, here we resort to an evolvable design routine to passively or adoptively
generate session keys in p2p networks. Compared with the existing computing
reconciliation based KEMs, we apply a generative methodology based on which
a share secret key is learned and generated from public observation during the
p2p connection. In this section, we try to fundamentally improve these issues by
the constructions of evolvable KRM based on the combination of automatically
learning encoder and decoder (auto-encoder, noted as Ae for short).

2 Related Works

Key Exchange Mechanisms. We assume that key exchange mechanism is
a special instantiation for key encapsulation mechanisms(KEM), which a key
component to encapsulate a cryptographic primitive in the practical communi-
cation protocols. For a long time, the discrete logistic based Diffie-Hellman key
exchange is the standard KEM realization [17]. But in the post-quantum KEM,
lattice and LWE based reconciliation [8,9,19] or exchange [3,5–7] take the main
role. The post-quantum KEM usually includes the authenticated protocols like
[13,23], in which signatures or additional verifying structures are applied, and
the direct KEM which is much brief and efficient, such as Ding [8,9], Peikert
[19], and Alkim’s NewHope [3,4] that built on Ring-LWE assumption. Also,
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there are KEM based on standard LWE assumption, which makes the scheme
more brief, such as Frodo protocol [5] and Kyber protocol [6]. Schemes in the
first category can easily satisfy strong security like IND-CCA and IND-CCA2
in quantum security model, despite there complex steps and heavy bandwidth
costs. KEMs in the second and the third categray may only achieve passively
secure, unless safe hash functions or FO transformation [11] are applied, such as
Alkim’s NewHope.

Generative Secure Communication. The possibility of designing cryptog-
raphy schemes with the automatic learning techniques such as machine learn-
ing and deep learning is discussed firstly in [20]. In the research of KEM, early
works focused on how to build secure channels to establish session keys using the
method of machine learning [14,18,21]. These automatic approaches cannot gen-
erate secure KEM protocols, and their secure keys cannot evolve during further
communication. Then for a long period, the research process seems quite hard in
handling learning details such as the discrete data training problem [15], the com-
putation overload problem [10] and a less practical outcome. But in recent years,
with the widely application of AI technologies and the development of support-
ing hardware, pure AI based secure communication is becoming an attempting
pattern in the future. In 2014, the well-known learning model called generative
adversarial network (GAN) [12] appeared, and then it is immediately applied
to train a map between an arbitrary input and a target output. The optimized
map is then naturally be treated as an encryption or an decryption algorithm.
Compared with a mathematical concrete algorithm, the map from a GAN is
automatically acquired through statistical adjustment during the training phase.
In 2016, Google Brain team [1] published their first secure communication model
with automatic negotiated encryption scheme whose security is guaranteed by
a passive security model in which the adversary is a third party similar passive
learner. As in their demonstration, the receiver can decrypt the message (a 16
bits message sampled in a normal distribution) with overwhelming probability,
while the adversary cannot avoid approximately 50% of decoding error with
overwhelming probability. But in the continues work of [16], the Google brain’s
model is found insecure under the attack of stronger adversaries.

3 Construction of Key Reconciliation Mechanism

3.1 System Framework

We first start from constructing KRM in the two party scenario in which our
approach can easily be demonstrated. Each user in the network configures a
auto-learning system Ae, whose initial state is shared by all users when entering
the network. Ae can automatically observe and learn the connection of the recent
beacon users which are also leveled users in the network, see Fig. 1. Features f
is a transformed representation of the input Gi, and with a complete sample set
input, an Ae statistically satisfies acc(Ae) = P{Gi = Gi+1} → 1.
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Fig. 1. Auto-encoder structure

3.2 Basic Model: Key Reconciliation Mechanism Within Two
Parties

In a peer-to-peer network, there are three types of entities: requesters, responders
and beacons. Their computing and storage resources may be vary, but their place
in executing p2p protocol is leveled, and their roles may switch in different tasks.
KRM within two parties takes the following four steps:

System Init. A set of global parameters are generated, including an secret
initial state S0 of a network auto-encoder (Ae(n = 2k, d = 2k−α, G) with
accuracy threshold η), a secure parameter k, a global identity set S =
{· · · , IDA, · · · , IDB · · · }, a collection of beacons s ∈ S, a collision resistent hash
function h(·), and a global time tick i ≥ 0. In each time tick, a beacon scans
its connections and sets a vector g = {g0, g1, · · · , gn}, gi ∈ {0, 1}, as a current
broadcasting beacon sample in S. When i < 1, each user observes sample set
s ∈ S and trains AeID until ηID ≥ η. When i ≥ 1, the latest state of AeID is
kept as a secret to evolve new keys in each time tick.

