
Chapter 13
Sequencing of Practice Examples
for Mathematical Reasoning: A Case
of a Singapore Secondary School
Teacher’s Practice

Lu Pien Cheng, Yew Hoong Leong, and Wei Yeng Karen Toh

Abstract Variation of examples is a common technique some teachers use in the
design of their instructional materials. It is, however, not clear how mathematical
reasoning can be supported through teachers’ carefully selected examples. Through a
case studyof an experienced and competent Singapore secondary schoolmathematics
teachers who emphasised “reasoning” as a specific goal of his instructional practice,
we examine how practice examples were designed to target reasoning in the teaching
of mathematics. In particular, the study unpacks how mathematical reasoning can be
utilised as a glue in advancing a canonical technique alongside the development of
supportive lesson routines. The findings showed the following four design principles
(i) Deliberate use of examples to advance technique (ii) Advance technique through
comparing, inferring and justifying (iii) Special cases to expose and target students’
faulty reasoning undergirding the techniques they used (iv)Consolidate and formalise
the reasoning in standard written form through whole class instructional segment.

Keywords Mathematical reasoning · Instructional materials · Practice examples

13.1 Introduction

We are part of the project team (see Chapter 2) that aims to distil the distinctive
features of mathematics teaching in Singapore classrooms. In the course of our data
collection, themanner inwhich exampleswere usedbyTeacher 13particularly caught
our attention. Teacher 13’s use of examples was not merely for achieving fluency of
technique; his other ostensible goal was to use the examples to “advance” (a term he
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used) mathematical “reasoning”—a term he used very often in his interviews with
us and in his classroom teaching. As we studied the numerous instances in which
the examples were used to encourage students’ reasoning, we found that Teacher
13’s conception of these examples and how they were utilised in his classroom work
presented aspects that are still unreported in the current literature.

13.2 Use of Examples

Before we examine the case of Teacher 13’s use of examples to advance reasoning,
we turn to the literature that relates to this focus of study. In particular, we review
literature on task design, variation theory in the sequencing of tasks and practice
examples.

13.2.1 Task Design

Mathematical tasks are important vehicles for building student capacity for mathe-
matical thinking and reasoning (Stein, Grover, & Henningsen, 1996). The recently
published ICMI Study 22 on Task design in mathematics education presents an up-
to-date summary of relevant research about task design in mathematics education.
While there are advances in knowledge in areas, such as multiple frameworks and
sets of principles on task design—the design and implementation of task sequences
is one of the key areas identified as still needing further research (Watson & Ohtani,
2015). In this study, we limit the discussion on tasks with the ostensible goal of
students’ reasoning. Smith and Stein’s (1998) categorisation of tasks to different
levels of cognitive demands where the extent to which students engage in thinking
and reasoning differ in each level is relevant and influential. However, there is yet
little research on how tasks or a sequence of tasks can be employed to help students
advance their reasoning in the process of working through these tasks.

13.2.2 Sequences of Tasks and Variation Theory

In the design principles behind the design of task sequences, there is major contri-
bution in the literature from Variation Theory (VT). In the design of task sequences,
“VT focuses task designers on what varies and what remains invariant in a series of
tasks in order to enable learners to experience and grasp the intended object of learn-
ing” (Kieran, Doorman, & Ohtani, 2015, p. 45). Watson and Mason (2006) claimed
that “tasks that carefully display constrained variation are generally likely to result in
progress in ways that unstructured sets of tasks do not, as long as learners are working
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within mathematically supportive learning environments” (p. 92). Their paper illus-
trates how differently controlled variations can help students make different gener-
alisations and abstractions—generalisations as “sensing the possible variation in a
relationship” and abstractions as “shifting from seeing relationships as specific to
the situation, to seeing them as potential properties of similar situations” (p. 94).

Watson and Mason’s (2006) study reported a rare venture within the tradition of
VT-focusing on the mathematical content as the only “object of learning”- and they
explain “generalisations” that are afforded by a particular way of sequencing tasks.
This shift to “generalisations” brings this branch of VT-related research closer to our
inquiry on mathematical reasoning. In fact, we do not find mathematical reasoning
an explicit goal in much of the research reported under the banner of VT. Another
recent rare connection of reasoning to VT was reported by Vale, Widjaja, Herbert,
Bragg, and Loong (2017). They showed how justification or logical argument fits
into this sequence of learning experiences by mapping the variation in children’s
reasoning (e.g., comparing and contrasting to generalise and identifies verifying) in
number commonality problems. Their findings reiterated the importance of designing
the task so that the action of comparing and contrasting guides student awareness
of features that matter. Their paper, however, does not unpack the deliberate task
sequencing for the purpose of advancing students’ mathematical reasoning.

For the purpose of this study, insteadof using “task”which is a very board category,
we employ Teacher 13’s use of “examples” which we take to be a special type of
tasks.We think that examples are tools to provide variation to aid students’ reasoning.
Examples, especially “combination of several similar examples and further not-quite
similar examples” are necessary for students “to work on a higher level” that leads
to conceptual learning, fluency and accuracy (Watson & Mason, 2006, p. 97).

13.2.3 Practice Examples

From amathematical perspective, an example is often considered an object satisfying certain
conditions (e.g., Alcock & Inglis, 2008; Watson & Mason, 2005), or a representative of a
class (e.g., Mills, 2014; Zazkis & Leikin, 2007). Zaslavsky (2014) adds a requirement that
the person using the example should be able to answer the question: “What is this an example
of?” (Zaslavsky, 2019, p. 246)

Zodik and Zaslavsky (2008, p. 165) referred to examples as “a particular case of a
larger class, fromwhich one can reason and generalise”. Their treatment of examples
included non-examples that are “associated with conceptualisation and definitions,
and serve to highlight critical features of a concept; as well as counter-examples that
are associatedwith claims and their refutations” (p. 165). “Mathematical objects only
become examples when they are perceived as examples of something: conjectures
and concepts, application of techniques ormethods…” (Goldenberg&Mason, 2008,
p. 184). That is, examples may differ in their nature. An example of a concept such
as rational number is different in nature from an example of how to carry out a
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procedure (Zodik & Zaslavsky, 2008). Examples can also differ in their purpose
such as to illustrate how to find a common denominator of two proper fractions
for adding fractions, or to illustrate it so as to generalise the procedure to algebraic
fractions to solve more advanced equations (Zodik & Zaslavsky, 2008). Rowland
(2008)’s work informed us of possible considerations in the choice and selection of
examples; variation to be experienced by the learners in accordance to Marton and
colleagues’ (2004) Theory of Variation. Zodik and Zaslavsky (2008) also suggested
some considerations when teachers select or generate examples.

