
Chapter 14
Designing Instructional Materials
to Help Students Make Connections:
A Case of a Singapore Secondary School
Mathematics Teacher’s Practice

Wei Yeng Karen Toh, Yew Hoong Leong, and Lu Pien Cheng

Abstract It is widely acknowledged that making connections is an important part of
learningmathematics—instead of seeingmathematics as comprisingmerely isolated
procedures to follow, it is desirable that students learn the distinctiveness of math-
ematics as being a tightly connected subject. In fact, the Singapore mathematics
curriculum framework listed “connections” as part of mathematical processes—one
of the five areas of major foci. In the study reported here, we look specifically at
how an experienced and competent secondary mathematics teacher listed “making
connections” as one of her ostensible principles in the design of the instructional
materials for her lessons on quadratic equations. Themethod used can be summarised
as one of progressive widening of the analytical lens: we started by conducting an in-
depth examination of one unit of her instructional material to uncover the connecting
strategies she built into it. Based on the strategies we uncovered, we widened the
analysis to include its adjoining unit. From here, not only did we test the applicability
of these strategies on the next unit, we also explored her design principles on how she
connected between units. Finally, we further widened the lens of focus to the whole
set of instructional material to study other connecting strategies she used across all
the units in the material. The four design principles she used are: connections across
multiple modes of representation, conceptual connections, temporal connections,
and connections across different solution strategies. This teacher’s design princi-
ples with respect to making connections challenge conventional stereotypes of how
Singapore mathematics teachers carry out instruction—it is not merely repeated
practice of unrelated procedures; rather, it is a careful structuring of instruction
such that the underlying mathematical connections are made explicit. Not only so,
the deliberate design was not just carried out in-class; it was, as reflected in the
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careful crafting of the instructional material, an intentional plan prior to the teaching
of the unit. The principles used by the teacher hold useful lessons for mathematics
teachers, especially within the context of teacher professional development. These
are discussed towards the end of the chapter.

Keywords Making connections · Secondary mathematics · Instructional materials

14.1 Introduction

This chapter reports a case of how an experienced and competent secondary math-
ematics teacher, Teacher 8, designed her instructional materials to “link everything
together” (Post-Lesson Interview after Lesson 5, 00:18:20). It is this remark, coupled
with ten other phrases with equivalent meanings that she made throughout her inter-
views, that intrigues us and motivated us to embark on our inquiry. We are curious
to investigate the way she designed her instructional materials to achieve this goal.
When we examined her instructional materials, we found that she had designed some
of her tasks for the purpose of explicating certain intended connections. Hence, we
surmise that her conscious intents to create links within the topic is an undergirding
design principle that she applied in crafting the instructional materials. During our
inquiry, we also found other teachers in the project, though not as ubiquitous as
compared to Teacher 8, that consciously included making connections in the design
of instructional materials. This is shown in Table 11.6 of Chapter 11.

A quick scan of the literature shows that there are researchers who had examined
how mathematics teachers can teach in an interconnected manner (e.g. English &
Halford, 1995; Hill, Ball, & Schilling, 2008; Ma, 1999; Pepin & Haggarty, 2007;
Sun, 2019). Pepin and Haggarty (2007) for instance, reported on English, French,
and German lower secondary textbooks containing tasks which provide opportuni-
ties for students to learn mathematics through making connections. They asserted
that if we assume that “learning with understanding is enhanced by making connec-
tions, then mathematical tasks should reflect this” (p. 1). And in Sun’s (2019) study,
she clarified how Chinese textbooks make connections between whole numbers and
fractions. However, little is reported about howmathematics teachers design instruc-
tional materials with a deliberate goal of helping students see the mathematics they
learn in a connected way. Therefore, we are motivated to uncover how Teacher 8
incorporated connections in the design of her instructional materials. We begin by
reviewing some literature on the connectionist perspective and how mathematics
teachers make connections before describing the details of the case study.
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14.2 Teaching with a Connectionist Perspective

In their study on the standard algorithms for the four basic arithmetic operations,
Raveh, Koichu, Peled, and Zaslavsky (2016) implemented a framework with a
connectionist perspective. This perspective is built on the recommendations ofmathe-
matics education researchers who highlight the importance of teachers’ competency
in perceiving different interconnections among the mathematics topics they teach
(e.g. English & Halford, 1995; Hill et al., 2008; Ma, 1999). Ma (1999) underscored
the need for mathematics teachers to have a “thorough understanding” of mathe-
matics. She stated that it is best for teachers to be able to make connections within
mathematics with both “depth” and “breadth”—that is, to make connections within
and across topics. Likewise, English and Halford (1995) emphasised the importance
for mathematics teachers to know the connections within the curriculum so as to
provide sufficient connections between mathematical procedural skills and concep-
tual knowledge in their lessons for students. This is so that students will be less prone
to develop difficulties in their learning.

The connectionist perspective is traced back to Askew, Brown, Rhodes, Wiliam,
and Johnson (1997) who wrote about three orientations that mathematics teachers
generally possess: transmission; discovery; or connectionist. A teacher with a trans-
mission orientation views mathematics as a series of facts and algorithms that must
be imparted to students and he/she teaches in a didactic manner with an emphasis
for students to attain procedural fluency in computational skills. A teacher with
a discovery orientation views mathematics as pieces of constructed knowledge and
he/she facilitates students’ learning by encouraging them to explore solutions on their
own. And a teacher with a connectionist orientation views mathematics as a linkage
of concepts that he/she constructs collaboratively with students through discussions.
These three orientations are “ideal” types and a typical teachermay possess amixture
of orientations.

