
CaaS: Enabling Congestion Control as a
Service to Optimize WAN Data Transfer

Jiahua Zhu, Xianliang Jiang(B), Guang Jin, and Penghui Li

Faculty of Electrical Engineering and Computer Science, Ningbo University,
Ningbo 315211, China

1811082205@nbu.edu.cn,jiangxianliang@nbu.edu.cn

Abstract. TCP congestion control is essential for improving perfor-
mance of data transfer. Traditional TCP congestion control algorithm is
designed for the wired network with the assumptive goal of attaing higher
throughput as possible for QoE. However, Internet today is constantly
evolving and many different network architectures (Cellular network,
high BDP network, Wi-Fi network, etc.) coexist for data transfer ser-
vice. Futhermore, the emerging applications (live video, augmented and
virtual reality, Internet-of-Things, etc.) present different requirements
(low latency, low packet loss rate, low jitter, etc.) for data transfer ser-
vice. Unfortunately, operating systems (Windows, MacOS, Android, etc.)
today still rigidly stick to the single built-in congestion control algorithm
(with Cubic for Linux, MacOS, Android and CTCP for Windows) for all
connections, no matter if it is ill-suited for current network condition,
or if there are better schemes for use. To tackle above issues, we artic-
ulate a vision of providing congestion control as a service to enable: (i)
timely deployment of novel congestion control algorithms, (ii) dynamical
adaption of congestion control algorithm according to the network con-
dition, (iii) and meeting the diversified QoE preference of applications.
We design and implement CaaS in Linux, our preliminary experiment
shows the feasibility and benefits of CaaS.

Keywords: Network · Transmission Control Protocol · Congestion
control

1 Introduction

Today, almost all Internet applications rely on the Transmission Control Pro-
tocol (TCP) to deliver data reliably across the network due to its ability to
guarantee reliable data delivery across unreliable network. Although it was not
part of TCP’s primary design, the most vital element of TCP is congestion
control (CC), which significantly determines the performance of data transfer.

Traditional CC is mainly designed for the wired network and with the
assumptive goal of achieving high throughput as far as possible to attain ideal
QoE. Yet, today, Internet is becoming more and more diverse both in the net-
work technologies and the application requirements for data transfer service.
c© Springer Nature Singapore Pte Ltd. 2020
S. Yu et al. (Eds.): SPDE 2020, CCIS 1268, pp. 79–90, 2020.
https://doi.org/10.1007/978-981-15-9129-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9129-7_6&domain=pdf
https://doi.org/10.1007/978-981-15-9129-7_6


80 J. Zhu et al.

For example, the wide area network (WAN) is being enriched with many dif-
ferent communication networks (satellite network, Cellular network, high BDP
network, etc.) and is constantly changing and evolving. Available bandwidth,
round trip time (RTT) and packet loss rate can vary over many orders of mag-
nitude among these different network links. Traditional TCP underperform in
such situations because it is designed with assumptions that not valid any longer
in current networks, such as low latency, no channel packet losses, no dynamic
link handover, etc.

Furthermore, the emerging applications exhibit different QoE preference
for data transfer service. For example, online video applications usually prefer
smooth data transfer to reduce jitter. Web browser requires short flow complete
time (FCT) [1] to reduce page load time. Applications in the mobile device may
prefer low packet loss rate to extend battery life. The file transfer and data
storage applications usually persuit high throughput. Yet, many other delay-
sensitive applications such as online games and virtual reality require low latency
to provide real-time interaction interaction and will suffer from the throughput-
oriented TCP design. Such diversity of requirements for data transfer service
further makes current throughput-oriented TCP which built in the OS kernel
“A Jack of all trades, master of none” protocol.

To deliver high quality of data transfer across such diversity, network
researchers have proposed numerous new congestion control algorithms for dif-
ferent types of application requirements and different kinds of network envi-
ronments. For example, Scalable TCP [2], YeAH [3], BIC [4], and CUBIC [5]
are proposed for the networks with high BDP. Westwood [15] and Veno [16]
are designed to perform well in the wireless networks. Exll [6] and C2TCP [7]
are proposed to achieve low latency in cellular networks. While many of them
outperform the legacy TCP in their target scenario, few of them are deployed
in the real networks. This is because that today’s operating systems just stick
to the unified built-in CC scheme (with Cubic for Linux, MacOS, Android and
CTCP for Windows) all the time. This presents a barrier to the timely deploy
of novel CC schemes and makes advance protocol off limits to users. Further-
more, previous study [11] have revealed that the performance of different CC
schemes varies significantly across various network conditions (e.g., high BDP
links, satellite links, wireless and lossy links), there is no single CC scheme that
can outperform all others in all network conditions. In such case, consistent use
of a single built-in CC will undoubtedly degrade TCP performance.

