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Abstract. The dynamic change, huge data size, and complex struc-
ture of the data stream have made it very difficult to be analyzed and
protected in real-time. Traditional privacy protection models such as
differential privacy which need to rely on the trusted servers or com-
panies, and this will increase the uncertainty of protecting streaming
privacy. In this paper, we propose a new privacy protection protocol for
data streams under local differential privacy and w-event privacy, which
makes it possible to keep up-to-date statistics over time, and it is still
available when the third parties are untrusted. We use sliding window to
collect the data streams in real-time, finding out the occurrence of signif-
icant moves, capturing the latest data distribution trend, and releasing
the perturbed data streams report in time. This protocol provides a
provable privacy guarantee, reduces computation and storage costs, and
provides valuable statistical information. The experimental results of real
datasets show that the proposed method can protect the privacy of the
data streams and provide available statistical data at the same time.

Keywords: Data streams · Local differential privacy · w-event
privacy · Sliding window

1 Introduction

With the development of 5G technology, intelligent devices and sensors have
produced more and more dynamic data, which we call the data stream. Real-
time analysis of stream data can obtain valuable information to understand an
important phenomenon [13], so it is widely used in various application fields,
such as mobile crowd sensing [28], traffic service stream monitoring [19] and
social network hotspot tracking [26]. The data service providers collect real-time
data stream and publish real-time statistics, share and analyze [29] them with
interested third-party to improve the service quality.
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However, there are potential privacy risks in this process. On account of the
joining of the untrusted third party, the attacker may query the original data
of multiple timestamps of a single user through the differential attack to draw
the user’s data track and disclose the user’s privacy information [20]. Recently
research [4] has found that the user’s mobile trajectory is highly unique from the
user’s mobile data obtained by mobile phone operators. Even if the desensitized
dataset provides a small amount of anonymous information, it can still be linked
to the designated user with relevant background knowledge. A series of similar
findings reveal that the privacy of personal data stream is facing a huge risk, so
it is of great significance to the research and development of data stream privacy
collection and release mechanism, but in the real-time, irreversibility and large
scale of data stream itself also bring challenges to the research.

Differential privacy (DP) [10] as a widely used privacy protection model
provides strict privacy guarantee and theoretical proof, and it does not need to
consider the attacker’s background knowledge. One of the common methods of
data publishing with differential privacy is to perturb the data before publishing
and hide the sensitive information of individuals in the process of statistical
analysis and data mining. At present, the research on the differential privacy
model mainly focuses on the static scene, however the real-time data is collected
and published all in the dynamic scene [5]. In the centralized interactive scene
of differential privacy, the trusted curators collect sensitive data from different
entities, carefully adding calibrated noise, and then sharing the final results
with data analysts. The model is shown in Fig. 1. Dwork et al. [11] proposed
two different privacy schemes for continuous data collection, namely event-level
and user-level privacy. Event-level privacy protects user’s privacy on a single
timestamp in the data stream, but it does not protect user’s privacy in the whole
data stream; user-level privacy needs to add noise in the whole data stream,
which will reduce the utility of data in the long run.

This model requires that the trusted data curator, however, if the curator
is not trusted, there is a risk of the potential breach of privacy from a third
party. And the attacker may obtain part of the original data of the data curator
through repeated queries and infer the user’s privacy. Local Differential Privacy
(LDP) [21] is a distributed variant of differential privacy, which does not require a
trusted data curator. Before sending individual privacy data, users perturb their
data on the local device and send the perturbed privacy reports to resist privacy
attacks under the centralized model. This model is shown in Fig. 2. At now, the
research of the local differential privacy model is mainly focused on the release
of single data [3], however, it’s difficult for the LDP model to deal with complex
real-time data. As the streaming evolves, the consumption of computing power
and storage space will become larger, and the privacy budget will gradually
decline.

Compared with the collection of traditional data, the length and content
of the data streams change dynamically, the data size is huge, and the data
type is complex. Aiming at the problem of how to protect streaming privacy
under the local differential privacy model, we propose the locally differential
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Fig. 1. Differential privacy protection model.

