
Adaptive Adversarial Attack on Graph
Embedding via GAN

Jinyin Chen1,2(B), Dunjie Zhang2, and Xiang Lin2

1 Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou 310023, China
chenjinyin@zjut.edu.cn

2 College of Information Engineering, Zhejiang University of Technology,
Hangzhou 310023, China

Abstract. Graph embedding method learns the low-dimensional representation
of graph data, which facilitates downstream graph analysis tasks, such as node
classification, graph classification, link prediction and community detection.With
the in-depth study of graph analysis tasks, the issues of excessive data mining by
graph embedding methods have become increasingly prominent, a number of
graph embedding attack methods have been put forward. Inspired by promis-
ing performance of generative adversarial network, this paper proposes an adap-
tive graph adversarial attack framework based on generative adversarial network
(AGA-GAN). We use the game between a generator and two discriminators with
different functions to iteratively generate the adversarial graph. Specifically, AGA-
GAN generates the adversarial subgraph according to different attack strategies
to rewire the corresponding parts in the original graph, and finally form the whole
adversarial graph. To address the scalability problem of existing graph embed-
ding attack methods, we consider the adaptively selected K-hop neighbor sub-
graph as the attack target instead of the original graph. Experimental study on
real graph datasets verifies that the AGA-GAN can achieve state-of-the-art attack
performance in most node classifications.

Keywords: Adversarial attack · Generative adversarial network · Graph
embedding · Node classification

1 Introduction

Our lives are surrounded by various graph data, which used to represent data in a lot
of fields, such as social networks, communication networks, biological networks, trans-
portation networks and so on. Graph embedding methods [1–3] map information of
nodes and links in the graph into low-dimensional Euclidean space, enabling the real-
world graph analysis tasks such as node classification [4, 5], graph classification [6, 7],
link prediction [8, 9], and community detection [10, 11]. The graph embedding meth-
ods usually learn the low-dimensional representation of graph structure, which directly
determines the performance of downstream tasks, so it has received increasing attention
recently.

© Springer Nature Singapore Pte Ltd. 2020
Y. Xiang et al. (Eds.): SocialSec 2020, CCIS 1298, pp. 72–84, 2020.
https://doi.org/10.1007/978-981-15-9031-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9031-3_7&domain=pdf
https://doi.org/10.1007/978-981-15-9031-3_7

Adaptive Adversarial Attack on Graph Embedding via GAN 73

With the widespread application of graph embedding methods in actual graph anal-
ysis tasks, many methods for downstream tasks have been proposed. Kipf et al. [12]
proposed GCN as a basic graph convolution method for semi-supervised classification.
This method is widely used in node classification and graph classification tasks. DIFF-
POOL [6] uses a differentiable graph pooling module to adapt to various graph neural
network architectures in a hierarchical and end-to-end manner. The DGCNN proposed
by Zhang et al. [7] allows traditional neural networks to be trained on graph data. Deep-
walk [13], node2vec [15], GCN [12] and other graph embedding methods also show
superior performance over traditional algorithms in the task of link prediction. And new
methods are constantly emerging in community detection tasks [16, 17].

The rapid emergenceof graph embeddingmethodshas alsobrought about the security
problem of graph analysis tasks. In graph analysis task, failing the graph embedding
model can also be achieved by faking the graph nodes, rewiring links or attributes
modification, so as to protect the graph data from over-explorer. Zugner et al. [18]
proposed the first adversarial attack on graph data, since then a number of attacks on
node classification [19–21] have been studied. Some studies have focused more on other
graph analysis tasks, such as community detection attack[22, 23] and link prediction
attack [24, 25].

Generative adversarial network (GAN) [26] has achieved remarkable achievements
in computer vision attacks [27, 28], natural language processing, audio recognition etc.
GAN has also been used for graph data in recent years [29–31]. Since handling the graph
data usually has scalability problem, it takes a lot of time and storage space to generate
a full-size adversarial graph using GAN, which makes it difficult for GAN to achieve
a fast and efficient attack on graph data. Most of the existing work focuses on how to
better learn the embedding representation of graph data, and to our best knowledge, it
is the first work on graph attacks via GAN.

