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Abstract Anaerobic digestion (AD) is a biological process, which, due to the
multiple stages and microorganisms it involves, is complex to model. The feasibility
of AD is highly dependent on the organic matter content, as well as physical and
chemical factors that regulate the microbiological activity. Mathematical models are
a constant challenge for the simulation and prediction of organic matter degradation
and biogas production. This chapter is an overview of part of the great diversity of
AD mathematical models from the stoichiometric and kinetic perspectives as well as
microbiological and physicochemical points of view. The effect of waste composi-
tion and the changes in operational parameters on the AD modeling is analyzed.
Stoichiometric, kinetic, and dynamic models are discussed. According to the review,
it was confirmed that a wide number of researchers prefer the Buswell model, the first-
order model, the modified Gompertz model, and the anaerobic digestion model
(ADM) depending on available data and lab infrastructure. The literature related to
AD modeling does not present a consensus regarding the use of statistical criteria,
being a key factor to reflect the goodness of fit of the models. It was observed that there
are still gaps in the co-digestion modeling due to the mixing effects on the kinetics of
the anaerobic digestion. Current co-digestion models are derived from the experimen-
tal design to prove synergy or antagonism. Nevertheless, there is a need to predict the
co-substrate synergy or antagonism with the kinetics, an aspect that is not solved at
present using current models. To fill this scientific gap, an additive model is proposed.

Keywords Anaerobic digestion · Co-digestion · First-order model · Gompertz
model · Statistical criteria

14.1 Introduction

Anaerobic digestion (AD) is a complex process where facultative and anaerobic
bacteria and methanogenic archaea interact to convert organic molecules (e.g.,
carbohydrates, lipids, proteins) into useful products. The product of greatest interest
is a gaseous mixture of methane (CH4) and carbon dioxide (CO2), commonly known
as biogas. The possibility of efficiently degrading organic matter while simulta-
neously producing biogas as an energy carrier makes AD suitable for the treatment
of solid and liquid organic-rich waste. Today, AD is considered a mature technology
(Wang et al. 2020; Zitomer et al. 2008).

The feasibility of AD to degrade organic matter into biogas is highly dependent
on the characteristics of the organic matter, as well as physical and chemical factors
that regulate the microbiological activity. Among the different factors that influence
AD performance, temperature, pH, the presence of inhibitory compounds, and the
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lack of micronutrients appear particularly relevant on process performance
(González-Suárez et al. 2018; Nguyen et al. 2019).

Mathematical models are tools capable of modeling and predicting variations in
process behavior as a result of operational and environmental changes, which allow
the prediction of organic matter degradation and biogas production. Additionally,
mathematical models are an alternative to lab-based research to improve the under-
standing of AD, as well as to develop strategies to improve process performance,
e.g., act against the presence of inhibitions in the system.

Biomethane potential (B0) is a critical parameter in anaerobic digestion applica-
tion since it determines the maximum amount of methane that can be recovered from
a substrate (Hafner et al. 2020). Numerous methodologies have been used to
quantify the biomethane potential of sole or combined substrates, since this is a
necessary step for any AD industrial application (Nguyen et al. 2019). The accuracy
of these methodologies is generally high, but they are time-consuming (Amodeo
et al. 2020).

There is a great diversity of mathematical models, which approach the AD
process from different combinations of stoichiometric and kinetic perspectives as
well as microbiological and physicochemical aspects (Echiegu 2015; Pavlostathis
and Giraldo-Gomez 1991; Pererva et al. 2020b). Most of the mathematical equations
used in the literature provide an explanation of the process by means of kinetic
parameters. Finally, another important aspect to take into consideration is the
mathematical complexity of the models. Two large groups of models can be
distinguished, named as “simple” and “complex” models. Simple models prioritize
identifying methane production, using linear and nonlinear algebraic equations.
Complex models explain the simultaneous variations of microorganisms, substrates,
and methane, generally by means of a set of ordinary differential equations.

14.2 Overview of Waste Biodegradation Under Anaerobic
Conditions

14.2.1 Steps of Anaerobic Digestion Process

In early stages, anaerobic digestion was simplified to a two-step process: fermenta-
tion (acid formation) and methanization (gas formation), each mediated by commu-
nities of bacteria and archaea that are physiologically different. The fermentation
step was carried out by microorganisms able to convert carbohydrates, lipids, and
proteins into fatty acids through hydrolysis and fermentation, to be later transformed
into carbon dioxide and methane, by means of methanogenic archaea (Toerien and
Hattingh 1969).

McCarty and Smith (1986) described the AD process using a stoichiometric
model that involved three additional steps for the transformation of ethanol, propi-
onate, and butyrate into methane. Each step transformed the organic molecule into
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acetate with the release of a hydrogen molecule and a hydrogen cation. Methane was
produced from two distinct pathways. On the one hand, the molecular hydrogen
reacts with carbon dioxide to form part of the methane produced in the process. On
the other hand, acetate ions react to form methane.

Today, the most common AD approach includes four steps: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. Each step is mediated by a specific
group of microorganisms (Batstone et al. 2006; Calusinska et al. 2018; Nakasaki
et al. 2019). In hydrolysis, complex particulate biomolecules are degraded to mono-
saccharides, long-chain fatty acids (LCFA), and amino acids. Hydrolysis is exoge-
nous and occurs from enzymes excreted by hydrolytic-fermentative bacteria.
Subsequently, in the acidogenic step, monosaccharides and amino acids are
transformed into propionic, butyric, and valeric acids and, to a lesser extent, into
glycerol, ethanol, and methanol. In the acetogenic step, monosaccharides, amino
acids, LCFA, and volatile fatty acids (VFA) are transformed into acetic acid, carbon
dioxide, and hydrogen. In the methane-producing steps, acetic acid is transformed to
methane by a group of methanogenic archaea called acetoclastic methanogens, while
hydrogenotrophic methanogens produce methane from carbon dioxide and hydro-
gen (Batstone et al. 2006; Silva and De Bortoli 2020).

14.2.2 Effect of Waste Composition on the Anaerobic Process

Several substrates are used as organic matter source for the anaerobic process. Most
of them are waste streams from different anthropogenic activities. Table 14.1 sum-
marizes the main characteristics of different substrates in order to illustrate their
diversity. The classification of these wastes depends on their origin and composition.
On the one hand, according to Chen et al. (2008), waste can be classified according
to their origin, including:

1. Municipal wastes: These are generated in the urban sector from domestic,
commercial, and service activities. Anaerobic treatment of these residuals usually
includes stages of separation of the inorganic and organic fraction. Two major
groups are distinguished: municipal wastewater and organic fraction of municipal
solid waste (OFMSW).

2. Agricultural wastes: These are generated in rural sectors; in some cases, the
generation points are far from each other, so the most common practices are
on-site treatment. They are divided into animal waste and crop residues.

3. Industrial wastes: This group includes waste from agro-industries and chemical
industries. Food industry wastes receive the most attention.