Fig. 2. Local differential privacy protection model.

private Streaming (LDPS) protocol based on local differential privacy and w-
event privacy [22]. The LDPS protocol selects different algorithms to obtain the
statistics according to the type of data streams. When the collected data streams
are real-time numerical attributes such as temperature and humidity, longitude,
latitude, and heart rate, etc., we calculate the value of mean [25]; for real-time
classified attributes such as the user’s default browser home page, search engine
setting and most frequently emojis or words, etc. [27], we conduct the frequency
estimation and find heavy hitters [2]. When data types are mixed, different
protocols are used to process the data with different attributes identified. The
main contributions are:

(1) Ensure that the individual user data never leaves the device by deploying
the local differential privacy;
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(2) The proposed protocol provides a stronger privacy guarantee for the data
stream and reduces the ways for attackers to breach privacy, meanwhile,
obtains valuable statistical data;

(3) The sliding window technology is used to release the private streaming
in real-time, which reduces the computing and storage overhead and pri-
vacy budget consumption compared with the traditional privacy protection
method;

(4) To further reduce the storage space and better allocate the privacy budget,
the proposed protocol determine the window length of the stable sub-stream
adaptively, detect the occurrences of significant moves and open a new win-
dow in time to capture the trend and distribution of data streams.

This paper is organized as follows. First, we describe related works in Sect. 2
and the background knowledge for this paper in Sect. 3. Then, we state the prob-
lem setting and methodology in Sect. 4 and propose our protocol in Sect. 5. Next,
we evaluate and analyze our method in Sect. 6. At last, the work is summarized
in Sect. 7.

2 Related Works

Recently, the research schemes for the privacy protection of data streams are
mainly focused on the release of real-time time series under different privacy
budgets. Fan et al. [15] propose a framework of FAST based on perturbation,
filtering, and sampling. According to the error rate between the estimated and
predicted statistical data, the framework releases noisy report at the sampling
points, which can provide user-level privacy protection, i.e., to protect the pri-
vacy of the user in the whole time-series. However, their work cannot be applied
to infinite data streams because the FAST must allocate the maximum num-
ber of releases in advance, and the sampling mechanism can only be applied
if each timestamp has an equivalent budget. Kellaris et al. [22] propose a new
model, w-event ε-differential privacy (w-event privacy for short), which combines
the gap between event-level privacy and user-level privacy, they also give new
mechanisms to implement the w-event privacy model.

Differential privacy has attracted much attention in the real-time release
of streaming data [17] because of its advantages in mathematical proof and
privacy protection. However, these mechanisms are based on trusted servers,
which strictly limits their application in practice. Fan et al. [14] propose an
adaptive system, which releases aggregate statistical information of real-time
and spatio-temporal data streams under differential privacy model by sampling
and filtering steps. Although this mechanism optimizes the budget allocation
of numerical attributes, it applies only to finite data streams. Wang et al. [30]
present the adaptive framework AdaPub, which can update the parameters with
the data stream evolving. These researches extend the mechanism by considering
the sliding window of the w timestamp and optimizing the budget allocation
within the window. While these efforts provide good insight into publishing data
streams under differential private guarantees, they rely on a trusted server that
is not convenient to deploy in many real-world applications.



Local Differential Privacy for Data Streams 147

In order to solve the problem of untrusted servers, many scholars and
researchers discuss the local differential privacy model, i.e., the individual raw
data is perturbed before it is sent from the client. Duchi et al. [6–8] proposed the
min-max mechanism of numerical attribute publication based on local differen-
tial privacy. Erlingsson et al. [12] developed a RAPPOR protocol for real-time
publishing binary attributes, which is based on random response technology
to limit the probability of inference of sensitive information. Wang et al. [12]
improve the accuracy of numerical attributes of the min-max mechanism and
extend it to publish binary and numerical attribute data. However, the proposed
mechanism randomly selects k attributes for perturbation, which is not realistic
in some practical application scenarios. Kim et al. [23] develop a mechanism
for the health data stream by leveraging local differential privacy. In addition,
these mechanisms cannot be used to distinguish between ordered and disordered
attributes.