Two different use of examples in teaching were reported by Rowland (2008).
The first use is inductive—providing examples of something and the examples are
“particular instances of the generality” (Rowland, 2008, p. 150). The second use is
not inductive, but for the purpose of practice and is often referred to as “exercises”.
To illustrate this use: students learnt the procedures to find equivalent fractions and
then rehearsed and worked on the “exercise” so that they could remember it through
repetition and eventually developed fluency of the procedures. Examples used in this
way was “for practice”, also known as practice examples in that they are “vehicle
for [students] to gain fluency with the algorithm” (Rowland, 2008, p. 158).

In this chapter, we define Teacher 13’s sequence of practice examples as a care-
fully selected set of examples meant to fulfil his instructional goals. Reminded by
Zaslavsky (2019), we specify or define practice examples by referring to the goals,
“what is it an example of?”. In Teacher 13’s case, his practice examples were

1. For the purpose of practice to gain fluency by an underlying technique;
2. They are thus examples of the technique; and
3. As a set of vehicles to advance reasoning (This will be detailed in the analysis

later).

13.3 Method

13.3.1 Context

Teacher 13was identified as an experienced and competent teacher.An “experienced”
teacher is one who has taught the same mathematics course at the same level for a
minimum of five years; and “competent” selection is based on recognition by the
local professional community as a teacher who is effective in teaching mathematics.
Below, we summarise a number of factors about Teacher 13’s practices that lends
itself to an unpacking of his reasoning work:

1. Teacher 13’s repeated reference to “reasoning” in interviews articulating compre-
hensively his goals for the tasks in his instructional materials and his classroom
discourse determined our choice of Teacher 13 as a case study of mathematical
reasoning—a characteristic feature of case study.
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2. A full set of handouts (instructional material) for students use in class (hereafter
referred to as “Notes”) was developed with his colleagues before the start of the
module.

3. He constantly made references between his goals, his actual activity in class, and
his use of instructional materials. This enables us to study the interactions among
these major pieces of his instructional processes.

13.3.2 Teacher 13’s Class and Students

The class in which we recorded his teaching consisted of 20 students aged between
14 and 16. They were in their third year—akin to Year 9—of a six-year Integrated
Programme (IP). In Singapore, there are various education paths students can choose
to take after they complete six years of elementary school. Of which, students in the
IP pursues a six-year course which integrates the four-year secondary and two-year
pre-university education programmes.

13.3.3 Topic

The module that Teacher 13 taught was “Quadratic Graphs and Inequalities” over 10
lessons. The coverage includes from Ministry of Education (2012):

1. Solve quadratic equations in one variable using: (i) the general formula, (ii)
completing the square and (iii) graphical method;

2. State the conditions for a quadratic equation to have: (i) two real roots, (ii) two
equal roots and (iii) no real roots;

3. State the conditions for ax2 + bx + c to be always positive (or always negative);
and

4. Solve quadratic inequalities, and represent the solution: (i) using a graph, and
(ii) on the number line.

13.4 Data and Analysis

13.4.1 Data

The instructional materials used by Teacher 13 were mainly the Notes and questions
from the textbooks (Yeo, Teh, Loh, & Chow, 2013; Yeo et al., 2015) (as homework)
for the students. These instructional materials form the primary source of data. The
next data source are the interviews conducted with Teacher 13—one pre-module
interview before his lessons and three post-lesson interviews after three lessons he
selected (Lessons 3, 6 and 8). All interviews were video recorded. The pre-module
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interview was conducted to mainly find out Teacher 13’s instructional goals and
how he designed and planned to utilise his instructional materials to fulfil his goals.
Examples of the pre-module interview questions were:

• Please share with us some of the goals for this series of lessons. You can include
both content and non-content goals.

• Are there any specific difficulties you anticipate that some of your students may
have with some of the instructional materials?

The post-lesson interviews were conducted to find out if he had met his instructional
objectives with the instructional materials he designed and planned to use. Examples
of the questions were:

• What were the design principles you used in the instructional materials?
• What do you have in mind when you designed this/these item(s)? What learning

experience(s) do you want your students to go through?

The third source of data is Teacher 13’s enactment of his lessons in the module.
We adopted non-participant observer roles during the course of our study—one
researcher sat at the back of the class to observe Teacher 13’s lessons—for the
researcher to make relevant and specific references to his teaching actions when
pursuing certain threads during the post-lesson interviews. A video camera is also
placed at the back of the class to record Teacher 13’s actions. A total of 10 lessons
were video recorded for Teacher 13.

