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Series Editors’ Introduction

The sixth volume of the book series Mathematics Education: An Asian Perspec-
tive, entitled,Mathematics Instructional Practices in Singapore Secondary Schools,
edited by Berinderjeet Kaur and Yew Hoong Leong, is an outcome of a research
project. The project examined how mathematics teachers enacted the school
mathematics curriculum in Singapore secondary schools.

How have mathematics teachers in Singapore secondary schools been narrowing
the gap between high and lowperformers, and howhasSingaporemanaged to steadily
improve the performance of their lower performing students, as evidenced from
recent PISA scores? This volume provides much food for thought by bringing to the
fore the “how” and “why” with detailed explanations, in particular how experienced
and competent teachers in Singapore secondary schools engage their students across
the spectrum of academically low performing students to the high ability ones.

As noted by Professor Hung, in the foreword, written in a clear and engaging style,
the chapters embedded in this volume describe and discuss the “DNA” of mathe-
matics classrooms as practised in Singapore. The authors show how this “DNA”
of sound mathematics instruction occurs, with instructional scaffolding within the
work assignments given to students to engage in. On the surface, these instructional
“DNA sequences” appear as “drill and practice”, but below the surface, these “DNA
sequences” shows a sophisticated interweaving of mathematics problems/concepts
which build upon each other, and which scaffolds conceptual understanding, yet
achieving procedural fluency. Not all students are able to master these sequences as
quickly as others, and this volume also illustrates and discusses how teachers teaching
students with lower achievement scores can be motivated by teachers who give them
positive confidence attitudes in tackling mathematics concepts and problem solving.

There is no doubt that the volume provides a rich source of information and
analyses from a scholarly insider’s view. This volume adds to the availability of
knowledge about mathematics education, in a high performing nation in Asia for the
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vi Series Editors’ Introduction

international audience. We hope researchers will find it a valuable resource, and for
all, an enjoyable read.

Singapore, Singapore
Quezon City, Philippines

Berinderjeet Kaur
Catherine Vistro-Yu



Foreword

Singapore Mathematics is a well-known brand. Singapore Mathematics has been
exported to countries such as the United States, the United Kingdom, Canada, Israel,
and the Philippines. Thus, it comes as no surprise that this is a long awaited volume
on instructional practices in mathematics classrooms in Singapore. Singapore has
consistently performed well on TIMSS and PISA benchmarks whether in math-
ematics or in problem solving over the last decade. However, these reports have
largely described and discussed the “what” or state of affairs locally. They do not
delve deeply into the “how” and “why” local students perform well instructionally.

How have our teachers been narrowing the gap between high and low performers,
and how has Singapore managed to steadily improve the performance of our lower
performing students, as evidenced from recent PISA scores? This volume aims
to answer all these questions by bringing to the fore the “how” and “why” with
detailed explanations, in particular how our experienced and competent teachers in
instructional settings engage their students across the spectrum of academically low
performing students to the high ability ones.

Perhaps the most pertinent question concerning Singapore Mathematics is: what
are the “secrets” of good mathematics instruction? In this volume, the authors
“unveil” these “secrets” by delving into detailed analysis of instructional moves
by teachers and with students that are examined and documented within the enacted
curriculumand not just the planned curriculum.Teachers are able to enact the planned
curriculum in sophisticatedmoves amidst a classroom of students which are typically
above a class size of 30. This is achieved by a combination of good grounding philoso-
phies in conceptual understandings, good instructional moves made in classrooms
that engage the learners, and well-designed instructional resources (both adopted
within class time and also as homework).

Written in a clear and engaging style, the chapters embedded in this volume
describe and discuss the “DNA” of mathematics classrooms as practised in Singa-
pore. The authors show how this “DNA” of sound mathematics instruction occurs,
with instructional scaffolding within the work assignments given to students to
engage in. On the surface, these instructional “DNA sequences” appear as “drill
and practice”, but below the surface, these “DNA sequences” shows a sophisticated
interweaving of mathematics problems/concepts which build upon each other, and
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viii Foreword

which scaffolds conceptual understanding, yet achieving procedural fluency. Not all
students are able to master these sequences as quickly as others, and this volume
also illustrates and discusses how teachers teaching students with lower achievement
scores can be motivated by teachers who give them positive confidence attitudes in
tacking mathematics concepts and problem solving.

The Singapore system is renowned for its stellar performances by students in
Mathematics. This volume not only contains the Practice that is found in class-
rooms, it shows the Research that goes alongside it. The Research-Practice Nexus
is manifested by the teachers’ abilities both in mathematics concepts, design for
learning, and the enacted execution which involves assessment for learning feed-
back cycles to students. Teacher learning in professional development and research
is an integrated part of the whole process. NIE, as the national teacher education and
learning institution, plays a significant role in coordinating all of the above efforts,
actualising the research-practice nexus. Singapore Mathematics is thus the orches-
trated result of the cumulation of efforts by researchers, teachers, teacher leaders,
and the organisations that make up the teaching and learning ecology in Singapore,
and this volume brings together a representative team to provide a comprehensive
review of Singapore Mathematics as it is currently practiced in schools.

Professor David Wei-Loong Hung
Dean, Office of Education Research

National Institute of Education, Nanyang
Technological University, Singapore, Singapore



Preface

The purpose of this preface is to provide some information overview that will help
the readers better appreciate the coherence of this book. When you come across
some terms while reading particular chapters that you are unfamiliar with, we advise
that you first return to this preface—there is a high chance that you may get some
immediate pointers here.

Throughout the book, there are references to the various courses of study at
the secondary levels in Singapore: Integrated Programme (IP), Express, Normal
(Academic) (N(A)), and Normal (Technical) (N(T)). Details of these streams can
be found in Sect. 1.2.2 in Chap. 1. In this first chapter, there is a broad sketch of
the Singapore mathematics curriculum. International readers would also be familiar
with the pentagonal representation of the curriculum framework as shown in Fig. 1.2.
A number of the subsequent chapters make references to this pentagonal diagram.
In particular, each of Chaps. 4–8 focuses on one side of the pentagon—Concepts,
Skills, Metacognition, Attitudes, Processes—respectively.

There are also repeated references in the chapters of Teacher X (where X is an
integer between 1 and 30, inclusive). An overview of the mathematics topic and the
duration of instruction for each of these teachers is found in Table 2.3 in Chap. 2.
This is a chapter to come back to when the reader comes across cursory mentions
about Phases of the project, the 30 experienced and competent teachers, the survey,
etc. in the later chapters and wishes to locate these pieces of information or data
within the overall methodological approach undertaken in the project.

We have sequenced the chapters in this book according to this flow of thought:
Chap. 1 gives the international reader a broad overview of Singapore education
system and the Singapore mathematics curriculum; Chap. 2 focuses on the project
from which the rest of the findings in the subsequent chapter draw upon; Chap. 3
provides a summary of the findings of the project centring around “the instructional
core”; Chaps. 4–8 report on classroom enactment of the Singapore mathematics
curriculum along each of the “sides” of the pentagon representation; Chap. 9 focuses
in particular on the “Mathematics Talk” of the teachers; although—as the title of
the book indicates—the scope of this volume is on the instructional practices of
teachers, we think it appropriate to include a snippet from students’ perspective in
Chap. 10. Chaps. 11–14 shift the object of inquiry to “instructional materials” as a
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x Preface

way to study enactment. Chap. 15 addresses a topic which is of ongoing interest—
the use of technology in teaching mathematics. Chaps. 16 and 17—the former from
the “outsider” perspective and the latter looking from the “inside”—round up the
volume by taking a more reflective stance as the authors seek to bring the findings
of previous chapter together.

For a volume of this size, we understand that a typical reader might not read from
cover to cover. So we provide here some guidelines for readers with different starting
points of interest.

“I wish to know the most fundamental core of Singapore mathematics teachers
on which they build other features of instructional practice”: Start with Chap. 3 on
the “instructional core”; you may then zoom-in to other characteristics of practice
build around this core.

“I wish to know what matters most to Singapore mathematics teachers”: Start by
reading Chaps. 16 and 17. You may find specific areas of interest that will lead you
to other chapters in the volume.

“I have never stepped into a Singapore mathematics classroom before. I wish to
be able to envisage how teachers carry out their lessons”. Start with the case studies
reported in Chaps. 8, 13, or 14. Some specifics of these cases may link you to other
features of the project.

Or, simply browse the content page and look for titles of the chapters that catch
your attention. Start with these first—hopefully, you will be led from one chapter to
the next naturally as your interest follows the coherent narrative in this book.

Enjoy the read!

Singapore, Singapore Berinderjeet Kaur
Yew Hoong Leong
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Chapter 1
Overview of the School System
and School Mathematics Curriculum
in Singapore

Berinderjeet Kaur and Yew Hoong Leong

Abstract This chapter introduces the school system and school mathematics
curriculum in Singapore. A brief overview of the system of schooling from the
primary to the secondary years is provided. It also introduces the general features of
the school mathematics curriculum that are relevant for one to appreciate the enact-
ment of it particularly in the secondary schools that unfolds in Chapters 3–15. The
framework of the school mathematics curriculum that has been steadfast since 1990
is elaborated. In addition to the aims and goals of the school mathematics curriculum
the interconnected nature of mathematics courses that cater to the diverse abilities of
students in the primary and secondary schools is also described. Lastly, the achieve-
ment of Singapore students in benchmark studies such as Trends in International
Mathematics and Science Study (TIMSS) and Programme for International Student
Assessment (PISA) is briefly reviewed.

Keywords School system · School mathematics curriculum framework ·
Syllabuses · TIMSS · PISA · Singapore

1.1 Introduction

Singapore is an island, with an area of 719.1 square kilometres. The population is
approximately 5.5 million of which more than one million are foreigners working
in the country. The GDP per capita as of December 2019 was Singapore Dollars
$81,500 (which is the equivalent of 58,680 USD or 52, 160 Euro based on the
rates of currency exchange on 22 June 2020). The two largest budget items of the
government expenditure are Defence and Education, respectively. It is apparent that
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2 B. Kaur and Y. H. Leong

people are the only natural resource of Singapore and the nation spares no effort to
actualize its simple objective of education that is:

… to educate a child to bring out his greatest potential so that he will grow into a good man
and a useful citizen. (Lee, 1979, p. iii)

In Singapore, education is also a key enabler of social mobility and the system
provides equal opportunity for every child by:

● ensuring that no child is deprived of educational opportunities because of their
financial situations;

● leveraging on the school system to provide more support for families from poorer
backgrounds;

● investing in pre-school education targeted at children with families with poorer
backgrounds; and

● investing in levelling up programmes in primary schools that attempt to level up
academically weaker students in both English and Mathematics, so as to improve
their foundations for future learning (Heng, 2012).

In Singapore, education for primary, secondary and tertiary levels ismostly supported
by the state.All institutions, private andpublic,must be registeredwith theMinistry of
Education (MOE). English is the language of instruction in all public schools and all
subjects are taught and examined inEnglish except for the “MotherTongue” language
paper. While “Mother Tongue” generally refers to the first language internationally,
in Singapore’s education system it refers to the second language as English language
is the language of schooling and taken as a first language. Education takes place
in three stages: “Primary education”, “Secondary education” and “Post-secondary
education”. Detailed andmost current information on Singapore’s Education System
is available at https://www.moe.edu.sg/. The following sections provide the reader
with briefs about the school system and school mathematics curriculum.

1.2 The School System

1.2.1 Primary School

In Singapore, students start primary school in the year they turn 7 years of age. The
school year in Singapore starts in the month of January. Every child receives a 6 year
compulsory primary school education made up of a 4 year foundation stage and a
2 year orientation stage. The primary school curriculum provides children with a
strong foundation in subject disciplines such as languages, humanities and the arts
and mathematics and science; knowledge skills focussing on thinking and communi-
cation skills; and character development. Subject-based banding begins in Primary 5
and continues till Primary 6. It provides greater flexibility for children as they can take
a combination of standard and/or foundation subjects depending on their strengths.

https://www.moe.edu.sg/
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This helps the child focus on and stretch his potential in the subjects (standard) he is
strong in, while building up the fundamentals in the subjects (foundation) in which
he needs more support. For foundation, subjects support is available in the form of
smaller class size, where teachers focus on helping students close gaps in their deficits
and progress at a pace that is suited to their needs. The decision to take a foundation
subject is often based on a child’s achievement in the subject at the end of Primary
4 with close consultations by a school and the parents/guardians of the child. At the
end of 6 years of primary school, students take the Primary School Leaving Exam-
ination (PSLE). The subjects tested in the PSLE are English Language/Foundation
English Language, Mother Tongue Language/Foundation Mother Tongue, Math-
ematics/Foundation Mathematics and Science/Foundation Science. They may also
take an optional subject that is Higher Mother Tongue Language. Generally, students
who take the Foundation subjects progress to the Normal (Technical) course of study
while the rest progress to the Express course and the Normal (Academic) course in
secondary school.

1.2.2 Secondary School

Following 6 years of primary schooling, learning at secondary schools is tailored to
different abilities. The PSLE is a placement examination. The score obtained by the
student in the PSLE and other indicators such as special talent and/or interest helps
teachers and parents guide students in taking an appropriate course of study at a
secondary school. There are three courses of study at the secondary school. They are
the Express Course (including the Integrated Programme (IP)), Normal (Academic)
(N(A)) Course and theNormal (Technical) (N(T)) Course. Students who are academ-
ically the most able are in the Express course while the least academically able ones
are in the Normal (Technical) course. The academically average ability students
are in the Normal (Academic) course of study. Table 1.1 shows the enrolments of
Secondary 1 students by course of study in the past 5 years (2014–2018).

It is apparent from Table 1.1, for the period 2014–2018, that the percentage of
students in the Express course of study ranged from 62.2 to 64.0. The percentage
of girls in the course of study ranged from 50.8 to 51.8. For the same period, the
percentage of students in the N(A) and N(T) courses ranged from 23.0 to 25.4 and
12.4 to 13.1, respectively. The percentage of girls in the N(A) and N(T) courses
ranged from 45.7 to 47.9 and 37.1 to 39.8, respectively.

While a studentmay be initially placed in a particular course based on his ability to
cope with the learning pace and style, there are opportunities at every stage for him or
her tomake a lateral transfer to another course if it is more suited to his or her interests
and abilities. Although it is possible for students to switch between courses of study
at Secondary 1–3 levels, it is more common for students in Secondary 1 to switch
courses of study at Secondary 2 level. Usually students from the Normal (Academic)
course switch to the Express course but in some rare instances the reverse also does
happen, i.e. students from the Express course go onto the Normal (Academic) course
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Table 1.1 Secondary one enrolment by course (2014–2018)

Course of study Sex 2014 2015 2016 2017 2018

Express All N
(%)

27,490
(64.0)

26,736
(63.3)

24,613
(62.2)

24,475
(62.5)

24,432
(62.5)

Female N
(%)

13,963
(50.8)

13,841
(51.8)

12,568
(51.1)

12,471
(51.0)

12,575
(51.5)

Normal
(Academic)

All N
(%)

9,873
(23.0)

9,972
(23.6)

10,033
(25.4)

9,559
(24.5)

9,663
(24.7)

Female N
(%)

4,713
(47.7)

4,556
(45.7)

4,795
(47.8)

4,576
(47.9)

4,575
(47.3)

Normal
(Technical)

All N
(%)

5,606
(13.0)

5,509
(13.1)

4,904
(12.4)

4,948
(12.7)

4,991
(12.8)

Female N
(%)

2,080
(37.1)

2,191
(39.8)

1,899
(38.7)

1,859
(37.6)

1,914
(38.3)

Total All N
(%)

42,969
(100)

42,217
(100)

39,550
(100)

38,982
(100)

39,086
(100)

Female N
(%)

20,756
(48.3)

20,588
(48.8)

19,262
(48.7)

18,906
(48.5)

19,064
(48.8)

Source of data: education statistics digest (MOE, 2015, 2016, 2017, 2018a, 2019)

in Secondary 2. Students can also take specific subjects at an academically-higher
level in upper secondary. For example, if a student is in the N(T) course, he or she
may be able to take some subjects at N(A) level. Figure 1.1 shows an overview of the
pathways and possible lateral transfers among the courses of study. As Singapore’s
education system is continuously evolving, a detailed and most up to date outline of
the pathways is available at https://www.moe.edu.sg/.

From Fig. 1.1, it is also apparent that students in the Express Course of study
take the General Certificate of Education (Ordinary Level) (GCE O-Level) exami-
nation after 4 years of secondary schooling. However, students who are in the IP,
which provides an integrated 6 year Secondary and Junior College education, do
not take the GCE O-Level examination. Their 6 years of schooling culminates in
General Certificate of Education (Advanced Level), International Baccalaureate or
other diploma qualifications. The IP is for academically strong students who can
benefit from programmes that provide broader learning experiences. The IP aims to
stretch their potential in non-academic aspects that are beyond the formal academic
curriculum. Schools that offer the IP admit students in Secondary 1. Students in the
Express Course can also join in the IP at Secondary 3.

Students in the N(A) course of study take the General Certificate of Educa-
tion (Normal(Academic) Level) (GCE N(A)-Level) examination after 4 years of
secondary schooling. Based on their results in the GCE N(A)-Level examinations
they may continue with another year of secondary school and take the GCE O-
Level examination at the end of their fifth year in a secondary school or continue
with their post-secondary education at a polytechnic or Institute of Technical Educa-
tion (ITE). Students in the N(T) course of study take the General Certificate of

https://www.moe.edu.sg/
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Fig. 1.1 An overview of the pathways and possible lateral transfers among the courses of study

Education (Normal(Technical) Level) (GCE N(T)-Level) examination after 4 years
of secondary schooling. Based on their results in the GCE N(T)-Level examinations
they may continue with another year of secondary school and take the GCE N(A)-
Level examination at the end of their fifth year in a secondary school or continue
with their post-secondary education at ITE. In brief the:

● Integrated Programme (IP) is a 6-year course that leads to the GCE A-Level
examination or International Baccalaureate.

● Express is a 4-year course that leads to the GCE O-Level examination.
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● Normal (Academic) is a 4-year or 5-year course that leads to the GCEN(A)-Level
examination in Year 4 and, for eligible students the GCE O-Level examination in
Year 5.

● Normal (Technical) is a 4-year course that leads to the GCE N(T)-Level
examination.