The mechanisms mentioned above carefully allocate the privacy budget on
each timestamp. However, even in a relatively short period, repeated differen-
tial privacy computing will accumulate the privacy loss to a large value, so an
adaptive compression mechanism is needed to reduce the loss of privacy budget.
Recently, Joseph et al. [20] apply a compression technique to continuously release
binary attributes under local differential privacy. For user clients with similar
data distribution, this mechanism will consume the local privacy budget only
when the distribution of users changes significantly. Soheila et al. [13] propose
an adaptive dynamic compression method in the local differential privacy data
stream mechanism, which adaptively adjusts the window length to reduce the
consumption of the privacy budget. Wang et al. proposed a RescueDP protocol
[29], which provides privacy protection statistical data distribution on infinite
timestamps through adaptive sampling, adaptive budget allocation, dynamic
grouping, perturbation, and filtering mechanisms.

3 Preliminaries

In this section, we introduce the local differential privacy and w-event privacy
model, and some related techniques used in these models. The definitions used
in this paper are given below.

Definition 1 (w-neighboring). Let St = {D1, D2,..., Dt} be a prefix stream of
sequential data where at each timestamp i, a dataset Di is collected with an
arbitrary number of rows each corresponding to a unique user. For any positive
integer w, two prefix streams St, St’ are defined as w-neighboring if:

(1) for each Di, Di’, i ∈ [1, t] and Di �= Di’ it holds that Di , Di’ neighboring,
and;

(2) for each i1 ∈[1, t], i2 ∈[1, t], i1< i2, and i1 �= i2, it holds that i2 - i1 + 1 ≤ w.

The sliding window arranges tuples in streaming data according to their
timestamps. The sliding window, with a fixed length w, always keeps the newest
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Fig. 3. Sliding window model.

w − th tuples, while discarding old ones. Figure 3 shows the sliding window
model with the window length of 4. w-event privacy is an extension of differential
privacy for continuously publishing data streams. It provides a provable privacy
guarantee for any sequence of events that occur in any sliding window of the w
timestamp. The definition as follows:

Definition 2 (w-event privacy). Let M be a random mechanism, and let D be
the domain of all possible output M. M satisfies w-event ε-differential privacy
when St and St’ are w-neighboring, if it holds that:

Pr[M(St) ∈ D] ≤ eε · Pr[M(S′
t) ∈ D] (1)

Definition 3 (Stably sub-stream). Given a threshold δ >0, a sub-stream is stably
from timestamp i to j, if and only if d(St, Si’) ≤ δ, ∀t, t’∈[i, j], where d(·) is a
distance measurement method.

The generation of a significant move denotes the outbreak of a new event
or the occurrence of a new trend in the data stream. When the newly observed
tuples maintain the stability of the current window, they can be added to the
current window to form a stably sub-stream. Otherwise, a new window should
be opened to capture new trends in the data stream.

Definition 4 (Significant move). Let Si,j be a stably sub-stream in timestamp
[i, j]. A newly observed tuple Sj+1 is a significant move if the distance of Sj and
Sj+1 is greater than δ.

Local differential privacy is a new privacy definition for individual privacy in
clients and a special case of differential privacy, the perturbation process in LDP
shifts from the server-side to the client-side. Under this definition, the modifica-
tion between any two pieces of local data has little impact on the query results.
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Even if a piece of data is known, an adversary cannot obtain accurate individual
information by observing the query results because of data perturbations on the
local client. Therefore, the risk of privacy disclosure between the two local data
is in a very small and acceptable range. The definition as follows:

Definition 5 (ε-local differential privacy). Where ε>0, a randomized mecha-
nism A satisfies ε-local differential privacy if and only if, for any pairs of input
tuples x and x’, for any possible output x∗ (in the domain belonging to A), we
have:

Pr[A(x) = x∗] ≤ eε · Pr[A(x′) = x∗] (2)

Theorem 1 (Sequential composition). Consider mechanism A that provides εi-
local differential privacy. A sequence of mechanism A over a data stream S pro-
vides

∑
εi-local differential privacy.