13.4.2 Analysis

We proceeded with our analysis illustrated in Fig. 13.1.
Stage 1: Identification of Units of Analysis of the Notes
From Teacher 13’s lessons, we noticed that the tasks, in the form of Examples, he
utilised from the Notes could be grouped into units according to the method applied
to solve them. In this paper we present detailed analysis of two units which contained
Teacher 13’s most references to reasoning goals. They are:

• Unit 1: Examples and Practice Examples 5, 6(a), 6(b), 6(c) and 6(d)
• Unit 2: Examples and Practice Examples 10, 11 and 12

Identification 
of Units of 
Analysis

Composition 
of

Chronological 
Narratives

Formation of 
Conjectures

Testing of 
Conjectures

Fig. 13.1 Analysis procedure
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We coded Teacher 13’s classroom vignettes of the respective lessons and the
responses he gave in the relevant interviews for these units of analysis. Some of the
initial codes were “reasoning”, “deducing”, “comparing” and “thinking”—words
Teacher 13 used often in his interviews and lessons. We then referred to Jeanotte and
Kieran’s (2017) conceptual model of mathematical reasoning in which they defined
mathematical reasoning as “a process of communication with others or with oneself
that allows inferring mathematical utterances from other mathematical utterances”
(p. 7). Eventually, we consolidated our coded data into three categories, “comparing”,
“justifying” and “inferring”. Comparing and justifying were taken from Jeannotte
and Kieran. We included inferring as a third category, by this we mean a conscious
guessing of another step in the deductive reasoning process. In other contexts, this is
equivalent to “deducing”; we avoid this latter term as it has a more restrictive use in
Jeanotte and Kieran (2017). These three categories will be elaborated in the findings
section to support our claim that Teacher 13 utilised his tasks to develop his students’
mathematical reasoning.
Stage 2: Composition of Chronological Narratives
For some of these selected units with related data on Teacher 13’s enactment and
interview comments, we crafted chronological narratives (CN), i.e. according to
timeline for each of them. In each CN, we integrated pre-module interview tran-
scriptions, post-lesson interview transcriptions, tasks in his Notes and his classroom
vignettes. The process for the composition of CN for Unit 1, for instance, began
when we examined his responses in a post-lesson interview. He commented that
Example 6(d) was specifically selected so that students could apply some reasoning
skills; and Example 6(c) was one that required students to be able to deduce from
the graph they would sketch. Hence, we studied the video clip of the corresponding
lesson segments carefully for the surrounding context. We noticed that the tasks—
Examples 6(c) and Example 6(d)—that required reasoning were similar to Example
5 which Teacher 13 demonstrated to his students earlier in Lesson 5. This led us to
re-examine Lessons 5 and 6 with a view of Teacher 13’s agenda in helping students
learn reasoning skills along the categories of comparing, inferring and justifying.We
consolidated the evidence and organised them chronologically in a table. Table 13.1
shows the CN for Unit 1.
Stage 3: Formation of Preliminary Design Principles related to Mathematical
Reasoning
We begin our intensive source of analysis to identify themes related to how Teacher
13 embedded reasoning in Unit 1. The themes were confirmed after several rounds
of discussions with several members of the research team and that the uncovered
design principles were supported by the data sources.
Stage 4: Testing of Preliminary Design Principles
In the final stage of analysis, we brought the design principleswe conjectured in Stage
3 and checked it against all the other CNs. Through this process, wemanaged to refine
the initial design principles into a form that contributes to theory generalisation. In
the next section, we present our findings on the processes of analysis under Stages
3 and 4 by first detailing the CN on Unit 1, followed by another CN on Unit 2.
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Table 13.1 Overview of the Chronological Narrative (CN) of Unit 1

Lesson no. Time spent Activity Data
(see Fig. 13.3 for Example 5 and 6)

1 8 min 41 s Whole Class Instruction
(Example 5 in Notes)

• Demonstrated and explained the
method to solve Example 5

• Explained that Example 5 is a case
in which the quadratic expression
cannot be factorised “very nicely”

• Presented solution using two
different methods

4 min 30 s Table-to-Table Instruction
(Example 6(a) in Notes)

• Walked around class to facilitate
students’ learning while they
worked on Example 6(a)

1 min 39 s Whole Class Instruction
(Example 6(a) in Notes)

• Presented and explained the
method to solve Example 6(a)

• Set Examples 6(b)—6(d) as
homework

2 6 min 56 s Table-to-Table Instruction
(Example 6(b) in Notes)

• Walked around class to facilitate
students’ learning while they
worked on Example 6(b)

• Encouraged students to reason and
think about their solutions

• Emphasised that students had to
present their solutions by using
formal reasoning

5 min 6 s Whole Class Instruction
(Example 6(b) in Notes)

• Stressed to students that they
should learn to solve Example 6(b)
by first understanding the
undergirding reasoning for
Example 5

• Probed students to think of
alternative solutions so that they
could compare the methods

• Encouraged students to think about
the methods they are applying

6 min 48 s Table-to-Table Instruction
(Example 6(c) in Notes)

• Walked around class to facilitate
students’ learning while they
worked on Example 6(c)

• Encouraged students to make
connections, infer, form
conjectures, justify, validate and
deduce

• Emphasised that students had to
present their solutions by using
formal reasoning

(continued)
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Table 13.1 (continued)

Lesson no. Time spent Activity Data
(see Fig. 13.3 for Example 5 and 6)

7 min 31 s Whole Class Instruction
(Example 6(c) in Notes)

• Explained the undergirding
reasoning behind Example 6(c)
which is an unusual problem

• Highlighted to students that they
could “deduce” the solution
without using the graph

2 4 min 26 s Table-to-Table Instruction
(Example 6(d) in Notes)

• Walked around class to facilitate
students’ learning while they
worked on Example 6(d)

• Encouraged students to make
sense, make connections, infer,
validate and reason

• Stressed the importance of
understanding the undergirding
reasoning in Example 6(d)

2 min 20 s Whole Class Instruction
(Example 6(d) in Notes)

• Presented and explained the
solution for Example 6(d)

39 min 49 s Post-Lesson Interview
(Lesson 06)

• Commented on his goals: Students
need to: (i) know how to write
formal reasoning; (ii) think about
what they are doing

• Commented that Examples 5 and 6
were designed to expose students
to “unusual cases”

• Mentioned that Examples 6(c) and
(d) are special cases.

• Articulated the design principles:
tasks were designed to promote (i)
thinking; (ii) reasoning

Evidences in support of these refined design principles are presented summarily in
a third unit.