In order to generate adversarial graph with minimal perturbation and maximal attack
success rate, we propose an adaptive graph attack framework (AGA-GAN). Specifically,
we design a multi-strategy attack generator (MAG), Similarity Discriminator (SD) and
Attack Discriminator (AD) to form a three-player game. We consider the adaptively
selected K-hop neighbor subgraph as the attack target instead of the original graph to
reduce the cost of GAN in graph data attack. We attacked several graph embedding
methods with node classification as downstream tasks and verified the effectiveness and
universality of the proposed AGA-GAN on real graph data.

2 Related Work

2.1 Graph Attack Methods

The development of graph embedding models has given the graph analysis tasks a better
theoretical basis. Massive real data are used for graph analysis, coming along security
risks caused by excessive graph data analysis. In order to raise the security of graph data
such as personal privacy [32], biomolecular structure [33], community structure [34]
under the increasingly efficient graph data analysis methods, attack methods on graph
data have been proposed to protect privacy from the excessive graph analysis.

74 J. Chen et al.

Zugner et al. [18.] proposed the first adversarial attack against the graph data to
generate the adversarial graph iteratively, namely NETTACK. This method focuses on
the attack effect in the node classification, and achieves an effective attack within a
limited budget. They further proposedMeta-Self [21], when the classification model and
its trainingweights are unknown, regarding the graph as an optimizable hyper parameter,
and using meta-gradients to solve the bi-level problem underlying training-time attacks.
The FGA proposed by Chen et al. [19] extracts the gradients of node pairs based on
the adversarial graph, and selects the node pairs with the largest absolute gradient to
implement a fast gradient attack (FGA). It has strong attack transferability on various
graph embedding methods. Chang et al. [20] built graph filters corresponding to the
graph embedding models, and realized the attack in the black box environment through
attacking the graph filters. Chen et al. [22] regarded community detection attacks as an
optimization problem and proposed an attack strategy based on genetic algorithm and Q
modularity. Yu et al. further proposed evolutionary perturbation attack (EPA) [23] based
on genetic algorithm by rewiring the graph to achieve the attack.

2.2 GANs

Generative adversarial network (GAN) is a deep learningmodel proposed byGoodfellow
et al. [26]. Since then it has become a powerful subclass of generative model [35] widely
applied to image generation, text generation, semantic segmentation and other fields. A
classical GAN is composed of a generator and a discriminator, using a two-player game
idea, it can learn to deal with complex distribution problems through the mutual game
between the generator and the discriminanor.

In the field of graph data, the studies of GANmostly focus on learning the embedding
representation of graph data. For instance, GraphGAN [29] uses the generator to learn
the potential connectivity distribution in the graph data, and predicts the probability
of the existence of a link between a pair of nodes by the discriminator, unifying the
generation of the adversarial graph into the GAN’sminimax game. Bojchevski et al. [30]
proposed NetGAN, applyingWasserstein GAN to the graph field, learns the distribution
of biased random walks on graph and generates credible random walks in real graph.
Pan [31] further combined the variational graph autoencoder with GAN and proposed a
framework ARVGE for learning graph embedding and being able to reconstruct graph
data. In conclusion, they all adoptGANas an efficient embedding representation learning
method.

3 Preliminary

In this section, we briefly formulate the graph embedding and node classification attack
problem. A graph is represented as G = {V ,E,X }, where V = {v1, · · ·, vn} is the node
set with |V | = N , ei,j = < vi, vj> ∈ E denotes that there is a link between nodes vi
and vj. The node topology of the graph is generally represented by the adjacency matrix
A ∈ {0, 1}N×N , Ai,j = 1 if node vi directly connected with vj. X ∈ {0, 1}N×D is the node
attributes matrix, and D denotes the dimension of X . Generally, the adjacency matrix A
contains the information of V and E in the graph data, so we useG = (A,X) to represent
a graph more concisely.