On the other hand, the amount and rate of methane production are influenced by
the substrate empirical formula (i.e., content of carbon, hydrogen, oxygen, and
nitrogen) and the molecular structure of the organic matter. Rasapoor et al. (2020)
proposed a classification based on the waste composition:
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1. Protein-rich residues include meat, bones, blood waste from slaughterhouse, food
industry (Astals et al. 2014; Pagés-Díaz et al. 2014), swine and chicken manure
(Kafle and Chen 2016). In anaerobic degradation of proteins, NH3 is obtained as
an intermediate product. Ammonia is used for cell growth, but high concentration
can lead to process inhibition (Rasapoor et al. 2020).

2. Carbohydrate-rich wastes such as fruits, vegetables (Cai et al. 2019; Labatut et al.
2011; Pagés-Díaz et al. 2014), food waste (Labatut et al. 2011; Pagés-Díaz et al.
2014; Pagliaccia et al. 2019), and mixed rumen and paunch from slaughterhouse
waste (Astals et al. 2014; Pagés-Díaz et al. 2014). Cai et al. (2019) characterized
the carbohydrates from residue samples in correspondence of their nature: struc-
tural (lignin, cellulose, and hemicellulose) and nonstructural (soluble sugars).
Structural carbohydrates are found in cell walls in leaves, stems, some vegetables,
and fruits, as well as in manure fibers.

3. Lipid-rich organic matter includes waste from the oil processing industry, food
waste (Labatut et al. 2011), dissolved air flotation fat sludge (Astals et al. 2014),
and municipal wastewaters Nakasaki et al. (2019). Nakasaki et al. (2019) indi-
cated that microorganisms and their enzymes can actively degrade the water-
soluble fraction, but the low solubility of fats limits their degradation. Lipid-rich
wastes during the hydrolysis step produce long-chain fatty acids (LCFA) which
are inhibitory to AD at different degrees. The principal stages affected by the
presence of LCFA are acetogenesis and methanogenesis. LCFA disrupt mem-
brane functionality as they are adsorbed into the cell (Ohemeng-Ntiamoah and
Datta 2018). Rodriguez-Mendez et al. (2017) proposed two indicators to prevent
inhibition: LCFA dynamics and LCFA/VSbiomass ratio. Those control parameters
were useful to predict and estimate the process inhibition degree.

It is common to find lipid-rich waste with high content of protein. Microbial
behavior is similar due to the complexity of the hydrolysis stage due to the trans-
formation of both components. Nakasaki et al. (2019) found Methanosaeta as the
most dominant archaea in lipid-rich substrate, while Ning et al. (2018) found
Methanospirillum as the predominant methanogenic archaea. Studies developed by
Zhu et al. (2019) demonstrated that LCFA strongly inhibit acetoclastic methanogens
promoting methane formation from the hydrogenotrophic pathway.

Substrate chemical characterization is necessary to evaluate the performance in
anaerobic digestion processes. Some basic parameters for substrate characterization
are chemical oxygen demand (COD), total solids (TS), and volatile solids (VS),
which are used to estimate substrate degradability. More detailed research analyzed
the content of carbohydrates, proteins, and lipids to estimate the amount of methane
to be produced and elemental analyses to identify imbalances in the supply of carbon
and nitrogen in the medium. Some common practices are to present the character-
izations based on COD, total solids, or, in the case of liquid residues, the mass
concentration.

Factors such as temperature, pH, and acclimatization of the inoculum to the
substrate can influence the behavior of the microbial community involved (Chen
et al. 2008). According to Astals et al. (2015), in an AD reactor, failures occur due to
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(1) inhibitions (reversible effects, cause the decrease in microbiological function)
and (2) toxicity (biocidal effect in microbiological communities, generally irrevers-
ible but not necessarily fatal). These effects are the product of the accumulation of
substances: (1) generated in the biological pathway (LCFA, ammonia, and sulfide),
(2) specific to the composition of the substrate (light metals, heavy metals,
chlorophenols, halogenated aliphatics, and lignin), and (3) contaminants added to
the substrate (nanoparticles, pharmaceuticals and personal care products, surfactants,
microplastics, coagulants, and flocculants).

In terms of the process, the substrate composition is crucial for biogas production
and rate. Both response variables depend on the relative richness of lipids (yield
related) and proteins (rate related) (Lee et al. 2020). In the case of carbohydrate-rich
waste, Firmicutes and Proteobacteria are widely distributed due to the ability to
transform macromolecules in acidic media as the findings reported by Satpathy et al.
(2015), Zhao et al. (2017), and Li et al. (2019), among others. Mixing several wastes
to compensate substrate deficiencies (a process known as anaerobic co-digestion)
stands as a feasible option to reach higher methane yields (Pagés-Díaz et al. 2014).
The literature mentions that mixtures of substrates can have synergistic or antago-
nistic effects on methane production (Abudi et al. 2020; Astals et al. 2014; Li et al.
2018a, b; Pagés-Díaz et al. 2014). On the other hand, stimulation from different
sources has increased both methane yield and rate in more than 20% as proven by
González-Suárez et al. (2018) and Xu et al. (2020). As far as we know, the better
environmental conditions might be created to control and optimize the bioprocess.
This reinforces the complexity of modeling AD in which minor changes in opera-
tional parameters or substrate composition swift the microbial community with
relative important changes in response variables.

14.3 Modeling the Anaerobic Biodegradation of Residues

14.3.1 Stoichiometric Models

The literature reflects a great diversity of mathematical models for predicting AD
behavior. Symons and Buswell (1933) proposed an empirical oxide-reduction reac-
tion for the DA of carbohydrates in the presence of water, which were transformed to
carbon dioxide and methane:

CaHbOc þ a� b
4
� c
2

� �
H2O ! a

2
� b
8
þ c
4

� �
CO2 þ a

2
þ b
8
� c
4

� �
CH4 ð14:1Þ

This model was an approach to the estimation of methane production with an
estimation uncertainty of close to 5% in substrates such as dextrose, lactose, maltose,
and sucrose, among others (Buswell and Mueller 1952; Symons and Buswell 1933).
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This stoichiometric model involved a two-step reaction, the first to transform organic
molecules to organic acids and the second to form methane.

The model did not consider factors such as growth of microorganisms, time,
temperature, or inhibitory conditions. Buswell and Mueller (1952) reaffirmed the
model (Eq. (14.1)) and defined that the estimates made were valid for the mesophilic
and thermophilic regimes, in addition to ensuring that the variations in the experi-
mental and theoretical results were due to causes such as (1) H2 gas production,
(2) the presence of structural carbohydrates such as cellulose and lignocellulose,
(3) the variation of pH in the reactors, and (4) concentrations of inhibitory agents.
Equation (14.1) adopted the name of Buswell’s formula; it was the beginning of the
development of other models. From this point on, the mathematical modeling of
anaerobic digestion has pursued three objectives: (1) characterizing the steps of AD,
(2) evaluating the kinetics of the process, and (3) describing the interactions between
the biochemical, chemical, and physical processes.

