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Abstract. As deep learning plays a key role in malware detection, it is of great
practical significance to study adversarialmalware examples to evaluate the robust-
ness of malware detection algorithm based on deep learning. A black-box attack
is performed while malware authors are allowed only access to the input and out-
put of the malware detection model. Due to the transferability of deep learning
model, it is an effective way to train a substitute model to fit the black-box model.
Generative adversarial network based models show good performance in generat-
ing adversarial examples and training substitute models. However, because of the
discrete output, generative adversarial networks are unable to compute gradient
for their back-propagation, which makes it difficult to update the weights of the
neural network in the training process. In addition, APIs are important features in
representing malware, but their potential semantic features are usually ignored.
To address the above problems, a generative adversarial network based algorithm
with API word embedding method is designed, which adopts CNN structure to
train a substitute model. The substitute model is utilized to analyze the semantic
association of sequential API calls. Then, we employ a long short-term memory
framework to generate antagonistic examples. The experimental results show that
the proposed scheme is efficient and effective.

Keywords: Adversarial malware examples · Black-box attack · Generative
adversarial network(GAN) · API word embedding · Long short-term
memory(LSTM)

1 Introduction

With the booming of Social Networks, tremendous amount of data is being produced
world-widely. New methods and new software tools are continuously developed and
dispersed to capture,manage, and process BigData. Various categories ofmalwares have
raised security issues and posed critical challenges for Social Networks and Big Data
applications. Malware detection methods and techniques are considered to be of great
importance. Deep learning has been widely used in computer vision, natural language
processing andmany other application realms [1, 2]. Inmalware detection, deep learning
models outruns traditional tools with its outstanding ability to recognize the essential
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features of examples and classify them effectively. Powerful as they are, deep learning
models is vulnerable to disturbance from slightly tempered input [3, 4]. Adversarial
examples, generated by adding perturbations to normal examples, can easily compromise
the working of a deep learning model. They reveal basic blind spots in deep learning
algorithms [5].

Researchers try to generate adversarial examples through countermeasure tech-
niques. In some early research works, gradient based methods were used to generate
adversarial examples, which fool the detection model through exemplifying the pre-
diction error of the neural network and optimizing the input [7]. However, all these
researches are carried out based on a fundamental assumption that malware authors
have been granted full access privileges to the target model and can train detection
models of their own. Actually, under most circumstances, malware detection algorithms
based on deep learning are integrated into an antivirus software or deployed in the cloud.
From the perspective of malware authors, the malware detection model is a black box
without any information about the internal structure.

With the transferability of adversarial examples, an adversary in a confrontational
attack can compromise the target detection model by simply training and attacking a
substitute model. This type of attack is also recognized as the black-box attack [7].
Black-box attacks are usually built with supervised learning mechanisms [8]. The sub-
stitute model is trained with examples labeled by the target model. Then, adversarial
examples can be generated according to the substitute model which is fully transparent
to the attacker. However, once the algorithm of the target model is updated or replaced,
malware authors will have to train another substitute model. There is another substitute
model training method which is based on the generative adversarial network (GAN)
[6]. It trains the substitute model with help of the multi-cognitive network within GAN,
which trains a generation model simultaneously. The generation model and the substi-
tute model train each other and account for each, as stated in the game theory, until a
Nash equilibrium can be achieved. Eventually adversarial examples generated by the
generation model can fool the substitution model. The GAN based model can enter a
new round of adversarial training once the algorithm in the target model is changed.
However, API is adopted as the character of malware examples, and sparse vectors are
used to represent APIs in a software program [9], which is directly fed into the multi-
cognitive network. The Euclidean distance between APIs is rendered identical, and the
potential semantic features between APIs are overlooked [10].

According to the problems above,wepropose a generative adversarial networkmodel
and adopt the method of word vector expression in natural language processing [11, 12],
so that the neural network can extract characters from the API word list. Convolutional
neural network (CNN) is used to train the substitute model, which analyzes the semantic
association of sequential API calls, and explains the latent semantic features obtained by
APIs. Then, we employ a long short-term memory framework to generate antagonistic
examples.

The contribution of this paper can be summarized as follows:

• We devised a method to map the behavior of API calls into a vector space, so that
the connection between APIs can be evaluated through measurement. The behavior
pattern of the malwares can be effectively analyzed with machine learning method.
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• We design a deep learning model that can extract the semantic association of APIs,
which can make the most out of the sematic features to produce dedicated malware
API sequences.