Adaptive Adversarial Attack on Graph Embedding via GAN 75

Graph Embedding. The graph embedding methods map the graph data G into an
embedding matrix Z ∈ RN×d in a low-dimensional space, while retaining the infor-
mation of the adjacency matrix A and the node attributes X . The dimension of d is much
smaller than N , which allows graph data to use the embedding matrix to design down-
stream methods to implement graph analysis tasks such as node/graph classification,
link prediction and community detection.

Node Classification Attack. Given a graph G and target node vi. F = [τ1, · · ·, τ|F |] is
the category set of nodes, τiori ∈ F denote the ground true category of the target node
vi. Our goal is to generate the adversarial graph G′, which makes the target node vi can
get a prediction category τiatt with the largest distance from τiori through the target node
classifier f nodeθ :

arg max
τiatt �=τiori

InZ∗
vi,τiatt

− InZ∗
vi,τiori

(1)

where Z∗ = f nodeθ (G′), θ denotes the parameter of the target model training with the
real graph G.

4 Method

Our proposed AGA-GAN attacks node classification by combining different attack
strategies. Figure 1 shows the attack process of AGA-GAN, which consists of three
parts: multi-strategy attack generator (MAG), similarity discriminator (SD) and attack
discriminator (AD). We choose the K-hop neighbor subgraph of the target node in the
original graph as the attack target. Through the alternating training ofMAG, SD andAD,
AGA-GAN chooses to generate adversarial subgraph structure A′ or adversarial node
attribute X ′ according to different attack strategies. Then we replace the correspond-
ing part in the original graph with the adversarial subgraph, achieve an effective node
classification attack.

Fig. 1. Process of AGA-GAN adaptive attacking original Graph G. We adaptively set the input
size of AGA-GAN according to the K-hop(K = 2 in here) neighbor subgraph of the target
node(normally colored nodes and links). AGA-GAN generates the adversarial subgraph and
replaces the corresponding part of the original graph. (Color figure online)

76 J. Chen et al.

4.1 Multi-strategy Attack Generator

Structure of MAG. The MAG we propose achieves adaptive generation of adversarial
graph data through different attack strategies. The MAG contains two parts, feature
extractor and a graph reconstructor.

Feature Extractor. In order to learn graph structure A and node attributes X in our
proposed AGA-GAN, we consider a two-layer graph convolution network (GCN) as the
graph feature extractor. It maps the graph structure and node attribute information to a
d-dimensional feature matrix. The low-dimensional features of graph data are defined
as:

Z = f (X ,A) = f (Âσ(ÂXW (0))W (1)) (2)

where Â = D̃− 1
2 ÃD̃− 1

2 , A is the adjacency matrix and Ã = A + IN is the adjacency
matrix of the real graph G with the added self-connections. IN is the identity matrix and
D̃ii = ∑

j Ãij denotes the degree matrix of Ã.W (0) ∈ RN×H and W (1) ∈ RH×d denote
the trainable weight matrix of hidden layer and output layer with H feature maps, N
is the number of nodes in the graph, and d denotes the dimension of low-dimensional
representation. f and σ are the softmax function and Relu active function.

Graph Reconstructor. After obtaining the low-dimensional representation Z of the
graph data through the graph feature extractor, we use a dimension expansion matrix
Wex to reconstruct Z into the adversarial graph G′:

G′ =
⎧
⎨

⎩

A′ = ‖̄
−
[S((ZWA

ex + (ZWA
ex)

T)/2)]
X ′ = ‖̄

−
[S(ZWX

ex)]
(3)

where Z ∈ RN×d ,WA
ex ∈ Rd×N andWX

ex ∈ Rd×D are the dimension expansion matrix of
grpah structure A and node attributes X . Sigmoid function S maps the element values
of generated data between [0–1], then obtains discrete G′ by the sign function ‖̄

−
.

Multiple Training Strategies. In order to satisfy the AGA-GAN’s requirements for
different graph analysis attack strategies, as shown in Fig. 2, we determine how MAG
generates graph structure A or node attributes X based on different attack strategies.

Modify Strategy. In MAG, we implement various attack strategies by modifying graph
structure A, node attributes X or a combination of both.

Graph Structure Attack: In a general social network, the structure of the social net-
work represents the interaction relationship between users. Modifying the links between
nodes in the graph can effectively hide these relationships.