As shown in Fig. 1.1, there are diverse pathways for students of all abilities to realise
their potential and attain desired qualifications.

1.3 School Mathematics Curriculum

Mathematics is a core subject of the school curriculum across the primary and
secondary years of schooling. A detailed history of the school mathematics
curriculum is available in Kaur (2019). In the following sub-sections we briefly
introduce the framework of the school mathematics curriculum that was developed
in 1990, and salient features of the primary school and secondary school syllabuses.

1.3.1 Framework of the Singapore School Mathematics
Curriculum

The central focus of the mathematics curriculum across the primary and
secondary schools is the development ofmathematical problem-solving competency.
Supporting this focus are five inter-related components—concepts, skills, processes,
metacognition and attitudes. The framework, shown in Fig. 1.2, has been steadfast
for the last three decades (MOE, 2018b).

According to the MOE (2012, 2018b) syllabus documents problems may come
from everyday contexts or future work situations, in other areas of study, or within
mathematics itself. They include straightforward and routine tasks that require selec-
tion and application of the appropriate concepts and skills, as well as complex
and non-routine tasks that requires deeper insights, logical reasoning and creative
thinking. General problems solving strategies, e.g. Polya’s four steps to problem
solving and the use of heuristics, are important in helping one attempt non-routine
tasks systematically and effectively.
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Fig. 1.2 Singapore school mathematics curriculum framework (MOE, 2018b, p. 10)

1.3.2 Primary Mathematics Curriculum

The aims of the primary mathematics curriculum are for students to:

● acquiremathematical concepts and skills for everydayuse and continuous learning
in mathematics;

● develop thinking, reasoning, communication, application andmetacognitive skills
through a mathematical approach to problem solving; and

● build confidence and foster interest in mathematics.

The primary mathematics syllabus assumes no formal learning of mathematics.
However, early numeracy skills such as matching, counting, sorting, comparing and
recognising simple patterns are useful in providing a good grounding for students
to begin learning at Primary 1 (P1). The mathematics syllabus for all students from
Primary 1 to Primary 4 (P1–4) is the same (MOE, 2012). However, in Primary 5
and Primary 6 (P5–6) there is differentiation in the content for Mathematics and
Foundation Mathematics. The P5–6 mathematics syllabus continues the develop-
ment of the same in P1–4, while the P5–6 Foundation Mathematics syllabus revisits
some of the important concepts and skills in the P1–4 syllabus. The new concepts
and skills introduced in the Foundation Mathematics is a subset of the Mathematics
syllabus. Figure 1.3 shows content for Mathematics and Foundation Mathematics at
the Primary 5 level for the topic Decimals.
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Primary 5 - Decimals
Mathematics Foundation Mathematics

1.1 multiplying and dividing decimals (up to 
3 decimal places) by 10, 100, 1000 and 
their multiples without calculator

1.2 converting a measurement from a smaller 
unit to a larger unit in decimal form, and 
vice-versa
 kilometres and metres
 metres and centimetres
 kilograms and grams
 litres and millilitres

1.3 solving word problems involving the four 
operations 

1.1 notation, representations and place values (tenths, 
hundredths, thousandths) 

1.2 comparing and ordering decimals 
1.3 converting decimals to fractions
1.4 converting fractions to decimals when the 

denominator is a factor of 10 or 100 
1.5 rounding decimals to

 the nearest whole number 
 1 decimal place 
 2 decimal places

2.1 adding and subtracting decimals (up to 2 decimal 
places) without calculator

2.2 multiplying and dividing decimals (up to 3 decimal 
places) by 10, 100, 1000  

2.3 converting a measurement from a smaller unit to a 
larger unit in decimal form, and vice-versa
 kilometres and metres
 metres and centimetres
 kilograms and grams
 litres and millilitres

2.4 solving word problems involving addition and 
subtraction

Fig. 1.3 An extract of content for decimals for primary 5 mathematics and foundation mathematics
(MOE, 2012)

It is apparent from Fig. 1.3 that for P5 Foundation Mathematics syllabus items
1.1–2.1 are part of the P4 mathematics syllabuses that are re-visited and items 2.2–
2.4 are a subset of the P5Mathematics syllabus. Note that in item 2.2 the Foundation
Mathematics students are allowed to use calculators and they onlymultiply and divide
decimals (up to 3 decimal places) by 10, 100, 1000 unlike those doing Mathematics
who multiply and divide decimals (up to 3 decimal places) by 10, 100, 1000 and
their multiples without calculator. Similarly as shown in item 2.4 for Foundation
Mathematics, students only solve word problems involving addition and subtraction
while those doing Mathematics solve word problems involving the four operations.

1.3.3 Secondary Mathematics Curriculum

The goals of secondary mathematics education are twofold. One is to ensure that
all students will achieve a level of mastery of mathematics that will enable them to
function effectively in everyday life. The other is to provide those with an interest and
ability inmathematics to learnmoremathematics so that they can pursuemathematics
or mathematics-related course of study in the next stage of their education. There
are five syllabuses in the secondary mathematics curriculum catering to the needs,
interests and abilities of students. They are:
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● O-Level Mathematics (also commonly known as Elementary Mathematics)
● O-Level Additional Mathematics
● N(A)-Level Mathematics
● N(A)-Level Additional Mathematics
● N(T)-Level Mathematics.

The O-Level Mathematics and O-Level Additional Mathematics syllabuses are for
the Express course students. The O-, N(A)- and N(T)-Level Mathematics syllabuses
provide students with the core mathematics knowledge and skills in the context of a
broad-based education. At the upper secondary levels (Secondary 3 and 4), students
who are interested in mathematics may be offered Additional Mathematics as an
elective. This prepares them better for courses of study that require mathematics.
The specific aims of each syllabus are derived from the following broad aims:

● Learning and applying concepts and skills to solve problems, including those in
contexts;

● Developing process and metacognitive skills through a mathematical approach to
problem solving; and

● Inculcating positive attitudes towards mathematics.

Figure 1.4 shows an overview of the connected nature of the school mathematics
curriculum from the primary to the secondary schools.

Tables 1.2 and 1.3 show the topics covered in the mathematics syllabuses for
Number and Algebra and the detailed content for the topic: Functions and Graphs
respectively, for the three courses of study. It is apparent from Table 1.2 that the
N(T) Level Mathematics syllabus is a subset of the N(A) Level one and the N(A)
Level Mathematics syllabus is a subset of the O-Level one. It is also apparent from
Table 1.3 that for a topic the depth of content is graduated with each being a subset of
the other with the O-level one being the largest set while the N(T)-Level one being
the smallest. The O-Level Mathematics syllabus builds on the StandardMathematics
Syllabus in the primary school. The N(A)-Level Mathematics syllabus is a subset
of O-Level Mathematics, except that it re-visits some of the topics in the Standard
Mathematics Syllabus. The N(T)-Level Mathematics syllabus builds on the Foun-
dation Mathematics Syllabus. It is also obvious from Tables 1.2 and 1.3 that gaps
exist between the curriculums of the courses. Therefore, when lateral transfers, as
shown in Fig. 1.1, do take place, bridging of knowledge is undertaken by teachers in
schools during additional curriculum time.

The relationship between the O-Level Additional Mathematics syllabus and the
N(A)-Level Additional Mathematics syllabus is somewhat different. Though the
N(A)-Level Additional Mathematics syllabus is also a subset of the O-Level Addi-
tional Mathematics syllabus the detailed content of the topics remain the same in
both the courses of study. As shown in Fig. 1.5, for the O-Level course of study,
there are 6 topics, while for the N(A)-Level course of study there are two bridging
topics and another 4 topics. The bridging topics fill the gap in the strand Number and
Algebra that exists between the O-Level Mathematics and N(A)-Level Mathematics
syllabuses.
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Fig. 1.4 An overview of the connected mathematics syllabuses

1.4 Concluding Remarks

The goals of the education system are shaped by the needs of Singapore for its
economic survival. As part of the school curriculum, the study of mathematics has
been critical since the late 1950s. It is a compulsory school subject, which takes into
consideration the differing abilities and needs of students. It provides differentiated
pathways and choices to support every learner in order to maximise their potential.

Students from across all the three courses of study, according to the demographic
of student population at the respective grade levels, participate in all benchmark
studies that Singapore participates in. For the Trends in International Mathematics
andScienceStudy (TIMSS) students fromSingapore have consistently ranked among
the top three for both grades 4 and 8 inmathematics since 1995, for the past six cycles
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Table 1.2 Topics in number and algebra for the three courses of study (MOE, 2018b)

Strand: Number and algebra Course of study

Topic O-level N(A) level N(T) level

Numbers and their operations x x x

Ratio and proportion x x x

Percentage x x x

Rate and speed x x x

Algebraic expressions and formulae x x x

Functions and graphs x x x

Equation x

Equations and inequalities x x

Set language and notation x

Matrices x

Table 1.3 Detailed content for the topic: functions and graphs for the three courses of study (MOE,
2018b)

Course of study

Topic: Functions and graphs O-level N(A) level N(T) level

Cartesian coordinates in two dimensions x x x

Graph of a set of ordered pairs as a representation of a
relationship between two variables

x x x

Linear functions (y = ax + b) and quadratic functions (y =
ax2 + bx + c)

x x x

Graphs of linear functions x x x

The gradient of a linear graph and the ratio of the vertical
change to the horizontal change (positive and negative
gradients)

x x x

Graphs of quadratic functions and their properties:
– Positive and negative coefficient of x2

– Maximum and minimum points
– Symmetry

x x x

Sketching the graphs of quadratic functions given in the form:
– y = ± (x − p)2 + q
– y = ± (x − a) (x − b)

x

Graphs of power functions of the form y = axn, where n=−2,
−1, 0, 1, 2, 3, and simple sums of not more than three of these

x x

Graphs of exponential functions y = kan, where a is a positive
integer

x x

Estimation of the gradient of a curve by drawing a tangent x x
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O-Level Additional Mathematics N(A)-Level Additional Mathematics
 Quadratic functions
 Equations & inequalities 
 Surds 
 Polynomials & partial fractions
 Binomial expansions 
 Exponential & logarithmic 

functions 

 Bridging topics
 Functions and Graphs 

 Sketching the graphs of quadratic 
functions given in the form:

- y = ± (x – p)2 + q
- y = ± (x – a) (x - b) 

 Equations and Inequalities 
 Solving linear inequalities in one 

variable, and representing the 
solution on the number line

 Quadratic functions
 Equations & inequalities 
 Surds 
 Polynomials & partial fractions

Fig. 1.5 The O-level and N(A)-level additional mathematics topics (MOE, 2018c)

(1995, 1999, 2003, 2007, 2011 and 2015). In addition, for the Programme in Interna-
tional Student Assessment (PISA), 15 year olds from Singapore have ranked in the
top two positions inmathematics for the past three cycles (2009, 2012 and 2015). The
achievement of Singapore students in benchmark studies such as TIMSS and PISA
(Kaur, Zhu, &Cheang, 2019) affirm that the school mathematics curriculum is robust
and in tandem with global trends. The consistent and commendable achievement of
the students also show that the enactment of the curriculum places emphasis on
mastery learning and problem solving. Chapters 3–15 of this book provide insights
into the enactment of the secondary school mathematics curriculum in Singapore
schools.
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Chapter 2
A Study of the Enacted School
Mathematics Curriculum in Singapore
Secondary Schools

Berinderjeet Kaur, Eng Guan Tay, Tin Lam Toh, Yew Hoong Leong,
and Ngan Hoe Lee

Abstract Astudyof the enacted secondary schoolmathematics curriculum inSinga-
pore schools, was a programmatic research project at the National Institute of Educa-
tion (NIE) funded by the Ministry of Education (MOE) in Singapore through the
OfficeofEducationResearch (OER) atNIE.Theproject had twoaims.Thefirstwas to
document how experienced and competent teachers enacted the school mathematics
curriculum in secondary schools. It did this by examining: (i) pedagogies adopted
by experienced and competent mathematics teachers when enacting the curriculum,
and (ii) experienced and competent teachers’ use of instructional materials for the
enactment of the curriculum. The second was to establish how uniform these adopted
pedagogies and use of instructional materials by experienced and competent teachers
were practised in the mathematics classrooms of Singapore schools. The project had
two phases. The first was the video-segment and the second was the survey-segment.
The survey-segment was dependent on the findings of the video-segment. The video-
segment documented the pedagogy of experienced and competent secondary mathe-
matics teachers while the survey-segment helped to establish how uniform the peda-
gogy of experienced and competent teachers was in the mathematics classrooms of
Singapore schools. Thirty experienced and competentmathematics teachers and their
students participated in the first phase, while another 691 mathematics teachers from
across the schools in Singapore participated in the second phase. Data collected have
been subjected to purposeful analysis, using appropriate methods. The following
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chapters in the book, present evidence-based portraits of mathematics teaching and
learning in Singapore secondary schools.

Keywords Secondary school mathematics curriculum · Experienced and
competent mathematics teachers · Complementary accounts methodology ·
Teacher-intended curriculum · Secondary schools · Singapore

2.1 Introduction

This chapter, the second in the book, describes a programmatic research project that
examined the teaching and learning of mathematics in Singapore schools. The large
data set collected has been analysed by members of the research team. Some of the
data, analysis andfindings are presented in the next 13 chapters of this book.Chapter 3
describes the instructional core that drives the enactment of the secondary school
mathematics curriculum, while Chapters 4–10 present aspects of the enactment of
the curriculum and Chapters 11–15 are on the tasks and tools used for the enactment.
The last two Chapters 16 and 17, attempt to illuminate the “what and how” of mathe-
matics instruction in Singapore secondary schools. Chapter 16 provides an outsider’s
perspective about the pedagogy of mathematics teachers in Singapore schools. It
does so using the analogy of expresso machines and the baristas who make coffee.
Themachinesmay be the same but the baristasmake the difference. The final chapter,
Chapter 17, provides an insider’s perspective. It draws on the “pentagon”—the
framework of the school mathematics curriculum and illuminates the interactions
of its components that result in mathematics instruction in Singapore secondary
schools. It also deepens insights about The Singapore Paradox—“examination-
driven teaching” that has resulted in Singapore students stellar achievements in
benchmark studies like Trends in International Mathematics and Science Study
(TIMSS) and Programme in Student Assessment (PISA).

The programmatic research project, henceforth referred to as “the project”, had
two aims. Thefirstwas to document howexperienced and competent teachers enacted
the school mathematics curriculum in secondary schools. It did this by examining:
(i) pedagogies adopted by experienced and competent mathematics teachers when
enacting the curriculum, and (ii) experienced and competent teachers’ use of instruc-
tional materials for the enactment of the curriculum. In the context of the project,
an experienced and competent mathematics teacher in Singapore secondary schools
was one who had taught the same course of study for a minimum of five years and
was recognised by the school or cluster of schools as a competent teacher who has
developed an effective approach to teaching mathematics. The second was to estab-
lish how uniform these adopted pedagogies and use of instructional materials by
experienced and competent teachers were practised in the mathematics classrooms
of Singapore schools. Shaped by the research interests of a group of colleagues
in the Mathematics and Mathematics Education (MME) Academic Group at the
National Institute of Education (NIE) in Singapore, the project was part of the CORE
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Research Programme of the Office of Education Research (OER) at NIE. It was a
special focus project of system studies in pedagogical and educational outcomes. It
focused on understanding what goes on andwhat works in Singapore’s classrooms—
more specifically, the instructional core (City, Elmore, Fiarman, & Teitel, 2009). The
instructional core comprises

the teacher and the student in the presence of content … it is the relationship between the
teacher, the student, and the content – not the qualities of any one of themby themselves – that
determines the nature of instructional practice, [even though] each … has its own particular
role and resources to bring to the instructional process. (City et al., 2009, pp. 22–23)

It was about the interactions between secondary school mathematics teachers and
their students, as it is these interactions that fundamentally determine the nature of
the actual mathematics learning and teaching that take place in the classroom. It also
examined the content through the instructional materials used—their preparation,
use in classroom and as homework. Such studies are crucial for the Ministry of
Education (MOE) in Singapore and schools to gain a better understanding of what
works in the instructional core in their classrooms and schools. This is critical for
the development of their education system.

2.2 Conceptual Framework

The conceptual framework of the project was framed through a purposeful review
of literature that had three parts. The first part reviewed the findings of the CORE
2 research conducted by David Hogan and colleagues at NIE from 2006 to 2012
concerningmathematics lessons in Singapore secondary classrooms. The second part
reviewed a model of curriculum enactment and illuminated the concept of “teacher-
directed” curriculum that guided the research in the project. Lastly, selected litera-
ture on teaching of mathematics were reviewed as this foregrounded the concept of
pedagogy in the enacted curriculum.

2.2.1 What Did the Findings of CORE 2 Tell Us About
Mathematics Teaching and Learning in Singapore
Secondary Mathematics Classrooms?

As part of the CORE 2 research led by David Hogan, the quality of the enacted
curriculum in Secondary 3 (Grade 9) mathematics lessons in Singapore was assessed
using criteria and standards identified by Hattie in Visible Learning (2012). More
than 1000 Secondary 3 students in 30 schools drawn from a representative random
stratified sample of Secondary schools and 31mathematics teachers from the Express
and Normal (Academic) Courses of study were involved in the study. Data were
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gathered from student surveys, video-records of lessons, and post-lesson teacher
interviews.

The findings of the research specific to secondary three mathematics lessons were
as follows:

(i) Teachers focused more on procedural knowledge than conceptual knowledge
and only engaged students in domain-specific knowledge practice in about a
third of the instructional time of a typical lesson. Of the domain-specific knowl-
edge practices, knowledge representation was emphasised. They also found
that epistemic talk—systematic talk about knowledge that is critical to visible
teaching and learning and to enhancing student understanding and skill forma-
tion—was lacking in the lessons. There was also lack of formative monitoring
that could make student learning visible. Instead, procedural learning support
was evident as teachers often helped with the “how to do” steps (Hogan, Kwek,
et al., 2013).

(ii) Students were engaged in doing performative tasks (77.3%) more often than
knowledge building tasks (22.7%) (Hogan, Towndrow, et al., 2013). A perfor-
mative task mainly entails the use of lower order thinking skills such as recall,
comprehension and application of knowledge while a knowledge building task
calls for higher order thinking skills such as synthesis, evaluation and creation
of knowledge.

(iii) There was a dominant performative orientation of pedagogical practice in
Singapore (Hogan, Chan, et al., 2013, p. 100) and this may explain Singapore’s
stellar performance in international studies.

