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Abstract. It is effective for supervisors to monitor the network by ana-
lyzing traffic from devices.In this way, illegal video can be detected when it
is played on the network. Most Internet traffic is encrypted, which brings
difficulties to traffic analysis. However, many researches suggest that even
if the video traffic is encrypted, the information of video segmentation
leaked by DASH (Dynamic Adaptive Streaming over HTTP) can also be
used to identify the content of encrypted video traffic without decryption.
Moreover, each encrypted video stream can be represented by a fragment
sequence. This paper presents two methods based on Levenshtein distance
for encrypted video traffic analysis. Using the distance distribution fitted
by gamma distribution functions, we calculated a threshold to determine
whether two encrypted video traffic belonging to the same video. The accu-
racy of the judgment using the threshold reached 89%, stably.As far as I am
concerned, it is the first work to apply unsupervised methods for content
analysis of encrypted video traffic.

Keywords: Encrypted traffic · Levenshtein distance · Threshold ·
DASH.

1 Introduction

As the continuous development of network technology, there are millions of Inter-
net video viewers online every day. More than half of Internet traffic will be
video traffic nowadays. According to the survey, the proportion of video traffic
has grown to 80% in 2019. In general, the video traffic is expected to increase
135 exabytes per month, approximately [7]. It is expected that more than 82%
of Internet traffic will come from videos by 2022.

Dynamic Adaptive Streaming over HTTP (DASH) is used by most of the
video streaming web sites, such as YouTube. DASH is a streaming method,
designed to improve the quality of experience [10]. It uses HTTP for video
transmission. DASH server divides each video into several short segments (typ-
ically a few seconds long), and encodes each segment with a different quality
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Fig. 1. Dynamic Adaptive Streaming over HTTP

representation level. A media presentation description (MPD) describes seg-
ment information, and will be transmitted firstly when transmission of a video
is started. According to the network condition and client preferences, adaptive
video segments will be transmitted by the DASH server later.

Transport Layer Security (TLS) is widely applied to protect content confiden-
tiality, and adopted by almost all famous video sites. Consequently, traditional
Deep Packet Inspection (DPI) [6] methods over plain network traffic do not
work here. However, it does not mean that it is not possible to analyze the con-
tent of encrypted video traffic. DASH video is always streamed in segment-sized
chunks, and it is typically segmented at the application layer [16]. Even though
the stream is encrypted between the transport layer and the application layer
(e.g.., using TLS), the sizes of segments are visible for network monitor. In a
steady encrypted video stream, fragment sizes are correlated with the original
segment sizes due to the variable-rate encoding.

Due to the difficulty of decryption, how to analyze encrypted traffic without
decryption is a worthy studying direction. Deep learning has been used to ana-
lyze encrypted traffic in many works [1,18]. Background traffic and unencrypted
part of the encrypted traffic mentioned in [3–5], which are useful for normal
encrypted traffic, are insignificant for content identification of encrypted video
traffic. Video traffic is usually long-session with a large amount of information
transmitted. What is more, most existing encryption traffic analysis methods are
based on supervised learning but are not functionally faced with unlabeled traf-
fic data. In real life, the traffic data is basically unlabeled, which makes these
existing methods impractical. How to analyze encrypted video traffic without
prior knowledge is a problem that should be solved quickly.
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In this paper, we proposed a new method based on sequence similarity for
encrypted video traffic analysis. A similarity threshold was selected to determine
whether two unknown encrypted video streams belong to the same video title.
As far as we knew, it is the first work to apply unsupervised methods for content
analysis of encrypted video traffic.

The paper’s main contributions are:

1. This is the first work that used unsupervised methods to analyze encrypted
video traffic. We proposed to measure the similarity of encrypted video
streams using Levenshtein distance, innovatively. On this basis, we present an
unsupervised methods (threshold) that are applicable to analyze the content
of encrypted video traffic.

2. A threshold was computed using a Gamma distribution fitting to determine
whether two unknown video streams belong to the same video title, and have
achieved an acceptable probability of correct judgment.