Hence, we ask a question: Can we reconstruct the endpoint congestion control
architecture to enable more flexible and efficient CC deployment? In this paper,
We put a vision of providing congestion control as a service (CaaS) to offer three
important benefits that are missing in today’s endpoint congestion control archi-
tecture: (i) deployment flexibility of novel CC schemes, (ii) adaptive congestion
control according to specific network conditions, (iii) and satisfy the diversified
QoE preference of different applications.

The main contributions of this paper are as follows. Firstly, we present the
design of CaaS, including four important components: Offline Learning, Online



CaaS: Enabling Congestion Control 81

Fig. 1. CaaS architecture.

Matching, Network Change Detection and Algorithm Switching. Secondly, we
compare the performance of Caas with legacy congestion control schemes both
in the simulation environment and in the real Internet. Preliminary experiment
demonstrates the feasibility and superiority of CaaS.

The rest of the paper is organized as follows. Section 2 presents a brief
overview of related work. Section 3 details the design of CaaS. In Sect. 4, we
evaluate the performance of CaaS. Section 5 provides concluding remarks.

2 Related Work

A. Legacy Congestion Control Schemes. Since the development of Jacob-
son’s TCP Tahoe algorithm in 1988, TCP congestion control over the Inter-
net has been a hot topic for decades because it significantly influences the
performance of data transfer. Many researchers have extensively studied and
proposed a multitude of enhancements to standard TCP CC. Generally, these
CC schemes can be classified into four categories according to their feedbacks:
loss-based schemes, delay-based schemes, hybrid schemes and bandwidth-delay-
product-based schemes. Loss-based CC protocols, such as HighSpeed [8], BIC,
and CUBIC adopt packet loss as the sign of congestion and use an AIMD strat-
egy, which increases the congestion windows (cwnd) if no packet is lost and
decreases it on packet losses to avoid copngestion while attaining high network
utility. These schemes work well in the wired network with appropriately sized
buffers and very little random packet loss. However, they perform poorly in the
wireless network which is equipped with large buffers and often experiences high
levels of random losses. To tackle with these issues, delay-based schemes, such
as Vegas [9] and Hybla [10] use the RTT of packets as an indicator for conges-
tion and keep to reduce queuing delay while achieving high throughput. To take
the goodness of both loss-based and delay-based schemes, some hybrid schemes
including Compound TCP [12] and TCP Illinois [13] are proposed. They adopt
both packet loss and RTT as congestion signal to better predict network con-
gestion. Recently, Google proposed BBR [14], a BDP-based CC protocol which



82 J. Zhu et al.

implements a completely different way to implement congestion control. It takes
the link bandwidth and the lowest RTT experienced recently to make contin-
uous estimations on bandwidth-delay-product (BDP), and sets the congestion
window and pacing rate according to these estimations. It comes out that BBR
outperform CUBIC in long fat networks.

Interestingly, each of these variants is only suitable for specific network sce-
nario. For example, Highspeed TCP and Compound TCP are for the high-speed
and long-distance networks. TCP Westwood and Veno are proposed to work
in wireless networks to enhance throughput. TCP-Peach+ [17] and TCP Hybla
are recognized for yielding good performance in satellite networks. Verus [18]
and Exll are specifically designed for cellular network scenarios. Despite such a
huge set of schemes have been proposed, there is still no “the best TCP” that
can always attain best performance across all the possible network conditions.
Motivated by this observation, instead of adding just another TCP scheme to
such a huge pile of current TCP designs, we focus on providing a platform to
dynamically and flexibly deploy these schemes (including the future schemes) in
endpoint and enable adaptive congestion control according to specific network
scenarios and QoE preference of applications.