While the findings of the CORE 2 research provided some insights about the
widespread orientation of our secondary school mathematics classroom teaching and
learning, they did not inform us about what our experienced and competent teachers
do when compared to the broad base of teachers studied in CORE 2. It is also not
possible to infer how the “performative orientation” has contributed to our students’
performance in PISA studies. Do our experienced and competent teachers engage
students in metacognition, an essential element of twenty-first-century competen-
cies—Civic Literacy, Global Awareness and Cross-Cultural Skills; Critical and
Inventive Thinking; Communication, Collaboration and Information Skills—as envi-
sioned by the SingaporeMinistry of Education (MOE, n.d.)?Howdoes the prescribed
curriculum of the Ministry of Education for mathematics translate into teacher plans
and classroom actions of experienced and competent teachers? The current project
built on the findings of CORE 2, to study the pedagogies adopted by experienced
and competent secondary mathematics teachers when enacting the curriculum. Find-
ings reported in this book and elsewhere (see Appendix) have provided mathematics
educators, curriculum developers and policymakers withmuch-valued insights about
the “the best that takes place in our secondary mathematics classrooms” from the
perspectives of both teachers and their students.
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2.2.2 Curriculum Enactment Process

In the context of this project, teacher-intended curriculum represented plans of the
teacher about what to teach and how he/she planned to teach it; teacher enacted
curriculum represented what is taught during the lesson; and designated curriculum
was the prescribed (official) curriculum by the MOE, in terms of syllabuses and
guidelines. In our conceptualisation of the curriculum enactment process we drew
upon the visual model created by Remillard and Heck (2014) shown in Fig. 2.1. Kaur
(2014) in her review of research on the enactment of school mathematics curriculum
in Singapore has noted that the model shown in Fig. 2.1 was rigorous for use in
researching the curriculum enactment process in Singapore as it linked the official
and operational curriculum in mathematics classrooms.

The model showed that as teachers drew on the designated curriculum (which in
the case of the project is the Mathematics Syllabus for Secondary Schools [MOE,
2012]) along with other resources (particularly instructional materials) to design
instruction they created what we referred to as “teacher-intended” curriculum in the
context of the project. It included the interpretation and decisions teachers made
to envision and plan instruction. Remillard and Heck (2014) noted that this form
of curriculum was difficult to document as part of it existed in the most detailed
form in the teacher’s mind. Nevertheless, detailed teacher plans and post-lesson
video-stimulated interviews with the teachers offered an opportunity to capture the
teacher-intended curriculum and its enactment succinctly.

Fig. 2.1 Model of the curriculum enactment process (Remillard & Heck, 2014, p. 709)
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Despite its importance, the enacted curriculum was multifaceted and difficult to
measure and study. The number of potential features were numerous and at times
even difficult to define let alone measure. Nevertheless some prominent dimensions
that had been studied centred around the mathematics, the pedagogical moves and
the use of resources and tools (Remillard & Heck, 2014). The following elaborates
each of the above dimensions further.

(i) The mathematics—this refers to the content and nature of the mathematics
topics and practices that are emphasised and valued. For example, Hiebert et al.
(2003) and Stigler, Gonzalez, Kawanaka, Knoll, and Serrano (1999) study of
how mathematics content was presented to students considered features like
demonstration, practice, recall of concepts, conceptual connections and proof.
Boaler and Staples (2008), Eisenmann and Even (2009), and Stein, Grover,
and Henningsen (1996) added an additional focus on the level of cognitive
expectations.

(ii) The teacher’s pedagogical moves—this refers to teacher’s actions, both inten-
tional and unintentional, that shape what mathematics is addressed, including
how it is represented and investigated. Teacher moves also influence how class-
room interactions are structured, the kinds of interactions that are valued,
and which tools and resources are used during instruction. In a review of
research on the teacher’s role in mathematics discourse, Walshaw and Anthony
(2008) identified three distinct roles that teachers play to shape mathematics
classroom discourse: (i) identifying and drawing out specific mathematical
ideas, (ii) fine-tuning the mathematical language and conventions used, and
(iii) shaping mathematical argumentation as it develops. For this project we
built on earlier studies of instructional cycles (Seah, Kaur, & Low, 2006) and
content learning discourse (Kaur, 2013) conducted in Singapore. The instruc-
tional cycles comprised combinations of segments such as [D]—whole class
demonstration; [S]—seatwork (student work); and [R]—whole class review of
student work. The content learning discourse was dominated by teacher talk
and student listening.

(iii) The use of resources and tools—this refers to physical, technological, linguistic
and cognitive tools that might be used during instruction by both teacher
and students. Tools included instructional resources, like textbooks, as well
as concrete resources like calculators, computers and manipulatives such as
AlgeCards and algebra-tiles. In Singapore, tools are often introduced into the
classroom through teachers’ moves. This influences how the mathematics is
represented and forms of student engagement, as well as the nature of the class-
room interactions. For example, Leong, Ho, and Cheng (2015) showed how
AlgeCards helped students factorise quadratic expressions meaningfully and
Kaur, Low, and Seah (2006) studied the role of textbook in two grade eight
mathematics classrooms.
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2.2.3 Perspectives of Mathematics Teaching

Teaching is a cultural activity (Stigler &Hiebert, 1999) and there are varying Eastern
and Western perspectives about mathematics teaching. Two significant dichotomies
that exist between the perspectives of the West and East are: (i) the product versus
process dichotomy, and (ii) the rote learning versus meaningful learning dichotomy
(Leung, 2001). Anthony and Walshaw (2009) recognised that classroom teaching is
a complex activity and that the classroom learning community is neither static nor
linear. Based on their research on the Western perspective of mathematics teaching,
they offered ten principles of effective pedagogy, among which were: (i) arranging
for learning—mathematics learning experiences, (ii) mathematical communication
with a focus on mathematical argumentation, (iii) mathematical tasks that influenced
how students came to view, develop, use and made sense of mathematics, and (iv)
tools and representations that supported students’ thinking.

The three decades of research by Schoenfeld (2011) in the United States on
mathematical problem-solving and mathematics instruction affirmed that moment-
to-moment decision making in teaching could be modelled as a function of teachers’
resources (especially knowledge), orientations (especially beliefs) and goals. He
advocated that the five dimensions of mathematically powerful classrooms are: (i)
the mathematics context; (ii) cognitive demand; (iii) access to mathematical content;
(iv) agency, authority and identity; and (v) uses of assessment.

Kaur (2009) in her study of grade eight mathematics lessons in the east (Singa-
pore), inwhich she juxtaposed student and teacher perceptions about effective lessons
found that these lessons had the following characteristics:

(i) Whole class demonstration (exposition) where the teacher explained clearly
the concepts and steps of procedures; made complex knowledge easily assim-
ilated through demonstrations, use of manipulatives, real-life examples and
introduced new knowledge;

(ii) Seatwork and out of class assignments where the teacher gave clear instructions
related to mathematical activities for in-class and after classwork; provided
interesting activities for students to work on individually or in small groups;
provided sufficient practice tasks for preparation towards examinations; and

(iii) Review and feedback where the teacher reviewed past knowledge and used
student work or group presentations to give feedback to individuals or the
whole class.

From the findings of Kaur (2009), it was apparent that there was emphasis on the
development of skills in Singapore classrooms, but to say that understanding was not
emphasised could not be confirmed. Though algorithms lead to proficiency of skills,
they can also contribute to understanding as exemplified by Fan and Bokhove (2014).
Fan and Bokhove had aptly illustrated how algorithms were powerful in-roads for
conceptual understanding with their three-level model of learning:
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1. Cognitive level 1: knowledge and skills—involved direct teachingwhere teachers
may tell, demonstrate, engage students in drill and practice and or remediation
to correct their mistakes.

2. Cognitive level 2: understanding and comprehension—involved explaining
where teachers explained the why of the steps in the algorithm and perhaps
even why it worked; involved justifying where teachers engaged students to
make sense of how the algorithm was derived logically or even prove it; involved
making connections where teachers helped students connect the algorithm with
their past knowledge.

3. Cognitive level 3: evaluation and construction—involved guided exploration
where teachers created learning activities for students to explore and obtain
the algorithm; followed by open exploration where teachers created learning
activities for students to explore and obtain the algorithm.

2.2.4 Summary

From thefindings ofCORE2,weknew therewas a dominant performative orientation
of pedagogical practice involving student classroomactivities and discourse in Singa-
pore. However, from these findings we were unable to infer if the performative orien-
tation also pervaded the classrooms of experienced and competent secondary math-
ematics teachers in Singapore. Moreover, the dominant use of performative mathe-
matical tasks and performative orientation of classroom pedagogy alone could not
explain the success of Singapore students in PISA. There was a need to examine how
experienced and competent secondarymathematics teachers in Singapore enacted the
school mathematics curriculum, so that we had knowledge about the upper bound
of pedagogies adopted by secondary mathematics teachers in Singapore schools;
thereby illuminating the potential of the prescribed curriculum by the MOE.

For the last 30 years, the framework for schoolmathematics curriculumhad placed
emphasis on five factors: concepts, skills, processes, metacognition and attitudes
(MOE, 2012) that contributed towards the primary goal of teaching mathematics in
Singapore schoolswhichwasmathematical problem-solving. Howhad this emphasis
shaped the practice of our mathematics teachers? If we mapped the pedagogy of
our mathematics teachers against the five dimensions of mathematically powerful
classrooms advocated by Schoenfeld (2011), what were the outcomes? If we looked
deeper at why Singapore teachers engaged their students in working with algorithms
or homework or how they used their mathematics textbooks for learning, what could
we infer about how mathematics is being learnt? All the above thoughts shaped our
foci of the project.

In the first phase we investigated: (i) pedagogies adopted by experienced and
competent mathematics teachers when enacting the curriculum, and (ii) experienced
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and competent secondary school mathematics teachers’ use of instructional mate-
rials for the enactment of the curriculum. In the second phase we established how
uniform these adopted pedagogies and use of instructional materials by experienced
and competent teachers were practised in the mathematics classrooms of Singapore
secondary schools.

2.3 Research Design

The project had two phases. The first was the video-segment and the second was the
survey-segment. The survey-segment was dependent on the findings of the video-
segment. The video-segment documented the pedagogy of experienced and compe-
tent secondary mathematics teachers while the survey-segment helped to establish
how uniform the pedagogy of experienced and competent teachers was in the math-
ematics classrooms of Singapore schools. We detail the phases in the following
sub-sections.

2.3.1 Phase 1: Video-Segment of the Project

The video-segment of the study adopted the complementary accounts methodology
developed byClarke (1998, 2001), amethodologywhichwaswidely used in the study
of classrooms across many countries in the world as part of the Learner’s Perspective
Study (Clarke, Keitel, & Shimizu, 2006). This methodology recognises that only by
seeing classroom situations from the perspectives of all participants (teachers and
students) can we come to an understanding of the motivations and meanings that
underlie their participation. It also facilitates practice-oriented analysis of learning.

2.3.1.1 Method

A three-camera (teacher camera, student camera, whole class camera) approach,
shown in Fig. 2.2, was used to collect data.

The teacher camera captured all gestures, tools and equipment the teacher used in
the lesson. The student camera kept in view two to four students, the focus students,
who were sitting adjacent to each other and focused on their actions during the
lesson. Every lesson had a different group of focus students. The whole class camera
captured the corporate behaviour of the class and was set at the front looking at the
class such that it represented the “teacher’s-eye view” of the class. Sequences of
lessons for a complete topic, ranging from three to ten lessons spanning instruction
time between 210 and 570 min, taught by the participating teachers were recorded.
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Fig. 2.2 Three-camera approach

In addition, all the written work done by the focus students during and following
the lesson and instructional materials used by the teachers were also documented.
Researchers also kept field notes of every lesson recorded.

Post-lesson video-stimulated interviews were held for the teachers and focus
students. The teacher was interviewed once before he/she enacted the sequence of
lessons and two to three timeswhile enacting the lessons, with the last interview at the
end of the enactment. Figures 2.3 and 2.4 show the interview prompts that guided the
pre- and during enactment of lessons interviews. The teacher’s plan for the sequence
of lessons was the main stimulus for the pre-interview while instructional materials
used during the lesson and video-records of the lesson were the stimuli for during-
and post-lesson enactment interviews.

The focus students were also interviewed individually. The instructional materials
used during the lesson and the video-record of the lesson were the stimuli for the
student interviews. Figure 2.5 shows the prompts that guided the interview.
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 Please share with me your goals for the planned sequence of lessons.
You may include both content and non-content goals.

 Please share with me what mathematical goals you intend to achieve for each set of materials that 
you will be using.  

 Which of these do you consider “ambitious” or challenging goals? 
 How do you plan to achieve your goals? 
 How do you plan to implement some of these instructional materials that you have mentioned 

earlier?
 Are there special features you have put in place for the instructional materials that you think might 

help students attain the mathematical goals of your lesson? 
 How would you rate the level of challenge (1 to 5; with 5 being the most challenging) that each of 

these tasks presents to your students? 
 Why do you rate them this way? 
 Are there any specific difficulties you anticipate that some of your students may have with some 

of the instructional materials? 
 Please share with us your plans to help your students with these difficulties.
 What other mathematics programmes do your students participate in outside your mathematics

lessons? 
 Could you tell me more about these programmes which help your students learn mathematics?  
 On the average, what would be the amount of time you would expect your middle progress 

students to spend on mathematics homework each week?

Fig. 2.3 Prompts for teacher interview prior to enactment of his/her sequence of lessons

 Please choose a lesson that you’d like to talk with me about. 
o What were your goals for this lesson? 
o You may include both content and non-content goals.  
o Did you use all the materials that you had intended to use for the lesson? 

 Do you think you have achieved your goals that you set for the lesson? 
 How were those goals achieved?
 What is the most ‘ambitious’ or challenging thing you did in the lesson?  

o How do you think it went? 
 Do you think your students have achieved these goals?  
 Can you share with me what the highs and lows of the lesson were? 

Commence use of video 

 Please fast forward to any parts of the video that you think illustrate how you achieved the goals 
you’ve shared with me just now.  
o Is there a part of the lesson that you like best? Please show me the video segment of it. 
o Can you explain a little more why you like this part best?  

 How would you rate your lesson today?  
o What are some of the words you would use to describe your lesson today? 

Prompt for the last interview only carried out after the sequence of lessons has been enacted

 Looking back at the sequence of lessons, did you make any changes to the instructional materials 
you shared with me during the first (pre-enactment) interview, such as add, remove, modify or 
adapt? 
o Elaborate the change(s). Why were they made?

 Did the change(s) help you fulfil the intended goals better? How?

Fig. 2.4 Prompts for teacher interview during and after enactment of his/her sequence of lessons
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Pre-interview tasks:
Interviewer to assure student that whatever transpires during the interview is solely for the purpose of 
research and will not be shared with his/her mathematics teacher.
Student is given a mathematical task to do before the commencement of interview [the task is sought 
from the teacher by the interviewer and is often similar to one that the teacher and students worked on 
during the lesson]  

Interview: 
A video-record of the lesson and all materials used during the lesson are at hand during the interview. 
Student is told that the interview is about the lesson.
 Please tell me what you think the lesson was about?
 Please list out 3 main things you have learnt from the lesson. You can refer to any of these 

materials from the lesson to help you.  
 What did the teacher do to help you learn [this]?  

[Interviewer to point to a specific artefact from the lesson] 
 Which of the materials used are most helpful to you? 
 How did those materials help you? Why?  
 How did you feel about the materials? 
 On your part, what did you do to help yourself understand what the teacher was 

showing/explaining?  
 Share with me if there was any part of the lesson that was challenging for you. 

o Why was it challenging? 
o How did you feel about it?   

 Can you share with me what the highs and lows of the lesson were? 

Commence use of video: 
 Please fast forward to select the parts of the video that you think shows how you learnt [this]. 
 Is there a part of the lesson that you liked best?  
 Can you show me the video segment?  
 Could you help me to understand why you liked this part best?  
 What are some of the words you would use to describe the mathematics lesson today? 
 On the average, how much time do you usually spend on mathematics homework each week? 
 Do you have any other help in your learning of mathematics when you are not in class/school?  
 Does your school have any other programme/activities to help you learn mathematics outside 

lesson time? 
 Which materials are useful in helping you to learn and perform well besides those that are used in 

your mathematics lessons?

Fig. 2.5 Prompts for focus student’s interview

2.3.1.2 Participants

In this phase of the study, which was the video-segment, 30 experienced and compe-
tent teachers from across the four courses of study (the most academically able
students are in the Integrated Programme while the least able are in the Normal
[Technical] course of study) participated. These were teachers deemed as “good
mathematics teachers” in their respective schools. They had at least five years of
mathematics teaching experience,were recognised by their schools/cluster as compe-
tent teachers who have developed an effective approach of teaching mathematics
and were keen to participate in the study. These teachers were nominated by their
respective school leaders and the research team followed up on the nominations and
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Table 2.1 Number of teacher participants in video-segment of the study

Course of study Gender
N
(%)

Years of mathematics teaching
N
(%)

Total
N
(%)

Male Female 5–9 10–20 More than 20

Integrated programme 1
(3.3)

3
(10.0)

1
(3.3)

2
(6.7)

1
(3.3)

4
(13.3)

Express 3
(10.0)

7
(23.3)

1
(3.3)

3
(10.0)

6
(20.0)

10
(33.3)

Normal (Academic) 3
(10.0)

5
(16.7)

2
(6.7)

2
(6.7)

4
(13.3)

8
(26.7)

Normal (Technical) 5
(16.7)

3
(10.0)

2
(6.7)

4
(13.3)

2
(6.7)

8
(26.7)

Total 12
(40.0)

18
(60.0)

6
(20.0)

11
(36.7)

13
(43.3)

30
(100)

interviewed the teachers. A strict requirement for participation in the study was that
the teacher had to teach the way he/she did all the time, i.e. no special preparation
was expected.

Within the scope of the research project due to limitations of time and funding, the
research team capped the number of teachers at 30. Following the search for experi-
enced and competent teachers who were willing to participate, the team managed to
recruit four from the Integrated Programme (IP), ten from the Express course, eight
from the Normal (Academic) (N(A)) course and eight from the Normal (Technical)
(N(T)) course. The sample of teacher participants in this phase of the project was not
constrained by the demographic of teachers teaching the respective courses of study.
The sampling was purposeful as we needed teachers who were willing to participate
in the study. Table 2.1 shows the number of teachers from each course of study and
profile of the teachers. Sixty percent of the teachers were female and 80% of them
had ten or more years of mathematics teaching experience.