Node Attributes Attack: In community detection tasks, similar users usually have sim-
ilar node attributes. By modifying the attributes of the target node itself or its connected
nodes, the node information can also be hidden.

Adaptive Adversarial Attack on Graph Embedding via GAN 77

Hybrid Attacks: Modify both graph structure A and node attributes X to avoid too
much perturbation in the graph structure or node attributes, and ensure that the attack is
unnoticeable while playing an effective attack.

Fig. 2. MAG in node classification attack. The red solid line indicates the added links, and the
gray dotted line indicates the deleted links. Here we choose an unlimited attack on the graph
structure. We obtain the low-dimensional features of the graph through the feature extractor, and
then obtain our adversarial graph structure through the graph reconstructor. (Color figure online)

Attack Scale. In order to efficiently implement the adversarial attack on the graph and
reduce the attack cost, we use K-hop graph instead of the original graph in the attack
process to achieve an efficient attack. Specifically, we select the target node and itsK-hop
neighbors from the original networkG to form aK-hop subgraphGK−sub(Asub,Xsub). To
prevent the node categories in the subgraph from being too concentrated when K is too
small, which leads to poor attack effects, we randomly add nodes with other categories
that are 20%of the number of subgraph nodes to theGK−sub, then adaptively generate the
adversarial subgraph G′

K−sub(A
′
sub,X

′
sub) corresponding to the size of GK−sub through

MAG, when the attack on subgraph is successful, replace the subgraph GK−sub with
G′
K−sub in the original graph G to obtain the adversarial graph G′ = (

A′, X ′). We
consider the following three different attack scale k ∈ N+:

Direct Attack(k = 1): Only delete the existing links of the target node or add a new one,
or modify the target node’s attributes.
Indirect Attack(k ≤ K, k �= 1): Delete or add links in the 2-to-K hop node pairs except
the target node in subgraph GK−sub, or modify these nodes’ attributes.
Unlimited Attack(k ≤ K): Combining the above two attack scales, delete or add links
between any pair of nodes in GK−sub, or modify the attributes of any node.

4.2 Similarity Discriminator

SD aims to learn the difference between GK−sub and G′
K−sub, and distinguish the two as

much as possible. SD also provides feedback to the MAG and guides it to generate the
adversarial subgraph that is more similar to the original one.

78 J. Chen et al.

Structure of SD. We use a classical Multi-layer Perceptron (MLP) with a hidden layer
as our SD, where the output layer is set to a one-dimensional sigmoid function. The
hidden layer and the output layer in SD can be generally expressed as:

h(l+1) = sigmoid(W (l)
SDh

(l) + b(l)) (4)

whereW (l)
SD and b(l) are the trainable weight matrix and bias term of l layer. We use the

subgraph structure Asub or the node attributes Xsub as the input h(0) of the SD according
to the modification strategy, and calculate the hidden layer’s output h(1) as the input
of the output layer, then get a one-dimensional value h(out) ∈ [0, 1] from the sigmoid
function.

Training Steps. During the training process, MAG tries to generate a more realistic
subgrpah to fool the SD, and the SD needs to maximize the difference between GK−sub
and G′

K−sub. The optimization objective of alternating training of the SD and the MAG
can be defined by:

min
MAG

max
SD

EG∼preal [log SD(GK−sub)] + EG′∼pMAG [log(1 − SD(G′
K−sub))] (5)

where GK−sub ∼ preal and G′
K−sub ∼ pMAG denotes original subgraph and adversarial

subgraph generated by MAG.

4.3 Attack Discriminator

In node classification attack, we use the GCNmodel with the same structure as theMAG
as the AD. Through the alternating training of MAG and SD, we obtain the adversarial
subgraph that is similar to the real one. AD then provides feedback to MAG and guides
it to generate adversarial subgraph which can fail the target model.

