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Abstract. Fog computing, as a novel computing paradigm, aims at alle-
viating data loads of cloud computing and brings computing resources
closer to end users. This is achieved through fog nodes such as access
points, sensors, and fog servers. According to the fog computing loca-
tion awareness capabilities, a large quantity of devices exists in the
physical environment with a short cover range. This leads to location
privacy exposure by the connection triggered. Adversaries can pry into
more private data through the commodiously accessible location infor-
mation. Although the existing privacy-preserving schemes can address
some issues such as differential privacy, it cannot meet various privacy
expectations in practice for fog computing variants. Motivated by this,
we propose a location-aware dynamic dual ε-differential privacy preserva-
tion scheme to provide the ultimate protection. We start by establishing
the first scheme by clustering fog nodes with SDN-enabled fog comput-
ing. In addition, we customize ε-differential privacy preservation scheme
to tailor-made for the variant fog computing services. Furthermore, we
employ a modified Laplacian mechanism to generate noise, with which
we find the optimal trade-off. Extensive experimental results confirm the
significance of the proposed model in terms of privacy protection level
and data utility.

Keywords: Differential privacy · Fog computing · Software defined
network

1 Introduction

With the rapid development of the fog computing [3], connectivity between fog
nodes is becoming stronger and more ubiquitous. An increasing volume of entities
are becoming intelligent and serving as fog nodes. They can perceive the sur-
rounding environment, connect to the Internet, and receive commands remotely
by their location information. The intelligence of these fog nodes is the result of
data, analysis, and feedback from various systems or servers of different mobile
devices. A large amount of the data leads to an increased possibility of privacy
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issues such as location-aware privacy, sensitive context-aware privacy, etc. [7,8].
Therefore, it is necessary to protect the privacy between fog computing devices
and users among the network infrastructure.

According to the fog computing reference model [4], location-based services
have been widely used [24], for example, vehicular systems, smart grid, and smart
city. Traditionally, end devices are required to connect to the best available fog
node in order to improve user experience in a convenient way [16]. Location-aware
privacy issues occur when the transmission has been confirmed [25]. Adversaries
can easily detect and attack fog nodes in an appropriate manner. The main chal-
lenge for location-aware fog computing systems is how to securely and efficiently
provide privacy-preserving methodologies among a large number of devices that
contain sensitive location information [18].

Furthermore, with the growing demand for data, users’ personal informa-
tion can be disclosed against users’ willing. However, with the potential threat
of untrustworthy of the location service provider (fog node) and user sensitive
information leakage, fog nodes containing the threat from users’ privacy in the
collection, distribution and use of location information [22]. Although some data
privacy-preserving methods or algorithms are promoted, it is impractical for tra-
ditional privacy-preserving techniques to directly address the identified problem
in an appropriate manner.

In this paper, in order to obtain an optimal tradeoff with high accuracy
and efficiency, we propose a Dynamic Dual Scheme ε-Differential Privacy model
(DDSDP) based on software-defined fog computing services. Software-defined fog
computing provides the network with programmability and privacy protection in
a flexible and dynamic way. In the proposed model, we use dual schemes to obtain
tradeoff optimization. Firstly, we start from the fog nodes clustering approach.
This approach brings the user into fog computing services by connecting with
a group of fog nodes instead of one stable service provider, while it increases
the difficulty when adversaries approach their collision attack. We customize ε-
differential privacy based on the distance between clustered fog nodes. Moreover,
we develop a QoS-based mapping function to measure data utilities and privacy
protection level. Our extensive experiments indicate the efficiency and accuracy
in a dynamic manner.

The main contributions of this work are summarized as follows.

– We propose a Dynamic Dual ε-Differential Privacy scheme (DDSDP) to pre-
serve location-aware privacy. We consider a dynamic clustered connection for
the fog nodes in the initial stage. This preserved direct attack from adapt-
able adversaries. According to customized Laplacian Mechanism differential
privacy preservation setup, we customized protection levels and data utilities
in order to achieve optimal protection.

– We analyze and modify the SDN-based fog computing control layer known
as Dynamic Solution Layer (DSL). It dynamically customizing the clustering
level to respond to different clustering situations. It protects from a stabilized
system to a random variable system. Moreover, it increases the difficulty level
for adversaries to analyze the real location of the user.
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– We conduct experiments on a real-world dataset to demonstrate the pro-
posed algorithms. The evaluation results show the significant performances
in terms of data utility and privacy protection level regarding location-aware
applications, respectively.