State Evolve. The requestor Alice with IDA first observes the current beacons s
to sample the state of the current network, and obtain a sample set I as the input
of Ae. For randomly picked Gi ∈ I, if the accuracy a ≥ η in decoding Gi, output
a feature f and a decoding result Gi+1 for Gi. Alice runs α ← Eval(G′

i−1, G
′
i)

to obtains a valid reconciliation threshold. Then he continues to compute r ←
Rec(G′

i−1, G
′
i, α). Finally, for any user with whom Alice wants to negotiate a key,

he sends f to the receiver with IDB , and computes ki ← h(f ||r||IDA||IDB).

Key Gen. This is a probabilistic procedure. On received the feature f , Bob
train his own Ae through the observation of s, and generate a G′

i applying f
in Ae. Then Bob runs α ← Eval(G′

i−1, G
′
i), and if α exists, he continues to

compute r ← Rec(G′
i−1, G

′
i, α). Finally, ki ← h(f ||r||IDA||IDB). If α is invalid,

then Bob reject f , and jumps to next time tick i + 1.
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Fig. 2. Basic model with two parties

State Est. Once ki successfully reconciliated, Alice and Bob establish a con-
nection and update gAlice and gBob as new beacons from time tick i + 1 with
probability p (Fig. 2).

3.3 Improved Model: Key Reconciliation Mechanism Within Two
Parties

Although the basic model is brief enough with its one-pass message, but its
security relies only on the decoder of the responder which may bring expected
attack during its instantiation. Besides, a complete passive reconciliation can
increase failure probability of the KEM procedure. So we less efficient but more
secure variant.

KRM(IDA, IDB , S) within two nodes IDA and IDB follows five steps:

System Init. A set of global parameters are generated, including an initial
state S0 of two types of network auto-encoders (Aeext and Aecpr with accuracy
threshold η and feature dimension n, n > α and d = k/α respectively), a secure
parameter k, a global identity set S = {· · · , IDA, · · · , IDB · · · }, a collection of
beacons s ∈ S, and a collision resistent hash function h(·).
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State Evolve. The requestor Alice with IDA first observes the current beacons s
to sample the state of the current network, and obtain a sample set I as the training
input of Aeext and Aecpr. For randomly picked Gi ∈ I, if the accuracy a ≥ η in
decoding Gi, Aeext and Aecpr output features f and fc and a decoding result Gi+1

for Gi. Alice runs α ← eval(G′
i−1, G

′
i) to obtains a valid reconciliation threshold.

Then he continues to compute r ← Rec(G′
i−1, G

′
i, α). Finally, for any user with

whom Alice wants to negotiate a key, he sends f to the receiver with IDB .

Key Gen1. This is a probabilistic procedure. On received the feature f , Bob
train his own Aeext through the observation of s, and generate a G′

i applying
f in Aeext. Then Bob runs α ← eval(G′

i−1, G
′
i), and if α exists, he continues

to compute r ← Rec(G′
i−1, G

′
i, α). If α is invalid, then Bob reject f , and jumps

to next time tick i + 1, else Bob sets n = k/α for Aecpr. By decoding G′
i in

Aecpr, Bob obtains fc as the compressed feature of G′
i. Finally, Bob computes

ki ← h(fc||r||IDA||IDB), and sends the fresh G′
i back to Alice.

Key Gen2. On received an G′
i, Alice generates fc in Aecpr, and computes

ki ← h(fc||r||IDA||IDB).

State Est. Once ki successfully reconciliated, Alice and Bob establish a connec-
tion and update gAlice and gBob as new beacons from time tick i + 1 (Fig. 3).