Traning Steps. For an effective attack on the target model, AD performs the following
two steps in each iteration:

Step1. Freezing the weights of MAG and SD, train the weights of the AD using the
real subgrpah GK−sub, and then we optimize the AD by minimizing the cross-entropy
loss function to improve the accuracy of AD in classifying nodes in real subgraph:

argminLAD = −
∑|Ts|

l=1

∑|F |
k=1

Ylk In(Zlk(Asub,Xsub)) (6)

where Ts is the set of labled nodes, F = [τ1, · · ·, τ|F |] denotes the category set of nodes,
Ylk = 1 if node vl belongs to category τk and Ylk = 0 otherwise, Zlk(A,X) is the
category prediction confidence output calaculated by Eq (2) when d = |F |.

Step2. Freezing the weights of SD and AD, and using the AD obtained in Step1
to fine-turn train the MAG. We get the predicted category confidence of the adversarial
subgraph through the two-layerGCN trained in Step1, and define the attack loss function:

argminLMAG = −
∑|Ttar |

l=1

∑|F |
k=1

Ylk In(1 − Z ′
lk(A

′
sub,X

′
sub)) (7)

Adaptive Adversarial Attack on Graph Embedding via GAN 79

where Ttar is the set of attack nodes, Ylk = 1 if node vl belongs to category τk and
Ylk = 0 otherwise.

The optimization objective of alternating training of the AD and the MAG can be
defined by:

min
MAG

max
AD

EGK−sub∼preal [logADF (GK−sub)] + EG′
K−sub∼PMAG

[log(1 − ADF (G′
K−sub))]

(8)

where ADF (·) denotes the AD with F as the node category set.

5 Experiments

In order to testify the effectiveness of our AGA-GAN, we attack the graph embedding
models with node classification as the downstream tasks, and compare the results with
some baseline attack methods. In each attack, we set the ratio of training times of MAG,
SD and AD is 1: 1: 1. For each attacked node, we generate 20 adversarial graphs. Once a
confrontation graph can successfully attack the node classification, we consider that the
attack was successful our experimental environment consists of i7-7700 K 3.5 GHzx8
(CPU), TITANXp 12 GiB (GPU), 16 GB× 4 memory (DDR4) and Ubuntu 16.04 (OS).

5.1 Dataset and Baseline Methods

Dataset. In the node classification, each node in the graph has a category. We evaluated
our method on three real-world datasets: Pol. Blogs [34], Cora [35] and Citeseer [36].
The nodes denote blogs/documents, and the links are blog links/citations. Their basic
statistics are shown in Table 1.

Table 1. The basic statistics of the three graph datasets.

Dataset #Nodes #Links #Classes

Pol.Blogs 1490 19090 2

Cora 2708 5427 7

Citeseer 3312 4732 6

Baseline Methods. We compare our AGA-GAN with three graph embedding attack
methods:

Dice [36]: DICE randomly disconnect b links of target node, then randomly connect the
target node toM − b nodes of different categories.
Nettack [18]: generates adversarial disturbances for graph structure and node attributes,
and according to the degree distribution and attributes co-occurrence probability to
remain the perturbations are unnoticeable.
GF-Attack [20]: GF-Attack attacks graph embedding models by constructing corre-
sponding graph filters and attacking it in a black box background.

80 J. Chen et al.

5.2 Attack Performance

For each graph, we randomly select 20 nodes in each category as the target nodes. We
give the attack effect of the proposed AGA-GANmethod under different attack strategy
settings, and compare it with several baseline methods. We use the following three
metrics to measure the attack effectiveness.

Attack Success Rate(ASR). ASR [19] is the ratio of targets which will be successfully
attacked within a given fixed budget, the ASR is defined as

ASR = Number of successful attack nodes

Number of attack nodes
(9)

Average Modified Links (AML). AML [19] is designed for the structure attack, which
indicates the average links perturbation size leading to a successful attack.

AML = Number of modified links

Number of attack nodes
(10)

Average Modified Attributes (AMA). AMA is designed for the attributes attack,
which indicates the average attributes perturbation size leading to a successful attack.

AMA = Number of modified attributes

Number of attack nodes
(11)

Selection of K and Attack Scale k. In this part, considering that the useful information
of the target node mostly exists in its neighborhood, we select K ∈ N+,K ≤ 5 to get
proper GK−sub. We compare the average subgraph sizes under different K. We can see
from Fig. 3 that whenK is less than 3, the subgraph of the Cora and Citeseer dataset only
contains less than 2% of the original graph, we consider the information contained in
the subgraph is not enough for the subgraph attack to replace the original graph attack.