3. We run through a set of experiments to prove the possibility and robustness
of the threshold we computed.

The remainder of this paper is organized as follows. In Sect. 2 we review related
work. In Sect. 3, we introduction the preliminaries - TLS protocol and Levenshtein
distance. In Sect. 4 we introduced the generation of fragment sequence and two
analysis methods. In Sect. 5 we introduced the dataset used in this paper. In Sect. 6
we computed a threshold to determine whether two unknown video streams belong
to the same video title. Finally, we conclude in Sect. 7.

2 Related Work

Many works have suggested methods for encrypted traffic identification. Several
works have examined different features.

Liu et al. [12] presented a method for video title classification of RTP/UDP
traffic. Liu et al. [13] used the wavelet transform for constructing unique and
robust video signatures with different compactnesses. Ashwin Rao et al. [15]
showed that the streaming strategies vary with the type of the application, and
the type of container used for video streaming by studying the network charac-
teristics of Netflix and YouTube. Pablo Ameigeiras et al. [2] presented a char-
acterization of the traffic generated by YouTube when accessed from a regular
PC, and proposed a YouTube server traffic generation model. However, there are
several changes in video traffic over the Internet. They do not fit modern stream-
ing traffic as previous solutions operated on a time series with the granularity
of single video frames [10].

In recent years, some work used machine learning algorithms for the identifi-
cation of encrypted video traffic. Algorithms using custom KNN and SVM were
presented by Ran Dubin [10] for encrypted HTTP adaptive video streaming title
classification. Roei Schuster [16] showed that many video streams are uniquely
characterized by their fragment patterns, and classifiers based on convolutional
neural networks can accurately identify these patterns given very coarse network
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measurements. Yan Shi et al. [17] proposed a key idea to examine encrypted and
tunneled video streaming traffic at a Soft-Margin Firewall (SMFW), which was
located near the streaming client in order to identify undesirable traffic sources
and to block or throttle traffic from such sources. These works showed that the
content classification of encrypted video stream is possible although the content
is not visible.

Even if some encouraging progress has been made, the timing characteristics
of encrypted video stream have been ignored in these works, which contains
valuable information. Moreover, the methods based on supervised learning are
powerless when faced with unlabeled encrypted video traffic on the Internet. In
view of this, we tried to use unsupervised learning to analyze encrypted video
traffic, which requires no labels. As far as I am concerned, it is the first work
using unsupervised methods to analyze the content of encrypted video traffic.

3 Preliminaries

3.1 TLS Protocol

Transport Layer Security (TLS) is cryptographic protocol that provides secure
communication between two parties over the Internet by encapsulating and
encrypting application layer data. It is used by most of the video sites in order
to encrypt the network traffic. The TLS protocol is between application layer
and transport layer, and it is application protocol independent [8].

Fig. 2. Protocol layers

The TLS includes two protocol layers (as Fig. 2). The Record Protocol takes
messages to be transmitted, fragments the data into manageable blocks, option-
ally compresses the data, applies a MAC, encrypts, and transmits the result
[8]. Received data is decrypted, verified, decompressed, reassembled, and then
delivered to higher-level clients . There are four protocols that use the record
protocol, including the application data protocol. Application data message is
carried by the record layer and are fragmented, compressed, and encrypted based
on the current connection state.
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3.2 Levenshtein Distance

The Levenshtein distance is a string metric for measuring the difference between
two sequences. It is named after the Soviet mathematician Vladimir Levenshtein,
who considered this distance in 1965 [11]. Informally, the Levenshtein distance
between two words is the minimum number of single-character edits (insertions,
deletions or substitutiond) required to change one word into other. It may also
be rederred to as edit distance [14]. The Levenshtein distance between two string
a, b (of length |a| and |b| respectively) is given by leva,b(|a|, |b|) as follow:

leva,b(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(i, j) , if min(i, j) = 0

min

⎧
⎪⎨

⎪⎩

leva,b(i − 1, j) + 1
leva,b(i, j − 1) + 1 , otherwise

leva,b(i − 1, j − 1) + 1ai �=bj

(1)

where 1ai �=bj is the indicator function equal to 1 when ai �= bj and equal to 0
otherwise, and leva,b(i, j) is the distance between the first i characters of a and
the first j characters of b. i and j are 1-based indices.

For example, the Levenshtein distance between “kitten” and “sitting” is 3
because of the following edits change:

1. kitten → sitten
2. sitten → sittin
3. sittin → sitting

The upper bounds of the Levenshtein distance is the length of the longer
string. The Levenshtein distance is zero only if the strings are equal.