By virtue of the design of the study all the students in the classes of the 30 teachers
participated in it. However, only the focus students were interviewed. As the sample
of the teachers was purposeful, it follows that the proportions of student participants
were not in sync with the student demographic in the courses of study. In addition,
assent fromstudents and consent from their parentswas needed for them to participate
as focus students and be interviewed. This was challenging for two main reasons.
The first was that not many students were keen to have their interviews recorded
and secondly the interviews were conducted after school hours on the same day of
the recordings. In some sense, there was very little control the research team had
on the numbers that were interviewed. Table 2.2 shows the numbers of students by
course of study who participated in the study and were interviewed. Almost half of
the student participants were interviewed as they were the focus students.
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Table 2.2 Number of student participants in video-segment of the study

Course of study Students who participated
N
(%)

Students interviewed
N
(%)

Gender Total Gender Total

Male Female Male Female

Integrated programme 40
(4.7)

70
(8.2)

110
(12.9)

23
(2.7)

44
(5.1)

67
(7.8)

Express 148
(17.3)

150
(17.6)

298
(34.9)

81
(9.5)

57
(6.6)

138
(16.1)

Normal (Academic) 122
(14.3)

95
(11.1)

217
(25.4)

80
(9.4)

52
(6.1)

132
(15.5)

Normal (Technical) 152
(17.8)

77
(9.0)

229
(26.8)

77
(9.0)

33
(3.9)

110
(12.9)

Total 462
(54.1)

392
(45.9)

854
(100)

261
(30.6)

186
(21.7)

447
(52.3)

2.3.1.3 Data Collected

During this phase, i.e. the video-segment of the project, a total of 209 lessons
enacted by the 30 experienced and competent teachers were video-recorded. Data
was collected over a period of two years, i.e. from the start of the second semester
of the school year in 2016 (June) till the end of the first semester of the school
year in 2018 (May). Table 2.3 shows an overview of the 30 teachers’ lessons and
the spread of the lessons across the courses of study and year levels. Sequences of
lessons for a topic were recorded and therefore it was not possible to mandate that a
certain number of lessons be recorded for every teacher who participated. As such,
the number of lessons recorded per course of study varies, ranging from 33 (15.8%)
for the Integrated Programme to 64 (30.6%) for the Express course. Nevertheless,
the sequences of lessons were adequate for the purpose of documenting the respec-
tive teachers’ instructional practices for mathematics. In addition, to a large extent,
common pedagogies in the classrooms of these experienced and competent teachers,
irrespective of the courses of study, supported the intent of drawing on the findings
of the video-segment to shape the survey for the survey-segment of the project as
intended.

Interviews with the focus students, and interviews (at the start, in the midst and
after the sequence of lessons) with the teachers were also video-recorded. Artefacts,
comprising materials used by the teachers for instruction and student work, were
also copied and digitised.
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Table 2.3 Metadata of the video-recorded lessons

Number of classes
(Number of lessons)
(%)

Secondary

Course of study
Teacher (T) (year level, no of lessons, instructional
time in minutes)—topic

1 2 3 4 5 Total

Integrated programme
Teacher 21 (*Sec 2, 7, 420)—Quadratic equations
and graphs
Teacher 12 (Sec 3, 8, 480)—Logarithms
Teacher 13 (Sec 3, 10, 500)—Quadratic graphs
and inequalities
Teacher 17 (Sec 3, 8, 400)—Trigonometry (Sine &
Cosine rule, 3D)

0
(0)
(0)

1
(7)
(3.4)

3
(26)
(12.4)

0
(0)
(0)

0
(0)
(0)

4
(33)
(15.8)

Express course
Teacher 06 (Sec 2, 3, 210)—Pythagoras’ theorem
Teacher 20 (Sec 2, 6, 330)—Probability and
statistics
Teacher 05 (Sec 3, 3, 210)—Angle properties of
circles
Teacher 08 (Sec 3, 8, 570)—More about quadratic
equations
Teacher 15 (Sec 3, 6, 400)—Application of
trigonometry
Teacher 22 (Sec 3, 7, 420)—Solving quadratic
equations
Teacher 01 (Sec 4, 9, 540)—Vectors
Teacher 03 (Sec 4, 5, 455)—Geometric proofs
Teacher 10 (Sec 4, 9, 480)—Differentiation
Teacher 27 (Sec 4, 8, 495)—Vectors

0
(0)
(0)

2
(9)
(4.3)

4
(24)
(11.5)

4
(31)
(14.8)

0
(0)
(0)

10
(64)
(30.6)

Normal (Academic)
Teacher 16 (Sec 1, 7, 480)—Volumes and surface
areas of solids
Teacher 18 (Sec 1, 6, 460)—Simple algebra
Teacher 19 (Sec 3, 7, 420)—Trigonometric ratios
of acute angles
Teacher 26 (Sec 3, 8, 400)—Coordinate geometry
Teacher 11 (Sec 4, 7, 400)—Circular measure
Teacher 28 (Sec 4, 7, 550)—Differentiation and
application
Teacher 29 (Sec 4, 6, 465)—Probability
Teacher 02 (Sec 5, 10, 565)—Vectors

2
(13)
(6.2)

0
(0)
(0)

2
(15)
(7.2)

3
(20)
(9.6)

1
(10)
(4.8)

8
(58)
(27.8)

(continued)
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Table 2.3 (continued)

Number of classes
(Number of lessons)
(%)

Secondary

Course of study
Teacher (T) (year level, no of lessons, instructional
time in minutes)—topic

1 2 3 4 5 Total

Normal (Technical)
Teacher 30 (Sec 1, 6, 420)—Angles on a straight
line
Teacher 14 (Sec 2, 8, 400)—Volume, surface
area—prism, cylinder
Teacher 04 (Sec 3, 5, 350)—Simultaneous
equations
Teacher 07 (Sec 4, 8, 540)—Cumulative frequency
Teacher 09 (Sec 4, 7, 390)—Volume, surface
area—pyramid, cone
Teacher 23 (Sec 4, 6, 430)—Volume, surface
area—pyramid, cone
Teacher 24 (Sec 4, 6, 390)—Pythagoras’ theorem
and Trigonometry
Teacher 25 (Sec 4, 8, 420)—Trigonometric ratios
of acute angles

1
(6)
(2.9)

1
(8)
(3.8)

1
(5)
(2.4)

5
(35)
(16.7)

0
(0)
(0)

8
(54)
(25.8)

Total 3
(19)
(9.1)

4
(24)
(11.5)

10
(70)
(33.5)

12
(86)
(41.1)

1
(10)
(4.8)

30
(209)
(100)

Key—*Sec 2 means Secondary 2 which is year eight of schooling

2.3.2 Phase II: Survey-Segment of the Project

2.3.2.1 Instrument

Findings from Phase I provided inputs for the survey, the instrument, used in this
phase of the project. An online survey comprising three parts, A, B and C, was
constructed. Part A was about the pedagogical structure of lessons and student-
teacher interaction. PartBwas about the enactment of thefive aspects of theSingapore
schoolmathematics curriculum framework (MOE,2012) representedby thefive sides
of the “pentagon” in the framework; and Part C was about instructional materials.

PartA of the survey first sought inputs fromparticipants specific to an instructional
core, detailed in Chapter 3, which emerged from the analysis of the lessons enacted
by the experienced and competent teachers. Briefly, the instructional core comprises
three components: D [Development], S [Student Work] and R [Review of Student
Work]. D refers to instruction that either develops a concept or introduces a skill, S
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refers to studentwork that is either doneby students in class or at home, individually or
in groups and R refers to review of student work that monitors student understanding.
Examples of these aspects of instruction are shown in Fig. 2.6. The next part had 60
items with 36 on teacher actions and 24 on student actions. Every item was tagged to
an aspect of the instructional core (D, S orR), a type ofmathematics talk (learning talk
or teaching talk) and model of instruction (Traditional instruction, Direct instruction,
Teaching for understanding or Co-regulated learning strategies). Mathematics talk is
elaborated in Chapter 9, but again very brieflymathematics talk from the perspectives
of the teacher is teaching talkwhile that from theperspectives of the student is learning
talk. Examples of these talks are shown in Fig. 2.6. As for models of instruction,
Traditional instruction is teacher-centred with a focus on rote learning and memori-
sation. In the context of Asian classrooms it is often associated with drill and practice
(Biggs &Watkins, 2001; Hogan, Chan, et al., 2013; Leung, 2006). Direct instruction

Survey items Never/

Rarely

Sometimes Frequently Mostly/

Always

Reflecting on my lessons for the course (which I have 
chosen to do this survey on), I …
use examples and non-examples to engage students in 
discussion to make sense of a concept
[Development, Teaching talk – discussion, Teaching for 
Understanding]

o o o o

provide students with directed guidance (ask close-
ended questions) when they face difficulty with a 
mathematics task they are doing, focusing them on the 
concept/skill necessary to do the task
[Student work, Teaching talk – recitation, Direct 
instruction]

o o o o

ask direct questions to stimulate students’ recall of past 
knowledge/check for understanding of concepts being 
developed in the lesson
[Review, Teaching talk – recitation, Traditional 
instruction]

o o o o

Reflecting on my lessons for the course (which I have 
chosen to do this survey on), I get my students to …
provide answers or solutions (without any explanations) 
to my questions 
[Development, Learning talk - narrate, Traditional 
instruction]

o o o o

ask questions when they do not understand
[Development, Learning talk – question, Direct 

o o o o

instruction]
teach/explain to another classmate while doing 
individual assigned seatwork
[Student work, learning talk – explain, Teaching for 
Understanding]

o o o o

review their mistakes and identify possible causes by 
themselves
[Review, learning talk – evaluate, Co-regulated learning 
strategies]

o o o o

Fig. 2.6 Items in part A of the survey
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involves an explicit step-by-step strategy, often teacher-centred, with checks for
mastery of procedural or conceptual knowledge (Good&Brophy, 2003;Hattie, 2003;
Hogan, Chan, et al., 2013). Teaching for understanding places student learning at the
core. Teacher facilitates, monitors and regulates student learning through student-
centred approaches (Good&Brophy, 2003;Hogan,Chan, et al., 2013; Perkins, 1993).
Co-regulated learning strategies involves self-directed learning, self-assessment and
peer-assessment (Black, Harrison, Lee, Marshall, & Wiliam, 2003; Hogan, Chan,
et al., 2013; Wiliam, 2007). Examples of actions from all four models of instruction
are shown in Fig. 2.6.

The second part of the survey comprised five components which were: (i) intro-
ducing/developing a concept/formula/property, (ii) structure ofworked examples and
class practice, (iii) mathematical processes and metacognition, (iv) attitudes towards
mathematics and (v) phases of lesson. Figure 2.7 shows examples of items from the
five components.

Part C of the surveywas a chronologically grounded one on instructionalmaterials
and it was customised for teachers from the different courses of study. Figures 2.8,
2.9, and 2.10 show examples of items in this part of the survey.

Survey items Never/
Rarely

Sometimes Frequently Mostly/
Always

When introducing/developing a 
concept/formula/property, I explain the 
concept/formula/property to the whole class, asking 
students questions along the way

o o o o

During my lessons the structure of worked examples 
and class practice can be as follows.
I explain the solutions of a few worked examples before 
students go on with the practice questions.

o o o o

To foster mathematical processes (reasoning, 
communications, connections, thinking skills, 
heuristics, applications) and metacognition, 
I get my students to check for reasonableness of their 
answers after solving a problem. 

o o o o

Attitudes towards mathematics
I build students’ confidence in doing mathematics by 
starting with tasks that students can do before 
progressing to more difficult tasks.

o o o o

Phases of lessons
I typically structure the different phases of a lesson or 
across lessons within a topic as follows:
Introduction → Development → Consolidation → 
Conclusion 

o o o o

Fig. 2.7 Items in part B of the survey



2 A Study of the Enacted School Mathematics … 35

The following is a list of reference materials. Rank the materials in order of usefulness, 9 being the one 
most useful to you.

1 2 3 4 5 6 7 8 9
Main textbook* o o o o o o o o o
Supplementary textbook(s) o o o o o o o o o
Main workbook** o o o o o o o o o
Supplementary workbook(s) o o o o o o o o o
School-based resource(s) o o o o o o o o o
Commercial materials o o o o o o o o o
Online resources o o o o o o o o o
MOE-produced resources o o o o o o o o o
Others o o o o o o o o o

Fig. 2.8 Survey item in part C on reference materials (*Textbook and **Accompanying workbook
adopted by the school for mathematics instruction and students buy their own copies)

Instructional Materials
Recall that

 Reference materials are resources that you refer to when you prepare for your lesson.
 Instructional materials are what you bring into the classroom and that you actually 

use.

We would like to find out the relationship between your reference materials and your 
instructional materials.
Please select the option that is most applicable to you.
My instructional materials are exactly the same as my reference materials.
Sometimes, I adapt/modify my instructional materials from my reference materials.
Frequently, I adapt/modify my instructional materials from my reference materials.
Almost always, I adapt/modify my instructional materials from my reference materials.

Fig. 2.9 Survey item in part C on instructional materials

2.3.2.2 Method and Data Collected

Teachers with three or more years of mathematics teaching experience from all
secondary schools in Singapore were invited to participate in the survey. The survey
was online and completed by the teachers individually. Data was collected over a
period of three months (September till November) in the second semester of the
school year in 2018. The participants were asked to reflect on their lessons for
the course (which they had chosen to do this survey on), and respond on a Likert
Scale of 1 (Never/Rarely) to 4 (Mostly/Always) and also give qualitative responses
when asked to do so. Therefore, the survey collected teacher responses that were
both quantitative and qualitative. A Likert Scale comprising four points was used
deliberately so that teachers doing the survey were pushed to form an opinion as a
“neutral option”was absent.Options 1 (Never/Rarely), 2 (Sometimes), 3 (Frequently)
and 4 (Mostly/Always) mirrored frequencies ranging from up to 25, 50, 75 and 100%
of the times respectively.

At the start of the survey, participants indicated the course of study (Integrated
Programme (IP), Express, Normal (Academic) (N(A)) or Normal (Technical) (N(T))
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Fig. 2.10 Sample item in part C on teacher’s actual use of instructional materials (Note The nine
snippets are for illustration only and so they are not readable)



2 A Study of the Enacted School Mathematics … 37

Table 2.4 Number of teacher participants in survey-segment of the study

Course of study Gender
N
(%)

Years of mathematics teaching
N
(%)

Total
N
(%)

%

Male Female 3–9 10–19 20 or more

Integrated programme 21
(3.1)

37
(5.5)

17
(2.5)

22
(3.3)

19
(2.8)

58
(8.6)

64.7

Express 135
(19.9)

245
(36.2)

168
(24.8)

139
(20.5)

73
(10.8)

380
(56.1)

Normal (Academic) 66
(9.7)

85
(12.6)

69
(10.2)

53
(7.8)

29
(4.3)

151
(22.3)

35.3

Normal (Technical) 46
(6.8)

42
(6.2)

51
(7.5)

30
(4.4)

7
(1.0)

88
(13.0)

Total 268
(39.6)

409
(60.4)

305
(45.0)

244
(36.0)

128
(18.9)

677
(100)

100

and subject (Mathematics or AdditionalMathematics) theywere doing the survey on.
For parts A andB of the survey, the itemswere the same for all participants. However,
for part C this was not the case as the survey items were specific to instructional
materials by course of study and subject. Therefore, participants either attempted
survey items on Additional Mathematics or Mathematics (Express) or Mathematics
(N(A)/N(T)).

2.3.2.3 Participants

In this phase of the study which was the survey-segment, 691 participants (teachers)
completed the survey. In the preliminary screening of the data, some responses were
removed as they did not meet the requirements of the survey. The data of 677 teachers
were used for subsequent analyses. Table 2.4 shows the profile of these teachers.

Forty percent of the teachers were male while 60% were female. This was repre-
sentative of the demographic of the teacher population in secondary schools which
was 36% males and 64% females (MOE, 2018). In addition, for the representation
by course of study, almost 65% for the IP and Express course and 35% for the N(A)
and N(T) courses was also coherent with the demographic of the student population
in secondary schools which was 64 and 36% respectively for the IP and Express
course and N(A) and N(T) courses (MOE, 2018). Forty-five percent of the teachers
had more than three but less than ten years of mathematics teaching experience while
the remaining 55% had more than ten years of the same experience. In the video-
segment of the study, 80% of the teachers had more than ten years of mathematics
teaching experience. The difference in participation percent by this group of teachers
in the two phases of the study is not surprising as experienced and competent teachers
generally take years of teaching to hone their pedagogies.
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Chapter 3
The Instructional Core That Drives
the Enactment of the School
Mathematics Curriculum in Singapore
Secondary Schools

Berinderjeet Kaur, Eng Guan Tay, Cherng Luen Tong, Tin Lam Toh,
and Khiok Seng Quek

Abstract A study of mathematics lessons enacted by 30 experienced and compe-
tent mathematics teachers in Singapore secondary schools shows that an instruc-
tional core drives mathematics lessons. Teachers enact their instructional objectives
through micro-instructional objectives that draw on three main components, viz.
Development [D], StudentWork [S] and Review of StudentWork [R]. A lesson often
comprises of one or more cycles of instruction depending on the number of objec-
tives. A cycle comprises combinations of D, S and R. The survey data collected from
677 secondary school mathematics teachers affirmed the hypothesised instructional
core of mathematics lessons. Further analysis of the survey items showed that it is not
possible to simply label actions of mathematics teachers as student-directed, teacher-
directed, fluency or conceptual orientated. Rather, they are amalgams of these. Four
factors that appear to aptly encompass actions of the teachers are: (i) student-centred
in-class learning, (ii) teaching and practice for fluency, (iii) teacher-led conceptual
learning, and (iv) teacher-guided student self-directed learning. The instructional
core comprising the DSR cycle may be said to be the DNA of mathematics lessons
in Singapore secondary schools.
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3.1 Introduction

The instructional core of any lesson underpins interactions between the teacher,
the student and the content. Through a myriad of activities designed by teachers,
the instructional core facilitates and connects these interactions while enacting the
curriculum in schools. As noted by City, Elmore, Fiarman, and Teitel (2009),

… it is the relationship between the teacher, the student, and the content – not the qualities
of any one of them by themselves – that determines the nature of instructional practice,
[even though] each … has its own particular role and resources to bring to the instructional
process. (pp. 22–23)

Like the DNA of the human body, an instructional core unfolds the character of
a lesson. The DNA of a human body is made up of building blocks. Similarly,
mathematics lessons can also comprise instructional components (building blocks)
that constitute the interactions between teacher, student and content, and characterise
them.