13.5 Results

13.5.1 Analysis of Unit 1: Researchers’ Formation
of Conjectures

Conjecture 1: Advance one more
In Unit 1, the technique that Teacher 13 taught the students can be summarised into
these two steps:
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Step 1: Obtain the (type of) roots (e.g., factorisation, quadratic formula,
completing the square method)
Step 2: Use graphs to visualise the region that satisfy the inequalities

The technique was applied to Examples 3 and 4 (see Fig. 13.2).
To Teacher 13, Step 1 was merely a recall of the method of factorisation for all

these items; his focus was on Step 2, how the roots of the quadratic equation were
represented graphically as a visual to obtain the required regions that satisfy the
required inequalities. From Teacher 13’s post-lesson interview after Lesson 6,

The first section [Example 3 & Example 4(a), (b), (c) as shown in Fig. 13.2] is easy to
factorise [Step 1], just focus on using graphical method [Step 2]. Then advance one more…
in Example 5. Right, what happens if we cannot factorise properly [Step 1] … (Post-Lesson
Interview 2, 08:53)

Teacher 13’s “advance one more” caught our attention. Since he mentioned that
“advance one more” occurred first in Example 5, we studied the example and
contrasted it against earlier examples. Figure 13.3 shows Examples 5 and 6.

On the surface, it seemed that advance one more refers to the development of
the method (from factorisation to the quadratic formula) to find the roots to the

Example 3 Solve the inequality 2x2 – 7x + 6 < 0. 

Example 4 Solve the following inequality using a graphical approach: 

(a) x2 – 4x + 3 > 0  

(b) 3x2 – 4x – 7 < 0 

(c) 4 – x2 < 0 

Fig. 13.2 Examples 3 and 4 in the Notes

Example 5 Solve the inequality 2x2 + x – 4 > 0. 

Solution: We observe (or check) that the expression 2x2 + x – 4 is not easily factorised. 

In this case, we have to find the x-intercepts using the quadratic formula. We present 

our working in this way: 

Example 6 Solve the following inequalities, giving exact answers: 

(a) x2 + 4x – 7 > 0 

(b) 2x2 < 5 

(c) x2 + 2x + 11 > 0 

(d) 3x2 – 30x + 75 < 0 

Fig. 13.3 Examples 5 and 6 in the Notes
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quadratic equations in Step 1. Step 2 where students use graphs to visualise the
regions of the solution sets remains intact. Teacher 13’s Notes pointed out explicitly
that the expression given in Example 5 is not easily factorised (see Fig. 13.3).

Our analysis of Teacher 13’s enactment of this portion of the notes shows that
he carefully pointed out to students that Example 5 “is the case where you cannot
factorise very nicely” (Lesson 5, 25:59). Hence, an adjustment of the method to
solve the quadratic equation was needed which he demonstrated using the quadratic
formula. After finding the roots of the quadratic equation, he reverted back to Step 2
and emphasised, “… then you can do the usual [Step 2]. Everything else will follow
the previous procedure” (Lesson 5, 28:25). Our analysis of Teacher 13’s lesson
showed that the suite of examples in Example 6 was designed for students to practice
their technique to solve the quadratic inequalities. He said “Example 6 gives you
time to practice what to do when your quadratic expression is not very friendly - it
doesn’t factorise nicely. OK? So for simple ones, can you just try 6(a)”. (Lesson 05,
34:00).

It becomes clear to us that Teacher 13’s “advance one more” carried on to the
“special cases” of Examples 6(c) and 6 (d), “… 6(c) and 6(d) are special cases as
I said. … Example 4, they will say, Okay, I’m quite comfortable with the method
[technique], now these are all the unusual cases…” (Post-Lesson Interview 2, 10:04).
The special cases were situations when students usually conclude that there are no
solutions to the inequalities because Step 1 results in either no real roots (Example
6(c)) or equal roots (Example 6(d)).

Question 6(c) is a rather unusual question… your first instinct is to try to find x-intercepts,
alright? And then you realise that it doesn’t work … Now, if you are doing a quadratic
equation, and you use the formula and you see this you say, No solution. … But that’s not
the case for this inequality …. (Lesson 6, 21:51).

Through Examples 6(c) and 6(d), he expected his students to modify their technique
to solve quadratic inequalities by examining their incorrect conclusion—“no real
roots” means no solution to the inequalities—by referring them back to the graphical
representation. In other words, Teacher 13’s “advance one more”—in the case of
Example 6(c)—meant that the task required students to modify the learnt technique
further to accommodate the “no real roots” situation. In particular, the conclusion
“no real roots” in Step 1 does not prevent the use of graphical representation in Step
2 to obtain the required solution set for the inequalities.

Similarly, Example 6(d) presented yet another “special case” of “equal roots”
which required yet anothermodification in theway students should use the technique,
in this case, the graphical interpretation of 3(x - 5)2 ≤ 0. Figure 13.4 gives a brief
outline of how Teacher 13 “advance one more” in between examples:

• 6(a) → 6(b): included alternative method to solve equation
• 6(b) → 6(c): no solution in equation does not imply no solution for inequality
• 6(c) → 6(d): graphical representation for “equal roots” case

We noted that there was careful design of Examples 5 and 6. Teacher 13 was not
just using examples merely to repeat practice the same procedures; he deliberately
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Fig. 13.4 Whiteboard work of Teacher 13 for Example 6(a) to 6(b) to 6(c) to 6(d)

used the sequence of examples to “advance one more”. By this, he meant that, where
appropriate, the next example provides the technique refinement/modification: “one
more” step in the direction of a more comprehensive applicability of the technique
to cases where students would normally not consider by themselves. Thus, our first
conjecture is that Teacher 13 designed the sequence of his notes in such a way to
achieve the design principle: (1) advance the technique.
Conjecture 2: Advance more through reasoning
Our analysis of Teacher 13’s intention through his carefully selected examples in the
Notes showed that he wanted his students to see each shift in the solution strategy
through the examples and to learn to “think flexibly”.
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Alright, there are different ways to actually solve this [writes on board as he speaks]. But
‘cause yesterday’s example [Example 5 & 6(a)] is [to] use quadratic [formula], then you just
use quadratic formula, right? Have to be a little bit more flexible than that. (Lesson 6, 11:36)

… if they keep using the same method, it indicates that they are not quite thinking about
what they are doing, alright. … So I want to break them out of that mode… (Post-Lesson
Interview 2, 14:23)

