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Abstract Regulation of second-order plus time-delay systems (SOPDT) plays a
vital role because many of the industrial process (such as electrical, mechanical, and
electromechanical systems) exhibits delayed response at outputs in response to the
inputs. These time-delay systems are responsible for control complexity and degrade
the system performance under disturbance conditions. To regulate the performance
of these systems, robust controllers are needed. Sliding mode control is a robust
control strategy. To regulate these systems and also to improve the performance
under disturbance conditions, slidingmode control strategy is adapted. Here, second-
order sliding algorithms such as twisting, super-twisting, and adaptive algorithms are
incorporated for regulation of these systems. Pade approximations (0/1, 1/1, 1/0) are
used for representation of the constant time delay and here (0/1) approximation is
adapted. Simulation studies have been performed for these systems in the MATLAB
environment.

Keywords Siding mode control (SMC) · Second-order sliding mode control
(SOSMC) · Robust control · Second-order process with delay time (SOPDT) ·
Pade approximation

1 Introduction

Three important parameters are needed for representing an industrial process control
system. These are (i) gain (ii) time delay and (ii) time-constant. The exact representa-
tion of such system using these parameters is very difficult due to model uncertainty,
i.e., error between actual plant and the model. Modeling point of view this is one
possible uncertainty and assume that the model error is negligible. In real time, there
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may be disturbances at the plant outputs, inputs parameter variations, measurement
inaccuracies, and assume these are known to be within 15–20% from their respective
values. Considering these into account, designing a controller is a challenging task.
A controller is called as a robust controller which can reject these disturbances in
effective way in regulating the process control variables [1]. There are a wide variety
of robust controller design methods. Sliding mode control strategy is a robust control
design methodology which is completely insensitive to the uncertainties. These are
classified into first-order and higher-order control strategies.

The slidingmode control strategydesign comprises of two stages.One is designing
the switching surface; once the system states are sliding on the switching surface,
the system characteristics are presided by the characteristics of sliding surface and
the other is to design a control action, such that the system should reach the sliding
surface in finite time. Usually, to obtain ideal slidingmotion, fast switching of control
action is required but in actual plants, switching occurs at finite frequency causing the
trajectories to oscillatewithin the regionof sliding surface. This phenomenon is called
chattering effect. Generally, conventional first-order sliding mode control (FOSMC)
exhibits chattering phenomena. Chattering phenomena leads to large undesired oscil-
lations causes instability of the system. To overcome the above effects, second-order
sliding mode control had been developed. The main advantage of SOSMC over
FOSMC is it completely avoids chattering effect and higher accuracy can be obtained
with respect to robustness and easiness of implementation [2].

This paper is organized as: Significance of system parameters of SOPDT model
is explained Sect. 2. The SOSMC design procedure and control laws are discussed in
Sect. 3. Simulated results for different algorithms in SOSMC are presented in Sect. 4
and conclusions from results are drawn in Sect. 5.

2 Significance of Time Constants, Gain, and Time Delay
of SOPDT Model

Consider an industrial process control systemwhich is describedusingSOPDTmodel
and its transfer function is given in Eq. (1).

G(s) = Ke−αd s

(1 + α1s)(1 + α2s)
(1)

Usually, study of system gain K, time constants α1, α2, and delay time αd helps
to understand the model behavior. For a certain change in controller output, the
response of process variable behaves according to the change in gain. Simply, larger
gain means the response of the system will be larger [3]. Time-constant illustrates
how quickly the process responds to a certain change in controller output [4]. The
process described using SOPDT model is having two time-constants, and by using
this, the plant behavior can be modeled. The dead time illustrates how much delay is
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expressed in the output for a change in controller output but the dead time does not
affect the nature of the response. The frequency response of the FOPDT model does
not match with the actual plant at specific corner frequencies [3] as it contains less
number of parameters. The mismatch in the frequency response can be minimized
using SOPDT representations. Therefore, it is better to prefer SOPDT model rather
than FOPDT model. The time delay of the SOPDT model is represented using (0/1)
Pade approximation and it is described using Eq. (2).

e−αs = 1

1 + αs
(2)

The transfer function of SOPDT model using Pade approximation is given using
Eq. (3).