4 Methodology

Video traffic has some unique characteristics. Video sessions are usually long
sessions with a large amount of information transmitted, while the amount of
information transmission of non-video traffic is small relatively. Regarding the
information leakage in terms of timing, the timing information is leaked due
to the long duration of video traffic, relatively. Therefore, we focus on timing
information of encrypted video traffic in order to analyze.

Levenshtein distance can compare the similarity of sequences with different
length, which is suitable for video streams. Besides, Levenshtein distance is sim-
ple and effective. Consequently, it is chosen to measure the similarity of video
streams. We have developed two methods based on Levenshtein distance for
identifying encrypted video traffic. Before this, packet reorganization technique
was applied to generate the fragment sequence of encrypted video traffic. We
used the normalized Levenshtein distance to the content similarity of unknown
video streams, and calculated a threshold to determine whether two streams
belong to the same video by Gamma distribution fitting.
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4.1 Fragment Sequence of Encrypted Video Traffic

Application data traffic accounts for most of the total encrypted traffic, especially
for video traffic. Video compression and encoding algorithms cause that differ-
ent video scenes contain different amounts of perceptually meaningful informa-
tion. The meaningful information refers to the size of video fragments. Because
of application protocol independence of TLS, this meaningful information is
retained although the content of the message is encrypted.

In order to parse aTLS stream, first of all, we should reassemble the video traffic
packets to TCP flow according to the TCP protocol. After that, we parse the TCP
flow according to the TLS protocol. When packets reassembly and TLS parsing is
completed, the TLS session exhibits a request-response pattern similar to HTTP
interactive.A transaction between client and server in the TLS session, the payload
sent by the server containsmore thanone applicationdata.Consequently, fragment
refers to the number of application data in encrypted video traffic.

After parsing the TLS stream, we can get a sequence representing, which
we called Fragment Sequence, the number of the application data sent by the
server per HTTP interactive. Because the encode in DASH is variable bitrate
(VBR), the size of video fragments is related to the content complexity of video
fragment. If the content of a video fragment is complex, the fragment size is large.
Otherwise, the size of fragment is small when the content of a video fragment
is simple. For example, fragment sequences of three video titles are listed as
follows. We find it that videos of the same title have similar fragment sequences.

Cheerleader
seq1:
30-23-73-22-124-25-124-130-23-123-103-23-92-130-23-118-130-24-
130-91-12
seq2:
30-23-73-22-124-25-124-130-23-116-130-23-123-103-23-92-130-23-118-
130-24-130-91
seq3:
30-23-73-113-124-124-23-130-123-23-103-92-23-130-118-24-130-130-
23-91

Fast and Furious six
seq1: 14-9-44-90-16-145-2-221-21-21-253-20-21-7-214-20-258-27-39
seq2: 14-9-44-21-145-2-221-21-21-253-20-9-12-7-214-20-258-27-39
seq3: 14-9-44-21-145-2-221-21-21-253-20-21-221-20-258-27-39

Wo sind die Clowns
seq1: 5-53-11-25-28-2-244-241-26-77-17
seq2: 5-53-25-27-2-244-241-26-77-17
seq3: 5-53-25-28-2-244-241-26-77-17
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4.2 Threshold Selection

Because Levenshtein distance is affected by the length of sequences, it is necessary
to normalize. The definition of normalized Levenshtein distance is as follows:

Normalized LD(a, b) =
LD(a, b)

max {|a|, |b|} (2)

We used normalized Levenshtein distance of Fragment sequence to measure
the similarity of two unknown encrypted video streams and determined whether
the two streams belonging to the same video. To determine whether two unknown
video streams belong to the same video, we need to set a threshold for normalized
Levenshtein distance. If the distance is greater than the threshold, it is deter-
mined that two video streams belong to the different video. On the contrary, two
video streams belong to the same video if the distance is less than the threshold.

The normalized Levenshtein distance of video streams is a random variable.
The random variable X1 and X2 indicate the normalized Levenshtein distance of
two video streams belonging to the same video and different video, respectively.
After the analysis of samples, the results demonstrate that X1 and X2 conform
to Gamma distribution. The parameters α and β of the gamma distribution can
be calculated from the mean μ and variance σ2 of the data.