2 Adversarial Example Generation

2.1 Black-Box Attack and Substitution Model

From the perspective of an attacker, black-box attack may be the most challenging
situation. Black-box attack can be divided into ordinary black-box attack and completely
restricted black-box attack according to the degree of the restrictions [7]. Access to the
input and output are allowed in an ordinary black-box attack, while in a completely
restricted black-box attack, no information can be acquired. Neither kind of black-box
attack can use the back propagation of the target model, so the question falls in the attack
transferability from the self-trained model to the restricted black-box model [3]. Due to
the enormous challenge of the completely restricted black-box attack, it falls out of the
scope of this paper. In fact, attackers do have the right to inquire about the target model
to obtain useful information for generating adversarial examples in many scenarios. For
example, malware classifiers (usually trained by deep neural networks) allow attackers
to input any binary file and they output the classification results, such as confidence
score or category of classification. Then the attacker can use the classification results to
design more effective adversarial examples to fool the target classifier. In this kind of
black-box attack, the back propagation for gradient calculation of the target model is still
prohibited, because the back propagation needs to understand the internal configuration
of the target model, which is not available for a black-box. A better way to realize the
attack transferability of the adversarial examples is to use the ability of free query to
train the substitute model [13, 14]. Then, any white-box attack technology can be used
to attack the substitute model, and the generated adversarial examples can be used to
attack the target model.

The main advantage of the training a substitute model is that it is completely trans-
parent to the attacker [15]. Therefore, the basic attack process of the target model, such as
the back propagation of gradient calculation, can be achieved with the substitute model
which is used to generate adversarial examples.

2.2 API Word Vectors

Malware programs call differentAPIs to implement correspondingmalicious actions.We
focus on the API call types distinguished from the naming, regardless of their parameters
and return values. It can be seen that each API is represented by a number of English
words or character combinations, which is similar to the text analysis problem in natural
language processing [11]. Therefore, we try to extract all the API calls, regard the API
sequence as a text sequence, and use the technology of word vectors to digitize each
API.

First,we regard eachAPI in theAPI sequence as an independent “word”, andgenerate
a word vector for it. A complete API sequence is denoted asW. In order to facilitate the
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learning with neural networks, we set the length of each API sequence to the maximum
API sequence length T in the sample set, T is the number of APIs contained in the
sequence. For a sequence shorter than T, we make tail padding with 0. The sequenceW
composed of T API “words”wt(1 ≤ t ≤ T ) is represented as:

W = (w1,w2, . . .wT ) (1)

Each API “word” wt is then encoded using one-hot encoding. Suppose that the size
of the input API dictionary is V1. In this way, an API to one hot encoding mapping can
be established. Each API uses a V1 dimensional one-hot vector representation, that is,

wt = (
o1, o2, . . . oV1

)T (2)

There are t ones and the rest of the elements are zeros. If the one-hot encoded
vector is directly feed into the deep learning model for training, the number of model
parameters will be huge and extremely sparse [10]. Moreover, the one-hot encoding
ignores the semantic relationship between words. In natural language processing, the
one-hot encoded character text sequence needs to go through the word embedding layer
[16] to generate the word vector whose dimension is much lower than V1.

We feed the one-hot code of the API sequence into the word embedding layer, then
obtaining a word embedding matrix We ∈ RV1×K which is a matrix of parameters.
According to the classification label of the API sequence, a word vector can be acquired
by supervised learn, in which We is the table of word vectors. Each line of We is the K
dimension word vector xt(1 ≤ t ≤ T ) of every API.

xt = wT
e wt (3)

Given the one-hot vector of any API word in an API sequence,ot = 1, oi =
0(1 ≤ i ≤ T , i �= t), the word vector of the API is the tth line of We. A word sequence
X can be acquired from an API call sequence W.

X = (x1, x2, . . . xT ) ∈ RK×T (4)

2.3 Model Architecture

Our designing goal is to capture the dynamic behavior characteristics of malware calling
API, and to reveal the collaborative relationship between API calling sequence and
malicious purpose from a large number of training data. Our model consists of three
components, the LSTM generator, the CNN substitute detector and the black-box. The
architecture is shown in Fig. 1.
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Fig. 1. The architecture of adversarial malware examples generation model.