We further combine different modification scales k to observe the attack effect. We
choose K = 3 as the initial setting of the three attack scales. When K increases, we will
also increase k to perform the corresponding three-scale attacks. Figure 3 also shows
the ASR under different attack scales. The solid line represents our unrestricted attack,
and the dashed line is an indirect attack. Since the initial value of K is 3, when k = 1,

Fig. 3. The subgraph size under different K and the ASR/AML under different modificantion
scales k. Here we do not limit the number of modifications to get ASR, when the number of
modifications is greater than 100, AML is set to 100.

Adaptive Adversarial Attack on Graph Embedding via GAN 81

Table 2. The ASR and AML obtained by different attack methods on various network embedding
methods and multiple datasets. Here, ASR is obtained by changing 20 links.

Dataset Model ASR(%) AML

Ours Baseline Ours Baseline

AGA-GAN DICE NETTACK GF-Attack AGA-GAN DICE NETTACK GF-Attack

Pol. Blogs GCN 92.50 50.27 82.97 19.89 6.47 11.85 11.89 20

Deepwalk 85.50 64.52 75.41 12.82 7.21 12.35 10.06 20

LINE 85.00 66.74 76.35 23.48 7.98 12.82 10.26 20

Average 87.67 60.51 78.25 18.73 7.22 12.34 10.74 20

Cora GCN 98.57 54.95 92.87 82.55 6.62 9.13 6.09 20

Deepwalk 96.43 93.52 94.06 63.47 6.71 7.20 7.24 20

LINE 95.71 88.99 96.34 83.19 6.64 7.66 7.02 20

Average 96.90 79.15 94.42 76.40 6.66 7.99 6.78 20

Citeseer GCN 99.17 70.37 87.50 61.78 4.53 9.87 6.88 20

Deepwalk 98.33 93.44 96.96 50.87 6.18 7.08 7.06 20

LINE 99.17 96.72 95.82 60.41 6.42 7.21 6.02 20

Average 98.89 86.84 93.42 57.69 5.71 8.05 6.65 20

we are actually conducting a direct attack, at this time we set the ASR and AML of the
indirect attack to 0.

We can see that our unlimited attack has better results than indirect attack. When
k = 1, i., e, when performing a direct attack, the highest ASR and the lowest AML are
obtained. Interestingly, we found that as the scale of the attack increases, while AML
increased, ASR decreased significantly in Fig. 3. We consider this because in GK−sub,
the effect of indirect links on the target node is different from that in G. Modifying
the indirect links in the GK−sub can misclassify the target node, but the impact of these
modifications may not be that effective in G.

Compared with the Baseline Attack Methods. According to the experimental results
above, we set K = 3 in AGA-GAN and use direct attack, i.e., k = 1. We compare with
several other baseline attack methods using the most effective direct attack AGA-GAN,
and the attack results are shown inTable 2,we can see thatAGA-GANoutperforms all the
other attack methods in all the cases, in terms of higher ASR and lower AML. However,
when attacking other graph embedding methods, the ASR of AGA-GAN may slightly
lower than that of attacking GCN, which is different from other baseline attack methods.
This may be because the subgraph is missing part of the original graph information,
which is further expanded when attacking other graph embedding methods.

Different Modification Strategies. We also have node attributes attack and hybrid
attack and compare the AGA-GAN-ori without adding random nodes to the k-hop sub-
graph. Here we also set K = 3 and use direct attack. When attacking node attributes, we
limit the modification of up to 100 attributes to obtain ASR. In each epoch of the hybrid
attack, the MAG generates the adversarial subgraph structure A′

sub, and then generates
the adversarial node attributes X ′

sub based on A′
sub. From Table 3, we can find that the

attack on node attributes can only obtain less than 50% ASR. This may be that the node
attributes of the citation datasets are relatively sparse, and the node categories are more

82 J. Chen et al.

determined by the graph structure. When we use a hybrid attack, we can get the highest
ASR while reducing the AML by modifying the node attributes. Similar results can be
observed in AGA-GAN-ori, however, the ASR of AGA-GAN-ori is much lower than
that of AGA-GAN. This is because the category distribution of the nodes is relatively
concentrated in the original neighbor subgraph of the target node, whichmakes the attack
very difficult. This proves that our strategy of randomly adding nodes to the subgraph is
effective.

