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Abstract The peak of the ratio between the average pressure to yield strength is
called hardness. The average contact pressure of elastic–plastic flattening and inden-
tation contacts is studied by using numerical simulation. The similarity and difference
between the two kinds of single asperity contacts are investigated. This paper chooses
five kinds of elastic–plastic materials as the deformable-body. The yield strength of
thesematerials covers the typical steelmaterials range used in the engineering project.
And the effect of the evolution of the plastic zone under the contact surface on the
contact pressure distribution is analyzed. Before the elastic zone under the contact
surface disappears completely, the evolution of the plastic zone of the two types of
contact is similar. However, the average pressure of indentation contact continues to
increase after this, until it reaches the maximum. The average pressure of flattening
contact reached the plateau since elastic core has disappeared, and after a while, it
began to decrease.

Keywords Hardness · Flattening contact · Indentation contact · Average
pressure · Finite element analysis

1 Introduction

Both flattening and indentation are fundamental problems in contact mechanics and
have direct applications in a broad range of engineering fields [1–8]. Hertz [9] gave
the prediction formulas for the pure elastic spherical contact. The Hertzian purely
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elastic contact theory [10] is shortly reviewed, here. The contact area and force of
Hertz theory are given by:

AE = πR′ω (1)

FE = 4

3
× E ′√R′ × ω

3
2 (2)

where ω is the interference between two contact bodies. And the equivalent elastic
modulus, E ′, and an equivalent radius, R′, are expressed as:

1

E ′ = 1 − v21
E1

+ 1 − v22
E2

(3)

1

R′ = 1

R1
+ 1

R2
(4)

where E1, E2, v1, v2, R1, and R2 are Young’s modulus, Poisson’s ratio, and the
radius of curvature of sphere and half-space, respectively. Later, many researchers
have proposed many empirical models to predict contact response [9–17]. Ghaednia
et al. divided those contact models into two categories: indentation and flattening
model [11].

Figure 1 shows a schematic of a frictionless elastic–plastic half-space indented
by a rigid sphere of radius R. The parameters a and a’ are real contact radius and
truncated contact radius, respectively. A normal force F acts on top of a rigid sphere.
The ω is interference between two contact bodies. Figure 2 shows a contact of an
elastic–plastic hemisphere with a rigid half space. The hardness test is implemented
to evaluate the material’s resistance to plastic deformation. Indentation contact is an
important research content about hardness test [11, 12]. The hardness H is equal

Fig. 1 An indentation
model, in which the sphere is
rigid and the flat is
deformable
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Fig. 2 A flattening model, in which the flat is rigid and the sphere is deformable

to the average pressure when contact surface under fully plastic deformation. So
the evolution of plastic zone under the contact surface is important for predict the
hardness. Johnson [12] defined as H = 2.8Sy using a constant multiple of yield
strength. However, by using numerical simulation, Mesarovic and Fleck [13] found
that the hardness depended on the material property. Other numerical research also
had similar conclusions [11, 14–16].

And by observing the evolution of the plastic zone some new contact models were
proposed [22–24]. The flattening contact is also a research hotspot. Many models
suitable for flattening contact were proposed [17–21]. Kogut and Etsion also defined
the hardness as a constant multiple of its yield strength (H = 2.8Sy). However,
Jackson and Green found that the hardness of sphere was similar like half-space
which depends on the material properties [14]. And they obtained a new critical
interference ωc resulting in the initial yield as:

ωc =
(

π × c × Sy
2E ′

)2

R (5)

where Sy and v are the yield limit and Poisson’s ratio of the elastic–plastic body,
respectively. And parameter c is expressed as:

c = 1.295e0.736v (6)

Jackson and Kogut considered that the indentation contact had big difference
compared with flattening contact [22]. However, when predicting hardness, there
were cases where these two different contact models were mixed [14–16]. This
abuse and mixing phenomenon also appeared in the prediction of collision problems
[23]. The main purpose of this article is to compare the average pressure of two types
of contact by studying the evolution of the plastic zone below the contact surface.
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2 Finite Element Model

In this paper, for flattening and indentation contact problems, an axisymmetric 2-D
model is used similar to other researches in the literature [14, 16, 18, 24–26]. The
commercial program ANSYS™ is used. For indentation FEM model, as shown in
Fig. 3a, the left side of the half-space is fixed horizontally and can move freely in the
vertical direction. The bottom of half-space is completely fixed and a displacement
ω is applied on the top of rigid sphere. The thickness T and width L are gradually
increased, until the simulation result difference less than 1% between iterations as
shown in Fig. 3. Finite element model of (a) indentation and (b) flattening contact,
L = 10R and T = 6R. For flattening model, the central axis of the hemisphere
is fixed horizontally and is free vertically. The quadrilateral, eight node element
solid183 is used here. The mesh size satisfies the study of convergence and the
number of the elements under the contact surface should be more than 30 to ensure
the accuracy of the contact radius.

For all cases, the elastic modulus and Poisson’s ratio of deformable body are 200
GPa and 0.32, respectively. And yield strengths are 0.210, 0.5608, 0.9115, 1.2653,
and 1.619 GPa. In the following, those five kinds of material models are referred to
as Mat 1, Mat 2, Mat 3, Mat 4, and Mat 5. The deformation considered in this paper
is before the contact radius reaches 0.8 R.

Fig. 3 Finite element model of a indentation and b flattening contact
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Fig. 4 Comparison of
contact force predicted by
simulation and Hertz theory
in the elastic deformation
regime
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3 Numerical Results and Discussion

3.1 FEM Model Validation

Normally, the verification of the simulationmodel is verified by hertz theory. Figure 4
shows the comparison of contact force predicted by FEM and Hertz theory in the
elastic phase. It shows that the maximum difference between FEM and Hertz results
is less than 0.5%. This verifies the suitability of the finite element mesh shown in
Fig. 3.