The remaining part of this paper is organized as follows. Section 2 introduces
the related work and a literature review from the existing problems and solutions.
We prompt the dynamic solution layer from modified SDN-based fog computing
in Sect. 3. Followed by system modelling and analysis in Sect. 3. The system
performance and evaluation are described in Sect. 4. Finally, we summarized
and conclude this paper in Sect. 6.

2 Related Work

Fog computing brings data closer to the user instead of relying on communication
with the data center [6]. One of the key benefits of fog computing is the dense
geographical distribution that can be achieved by deploying fog nodes in differ-
ent locations and connecting each of these nodes to end devices [20]. This geo-
graphical distribution enables more efficient communication between end users
or devices and the server. The geographical distribution of the fog nodes also
enables location-based mobility support for IoT devices such that traversal of the
entire network is not necessary [22]. This is distinct from the situation in a cloud
network, in which all data must be uploaded to the cloud side for computation
and data packets must then be sent back to the end devices [12]. This delays the
communication of data, especially in environments with real-time application
requirements such as for the control of oil pump valves. Apart from all the bene-
ficial location-aware features from fog computing, the leading problem appears.
The protection of users’ location privacy heave in sight.

According to the location-aware privacy preserving issues in fog computing,
a few papers considered problem [14,22]. Approaches including k-anonymity
based privacy preservation, t-Closeness and other variants. In addition, privacy-
preserved pseudonym scheme proposed by J. Kang [10] has been discussed pri-
vacy issues in location based fog computing Internet vehicles. Qu et al. pro-
posed a GAN-driven location privacy-preserving method by means of differential
privacy [17,19]. Although these technologies provided well-performance results,
they are more focusing on a stabilized network condition instead of dynamic and
customized fog computing constrains.

SDN has been proved and widely applied on fog computing infrastructure [9,
11]. SDN is designed to solve the challenges within fog computing by decoupling
data and control plane. The integration between SDN and fog computing can
effectively improve the performance of the IoTs. Although the deployment of
SDN with fog computing seems promising, the privacy issues can not be avoided
[2].

Lyu [13] conducted deep research on the customized ε-differential privacy
preserving methodology and successfully proven by Qu [15], Badsha [1] and Wang
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[23]. These approaches have high effectiveness in social network, recommender
system, and location-aware applications. They have solid theoretical foundations
as well as providing high level privacy protections [21].

3 System Modelling and Analyze

In this section, we present our dynamic dual ε-differential privacy preserving
(DDSP) scheme in SDN enabled fog computing service. This dynamic model
focus on protecting location-aware privacy content occurred between users and
fog nodes. We first introduce a modified control layer from SDN infrastructure,
named as Dynamic Solution Layer (DSL). This new control layer aims to pro-
vide a dynamic clustering solution rely on the reality transmission. Each cluster
creation is based on modified Affinity Propagation (AP) clustering method. In
this approach, adversaries are not be able to determine the source of the ini-
tial connected fog node as the clusters are dynamically updated. Therefore, this
clustering approach create fist privacy protection. Moreover, we present modified
Laplacian Mechanism and add Laplacian Noise to increase the protection level.
We use QoS mapping method to measure the distance between each cluster.
Thus, the ultimate dual protection of the privacy in terms of privacy level and
data utility has been created in SDN enable fog computing services.

3.1 Dynamic Solution Layer

In this section, we present the proposed innovative architecture that integrates
the fog computing environment with SDN. As shown in Fig. 1, two main physical
device component layers are proposed in our architecture: the control layer and
the infrastructure layer.

In our proposed reference model, programmability is proposed to analyze
the location information and user data to determine the quantity of fog nodes
involved. Furthermore, in the clustering condition, two or more fog nodes are
assigned to perform location aware analyze as well as providing fuzzification
towards adversaries attack. Clustering method is a virtualized network based on
geographically distributed fog nodes. In reality, all fog nodes are still physically
located at their original locations, but nm virtually, they are clustered via SDN
to improve their location fuzzification. For example, adversary aims to attack
a user. In traditional methodology, user connect with the closest or best signal
fog node. However, adversary will easily determine the exact location. Instead,
when user first create transmission with fog computing network, they connect
to the clustered fog nodes which contains two or more available. Adversary only
be able to determine the clustered fog nodes instead of locating the exact fog
node to obtain the true location information.