4 Problem Setting

In this section, we discuss the problem statement about the data stream under
the local differential privacy model and propose some methods to solve these
problems.

4.1 Problem Statement

We describe the data stream firstly. We consider an infinite source stream dataset
S of d states and denote the stream that collected from the user set Ui in first
timestamp i as Si, Si = {D1, D2, ..., Di}, i ∈ [1, t], Di is the dataset sent by
Ui’s users at timestamp i. We set the data stream within the timestamp range
i to j as Si,j .

To protect the privacy of real-time data streams under the limited storage
space and computing power of edge nodes, the client’s data streams must be per-
turbed before being sent to the server to ensure privacy requirements. Therefore,
our goal is to publish the infinite data streams in real-time, which can ensure the
privacy of each client, maintain the data utility and provide valuable statistical
information.

First, We need to prevent privacy breaches before the client transfers the
data stream. Second, how to use the local differential privacy model to ensure
the utility of data while providing privacy protection for the individual data and
how to reduce the computing power and large overhead of storage space caused
by the perturbed mechanism. Third, how to detect the concept drift of data
streams to reduce errors. Last, how to meet the definition of w-event privacy
and adjust the privacy budget allocation adaptively in real-time under the local
differential privacy model.
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4.2 Propose Solution

The individual raw data stream will never leave the devices through the deploy-
ment of the local differential privacy model. This will provide a powerful privacy
guarantee and reduce how adversaries can breach privacy.

Our goal is to protect raw individual data and to publish the perturbed
stream which satisfies w-event ε-differential privacy while providing valuable
statistics. With the evolving of the data stream, the stable subseries and judges
the significant points appear, we will sniff out new trends of the data streams
in time and allocates the privacy budget adaptively. Therefore, this method can
be applied to infinite data streams and reduce storage space and computing
consumption.

The privacy protection of numerical attribute data streams consists of four
steps: standardization, perturbation, adaptive allocation, and decoding. The first
step is to standardize the numerical attribute data stream and encode the nor-
malized data according to the corresponding mechanism. The second part is the
perturbation, which implements the perturbed mechanism of the standardized
data stream that satisfies the definition of local differential privacy. The third
step is adaptive allocation, which determines the stably sub-stream and distin-
guishes the significant moves in time, and dynamically adaptively allocates the
privacy budget. In the fourth step, data streams after the real-time perturbation
are collected, and the value of mean is obtained after aggregation, and the mean
value is normalized and restored.

The privacy protection process of categorical attribute data streams consists
of four steps: encoding, perturbation, adaptive allocation, and decoding. The
first step is to encode the data stream, such as a one-hot encoding or bloom
filters. The second step is to deal with the perturbation of the encoded data
stream which satisfies the definition of local differential privacy. The third step
is to compare the data in the sliding window during the perturbation and allocate
the privacy budget adaptively according to the data distribution of the sliding
window to make it meet the definition of w-event privacy. The fourth step is
to decode the aggregated data stream and get the frequency estimation of the
classification attributes.

5 The Local Differentially Private Streaming Protocol

In this section, we describe our mechanism Local Differentially Private Stream-
ing (LDPS) for publishing multi-variable data streams under local and w-event
differential privacy.

5.1 Numerical Attributes

For numerical attributes, our goal is to estimate the mean value from the san-
itized stream. We standardize the raw streams S, set the sliding window with
the length of w, threshold t and privacy budget ε. The perturbation mechanism
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Algorithm 1. The Local Differentially Private Streaming for numerical
attributes
Input: the streams S; the window length w; the threshold t; and privacy budget εi;
Output: S mean
1: Normalize S;
2: Initial Per = [], count = 0;
3: for i = 0 to w do
4: Per.append(LDP (Si))
5: end for
6: for i = w to n do
7: if count = w) then
8: count = 0
9: Per.append(LDP (Si))

10: continue
11: end if
12: if count < w) then
13: if d(d(Si−2 − Si−1) − d(Si−1 − Si)) ≤ t then
14: Per.append(Per[i − 1])
15: count+ = 1
16: else
17: Per.append(LDP (Si))
18: count = 0
19: end if
20: end if
21: end for
22: S mean = Decode(Per);
23: Denormalize(S mean);
24: return S mean;

of the proposed method follows the typical LDP numerical attribute mechanism
and parameters.