A connectionist orientation is aligned to a commitment to both “efficiency”
and “effectiveness” in mathematics—that is, that students become “numerate”. A
numerate student has the “awareness of different methods of calculation” and the
“ability to choose an appropriate method” when he/she solves a problem. With this
belief, a connectionist orientated teacher “emphasise[s] the links [emphasis added]”
(p. 31) between various aspects of the mathematics curriculum so that students
can acquire mathematical concepts that are related in tandem. Askew et al. (1997)
described how a mathematics teacher taught a class of Year 6 students fractions,
decimal fractions, percentages, and ratios in an integratedmanner, rather than as sepa-
rate topics. The students were given one value and they worked among the different
forms of representations. As an evaluation, the teacher and students discussed the
appropriate contexts in which each form of representation could be used.

Interestingly, from the transcriptions of the post-lesson interview after Teacher
8’s fifth lesson, we find evidence that suggests that she is inclined to a connectionist
orientation:
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[T]he big idea I was trying to drive at in this lesson was really this part: helping my students
link the completing the square method and the [quadratic] formula because I think this
[quadratic] formula is often taught as the teacher telling the students … (Post-Lesson 5
Interview, emphasis added, 00:02:59)

This motivated our study of Teacher 8 as a case of using instructional materials to
support her connectionist agenda. However, we do not claim that shewas aware of the
connectionist theory. It is plausible that she had designed her instructional materials
primarily to help her students make the connections within the topic better. In the
next section, we list some specific strategies for making connections explicated in
the literature. Some of these strategies were also employed by Teacher 8, and will
be elaborated in the Findings section.

14.3 Making Connections

Mathematics teachers worldwide are encouraged to incorporate connections to
deepen students’ understanding of concepts (Fyfe, Alibali, & Nathan, 2017; Ma,
1999; Turner, 2015). For instance, the National Council of Teachers of Mathematics
(NCTM, 2000) encourage students from Grades 9 through 12—between the ages of
14 and 19—to “develop an increased capacity to link mathematical ideas” (p. 354).
Likewise, Singapore’s mathematics curriculum framework advocates connections
as one of the processes for proficient problem solving; and one of the aims of the
secondary mathematics syllabus is to enable students to “connect ideas within math-
ematics …” (Ministry of Education, 2012, p. 8). This emphasis of making connec-
tions in mathematics is important because “mathematical meanings are developed
by forging connections between different ways of experiencing and expressing the
same mathematical ideas” (Healy & Hoyles, 1999, p. 60).

The specific strategies of making connections that we discuss in this chapter as
described from the literature are: (1) connections across multiple modes of represen-
tations; (2) conceptual connections; (3) temporal connections; and (4) connections
across different strategies to solve problems.

14.3.1 Connections Across Multiple Modes
of Representations

Mathematical concepts are naturally abstract (De Bock, van Dooren, & Verschaffel,
2015). Thus, representations are made to communicate their meanings. However,
according to Duval (2006), no single representation can entirely elucidate a math-
ematical concept so multiple modes of representations are required to help facil-
itate students’ understanding. When multiple modes of representations are used,
students are able to harness the different advantages each representation offers. Thus,
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many different modes of representations which complement each other are typi-
cally required for the development of an idea (e.g. Ainsworth, 2006; Elia, Panaoura,
Eracleous, &Gagatsis, 2007; Tall, 1988). Studies have also shown that when teachers
make connections acrossmultiplemodes of representations, they can facilitate greater
understanding for students because they emphasise the conceptual connections (more
in the next section) among the representations (Crooks & Alibali, 2014; Rittle-
Johnson & Alibali, 1999). As an example, Dreher, Kuntze, and Lerman (2016)

described vividly the use of multiple modes of representations for “
3−
4
” such that

students can have a comprehensive conceptual understanding of this fraction.

14.3.2 Conceptual Connections

Teachers can also help students learn mathematics in a connected way by helping
them make conceptual connections. Leong (2012) described how connections can
be made when a teacher extends the ideas students had learnt in a prior topic to a
current one. He suggested that the ideas in the topic of “Special Quadrilaterals”which
students learn in Year 7 in Singapore can be extended to the ideas in the topic of
“Cyclic Quadrilaterals” which they will learn in Year 9. Similarly, teachers can lead
students in Years 9 and 10 respectively to realise that the algorithm for computing
the length of a line segment and the magnitude of a vector, respectively, is actually
based on Pythagoras’ Theorem which they would have learnt in Year 8. As such, it
connects the concept of length of line segment on the Cartesian plane to the concept
of Pythagoras’ Theorem.