3.2 The Ratio of Average Contact Pressure to Yield Strength

As interference increasing, the average contact pressure also increases.Until reaching
a maximum, it will decrease with the increase of interference. This peak value is
always considered to be the hardness of the material. Researchers use this to measure
the ability of materials to resist plastic deformation.

The average contact pressure to yield strength ratio of all cases are shows inFig. 5a.
With the same deformable-body material, the two different contacts show similarity.
It can be seen fromFig. 5b that when the deformation is small, the difference between
the two types of contact is close to zero. Mat 5 case has larger similarity interference
range than Mat 1 case.

In order to consider the different initial yield interferenceωc of differentmaterials,
the interference can be normalized through Eq. (5). And the variation of average
contact pressure to yield strength ratio with dimensionless interference is shown in
Fig. 6a. Compared with Fig. 5a, it can be seen that the different material cases have
same change trend. As the interference increases, Mat 1 first plastically yields. In
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Fig. 5 a The variation of average contact pressure to yield strength ratio with interference. b The
variation of difference with interference
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Fig. 6 a The variation of average contact pressure to yield strength ratio with dimensionless
interference and b The variation of difference with dimensionless interference

order to facilitate the evaluation of the difference between the two types of contact in
engineering applications, the dimensionless interference that makes this difference
reaches 5% is defined as the upper limit interference ω∗

lh . When the dimensionless
interference is less than ω∗

lh , the average contact pressure difference is less than 5%,
so the results are reliable when predicted with different contact models.

The ω∗
lh of different material cases predicted by the simulation are list in Table 1.

And a prediction formula is given as:

Table 1 Upper limit interference for different material

Material Mat 1 Mat 2 Mat 3 Mat 4 Mat 5

E∗/Sy 1061.03 397.32 244.45 176.1 137.626

ω∗
lh 1443.3 240.8158 116.0272 78.3215 57.6173
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ω∗
lh = 34.669 + 0.00141 ×

(
E∗

Sy

)1.9827

(7)

3.3 Plastic Zone Evolution

The change in contact response has a great relationship with the deformation near
the contact surface. In order to study the effect of plastic zone evolution on average
contact pressure, the indentation and flattening contact of Mat 3 are chosen as an
example and are considered in this paper. According to the evolution characteristics
of the plastic zone, the whole deformation process is divided into several stages as
shown in Fig. 7. The plastic yield first appears (ω∗ = 1) as shown as point 1. And
when ω∗ = 1.9, the plastic zone is in the subsurface of contact according to point
2. Plastic zone is for the first time reached and covers the whole surface according
to point 3 and 4, respectively. During the deformation process, the average pressure
will remain at the peak for a while, like a plateau as shown in Fig. 7 between point
5 and 6. It is worth noting that the flattening contact, point 4 coincides with point 5.

The plastic zone evolution of indentation and flattening contacts are shown in
Figs. 8 and 9. As plotted in Figs. 8a and 9a, the initial plastic yield of both types of
contact occurs when ω∗ = 1. And the initial yield point of indentation and flattening
contact is located at 0.00513 R and 0.0052 R below the contact surface, respectively.
The stress distribution on the contact surface complies with hertz theory.

And in the work of Jackson and Green [14], they considered that the dominance
elastic contact phase will continue until ω∗ = 1.9 as shown in Figs. 8b and 9b.
Although the plastic zone is large enough, the contact surface is still purely elastically
deformed. Later on, the plastic zone will extend to the contact surface when ω∗ =

Fig. 7 The average contact
pressure to yield strength
ratio of Mat 3
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Fig. 8 The plastic zone evolution of indentation contact

5.115 and ω∗ = 5.44 for indentation and flattening contact as shown in Figs. 8c
and 9c. The stress distribution on the contact surface becomes flatter than elastic
phase. At this stage, there is still a decreasing elastic core at the contact surface. The
plastic zone, when this elastic core completely disappears (ω∗ = 33.474), and the
two critical points of the average pressure plateau (ω∗ = 153 and ω∗ = 321.317) for
indentation contact are shown in Fig. 8d–f. For flattening contact, when the elastic
core disappear (ω∗ = 57.7), the average contact pressure will close to the peak
value as shown in Fig. 9d. The distribution of the plastic zone when the average
pressure starts to decrease (ω∗ = 186.89) is shown in Fig. 9e. It can be seen that
before the elastic zone under the contact surface disappears completely, the evolution
of the plastic zone of the two types of contact is very close. However, the average
pressure of indentation contact continues to increase after this, until it reaches the
maximum. The average pressure of flattening contact has reached the plateau since
then, and after a while, it begins to decrease. So the maximum average pressure of
the indentation contact is greater than the flattening contact.
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Fig. 9 The plastic zone evolution of flattening contact

4 Conclusions

With the same deformable-body material cases, the average contact pressure of two
different contacts showsimilarity. The larger yield strength case has a larger similarity
interference range than the smaller cases. With dimensionless interference, smaller
yield strength case has a larger similarity interference range than larger cases. And
before the elastic zone under the contact surface disappears completely, the evolution
of the plastic zone of the two types of contact is similar. However, the average
pressure of indentation contact continues to increase after this, until it reaches the
maximum. The average pressure of flattening contact has reached the plateau since
elastic core disappear, and after a while, it begins to decrease. So the maximum
average pressure of the indentation contact is greater than the flattening contact for
the same deformation body cases.
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