Labatut et al. (2011) used the Buswell formula to predict the theoretical methane
yield (B0-Theo) of food residues, manure, invasive aquatic plants, switchgrass, and
various liquid residues, in addition to testing mixtures of excreta with part of the
evaluated residuals. Experimental methane yields were estimated as the total volume
of methane produced during digestion divided by the amount of volatile solids in the
substrate initially added. The results of the comparison showed that the Buswell
formula overestimates the methane yield, since the model does not consider the
substrate biodegradable fraction. To fit the Buswell’s formula, Labatut et al. (2011)
defined the biodegradable fraction ( fD) as:

f D ¼ CODD

CODT
ð14:2Þ

This expression considers the degradable chemical oxygen demand (CODD) from
the experimental methane yield and the proposed ratio of 1 g of chemical oxygen
demand for each 350 mL of CH4 produced under standard conditions of pressure and
temperature (1 atm and 0 �C). The term CODT refers to the total chemical oxygen
demand of the substrate, which can be determined analytically, or can also be
calculated by means of the elemental composition or the macromolecular composi-
tion. From the correction of the theoretical yields, the behavior of the results reflected
that the Buswell formula reports theoretical performance values of methane close to
the theoretical ones, with an error of close to 10%.

The Buswell’s formula is widely used in determining the theoretical methane
yield. To simplify the stoichiometric model, the expression used is:

B0Theo NmL CH4 gVS
�1

� � ¼ 4aþ b� 2cð Þ22400
12aþ bþ 16cð Þ8 ð14:3Þ

Achinas and Euverink (2016), Adghim et al. (2020), Contreras et al. (2012),
Pagés-Díaz et al. (2014), and Raposo et al. (2011) implemented the Buswell’s
formula to evaluate the biodegradability of various substrates as starch, cellulose,
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gelatin, agricultural residuals, livestock waste, poultry, and piggery. In addition to
the modification proposed by Labatut et al. (2011), the literature reports other
modifications such as:

1. Modified Buswell’s formula: This modification allows the prediction of the
methane yield from substrates that contain proteins. The expressions representing
the stoichiometric equation and the methane yield are (Contreras et al. 2012;
Lubken et al. 2010):

CaHbOcNd þ a� b
4
� c
2
þ 3d

4

� �
H2O

! a
2
� b
8
þ c
4
þ 3d

8

� �
CO2 þ a

2
þ b
8
� c
4
� 3d

4

� �
CH4 þ dNH3 ð14:4Þ

B0Theo NmL CH4 gVS
�1

� � ¼ 4aþ b� 2c� 3dð Þ22400
12aþ bþ 16cþ 14dð Þ8 ð14:5Þ

2. Boyle’s equation: This modification includes the estimation of H2S from the
stoichiometric reaction (Deublein and Steinhauser 2008) and the theoretical
methane yield (Frigon and Guiot 2010; Raposo et al. 2011):

CaHbOcNdSe þ 4a� b� 2cþ 3d þ 2eð Þ
4

H2O

! 4aþ b� 2c� 3d � 2eð Þ
8

CH4

þ a� 4aþ b� 2c� 3d � 2eð Þ
8

� �
CO2 þ dNH3 þ eH2S ð14:6Þ

B0Theo NmL CH4 gVS
�1

� � ¼ 4aþ b� 2c� 3d � 2eð Þ22400
12aþ bþ 16cþ 14d þ 32eð Þ 8 ð14:7Þ

3. Pererva’s modification: This modification includes phosphorus and metals in the
composition of organic matter. Stoichiometric reaction and performance are
(Pererva et al. 2020a):
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CaHbOcNdSeP fMeg þ 4a� b� 2cþ 3d þ 2eþ 11f þ 3g v
4

� �
H2O

! 4aþ b� 2c� 3d � 2eþ 5f þ g v
8

� �
CH4

þ 4a� bþ 2cþ 3d þ 2e� 5f � g v
8

� �
CO2 þ dNH3 þ eH2S

þ f H3PO4 þ g Me OHð Þv ð14:8Þ

B0Theo NmL CH4 gVS
�1

� � ¼ 4aþ b� 2c� 3d � 2eþ 5f þ g vð Þ 22400
12aþ bþ 16cþ 14d þ 32eþ 30:9f þM Með Þ gð Þ 8

ð14:9Þ

14.3.2 Kinetic Models

Kinetic models are characterized by representing DA by means of nonlinear expres-
sions as a function of time. According to Echiegu (2015), the kinetic models can be
classified as microbial growth and kinetic models of methane production or cumu-
lative reduction of the organic fraction.

14.3.2.1 Microbial Growth Models

Contois (1959) identified how the specific growth rate of microorganisms in a DA
reactor is related to the concentration of nutrients as well as population density. The
relationship between the consumption of the limiting nutrient and the population
density was represented by means of a linear expression:

c S0 � Sð Þ ¼ P� P0ð Þ ð14:10Þ

The coefficient c is the yield of the process [organisms mL�1 mM�1]; S is the
concentration of the limiting substrate [mM]; P is the population density; finally, the
subscript 0 designates the initial values. For the estimation of the specific growth rate
(R) [h�1], Contois used a non-steady-state mass balance of population density:

dP
dt

¼ RP� DP ð14:11Þ

where D is the dilution factor in the medium [h�1]. Contois (1959) evaluated
expression Eq. (14.11) for a continuous reactor under steady-state conditions and

368 R. J. Baquerizo-Crespo et al.



deduced from the Monod equation a relationship between the growth rate and the
concentration of the limiting nutrient:

D ¼ R ¼ RmSe
Aþ Se

ð14:12Þ

where Rm [h�1], A [mM], and Se [mM] are the maximum growth rate, the concen-
tration of the limiting nutrient when R is ½ Rm, and the concentration of the limiting
nutrient in equilibrium, respectively. McCarty and Mosey (1991) present the Contois
model as:

� dS
dt

¼ kXS
aS0 þ Sð Þ ¼

kXS
Ks þ Sð Þ ð14:13Þ

As observed in Eq. (14.13), aS0 is related to the Monod kinetic constant (Ks)
[mM], k is the growth rate [h�1], and X is the concentration of the microorganism
[organisms mL�1]. In addition, the Monod performance equation is implemented in
two ways. The first is for the growth of microorganisms, in which the maintenance
constant (m) [h�1] is presented:

dX
dt

¼ Y
dS
dt

� mX ð14:14Þ

where Y is the growth yield coefficient [mMmM�1]. The second is for the cell decay
stage, with its respective constant (b) [h�1]:

dX
dt

¼ Y
dS
dt

� bX ð14:15Þ

Both cases present equations with similar structures; these differ in the interpre-
tation of b and m. These constants in high-load reactors are ignored, as well as for
methanogens, which have low maintenance and decay coefficients. Lawrence and
McCarty (1969) implemented the model for steady-state reactors and concluded that
the reciprocal of biological solids retention time (θc) [h] relates to the specific net rate
of growth (μ) [h�1]:

1
θc

¼ 1
X
dX
dt

¼ μ ¼ akS
Ks þ S

� b ð14:16Þ

The behaviors of microbial communities in anaerobic reactors are diverse, for
which other models have been developed to describe the system. Some models have
been presented to evaluate the microbial growth rate (μ), the substrate variation dS

dt

� 	
,

and the concentration of the substrate (S). Echiegu (2015), Öktem (2019), and
Pavlostathis and Giraldo-Gomez (1991) summarize some models of microbial
growth kinetics and substrate consumption:
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1. First-order model:

μ ¼ kS
S0 � S

� b ð14:17Þ

� dS
dt

¼ kS ð14:18Þ

S ¼ S0
1þ kθc

ð14:19Þ

2. Monod model:

μ ¼ μmaxS
Ks þ S

� b ð14:20Þ

� dS
dt

¼ μmaxXS
Y Ks þ Sð Þ ð14:21Þ

S ¼ Ks 1þ bθcð Þ
θc μmax � bð Þ � 1

ð14:22Þ

where μmax is the maximum rate of microbial growth [h�1].

3. Contois model:

μ ¼ μmS
BX þ S

� b ð14:23Þ

� dS
dt

¼ μmXS
Y BX þ Sð Þ ð14:24Þ

S ¼ B Y S0 1þ bθcð Þ
B Y 1þ bθcð Þ þ θc μm � bð Þ � 1

ð14:25Þ

4. Grau model:

μ ¼ μmaxS
S0

� b ð14:26Þ

� dS
dt

¼ μmaxXS
YS0

ð14:27Þ

S ¼ S0 1þ bθcð Þ
μmaxθc

ð14:28Þ
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5. Chen and Hashimoto model:

μ ¼ μmaxS
KS0 þ 1� Kð ÞS� b ð14:29Þ

� dS
dt

¼ μmaxXS
KX þ YS

ð14:30Þ

S ¼ K S0 1þ bθcð Þ
K � 1ð Þ 1þ bθcð Þ þ μmaxθc

ð14:31Þ

Microbial activity can be affected; in this sense, models have been developed to
study factors such as temperature as well as inhibitions. Lawrence and McCarty
(1969) related Ks to the fermentation temperature, with an expression similar to the
Arrhenius equation:

log
Ksð Þ2
Ksð Þ1

¼ 6980
1
T2

� 1
T1

� �
ð14:32Þ

Echiegu (2015) indicated that a more accepted alternative to estimate the effect of
temperature on reaction speed is the van’t Hoff relationship:

rT ¼ ro T
T�T0ð Þ
a ð14:33Þ

where rT can be either μ or k, at an operating temperature (T ); r0 is defined at a
reference temperature (T0), usually of 20 �C; and Ta is the temperature activity
coefficient.

McCarty and Mosey (1991) studied the influence of pH on AD and proposed an
inhibition factor (Ki) and a pH inhibition function (ipH):

� dS
dt

¼ k Ki XS
aS0 þ Sð Þ ð14:34Þ

dX
dt

¼ Y
dS
dt

� ipHbX ð14:35Þ

The inhibition factor (Ki) has been implemented in various expressions to esti-
mate the microbial growth rate in the presence of recalcitrant agents. One of the most
recurrent expressions is the Haldane equation, which is a direct modification of the
Monod equation. Haldane equation and other modifications are presented by (Kul
and Nuhoğlu 2020; Li et al. 2020; Pishgar 2011; Priya et al. 2018):

1. Haldane equation:
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μ ¼ μmax S

Ks þ Sþ S2

Ki


 � ð14:36Þ

2. Aiba equation:

μ ¼
μmax S exp � S

Ki


 �
Ks þ S

ð14:37Þ

3. Yano and Koga equation:

μ ¼ μmax S

Ks þ Sþ S2

Ki

 !
� S3

Ki KYK

� �
ð14:38Þ

4. Tseng equation:

μ ¼ μmax
S
Ks

þ S

� �� �
� Ki S� Smð Þð Þ ð14:39Þ

where Sm is the concentration of the recalcitrant agent for which the system has no
inhibition [mg L�1] and KYK is an adjustment positive constant of the Yano and
Koga equation. Table 14.2 presents expressions for pH inhibition (ipH) (Astals et al.
2014; Batstone et al. 2002; Rosén and Jeppsson 2006):

Table 14.2 Inhibition expressions

Noncompetitive inhibition Hydrogen, free ammonia, propionate, butyrate, valerate,
LCFAi ¼ 1

1þSI
KI

(14.40)

Empirical Any pH range
Low pH range

ipH ¼ 1þ 2x100:5 pHLL�pHULð Þ

1þ 10 pH�pHULð Þ þ 10 pHLL�pHð Þ

ipH ¼ e
�3

pH�pHUL
pHUL�pHLL


 �2
� �

(14.41)

Hill inhibition function Amino acids, acetic acid, hydrogen

i ¼ Kni
pH

SniHþ þ Kni
pH

Kn ¼ 10�
pHLLþpHUL

2

ni ¼ 3
pHUL,i � pHLL,i

(14.42)
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14.3.2.2 Production, Yield, and Cumulative Reduction Kinetics
of the Organic Fraction

According to Husain (1998), the complete mathematical treatment of the DA process
requires the simultaneous solution of material balance equations for each individual
substrate and microbiological population. Due to the complexity of microbiological
processes, part of the efforts has focused on the study of methane production as well
as the reduction of organic components. Brulé et al. (2014) describe the organic
matter consumption by means of a first-order reaction model:

dSt
dt

� �
¼ �k St ð14:43Þ

where k is the first-order kinetic constant [d�1] and St is the organic substrate
concentration over the time [g L�1]. The negative sign stands for the consumption
of organic matter. When applying the separation of variables, the integral expression
is:

Z St

S0

dSt
St

¼ �k

Z t f¼t

t0¼0
dt ð14:44Þ

The solution of the definite integral is:

St ¼ S e�kt ð14:45Þ

Brulé et al. (2014) explain that by rearranging terms Eq. (14.45) can be expressed
in relation to the products formed (B):

B ¼ B0 1� e�kt
� 	 ð14:46Þ

where B represents the variable on which the system is evaluated; this can be
(1) methane yield [NmL gVS�1] or [NmL gCOD�1]; (2) methane production
[mL] or [L]; or cumulative reduction of organic compounds (e.g., volatile solids,
lipid, carbohydrates, and protein reduction) over the time [d]; B0 is the maximum
value of B. The literature reports the use of the first-order kinetic model and other
expressions such as modified Gompertz model, Cone model, Fitzhugh model, and
transfer function. Table 14.3 presents these models of great relevance in the kinetic
study.where k is the first-order kinetic constant of the process [d�1], λ is the lag time
phase [d�1], and n is a shape factor. The literature explores other models that are
used much less frequently. Some models are based on the mathematical structure of
microbial growth rate models such as Monod as well as Chen and Hashimoto.
Another part of these models are empirical modifications to the first-order model.
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Pererva et al. (2020b), who reviewed existing empirical kinetic models, identified
19 kinetic models (including the models in Table 14.3).