Several past studies (Chang, Kaur, Koay, & Lee, 2001; Ho & Hedberg, 2005;
Hogan et al., 2013; Kaur&Loh, 2009; Kaur&Yap, 1998) onmathematics classroom
instruction reported in Leong and Kaur (2019) have led to portraits of mathematics
teaching being teacher-centred and focussed on procedural fluency. However, none
of these studies had attempted to unpack aspects of teacher and student actions that
drive mastery learning. This chapter attempts to do this by presenting data from
the project described in Chapter 2, which involved a study of mathematics lessons
enacted by 30 experienced and competent teachers and survey data of another 677
mathematics teachers from secondary schools in Singapore. The question that guides
the investigation reported in this chapter is, “What is the instructional core that drives
the enactment of secondary school mathematics?”

3.2 An Instructional Core That Drives Mathematics
Lessons of Experienced and Competent Teachers

In the first phase of the project, as noted in Chapter 2, sequences of lessons of
30 experienced and competent mathematics teachers were documented using the
complementary accounts methodology developed by Clarke (2001). Lessons of four
teachers, Teacher 1, Teacher 21, Teacher 24 and Teacher 29, that were representative
of the 30 were analysed in depth. The first author, who was also the lead principal
investigator of the project, was involved in documenting the classroom practice of the
four teachers. Her observations of similar patterns of enactment by the four teachers
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Table 3.1 Metadata of the four teacher

Teacher Course of
study

Sex Age group Number of years of
teaching mathematics
experience

Status of teacher

Teacher 21 Integrated
Programme

F 50–59 15–20 Lead teacher

Teacher 1 Express F 40–49 20–25 Lead teacher

Teacher 29 Normal
(Academic)

F 50–59 20–25 Senior teacher

Teacher 24 Normal
(Technical)

M 50–59 15–20 Senior teacher

Table 3.2 Details of lessons of the four teachers

Teacher Course of
study

Secondary
level taught

Topic Number of
lessons

Total
instructional
time for topic
(minutes)

Teacher 21 Integrated
programme

2 Quadratic
equations and
graphs

7 420

Teacher 1 Express 4 Vectors 9 540

Teacher 29 Normal
(Academic)

4 Probability 6 465

Teacher 24 Normal
(Technical)

4 Pythagoras
theorem and
trigonometry

6 390

Key—*Secondary 2 is year 8 of schooling

led her to select their lessons for an in-depth study. Therefore, it may be said that the
sample was a convenient one. Table 3.1 shows the profile of the four teachers.

The four teachers each had at least 15 years of mathematics teaching experience
in Singapore secondary schools. Teacher 21 and Teacher 1 were Lead teachers while
Teacher 29 and Teacher 24 were Senior teachers. A Lead teacher is one who is
nationally recognised for his or her teaching competency and is trusted with the
charge of developing fellow teachers in their school and the nation. A Senior teacher
is one who is locally recognised for his or her teaching competency and is trusted
with the charge of developing junior teachers in the school. Prior to becoming a Lead
teacher, one has to be a Senior teacher. Table 3.2 shows details of the lessons taught
by the four teachers.

It is apparent from Table 3.2 that the teachers taught different topics, with three
of them teaching Secondary 4 (Grade 10) and one Secondary 2 (Grade 8). The
instructional sequences ranged from six to nine lessons. The least instruction time
documented for a topic was 6.5 h in duration.
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A grounded theory approach similar to the one described in Seah, Kaur, and Low
(2006) was adopted. The analysis revealed that mathematics lessons enacted by the
teachers were driven by very specific instructional objectives, such as:

(i) verify and state Pythagoras theorem, and
(ii) find the unknown sides of a right-angled triangle using Pythagoras theorem.

To achieve these objectives, teachers detailed micro-instructional objectives. When
enacting the micro-instructional objectives an instructional core appeared to drive
the teaching and learning of mathematics in their lessons. The components of the
instructional core that encapsulate interactions between the teacher, student and
content are:

D → Teacher develops concepts/demonstrates skills/engages students in activities to
explore concepts

S → Teacher sets students work to do [students apply the concepts/practise skills]

R → Teacher reviews student work, drawing the attention of the whole class to errors,
misconceptions, correct solutions, good presentations, etc.

Through the varied combinations of D, S and R, as shown in Episodes 3.1 and
3.2, teachers enacted micro-instructional objectives to achieve their instructional
objectives. Episode 3.1 shows that to achieve the objective “To verify and state
Pythagoras theorem”, a teacher went through six micro-instructional objectives that
involved components of the instructional core, D, S and R. Episode 3.2 further
exemplifies how the teacher achieved the next objective in a similar manner.

Episode 3.1

Objective: To verify and state Pythagoras theorem

Cycle 1 Core* Micro-instructional objective Teacher/student activities

R Review past knowledge Teacher drew a right-angled triangle
and reviewed its properties with input
from students

D Verify Pythagoras theorem Teacher explained the activity
(guided investigation) and gave out
the activity kits

S Verify Pythagoras theorem Students carried out the activity
verifying that the sum of the areas of
the squares on the longest side of the
triangle = sum of the area of the
squares on the other two sides of the
triangle

R Verify Pythagoras theorem With inputs from students related to
the activity, teacher formalised the
relationship between the sides of a
right-angled triangle

(continued)



3 The Instructional Core That Drives the Enactment … 49

(continued)

Objective: To verify and state Pythagoras theorem

Cycle 1 Core* Micro-instructional objective Teacher/student activities

R Develop the vocabulary related to the
sides of a right-angled triangle

Teacher labelled the sides of the
right-angled triangle on the board;
named the longest side as the
hypotenuse and drew the attention of
the whole class to the ‘new’ word
(“must use it and spell it correctly”)

R State Pythagoras theorem With inputs from students, teacher
wrote the theorem on the board: a2 =
b2 + c2 (where a is the length of the
hypotenuse)

*Components of instructional core

Episode 3.2

Objective: To find the length of the hypotenuse given the other two sides of a right-angled
triangle

Cycle 2 Core* Micro-instructional objective Teacher/student activities

D Demonstrate how to find the length of
hypotenuse of a right-angled triangle
given the other two sides

Teacher demonstrated an example of
how to find the hypotenuse of a
right-angled triangle with sides 3 cm
and 4 cm

S Engage students in applying new
knowledge and skill building

Students worked individually and
found the hypotenuse of a given
right-angled triangle. Teacher walked
around the class noting student work
for “review”

R Monitor student understanding Teacher drew on samples of student
work (correct and incorrect solutions)
and invited inputs from students. For
the incorrect solutions, errors and their
causes were identified. As some
computational errors were due to
incorrect use of the calculator, teacher
did a quick review of how to find
squares and square roots using a
calculator

S Reinforce—application of new
knowledge and skill building

Students worked individually and
found the hypotenuse of a given
right-angled triangle. Teacher walked
around the class noting student work
for “review”

(continued)
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(continued)

Objective: To find the length of the hypotenuse given the other two sides of a right-angled
triangle

Cycle 2 Core* Micro-instructional objective Teacher/student activities

R Monitor student understanding Teacher drew on samples of student
work (mostly correct solutions) and
invited inputs from students. Teacher
highlighted correct and logical
presentations

*Components of instructional core

A lesson often comprised of one or more cycles of instruction depending on
the number of objectives. A cycle comprised combinations of D, S and R such as
R-D-S-R-R-R or D-S-R-S-R as shown in Fig. 3.1.

After analysing the lessons of the four teachers (Teacher 21, Teacher 1, Teacher
29 and Teacher 24), the lessons of the other 26 experienced and competent teachers
that participated in the video-segment were reviewed by threemembers of the project
team and it was found that similar cyclic patterns were present in their lessons too.
Our findings have led us to conjecture that the DNA of mathematics lessons in the
classrooms of secondary school mathematics teachers in Singapore is as shown in
Fig. 3.2.

Figure 3.2 posits that the DNA of mathematics lessons is made up of the instruc-
tional components, D [Development], S [Student Work] and R [Review of Student
Work] (akin to the building blocks of the human DNA), and that these constitute
the instructional core that drives the teaching and learning of mathematics in Singa-
pore secondary schools. The D component develops a concept or introduces a skill.
Teachers may show, tell, explain or guide students to uncover/make sense of new
concept(s). They may also introduce and demonstrate skill(s). The S component
always follows D and involves students working on mathematical task(s) during
classwork, homework or assessment. Students may do the work individually or in
groups. The tasks involve application of new knowledge or skill building that was

Fig. 3.1 Instructional cycles
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Fig. 3.2 DNA of mathematics lessons comprising the instructional core D, S and R

developed in the D component. The R component, a critical one, is where student
understanding is monitored. Almost always, student work during the S component
is used for whole class discussion during the R component. Good presentations are
showcased, alternative solutions are discussed and erroneous solutions are examined
and corrected with inputs from the class. This component also includes the review
of past knowledge that is necessary for the lesson or a task that students are set to
do. Many a time when a teacher is not satisfied with students’ grasp of a concept or
proficiency of a skill, the teacher engages students is more rounds of S → R → S
→ R… until he/she is satisfied with students’ mastery of knowledge.

Just like the human DNA, combinations of actions from the components, D, S
and R produce the varied types of lessons that teachers enact to achieve their instruc-
tional objectives. It appears that each instructional objective is achieved through an
instructional cycle and a lesson may have one or more such cycles depending on the
objectives of a lesson.

3.3 What Were Mathematics Teachers’ Perceptions About
the Instructional Core in General?

In the second phase of the project, a survey was conducted for 691 mathematics
teachers from secondary schools in Singapore. Data from only 677 teachers were
valid for analysis. The first part of this survey was based on the instructional core
that was apparent in the lessons of experienced and competent mathematics teachers
in secondary schools. Teachers who participated in the survey were introduced to
the definitions of D, S and R as in Sect. 3.2 of the chapter. They were also shown the
same examples of lesson objectives and their enactment through micro-instructional
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objectives comprising components, D, S and R (as shown in Episodes 3.1 and 3.2).
Lastly, they were asked if their lessons: (i) were also guided by lesson objectives that
were enacted through micro-instructional objectives, and (ii) comprised the instruc-
tional components D, S and R. Table 3.3 shows the survey items and respective
responses.

The data in Table 3.3 shows that the instructional core was prevalent in the class-
rooms of mathematics teachers in secondary schools and affirmed the hypothesised
instructional core of mathematics lessons. 94.8% of teachers who responded to the
survey agreed that their lessons were guided by lesson objectives that are enacted
through micro-instructional objectives. Thirty-five participants (5.2%) responded,
“No, their lesson objectives were not enacted through micro-instructional objec-
tives”. Table 3.4 shows the distribution of these 35 teachers across the courses of
study.

It is apparent from Table 3.4 that across all the four courses of study between 4
and 5.8% of teachers claimed that their lessons objectives were not enacted through
micro-instructional objectives. This affirms that the “No” response was not specific
to any course of study. Figure 3.3 shows a sample of responses given by these
35 teachers. From the responses given by the teachers it was apparent that some
teachers were actually enacting their lessons through micro-instructional objectives
while others did not comprehend the term “micro-instructional objectives” or used
different lenses to view their instructional practices.

Table 3.3 also shows that 96.8% of the teachers who did the survey recognised
that the instructional components D, S and R were present in their lessons. However
22 teachers (3.2%) did not. Table 3.5 shows the distribution of these 22 teachers
across the courses of study.

Table 3.3 Survey items and responses on the instructional core

Survey item Response (%)

Yes No

Are your lessons also guided by lesson objectives that are enacted through
micro-instructional objectives?

94.8 5.2

Do your lessons also comprise the instructional components D, S and R? 96.8 3.2

Table 3.4 Distribution of the 35 teachers across the courses of study

Course of study Teachers who responded to the
survey

Teachers who responded “No”

N % N %

Integrated programme 58 8.6 3 5.2

Express 380 56.1 22 5.8

Normal (Academic) 151 22.3 6 4.0

Normal (Technical) 88 13.0 4 4.5

Total 677 100 35 5.2
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T(A) – Express 
For each instructional objective, my lesson usually follow similarly to DSR. 
Teacher develop concepts (through explorations or demonstrations) 
Teacher to go through worked examples and students to practice 
Homework will be assigned or mini quizzes to monitor and check students understanding of concept 
taught 
Think I do not really pen down the micro-instructional objectives but the process of lesson 
implementation may include such objectives.

T(B) – Integrated Programme
For lessons on new concepts, students begin with reading and/or working on a problem or situation that 
is related to the new concept, but using their existing knowledge. Students arrive at the concept based on 
guided questions on a worksheet. My role is to help them arrive at the conclusion and clarify any 
assumptions. Then we move on to worked examples where they reinforce their understanding. The worked 
examples get progressively harder. So students mainly discover the concepts without me showing them.

T(C) – Normal (Academic)
Not really clear what is meant by ‘micro-instructional objectives’. My lessons are guided by how well I 
know my class, their learning styles etc. I do not have a fix set of guidelines. I believe in varying the 
activities in my lessons in order to excite the students with what I have to teach. One lesson can be IT-
based lesson, the other lesson can be a chalk-and-talk lesson, next lesson I can have Kahoot! Or activities 
such as paper-cutting. It also depends on what time are my lessons. If my lesson happens to be the last 
period, or in the afternoon, I need to have more activity-based lessons.

T(D) – Normal (Technical)
I have lesson objectives which comprise of i) what they will learn at the end of the lesson, ii) list of tasks 
the students will be doing during the lessons. I will also monitor understanding using Exit Pass (1 or 2 
questions). But I do not have micro-objectives.

Fig. 3.3 Sample of responses from the 35 teachers

Table 3.5 Distribution of the 22 teachers across the courses of study

Course of study Teachers who responded to the
survey

Teachers who responded D, S
and R were not present in their
lessons

N % N %

Integrated programme 58 8.6 2 3.4

Express 380 56.1 13 3.4

Normal (Academic) 151 22.3 5 3.3

Normal (Technical) 88 13.0 2 2.3

Total 677 100 22 3.2

It is apparent from Table 3.5 that across all the four courses of study between 2.3
and 3.4% of teachers claimed that the instructional components, D, S and R, were not
present in their lessons. This again affirms that such a responsewas not specific to any
course of study. Figure 3.4 shows a sample of responses given by these 22 teachers.
From the responses given by the teachers, it was apparent that the instructional
components, D, S and R, were present in their lessons. As the terminology of the
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T(E) – Integrated Programme
We adopt the flipped classroom approach, where we get the students to view some videos then raise 
questions that come to their minds after viewing. Then those who are ready, just start doing the questions, 
those not clear will listen to worked examples being discussed in class before attempting the questions.

T(F) – Express
We do mostly carry out the DSR approach, but we now aim to have more student centred learning. 
Students have ownership of their learning through self-discovery or collaborative learning. However, the 
sequence would also include DSR. 

T(G) – Normal (Academic)
Before D S R, explain motivation for new topic/ recap prior knowledge.

T(H) – Normal (Technical)
1. Teacher introduce a hook to gain students’ interest in that topic and also help 

students to see the relevance of the topic in relation to other subjects or the real 
world.

2. Teacher guide students to develop concept through meaningful activities and exploration 
3. Teacher consolidate and demonstrate worked examples
4. Students practice the skills learnt
5. Teacher conduct class discussion to discuss alternative methods of solving the problem and also 

model good presentation
6. Set formative assessment
7. Conclude the lesson

Fig. 3.4 Sample of responses from the 22 teachers

instructional components was new to many, they failed to contextualise them and
claimed that they were absent in their lessons.

The next 60 items in the first part of the survey were the teaching and learning
actions apparent in the classrooms of the 30 experienced and competent teachers that
participated in the first phase of the project. Thirty-six of the items were on what the
teachers did in class and another 24 were on what the teachers asked their students to
do in class or as homework. The items were representative of the three instructional
components, D (Development), S (Student Work) and R (Review of Student Work).
Three sample items, that were part of the first 36, are as follows:

• I focus on mathematical processes (such as compare and contrast, logical
reasoning) to facilitate the development of concepts or student understanding
[D]

• I provide students with sufficient questions from textbooks/workbooks/other
sources to practise so as to develop procedural fluency [S]

• I provide feedback to individuals for in-class work and homework to serve as
information and diagnosis so that students can correct their errors or improve [R].

Teachers responded to the items on a Likert scale of 1 (Never/Rarely) to 4
(Mostly/Always).

In this chapter, we discuss the findings based on the analysis of the first 36 items.
At the onset of the analysis, three items that focused on the use of resources were
removed as we found that they did not fit into the scales we constructed. A detailed
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account of the analysis is found inTong, Tay,Kaur,Quek, andToh (2019).APrincipal
Component Analysis with both Varimax and Promax rotation methods resulted in
four factors that considered 32 of the items. Another item, “I only progress to the
next objective of the lesson when I am confident my students have grasped the one
before” was also removed as it did not fit in the final four factors that resulted. The
four factors are:

• Student-centred in-class learning (11 items)
• Teaching and practice for fluency (9 items)
• Teacher-led conceptual learning (7 items)
• Teacher-guided student self-directed learning (5 items).

Figures 3.5, 3.6, 3.7, and 3.8 show teacher actions in each of the four factors that
appears to underlie teacher moves in mathematics lessons in Secondary schools.

Our justifications of the four factors that appear to underlie teacher moves in
secondary mathematics classrooms of Singapore schools are as follows.