Table 3. The ASR, AML and AMA obtained by AGA-GAN and AGA-GAN-Orisub attacking
GCN model with different attack strategies. Here, ASR is obtained by changing 20 links or 100
attributes.

Attack
method

Dataset ASR(%) AML AMA

A X Hybrid A Hybrid X Hybrid

AGA-GAN Pol. Blogs 92.50 67.50 95.00 3.34 2.21 5.63 4.30

Cora 98.57 49.29 99.29 6.62 5.74 12.88 13.93

Citeseer 99.17 61.67 100 4.53 2.99 33.48 34.97

AGA-GAN-ori Pol. Blogs 67.50 47.50 57.50 18.23 17.12 9.14 10.53

Cora 66.43 27.86 35.00 3.58 3.72 7.48 7.04

Citeseer 69.17 45.83 47.50 5.52 4.97 21.97 19.47

Time Efficiency of Attack. Most existing methods iteratively generate adversarial per-
turbations on the original graph one by one to obtain the adversarial graph, which is
essentially different from AGA-GAN directly generating a complete adversarial graph.
In Fig. 4, we compare the training time spent by each iteration when the AGA-GAN
attacks graph data of different sizes. As the graph data size increases, the training time
also increases greatly. Since our K-hop neighbor subgraph size is smaller than 20% of
the original graph, which means that our adaptive strategy of attacking K-hop neighbor
subgraph can effectively reduce the attack cost.

Fig. 4. The time spend in each iteration when attacking different graph sizes.

Adaptive Adversarial Attack on Graph Embedding via GAN 83

6 Conclusion

In this paper, we propose an adaptive graph adversarial attack framework based on
generative adversarial network(AGA-GAN).WedesignedMAG,SDandAD.According
to different modification strategies and attack scales, MAG trains alternately with SD
and AD respectively, and generates the adversarial graph similar to the real graph, which
can successfully attack graph embedding models. In order to reduce the attack cost of
GAN on graph data, we consider the adaptively selected K-hop neighbor subgraph as the
attack target instead of the original graph. We compared the attack effects of AGA-GAN
under different attack strategies, and attacked several graph embedding methods with
node classification as downstream task. The experimental results show that AGA-GAN
can achieve state-of-the-art attack performance in node classification when only using
a small part of the original graph’s structure and node attribute information.

References

1. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems,
techniques and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

2. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches
and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

3. Choi, E., Bahadori, M.T. Song, L., Stewart, W.F., Sun, J.: Gram: graph-based attention model
for healthcare representation learning. In: The ACM SIGKDD International Conference,
pp. 787–795 (2017)

4. Tang, J., Qu, M., Mei, Q.: Pte: predictive text embedding through large-scale heterogeneous
text networks, pp. 1165–1174 (2015)

5. Wang, S., Tang, J., Aggarwal, C., Liu, H.: Linked document embedding for classification.
In: Proceedings of the 25th ACM international on conference on information and knowledge
management pp. 115–124 (2016)

6. Ying R., et al. Hierarchical graph representation learning with differentiable pooling. In:
Advances in Neural Information Processing Systems, pp. 4800–4810 (2018)

7. Gibert, D., Mateu, C., Planes, J.: An end-to-end deep learning architecture for classification
of malware’s binary content. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.,
Maglogiannis, Ilias (eds.) ICANN 2018. LNCS, vol. 11141, pp. 383–391. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01424-7_38

8. Wang, S., Tang, J. Aggarwal, C. Chang, Y. Liu, H.: Signed network embedding in social
media. In: SDM, pp. 327–335 (2017)

9. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for graph
clustering. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1293–1299
(2014)