X1 ∼ Ga(α1, β
2
1), X2 ∼ Ga(α2, β

2
2) α =

μ2

σ2
, β =

μ

σ2
(3)

The probability density function were as follow:

f1(x) =
βα1
1

Γ (α1)
xα1−1e−β1x, f2(x) =

βα2
2

Γ (α2)
xα2−1e−β2x (4)

We set their distribution functions as F1(x) =
∫ x

0
f1(x)dx and F2(x) =

∫ x

0
f2(x)dx. Let the sum of the correct judgment probabilities be P , which is

defined as follow:

P =
∫ x

0

f1(x)dx +
∫ 1

x

f2(x)d = F1(x) + F2(1) − F2(x) (5)

One way to get the minimum of P is to take a derivative with respect to x,
and look for the derivative being zero. The derivation process is as follow:

dP

dx
= F ′

1(x) − F ′
2(x) = f1(x) − f2(x) (6)

When f1(x) = f2(x), the sum of the correct judgment probabilities is the
smallest. Simplify the equation f1(x) = f2(x) are as follows:

e(β2−β1)x =
βα2
2 Γ (α1)

βα1
1 Γ (α2)

xα2−α1 (7)

The equation is transcendental, so it does not have an analytical solution.
We can use numerical analysis methods, like bisection method and Newton’s
method, to find the numerical solutions of this transcendental equation.

The threshold is one of the solutions.
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5 Data

In this paper, we use the public dataset in [9]. It contains 10,000 YouTube
streams of 100 video titles (100 streams per title). The video streams were col-
lected via a real-world Internet connection over different real-world network con-
ditions. They were collected by crawler using the Selenium web automation tool
with ChromeDriver. The video titles in dataset are popular YouTube video from
different categories such as sports, news, nature, etc. The traffic of the dataset
were collected using Chrome browser because of it’s popularity.

6 Threshold Experimental Evaluation

In this section, we calculated the threshold for judging the homology of video
traffic, and used accuracy to evaluate its performance.

6.1 Metrics

Before the experiment, we should define two metrics of experiments, including
Theoretical Accuracy (TA) and Real Accuracy (RA).

– Theoretical Accuracy: The normalized Levenshtein distance of Encrypted
video traffic between the same video and different video subject to be Gamma
distribution. Therefore, we are able to calculate the theoretical accuracy using
the gamma distribution and the threshold x0. Theoretical accuracy is calcu-
lated as follow:

TA =

∫ 1

x0
f1(x)dx +

∫ x0

0
f2(x)dx

∫ 1

0
f1(x)dx +

∫ 1

0
f2(x)dx

(8)

– Real Accuracy: Real accuracy is calculated using the statistical result of the
experiment. The threshold x0 is used to judge positive samples and negative
samples. The real accuracy is as follow:

RA =
TP + TN

TP + FP + FN + TN
(9)

6.2 Threshold Experimental

We extracted two encrypted video streams with the same title from the dataset,
and calculated their similarity. We also extracted two encrypted video streams
with different titles and calculated their similarity. Both operations were per-
formed 10’000 times, and we get two sets of data about the video streams simi-
larity (of the same title and of different titles).

As can be seen from the distributions in Fig. 3 and Table 1, there are two
normal distributions with different mean and nearly the same variance (X1 ∼
Ga(3.53, 17.48) and X2 ∼ Ga(17.50, 39.46)). It showed that the assumptions are
reasonable. According to the Eq. 7, we computed the threshold to be 0.30167,
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and used it to test the accuracy. The experimental result indicated that the
threshold we computed can distinguish whether the two streams belonging to
the same video title with 89.00% probability. The theoretical accuracy is 88.03%.
The error of theoretical accuracy is less than 1%. The experimental result is
acceptable.

Table 1. Parameter of the gammma distribution

Variables μ σ α β

same (X1) 0.2019 0.1075 3.5289 17.4815

diff (X2) 0.4434 0.1060 17.4970 39.4571

Fig. 3. Data statistics and gamma distri-
bution fitting effect.

Fig. 4. The accuracy comparison of the
fitting effect of gaussian distribution
and gamma distribution.