In particular, fromTeacher 13’s interview,we learn that the development of reasoning
was intentionally built into the Notes: “we purposely build in a lot of reasoning type
of steps for them to do”. Teacher 13 elaborated this during an interview,

… today the focus is on the non-standard examples [step 1 cannot be factorised] … So here
is to promote reasoning in general, because here the-the basic idea they want to learn is if I
can get the sketch of the graph [Step 2], I can use the graph to deduce a solution, […] This
way we make sure that they know the thinking behind the particular graphical method [Step
2], and we put in all these parts to make sure that they are actually applying the reasoning
behind the graphical method [Step 2]. (Post-Lesson Interview 2, 22:16)

In other words, “advance one more” was done through reasoning. We observed that
for Example 5, in Teacher 13’s Lesson 6, two methods were used to identify the
roots of the quadratic expression 2x2 + x – 4 = 0 in Step 1. Figure 13.5 shows the
two methods, namely, Method 1 (quadratic formula) and Method 2 (complete the
square).

He encouraged his students to think and choose the method they prefer. This act
was intentional and engineered into the design of the Notes as shared by Teacher 13
during the interview,

So again we give them the options, we don’t tell the students, we try not to tell the students
which way to do…This way, both ways are fine for us. So we give them option—you choose
the option that you think you prefer, that you think you are more likely to succeed in. So
that’s the design principle. (Post-Lesson Interview 2, 11:10)

14
+ 12 14 − 2 > 014) − ( 116) − 2 > 014) − 3316 > 0

14 + √334 14 − √334 ) > 0 etc. 

Method 2: Complete the square 

When ,−1 ± (1) − 4(2)(−4)2(2)
   =−1 ± √334

−1 − √334 −1 + √334

−1 − √334 −1 + √334

Method 1: Quadratic formula 

Fig. 13.5 Comparing methods in Example 5
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The comparison ofmethodswas also seen in Fig. 13.4, Example 6(b) and Example
6(c). From Teacher 13’s interview “[Example 6(b)] they [are] used to illustrate that
there are other methods [Step 1] we can use.” He expected his students to compare
the various methods to find the roots in Step 1 and decide on the easier method (see
Figure 13.4). Clearly, the reasoning process of comparing was intentionally built into
some of the examples.

In the vignette for Example 6(c) presented in Table 13.2, we unpack two other
reasoning processes used by Teacher 13: justifying and inferring for students in
Group A during their seatwork.

Table 13.2 Justifying and inferring with students in Group A for Example 6 (c) Lesson 6

Line Speaker Content

1 Teacher 13: Part (c), how?

2 Student 2: Part (c) no solution.

3 Teacher 13: No solution?

4 Student 2: Cause the discriminant is negative.

5 Teacher 13: What does that mean?

6 Student 2: 0…

7 Teacher 13: But this part- this calculation is to do what? You do this calculation is to?

8 Student 2: To find the value of x.

9 Teacher 13: To find the x-intercepts right? So no solution means what?

10 Student 2: No x-intercepts.

11 Teacher 13: No x-intercepts. Correct. So what? Therefore you can still carry on and
answer this question. It just tells you there is no intercept. You are not- your
task is not to find the x-intercepts, correct? Your task is to solve this
inequality. Correct. No x-intercept. So what can you deduce from there?
[infer]

12 Student 1: It’s not touching the x-axis. [claim]

13 Teacher 13: It’s not touching the x-axis, yah. So it’s “floating”, OK, you can say that.

14 Students: [students replied simultaneously but inaudible]

15 Teacher 13: OK, so does that help you answer this question?

16 Student 2: So what? So x is more than 0, ah? [infer, claim]

17 Teacher 13: Alright, because the idea is what? If I know the graph, I should be able to
answer this inequality question right? So knowing that there’s no x-intercept,
means you know how to draw the graph. So can you draw the graph?

18 Student 2: Oh, so this is above 0. [claim]

19 Teacher 13: So, if you can draw the graph, then you can answer. What kind of x values
makes the graph greater than 0? [infer]

20 Student 3: But there’s no answer. [claim]

21 Student 4: x more than 0, ah? [claim]

22 Student 2: x above 0. [claim]

23 Teacher 13: Is that true? Ask yourself that question. Is that true? [justify]
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Table 13.3 Justifying and inferring with students in Group B for Example 6 (c) Lesson 6

Line Speaker Content

1 Teacher 13: No x-intercepts, that means? [infer]

2 Student 4: That means it’s either above- [claim]

3 Teacher 13: That means cannot touch the x-axis at all right?

4 Student 4: Yah, so it’s above the thing [claim]

5 Teacher 13: How do you know it’s above? [justify]

6 Student 5: Is it horizontal line?

7 Teacher 13: How do you know it’s above?…Wait, wait, one by one. How do you know
it’s above? [pressing for justification]

In Line 11, Teacher 13wanted the students in GroupA to infer what it meant when
there were no x-intercepts. Student 1 claimed that the graph did not touch the x-axis
in Line 12. Student 2 inferred and claimed that “x is more than 0” in Line 16. Student
2 made another claim that the graph “is above 0” in Line 18. The engagement with
reasoning does not stop here as Teacher 13 required Student 2 to justify her claim,
“Is that true?” in Line 23.

Table 13.3 presents another vignette for Example 6(c) where the two reasoning
processes, justifying and inferring, were unpacked with another group (Group B) of
students.

Here we noted that Teacher 13’s other design principle is: (2) the technique was
advanced through comparing, inferring and justifying. In the next two sections, we
present the evidence for the next two uncovered design principles.
Conjecture 3: Expose and target students’ faculty reasoning through carefully
designed examples
One of the reasons why Teacher 13 built-in reasoning opportunities through the
carefully selected examples in Example 6 was to deal with anticipated students’
misconceptions (e.g., no solution in equation implies no solution for inequality).