14.3.3 Temporal Connections

Even though a single lesson is frequently regarded as a unit for teaching and planning,
teachers tend to take into consideration the planning for a topic as a module over a
series of lessons.As stated byLeong (2012), “teachers think about the content suitable
for a lesson in terms of what goes before and what is to come after” (p. 244). In the
language of “connections”, the components in a lesson will not only connect with
one another within itself, but they will also be linked to what precedes and follows
in prior and subsequent lessons. He described how a Year 9 topic in Singapore on
“angle properties in a circle” is usually taught in an interconnected manner such
that students could see the connections among the four theorems—(i) angle at the
circumference is twice angle at the centre; (ii) angle at semicircle; (iii) angles in the
same segment; and (iv) opposite angles in a cyclic quadrilateral—taught over a few
lessons. From this example, he also highlighted that the underlying instrumental link
for temporal connections is time—in the chronological sense of it. It is over time
that the connections across the four theorems in the topic are made consistently.
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Conceptual connections and temporal connections appear similar as both involve
connecting prior knowledge to new knowledge. However, there is a difference.When
teachers make conceptual connections of an idea, it need not be developed over a
series of lessons bounded by a specific period, but when teachers make temporal
connections of an idea, this idea is being morphed chronologically over several
lessons within an extended duration of time.

14.3.4 Connections Across Different Methods to Solve
Problems

Students can learn to make connections within mathematics by solving problems
using different methods (Fennema & Romberg, 1999; Leikin & Levav-Waynberg,
2007; Toh, 2012). During this process, mathematical knowledge is constructed when
students shift between representations, comparingmethods, and connecting different
concepts and ideas (Fennema & Romberg, 1999). Toh (2012) suggested that this
could be achieved by teaching students to use different methods to solve the same
problem. He illustrated his point by describing how the solutions to a rich problem
can be used as a summary to link several topics together. He urged teachers to adopt
this strategy so that students who perceive mathematics as a fragmented subject can
learn to appreciate its connectedness.

14.4 Method

Teacher 8 was one of 30 experienced and competent teachers who participated in
the first phase of the project detailed in Chapter 2. As mentioned briefly at the start
of this chapter, the choice of Teacher 8 as a case study of making connections was
predominantly because she articulated that one of her teaching goals was to “link
everything together”. In addition, other factors about Teacher 8’s practices lends
itself to a rich unpacking of her work—a characteristic feature of case study: (1)
During interviews, she expressed comprehensively her objectives for many tasks.
This allowed us to uncover her intentions behind the activities we recorded in her
classroom; (2) she crafted a full set of handouts for students’ use in class (hereafter
referred to as “Notes”) before the start of the module. In other words, her work
generated a rich set of instructional materials on which to ground our study; (3) she
constantly made references among her objectives, her actual activities in class, and
her use of instructional materials. This allowed us to study the interactions among
these major pieces of her instructional processes.

The class that Teacher 8 taught as resident teacher was a Year 9 Express class. It
comprised 39 students whose age range was 14–16 years old. The module that she
taught was “Quadratic Equations”. The contents—as stipulated by the Ministry of
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Education (2012)—that she had to cover were: (i) solving quadratic equations in one
variable by (a) the use of formula, (b) completing the square for y = x2 + px + q,
and (c) the graphical method; (ii) solving fractional equations that can be reduced
to quadratic equations; and (iii) formulating a quadratic equation in one variable to
solve problems.

14.4.1 Data

Under instructional materials, Teacher 8 used mostly the set of Notes she designed
for her students. This forms the first primary source of data. The next source of data
is the set of transcripts of interviews we conducted with Teacher 8. We conducted
one pre-module interview before she conducted her suite of lessons and three post-
lesson interviews after Lessons 2, 5, and 8, based on her selection. All interviews
were video recorded and transcribed verbatim. We designed an interview protocol
with two sets of questions and prompts respectively for the pre-module interview
and post-lesson interviews.

The pre-module interviewwas conducted to findoutwhat Teacher 8’s instructional
goalswere and how she had designed and planned to utilise her instructionalmaterials
to fulfil her goals. Some prompts in the pre-module interview were:

• Please share with me what mathematical goals you intend to achieve for this set
of materials that you will be using.

• How different is this set of materials that you developed compared to those in the
textbook?

• Are there any other specific instructional materials that you are going to prepare
for this module?

The post-lesson interviewswere conducted to find out if she hadmet her instructional
objectives with the instructionalmaterials she had designed and planned to use. Some
of the questions were:

• Did you use all the materials that had you intended to use for the lesson?
• How did the materials help you achieve your goals for this lesson?

The third source of data is Teacher 8’s enactment of her lessons in the module. We
adopted non-participant observer roles during the course of our study. That is, one
researcher sat at the back of the class to observe Teacher 8’s lessons. This was so
that the researcher would be able to make relevant and precise references to her
teaching moves when pursuing some threads during the post-lesson interviews. A
video camera was also placed at the back of the class to record Teacher 8’s actions.
We recorded a total of eight lessons. Three were 60-minute lessons while rest were
90-minute lessons.
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14.4.2 Analysis of Data

We proceeded with the analysis along these stages:
Stage 1: Identification of units of analysis of the Notes
Each unit is a section in the set of Notes prepared by Teacher 8 (e.g. “Factorisa-
tion Method”, “Graphical Method”, “Completing the Square Method”, “Quadratic
Formula Method”, “Thinking Activity”, etc.). We coded the units according to the
mathematical contents targeted in each unit.Wematched the comments inTeacher 8’s
pre-module interview according to the references she made to these units. Together
with the coded content, we were better able to verify the instructional objectives
intended for each unit.
Stage 2: Composition of chronological narratives
For some of these selected units with rich related data on Teacher 8’s enactment and
interview comments, we crafted chronological narratives for each of them. These are
narratives that coherently bring together related data sources for that particular unit of
analysis. In each chronological narrative, we integrated several data sources—pre-
module interview transcriptions, post-lesson interview transcriptions, tasks in her
Notes, and her classroom vignettes. The chronological narrative for “Completing
the Square Method”, for instance, was composed by first examining the text in the
pre-module interview. As we found her commenting at length about how she planned
to develop the concept of “completing the square” with her Notes, we validated her
intentions for designing the mathematical tasks and questions by examining the unit
on “Completing the Square Method” in her Notes. After which, we proceeded to
search the video recordings of the related lessons she conducted for evidence to
corroborate her use of the instructional materials. We consolidated the evidence and
organised them in a table. Table 14.1 presents the evidential ingredients for building
the chronological narrative for “Completing the Square Method”.
Stage 3: Strategies related to making connections
We begin specifically to look for the strategies that Teacher 8 used to make connec-
tions by closely examining the chronological narrative on “Completing the Square