Instead of bifurcating into student-centred versus teacher-directed learning, or
fluency versus conceptual learning, we find that these aspects are mixed andmatched
into four amalgams. The first is student-centred in-class learning. Teachers are
student-centred both in the development phase (they ask questions to encourage
reasoning, and build on students’ responses) as well as in the seatwork phase (they
provide students with probing guidance (open-ended questions), and walk around
the class noting students’ work that would be used to provide class feedback later).
The second is teaching and practice for fluency . These all fall under items in
Fluency subscales. Examples of these are using “I do, we do, you do” strategy

Factor 1 - Student-centred in-class learning

Reflecting on my lessons for the course (which I have chosen to do this survey on) I …
 ask students to recall past knowledge 
 ask direct questions to stimulate students' recall of past knowledge/check for understanding 

of concepts being developed in the lesson 
 ask questions to encourage reasoning and speculation, not just to elicit right answers 
 use examples and non-examples to engage students in discussion to make sense of a concept
 focus on mathematical processes (such as compare and contrast, logical reasoning) to 

facilitate the development of concepts or student understanding 
 lead whole class discussion (with guided questions) to facilitate the development of 

concepts
 exchange ideas with students on how to solve a problem 
 ask students open-ended questions and allow them to build on one another’s responses to 

develop concepts or clarify their understanding 
 build on students' responses rather than merely receiving them
 provide students with probing guidance (open-ended questions about their thinking and why 

they are considering certain approaches) when they face difficulty with a mathematical task 
they are doing 

 walk around the class noting students' work that I would draw on to provide the class 
feedback during whole class review when they are doing work at their desks

Fig. 3.5 Student-centred in-class learning scale
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Factor 2 - Teaching and practice for fluency
Reflecting on my lessons for the course (which I have chosen to do this survey on) I …
 use "I do, We do, You do" strategy:  
o Demonstrate how to apply a concept/carry out a skill on the board [I do] 
o Demonstrate again using another similar example but with inputs from students [We do] 
o Ask students to do a similar question by themselves [You do] 

 emphasise basic facts/steps for students to memorise them
 provide students with sufficient questions from textbooks/workbooks/other sources to 

practise so as to develop procedural fluency 
 use exposition (teacher at the front talking to whole class) to explain mathematical ideas, 

facts, generalisations
 get students to automatise steps leading to a solution through repetitive exercises
 engage students in practising past exam papers 
 provide students with directed guidance (ask close-ended questions) when they face 

difficulty with a mathematical task they are doing, focusing them on the concept/skill 
necessary to do the task

 tell students how to do it when they face difficulty with a mathematical task they are doing
 walk around the class and provide students with between desk instruction (i.e. help them 

with their difficulties) when they are doing their work at their desks

Fig. 3.6 Teaching and practice for fluency scale

Factor 3 - Teacher-led conceptual learning

Reflecting on my lessons for the course (which I have chosen to do this survey on) I …
 focus on mathematical vocabulary (such as factorise, solve) to help students adopt the 

correct skills needed to work on mathematical tasks
 explain what exemplary solutions of mathematics problems must contain (logical steps and 

clear statements and/or how marks are given for such work during examinations) 
 encourage students to show me their work and review their progress for mathematics 
 provide feedback to individuals for in-class work and homework to serve as information and 

diagnosis so that students can correct their errors or improve 
 provide collective feedback to whole class for common mistakes and misconceptions related 

to in-class work and homework 
 review student performance by providing the class detailed comments on tests and 

examinations

Fig. 3.7 Teacher-led conceptual learning scale

Reflecting on my lessons for the course (which I have chosen to do this survey on) I …
 help students identify strategies that would help them achieve their learning goals for 

mathematics
 get students to set their own learning goals for mathematics at the beginning of each school 

term/semester
 get students to make a plan to revise their work and correct their mistakes
 get students to work with peers to make a plan for revision and correction of mistakes 
 get students to grade their own mathematics work (with the marking scheme/rubric provided 

and teach them how to use it)

Factor 4 - Teacher-guided student self-directed learning

Fig. 3.8 Teacher-guided student self-directed learning scale
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Table 3.6 Component
correlation matrix

1 2 3

2 0.252

3 0.507 0.361

4 0.391 0.127 0.216

Legend
1- student-centred in-class learning
2- teaching and practice for fluency
3- teacher-led conceptual learning
4- teacher-guided student self-directed learning

during the development phase, and engaging students in practising past year exams.
Next is teacher-led conceptual learning. Again these all fall under items in Fluency
subscales but interestingly they are extracted under a different factor. Looking more
closely at the items, we can understand why. Whereas the second factor emphasises
fluency through thoughtful practice, this third factor emphasises fluency through
conceptual understanding. Some items of this factor are focusing on mathematical
vocabulary during the development phase, and helping students identify strategies
during the review phase. The final factor is teacher-guided student self-directed
learning. Indeed, students needguidance to revise on their ownoutside the classroom.
For example, getting students to set their own learning goals and working with their
peers to make a plan for revision and correction of mistakes. Thus, these moves are
attempts by the teacher to ensure that learning takes place outside the classroom.

It is reasonable to believe in the East Asian context that fluency learning and
conceptual learning are not mutually exclusive, nor student-centred learning and
teacher-directed learning. For this reason, we chose Promax rotation in our Prin-
cipal Components Analysis to see the correlations between the factors. Indeed,
from Table 3.6, the four factors all have pairwise positive correlations. In partic-
ular, “student-centred in-class learning” has significant correlations1 with “teacher-
led conceptual learning” (0.507) and “teacher-guided student self-directed learning
(0.391), and some correlation with “teaching and practice for fluency” (0.252).
These correlations reinforce the connection between the D component, where the
teacher demonstrates, and the S component, where the student works on his/her own
understanding.

The discussion above gives us a clearer picture of how the Development-Student
Work-Review of Student Work cycle plays out in Singapore classrooms. Data
shows that these moves within these phases are generally enacted in the classroom.
Interestingly, the data also shows that underlying these moves are student-centred
considerations towards fluency and conceptual understanding.

1 Tabachnik and Fidell (2013, p. 651) suggest that the existence of correlations “around 0.32 and
above” warrant oblique rotation.
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3.4 Concluding Remarks

Leung (2001) noted that in East Asian mathematics classrooms:

Instruction is very much teacher dominated and student involvement minimal. … [Teaching
is] usually conducted in whole group settings, with relatively large class sizes. … [There is]
virtually no group work or activities, and memorization of mathematics is stressed … [and]
students are required to learn by rote. … [Students are] required to engage in ample practice
of mathematical skills, mostly without thorough understanding. (Leung, 2001, pp. 35–36)

The data presented in this chapter affirms that the teaching and learning of mathe-
matics in Singapore secondary school go well beyond drill and practice, a stereotype
of Asian Mathematics classrooms. Mathematics instruction in Singapore secondary
school classrooms may be said to be guided by an instructional core, comprising
three components that encapsulate interactions between teacher and student and
content. These components are D—Development, S—StudentWork and R—Review
of Student Work.
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Chapter 4
Learning Opportunities to Promote
Conceptual Understanding in Singapore
Secondary School Mathematics
Instruction

Kai Kow Joseph Yeo

Abstract In the teaching of mathematics, experienced and competent teachers in
Singapore secondary schools go beyond merely teaching facts, skills and conceptual
structures. They use a repertoire of teaching approaches. Instructional activities in
their lessons show a very systematic choice of variation and clear focus of teaching a
specific concept.As teachingplays amajor role in shaping students’ learningopportu-
nities, the opportunity for students to engage in constructing concepts depends largely
on the nature of interaction generated by the teacher’s pedagogical moves. This
chapter discusses learning opportunities enacted by two experienced and competent
teachers when they introduce concepts to students or engage students in constructing
concepts in well-structured lessons. Distilling the learning opportunities requires
a careful analysis of the classroom events that are instructionally guiding students’
learning ofmathematical concepts. Specifically representations and attending explic-
itly to concepts can facilitate conceptual learning among learners. In this chapter
drawing on three excerpts of classroom instructions we discuss how two experi-
enced and competent mathematics teachers create learning opportunities when they
introduce concepts to students or engage students in constructing concepts. The
teachers used their planned frames and enacted teacher-directed lessons that engaged
students in making sense of concepts. Though the lessons were teacher-directed, the
student–teacher classroom discourse was integral for the creation of knowledge by
the students.
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4.1 Introduction

In every mathematics lesson, the teacher interprets the curriculum and translates it
into mathematical practices to be used in the classroom.While the teacher’s teaching
style can stimulate students’ learning, it is their pedagogical content knowledge
and understanding of the subject that develops or limits the students’ mathematical
understandings. Furthermore, teachers should aim to incorporate student-centred
activities in their teaching, as well as carefully considering the learners’ profile to
ensure the instruction is appropriate. However, teachers are not automatons and vary
in their knowledge, understanding and skills, even in the areas in which they are
competent. As classroom teaching plays such a crucial role in students’ learning,
researchers have attempted to characterise the nature of the classroom teaching
that maximises students’ learning opportunities (Brophy & Good, 1996; National
Academy of Education, 1999). In this chapter, we discuss students’ learning oppor-
tunities provided by two experienced and competent teachers when they introduced
concepts, a key component of the Singapore school mathematics curriculum frame-
work (see Chapter 1, Fig. 1.2), to students and engaged them in constructing concepts
in a well-structured lesson.

4.2 Teaching Mathematics That Promotes Conceptual
Understanding

Ball, Lubienski, andMewborn (2001) noted that ‘what teachers and students are able
[to] do together with mathematics in classrooms is at the heart of mathematics educa-
tion’ (p. 433). This underscored the importance of the roles that teachers and students
play in mathematics classrooms. In particular, the teacher is not only responsible for
explaining how to perform certain mathematical techniques, but must also under-
stand and explain the concepts behind the techniques. The following sections explore
two constructs of teaching mathematics that promote conceptual understanding: (i)
using representations, and (ii) attending explicitly to mathematical concepts through
classroom interactions.

4.2.1 Representations in the Learning of Mathematical
Concepts

For many years, the principle of multiple representations has attracted much atten-
tion among mathematics educators. Representation is one of the critical constructs
in research on the teaching and learning of mathematics (Cobb, Yackel, & Wood,
1992; Goldin, 1998; Janvier, 1987; Perkins & Unger, 1994; Vergnaud, 1997). It
is suggested that in the teaching and learning of mathematics, students should be
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exposed to different modes of external representation. Cleaves (2008) classified
six categories of external mathematical representations: numerical/tabular, picto-
rial, graphical, verbal, symbolic (equations or expressions) and physical/concrete.
Furthermore, representations are often considered as an approach to form concep-
tual understanding. Lesh, Post, and Behr (1987) stressed that a student who ‘under-
stands’ a mathematical concept ‘can (1) recognise the idea embedded in a variety
of qualitatively different representational systems, (2) flexibly manipulate the idea
within given representational systems, and (3) accurately translate the idea from
one system to another’ (p. 36). In addition, Lesh and colleagues also indicated that
the ability to translate between numerous representations of the same concept is
seen as an indication of conceptual understanding and should also be an objective
for teaching. A student has grasped concepts or constructed concepts if he could
communicate through the use of external representations. As utilising only a single
form of external representation cannot embody an abstract concept completely, it is
necessary to have more than one external representation for each concept to help
students formulate a well-rounded understanding. Worthwhile external representa-
tions alone do not guarantee students’ learning. They are essential, but not sufficient,
for effective mathematics instruction because worthwhile external representations
may not be implemented as intended.

The National Council of Teachers of Mathematics’s (NCTM) Standards (2000)
indicated that a representation is not only a product (a picture, a graph, a number or
a symbolic expression) but also a process, a vehicle for developing an understanding
of a mathematical concept and communicating about mathematics. Language and
pictures are viewed as two different categories of representation and communication
of mathematical concepts, with essential differences in regard with their informa-
tional content, structure and usability (Schnotz, 2002),which complement each other.
An instructional issue for teachers is determining howmanymodes of representations
need to be taught at various levels of mathematics instruction. In addition, students
need to become fluent in their use if they want to succeed in expressing and under-
standing mathematical ideas with correctness and precision. Many research studies
have revealed that all these decisions are related to a mathematics teacher’s level and
depth of content knowledge (Fennema&Franke, 1992;Ma, 1999) and teaching skills,
as well as his or her philosophy, values and beliefs of mathematics and mathematics
teaching (Bishop, 1991; Chin, 1995; Ernest, 1989; Thompson, 1992).

Researchers and mathematics educators have argued that an understanding of
multiple representations has many benefits in mathematics learning and teaching.
Firstly, Kirwan and Tobias (2014) reported that no single representation is supe-
rior to another in all settings because each has its objective in highlighting different
mathematical attributes or relationships in context. Furthermore, Dreher, Kuntze,
and Lerman (2016) also pointed out that the interaction of different representations
is essential for the development of a proper concept image. Secondly, the ability to
usemultiple representations and translate among thesemodels is a significant process
in extending students’ mathematical understanding (Fennell & Rowan, 2001; Goldin
& Shteingold, 2001). However, students are likely to experience challenges in estab-
lishing the relations among different representations. Thus, in the introduction of
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mathematical concepts, teachers need to assist students to move between representa-
tions as it supports the development of deeper conceptual understanding.While using
a variety of representations is crucial to students’ understanding of mathematics
concepts and the relationship among them, each mode of representation provides
only limited information and ‘stresses some aspects and hides others’ (Dreyfus &
Eisenberg, 1996, p. 268). Thirdly, students’ errors could also reflect their struggle
with a certain representation, but not necessarily a lack of conceptual understanding
underlying the problem (Flevares & Perry, 2001). Therefore, multiple representa-
tions which can reinforce each other are frequently needed for the development of
a suitable concept image (Ainsworth, 2006; Elia, Panaoura, Eracleous, & Gagatsis,
2007; Even, 1990; Tall, 1988; Tripathi, 2008).

According to Duval (2006), while mathematics teaching and learning focuses
on the use of representations, the conversion between representations is the main
obstacle in the development of students’ conceptual understanding. The National
Council ofTeachers ofMathematics (NCTM,2000) encourages teachers and students
to use multiple representations during mathematics instruction. It states that all
students should ‘create and use representations to organise, record, and communicate
mathematical ideas; select, apply, and translate among mathematical representations
to solve problems; and use representations to model and interpret physical, social,
and mathematical phenomena’ (NCTM, 2000, p. 67).

4.2.2 Attending Explicitly to Mathematical Concepts

Students can achieve conceptual understandings of mathematics if teaching attends
explicitly to mathematical concepts—to connections among mathematical concepts,
procedures and ideas (Gamoran, 2001; Hiebert, 2003; Hiebert & Grouws, 2007).
Brophy (1999) described such teaching as infused with coherent, structured, and
connected discussions of the important ideas of mathematics. Mathematics teachers
could attend explicitly to mathematical concepts when they draw students’ atten-
tion to connections among mathematical ideas and representations. This could be
conducted in a cohesive and well-structured manner. According to Hiebert and
Grouws (2007), this may include a range of teachers’ practices, such as those
described below:

Attending to concepts … could include discussing the mathematical meaning underlying
procedures, asking questions about how different solution strategies are similar to and
different from each other, considering the ways in which mathematical problems build on
each other or are special (or general) cases of each other, attending to the relationships among
mathematical ideas, and reminding students about the main point of the lesson and how this
point fits within the current sequence of lessons and ideas. (p. 383)

Additionally, responding to students’ talk in mathematically acceptable language
can create opportunities for students to develop connections between language and
conceptual understanding. In a recent study, Goos (2004) detailed how a secondary
school mathematics teacher developed his students’ mathematical thinking through
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scaffolding the processes of inquiry. The teacher ‘call[ed] on students to clarify, elab-
orate, critique, and justify their assertions. The teacher structured students’ thinking
by leading them through strategic steps or linking ideas to previously or concur-
rently developed knowledge’ (p. 269). In a series of lesson episodes, Goos showed
evidence of how the teacher could pull students ‘forward into mature participation in
communities of mathematical practice’ (p. 283), until they were able to engage inde-
pendently with mathematical concepts. This was supported by Carpenter, Franke,
and Levi (2003) who argued that the very nature of mathematics presupposes that
students cannot learn mathematics with understanding without engaging in discus-
sion. Through inter-conceptual and intra-conceptual connections, students develop
conceptual understanding as they make sense of various mathematical ideas, their
connections and applications (Lee, Ng, & Lim, 2019).

The above discussions evidently demonstrate the intricacies of the relation-
ships between developing students’ conceptual understanding, representations and
attending explicitly to concepts. Although some mathematics educators propose that
developing a connection between conceptual understanding and representations is
not necessarily of great difficulty or concern for teachers, the reality that unfolds in
mathematics classroom would suggest otherwise. Thus, in this chapter, I draw on
lesson excerpts to illustrate how two experienced and competent teachers introduce
concepts to students and engage them in constructing concepts. In analysing the
classroom situations, I will focus on the following two important constructs of the
classroom instruction: Representations and Attending explicitly to concepts (Cai,
2003; Hiebert & Grouws, 2007; Lesh et al., 1987), to explicate the learning oppor-
tunities that teachers provide to foster students’ conceptual understanding through
teacher–student interactions.

4.3 Facilitation of Conceptual Understanding by Two
Experienced and Competent Mathematics Teachers

This chapter drawsondata from the video-segment of the project detailed inChapter 2
and illuminates how two experienced and competent mathematics teachers, Teacher
8 and Teacher 26, facilitated learning opportunities to promote conceptual under-
standing in their lessons. Teacher 8 is a female teacher who has taught mathematics
for the last 20 years. She is a Lead mathematics teacher who is nationally recognised
for her teaching competency and is trusted with the charge of developing fellow
teachers in the school and the nation. Teacher 26 is a male teacher who has taught
mathematics for the last 10 years. Both Teacher 8 and Teacher 26 are senior members
of the school staff who often mentored junior teachers and were looked upon by the
leadership of the schools as experienced and competent teachers. The profile of the
students of Teacher 8 and Teacher 26 are distinct. Teacher 8 had 39 students in her
Year 9 Express course class while Teacher 26 had 21 students in his Year 9 Normal
(Academic) course class. The mathematical ability of students in the class of Teacher
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26 was slightly below average as they were from the 40th percentile of their cohort,
and those in the class of Teacher 8 were from the 50th percentile of their cohort.
These percentiles refer to the whole of Year 9 students regardless of course of study.

4.4 Analysis of the Lesson for Teacher 8

Excerpt 1 and 2 demonstrate how experienced and competent Teacher 8 explained
the concept and properties of quadratic equations to the whole class, asking students
questions along the way.