… or if there’s a misconception that keeps popping up, I’ll also bring them up. … Just now
this question, the one where the solution is all real values [Example 6(c)], so many of them
…will say, “Oh, no answer; cannot; no roots, because it’s square root negative 40”, and then
they want to stop there. So I have to address that point … (Post-Lesson Interview 2, 15:47)

Revisiting the vignette in Table 13.2, from Line 3, we noticed that Teacher 13 picked
up Student 2’s faulty reasoning in Example 6(c). In Line 4–6 he had Student 2
confront the faulty reasoning, and in Line 6–19 Teacher 13 addressed and corrected
Student 2’s faulty reasoning. FromTable 13.2, we see that Teacher 13 was not merely
correcting wrong technique but also the faulty reasoning underlying it. Hence, in the
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design of his Notes, he incorporated examples where he could expose the faulty
reasoning behind the wrong techniques. We therefore state that Teacher 13 utilised a
third design principle: (3) special cases to expose and target students’ faulty reasoning
undergirding the techniques they used.
Conjecture 4: Presentation of solutions to reflect reasoning
Teacher 13 was concerned about presentations of the written reasoning in a way that
is acceptable to the mathematical community and he required the students to present
their solutions very clearly. He emphasised to his students that “you have to be very
specific in your presentation so people understand what you are doing”. (Lesson 5,
25:59). For example, in Fig. 13.6, Teacher 13 showed his reasoning in arriving at the
correct solution on the whiteboard and pointed out the incorrect way of presenting
the solution for Example 5.

The working looks almost the same. [writes on board] But this is just so that you make it
very clear that, [here, in the italicised text, the teacher is telling the students how they can
write their justification] I’m not trying to solve the inequality, here. I’m only considering
what happens when it is equals to 0. So that I can draw my graph. So that statement is to
justify this set of working. So there’s no confusion. (Lesson 5, 28:49)

Reflecting on our analysis of the first unit of analysis, we noticed that the white board
appeared to be central in stringing together all the intended objectives by the teacher
as expressed in earlier stated preliminary design principle:

(4) The whole class instructional segment was used to consolidate and formalise
the reasoning in standard written form.

Figure 13.7 presents our provisional diagrammatic representational this stage of
our analyses.

−1 ± (1) − 4(2)(−4)2(2)
= −1 ± √334

When  ,−1 ± (1) − 4(2)(−4)2(2)
   =−1 ± √334

−1 − √334 −1 + √334 .

−1 − √334 −1 + √334  

Fig. 13.6 Formal reasoning in the written form



13 Sequencing of Practice Examples for Mathematical Reasoning … 265

Modify Modify 

Apply Apply Apply Apply 

Modify 
Example 6(c)

Note
Example 6(a)Example 5 Example 6(d) Example 6(b)

Step: 
1) Quadratic 

expression not 
easily factorised 
(use formula) 

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression 
not easily 
factorised 
(Several 
methods        
to locate          
x-intercepts)

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression not 
easily 
factorised (use 
formula) 

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression not 
easily factorised 
(use formula; no 
x-intercepts) 

2) Use graphs to 
select the required 
sections

Step: 
1) Quadratic 

expression 
not easily 
factorised 
(use formula;    
Only one x-
intercept) 

2) Use graphs 
to select the 
required 
sections

Reasoning  Comparing Inferring, Justifying, Comparing 

Fig. 13.7 An example of technique and reasoning applied within and across Examples 5 and 6

13.5.2 Analysis of Unit 2: Further Examination
of the Conjectures

For Unit 2, the description is deliberately brief as we zoom straight into providing
evidence on how the design principles in the previous section are supported or refined.
The technique in Unit 2 involves the following steps:

1. Obtain the (expected) roots (same as Unit 1)
2. Algebraic deduction together with graphs to solve the inequality

13.5.3 Advance the Technique

Figure 13.8 shows the sequence of examples in this second unit of analysis. The
preamble in theNotes shows thatUnit 2was intended to continue to develop students’
techniques in solving quadratic inequalities using “algebraic approach”.

In Step 2, Example 10 (see Fig. 13.8), students “use the algebraic deduction to
solve the inequality” by considering two cases for (2x − 3)(x − 2) > 0.

Case 1: Make logical connections between (2x − 3) > 0 and (x − 2) > 0 and
with the aid of number line conclude that x > 2.
Case 2: Make logical connections between (2x − 3) < 0 and (x − 2) < 0 and
with the aid of number line conclude that x < 3

2 .

Putting the conclusions of the two cases together, x > 2 and x < 3
2 , and with the

aid of number line, students solve the inequality 2x2 − 7x + 6 > 0 when x < 3
2 or

x > 2. As indicated in the Notes, the inequality stated in Example 10 is identical to
Example 1. The cubic expression in Example 11 required the students to extend the
method of factorisation (Step 1) into products of linear and quadratic expression
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4. Solving Quadratic inequalities Using an Algebraic Approach 

It is possible to solve quadratic inequalities using a purely algebraic approach. However, this can be 

quite tedious, so we will normally not use such a method except for more complex problems where 

a simple graphical approach cannot be applied directly. 

Example 10 Solve the inequality 2x2 – 7x + 6 > 0 using an algebraic method. 

Solution: This is the same problem as that in Example 1. Compare and contrast the 

graphical method and the algebraic method. 

Step 1: We begin by factorising the expression 2x2 – 7x + 6: 

2x2 – 7x + 6  > 0 

 (2x – 3) (x – 2) > 0 

Step 2: Use the algebraic deduction to solve the inequality:  

Example 11 By factorising the expression x3 – x2 + x – 1, solve the inequality x3 – x2 + x – 1 < 0 

Example 12 By completing the square, show that 4x – x2 – 7 is negative for all real value of x.

Hence solve the inequality

Fig. 13.8 Examples 10, 11 and 12 in the instructional materials

x3−x2 + x−1 = x2(x−1) + (x−1) = (x−1)
(
x2 + 1

)

and subsequently apply a similar argument as Example 10 for Step 2. For Example
12, in Step 1, the numerator 3x2 +2x−1 can be factorised easily into (3x – 1)(x + 1)
but the denominator cannot be factorised into linear factors with rational coefficients.
Hence, flexibility in thinking in the use of the method is required - completing the
square was used instead. For Step 2, applying the algebraic approach, the numerators
and denominators of 3x2+2x−1

4x−x2−7 need to be considered separately (refinement and
development of algebraic method).