Table 14.1 Main evidence leading to the building of the Chronological Narrative of the Unit on
“Completing the Square Method”

Chronological sequence Main data source Description

1 Pre-Module Interview • Explained rationale for the way
she designed the tasks in the unit
on “Completing the Square
Method”

• Explained how she planned to
help her students connect their
prior knowledge on perfect
squares in lower secondary to the
new knowledge on completing
the square

(continued)
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Table 14.1 (continued)

Chronological sequence Main data source Description

2 Lesson 3 Video Recording and
Notes

• Elicited students’ prior
knowledge on perfect squares

• Elicited students to illustrate
pictorially the squares of 7, (x +
1), and (x – 2) on their Notes (as
shown in Fig. 14.3)

• Emphasised that students have to
make sense of “perfect squares”
algebraically and pictorially

• Assigned students to express the
squares of 7, (x + 1), and (x – 2)
in words (as shown in Fig. 14.4)

• Assigned students to work in
groups to give examples of
“perfect squares”

• Conducted class discussion on
the examples given by each
group

• Explained geometrically the
meaning of (a + b)2 and (a – b)2

• Assigned students to work in
pairs on Task A2 (as shown in
Fig. 14.5)

• Contrasted 120 to 121 by
illustrating 120 as an
“incomplete square” of side 11
on white board (as shown in
Fig. 14.6)

• Utilised table (as shown in
Fig. 14.7) in Notes to help
students connect the concept of
completing the square
algebraically and geometrically

• Explained the first row of entry
in the table for x2 + 2x by
redrawing the diagram and
relating to the algebraic
expressions

• Assigned students to complete
the table as homework

3 Lesson 4
Video Recording and Notes

• Conducted class discussion for
the homework assigned at the
end of Lesson 3

• Stressed that students have to
connect the geometrical
representations to the algebraic
expressions so as to gain
conceptual understanding of the
“completing the square method”

(continued)
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Table 14.1 (continued)

Chronological sequence Main data source Description

4 Lesson 5
Video Recording and Notes

• Conducted class discussion to
help students recall the algorithm
for the “completing the square
method” and generalise the
theorem

• Conducted class discussion on
the practice items on p. 5 of the
Notes to help students learn to
apply the method

• Assigned students to complete
practice items on p. 6 to p. 8

Method”. This chronological narrative was chosen as a first-entry study because it is
one where Teacher 8 articulated that she “actually took great trouble to prepare [the]
worksheets” (Pre-Module Interview, 00:03:17). This chronological narrative became
an intensive source of analysis for emerging themes related to her strategies inmaking
connections. We underwent many rounds of discussions, conjecturing, refuting, and
re-conjecturing until we reached stability in agreement among the members of the
research team (authors of this chapter)—where the purported strategies could be
substantiated from all the data sources. Figure 14.1 shows the various units of anal-
ysis. It also highlights that the chronological narrative on “Completing the Square
Method” is the first in the process of analysis. The report of this analysis is given in
Sect. 14.5.1.
Stage 4: Confirmation and expansion of strategies
In the final stage of analysis, we examined the preliminary strategies we conjec-
tured in Stage 3 to check it against two other chronological narratives following this
process: we repeated the process of the analysis as in Stage 3 on “Quadratic Formula
Method”; we then drew connections between these two adjacent units of analysis
(this stage of analysis is presented in Sect. 14.5.2); finally these conjectures were
further refined as we examined across a number of units of analysis (the next stage
is presented in Sect. 14.5.3). These sequential phases of analysis are also presented
diagrammatically in Fig. 14.2.

Factorisation 
Method

Graphical
Method

Completing the 
Square Method

Section 14.5.1

1

Quadratic 
Formula 
Method 

Thinking 
Activity

Fig. 14.1 Diagram showing different units of analysis and the first unit of analysis
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Section 14.5.2 

2 3 

Section 14.5.3 

Factorisation 
Method 

Graphical 
Method 

Completing 
the Square 

Method 

1

Quadratic 
Formula 
Method 

Thinking 
Activity 

Fig. 14.2 Diagram illustrating analyses across different units of analysis

14.5 Findings

14.5.1 Making Connections Within a Unit

In theNotes that Teacher 8 prepared for the unit on “Completing the SquareMethod”,
she designed three sections which we labelled: A, B, and C. We focus our report on
certain tasks in Sections A and B whereby she had applied one or more strategies to
make connections to develop the completing the square method. Our analysis will
exclude Section C as it comprises mainly of practice items.