3.4 Key Reconciliation Mechanism Within Multi-parties

KRM within multi-parties scenario is basically a multi-replica of two parties
with one essential problem to handle: extra update of keys for user’s dynamic
connectivity. With the evolvement of the p2p network, old connections might be
disconnected, and new connections might be established according to an average
transition probability p. After genesis of the network, it assumed to contain at
least |S|+2 nodes including a unique beacon to allocate parameters for dynamic
nodes. We extract four types of events: system init, key evolve, join, and drop.
System init is a global event to initialize parameters and prepare local encoders
& decoders by observation. The rest operations are used to update keys for
connection transition. We apply the improved KRM model to demonstrate the
four events of the multi-parties scenario.

System Init. For a p2p network involving at least |S|+2 different nodes where
contains an unique initial beacon ID0 staying online, all global parameters are
generated, including an initial state S0 of two types of network auto-encoders
(Aeext and Aecpr with accuracy threshold η and feature dimension n, n > α
and d = k/α respectively), a secure parameter k, a global identity set S =
{· · · , IDA, · · · , IDB · · · }, a collection of beacons s ∈ S, and a collision resistent
hash function h(·). Global parameters are allocated by ID0.

Key Evolve. For every time tick i, any two users IDA ∈ S and IDB ∈ S
who make connection transition in the network make an observation of S and
execute ki ←KEM(IDA, IDB , S) with each other. On reconciliation success, ki

established, or else the process retry in the next time tick for the same nodes.
Finally, after enough time ticks, independent keys are generated between any
two users with overwhelming probability.
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Fig. 3. Improved model with two parties

Join.This is a probabilistic procedure. For new user IDC joining the network with
Aeext and Aecpr, ID0 allocates an S0,G0 and the current f for IDC . Then taking
G0 as the expected state of S, IDC randomly generates si with state transition
probability of p. Aeext and Aecpr update their state by training on si. Taking f as
the input of decoder of Aeext, IDC generates G′

i+1. Taking G′
i+1 as the input of

encoder of Aecpr and generates fc. Finally, IDC reconciliates with G0 and G′
i+1,

computes ki ← h(fc||r||IDC ||ID0), and sends the fresh G′
i back to ID0.

Drop. During each time tick i, for any user IDA’s connection state transits, its
key stops evolving. The dependency of Aeext and Aecpr toward Gi drops after
time tick i. Users in a p2p network is free to join and exit, and the transiting
probability may vary according to network task, local resources and routine
modification. Here we only considered an ideal case of constant state transition
probability to comply with the previous correctness base. But if the training
results is independent or weak dependent with partial state change of connection
graph, the KRM within multi-parties can also be applicable.



98 S. Zhu et al.

4 Conclusions and Future Works

In the late Internet ecology, the AI technologies carry through nearly all the
major applications. The trend of automatic design and analysis of cryptographic
primitives for specific communication patterns in the era of AI is inevitable.
Current works on the spot have already showed their vitality in designing secure
communication protocols and analyzing traditional encryption algorithms. Fol-
lowing this interesting direction, we explored the possibility of designing one of
the most important cryptographic mechanisms, the KRM in the specific P2P
communication scenario.

In this paper, we designed a generative approach to automatically generate
the KRM instances for P2P communication networks without the heavy load of
frequently key exchange. Instead, the peers in the network only need to randomly
observe the surrounding beacons to negotiate shared features. Then each peers
generate their own session keys with these features. So far as we know, it is the
first generative model to negotiate shared keys, and its advantages in efficiency
and briefness naturally required in the P2P communication with vast amount of
peers. But in our approach, there are still many unsolved problems, including the
unstable success rate in generating shared keys, hardness in extending the width
of a satisfying auto-encoder, and lack of standard evaluation in key evolvement.
In our current experiment, the length of practical keys only reaches 64∼128 bits,
which obviously cannot satisfy a long-term secure communication.

In our future work, two directions need to be explored. On security aspect, the
state of referred beacons need to be improved to generate random and stable
input samples for target peers. Then the architecture and parameters of the
generative model should be optimized to obtain wide and stable outputs. On the
efficiency aspect, a practical modification of the decoding component is required
to polish the randomness of the key evolvement.
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