The LDP perturbation mechanism is conducted normally in initial w times-
tamps. After timestamp w, the sliding window will slide and allocate the privacy
budget adaptively with the stream evolving. We calculate the l1 distance between
the real value of the current timestamp and the real value of the previous and
subsequent timestamps respectively and set the threshold t to compare the dif-
ference between these two distances. If the difference is less than the threshold,
then the perturbed report at the subsequent timestamp will be the same one in
the current timestamp, and the stably sub-stream is formed; if the difference is
greater than the threshold, we will continue the perturbation mechanism at the
subsequent timestamp and denote this timestamp as a significant move. When a
significant move occurs as shown in Fig. 4(a) or the length of stably sub-stream
is greater than the sliding window length w as shown in Fig. 4(b), a new win-
dow is opened and the LDP perturbation steps are conducted for the next w
timestamps.
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Fig. 4. The Local differentially private streaming protocol for numerical attributes.

The server collects the perturbed report of sequence S and aggregates it,
calculates all the perturb report mean value and reverses standardization to get
the estimated mean value. Specific steps such as Algorithms 1.

5.2 Categorical Attributes

For categorical attributes, our goal is to estimate each value frequency from the
sanitized stream. Given the input streams S and the sliding window length w,
the perturbation mechanism of the proposed method follows the chosen LDP
categorical attribute mechanism and parameters.

We conduct the LDP perturbed mechanism in initial w timestamps. In the
next timestamp, the sliding window will begin to slide with the time-series S. If
the real data of the subsequent timestamp has been released in its previous w
timestamps sliding window, then the perturbed report will be the same one in
the current timestamp. If the real data of the subsequent timestamp has not been
released in the previous w timestamp, we will continue the perturbation mech-
anism at the subsequent timestamp and denote this timestamp as a significant
move.

The server collects the perturbed report of sequence S and aggregates it.
The sub-stream of perturbed data in the sliding window is w nearest neighbor
data stream, which satisfies the definition of w-event privacy, conforms to the
differential privacy combination theorem, and satisfies the definition of LDP
between each two tuples. Specific steps such as Algorithms 2.

5.3 Privacy Analysis

We first prove the LDPS protocol satisfies the ε-local differential privacy, and
then prove that it also satisfies the w-event privacy.

Let Si be the current timestamp data stream and Si+1 be the last time
release. To prove that the LDPS protocol satisfies w-event privacy, first, we
need to prove that the perturbed report for every two timestamps satisfies the
definition of εi-local differential privacy. Then, according to Theorem1, we need
to prove that the sum of the privacy budgets consumed by the LDPS within a
window of length w does not exceed.
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Algorithm 2. The Local Differentially Private Streaming for categorical
attributes
Input: the streams S; the window length w; the perturbed mechanism parameters;
Output: f(di), i ∈ (0, |D|)
1: InitialPer[];
2: for i = 0 to w do
3: Per.append(LDP (Si))
4: end for
5: for i = w to n do
6: for j = i − w − 1;j > i − 1;j − − do
7: if thenSj = Si

8: Per.append(LDP (Sj))
9: Break

10: else
11: Per.append(LDP (Si))
12: end if
13: end for
14: end for
15: f(di) = Decode(Per);
16: return S mean;

Theorem 2. The Local Differentially Private Streaming protocol satisfies ε-local
differential privacy.

Proof. In the perturbation step of LDPS, we perturb the streaming on clients
by the LDP’s mechanism. So, we can ensure that the tuples in the neighboring
timestamp are satisfied the ε-local differential privacy.