When we first looked at Task A1, (as shown in Fig. 14.3), we were curious as
to why it was designed in this manner. We noticed that in the first column, the top
row had “52” written in it, and in the bottom row, there was a diagram of a square
with sides of 5 units. We also noticed that throughout the four columns, the top
row was presenting a kind of symbolic representation; and students were expected
to produce a geometrical representation. The diagram in the first column had been
provided to them as an example. It appeared that Teacher 8 designed in it such a
way that students could revise the meaning of squares of numbers and then connect
them to the geometrical meaning of squares with areas of given sides.We noticed her

A1. Draw a geometric representation of each of the following. The first one has been done 
for you. 

Fig. 14.3 Task A1 in Section A of Notes on “Completing the Square”
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deliberate design for students to relate symbolic terms to geometric figures. Also,
this activity extends to squares with sides that involve algebraic expressions. At this
point, we saw explicitly what she meant by “to link everything together”—numeric
to geometric; algebraic to geometric; and from numeric numbers (left) to symbolic
algebra (right)—and found obvious pieces of evidence for her use of the strategy
to connect across multiple modes of representations. In addition, from her pre-
module interview, we verified her intention when she expressed that her insertions
of diagrams were “so that they have the algebraic procedure and they also have the
pictorial representation ofwhat they are doing algebraically” (Pre-Module Interview,
emphases added, 00:02:23).

Subsequently, we noticed that she intended to connect numeric, algebraic, and
geometric representations in Task A1 towords in Task A2, as shown in Fig. 14.4. Her
instructions clearly stated: “Explain in words what each of the following represents
with reference to its geometric representation”; and the first column of the table
are the same numeric and algebraic expressions as those in Task A1. The sample
statement in the first row of the table also exemplifies how she expected her students
to explain in terms of “area of a square”.

We surmise that she had purposefully designed Task A2 such that students could
learn to use words to connect to numbers; and algebraic expressions to their geomet-
rical representations so that students can make connections across multiple modes
of representations. We validated her intention to connect across multiple modes of
representations from her pre-module interview transcript:

[F]or the worksheets right … first I [will] elicit prior knowledge: “What does it mean when
you square a number? What does it mean [when] you square the algebraic expression?” …
[T]hen after that I [will] try to get them to write in words so they [can] get used to the math
language. … [A]fter that, I [will] show them the pictorial representation … (Pre-Module
Interview, 00:14:52, emphases added)

The second task which caught our attention was Task A6. From the way the task was
designed, we infer that it was a continuation to help studentsmake connections across

A2. Explain in words what each of the following represents with reference to its geometric 
representation. The first one has been done for you. 

 represents the area of a square with sides of 5 units in length 

Fig. 14.4 Task A2 in Section A of Notes on “Completing the Square”
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multiple representations. The table that Teacher 8 had drawn up as shown in Fig. 14.5
was to get her students to discern if the numeric and algebraic expressions in the first
column (on the left) were perfect squares. She expected them to write in words in the
third column the reasons for their conclusion. She had provided sample statements
for the first and second numbers—81 and 120. She had planned for students to state
whether the given expressions in the first column could be “expressed as k2”.

However, upon closer analysis, we notice another strategy being used in this
task—Teacher 8 intended to help her students make conceptual connections. She
designed this task to help her students make sense of the concept of “incomplete
squares” to the concept of “perfect squares”—which they had learnt previously in
Years 6 or 7. She developed the concept of an “incomplete square” from the associated
concept of “perfect squares” in her lesson by discussing the number “120” and
highlighting the difference between “121” and “120”. She elicited from students that
“121” was a perfect square—that is “112”—but “120” was not. To make a geometric
connection to this number, she illustrated “120” as a square with sides 11, but was
one that was “short of that little bit” (Lesson 3, 01:19:13). The diagram she drew
on the board is shown in Fig. 14.6. She went on to ask her students: “If I want to
make 120 into a perfect square, what shall I do?” (Lesson 3, 01:19:40). Her point
was to show students that the concept of completing the square was to complete an
‘incomplete’ square by adding on a small square with a specific side. So for the case
of “120”, she explained that she would have to add a small square of sides 1 to make
“120” a complete square with sides 11; and then she said: “So this is the idea behind
completing the square” (Lesson 3, 01:19:54).

Teacher 8’s attempts to make conceptual connections can also be seen from the
entries in the fourth and fifth row in the first column. She selected “x2 + 2x + 1” as
an introductory example because it is the expanded quadratic expression of the most
basic polynomial in the (ax + b)2 form. And this expanded quadratic expression for
(x + 1)2 can be expressed in terms of a perfect square, “k2”. The difference between
“x2 + 2x + 1” (in the fourth entry) and “x2 + 2x” (in the fifth entry) is 1—just

Expression 
Perfect Square Expression? 

(Yes/No) 
Reason 

Yes Can be expressed as 

No Cannot be expressed as , where 
is an integer 

Fig. 14.5 The first five rows of Task A6 in Section A of Notes
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11 

11 

Fig. 14.6 Diagram which Teacher 8 drew on the whiteboard to illustrate 120

like the difference between “121” and “120”. In other words, “x2 + 2x + 1” is a
‘perfect square’ like “121” but “x2 + 2x” is an ‘incomplete square’ that is short of
a square of side 1, just like “120”. She made this careful selection so as to help her
students “construct the new knowledge [of an ‘incomplete’ square] by connecting
to prior knowledge [of a perfect square]” (Pre-Module Interview, emphases added,
00:15:17).