LSTM Generator
The generator is based on long short-termmemory network, known as LSTM.An LSTM
unit is made of an input gate it , an output gate ot , and a forget gate ft . The input gate
controls the extent of the new input value, the forget gate is used to manage how much a
value should be left in the unit, the output gate decides which values are used to activate
the LSTM unit. Repeated LSTM units can record some status of each moment, which in
our design is the position of each API in the generated API sequence. An API sequence
is synthesized by the LSTM generator with random noise vectors. Every LSTM unit is
determined by its previous hidden status ht−1, previous output yt−1 and the noise vector
z. it and ft are computed and then the current unit ct and current hidden status ht are
computed. Functions within a LSTM unit is defined as follows.

it = σ(Wiyt−1 + Uiht−1 +Ciz) (5)

ft = σ
(
Wf yt−1 + Uf ht−1 +Cf z

)
(6)

ot = σ(Woyt−1 + Uoht−1 +Coz) (7)

c̃t = tanh(Wcyt−1 + Ucht−1 +Ccz) (8)

ct = ft ⊗ ct−1 + it ⊗ c̃t (9)

ht = ot ⊗ tanh(ct) (10)

W{i,f ,o,c},U{i,f ,o,c} andC{i,f ,o,c} areweightmatrices,σ(·) is sigmoid function, tanh(·)
is hyperbolic tangent function, ⊗ stands for multiplication of elements. To simplify the
computation, we omit the deviation term. Similar to the seq2seq (sequence to sequence)
model [17], we use LSTM as the decoding network. Noise z is used as the input vector
to control the generation of each API, which has the same dimension as the API word
vector.

Substitute Detector
The substitute detector is constructed with convolutional neural network (CNN), which
is supposed to simulate the target black box. An API sequence of length T contains T
consecutive word vector, it goes through the CNN and produces the prediction result. In
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the convolution layer, the hidden patterns in different API sequences can be found auto-
matically by the convolution window sliding on the word vector sequence and detecting
the features in different positions. A window is set up at the position of each word in the
API sequence. The window size is the same as that of the convolution kernel. That is
to say, convolution operation is performed on consecutive k APIs to generate a feature
map. In the convolution neural network, multiple convolution kernels are often used at
the same time. Here we record the number of convolution kernels as nc. In this way,
each convolution kernel generates a dimension’s characteristic graph, and nc convolution
kernels will generate nc dimension’s characteristic graph, and connect them by columns,
and finally get the characteristic graph set of API sequence.

Training
In the training processes, the generated API sequence and the benign API sequence are
used to train the substitute detector together with the labels given by the black box. By
optimizing the loss function, the substitute detector simulates the black box, and the
same classification is given to the input API sequence as the black box.

The ultimate goal of the generator is to generate malware API sequences, send
them to the substitute detector for detection, and let them be recognized as benign API
sequences.

By optimizing the loss function, the probability of generatedmalware API sequences
being recognized asmalicious is reduced.When the adversarial training between the gen-
erator and the substitute detector reaches a balance point [7], the malware API sequence
generated by the generator can fool both the substitute detector and the target black box
simulated.

3 Experiments

Our experiments are implemented with Keras and Tensorflow. Keras is a high-level
deep learning programming framework, integrating the implementation of a variety of
neural networks. Based on python programming language and tensorflowbackend,Keras
supports accelerated training model on GPU.

3.1 Dataset and Configuration

We collected 6946 malware from the malware sample website ZOO and some open
source projects of malware. The benign software comes from different types of common
applications, such as complete free software, Softonic, Microsoft Windows system files,
etc., totaling 2749.We use APIs as the dynamic characteristics of the samples. Cuckoo is
chosen as the sandbox tools, which can extract malware behavior data such as Windows
API call sequence.

We set the virtual machine VMware 15.5 in Ubuntu 16.04. The malicious samples
are executed within Windows 7 through the virtual box. The running time threshold
is 2 min. According to the output JSON file, we extract the API call sequence of the
program. In order to offset the unnecessary behaviors on the call data and increase
the generalization ability of the training model on other data sets, it is necessary to de
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duplicate the continuous repeated API calls. After deduplication, we truncate the length
of the sequence used for the experimental data to 400, and shorter API call sequences
are padded with zeros. The API call sequence is represented as 400 * 300 dimensional
API word vector matrix by word embedding.

For all of the sequence of the API calls dataset, we split 80% of the dataset as the
training set and the remaining 20% as the test set. Then we randomly select 25% of the
training set as the validation set.

Our experiments are carried out on a GPU workstation, which is equipped with
NVIDIA Tesla V100 GPU, Intel Xeon 10 core CPU, 64 GB memory, CUDA 9.0 and
cuDNN7.1 library, Cuckoo Sandbox with Windows7 X64.