Theorem 3. The Local Differentially Private Streaming protocol satisfies w-
event privacy.

Proof. Due to the allocation of privacy budget adaptively, we compress the pri-
vacy budget to 0 which using the same perturbation report as at the previous
timestamp. Assume that the i-th data privacy budget is εi, we consider the defi-
nition of local differential privacy protection in two scenarios respectively. First,
in the scenario that perturbation at both the current and previous timestamp,
we use the same LDP perturb mechanism with the same parameters and there-
fore have the same privacy budget. In the timestamp i, by definition of ε-local
differential privacy we have:

Pr[LDPS(Si) = x∗]
Pr[LDPS(Si−1) = x∗]

≤ eεi (3)

Second, in the scenario that the current timestamp stream adopts the previous
perturb report, the current privacy budget is adaptively compressed to 0, and the
privacy guarantee begins to decline because of releasing repeatedly, we have:
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Pr[LDPS(Si) = x∗]
Pr[LDPS(Si−1) = x∗]

= 1 ≤ e0 (4)

So, the LDPS protocol satisfies the εi-local differential privacy in differential
scenarios.

In the whole sliding window, there are also two scenarios: normal perturbation
in the whole window and form stably sub-stream in the window. We set each tuple
in the whole sliding window has itself privacy budget εi, even if the budget is 0.
According to theorem 1, the data stream in the current sliding window satisfies∑

εi-local differential privacy. So, we have a privacy budget of
∑

εi for w-event∑
εi differential privacy, by definition of w-event privacy, there are:

Pr[LDPS(St) ∈ D]
Pr[LDPS(S′

i) ∈ D]
≤ e

∑
εi (5)

6 Experiments

6.1 Experimental Setup

Datasets. We selected three public datasets as experimental datasets.

Table 1. Experimental datasets.

Dataset IPUMS Twitter daily activities Gas sensor

Number of Instances 1000000 60093175 919438

Domain size/Mean value 78 635 27.1767, 57.5680

We choose the 2017 Integrated Public Use Microdata Series (IPUMS) [1] and
selects the age attribute, which has 25 data categories; we extract 1% from the
dataset and take the first million pieces of data as the experimental dataset for
the categorical attribute. Twitter daily activities [24] is the Microsoft Research
datasets of longitudinal, daily, per-county activity periods of aggregated Twit-
ter users. We extract 500000 records and choose the per-country attribute as
experimental datasets for the categorical attribute.

The Gas-Sensor dataset [18] has recordings of a gas sensor array composed of
8 MOX gas sensors, and a temperature and humidity sensor. We use the humid-
ity and temperature attribute as the experimental datasets for the numerical
attribute. The number of instances, domain sizes, or mean values of datasets are
shown in Table 1.

Experimental Situation. These experiments were implemented in Python 3.7
with NumPy and xxhash libraries and were performed on a PC with Intel Core
i7-7700hq CPU and 16 GB RAM. Each experiment was repeated 100 times to
reduce the influence of contingency on the experimental results.
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Parameter Setting. We consider varying the privacy budget parameter ε, the
length of sliding window w and threshold t for mean value computing and varying
the length of sliding window w for frequency estimation. In the mean estimation
experiment, Duchi et al.’s method [9] and the Laplace mechanism [31] are cho-
sen as the LDP perturbation mechanism. For convenience, respectively, they are
abbreviated as Duchi and LM. In the frequency estimation experiment, RAP-
POR [16] mechanism is chosen as the LDP perturbation mechanism. We adopt
the same parameter settings and noise correction methods when using these
typical LDP mechanisms.

(a) The effects of privacy budgets in LM. (b) The effects of privacy budgets in
Duchi’s method.

Fig. 5. The effects of privacy budgets on temperature.