Teacher 8’s use of both strategies to make connections across multiple modes of
representations and to make conceptual connections continues for the third time in
Section B of her Notes. For this section, she created a table. As shown in Fig. 14.7,
the table had four columns. We name them as Columns B1, B2, B3 and B4 (from
left to right) for easy reference. Teacher 8 designed the table such that Column B1 is

When we write x2 + bx + c in the form (x h)2 – k2 where b, c, h and k are real numbers, 
we are completing the square. Study the examples shown and complete the table 
below. 

Expression 
Geometric 

Representation 
Term to be 

Added 
Algebraic 

Representation 

x2 + 2x 12 = 1 
x2 + 2x
= x2 + 2x + 12   12 

= (x + 1)2  1 

x2 + 4x

Fig. 14.7 Table in Section B of Notes showing first two rows
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for algebraic expressions; B2 for geometric representations; B3 for students to write
down a “term to be added”; and B4 for algebraic representation.

Based on surface analysis of the table, we note from the entries in the first row
how she had intended to let her students see that the algebraic expression x2 + 2x in
B1 could be represented geometrically with a diagram as shown in B2. The diagram
of an incomplete square in B2 was intended to help students visualise that if x2 +
2x were to be represented as a square with side “x + 1”, there would be a missing
corner. And this corner is actually a small square with side of 1 unit—that is, 12—to
sensitise students to the need to add this 12 to “complete the square”. This information
is contained in B3. The algebraic working in B4 is the algebraic documentation of
what goes on in B2 and B3.

Upon careful inspection of the entries, we realise that Teacher 8 designed the table
to harness the connections she had made in the earlier tasks. There were links across
multiple modes of representations—from algebraic to geometric (from B1 to B2),
geometric to numeric (B2 to B3), and geometric plus numeric to algebraic (B2+ B3
to B4)—just like those in Tasks A1 and A2.

In addition, she carefully linked Section B to A by deliberately repeating the
choice of x2 +2x as the first entry. This was the same entry in the fifth row of Task
A6. And the geometric representation of this expression—an “incomplete square” of
sides x +1—corresponded to the perfect square “(x +1)2” which is the third entry in
both Tasks A1 and A2. Figure 14.8 explains how the algebraic working in Column
B4 connects to the other tasks.

When we link up all the details in our analysis in this unit, we uncover aspects of
howTeacher 8 planned to “link everything together” using her instructionalmaterials.
She crafted her tasks within this unit such that her students could make connections
by progressing from stage to stage until they arrived at the concept for the completing
the square method. The tasks in Section A set the background for what was to come

Fig. 14.8 Breakdown of the algebraic working
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in the table in Section B. She designed it such that when her students completed the
tasks in Section A, they would be prepared to make the conceptual connections to
the tasks that progress across the columns in the table.

14.5.2 Making Connections Between Adjacent Units

We proceed to analyse the next unit on “Quadratic Formula Method”. As details of
the analysis process of a unit were given in the previous section, we will be brief
in this section. The first page of this unit is shown in Fig. 14.9. The formula is in a
text box, placed at the top of the page—occupying one-third of it—while two-thirds
of the page is left blank. We did not fully understand how she intended to let her
students “derive this formula by applying the completing the square method” until
we uncover them from the transcriptions of her pre-module interview, post-module
interview after Lesson 5 and that of Lesson 5.

From the videos recordings, we observed that Teacher 8 only started teaching the
unit on Quadratic Formula in Lesson 5 after explaining three practice items from the
earlier unit of Completing the Square: Solve (i) x2 − 16x − 4 = 0, (ii) x2 + 5x + 4
= 0, and (iii) 2x2 + 15x + 10 = 0. She had presented her solutions (with students’
participation) in three separate columns on the whiteboard sequentially from left to
right. After which, she erased only her written solutions for items (i) and (ii), and left
the solution of (iii) on the extreme right column on the whiteboard. We reproduce
her actual working steps on the whiteboard for Item (iii) in Fig. 14.10.

Quadratic Formula 

The roots of the general quadratic equation  can be obtained by the 
quadratic formula: 

Let’s try to derive this formula by applying the completing the square method. 

Fig. 14.9 Task on first page of the unit on Quadratic Formula
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+ 152+ 152+ 152 154 154154 =  1451615 =   ± 1451614516 − 154
Fig. 14.10 Actual working steps for item (iii)

Upon analysis of Lesson 5, we discovered that she had planned to make use of
the numeric workings of item (iii) from the unit on completing the square to help
her students cope with the abstract and complex algebraic manipulations they had to
handle when they derive the quadratic formula from the general quadratic equation
ax2 + bx + c = 0. We found her telling her students: “I want to show you what
exactly I am doing here [Item (iii)] with number coefficients [as it] is exactly the
same way as what you are doing here [with the general quadratic equation] with
algebraic coefficients” (Lesson 5, 00:42:50). And in the post-module interview after
Lesson 5, we found her explanation for leaving the working steps of item (iii) by the
right-hand side of the white board—she articulated that she had placed it “side by
side” (Post-Lesson Interview after Lesson 5, 00:05:02) to the derivation steps so that
students “can see the parallel” (Post- Lesson Interview after Lesson 5, 00:05:02).
From this vignette, we observe once again how Teacher 8 helped her students learn
a concept by making connections across multiple modes of representations.