DSL also provide a dynamic feedback solution for end users to improve the
protection level of privacy. All clustering updates and reunited with different fog
nodes operate in this layer. In other word, the cluster for our proposed model is
dynamic. Reunited and updates will be defined when connection capacity reach
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limitation. Each fog nodes has theoretic limitation, DSL also be responsible for
QoS data utility measurement.

Fig. 1. Overview of the dynamic solution layer within SDN based fog computing.

3.2 Virtualized Fog Node Clustering

Virtualized clustering is our first scheme in terms of privacy preserving in our
proposed model. First of all, we formulate the fog node location of Fog Com-
puting as a clustering problem with multi constraints. The vitalization for the
clustering organiszed by SDN controller demonstrates in Fig. 2.

Entropy Weight Method Based Cluster Triggering. The basic idea of the EWM is
to determine objective weights based on the variability of certain indicators. In
our scenario, the EWM is applied to calculate the weight of each element in each
dimension. Generally, a smaller elemental entropy ej indicates that an element
is more meaningful, providing more information and related to more data in the
fog network environment, and thus should be assigned a greater weight in the
associated dimension. On the other hand, a larger entropy ej indicates that an
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Fig. 2. Vitualized fog clustering by SDN controller.

element is of smaller value, provides less information, and plays a smaller role
in the overall evaluation, and thus, it should have a smaller weight.

Unification Process and Weight Factors. For the overall network environment,
the SDN controller collects and stores all fog node location identification numbers
and specifications. Based on the historical data collected ahead of time, the SDN
controller places all elements and factors into a matrix F , where the elements
F = F 1

1 , F 1
2 , F 1

3 , F 1
β represent different factors of the same fog node and the

elements F = F 1
1 , F 2

1 , F 3
1 , Fα

1 represent the same factor for different fog nodes.

F =

⎡
⎢⎢⎣

F 1
1 F 1

2 F 1
3 . . . F 1
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F 2
1 F 2

2 F 2
3 . . . F 2
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β

⎤
⎥⎥⎦ (1)

Since all factors have different indices, a unification process is required before
the aggregate indicator can be calculated. More specifically, the absolute values
must be converted to relative values to solve the problem of different absolute
values for different indices. The matrix F after the unification process is denoted
by F ′.
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⎥⎥⎥⎥⎥⎦

(2)

Since the unification process has been applied, the weight factor must be
calculated for each factor j in each dimension i, where i = 1, 2, ..., n and j =
1, 2, ...,m.

pij =
F ′

ij∑n
i=1 xij

(3)

Once the weight factors have been calculated, the entropy value of each factor
j must be calculated, where j = 1, 2, ...,m. Here, k = 1/ln(n) > 0 and ej >= 0.

ej = −k

n∑
i=1

pij ln pij (4)
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A redundancy rate is calculated to reduce the deviation during this process.
For j = 1, 2, ...,m, the redundancy rate will be dj = 1 − ej . The weight factors
after the redundancy correction are calculated as follows:

wj =
dj∑m

j=1 dj
(5)

Cluster Triggering Process. Since the weight factors for each element in each
dimension have been determined, the clustering process is performed based on
these weight factors. Suppose that ttrig is the threshold level for triggering clus-
tering and depends on the environment of the fog network and that Ttrig is
the result of the triggering process and depends on each element and its calcu-
lated weight factor. The clustering result depends on the fog node factor that is
associated with the maximum value.

T 1
trig =

F 1
1∑α

i=1 F i
1

× ttrig

T 2
trig =

F 1
2∑α

i=1 F i
2

× ttrig

. . .

T β
trig =

F 1
β∑α

i=1 F i
β

× ttrig

Ttrig = max(T 1
trig, T

2
trig, . . . , T

β
trig) (6)

3.3 Affinity Propagation Based Clustering

Affinity propagation (AP) is a semi-supervised clustering algorithm based on
nearest neighbor propagation that was proposed by [5]. Unlike in other clustering
methods, in AP, it is not necessary to specify the final number of clusters. The
cluster centers are selected from among the existing location data points instead
of being generated as new data points. The model of the AP clustering method
is less sensitive to the initial input location data and does not require the data
similarity matrix to be symmetric. In a fog network, the input data can be of
different types due to the different selections made by our triggering process
based on the weight factors. Therefore, the AP algorithm is most suitable for
clustering the fog nodes.