The kinetic study of an AD system allows predicting the behavior of an anaerobic
digester against variations in the concentration of substrates, organic loads, varia-
tions in pH, temperature, and other operating conditions. Therefore, the proper
selection of the model is a rigorous task. The various investigations report statisti-
cians for the selection of a model, among which are coefficient of determination
(R2), model efficiency (ME), sum of absolute errors (SAE), sum of squared errors
(SSE), root-mean-square error (RMSE), average relative error (ARE), hybrid frac-
tional error function (HYBRID), Marquardt’s percentage standard deviation
(MPSD), Akaike’s information criterion (AIC), and corrected Akaike’s information
criterion (AICc). These error function can be classified in four groups: (1) percentual
or fractional indicators of approach to the trends of the experimental data, (2) model
errors, (3) error deviation, and (4) model comparison criteria. Table 14.4 shows the
relationship between the groups of statisticians and the objectives pursued by the
optimization of each statistician.where Bmodel, i is the model evaluated in the ith
point, Bexp is the ith experimental value, N is the number of data points, and p is the
number of adjusted parameters in the model. Table 14.4 shows that the objective to
which each model is oriented is different. R2 and ME present values between 0 and
1. A value close to 1 is an indicator of the best fit of the model. SAE, SSE, and ARE
explain the differences between models by quantifying the absolute distance
between each point of the model and the experimental data. The values of these
error functions are positive, and their proximity to zero is the indicator of a smaller
error and, therefore, a better fit of the model. SAE, SSE, and ARE explain the
differences between models by quantifying the absolute distance between each point
of the model and the experimental data. The values of these statisticians are positive,

Table 14.3 Most frequently used models to describe methane yield kinetics

Modified Gompertz
model

B ¼ B0 eð�e�
e μm ðt�λÞ

B0
þ1Þ

(14.47)

Abudi et al. (2020), Andriamanohiarisoamanana et al. (2017), Astals
et al. (2014), Bedoić et al. (2020), Benabdallah El Hadj et al. (2009),
Bohutskyi et al. (2018), Buendía et al. (2009), Cai et al. (2019),
Chatterjee et al. (2017), Das Ghatak and Mahanta (2017), Dennehy
et al. (2016), Dumitrel et al. (2017), Gallipoli et al. (2020), Güngören
Madenoğlu et al. (2019), Iqbal Syaichurrozi and Sumardiono (2014),
Jijai and Siripatana (2017), Kafle and Chen (2016), Koch et al. (2019),
Li et al. (2018a, b), Maamri and Amrani (2019), and Zhen et al. (2016)

Cone model
B ¼ B0

1þ ktð Þ�n (14.48)
Abudi et al. (2020), Achinas and Euverink (2019), Bedoić et al.
(2020), Cai et al. (2019), Güngören Madenoğlu et al. (2019), Li et al.
(2018a), and Zhen et al. (2016)

Fitzhugh model
B ¼ B0(1 � e�kt)n

(14.49)

Cai et al. (2019), Contreras et al. (2012), and Li et al. (2018a)

Transfer function

B ¼ B0ð1� e�
μm ðt�λÞ
Ymax Þ
(14.50)

Abudi et al. (2020), Bohutskyi et al. (2018), Gallipoli et al. (2020), and
Li et al. (2018a)
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and their proximity to zero is the indicator of a smaller error and therefore a better fit
of the model. RMSE, MPSD, and HYBRID quantify the dispersion of the errors and,
as in the previous case, values close to zero indicate a good fit. Finally, AIC and
AICc are alternative methods used for model comparison, in which the change of
goodness of fit of the model is balanced by the number of model parameters, in
addition to comparing nested and non-nested models. According to Donoso-Bravo
et al. (2011), model selection is a delicate task due to the parameter identification
dependence on experimental information. The literature related to AD does not
present a consensus regarding the use of statistical criteria. Table 14.5 identifies
the expressions used in various investigations, relates the applied models, and
identifies the statistics used.

Table 14.5 indicates that the first-order kinetic model and the modified Gompertz
model are the most used expressions to describe these processes. The first-order
kinetic model is the simplest model to interpret, adjust, and apply to any chemical,
biological, or physical process. On the other hand, the modified Gompertz model is

Table 14.4 Goodness of fit parameters

Group Expression Objective

(i)

R2 ¼
PN
i¼1

ðBmodel,i�Bexp,iÞ2PN
i¼1

½ðBexp,i� �BexpÞ2þðBmodel,i� �BexpÞ2 �
(14.51)

R2 � 1

ME ¼
PN
i¼1

ðBexp,i� �BexpÞ2�
PN
i¼1

ðBmod,i�Bexp,iÞ2PN
i¼1

ðBexp,i� �BexpÞ2
(14.52)

ME � 1

(ii)
SAE ¼PN

i¼1
Bmodel � Bexp

�� ��
i
(14.53)

SAE � 0

SSE ¼PN
i¼1

Bmodel � Bexp

� 	2
i
(14.54)

SSE � 0

ARE ¼ 100
N

PN
i¼1

j ðBmodel,i�Bexp,iÞ2
Bexp,i

j (14.55) ARE � 0

(iii)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Bmodel,i�Bexp ,ið Þ2
N

s
(14.56)

RMSE � 0

MPSD ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�p

PN
i¼1

½ðBmodel,i�Bexp,iÞ
Bexp,i

�2
s

(14.57)
MPSD � 0

HYBRID ¼ 100
N�p

PN
i¼1

½ðBmodel,i�Bexp,iÞ2
Bexp,i

� (14.58) HYBRID � 0

(iv)

AIC ¼ Nln

�PN
i¼1

ðBmodel,i�Bexp,iÞ2

N

�
þ 2ðpþ 1Þ (14.59)

Minimization

AICc ¼ Nln

�PN
i¼1

ðBmodel,i�Bexp,iÞ2

N

�
þ 2ðpþ 1Þ þ 2ðpþ1Þðpþ2Þ

N�p (14.60)

Minimization
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used in conditions for which the inoculum supplied to the medium presents a delay
due to substrate adaptation.

It is also observed that R2 is commonly used to describe goodness of fit in the
kinetic models. Spiess and Neumeyer (2010) indicate that R2 is the measure in which
the variance of the data is explained by a linear fit, so its use as a measure of the
goodness of fit in nonlinear models is a common error.

Nash and Sutcliffe (1970) developed the ME error function, which is a derivation
from R2, but the interval in which is bigger (�1 to 1). In addition, the interpretation
is different: (1) a value of 1 indicates the best fit and (2) a value of zero indicates that
the model is as good as using the mean of the observations. Values above 0.8 ensure
the fit of the models.