4.4.1 Properties of Quadratic Equations

In Excerpt 1, Teacher 8 (T8) introduced the quadratic equation to her class by
employing two kinds of representations: symbolic and verbal. Teacher 8 first
presented and wrote the general form of quadratic equation, ax2 + bx + c = 0,
on the whiteboard. Next she wrote the equation 3

x2 + 2x− 1 = 0 on the board.
She then asked her students if the equation was quadratic? Teacher 8 immedi-
ately compared the two equations and demonstrated to students how to identify
the respective coefficients (a, b and c) in the second equation.

Excerpt 1
T8: So what exactly is a quadratic equation? Let’s get this clear everybody. A quadratic
equation is an equation that looks like this (T8 points to ‘ax2 + bx + c = 0’ on the
whiteboard) correct?

…
T8: ax2 + bx + c = 0, where ‘a’, ‘b’ and ‘c’ are constants. They are fixed numbers,

okay? a cannot be 0. That’s the definition right? Okay, but it’s not just enough to see
that there’s a 2 (two) here (T8 circles the power 2 in ax2 in the quadratic equation on
the whiteboard with her finger)

T8: Okay, like this. [T8 circles the x2 in 3
x2

+ 2x− 1 = 0 on the whiteboard with
her finger].

T8: Because you need to write it [T8 points to 3x−2 in 3x−2 + 2x – 1 = 0 on the
whiteboard).

T8: What is the power of, the highest power of x, okay? Has to be 2 for it to be
quadratic. And this [T8 points to the x−2 in 3

x2
+ 2x− 1 = 0 on the whiteboard],

when it’s 3
x2
, power of x is not 2. Understand or not? So if it’s not 2, then not quadratic,

okay? Can or not? Any questions?

This segment of the lesson, which lasted about five minutes, prepared the students to
determine what equations can be considered quadratic equations by focusing on the
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exponent of x2. The example, 3
x2 + 2x− 1 = 0 where the x2 was deliberately placed

as a reciprocal, led the students to focus and compare a part of the equation. The
example guided the students to notice that for the term 3

x2 , the power of x was not
2 as compared to the general form of a quadratic equation, thus the equation could
not be classified as a quadratic. Furthermore, the teacher’s style of explanations and
gestures belongs to a style which led the class to follow a specific path closely. The
students were directed to inspect different terms and coefficients of the quadratic
equation in a specific sequence (coefficient of x2, then coefficient of x, and finally
constant term) and they were not encouraged to skip any term and coefficients.

To make sure her students were familiar with and understood the concept of
a quadratic equation, Teacher 8 went further to ask the class to justify why the
coefficient a cannot be equal to zero in Excerpt 2. A student gave the answer that it
will be a linear equation.

Excerpt 2
T8: So why cannot be, why cannot be 0? Why ‘a’ cannot be 0? [Teacher writes ‘a /=
0’ on the whiteboard]. Anybody can tell me?

T8: Because the definition say ‘a’ cannot be 0.Why ah? ‘a’, ‘b’ and ‘c’ are constants.
0 is a constant what, it’s a fixed number, but why cannot be 0?

S1: Then it will be a linear equation.
T8 Then it will be a linear equation. Okay. So what is linear?
T8: [Teacher points to ‘a’ in ax2 + bx + c = 0 on the whiteboard] So if ‘a’ is 0

what will happen to zero times x2, what will happen to the x2?
S2: Zero.
T8: Becomes 0 right? So you will only be left with bx + c = 0. Okay, and Student

1 (S1) says this is called linear equation.

When Teacher 8 posed the question: ‘Why ‘a’ cannot be 0’? her intention was to
encourage the students to examine the general form of quadratic equation, ax2 + bx
+ c = 0, and provided justifications for the conditions of the value of a, b and c.
Student 1’s (S1) utterance, ‘then it will be a linear equation’, in response to Teacher
8’s questions was difficult to interpret. To ensure that all the students were able to
move smoothly from the verbal representation to symbolic representation of linear
equation, Teacher 8 continued to probe further to ensure how the symbolic represen-
tation of a linear equation, bx + c, was derived. Although it was not possible to tell
if all the students had understood the properties of quadratic equations, the teacher’s
explanation of general form of linear equation, bx + c = 0, and general form of
quadratic equation, ax2 + bx + c = 0, were clearly evident.
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4.4.2 Learning Opportunities for Conceptual Understanding

In this subsection, I present the learning opportunities for fostering students’ concep-
tual understanding through teacher–student interactions of Teacher 8’s class. The
discussion focuses on the two excerpts to illustrate Teacher 8’s pedagogical moves
to create learning opportunities for students. Teacher’s pedagogical moves refers to
teacher’s actions, both intentional and unintentional, that shape what mathematics is
addressed, including how it is represented and investigated.

In Excerpt 1, Teacher 8’s objective was to explain and illustrate the properties of
quadratic equations. Teacher 8 facilitated discussions that helped students negotiate
themeaning of verbal and symbol representations of quadratic equations and advance
their common understandings of the phenomena being studied. Teacher 8 explicitly
attended to concepts by addressing and discussing properties of quadratic equations.
She also assisted the students to observe connections between the coefficients of x2,
x and the constant term. Although she could have engaged students in drilling basic
facts until a conceptual foundation of quadratic equations was developed, she instead
created a learning opportunity for students to determine whether 3

x2 + 2x− 1 = 0
could be considered an example of a quadratic equation. To convince the students,
she rewrote 3

x2 + 2x− 1 = 0 as 3x−2 + 2x − 1 = 0. She challenged students by
giving a counterexample, going beyond learning facts, helping them to learn to think
mathematically how the symbolic form of quadratic equation was represented. It is
great that the teacher used the counterexample to highlight the properties of quadratic
equation. However, Teacher 8’s switching back and forth between the general form
of quadratic equation and a counterexample may be difficult for some students to
follow. Nevertheless, such learning opportunities of switching between the general
form of quadratic equation and a counterexample was evident in Excerpt 1 which
promote conceptual understanding. One feature is that teachers and students pay
explicit attention to concepts; the other is that students themselves wrestle with
important mathematics (Hiebert & Grouws, 2007).

In Excerpt 2, Teacher 8 posed thinking questions to students such as ‘why’? ‘what
will happen’ and ‘what if’? during the lesson. Teacher 8 used an initiating move and
a series of sustaining moves to support students in constructing an argument about
‘why “a” cannot be 0’? The initiating move, ‘why “a” cannot be 0’? served to open
up an opportunity for Student 1 (S1) and Student 2 (S2) to engage in co-constructing
an argument. Meanwhile, the sustaining moves (e.g. ‘So if “a” is 0 what will happen
to zero times x2, what will happen to the x2’?) served to first acknowledge the
truth in S1’s initial contributions was based on efficiency or empirical evidence. In
addition, the sustaining moves also pushed students for more, sending the message
that these early justifications were partially correct. This provided opportunities to
stimulate students to think and to make use of logical deduction. To ensure more
learning opportunities, Teacher 8 played an important role to promote mathematical
understandings through the ‘orchestration’ of whole class discussionswhere students
actively participated by making explicit their thinking and by listening to contribu-
tions made by classmates. By facilitating these discussions, Teacher 8 was also able
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to monitor the understanding of individual students. This kind of teaching empha-
sised mathematical reasoning and promoted much classroom discourse and interac-
tion between the teacher and students, as well as between the students themselves.
Furthermore, such instruction provided opportunities for students to engage inmathe-
matical practices such as making connections between quadratic and linear equation,
understanding representations of quadratic and linear equation, communicating their
thinking, justifying their reasoning and critiquing arguments.

4.5 Analysis of the Lesson for Teacher 26

In Excerpt 3, experienced and competent Teacher 26 brought students’ attention to
derive the formula for the distance between two points, (x1, y1) and (x2, y2), in a
Cartesian plane. Teacher 26 guided the whole class to discover the formula by using
Pythagoras’ theorem through questioning.

4.5.1 Distance Between Two Points in a Cartesian Plane

Teacher 26 (T26) introduced the concept of the distance between two points in a
Cartesian plane to his class by employing three kinds of representations: verbal,
symbolic and graphical. He first presented Fig. 4.1 on the whiteboard and labelled
the coordinates, A and B. He then asked students to identify a relationship in a right-
angled triangle and guided the students to derive the formula for the distance between
two points in a Cartesian plane, asking students questions along the way.

Fig. 4.1 Distance between
two points in a Cartesian
plane shown on the
whiteboard
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Excerpt 3
T26: I would like to explain to you how this formula comes about.What type of triangle
is this?

S1: Right-angled triangle.
T26: What is the relationship in a right-angled triangle? Pythagoras theorem.
T26: For the x-axis, and the y-axis. The distance between them. Okay, these are

general letters, x and y. Numbers are given, y2 − y1, what length would you define?
Length of BN or AN?

S26: BN.
T26: BN is y2 − y1. Do you see, the deriving?
T26: How do I write AN?
S3: x2 − x1.
T26: And to the left-hand side (of the equation) you have the longest side,

hypotenuse, that’s what we need to find. Is this okay? (Teacher projects the length of

line segment formula AB =
/
(x2 − x1)2 + (y2 − y1)2 in the notes onto the screen).

S4: Square root.
T26: We want AB only so we put the square root on both sides.

In Excerpt 3, Teacher 26 made a deliberate attempt to ask questions to encourage the
students to examine the graphical representation of the line AB and its coordinates.
In order to derive the distance formula in the Cartesian plane, Teacher 26 led the
students to focus on how the coordinates ofA,B andN were labelled and represented.
The intention of Teacher 26 was to promote mathematical understandings through
the ‘orchestration’ of whole class discussions where students actively participated
by making explicit their thinking and by listening to contributions made by their
classmates. Similar to Teacher 8, these whole class discussions also allowed Teacher
26 to monitor the understanding of individual students. To guide the students in the
derivation of the formula, Teacher 26 continued to probe further to assist the students
to observe how symbolic representation and graphical representation were related.

4.5.2 Learning Opportunities for Conceptual Understanding

In this subsection, I present the learning opportunities provided by Teacher 26 for
fostering students’ conceptual understanding through teacher–student interactions.
The discussion focuses on Excerpt 3 to illustrate Teacher 26’s pedagogical moves to
create opportunities for students to learn.

In Excerpt 3, Teacher 26’s instructional strategy was to develop students’ repre-
sentational competence by facilitating discussions that helped students negotiate the
meaning of graphical, verbal and symbol representations of the distance between two
points, (x1, y1) and (x2, y2), in a Cartesian plane. An important characteristic of repre-
sentational competence is the ability to switch or translate from one representation
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to another. Two important types of translations need to be developed—translations
between different modes of representations (e.g. from a graphical to an equation) and
translations within a specific mode of representation (e.g. from one visual model to
another, such as examining the right-angled triangle in a Cartesian plane). Teacher 26
had engaged students in dialogue to make explicit the connections among represen-
tations. From Excerpt 3, Teacher 26 provided these opportunities by asking students
to alternate or reverse directionality in making connections among representation
(e.g. for the x-axis, and the y-axis. The distance between them. These are general
letters, x and y.Numbers are given, y2 − y1, what length would you define? Length of
BN or AN?). This activity is a critical step to engage teachers and students in doing
mathematics while making the role of representation explicit through the discussions
about representations. Teacher 26 had created an important learning opportunity for
students to use graphical representation so as to help students to make sense of math-
ematical symbols and notations and to avoid rote memorisation of procedures. This
teacher-directed lesson shows that it is possible for both teachers and students to
pay explicit attention to concepts in ways other than providing definitions or stating
the formula for the distance between two points in a Cartesian plane. As students
engaged in mathematical discourse using the graphical, verbal and symbol represen-
tations, the learning environment created an opportunity for students to internalise the
concepts through teacher–student interactions. The analysis presented here provides
one example of how to attend to concepts through a discussion grounded in questions
created by teachers so that students have the opportunity to wrestle with mathemat-
ical concepts. In fact, Teacher 26 taught systematically so that the students developed
the skills of representing and handling flexibly mathematical knowledge of distance
between two points in a Cartesian plane.

While teachers attempt to develop students’ understanding and flexibility of the
use of multiple representations, theymust make explicit to students the advantages of
choosing one representation over another. For example, symbolic notation is typically
used mainly as a way to summarise the given information in the problem and make it
readily accessible, while a diagram or a graphical representation is more appropriate
for exploration. The compact character of the former and the flexible nature of the
latter allow for these different uses, thus students need to learn to attend to the charac-
teristics of different representations to take advantage of their capacity to understand
and solve problems.Although itwas not evident in Teacher 26’s instruction, represen-
tations can be used to support connections, reasoning, communication and problem-
solving. Without promoting these mathematical ideas and verbalising them in class
discussion, the rich potential of learning can be lost. Classroom discourse helped
students clarify their thinking and bridge representations with important mathemat-
ical learning. Unfortunately, Teacher 26 missed the opportunity to ask students to
identify similarities and differences among representations. If Teacher 26 had asked
students the following question: Explain how you would find the distance between
points A(1, 4) and B(13, 9). This would have provided an opportunity for students to
connect abstract and pictorial representations and delay the step-by-step algorithm
until after examining the meaning of the number manipulations. The students would
observe that (13 − 1)2 is the square of the difference in x-coordinates of A and
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B and is always positive. The same can be said about (9 − 4)2 as well. With such
number manipulations, the Normal (Academic) course students in Teacher 26’s class
would observe for themselves why the formula remains the same for any coordinates
of A and B, in any quadrant. These types of discussions direct attention to essen-
tial features of the underlying structure of mathematical ideas and support Normal
(Academic) course students’ abilities to recognise and utilise those structures in
solving problems. However, it could be that Teacher 26 paid too much attention to
helping students master the formula for the distance between two points, hence he
neglected to discuss the similarities and differences among representations.

4.6 Concluding Remarks

In this chapter, I have analysed two well-structured lessons to examine the oppor-
tunities for students’ learning. During whole class teaching, which is the D (Devel-
opment) component of the instruction core presented in Chapter 3, the two teachers
played an active role in expounding mathematical concepts mainly through the use
of representations as their teaching tools. The teacher structured the representations
and also attended explicitly to concepts so as to help students to develop the concepts.
The lessons of both the teachers were teacher-directed but student centred. Students’
responses to the teacher’s questions were the focus for assimilation of knowledge
by the students. The two experienced teachers had planned and delivered the lesson
in such a way that students had little room to think independently. Instead, students
mainly followed the teacher’s ‘planned frame’ to learn what was determined prior
to the lesson by the teacher. Learning opportunities depend on the types of repre-
sentations and the teacher’s questions in orchestrating the classroom discourse. To
be effective in the classroom, students should have more opportunities to articu-
late their mathematical ideas and justify their answers (Hiebert & Wearne, 1993;
Lampert, 1990).

Finally, in teaching and learning, representation can play a dual role, performing as
both instructional tools and learning tools. As Lamon (2001) reported, representation
can be ‘both presentational models (used by adults in instruction) and representa-
tional models (produced by students in learning), which can play significant roles in
instruction and its outcomes’ (p. 146). Researchers and mathematics educators have
long tried to develop a conceptually rich understanding ofwhat effectivemathematics
teaching is and how to cultivate it in order to maximise learning opportunities for all
students.
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Chapter 5
Teaching Practices That Promote
Mastery in Mathematics Learning
in Singapore Secondary School
Classrooms

Ngan Hoe Lee and Liyana Safii

Abstract This chapter discusses the findings from an examination of how the
teaching practices demonstrated by experienced and competent secondary math-
ematics teachers compare with the intended Singapore School Mathematics
Curriculum in developing mastery in learning. In the first section of the chapter,
we examine how experienced and competent mathematics teachers provide opportu-
nities for students to develop and gain mastery in mathematics learning. Of particular
interest are the ways the phases of lesson as well as the use of worked examples and
class practice tasks are structured during the lessons to promote such kind of mastery
in learning. We found that experienced and competent teachers tend to employ
cycle(s) of lesson development and lesson consolidation during their teaching. They
also tend to explain the solution of one or a few worked example(s) before providing
students with opportunities to independently put into practice their learning on other
related problems. In the second section, we examine, by drawing on the survey data,
how teachers across Singapore in general comparewith these practices adopted by the
experienced and competent teachers. It appears that teachers across Singapore gener-
ally adopt rather similar teaching approaches to promote mastery in mathematics
learning.

Keywords Singapore school mathematics curriculum · Secondary mathematics ·
Mastery in learning · Phases of lesson ·Worked example

5.1 Introduction

In this chapter, we consolidate the data and findings from the project (detailed in
Chapter 2) which focuses on the teaching practices of mathematics teachers. We first
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document practices employed by experienced and competent secondary teachers
to promote mastery in learning in their lessons. We do this through an analysis of
the video-recorded data from Phase 1 of the project. Next we draw on the survey
data from Phase 2 of the project and identify the practices employed by Singapore
mathematics teachers in general. This allows us to compare the findings and identify
any gaps between their practices.

5.2 Mastery in Learning

There are evidences that promoting mastery in learning provides a channel for
teachers to determine areas of improvement in student learning, could positively
affect students’ learning attitude (Changeiywo, Wambugu, & Wachanga, 2011), as
well as learning performance (Wambugu & Changeiywo, 2008). So, what does it
mean to promote mastery in learning?

If teachers want their students to focus on mastery of content and tasks, they need to allow
students to work on tasks repeatedly, without penalties, until they achieve mastery. (Guskey
& Anderman, 2013, p. 22)

Mastery in learning has its roots in Bloom’s (1968) model. Bloom’s mastery
learning model was built on the consideration that learners possess different learning
needs, such as time and learning pace, and focuses on formative assessments and
immediate feedback that shape their progression in learning. The model posits that
learners are able to thrive in their learning if they learn under appropriate conditions.
As such, an integral part of the model is the division of curriculum content into
smaller units to ensure that learners acquire the pre-requisite knowledge or skills for
a particular learning unit before he/she is able to progress to the next learning unit.