• 10 → 11: extend technique to cubic inequalities
• 11 → 12: extend technique to rational inequalities

Examples 10, 11 and 12 thus supports Conjecture 1.

13.5.4 Advance Technique Through Comparing, Inferring
and Justifying

As reflected in the instructions for Example 10 (see Fig. 13.8), the reasoning process
of comparing was intentionally built into Example 10 for students to compare and
contrast the graphical and the algebraic method. Teacher 13’s video Lesson 8 showed
him comparing the two methods (see Fig. 13.9).
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Example 10   Method 1: Graphical Method 

Example 10  Method 2: Algebraic Method 

From the graph,

when .

32 2

                                                        when  or  

∴ Case I:   AND  32 AND  

2
32 2 

∴ Case II: ( ) < 0  AND  ( ) < 032 AND  

32
32 2

Fig. 13.9 Comparing methods in Example 10

We also observed his use of inferring to develop the algebraic method through
Example 10 (see Table 13.4).

It is clear that Teacher 13 had reasoning in mind for Examples 11 and 12:

Yeah so, I brought them to the algebraic reasoning for this, showed them how to obtain a
solution andmain thrust of the message is that we try not to use this method [Step 2] for basic
quadratic inequalities,… But why we are talking about these kind of reasoning is because
of certain questions leading to these two [referred to Examples 11 and 12]. So these are
considered special cases. So, here… After they factorise one of these factors it’s like, ‘x2

+ 1’ I think. Ah, so have to guide them through the reasoning of if ‘x2 + 1’ is positive,
therefore the other factor has to be negative and so on. … (Post-Lesson Interview 3, 05:21)

Examples 11 and 12 were the examples in the Notes that served as vehicles to pull
along the development of mathematical reasoning as the technique was advanced.

Inferring was observed during the discussion of Example 11 in Teacher 13’s
Lesson 8. For example, during the class seatwork, Teacher 13 led his students to
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Table 13.4 Inferring for Example 10 in Lesson 8

Line Speaker Content

1 Teacher 13: Suppose I don’t want to draw the graph for comparison [(2x – 3)(x – 2) > 0],
for your knowledge, what can we do? So deduction here ah, going to ask
you, I have two numbers, these are two things right, two object multiplied I
get positive number, greater than zero.What can you say about these two
factors? [inferring]

… … …

5 Teacher 13: Both negative. OK so if I wanted to use an algebraic method, what I am
going to deduce here? So I have Case 1, this (2x – 3) is greater than zero and
this (x – 2) is greater than zero, alright. Or Case 2: Both negative. Alright, so
this is carry on to reason OK, that if both are positive, each of these
inequalities I can solve very quickly. [writes “therefore x > 3/2 and x > 2”]
OK, so next I am going to ask you, if something must be greater than two, at
the same time must be greater than 3/2, then what condition can combine
these two things? [inferring]

Table 13.5 Justifying and inferring for Example 12 in Lesson 8

Line Speaker Content

1 Teacher 13: Alright once you are able to justify that the expression is negative, right, then
you want to ask yourself, “Then, how do I complete the rest of the
question?” So I know 4x−x2−7 is negative, OK then so what? [inferring]

express the cubic expression in Example 11 as (x − 1)(x2 + 1). Next, he asked “…
Then what can you deduce about those two factors?” so that his students can infer
the polarity of the two factors for the cubic expression to be non-positive.

Inferring as well as justifying were observed in the discussion of Example 12 in
Lesson 8. For example, in Table 13.5, Teacher 13 required his students to justify
that 4x−x2−7 (the denominator) is negative. He also required his students to infer
how knowing the denominator to be negative for all real values of x contribute to the
overall polarity of 3x2+2x−1

4x−x2−7 .
Other incidents of justifying were also observed in Example 12, e.g., as Teacher

13 interactedwith a group of students (GroupC). Teacher 13 said to the group, “What
makes that for sure negative—may not be, right?… must have a stronger argument
than that” (Lesson 8, 21:54). And again with students in Group C, “so how do you
justify this, no matter what must be negative?” (22:38).

The built-in reasoning features of comparing, justifying and inferring to advance
the technique were evident in Examples 10, 11 and 12, thus supporting, Conjecture
2.
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Table 13.6 Example 11 in Lesson 8

Line Speaker Content

1. Teacher 13: OK, if you have a negative number, you square
root it is still pos- this square, alright x2, OK,
don’t make this mistake ah, don’t say x2 is
always positive, because it can also be zero.
[Exposing the faulty reasoning] Alright. So
reason out, since, x2 can be zero or positive (x2≥
0), cannot be negative, x2+ 1 has to be positive,
for all real x. [Addressing the faulty reasoning]
OK. So I have this factor, x2+ 1, it is always
positive.What can I deduce? Think along what
you [just] told me just now. So if this is always
positive, what is the deduction?…

13.5.5 Expose and Target Students’ Faulty Reasoning
Through Carefully Designed Examples

During the whole class discussion in Lesson 8, we observed Teacher 13 exposing
and addressing students’ faulty reasoning undergirding the technique they used for
Example 11, thus supporting Conjecture 3 (see Table 13.6).

13.5.6 Consolidate and Formalise Reasoning in Written
Form Through Whole Class Instructional Segment

When the students had difficulty writing the justification for Example 12, Teacher 13
referred students to his written justification on the board at the end of each example—
thus, the importance of whole class discussion and Teacher 13’s formal written
reasoning on the board work to consolidate and support the development of method
and reasoning through the sequence of examples. This supports Conjecture 4. In the
last post-lesson interview, Teacher 13 said that “we need to train them how to write,
how to justify that x2 + 1was positive [Example 11]” (25:04) and “I try to guide them
how to write the justification”. Teacher 13 was also seen to emphasise the importance
of communicating written reasoning clearly for Example 12 “and present properly”
(Lesson 8, 20:49).