Table 14.5 Statistical criteria used in model evaluation. First-order kinetic (FO), modified
Gompertz (MG), Cone (CM), Fitzhugh (FM), transfer function (TF)

Reference FO MG CM FM TF Statistical criteria

Abudi et al. (2020) x x x x RMSE; R2; AIC

Achinas and Euverink (2019) x x RMSE; R2

Astals et al. (2014) x SSE

Andriamanohiarisoamanana
et al. (2017)

x x R2

Bedoić et al. (2020) x x x RMSE

Bohutskyi et al. (2018) x x x RMSE; R2

Buendía et al. (2009) x R2

Cai et al. (2019) x x x x R2

Contreras et al. (2012) x x R2

Chatterjee et al. (2017) x x SSE; SAE; ARE; HYBRID;
MPSD; R2

Da Silva et al. (2018) x R2

Das Ghatak and Mahanta (2017) x R2

Dennehy et al. (2016) x x RMSE; R2

Du et al. (2019) x R2

Dumitrel et al. (2017) x RMSE; R2

Gallipoli et al. (2020) x x x R2

Güngören Madenoğlu et al.
(2019)

x x R2

Iqbal Syaichurrozi and
Sumardiono (2014)

x x R2

Jijai and Siripatana (2017) x R2

Kafle and Chen (2016) x x RMSE; R2

Koch et al. (2019) x x ME

Li et al. (2018b) x x RMSE; R2

Li et al. (2018a) x x x x x RMSE; R2; AICc

Maamri and Amrani (2019) x SE; R2

Pagés Diaz et al. (2011) x R2

Zhen et al. (2016) x x x RSS; RMSE; R2; AIC
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The SAE, SEE, ARE, and RMSE criteria do not evaluate the number of param-
eters in the models, so two or more models could coincide; in this case, the selection
will depend on the variability of the errors. HYBRID and MPSD consider in the
denominators a term for the ith observation, so in the case of measurements at the
initial time for which the values are zero, the model is indeterminate.

Akaike (1974) indicates that the AIC logarithmic probability term decreases the
gaps between the experimental data and the models. Abudi et al. (2020) and Pererva
et al. (2020b) consider the use of AIC pertinent, given that the probability that the
selected model is the best increases as the AIC values are lower.

A common practice in fitting kinetic models is the use of only one or two
statisticians in the analysis. To increase reliability in model assessment is necessary
to implement combined goodness of fit criteria. Within the model selection strategy,
the graphic analysis of the residuals must be considered since this allows us to easily
identify if the model generates random errors or if, on the contrary, they describe
trends.

14.3.3 Dynamic Models

A dynamic model considers changes in one or more dependent variables in relation
to time. The general formulation of these models considers macroscopic mass
balance:

dmi

dt
¼ �Δ ρvsð Þ þWm

i þ riV tot ð14:61Þ

where dmi/dt is the accumulation of an i component, in a defined control volume;
�Δ(ρ v s) is the mass flow differential between control volume limits; Wi

m repre-
sents mass transfer processes; ri is the kinetic law; and Vtot is the reactant system
volume. These models can represent processes in steady or non-steady states, in
which the boundary limits correspond to the inputs and outputs of the reacting
system. The terms for reactive processes in Eq. (14.61) are supported by the
expressions of kinetic models.

In these models, the interactions between various components and processes are
related. One of the dynamic models that stands out the most is the anaerobic
digestion model 1 (ADM1) created by Batstone et al. (2000), which served as a
baseline for other dynamic models. The ADM1 is a macroscopic mass balance
model, which takes into account biochemical conversion processes (kinetics of
microbial growth and digestion), as well as physicochemical conversion of mass
transfer processes. According to Batstone et al. (2000), for the creation of ADM1,
kinetic models were taken into account for the degradation of substrates that consider
the substrate and biomass concentrations, as well as including inhibitions by hydro-
gen and pH. Enzymatic conversion processes are considered, which are carried out
by means of soluble enzymes produced by the bacterial group that directly uses the
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associated substrate. Enzyme production is directly related to the growth rate of the
specific bacterial group and can be inhibited by the concentration of soluble sub-
strate. The kinetic equations implemented in ADM1 are divided according to the
process. Table 14.6 presents the general expressions for biological, physical, and
chemical processes.

ADM1 has been widely implemented for the prediction of AD substrate, product,
and by-product concentrations. Jeong et al. (2005) implemented genetic algorithms
to estimate the model parameters. Thus demonstrating that the results of methane
concentration by simulation fit the experimental data, although the concentrations of
acetic and propionic acid presented deviations between the calculated and experi-
mental data. Rosén and Jeppsson (2006) implemented the ADM1 model, with 110
equations and complex characterization of inocula and substrates required to model
the digesters’ start-up. Modifications have been made to the kinetic equations of
ADM1 for simulation with various types of substrates including municipal, agricul-
tural, and excreta solid waste (Zhao et al. 2018).

Batstone et al. (2006) indicated that ADM1 is a model that can be adapted to the
study conditions of anaerobic digestion reactors. Some modifications have been
made to ADM1, among which are:

1. Trace elements: Frunzo et al. (2019) evaluated the addition of trace elements in
the AD. They considered dissolution processes for metal ions, sulfur, and phos-
phorus that influence biological processes due to consumption and the inhibition
or stimulation effects of the process. Other physical and chemical processes
considered were precipitation, complexation, metal sorption, and hydrogen sul-
fide mass transfer.

2. Phosphorus, sulfur, and iron: Flores-Alsina et al. (2016) modeled three extensions
that considered processes related to phosphorus, sulfur, and iron. In the first
extension, they added terms related to phosphorus consumption and its impact
on the production of valerate, butyrate, propionate, and acetate. In the second
extension, they evaluated the reduction of sulfate to sulfide from two pathways.
The first pathway considered a single group of reducing sulfate microorganisms
with H2 consumption as electron donor. In the second pathway, multiple electron

Table 14.6 Biological, physical, and chemical processes in ADM1

Process (number of species involved) Kinetic model

Disintegration of complex material and hydro-
lysis (4)

ri ¼ kdis, i Xi (14.62)

Acidogenesis (3) ri ¼ km,i
Si

KS,iþSi
Xi Ii (14.63)

Acetogenesis (2) ri ¼ km,product
Si

KS,productþSi
Xproduct

Si
S jþSiþ1e�6 Ii

(14.64)

Methanogenesis (3) ri ¼ km,i
Si

KS,iþSi
Xi Ii (14.65)

Cell decay (7) ri ¼ kdec,Xi Xi (14.66)

Acid base dissociation (6) rA, i ¼ kAB, i(Si�(Ka, i + SH+) � Ka, iSi) (14.67)

Gas transfer (3) rT, i ¼ kLa(Si � KH, iPgas, i) (14.68)
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donors were considered (H2, valerate, butyrate, propionate, and acetate). The
third extension evaluated the transformation of Fe(III) to Fe(II), using H2 and
sulfide as electron donors; this also estimates the precipitation rate of iron sulfide
(FeS) as well as phosphates of iron (FePO4 and Fe3(PO4)2).