10. Allab, K., Labiod, L., Nadif, M.: A semi-nmf-pca unified framework for data clustering. IEEE
Trans. Knowl. Data Eng. 29(1), 2–16 (2017)

11. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network
embedding. In IJCAI, pp. 1774–1780 (2016)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016)

13. Masashi, T., Kentaro, T., Jun, S.: Compound-protein Interaction Prediction with End-to-end
learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2018)

https://doi.org/10.1007/978-3-030-01424-7_38
http://arxiv.org/abs/1609.02907

84 J. Chen et al.

14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 701–710 (2014)

15. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD,
pp. 855–864 (2016)

16. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top 69(6), 066133 (2004)

17. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. J. Stat. Mech., Theory Exp. 2008(10), 10008 (2008)

18. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph
data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, 19–23 August 2018, pp. 2847–2856
(2018)

19. Chen J, Wu Y, Xu X, et al. Fast Gradient Attack on Network Embedding (2018)
20. Chang H., et al. A restricted black-box adversarial framework towards attacking graph

embedding models. (2019)
21. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning

(2019)
22. Chen, J., et al.: GA based Q-attack on community detection. IEEE Transactions on

Computational Social Systems 6(3), 491–503 (2018)
23. Chen J, Chen Y, Chen L, et al.: Multiscale evolutionary perturbation attack on community

detection 2019
24. Milani Fard, A., Wang, K.: Neighborhood randomization for link privacy in social network

analysis. World Wide Web 18(1), 9–32 (2013). https://doi.org/10.1007/s11280-013-0240-6
25. Chen J, Shi Z, Wu Y, et al. Link Prediction Adversarial Attack (2018)
26. Goodfellow, I.J, Pouget-Aabadie, J., Mirza, M., et al.: Generative adversarial networks.

In: Proceedings of International Conference on Neural Information Processing Systems
Kuching:, pp. 2672–2680 (2014)

27. Mangla, P., Jandial, S., Varshney, S., et al. AdvGAN ++: Harnessing latent layers for adver-
sary generation. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops 2019

28. Zhu, Z.A., Lu Y.Z., Chiang C.K.: Generating adversarial examples by makeup attacks on
face recognition. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE
(2019)

29. Wang,H.,Wang, J.,Wang, J., et al. GraphGAN:Graph representation learningwith generative
adversarial nets. IEEE Trans. Knowl. Data Eng. (2017)

30. Bojchevski, A., Shchur, O., Zügner, D., et al.: NetGAN: generating graphs via random walks
(2018)

31. Pan, S., Hu, R., Long, G., et al.: Adversarially regularized graph autoencoder for graph
embedding (2018)

32. Razavi, M.N., Iverson, L.: Improving personal privacy in social systems with people-tagging.
In: Proceedings of the 2009 InternationalACMSIGGROUPConference on SupportingGroup
Work, GROUP 2009, Sanibel Island, Florida, USA, May 10–13, 2009. ACM (2009)

33. Garcia, J.O., Ashourvan, A., Muldoon, S.F., et al.: Applications of community detection
techniques to brain graphs: algorithmic considerations and implications for neural function.
Proc. IEEE 106, 1–22 (2018)

34. Nagaraja, S.: The Impact of Unlinkability on Adversarial Community Detection: Effects and
Countermeasures Privacy Enhancing Technologies. Springer, Berlin Heidelberg (2010)

35. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are gans created equal?
a large-scale study. In: Advances in Neural Information Processing Systems, pp. 700–709
(2018)

36. Waniek, M., Michalak, T., Rahwan, T.: et al. Hiding Individuals and Communities in a Social
Network. Nat. Hum. Behav. (2016)

https://doi.org/10.1007/s11280-013-0240-6

	Adaptive Adversarial Attack on Graph Embedding via GAN
	1 Introduction
	2 Related Work
	2.1 Graph Attack Methods
	2.2 GANs

	3 Preliminary
	4 Method
	4.1 Multi-strategy Attack Generator
	4.2 Similarity Discriminator
	4.3 Attack Discriminator

	5 Experiments
	5.1 Dataset and Baseline Methods
	5.2 Attack Performance

	6 Conclusion
	References