6.3 Stability Test and Comparison of Different Fitting Methods

In order to test the stability of threshold and accuracy, we performed experiments
on datasets with different number of categories. In each dataset, we selected
10’000 distance data for the same video and 10’000 distance data for different
videos. The box-plot of datasets distribution of with different category number
is depicted in Fig. 5. On the whole, it showed that the distance distribution of
encrypted video stream does not vary with the category number of datasets.
More importantly, Fig. 5 illustrates that the threshold we calculated has high
generalization performance.

On this basis, we also compared the effect of two fitting methods, Gaus-
sian distribution and Gamma distribution. The theoretical accuracy and real
accuracy are shown in Fig. 4 and Table 2. As evident from figure, generally
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Fig. 5. Box-plot of data distribution for different datasets.

Table 2. The comparison of the fitting effect of gaussian distribution and gamma
distribution on different datasets.

Categories Gamma distribution Gaussian distribution

Threshold TA(%) RA(%) Error(%) Threshold TA(%) RA(%) Error(%)

5 0.33068 91.158 91.135 0.023 0.34833 90.371 91.218 0.847

10 0.31046 88.221 87.752 0.470 0.33210 86.871 87.916 1.045

15 0.31326 86.876 86.532 0.344 0.33863 85.534 86.142 0.608

20 0.30310 87.633 88.639 1.006 0.32538 86.406 88.247 1.840

25 0.30353 88.891 89.668 0.777 0.32379 87.918 89.570 1.652

30 0.29889 86.943 88.288 1.345 0.32072 85.540 87.905 2.365

35 0.29682 87.269 89.030 1.762 0.31988 85.875 88.781 2.906

40 0.30441 87.561 87.965 0.404 0.32675 86.394 87.588 1.195

45 0.29119 87.348 88.922 1.574 0.31433 85.973 88.521 2.548

50 0.31144 88.094 88.914 0.820 0.33334 87.001 88.290 1.289

55 0.30567 86.975 88.249 1.274 0.32960 85.550 87.666 2.115

60 0.30517 87.838 88.800 0.962 0.32663 86.652 88.491 1.840

65 0.30097 86.882 87.764 0.882 0.32381 85.488 87.354 1.865

70 0.30325 87.846 88.847 1.002 0.32396 86.790 88.534 1.744

75 0.30246 87.794 89.173 1.378 0.32335 86.652 88.743 2.091

80 0.30269 88.033 89.173 1.140 0.32397 86.890 88.733 1.843

85 0.29901 87.707 88.864 1.157 0.32062 86.484 88.444 1.960

90 0.30382 88.007 88.857 0.850 0.32450 86.940 88.407 1.467

95 0.30444 87.697 88.706 1.008 0.32638 86.462 88.276 1.814

100 0.30370 88.152 89.196 1.044 0.32472 87.056 88.811 1.756

Average 0.30475 87.846 88.724 0.961 0.32654 86.642 88.382 1.739

speaking, the Gamma distribution fitting performs better than Gaussian distri-
bution fitting (about 1.0% performance improvement). The theoretical accuracy
(TA) error of the Gamma distribution fitting is 0.35% approximately, which is
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better than the Gaussian distribution fitting (the error is about 1.7%). Besides,
Fig. 4 also illustrates the performance of our method is steady, and the average
accuracy is at about 89%.

7 Conclusion

Although many well-known video sites such as YouTube uses HTTPS, which is
considered to protect user privacy, it still leaks content information of videos.
In this paper, we showed that the Levenshtein distance of fragment sequences
are able to assess the content similarity of encrypted video streams. We demon-
strated it possible to analyse the content of encrypted video traffic with Unsu-
pervised method. It is effective to analyze the encrypted video traffic when there
is lacking the apriority knowledge.

First, a threshold was calculated by fitting with the Gamma distribution
function. Our statistical analysis concluded that the threshold can determine
whether two unknown video streams belong to the same video title with a prob-
ability of over 89%. Moreover, we illustrated the stability of the threshold and
its judgment accuracy through further experiments. In another work, we also
implemented the clustering of encrypted video streams using spectral clustering
based on Levenshtein distance and achieved a good result.

Regardless, we can foresee a bright future for encrypted video stream anal-
ysis based on sequence similarity. It is necessary for unsupervised learning of
encrypted video traffic. Future researchers should consider a new definition of
sequence distance, which reflects the similarity of video content better.
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