Figure 13.10 summarises the technique and reasoning applied within and across
Examples 10, 11 and 12 from our analysis of Unit 2.

We present the findings of the third unit in summary form in Appendix A.
Figure 13.11 summarises the four design principles presented in this paper.
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Notes
Example 11 Example 10 Example 12 

Apply Apply

Modify Modify 

Reasoning  Comparing Inferring, Comparing, Justifying 

Step 
1) Factorise quadratic 

expression 
2) Use algebraic deduction  

to solve quadratic 
inequalities 

Step 
1) Factorise cubic 

expression 
2) Use algebraic 

deduction  to solve 
inequalities 

Step 
1) Factorise rational expression; 

completing the square; 
establish polarity  

2) Use algebraic deduction  to 
solve quadratic inequalities 

Fig. 13.10 An example of technique and reasoning applied within and across Examples 10, 11 &
12

(1) Deliberate use of examples to advance technique  

(2) Advance technique through comparing, inferring and justifying 

(3) Special cases to expose and target students’ faulty reasoning undergirding the techniques they 

used 

(4) Consolidate and formalise the reasoning in standard written form through whole class 

instructional segment 

Fig. 13.11 Summary of the four design principles

13.6 Discussion

As shown in the analyses, the design of practice examples involves a complex inter-
action among the sequence of practice examples, reasoning and explication of the
reasoning in Teacher 13’s lessons. Reasoning was not merely an afterthought or add-
on to the sequencing of examples in Teacher 13’s Notes. He arranged his sequence
of examples in such a way so that not only the technique of solving inequalities was
developed; it was also amenable to reasoning moves supporting each tweak of the
technique. He wanted students to reason along the whole trajectory of “twists and
turns” from one example to the next. They were intended for students to advance the
technique to increase their flexibility and mathematical reasoning as they practised
the 2 steps in the technique.

Repeatedly, Teacher 13 mentioned that helping the students to think flexibly was
his explicit goal of instruction. By this, he meant that as the students work through
the examples, they would learn beyond a direct application of technique. Instead,
they were expected to attend to necessary modifications to the technique and thus
adapt flexibly through reasoning to suit the change in each proceeding example.
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But reasoning was not merely embedded implicitly with the design of the Notes;
it was also explicated overtly as an instructional goal for the students during the
lessons. When they worked on the examples during seatwork, Teacher 13 repeatedly
pressed students to reason out their steps. He drew on students’ “raw reasoning”—
including faulty reasoning—as he ledwhole class discussions following the seatwork
to demonstrate sound mathematical reasoning in final written form. In the process of
completing the examples, students were expected to develop their ability to attend to
alternative solutions and utilise them flexibly in subsequent examples, in accordance
to Watson and Mason (2006). Comparison of strategies were also encouraged both
within an example and across examples. What came through strongly in the case of
Teacher 13 was his use of reasoning as a kind of glue to provide adhesive in these
ways:

1. Form the undergirding fallback to link the story of technique-tweaking across
the examples he designed in his Notes;

2. Link the seatwork component of his classroom practice to the whole class discus-
sion segment. In particular, he used students’ raw reasoning attempts during
seatwork as ingredients to present (and correct) reasoning in a way that sets the
standard of reasoning norms that is acceptable to the community;

3. Binds the instructional materials closely with the actual classroom enactment—
interaction between task design and pedagogies (Sullivan, Knott, & Yang, 2015).

For Point 3, we noted that it is not uncommon in actual classroom teaching of
mathematics to find incoherence between the design of instructional materials and
classroom enactment. For example, it is conceivable that the designed instructional
materials and classroom enactment are driven by divergent goals so that classroom
work goes down a different path from the intended trajectory embedded in the mate-
rials. In the case of Teacher 13, as his central focus was on reasoning, both the Notes
and the classroom practices are drawn together to build around the central coherence
of the reasoning process. The result was a tight materials–classroom link that was
strengthened through a heavy emphasis on rigorous reasoning. Evidence of this tight
link can be found in almost every “movement” across adjacent pairs of examples
(e.g., Example 5 → Example 6(a)). When we combine the insights with the find-
ings (they are also represented in Figs. 13.7, 13.10 and 13.11), we construct a visual
depiction of Teacher 13’s design work as shown in Fig. 13.12.

The centrality of mathematical reasoning in Teacher 13’s plan and action serve as
an organising frame to tie the various instructional pieces together. In other words,
the model as illustrated in Fig. 13.12 has the potential of depicting teachers’ ways of
organising and connecting instructional components that matter to them—in the case
of Teacher 13, it demonstrated his organisation around mathematical reasoning. In
identifying the “glue” and the key adherents around it, we can begin to characterise
teacher’s fundamental instructional methods. A discussion of alternative models—
around different glues and adherents—can be a productive way forward in teachers’
inquiry towards quality mathematics teaching.
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Fig. 13.12 An illustration of technique and reasoning applied across sequence of examples

13.7 Conclusion

Developing students’ mathematical reasoning is a core aspect of teaching and
learning the mathematics classrooms (Ball & Bass, 2003; Boaler, 2010). To promote
students’ mathematical reasoning, students need to be provided challenging learning
environments instead of lessonswhere students just solve exercises usingwell-known
procedures (Mata-Pereira & Ponte, 2017). However, suitable tasks are not enough
to ensure that students develop mathematical reasoning (Ball & Bass, 2003). It can
thus be challenging to design tasks that place reasoning as its ostensible goal where
the task must be just right to ensure that students develop reasoning. It is therefore,
important to know the explicit task design moves which lead students to engage and
advance in mathematical reasoning, and in what ways they may be used in the class-
room. Teacher 13’s case places reasoning as the centre piece (Fig. 13.12), as such,
it illuminates how sequences of practice examples could be designed and enacted
through careful and informed decisions to develop and advance students’ reasoning.
This paper, therefore, can provide the mathematics education research community
another perspective at designing tasks.

Appendix A

Third Unit of Analysis
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