B. Learning Based Congestion Control Schemes. Recently, many
researchers have paid attention to machine learning (ML) technologies for Inter-
net congestion control and proposed many interesting learning based CC. These
schemes usually construct objective function which involves the throughput,
latency, packet loss rate and optimize the function by machine learning technolo-
gies. Particularly, Remy [19] uses an offline-trained machine learning model to
learn congestion control rules which determine the congestion window sizes based
on the latest network conditions. Although Remy provides an effective way to
generate CC automatically via machine learning, the rules it learned are mined
from the offline data of given network condition, thus is not suitable for other net-
work scenarios. Indigo [11] is another method of learning based CC scheme with
the data collected from real network. Indigo learns to “imitate” the oracle rule
offline. The oracle is constructed with ideal cwnds given by the emulated bottle-
neck’s bandwidth-delay product. Aurora [16] employs deep reinforcement learning
technologies to generate a policy that maps observed network statistics to proper
sending rate that maximize data transfer utility. Despite the offline learning based
schemes can outperform the heuristic algorithms in some scenarios, they may per-
form badly in network scenarios they have not been trained for.

To tackle above problem, PCC [21] and Vivace [22] adopt an online learning
method. They attempt to find proper sending rate to optimize the utility function
via a trial-and-error mechanism. Although online learning can adaptively adjust
its strategy according to network dynamics, its performance may diminish in
some cases as their greedy exploration could be trapped at a local optimum. It
should also be noted that online learning usually has a long convergence time,
thus is not suitable for short lived flows and complex scenarios.



CaaS: Enabling Congestion Control 83

Fig. 2. CaaS Client side framework.

3 System Design

As illustrated above, each CC scheme is only suitable for specific scenario and no
single CC scheme is capable of achieving consistent high performance in different
network conditions and meet different requirements of applications. Motivated
by this, CaaS aims to expedite the deployment of novel CC and distribute the
most suitable CC to clients according to network conditions and different QoE
requirements of applications in endpoints.

3.1 Overview

At a high-level, CaaS consists of two parts: a server side, termed Congestion
Control Server (CCS) and client sides which require congestion control service
from CCS, as shown in Fig. 1. The framework of CaaS Client side is shown in
Fig. 2. Generally, the server side is responsible for learning the best CC scheme
for each network scenario and distributing most suitable CC schemes to clients
according to network conditions and application requirements in the client side.
The client side can post local network condition information and QoE preference
at the suitable time to pull the required CC from CCS, and ship it as a library
for congestion control. The downloaded CC modules will be stored in local for
future use. We adopt this C/S architecture for timely deployment of new CC
schemes.

Congestion control designers can readily publish their new CC scheme by
submitting it to the CCS. Each scheme published is required to submit the source
code, the design specification for censorship and a statement in the abstract
describing scenario where the protocol is recommended or not for use. After
that, the CCS will conduct a comprehensive evaluation to check its safety and
effectiveness, and decide whether or not to accept it. If adopted, the CC library
which holds a set of CC schemes for different application scenarios and the
mapping table which maps the network condition to the most suitable CC will
be updated to take in new schemes. Some old CC schemes may be replaced if
new scheme is more effective in the same or overlapping scenarios. Clients will
periodically (about 1–2 weeks) requests the latest mapping table (just 1–3 KB)



84 J. Zhu et al.

from the CCS and update the local replica in case that any new CC is adopted
in the CCS. We detail main components of CaaS in the following subsections.

3.2 Offline Learning

The optimal CC scheme on a specific network condition can be different across
different network conditions, thus it is desirable to find the best CC for every
possible network conditions. The offline learning module is responsible for learn-
ing the most suitable CC for every given network scenario and output a mapping
table which maps a given network condition to the most suitable CC.

To cope with the huge diversity of possible network conditions, we adopt
a “divide and conquer” tactic. That is, we divide the possible network condi-
tions in the real world into several sub-scenarios according to the given metric
(throughput, rtt, loss rate). In this paper, we assume that the possible network
condition varies from 1 Mbit/s to 51 Mbit/s in bandwidth, 10 ms to 200 ms in
propagation delay and 0% to 10% in packet loss rate. Then we quantizes each
of these three metrics using a quantum (in our experiments, 5 Mbps of band-
width, 19 ms of delay, 2% of packet loss rate), and obtain 500 sub-scenarios. We
simulate each of these sub-scenarios using network simulator Mahimahi [24]. For
each sub-scenario, we evaluate the performance of all the CC scheme in the CCS
and obtain a performance vector <throughput, delay, loss rate> for each CC
scheme. The learning module in the CCS takes the set of performance vectors
and determines the best CC for each sub-scenario using a utility function:

Utility = w1 ∗ throughput − w2 ∗ delay − w3 ∗ loss, (1)

where w1, w2, w3 are determined by QoE preference of applications. Note that
we provide a QoE Control Panel (QCP) in the client side for users to specify
customized QoE requirements for different applications. CaaS client will adopt
the default parameters if QoE option is not designated by users. Except for the
above utility function, we also provide other QoE evaluation indicator, such as
flow complete time (FCT) to satisfy QoE requirements for different applications.
Finally, we build the mapping table which points out the best CC for every
given network condition. Note that every CaaS client will periodically (about
1–2 weeks) access the CCS to get the latest version of this mapping table for
online match of best CC.