Preference. The clustering center similarity, sim(i, k), represents the similarity
between data point i and data point k. This similarity is calculated using the
Euclidean distance:

sim(i, k) =

√√√√
n∑

r=1

(i − k)2 × Ttrig (7)
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Responsibility. In the responsibility matrix, r(i, k) denotes the extent to which
data point k is suitable for being designated as the cluster center for data point
i and represents a message sent from i to k, where k ∈ 1, 2, ..., N and k �= k′.

r(i, k) = (s(i, j) − max {a(i, k′) + sim(i, k′)}) × Ttrig (8)

In the above equation, a(i, k) is a value representing the availability of point i
to a point other than k, and its initial value is 0. s(i, k) denotes the responsibility
of points other than k to point i, where points outside of i are competing for the
ownership of i. r(i, k) denotes the cumulative responsibility of k to become the
cluster center for i. When r(i, k) > 0, this indicates a greater responsibility of k
to become the cluster center.

Availability. The availability a(i, k) denotes the likelihood that data point i will
select data point k as its cluster center and represents a message sent from
k to i.

a(i, k) = min

{
0, r(k, k) +

∑
k

{max(0, r(i′, k))}
}

× Ttrig (9)

a(k, k) = (
∑

k

{max(0, r(i′, k))}) × Ttrig (10)

Here, r(i′, k) denotes the responsibility value of point k as the cluster center for
points other than i; all responsibility values that are greater than or equal to
0 are summed, and we also add the responsibility value of k as its own cluster
center. Specifically, point k is supported by all data points with corresponding
responsibility values greater than 0, and data point i selects k based on its
cumulative value as a cluster center.

Damping Factor λ. As the algorithm iteratively updates the values of availability
and responsibility, a damping factor is applied. The effect of this factor λ is to
enable the AP algorithm to converge more efficiently. The damping factor takes
on values between 0 and 1. During each iteration of the algorithm, λ acts on
the responsibility and availability values to weight the update relative to the
previous iteration.

rn = (1 − λ) × rn + λ × rn−1 (11)

an = (1 − λ) × an + λ × an−1 (12)

3.4 Laplacian Mechanism and Laplacian Noise

We probabilistic the original single clustering query results to protect location
privacy. In order to protect users’ location-aware content privacy, we use Lapla-
cian mechanism to change the real value by adding Laplacian noise to the original
clustering result data, so that the differential privacy is satisfied before and after
adding noise.
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M(D) = f(D) + Y

s.t.

Lap(α) =
px(z)
py(z)

= exp(
ε· ‖ f(x) − f(y) ‖

�f
)

(13)

where ε defines privacy budget, ε can be customized due to the clustering require-
ment in order to achieve better privacy budget result. Y determines Laplacian
distributed noise. Lap(α) defines the probability density of the mechanism while
α decides the size of the noise.

3.5 QoS Data Utility Mapping

In the DDSDP model, we have defined the distance between each cluster
sim(i, k) in early paragraph, we use Softmax function to model QoS data utility
function and privacy protection level ε. The softmax function assigns decimal
probabilities to each class in a multiclass problem. It is also widely used to map-
ping the data utility and privacy protection level according to the QoS. The
mapping function illustrated as

QoS(εi) = k × exp(θt
isimik · x)∑K

k=1exp(θt
ksimik · x)

(14)

where k ∈ K and defined as the parameter to adjust the maximum amplitude
value, θ is determined the steepness of the curve and x denotes the location.

3.6 Dynamic Dual Scheme Differential Privacy

In fog computing, each user publishes their sensitive location data upon the
connection created. However, these location information needs privacy protection
before been published. We have created first scheme to increase the difficulty level
when adversary aims to attack. Furthermore, our second scheme aims to provide
ultimate privacy protection to the users. We use ε-Customizable Differential
Privacy to obtain our goal. We formulated the mechanism when M → Δ(χ) is
considered to be ε-differentially privacy as

Pr [M(D) ∈ Ω] = exp(QoS(εi)) · Pr [M(D′) ∈ Ω]

= exp(k × exp(θt
isimik · x)∑K

k=1exp(θt
ksimik · x)

) · Pr [M(D′) ∈ Ω]

s.t.
∀Ω ⊆ χ,

∀(D,D′) ⊆ ψ,

(15)

where χ denotes noisy outcome and D defines the space of the sensitive location
data, where ε ≥ 0, and ψ ⊆ ∀(D,D′) ⊆ ψ denotes proximal relation between the
data.
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4 Performance Evaluation

In this section, we run a series of simulations to testify the performance of our
proposed DDSDP model in serval ways. First, we evaluate the data utilities by
sampling time slot with different location; then, we evaluate privacy protection
level with different time slot by different locations. Third part of the experiment
would evaluate the performance of the clustering approach including cluster-
ing results, transmission results, clustering distance, and loading performance
for the overall fog nodes. In order to verify these results, we use latest ver-
sion of the “VicFreeWiFi Access Point Locations” dataset, which contains 571
raw data of location information. This dataset is available in serval locations
across 300 kms and it allows 250 MB per devices, per day. Within the dataset,
it contains detailed location information for the access points, including 391
nodes recorded in city center, 44 nodes in northbound area, and 82 nodes west-
northbound area. These location information leads the location-aware issues for
adversaries to determine the users.