Black box classification algorithm is usually not open-source to the public, and there
is no tracking version available for experiments. The deep learning black-box malware
classifier based on API call is difficult to obtain in the actual application scenarios.
Therefore we train the malware classification algorithm separately as the black-box
classifier needed in the experiment.

3.2 Evaluation

We create our own black-box malware classifier for the adversarial training process,
which also allows us to evaluate the attack performance against many classifier types.
The input of all the classifiers is a vector of 400 API calls in word embedding, each with
dimension of 300. The output is binary: malicious or benign.

Black-Box Classifier performance
For all neural networks, we use the Adam optimizer. The output layer is fully-connected
with sigmoid activation function, and a rectified linear unit RELU is chosen as the
activation function of input layer and hidden layer due to its fast convergence compared
with sigmoid () or tanh (). Dropout is used to improve the generalization potential of the
network. We conduct training for a maximum of 100 epochs, but convergence is usually
reached after 15-20 epochs, which depends on the type of classifier. Batch size of 256
samples is used.

We measured the performance of the classifiers using the accuracy ratio on the test
set. The performance of all the black-box classifiers is shown in Table 1.

Table 1. Classifier performance

Classifier Type Accuracy (%) Classifier Type Accuracy (%)

LR 90.59 MLP 95.08

DT 90.55 CNN 95.04

RF 92.49 LSTM 94.96

SVM 90.51 BiLSTM 95.39
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As can be seen in Table 1, the classifier based on deep learning have a good per-
formance in detecting malwares. BiLSTM is one of the classifier most resistant to our
proposed attack based on the semantic features of API sequence.

Attack Performance of Generated API Sequence We evaluate the efficiency and
effectiveness of our scheme by comparing it with Hu’s work on true positive rate (TPR),
which is the percentage of the number of malicious examples detected and the number
of all examples samples. After adversarial attack, the reduction of TPR can effectively
reflect the ability of adversarial examples to successfully bypass the black-box detector.
The result is shown in Table 2.

Table 2. True positive rate on original malware samples and adversarial examples for both the
train set and test set.

Classifier Type Training Set Test Set

Hu et al. (%) Generated (%) Hu et al. (%) Generated (%)

LR 0.00 0.00 0.00 0.00

DT 0.16 0.10 0.16 0.12

RF 0.20 0.18 0.19 0.18

SVM 0.00 0.02 0.00 0.02

MLP 0.00 0.00 0.00 0.00

CNN 0.00 0.00

LSTM 0.01 0.01

BiLSTM 0.06 0.06

As can be seen in Table 2, we achieve comparable attack results to five black-box
classification algorithms used in Hu’s proposed MALGAN. Although the TPR is not
decreased completely to zero for SVM, 0.02% is enough to be ignored. For random
forest and decision trees, those are quite different with the structure of neural networks,
our proposed attack is able to decrease the TPR on generated adversarial examples to
the range of 0.10% to 0.18% for both the training set and the test set. In addition, for the
deep learning based three classifiers, the TPRs is also reduced to nearly zero, while the
malware detection accuracy ratio on the original samples range from 94.96% to 95.39%.

We also plot the convergence curve of the TPR on the training set and the validation
set during the training process of our work, with using random forest as the black-box
classifier. The result is shown in Fig. 2.

As can be seen from the result, the TPR in our scheme decreases dramatically with
the increasing of the training epoch. The overall performance of our scheme is as good
as that in Hu’s work, while the decreasing rate is greater than the opponent due to our
design that reveal more of the semantic association of APIs.
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Fig. 2. The change of the true positive rate on the training set and the validation set over time.

4 Conclusions

In this paper, we study the problem of generating adversarial malware examples for
black-box attacks. Traditional generative adversarial network based models are unable
to compute gradient for their back-propagation due to the discrete output, which makes
it difficult to update the weights of the neural network in the training process. Potential
semantic features of APIs are usually ignored in existing schemes. A novel generative
adversarial networkbased algorithmwithAPI levelword embeddingmethod is proposed,
which adopts CNN structure to train a substitute model, which is utilized to analyze the
semantic association of composite API calls and sequential API calls. It can reveal the
latent semantic features obtained by APIs more extensively. We employ a long short-
term memory framework to generate antagonistic examples to enhance the utilization of
semantic feature information betweenAPIs. Experimental results show that the proposed
scheme is efficient and effective.
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