G(s) = K

(1 + α1s)(1 + α2s)(1 + αds)
(3)

Using phase variable canonical state space model, Eq. (3) is expressed as given
in Eq. (4).

Ẋ = AX + BU (4)

A =
⎡
⎣

0 1 0
0 0 1

−p1 −p2 −p3

⎤
⎦ , B =

⎡
⎣
0
0
b

⎤
⎦

where

p1 = 1

α1α2αd
, p2 = α1 + α2 + αd

α1α2αd

p3 = α1α2 + α2αd + α1αd

α1α2αd

where X1(t) is the output, u(t) is the control input and p1, p2, p3 are functions of plant
parameters.

3 Second-Order Sliding Mode Control (SOSMC)
of a SOPDT Model

The second-order sliding mode controller is design involves design of (i) switching
surface and also (ii) design of controller. Switching surface design involves designing
a surface/plane ‘s’ which is a the linear combination of the state variables [5]. The
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Fig. 1 Sliding mode control

role of the SOSMC controller is to keep the variables on this surface and also to make
the system insensitive to the uncertainties. If the state variables are deviated from the
pre-defined switching surface, then the controller has to bring these variables onto
the surface. The switching surface is defined by equation s = ṡ = 0. [6]

(a) Defining a Sliding Surface

In SOSM control approach, the history of all state variables will converge to an
equilibrium point when they obey s = ṡ = 0 of the state plane. The switching
surface of the SOSMC strategy is stated using Eq. (5) (Fig. 1).

s = {
X ∈ RK ; s = ṡ = 0

}
(5)

The mathematical representation of switching surface, ‘s’ is stated as s(x) = Sx ,
and here, x is a state vector and s ∈ Rn is switching surface vector. The switching
function, ‘s’ and its first-time derivative with respect to time is continuous and its
second-time derivative w.r.t time is discontinuous [7].

ṡ = ∂s

∂x
ẋ = ∂s

∂x
( f (x) + b(x)u)

Differentiating twice the switching variable “s” produces a relation as given in
Eq. ().

s̈ = ∂ ṡ

∂x
( f (x) + b(x)u) + ∂ ṡ

∂u
u̇

s̈ = α(x) + β(x)u̇

If |s(x)| < s0, the following inequalities are assumed.

|α(x)| < φ, 0 < �m ≤ β(x) ≤ �M , β(x) = ∂ ṡ

∂u

The SOPDT system is represented in the regular form [8] and the respective
matrices are obtained as given
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A11 =
[
0 1
0 0

]
A12 =

[
0
1

]
A21 = [−a1 −a2

]
A22 = [−a3]

The switching surface design involves the design of state feedback matrixM such
that the eigen values of (A11 −A12M) are in the left half of s-plane and to achieve this,
the desired characteristic equation is needed. It is the second-order quadratic equation
as given in Eq. (6)) where parameters ξ andωn represent the desired damping ratio
and natural frequency, respectively. TheM matrix is obtained by comparing Eq. (6)
with (A11 − A12M) and it is given in Eq. (7).

λ2 + 2εωnλ + ω2
n = 0 (6)

M = [
m1 m2

] = [
ω2
n 2εωn

]
(7)

The sliding surface is given by

s = [
m1 m2 1

]
⎡
⎣
x1
x2
x3

⎤
⎦

s = m1x1(t) + m2x2(t) + x3(t) (8)

where m1 = ω2
n,m2 = 2ξωn .

The time derivative of the switching surface (first order) is given using Eq. (9).

ṡ(t) = −p1x1(t) + (m1 − p2)x2(t) + (m2 − p3)x3(t) + bu(t) (9)

(b) Control Law

The control laws for SOPDT system using twisting super-twisting and adaptive
algorithms are described in the following paragraphs.