3. Propionate degradation pathway: Uhlenhut et al. (2018) used ADM1 as a basis
for comparison against a previously established extension (ADM1xp). This mod-
ification considered the fraction of inert decay products, through the evaluation of
a cell death factor. From this comparison, the authors proposed an original
extension called ADM1xpro. In this extension, the term referring to the
propionate-oxidizing microorganisms was divided into three terms for a
tri-culture media. Also, the researchers tested two propionate bioconversion
paths. The first path considered the transformation of propionate into butyrate,
and later into H2 and acetate. The second path proposed the direct reaction of
propionate into H2, acetate, CH4, and CO2.

4. Free ammonia inhibition: Bai et al. (2017) implemented ADM1 and compared
three free ammonia inhibition models: simple inhibition, Monod, and
non-inhibition forms as established in Table 14.2.

According to Li et al. (2014), the most common parameters for the characteriza-
tion of DA processes are pH, volatile fatty acids, alkalinity, biogas production, as
well as the variation of total and volatile solids. Another modifications to ADM1 that
allow working the model with kinetic parameters related to conventional character-
izations in total, volatile, and suspended solids, in addition to carbohydrates, lipids,
proteins, inerts, and elemental analysis (Zhao et al. 2018). The results obtained in
this modification are adjusted to the experimental data (R2 between 0.991 and
0.993), despite the fact that they only adjusted 5 of the 18 kinetic parameters
proposed by Batstone et al. (2000).

Kythreotou et al. (2014) and Aceves-Lara et al. (2005) agree that the predictive
capabilities of a model, such as ADM1, will be reduced due to parameters that have
not been correctly estimated, even when the model’s structure is relevant. Wichern
et al. (2008) indicate that the results obtained using ADM1 may vary due to the fact
that there are parameters such as the fractions of particulate materials and carbohy-
drates that have a strong impact on model outputs.

14.4 Co-digestion

Estimating methane production in anaerobic co-digestion represents a challenge due
to the synergistic and antagonistic effects from substrate interaction. The usual
practices reported in the literature for the evaluation of co-digestion mixtures
include:

1. Comparison of the experimental methane yields of the co-substrates against the
substrates individually
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2. Analysis of the variation of the kinetic constants of the co-substrates with respect
to the mono-substrates

To evaluate co-substrate methane yield, it is necessary to apply a mixture design
of experiments. The complexity of the design of experiments depends on the
objective of the study and the complexity of the substrate. To estimate whether or
not the co-substrates have synergistic or antagonistic effects, a single mixture would
suffice. However, a larger number is typically required to build up evidence. In the
case of optimization, efforts should be made to identify every possible interaction
between the substrates.

Below are the experimental designs from three experiences reported in the
literature. Abudi et al. (2020) evaluated the anaerobic digestion of mango leaves
and pig manure, which reported yields of 157 and 281 mL gVS�1, respectively,
subsequently performed binary mixtures in volatile solids ratios of 75:25, 50:50,
25:75. Pagés-Díaz et al. (2014) report methane yield from slaughterhouse waste
(SW) (609 mL gVS�1), mixed manure (MM) (384 mL gVS�1), mixed crop residues
(CR) (422 mL gVS�1), and OFMSW (533 mL gVS�1), from which they consider
the TS and make binary mixtures (50:50), ternary (33.33:33.33:33.33), and

Table 14.7 Substrate mixture experiment designs

No. ML PM Experimental methane yield
(mL gVS�1)

Abudi et al. (2020)

1 75 25 340

2 50 50 375

3 25 75 465

No. SW MM CR OFMSW Experimental methane yield
(mL gVS�1)

Pagés-Díaz et al.
(2014)

4 50 50 0 0 613

5 0 50 50 0 432

6 0 0 50 50 470

7 50 0 50 0 461

8 0 50 0 50 461

9 50 0 0 50 647

10 33.33 33.33 33.33 0 622

11 0 33.33 33.33 33.33 535

12 33.33 0 33.33 33.33 621

13 33.33 33.33 0 33.33 617

14 25 25 25 25 641

No. M PP CW Experimental methane yield
(mL gVS�1)

Labatut et al.
(2011)

15 75 25 0 353,5

16 90 10 0 285,6

17 75 0 25 252,4

18 90 0 10 237,6
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quaternary (25:25:25:25). Labatut et al. (2011) evaluated the effects of binary
mixtures of manure (242.7 mL gVS�1) with various substrates like cheese whey
(423.6 mL gVS�1) and plain pasta (326.1 mL gVS�1) in VS ratios of 75:25 and
90:10 with respect to manure. Table 14.7 presents the mixtures made in the different
investigations as well as experimental methane yields.

The literature evaluates the results of anaerobic co-digestion by means of statis-
tical analysis. Pagés-Díaz et al. (2014) evaluated co-substrate effects by means of the
polynomial:

B ¼
X
i

βiXi þ
X
i

X
j

βi,jXiX j þ
X
i

X
j

X
k

βi,j,kXiX jXk ð14:69Þ

where Xi, Xj, and Xk are the fractions of each substrate, βi refers to the maximum
mono-substrate yield, and βi,j and βi,j,k are related to the synergistic and antagonistic
effects of binary and ternary mixtures, respectively.

Labatut et al. (2011) applied Buswell’s formula to identify substrate and co-
substrate theoretical methane yields. They established the biodegradability of sub-
strates and co-substrates from expression (14.2) and used it as a measure of syner-
gistic and antagonistic effects.

Abudi et al. (2020) applied a simpler approach to evaluate methane yield based on
the VS mixture proportion. The expression by which they estimate the methane yield
of a mixture that does not present synergistic or antagonistic effects is:

B0 ¼
X
i

VSiB0,i ð14:70Þ

Expression Eq. (14.70) refers to the i component of a mixture. For its simplicity,
this expression will be used to analyze the synergistic and antagonistic effects of the
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Fig. 14.1 Comparison between experimental and estimated methane yields
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mixtures reported in Table 14.7. In the case of Pagés-Díaz et al. (2014), VS data
reported in Table 14.1 were used. Figure 14.1 presents the comparison between the
experimental and estimated results.

Figure 14.1 shows that the estimates are, in some cases, less than the experimental
results. The increased methane yield is an indication of the synergistic effects
experienced in co-substrate. Mixtures 1–4 and 9–15 exhibit synergistic effects
during co-digestion. Mixtures 6 and 8 do not present effects. Mixtures 5 and
16 cannot be defined as synergistic due to minimal differences between experimental
and estimated values. This approach can be applied to the treatment of kinetic data,
for which expression Eq. (14.70) is set as:

B ¼
X
i

VSiBi ð14:71Þ

The difference between Eqs. (14.70) and (14.71) is that the first one only
evaluates the maximum methane yield and the second one evaluates the kinetic
behavior of the methane yield of each experimental run. Table 14.8 presents the
adjusted kinetic for mono- and co-substrate presented by Abudi et al. (2020) and Du
et al. (2019) that used Cone and first-order models, respectively.