3.3 Online Matching

When a TCP connection is established, we firstly adopt the default CC scheme
(Cubic), because there is no information about network characteristics to decide
optimal CC. Note that every CC schemes is responsible for detect network condi-
tion while implementing congestion control. So after a while of data transmission,
the sender can preliminarily determine the current network condition and find
the most suitable CC scheme according to the mapping table. If the desired
CC scheme exists locally, client will switch to it directly. Otherwise, client will



CaaS: Enabling Congestion Control 85

Fig. 3. Hot switch of congestion control schemes.

make a request to the congestion control server (CCS) and switch to the new CC
scheme after finishing download. In CaaS, a single CC scheme is approximately
1–3 KB in size, thus it usually takes just a few RTT of time for downloading
from server and will not cause too long latency. If the TCP connection is closed
when finishing downloade, the new CC will be stored in local for use of next
time.

As network condition might change during data transmission, which is com-
mon especially for long lived flows, ChangeDetector is continually fed with obser-
vations of the network performance metric (throughput, rtt, loss rate) and detect
if state has changed. If so, an algorithm switching will be executed to adapt new
network condition. We detail Change point detection in next subsection.

3.4 Change Point Detection

Prior work has shown that the network condition along a TCP session is not
necessarily a stationary process and might change at different times. For exam-
ple, mobile phone users in the high-speed rail will undergo frequent handoffs
between cellular base stations. Thus, it is desirable to detect such change and
adaptively adopt the most suitable CC for new network condition during a TCP
connection.

A straightforward way to detect change point of network condition is to
continually calculate an exponentially weighted moving average (EWMA) of the
related metrics (throughput, RTT, loss rate) samples of TCP flows and check
if they reach the threshold values. If so, a new network condition is detected,
thus we switch to the new CC for that specific network condition. However, we
find this method always leads to frequent and unnecessary switching when these
metrics fluctuates, which is very common in practical data transmission.



86 J. Zhu et al.

Fig. 4. Flow complete time of different schemes in different network conditions.

Fortunately, according to prior work [25–27], TCP connection metrics can be
modeled as a piecewise stationary process which often lasts for tens of seconds or
minutes. Motivated by this observation, we use a Bayesian online probabilistic
change-point detector [28] which just produce light overhead for computation to
detect network condition change. When a TCP connection is created, ChangeDe-
tector is periodically fed with performance metrics, then it calculates mean value
and standard deviation of the metrics and detects if new network condition is
coming.

3.5 Algorithm Switching

As CaaS dynamically assigns the most suitable congestion control according
to connection conditions, algorithm switching should be executed for a single
TCP connection when the network condition change is detected. A convenient
way to do this is to directly change the congestion control function pointer to
another CC module. In this way, however, network throughput will decreases
sharply because the sending rate will be initialized to a very small value in the
initial phase of a new CC implementation. To ensure smooth transition between
algorithms, the new CC is expected to inherite the previous algorithm’s sending
rate to avoid drastic performance degradation. As for the algorithms employing
the pacing mechanism, such as BBR, we set the initial pacing rate to the value
of congestion window divided by recent sampled RTT. To test if CaaS client is
capable of smooothly switching CC schemes, we switch CC schemes for every 35 s
in the order of CUBIC, BBR, Westwood and use tcpprobe tool [23] to observe
cwnd. As shown in Fig. 3, each TCP variants perform a different behavior of
adjusting cwnd and CaaS is capable of switching different CC at different time.



CaaS: Enabling Congestion Control 87

Fig. 5. Flow complete time of different schemes in changing network conditions.

4 Performance Evaluation

To understand and quantify the benefits of CaaS, we evaluated our system both
in the network simulator and in the real Internet. Together, these two approaches
help us to understand the behavior of CaaS and superiority of it over traditional
method. Our test bed consists of 6 clients as data senders and a server as data
receiver. In each client, CaaS, Highspeed, Cubic, Westwood, BBR and Hybla are
deployed as congestion control scheme respectively. For all clients, we uploaded a
file (30 MB) to the server and use transfer completion time (TCT) as the primary
performance metric to compare the performance of different CC schemes.