Twisting Algorithm
Using twisting algorithm, the trajectories are plotted using s and sdot variables are
twisting around the origin and its characteristic is as shown in Fig. 2. In the twisting
algorithm of the second-order sliding mode control assumes that after a finite time
interval the point s = ṡ = 0 will be reached [9]. The control algorithm is defined by
the control law as given in Eq. (10).

u̇TW =
⎧⎨
⎩

−uTW f or |u| > umax

−km sign(s) f or sṡ ≤ 0 and |u| ≤ umax

−kM sign(s) f or sṡ > 0 and |u| ≤ umax

kM > km > 0, km >
4�M

s0
, km >

φ

�m
, �mkM − φ > �Mkm + φ (10)
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Fig. 2 Trajectory of s and
sdot (twisting)

Super-Twisting
Using super-twisting algorithm, the trajectories plotted using s and sdot variables
are twisted around the origin along with travel on sdot axis (super-twisting) and
its characteristic is as shown in Fig. 3. The super-twisting sliding mode control
algorithm relies on inserting an integrator into the control loop such that control
becomes continuous time function (ust). The control law uST is defined by two terms:
the first is defined in terms of an integral of a discontinuous function of sliding
variable, while the second is a continuos function of the sliding variable [10] . The
control law is defined mathematically using Eq. (11).

uST = u1 + u2

u̇1 =
{−uST, for |uST | > umax

−w sign(s), for |uST | ≤ umax

u2 =
{−λ|so|ρsign(s), for |s| > so

−λ|s|ρsign(s), for |s| ≤ so
(11)

where

w >
φ

�m
, 0 < ρ ≤ 0.5

Fig. 3 Trajectory of s and
sdot (super-twisting)
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w >
4�M

so
, ρ(λ�m)

1
ρ > (�Mw + φ)(2�M)

1
ρ
−2

4 Adaptive Algorithm

Adaptive sliding mode is an effective control technique approach that has better
disturbance rejection and chattering avoidance properties than classical SMC [11].
The control law for adaptive control is defined mathematically as

u̇ = −θ sign(p)

where p = Ṡ + |S| 1
2 sign(S)

θ̇ =
{

θ‖p‖ sign(‖p‖ − ε) if θ > μ

μ if θ < μ
(12)

where θ , μ and ε are positive controller parameters to be chosen. The value of μ has
been set to restrict the gain to be positive value. The parameter ε defines the region
around the switching surface, i.e., indicates closeness to the switching surface. It will
effect the variation in switching gain and responsible to achieve ideal sliding mode
[11].

5 Simulation Results

Second-Order Sliding Mode Control for Twisting Algorithm
Simulation studies has been carried out by considering the SOPDT system using
second-order SMC strategy using a twisting algorithm. Here, the parameters ξ =
0.7 and wn = 3.8 are considered for design of switching surface. Different initial
conditions considered for simulation studies are X0 = [0.0125, 0.0125, 0, 0], [0.05,
0.05, 0, 0], [0.1, 0.1, 0, 0], and [0.075, 0.075, 0, 0] with design constants as Vm

= 0.7 and VM = 1. The history of the state variables x1, x2, x3 and the switching
surface with time is shown, respectively, using Figs. 4, 5, 6 and 7 considering these
initial conditions. It is observed that these state variables are returning to the stable
equilibrium state using SMC with twisting control algorithm.

The trajectory of switching surface and its derivatives is shown in Fig. 8. The
finite time convergence of state trajectories to the origin in the state plane is due to
switching of the actual control signal between two different magnitudes. The time
taken for the state variables to reach the stable equilibrium point using second-order
twisting SMC is less compared to first-order SMC.
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Fig. 4 Plant variable x1
versus time without
disturbance condition

Fig. 5 Plant variable x2
versus time without
disturbance

Second-Order Sliding Mode Control for Super-Twisting Algorithm
For the simulation studies of this system using this algorithm needs important param-
eters likeW, ρ and λ. These are considered as followsW = 3, ρ = 0.5 and λ = 4.75.
The trajectory of S and Sdot using super-twisting algorithm without disturbance
for different initial conditions are graphically shown in Fig. 9. From this figure, it
is observed that under different conditions the shape of this trajectory is following
desired shape.