Besides this, Teacher 8 had another objective for leaving two-thirds of the page
blank for her students to derive the quadratic formula by applying the completing the
squaremethod. She had planned this because she did notwish for them to “justmemo-
rise [the quadratic formula] blindly” (Pre-Module Interview, 00:03:24) and apply on
practice items or problems. She wanted them tomake the conceptual connections
between the completing the square method and the quadratic formula. She stressed
this in her pre-module interview when she said she “want[ed] them to listen to the
conceptual development” (Pre-Module Interview, 00:18:51) before memorising and
applying the quadratic formula. We verified her plan when we observed how she
established the conceptual connections in Lesson 5. She had asked students to make
close reference to item (iii) on the right-hand side of the board to help them derive
the quadratic formula from the general quadratic equation.
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Subsequently, we found that Teacher 8 used a third strategy in making connection
between two adjacent units of analysis—she also incorporated temporal connec-
tions in her development of the quadratic formula. She had cautiously timed her
lessons such that she would demonstrate the derivation of the quadratic formula
from the general quadratic equation immediately after she completed item (iii). We
found her explanation for this design principle during her pre-module interview that
substantiates our conjecture:

I actually took great trouble to prepare this worksheet … to help them appreciate this idea
of completing the square. Then after that right, I will go on to the quadratic formula … and I
want to show them how… [the] formula is derived from completing the square. That’s why
I sequenced the worksheets in this order …. (Pre-Module Interview, 00:03:15, emphases
added)

14.5.3 Making Connections Across Units

Teacher 8’s goal of helping students make connections across units was to let them
see the links across the whole topic of solving quadratic equation. This was observed
in the third unit of analysis: “Thinking Activity”. It was through this task sheet that
we are able to observe how she “tie[d] everything together” (Pre-Module Interview,
00:02:28). She stressed in her pre-module interview that this task sheet was designed
because her “ultimate goal [was] to help [students] appreciate the affordance and
constraint of each method”. And during the lesson when students were assigned
to work on this task sheet, she explained to them that they were to “consolidate
everything that [they] had learnt” (Lesson 7, 00:50:44) from the past few lessons.

There were altogether five tasks—Task 1 to Task 5—in this “Thinking Activity”
task sheet. As we found Task 1 and Task 3 particularly interesting, we focused our
analyses on them.

As shown in Fig. 14.11, Teacher 8 presented the solutions for the quadratic equa-
tion x2 − 4x −5 = 0 using four different methods. She articulated explicitly in
her pre-module interview that she had purposefully displayed the solutions “side
by side instead of sequentially” (Pre-Module Interview, 00:14:52) so that students
could “make comparisons” (Pre-Module Interview, 00:08:35). She stated clearly
in the instructions for Task 1: “discuss the pros and cons of the method, and give
suggestions on when the method should be used”.

We surmise that her intention of presenting the solutions using all the fourmethods
was to demonstrate to students that the same problem could be solved by more than
one strategy. In addition, she had probably wanted her students to learn to apply the
most suitable strategy to solve a problem, depending on its context. It seems clear to
us that her goal was to make connections across different methods. We validated
our conjecture with the evidence we found in her pre-module interview and lesson
transcript. In her pre-module interview, she emphasised her objective for designing
this “Thinking Activity”:
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You can use one of the following four methods to solve the quadratic equation 
. 

Method 1: 
By Factorisation 

Method 2: 
By Completing 

the Square 

Method 3: 
By using the Formula √ Method 4: 

By Graphical Method

( ) − 2 − 5 = 0− 9 = 0= 9 −(−4) ± (−4) − 4(1)(−5)2(1)4 ± √16 + 2024 ± 62
From the graph,  

Task 1: Working in pairs, take turns to discuss each solution with your partner. Each person 
is to talk about 2 solutions. You should describe the method used, discuss the pros and cons 
of the method, and give suggestions on when the method should be used. 

x

y 

-1 5 

Fig. 14.11 Task 1 in “Thinking Activity” task sheet

They are actually required to choose or identify key characteristics by themselves, they are
supposed to make comparisons, they are supposed to reason out why a method is more
efficient than the other … (Pre-Module Interview, 00:08:32.02, emphases added)

And during the lesson, she highlighted to students that they “must not rule out”
(Lesson 7, 01:14:39) using another method even though they might prefer the
factorisation method.

The other task that illustrated how Teacher 8 helped students make connections
across units is Task 3 as shown in Fig. 14.12. In this activity, students were asked
to select the “most efficient” method for each “question”. Notice that Question 1
can be solved by any of the four methods but it would be most efficient to use the
factorisation method. Subsequently, it would be most efficient to solve Question 2
using the quadratic formula method though it could also be solved by the completing
the square method; and lastly, it would be most efficient to solve Question 3 by first
dividing the equation by 2, then taking the square root for the equation, though one
could also expand the left-hand side of the equation and then solve it by any of the
other three methods. Nevertheless, one may also apply the quadratic formula method
for every question without thinking about its “affordance and constraint”. Hence, we
infer that Teacher 8 had crafted Task 3 so that students could learn to regulate their
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Task: Examine each of the following questions. Discuss with your partner and decide which 
method you prefer to solve each of the following questions. Justify your choices. 

No. Question 
Your Preferred 

Method 
Reason(s) for Your 

Choice 

1 Find the roots of the equation −
. 

2 Solve , giving 
your answers correct to 2 decimal 
places where necessary. 

3 Solve the equation  = 100. 

Fig. 14.12 Task 3 in “Thinking Activity” task sheet

understanding on the four methods and apply the most appropriate one for each
question.