In the following experiments, we compare our model with different ε value
in order to obtain the best performance and customization of the ε-differential
privacy protection scheme. Moreover, we also evaluate the performance of the
clustering efficiency as SDN-enabled fog computing should contains more cus-
tomizations features without effect original performance. Respectively, the SDN
enabled clustering results demonstrates better network performance.

4.1 Data Utilities Performance

Figure 3 shows the results of the data utilities according to our DDSDP model.
This figure demonstrate the general trends of the QoS functionality. We selected
three customized representative parameter values for the ε, which when ε =
1, ε = 0.5, and ε = 0.1, by comparing with raw data value to observe our
results, which makes it applicable to various scenarios. We start with clustering
algorithm to choose 20 available clustered fog network, these clustered network
based on QoS measurement from the clustering distances. Laplacian mechanism
is responsible to generate noisy responses. As shown in the figure, smaller ε
values leads better overall data utility performance value. For the particular
dataset scenarios, when ε value equals to 0.1, we have achieve the peak value
which is 1.7 with clustering time slot 5.

4.2 Privacy Protection Level Evaluation

We consider different clustering situations in terms of the performance for pri-
vacy protection level. In the initialization stage, we enabled three representative
parameter value same with data utilities evaluation to setup the customized ε.
The reason to choose three ε value aim to simulate the randomness of Laplacian
mechanism which leads to different noisy responses. As shown in Fig. 4, privacy
protection level comparison in term of customizable ε is based on cluster dis-
tance. Sampling time slot 7 with one of the cluster reach the maximum privacy
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Fig. 3. Data utilities performance among three ε values.

protection level as 1.5, as well as the cluster in time slot 20 remain to the highest
value along with other three values. Although the performance for three param-
eters retains different results from different cluster, it justifies the outstanding
importance of the customization. For example, for time slot 4’s cluster, we should
select customized the ε value to 1, respectively.
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Fig. 4. Privacy levels with different locations.

4.3 Clustering Efficiency Performance

Figure 5 shows the node clustering results generated via the AP clustering
method in the DSL. In these results, the estimated number of clusters is 16, and
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these clusters are formed from 517 available fog nodes. We tested three similar-
ity values to evaluate the system performance. Among the results, the minimum
similarity is 2.000000e−8, and the median and maximum similarity values are
0.017874 and 1.276488, respectively. The similarity is based on the longitudi-
nal and latitudinal locations along with the connection speed. The homogeneity
rate is 0.513, which indicates the extent to which nodes with the same properties
are clustered. In this particular dataset, the rate is based predominantly on the
connection speed. The completeness and V-measure results are 0.133 and 0.211,
respectively, and the adjusted Rand index is 0.080. The clustering results were
generated by the DSL system and show good performance.

Fig. 5. Efficiently clustered results.

One of the key factors in testing the performance of the clustered network
is the file transmission speed. As seen from our simulations, the standard fog
network is better able to handle a small amount of data. However, as the file
size grows, the performance of the resource-sharing clustered network becomes
superior to that of the standard network, as shown in Fig. 6. In both simulations,
the dataset was run from the same starting level of zero. As the file transmission
time increases with increasing file size, the two systems perform almost the same
in the range of 4000 MB to 5000 MB. However, when the file size is over 5000
MB, the speed gap becomes increasingly larger with increasing file size. This is
because of the power of sharing computing capacities among the nodes, which
enables the borrowing of other nodes to help with computations.

In Fig. 6, we conducted file loading times for videos downloaded from 200 dif-
ferent fog nodes, where the upper line is the video loading time in the clustered
fog environment and the lower line is the result without clustering. Therefor,
there are large time fluctuations in the non-clustered environment as the end
device keeps trying to find a node that is available for downloading. By con-
trast, the upper line shows a significantly more stable loading time, reflecting an
improved user experience.
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In conclusion, the proposed DDSDP model shows high quality dual scheme pri-
vacy protection level in terms of data utility and privacy protection level (Fig. 7).
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