For the simulation studies of this system is also performed using this algo-
rithm under disturbance conditions considering the parameters like W, ρ and λ.
The controller parameters are chosen such that, they assure the convergence of the
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Fig. 6 Plant variable x3
versus time without
disturbance

Fig. 7 Switching surface
versus time without
disturbance

state variables to an equilibrium point in a finite time, when this system is subjected
to disturbance under different initial conditions. The constants are chosen asW = 3,
ρ = 0.5, λ = 4.75, ξ = 0.7 and wn = 3.8. The variation of plant variables x1, x2,
x3, S and Sdot with time are shown, respectively, in Figs. 10, 11, 12 and 13 under
disturbance condition. These are plotted by considering four different initial condi-
tions x0 = [0.0125, 0.0125, 0, 0], [0.05, 0.05, 0, 0], [0.075, 0.075, 0, 0] and [0.1, 0.1,
0, 0]. Here, the system is also subjected to step disturbance d = 0.01 * (Heaviside(t
− 16) − Heaviside(t − 16.5)) with a magnitude 0.01 during the period 16–16.5 s. It
is observed that when this system is subjected to the perturbation, these variables are
returning to the original equilibrium state. It is observed that the control algorithm is
effectively rejecting the disturbances and the regulation characteristics are also good.

Adaptive Second-Order Sliding Mode Control (ASOSMC)
InASOSMC, θ ,μ and E parameters chosen such that, they assure a finite time conver-
gence of the state variables when this system is subjected to parameter variation. The
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Fig. 8 Derivative of
switching surface versus
switching surface using
twisting algorithm without
disturbance

Fig. 9 S versus Sdot
trajectory without
disturbance

Fig. 10 Plant variable x1
versus time under
disturbance condition



Second Order Sliding Mode Control for Second … 857

Fig. 11 Plant variable x2
versus time under
disturbance condition

Fig. 12 Plant variable x3
versus time under
disturbance condition

Fig. 13 Switching surface
versus time under
disturbance condition
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Fig. 14 Plant variable x1
versus time under parameter
variation

Fig. 15 Plant variable x2
versus time under parameter
variation

constants are chosen as, θ = 540, μ = 95 and E= 0.0001. The system is subjected to
parameter variations in damping ratio and natural frequency. The response is plotted
with respect to time. The variations of the state variables, sliding surface, and deriva-
tive of sliding surface with respect to time under the parameter variation conditions
are obtained graphically in the interval [0 10]. For three different damping ratios 0.3,
0.5, 0.7 and natural frequencies wn as 2.42, 2.28, 3.8. The parameter variation of
plant variables x1, x2, x3, s and sdot with time is shown respectively in Figs. 14, 15,
16 and 17. It is observed that this SMC is effective under these conditions (Fig. 18).

ASOSMC provides smooth control to force the system states on sliding surface.
There is no chattering effect and also insensitive to the parameter variation.

6 Conclusions

The design of the different sliding surfaces for twisting, super-twisting, and adap-
tive algorithms has been used for design of SOSMC to improve performance of
second-order process with delay time. In SOSMC, existence of sliding mode has
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Fig. 16 Plant variable x3
versus time under parameter
variation

Fig. 17 s versus time under
parameter variation

Fig. 18 sdot versus time
under parameter variation

been proved for SOPDT systems with significant improvement of performances.
The proposed methods are able to achieve low overshoot and small settling time
simultaneously. Also robust and high performance control can be achieved with the
above-explained algorithms of SOSMC. From simulation results, we can observe
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that SOSMC gives control avoiding chattering phenomena. Thus, the used SOSMC
algorithms provide an improvement in transient performance along with steady-state
accuracy with smooth control efforts and settling time are improved effectively.
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