Firstly, we compare the performance of Caas with other schemes in different
network scenarios. We randomly generate 4 different network conditions using
network simulator Mahimahi. Their link characteristics are (50 Mbps, 60 ms,
0%lr), (50 Mbps, 5 ms, 0%lr), (8 Mbps, 20 ms, 0%lr) and (48 Mbps, 8 ms, 0.2%lr)
respectively. In each network condition, clients with different CC schemes send
a file to the server. As shown in Fig. 4, every CC scheme has its most suitable
network condition and no single CC scheme can outperform all the others in
every network condition. Specifically, Hybla achieves best performance in net-
work condition with 50 Mbps bandwidth, 60 ms RTT and 0% loss ratio, but per-
form worst in other three scenarios. Highspeed outperforms other CC schemes
in the first two network conditions but underperforms in the last two scenarios.
BBR obtains shortest flow complete time in the network condition with 48 Mbps
bandwidth, 8 ms RTT and 0.2% loss ratio, but its performance is significantly
worse than other schemes in the network condition with 8 Mbps bandwidth,
20 ms RTT and 0% loss ratio. Fortunately, CaaS always achieves near optimal
performance across different network scenarios. This is CaaS can always select
the most suitable CC for hosts in different network scenarios.



88 J. Zhu et al.

Fig. 6. Flow complete time of different schemes in real Internet.

Secondly, we analyze the performance of CaaS in changing network condi-
tions. The network condition was set to be changed about every 3 s in the order
of (48 m, 8 ms, 0.2%lr), (50 m, 60 ms, 0%lr) and (50 m, 5 ms, 0%lr). As shown
in Fig. 5, CaaS achieves the shortest flow complete time in data transfer due
to its dynamic adjustment CC schemes according to the condition of network.
Specifically, we observe that client with CaaS use Cubic as its initial CC, then it
switches to BBR at about 0.3 s. After it detects the change of network condition,
it switches from BBR to Hybla at about 3.2 s. This proves that CaaS is capable
of dynamically switching to the most suitable CC when the network condition
is changing.

Thridly, we further evaluate the performance of CaaS in the real Internet.
We deploy CaaS in 4 aliyun Web servers from Beijing, Singapore, Mumbai and
California respectively. So our local client located in Hangzhou will experience
different network characteristics when connecting these Web servers. For each
server from different cities, we set client to send a file (300 MB) to server with
different CC schemes. As shown in Fig. 6, any specific congestion control algo-
rithm, even the state of the art, cannot excel in diverse network conditions.
CaaS can always achieves shorest flow complete time for its adaptive congestion
control tactic.

5 Conclusions and Future Work

In this paper, we advocated a vision of providing congestion control as a service
to offer flexibility and efficiency benefits for the deploy of novel advanced CC
schemes. We implemented a prototype of CaaS to support our argument. Pre-
liminary evaluations confirm that CaaS can transparently deploy suitable CC



CaaS: Enabling Congestion Control 89

schemes for clients in different networks, and achieve considerable performance
gains as compared to legacy method.

Our prototype system has yielded useful insights for future research of more
effective congestion control deploy platform. Our next steps include: 1) further
analyze and classify the existing CC schemes to their most suitable network sce-
nario, 2) comprehensively evaluate the overheads of CaaS in terms of CPU usage
and extra traffic caused by CC schemes update and 3) improve the performance
of the system for short-flow scenarios.

References

1. Dukkipati, N., Mckeown, N.: Why flow-completion time is the right metric for
congestion control. ACM SIGCOMM Comput. Commun. Rev. 36(1), 59–62 (2006)

2. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks.
ACM SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

3. Baiocchi, A., Castellani, A.P., Vacirca, F.: YeAH-TCP: yet another highspeed TCP.
In: Proceedings of PFLDnet, Roma, Italy, pp. 37–42 (2007)

4. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast
long-distance networks. In: INFOCOM 2004. Twenty-Third Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. IEEE (2004)

5. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant.
ACM SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

6. Park, S., et al.: ExLL: an extremely low-latency congestion control for mobile
cellular networks. In: The 14th International Conference (2018)

7. Abbasloo, S., Li, T., Xu, Y., et al.: Cellular Controlled Delay TCP (C2TCP).
arXiv, Networking and Internet Architecture (2018)