Experimental Metrics. Related error is taken as the error measure of mean
value calculation, and MAPE is taken as the error measure of frequency esti-
mation. The related error is the absolute value of the predicted value minus the
real value divided by the real value. The definition of related error is as follows:

Realtederror =
∣
∣
∣
∣
yi − xi

xi

∣
∣
∣
∣ × 100% (6)

And the MAPE is the absolute value between the estimated and true fre-
quency, divide the absolute value by the true frequency, then cumulate these
values and divide by the size of the data value domain. The definition of MAPE
is as follows:

MAPE =

|D|∑

i=1

∣
∣
∣yi−xi

xi

∣
∣
∣

|D| × 100% (7)
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(a) The effects of thresholds in LM. (b) The effects of thresholds in Duchi’s
method.

Fig. 6. The effects of thresholds on temperature.

6.2 Results for Mean Value

To evaluate the data utility of LDPS on numerical attributes, we calculate the
mean value of the temperature and humidity attributes of the Gas-sensor dataset
respectively by varying ε, threshold t, length of window w. Related error in
Eq. (6) is selected as a metric.

We choose w to be 20, 50, 100, ε from 0.5 to 4.0, and t from 0.001 to 0.006.
When we evaluate the effects of different ε values, make t 0.003; evaluate the
effects of different t, make ε 2. Figure 5(a) shows the effects of ε and w on
data utility when the Duchi’s method is chosen as perturbing mechanism, and
Fig. 5(B) shows the effects of ε and w on data utility when the Laplace mechanism
is chosen as perturb mechanism. It can be seen that the data utility is higher

(a) The effects of thresholds in LM. (b) The effects of privacy budgets in
Duchi’s method.

Fig. 7. The effects of privacy budgets on humidity.
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(a) The effects of thresholds in LM. (b) The effects of thresholds in Duchi’s
method.

Fig. 8. The effects of thresholds on humidity.

when ε is large and w is small; the data utility is lower when ε is small and w is
large, while the privacy guarantee level is on the contrary.

In Fig. 6, we can see the effects of t and w under the Duchi and LM per-
turb mechanism. As t value increases, data utility does not always decline, but
increases first and then decreases. And the effects of window length is similar to
the results in Fig. 5, The higher the w, the lower the data utility.

We verify the data utility of the same parameters on the humidity attribute
dataset. The results are shown in Fig. 7 and Fig. 8, and we can get similar effects
on data utility.

6.3 Results for Frequency Estimation

To evaluate the data utility of LDPS on categorical attributes, we estimate
the frequency of each attribute value in the ‘AGE’ attribute of IPUMS and

(a) The effects of w on ‘AGE’. (b) The effects of w on ‘CountryID’.

Fig. 9. The effects of w in frequency estimation.
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(a) The effects of w on ‘AGE’. (b) The effects of w on ‘CountryID’.

Fig. 10. The effects of runtime in frequency estimation.

‘CountryID’ attribute of Twitter daily activities by varying the length of window
w and choose MAPE in Eq. (7) as a metric. The parameters k, h, p, q and f of
the perturbation mechanism RAPPOR are set to 256, 4, 0.5, 0.75, 0.5 on ‘AGE’
and 256, 8, 0.5, 0.75, 0.5 on ‘CountryID’, respectively.

We consider conducting experiments from the perspectives of data utility
and runtime and choose RAPPOR protocol as the perturb mechanism. And we
change the time-series streaming to normal data, adopt the RAPPOR to perturb
these data as a benchmark. Figure 9 shows that the MAPE value increases with
the increase of the window length w. On the contrary, Fig. 10 shows that the
experimental runtime decreases with the increase of the window length w. So,
we can see that varying the window length w affect data utility, privacy, and
runtime.

7 Conclusion

This paper focuses on the privacy protection of data streams. The untrusted
third parties may query the original data of multiple timestamps of a single user
to breach the user’s privacy while current local differential privacy protocols
can hardly handle the data streams. We propose the local differentially private
streaming protocol, which can not only protect streaming privacy but also ensure
high utility, and less storage and computational power overhead. The proposed
method utilizes the sliding window that satisfies w-event privacy to find the
stably sub-stream and significant moves in real-time. The experimental results
show that the proposed protocol has high utility, is suitable for both numerical
and categorical attributes, and maintains its utility under different distributions
and streaming sizes.
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