From the information presented in Table 14.8, Eq. (14.71) was evaluated. Fig-
ure 14.2 presents the kinetics from the experimental data and from Eq. (14.71).

According to Abudi et al. (2020), Du et al. (2019), Labatut et al. (2011), and
Pagés-Díaz et al. (2014), mixing waste tends to improve methane yield. With both
expressions, the results obtained differ from what was experimentally proposed. It
should be noted that both expressions only consider the additive contribution of each
mono-substrate component to the co-digestion methane yield.

Table 14.8 Kinetic data of selected cases

Mango leaves
to pig manure
ratio

100:0 75:25 50:50 25:75 0:100 Abudi et al.
(2020)

B0 mL CH4

gVS�1
155.1 336 368 454 278

k day�1 0.1645 0.0694 0.0707 0.2245 0.1505

n – 1.2669 0.776 0.6954 1.1409 0.9957

Microalgae to
food waste ratio

100:0 38.15:61.85 14.9:85.1 5.98:94.02 0:100 Du et al.
(2019)

B0 mL CH4

gVS�1
292 329.8 385.4 415 383.9

k day�1 0.16 0.46 0.35 0.32 0.31

Microalgae to
sewage sludge

100:0 66.83:33.17 50.01:49.99 33.34:66.66 0:100

B0 mL CH4

gVS�1
292 324 314 295 278.7

k day�1 0.16 0.16 0.16 0.16 0.15
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The importance of Eq. (14.71) lies in the possibility of establishing the extent to
which the methane yield of the substrates varies, which is of interest to establish a
mixture optimization route. On the other hand, it should be noted that the conven-
tional analysis of the mixture effects is based on mono-substrate kinetics (first-order,
modified Gompertz, Cone models, and others), which is convenient in terms of
making a comparison, but does not allow to estimate the performance of methane or
kinetic constants without having an experimental design. Astals et al. (2014) indicate
that mixture effects, both synergies and antagonisms, affect the kinetics of the
process. Therefore, a mathematical expression can be established to consider the
mixture effect on methane yield as well as on the kinetic constants of the process.

Fig. 14.2 Comparison between experimental kinetics and modeled kinetics in co-digestion. (a)
Mango leaves—pig manure. (b) Microalgae—food waste. (c) Microalgae—sewage sludge
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14.5 To Model or Not to Model: Where Is Really
the Opportunity?

14.5.1 Trends in Anaerobic Digestion Modeling

To identify research trends, an analysis of titles, keywords, and abstracts of the
publications made in Scopus between 2010 and 2020 was carried out. The search
terms focused on:

1. First-order kinetic model to describe methane performance
2. Modified Gompertz kinetic model to describe methane performance
3. Cone kinetic model to describe methane performance
4. Fitzhugh kinetic model to describe methane performance
5. Transfer function to describe methane performance
6. Anaerobic digestion model 1

In total, 853 journal articles between 2010 and 2020s first semester refer to terms
related to kinetic models to describe methane performance. Figure 14.3 shows the
proportion of the research items that evaluate the proposed models. The analysis of
Fig. 14.3 did not rule out publications using more than two models.

It is observed that the first-order model is the most widely used expression to
describe the methane yield kinetics. This analysis is in accordance with what is
proposed in Tables 14.3 and 14.5, which highlights the wide application of the first-
order model.

In addition, the comparison of the application of the first-order model and the
ADM1 was made; this was done from two perspectives:

1. Countries with the highest number of publications (Fig. 14.4)
2. Number of publications from 2010 to 2020 (Fig. 14.5)

It is observed that the country with the highest contribution in terms of methane
yield modeling is China, with just over 100 publications in the period evaluated,
followed by the USA with around 60 publications. Regarding ADM1, a total of

Fig. 14.3 Percentage of
publications between 2010
and 2020 related to the
methane yield kinetics
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381 publications were registered at the date of the analysis (until June 2020).
Figure 14.4 shows that the countries that concentrate more than 30% of the
publications are Germany, China, and France. In Fig. 14.5, it is notable how the
publications referring to ADM1 increase but still do not exceed those related to the
first-order model.
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Fig. 14.4 Number of publications per year in the period 2010–2020
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14.5.2 Feasibility of Applying the Models

Mathematical modeling is a tool to broaden the understanding of processes in
general. In the field of anaerobic degradation of residues, mathematical modeling
allows estimating:

1. Methane production (methane yields, accumulated volume)
2. Composition of sludge and gas streams (TS, VS, particulate and soluble material)
3. Interactions between substrates in co-digestion (synergies and antagonisms)
4. Effects on the system (temperature, pH, toxic substances)

Different approaches to mathematical modeling allow its application in industrial
and agricultural sectors. To this is added that the models that have been developed
present different mathematical structures (algebraic equations and ordinary differ-
entials) developed from the study of the phenomenon.

Models in algebraic equations are characterized by their relative simplicity for
studying the degradation of a substrate; they allow to identify constants of produc-
tion and consumption. These can be implemented from complete characterizations
of the substrates (C, H, O, N, metals, carbohydrates, lipids, proteins, and others) or
from basic parameters (TS and VS), as well as measurements of volumes of the
methane generated. The resolution of these models is relatively simple; the software
used does not require high performance and can even be solved without the need for
processors. This facilitates the evaluation of proposals for the application of AD in
areas where economic resources are limited.

Dynamic models stand out due to the application of these in the design, control,
and optimization of processes. In addition, they allow the study of the degradation of
organic residues, variation of microbial populations and interactions between sub-
strates, as well as the effect of factors such as temperature and pH. These models
require specialized software for the simultaneous resolution of differential equations.
The implementation of control systems requires the collection of data from moni-
toring systems and the sending of analog or digital signals to control systems.

14.6 Remarks

1. Anaerobic digestion is a biological process, which due to the multiple stages and
microorganisms it involves is complex to model. Other factors that influence the
modeling of the process are related to the sensitivity of microorganisms to
variations in environmental conditions such as temperature, pH, and concentra-
tion of inhibitory substances. Furthermore, the model is subject to the complexity
of the composition of the substrate.

2. For the determination of reaction kinetics, a discontinuous study is
recommended. For this task, the most widely accepted models are first order
and Gompertz modified. The goodness of fit of the models must be performed by
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comparing statisticians that reflect the least error as well as the least variability of
these.

3. The selection of the model is linked to the possibilities of characterizing the
reacting system (substrates, inocula, sludge, biogas, among others), according to
the available economic and technological resources.

4. There are still gaps in the modeling of mixing effects on the methane yield
kinetics. From the mono-substrate kinetics, the aim is to study the co-substrate
kinetics, which cannot be done using current models.
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