8. Floyd, S.: RFC 3649. https://www.ietf.org/rfc/rfc3649.txt. Accessed 10 June 2019
9. Brakmo, L.S., Peterson, L.L.: TCP Vegas: end to end congestion avoidance on a

global Internet. IEEE J. Sel. Areas Commun. 13(8), 1465–1480 (1995)
10. Caini, C., Firrincieli, R.: TCP Hybla: a TCP enhancement for heterogeneous net-

works. Int. J. Satell. Commun. Netw. 22(6), 547–566 (2004)
11. Yan, F.Y., Ma, J., Hill, G.D., et al.: Pantheon: the training ground for internet

congestion-control research. In: Usenix Annual Technical Conference, pp. 731–743
(2018)

12. Tan, K., et al.: A compound TCP approach for high-speed and long distance net-
works. In: Infocom IEEE International Conference on Computer Communications.
IEEE (2007)

13. Liu, S., Basar, T., Srikant, R.: TCP-Illinois: a loss-and delay-based congestion
control algorithm for high-speed networks. Perform. Eval. 65(6), 417–440 (2008)

14. Cardwell, N., Cheng, Y., et al.: BBR: congestion-based congestion control. ACM
Queue 14(5), 20–53 (2016)

15. Mascolo, S., Casetti, C., et al.: TCP Westwood: bandwidth estimation for enhanced
transport over wireless links. In: 7th ACM Conference on Mobile Computing and
Networking (MobiCom), Rome, Italy, pp. 287–297 (2001)

16. Fu, C.P., Liew, S.C.: TCP Veno: TCP enhancement for transmission over wireless
access networks. IEEE J. Sel. Area. Commun. 21(2), 216–228 (2003)

17. Akyildiz, I.F., Zhang, X., et al.: TCP-Peach+: enhancement of TCP-Peach for
satellite IP networks. IEEE Commun. Lett. 6(7), 303–305 (2002)

https://www.ietf.org/rfc/rfc3649.txt


90 J. Zhu et al.

18. Zaki, Y., Poetsch, T., et al.: Adaptive congestion control for unpredictable cellular
networks. ACM SIGCOMM Comput. Commun. Rev. 45(4), 509–522 (2015)

19. Winstein, K., Balakrishnan, H.: TCP ex Machina: computer-generated congestion
control. Comput. Commun. Rev. 43(4), 123–134 (2013)

20. Jay, N., Rotman, N.H., Godfrey, B., et al.: A deep reinforcement learning per-
spective on internet congestion control. In: International Conference on Machine
Learning, pp. 3050–3059 (2019)

21. Dong, M., Li, Q., et al.: PCC: re-architecting congestion control for consistent
high performance. In: Networked Systems Design and Implementation, pp. 395–
408 (2015)

22. Dong, M., Meng, T., Zarchy, D., et al.: PCC Vivace: online-learning congestion
control. In: Networked Systems Design and Implementation, pp. 343–356 (2018)

23. Linux TCP probe. https://wiki.linuxfoundation.org/networking/tcpprobe.
Accessed 12 Oct 2019

24. Netravali, R., Sivaraman, A., Das, S., et al.: Mahimahi: accurate record-and-replay
for HTTP. In: Usenix Annual Technical Conference, pp. 417–429 (2015)

25. Balakrishnan, H., Stemm, M., et al.: Analyzing stability in wide-area network
performance. Meas. Model. Comput. Syst. 25(1), 2–12 (1997)

26. Jobin, J., Faloutsos, M., et al.: Understanding the effects of hotspots in wireless
cellular networks. In: Proceedings of the Conference of the IEEE Computer and
Communications Societies, INFOCOM (2004)

27. Lu, D., Qiao, Y., Dinda, P.A., et al.: Characterizing and predicting TCP through-
put on the wide area network. In: IEEE International Conference on Distributed
Computing Systems, ICDCS (2005)

28. Ryan Prescott Adams and David JC MacKay: Bayesian Online Changepoint Detec-
tion. In arXiv:0710.3742v1 (2007)

https://wiki.linuxfoundation.org/networking/tcpprobe
http://arxiv.org/abs/0710.3742v1

	CaaS: Enabling Congestion Control as a Service to Optimize WAN Data Transfer
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Overview
	3.2 Offline Learning
	3.3 Online Matching
	3.4 Change Point Detection
	3.5 Algorithm Switching

	4 Performance Evaluation
	5 Conclusions and Future Work
	References