We think this task indeed requires students to think about the suitability of each
method and not merely apply one method throughout mechanically. Teacher 8’s
responses in her post-lesson interview support our inference:

[For] these particular set of task sheets, the content goal is really to help students to understand
when they should be using which method. They need to have this appreciation for each [of
the] different types of questions [where] some methods are more efficient than others ….
That was the idea behind this worksheet.…… [W]hen they came to Task 3, they were forced
to make a choice on which was their most efficient method, and I can see from their many
responses that many of them chose different methods. (Post-Lesson Interview after Lesson
8, 00:07:48, emphases added)

In short, Teacher 8 helped her students make connections across units by providing
a platform for them to engage in problem-solving with different methods. Through
this activity, they were given the opportunity to appreciate the connectedness of the
four methods and the conditions in which each was more appropriate.

14.6 Discussion

As mentioned in the beginning of the chapter, a mathematics teacher who conducts
their lessons to help students perceive the connections across mathematics concepts
views teaching mathematics within a connectionist orientation (Askew et al., 1997;
Raveh et al., 2016). Based on our analysis of the instructional materials she created,
we argue that Teacher 8 is an illustration of one who subscribes to the connectionist
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perspective. Her commitment to tight connection in her instruction is not merely a
cursory one; as described in the previous section, she deliberately worked in various
strategies of connection in the way she planned and carried out the lessons. Her
commitment is extended to the way she designed her instructional materials. From
the way she embedded intermodal links in her instructional materials, it is clear to
us that she wanted to use the materials as an instrument to help her enact her goal of
“link everything together” in her series of lessons. Yet, Teacher 8’s connectionism is
not limited to only one level of analysis. Her version of connectionism goes beyond
a particular level as mentioned in the findings—she views connections within a unit,
between adjacent units, and across all the units within the topic.

Second, Teacher 8 sequenced her instructional materials in such a way that
her students could make temporal connections throughout the topic. For instance,
students could link the unit on the factorisation method to the graphical method for
finding the roots of a quadratic curve; they were also led to draw temporal links
between the unit on completing the square method to and the unit on the graphical
method for finding the maximum or minimum point of a quadratic curve; the same
was also evident in the link between the unit on quadratic formula to the unit on graph-
ical method for finding the discriminant of a quadratic curve. This careful sequencing
reflected her conscious planning—evidence of the hypothetical learning trajectory
she had constructed for her students. Moreover, to be able to plan lessons such that
the units were so tightly connected requires vision that spans beyond the temporal
boundaries of one or two lessons. To enact temporal connections as indicated in
the lessons, one needs to project one’s temporal horizons and hence connections
across the content development over thewhole unit. This, to us, calls into question of
whether there is sufficient professional development work for teachers to conceive
of planning at this scale.

Third, we think that Teacher 8’s conception of connections across methods has
implications to the development of students’ problem-solving abilities—inparticular,
thismetacognitive awareness ofmultiple strategies (and their respective affordances);
that is, the consciousness of looking across different solution methods requires an
executive function at work psychologically, and this mechanism to take executive
control is a component of metacognition (Holton&Clarke, 2006; Schoenfeld, 1992).
This link between her move of making connections and her intentions to highlight
metacognitive regulation as part of problem-solving is underreported in the literature,
although it was mooted a long time ago: “Can you derive the result differently? …
Oneof the first and foremost duties of the teacher is not to give students the impression
that mathematical problems have little connectionwith each other, and no connection
at all with anything else” (Pólya, 1945, p. 15, emphases added).

14.7 Conclusion

Mathematics is a subject that is interconnected. In order for students to master the
concepts, teachers need to help students relate one mathematical idea to another.
Nonetheless, though many studies have examined how teachers make connections
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during their lessons, little is known about how teachers design their own instruc-
tional materials to help students make these connections. This chapter exemplifies
a mathematics teacher in Singapore who not only advocates teaching in an inter-
connected way, she deliberately integrates connections within a set of instructional
materials she designed for a topic. The most interesting characteristic we discovered
from her instructional materials is that she does not only incorporate connections
within a sub-section in a mathematics topic; taking a “global” view of the topic, she
was able to insert numerous places at using different strategies to help students make
connections between adjacent sub-sections; and even across all sub-sections.

As this teacher’s instructional goals are embodied in her instructional materials
explicitly,we canpresent a rich case of a teacherwhohelps studentsmake connections
via her instructionalmaterials.However, as there is currently limited literature on how
teachers design connections with instructional materials, more research work can be
concentrated in this area. We think this Singapore teacher presents an interesting
portrait of how “making connections” can be an organising principle in teachers’
design of instructional materials for teaching mathematics. It is unclear at this stage
if this represents the “Singapore portrait”, however, we propose that this in an area
worthy of further pursuit—to broaden and test the extent of whether this teacher’s
portrait to other mathematics teachers in Singapore and perhaps, even beyond.

Appendix

Section C on Page 5 of Teacher 8’s Notes
Applying New Knowledge

C1. Solve the following equations

(a) x2 = 4 (b) (x + 1)2 = 4

(c) (x − 2)2 = 25 (d) (x − 4)2 = 10

C2. Given two equations (x + 1)2 = 4 and x2 + 2x – 3 = 0, how are they related? Which equation
is easier to solve and why?
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