The key characteristics of the mastery learning approach involve clear identifica-
tion of learning goals and objectives, and providing formative assessment to ascer-
tain students’ level of mastery (Bloom, 1968) (Fig. 5.1). The formative assessment
serves as a channel for teachers to ascertain students’ progress in learning, supple-
ment student learning with timely feedback, and intervene with corrective measures
such as additional practice or time for learning. Students who have yet to demonstrate
mastery have to be evaluated on the same concepts and skills through another forma-
tive assessment. This cycle should be repeated until students are able to perform at
least 80% of their mastery level (Anderson, 2000). For students who have demon-
stratedmastery, teachers should allocate additional enrichment tasks that stretch their
thinking beyond the basic learning goals prescribed for a particular unit. With this
coherent instructional cycle, it is evident that Bloom’s model places importance on
cycles of assessing and reviewing to help students achieve mastery in learning.
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Fig. 5.1 Teaching practices that promote mastery learning approach (Adapted from Bloom, 1968)

5.3 Mastery in Learning and the Singapore School
Mathematics Curriculum

The Singapore SchoolMathematics Curriculum Framework’s (SSMCF) (Ministry of
Education, 2012, p. 14) central focus is mathematical problem solving. In enabling
students to develop their ability in mathematical problem solving, the Framework
places emphases on the five inter-related components—conceptual understanding,
skills proficiency, mathematical processes, attitudes, and metacognition (see
Chapter 1, Fig. 1.2). Mathematical skills refer to “numerical calculation, algebraic
manipulation, spatial visualisation, data analysis, measurement, use of mathematical
tools, and estimation” (Ministry of Education, 2012, p. 15). To develop skills profi-
ciency, it is also advocated that mathematics lessons should be well-structured so as
to:

(a) Develop student mathematical skills that goes beyond procedural application
and

(b) Give students sufficient opportunities to practise and use these skills such that
they develop fluency in mathematical application.

Here, there is an emphasis on the teaching ofmathematics skills such that the skills
are not understood as merely procedures to be applied but understood with under-
lying mathematical principles (Ministry of Education, 2012). In other words, the
learning goals in mathematics go beyond instrumental understanding (i.e. the “how”
of procedural skills); mathematics should be taught with relational understanding
(i.e. the “why” of procedural skills) (Skemp, 1987).



82 N. H. Lee and L. Safii

In addition, the SSMCF has framed three phases of learning to guide teachers in
supporting student learning in the classroom: Readiness, Engagement, and Mastery
(Ministry of Education, 2012, p. 22). In facilitating students’ readiness to learn,
teachers are encouraged to check on students’ prior knowledge, introduce moti-
vating contexts and create an environment that promotes productive and purposeful
learning. As students require different forms of engagement in the learning of mathe-
matics, teachers are recommended to use various forms of instructions in their lessons
such as activity-based learning, teacher-directed inquiry, and direct instruction. For
students to attainmastery of concepts and skills, teachers should supplement student
learning with a wide range of approaches which include motivated practice for appli-
cation of knowledge and skills, reflective review of their progression in learning, as
well as extended learning that stretches their potential in problem solving. In other
words, in the context of mastery in learning mathematics, the Singapore Mathe-
matics Curriculum promotes relational understanding, especially in the development
of mathematical skills proficiency, and promotes a variety of formative assessments
that includes motivated practice for application of knowledge and skills.

In this chapter, we will present two rather commonly observed practices that
experienced and competent Singapore mathematics teachers undertake to address
mastery in learningmathematics—the structuring of the phases of a lesson to promote
relational understanding, and the structuring of worked examples and class practice
to promote motivated practice for application of knowledge and skills. We will also
examine how these teaching practices fit directly into Bloom’s mastery in learning
model.

5.3.1 Phases of Lesson

Gagne (1985) argued that for cognitive strategies to be learned and internalised, there
must be a chance to practice developing new solutions to problems, and the learner
must be exposed to a credible role model or persuasive arguments. He also outlined
the following nine instructional events and corresponding cognitive processes:

● gaining attention (reception),
● informing leaners of the objective (expectancy),
● stimulating recall of prior learning (retrieval),
● presenting the stimulus (selective perception),
● providing learning guidance (semantic encoding),
● eliciting performance (responding),
● providing feedback (reinforcement),
● assessing performance (retrieval), and
● enhancing retention and transfer (generalisation).

Gagne’s nine instructional events exemplify and put into practice the instructional
design that demonstrates the key characteristics in mastery in learning put forth by
Bloom mentioned earlier. These nine instructional events also parallel many of the
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nine Teaching Actions advocated by the Singapore Ministry of Education (2018)
when teachers enact their lessons:

● activating prior knowledge,
● arousing interest,
● encouraging learner engagement,
● exercise flexibility,
● providing clear explanation,
● pacing and maintaining momentum,
● facilitating collaborative learning,
● using questions to deepen learning, and
● concluding the lesson.

While Gagne’s nine instructional events are hierarchical in nature, the Ministry
of Education’s nine teaching actions includes general good pedagogical practices
that may occur throughout the lesson. As a means to help mathematics teachers
to better structure mathematics lessons, whereby the norm for the duration of each
lesson is about one hour, Lee (2009) proposed a four-phase lesson structuremodel that
encapsulates most of these key elements: Introduction, Development, Consolidation,
and Conclusion.

The model, as shown diagrammatically in Fig. 5.2, is used to guide pre-
service mathematics teachers in Singapore to plan lessons. It recognises that plan-
ning for a well-structured lesson that involves a logical sequence of mathematics
teaching is essential in providing students with a coherent learning process. Teachers
begin the lesson by first developing students’ readiness through the use of moti-
vating contexts or assessing students’ pre-requisite knowledge (Introduction) before
engaging students in current learning by providing learning guidance with respect to
the relevant knowledge and skills to fulfil the objectives of the lesson (Development).

Fig. 5.2 Phases of mathematics lesson (Adapted from Lee, 2009)
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Introduction 
R Teacher reviews students’ prior knowledge

D 
Teacher engages students in creating or appreciating mathematical 
ideas/concepts 

Development 
D 

Teacher develops students’ knowledge on mathematical 
ideas/concepts 

D 
Teacher demonstrates to students skills that are relevant to 
mathematical ideas/concepts

Consolidation 
S 

Teacher assigns students with individual or group work within or 
outside the lesson for application of concepts and practice of skills

R 
Teacher reviews work done by students (e.g., written work, work 
done on whiteboard, assessment) 

Conclusion

Four-Phase 
Lesson Structure 

Components
D, S, R Instructional Approach

Model

Fig. 5.3 Connection between four-phase lesson structure and the instructional components D, S,
and R

The lesson then extends into the Consolidation phase in which teachers assign class
practice and review students’ work to develop fluency in mathematical application.
The lesson then concludes with a closure of the lesson or setting up the stage for the
subsequent lesson (Conclusion). In particular, the Development and Consolidation
phases promote procedural fluency through opportunities for motivated practice of
learnt knowledge and skills that are built on relational understanding. In other words,
mastery in learning mathematics is achieved through the Development and Consol-
idation phases. It is useful to also note that this four-phase lesson structure model
also maps into the three phases of learning embodied in the SSMCF (Readiness,
Engagement and Mastery).

In Chapter 3, the authors introduced the D, S, R (D= Development, S= Student
work, R = Review of student work) components of an instructional core that drives
mathematics instruction inSingapore secondary schools. These componentsmanifest
the micro-lesson objectives that teachers enact while achieving their lesson objec-
tives. In contrast, the four-phase lesson structure model discussed here is guided by
a lesson structure model. It is possible to map the instructional components: D, S,
and R within each phase of a lesson. Figure 5.3 exemplifies the connection between
the components and the four-phase lesson structure model.

5.3.2 Worked Example and Class Practice Task Nexus

Worked examples “comprise the specification of a problem, the solution steps, and the
final solution itself” (Renkl, Stark, Gruber, & Mandl, 1998, p. 90). For teaching and
learning of mathematics, the use of worked examples as part of classroom instruction
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draws on the basis that assigning independent tasks to students during the initial stage
of learning might not be productive as students have not yet attained a good grasp
of newly introduced concepts and its application (Renkl, 2014, 2017). As a result,
students are not able to draw on their repertoire of knowledge to activate effective
problem-solving strategies and eventually may depend on strategies that are unpro-
ductive and overload their cognitive resources. One way to reduce such extraneous
cognitive load is to allow students to learn using worked examples in which step-
by-step solutions are provided. In providing step-by-step solutions, students are able
to devote all available cognitive resources to focus on the context of the worked
example and its solution, and construct problem-solving schemas for such problems
(Pachman, Sweller, & Kalyuga, 2014). Students do this by learning how to derive
solutions by modelling what others do, say, or write, and storing them into their
long-term memory (Sweller, Ayres, & Kalyuga, 2011), and constructing their own
explanations on deriving the solutions (Renkl, 2017). These schemas could later be
activated for problem solving.

In fact, worked examples viewed as teacher modelling, as advocated by Gagne’s
5th instructional event—guide learning, to show how to write “it correctly” in mathe-
matics contributes to the third type of understanding that Skemp (1987) postulated as
“formal/logical understanding” in the learning of mathematics. According to Skemp,
formal/logical understanding is the ability to connect mathematical symbolism and
notation with relevant mathematical ideas and to combine these ideas into chains of
logical reasoning. Thus, worked examples, together with the teaching for relational
and instrumental understanding, need to be included under the lesson Development
phase so that the teacher sufficiently develops all three types of understanding in
relation to the intended learning for the lesson.

There are evidences of the benefits of worked examples and a majority of these
studies are centred on the example-problem pairs as a substitute for learning solely
throughproblem-solving tasks (Renkl, 2014;VanGog&Rummel, 2010). In example-
problem pairs studies, students are provided with solutions of worked examples
and then immediately with similar problems to be solved. In a classic example of
example-problem pairs, Sweller and Cooper (1985) observed that not only did the
worked examples help students solve problems faster, students also made fewer
mathematical errors and subsequently became more efficient in problem solving.
This could be contributed by the activation of easily retrievable schemas which were
developed when students were exposed to solutions of worked examples.

However, there exists a number of caveats to the effectiveness of worked exam-
ples. The use of worked examples is beneficial only in the initial stage of student
learning (Kalyuga, Chandler, Tuovinen, &Sweller, 2001; Tuovinen&Sweller, 1999)
and when students are encouraged to make sense of the solutions to worked exam-
ples on their own (Renkl 2014; Rittle-Johnson, Loehr, & Durkin, 2017). As such,
additional support that encompasses processes such as the basis of using certain
approaches or the selection of appropriate strategies needs to be supplemented in
order to provide students with a more coherent learning process (Van Gog, Paas,
& Van Merriënboer, 2004). In fact, the quality of self-constructed explanations in
learning can be enhanced with some instructional support (Rittle-Johnson et al.,
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2017). For instance, supplementing worked examples with instructional explana-
tions has been proven to be beneficial for learning (Wittwer & Renkl, 2010), though
its effectiveness is limited to the initial learning process (Bokosmaty, Sweller, &
Kalyuga, 2015). Furthermore,Kalyuga et al. (2001) argued that for studentswho have
acquired the necessary learning, interpreting a worked example may be redundant
and impose a greater cognitive load instead.

Studies have also shown that the effectiveness of worked examples can be opti-
mised through the use of completion or fading strategy which considers students’
active role in constructing knowledge in relation to a particular problem (e.g.
Berthold, Eysink, & Renkl, 2009; Renkl, 2014). Adopting such strategy means that
there is room for students to actively rationalise the solutions, albeit partially, rather
than providing students with fully worked-out examples, by omitting certain steps
in the solutions provided. In fact, removing the last step from the solution could
be more effective in developing students’ knowledge of a problem than the use of
example-problem pairs (Atkinson, Renkl, & Merrill, 2003; Renkl, Atkinson, Maier,
& Staley, 2002). Under such circumstances, students are encouraged to construct
their own explanations while being supported with prompts.

It appears that there are prerequisites to the effectiveness of worked examples;
worked examples have to be accompanied by a problem to solve, and incorporated
into the lesson in a way that engages students to construct their own explanations or
partial solutions.

In theSingapore context, the advocated use of “I do,wedo, you do” strategy,which
basically refers to tasks that the teacher demonstrates (teacher modelling), tasks that
the teacher brings the whole class through with guidance (guided practice), and tasks
that require students to attempt independently (independent practice), exemplifies the
way the worked example and class practice task nexus is being played out in these
abovementioned ways in the classroom contexts.

5.4 Promoting Mastery in Learning in Singapore
Secondary Mathematics Classrooms

This section reports the data from the two phases of the project. The first involved 30
experienced and competent teachers, while the second involved again the 30 expe-
rienced and competent teachers and another 647 secondary mathematics teachers
across Singapore. The teacher participants were made up of teachers who taught
the four courses of study offered under the Singapore secondary education—Inte-
gratedProgramme (IP), Express,Normal (Academic) (N(A)) andNormal (Technical)
(N(T)). Details on the four courses of study are provided in Chapter 1, Sect. 1.2.
Though the same 30 experienced and competent teachers were involved in the first
and second phase of the project, the distribution of these teachers in each course of
study differs slightly in both phases (see Tables 5.1 and 5.4, and Tables 5.6 and 5.7).
This could be attributed to the teachers teaching more than one course of study in
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Table 5.1 Use of Development-Consolidation cycles as observed in lessons conducted by
experienced and competent teachers

Lesson structure Percentage of participants

IP
(n = 4)

Express
(n = 10)

N(A)
(n = 8)

N(T)
(n = 8)

Total
(N = 30)

My lesson is typically structured this way:
Introduction, Development, Consolidation,
Conclusion

25 60 88 38 57

My lesson is typically structured this way:
Introduction, Development 1, Consolidation 1,
Development 2, Consolidation 2, Conclusion
(or similar, i.e. more than one cycle of
Development-Consolidation)

25 20 38 25 27

I only have one Introduction at the beginning
of the chapter and one Conclusion at the end of
the entire chapter. There are mainly
Development and Consolidation cycles in most
of the lessons

50 30 13 25 27

their school. In addition, in the second phase, the experienced and competent teachers
were not told to do the survey for the same course of study for which their lessons
were recorded in the first phase of the study.

Two hundred and nine lessons conducted by the experienced and competent
teachers were used to document the types of approaches adopted by experienced
and competent teachers when promoting mastery in learning in the secondary math-
ematics classrooms. A grounded approach was adopted by the team of researchers to
construct a coding scheme for the codingof the video-recorded lessons.The aimof the
coding process was to consolidate the types of instructional approach adopted by the
experienced and competent teachers, without noting their frequency of usage. Thus,
the video-recorded lessons were coded for the different instructional approaches that
were observed throughout the series of lessons recorded for each experienced and
competent teacher. Subsequent observations of an instructional approach that has
already been coded were not coded again.

5.4.1 Phases of Lesson

5.4.1.1 Video-Recorded Lessons

The video-recorded lessons were coded for the phases of lesson that the experienced
and competent teachers adopted in their lessons. The lessons were coded according
to whether they, for instance, include the use of single or multiple cycles of the
Development-Consolidation phases as shown in Table 5.1.
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The video data revealed that 57% of the experienced and competent teachers
delivered their lessons through a single Development-Consolidation cycle, while
27% of them adopted multiple development-consolidation cycles within a lesson.
27% of these teachers used multiple Development-Consolidation cycles throughout
a series of lessons taught for a particular mathematics unit. It was also observed
that teachers who taught the IP course (50%) tended to deliver their lessons through
multiple Development-Consolidation cycles throughout a series of lessons taught
for a particular mathematics unit over other lesson structures. On the other hand,
teachers who taught the Express (60%), N(A) (88%), and N(T) (38%) courses of
study tended to use single Development-Consolidation cycle within a mathematics
lesson over other lesson structures. It should however, be pointed out that more care
should be exercised in interpreting these percentages due to the small sample size of
teacher participants for each of the course of study.

The findings suggested though that despite the diversity in the nature of lessons,
a common feature of these lessons is that the activities which define the Devel-
opment and Consolidation phases were used as platforms for teachers to teaching
students relationally and to provide ample opportunities for teachers to assess how
well students are able to apply what they have learned, i.e. a good level of practice
of formative assessment to go with teaching for relational understanding.

Table 5.2 illustrates how the phases of lessons unfold in a Pythagoras’ Theorem
lesson taught by an experienced and competent teacher, Teacher 6. The teacher
was observed adopting a single Development-Consolidation cycle in his lesson that
includes the following key features:

● Set the stage for learning. Check on students’ previous learning and clarify the
learning goal for the lesson.

● Introduce new body of knowledge and convey expectations. Explain a new
mathematical concept and several worked examples.

● Check for understanding and review. Provide students with an opportunity to
attempt a problem on their own, and conduct a review of student work by bringing
students’ attention to the quality of their peers’ solutions.

Table 5.2 Activities characterised in Teacher 6’s lesson on Pythagoras’ Theorem

Phase Activity

Introduction 1. Teacher recaps conditions for Pythagoras Theorem that were taught
previously

2. Teacher informs students of the lesson objectives (i.e. to prove that a
particular triangle is a right-angled triangle)

Development 1. Teacher explains the converse of Pythagoras Theorem
2. Teacher explains the solutions to three worked examples

Consolidation 1. Teacher assigns one practice question for students to attempt
2. Teacher selects some students to share their answers on the whiteboard and

uses the students’ answers to explain the solution to the practice question

Conclusion 1. Teacher recaps the main ideas that were taught in the lesson and assigns
homework on Pythagoras Theorem
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Table 5.3 Activities characterised in Teacher 17’s lesson on Trigonometry

Phase Activity

Introduction 1. Teacher assigns students with entry card on Sine Rule
2. Teacher explains solutions to the entry card

Development 1. Students work with their peers to discover the Cosine Rule using Edmodo (an
online learning platform) by themselves

Consolidation 1. Teacher assigns three practice questions for students to attempt

Development 1. Teacher checks answers for the discovery of Cosine Rule, and explains the
concept of Cosine Rule

Consolidation 1. Teacher checks and explains solutions to the three practice questions that
students attempted

Conclusion 1. Teacher assigns practice questions as homework, and briefly recaps the
concept of Cosine Rule

● Bring the lesson to closure. Connect the knowledge introduced in the lesson and
assign additional practice questions to extend student learning.

In another lesson, Teacher 17 was observed adopting multiple cycles of Develop-
ment and Consolidation phases. As illustrated in Table 5.3, Teacher 17 demonstrated
similar lesson features as Teacher 6 which includes the following phases:

● Set the stage for learning. Check on students’ previous knowledge.
● Engage students with new body of knowledge. Engage students in discovering

a mathematical concept by themselves.
● Check for understanding. Extend student learning through a few mathematical

problems that they attempt by themselves.
● Provide teacher input onnewbody of knowledge. Followup on student learning

by providing teacher’s explanation of the student self-discovered mathematical
concept.

● Review student learning. Review student work.
● Bring the lesson to closure. Summarise the learning for the day and assign

additional problems for practice.

For both teachers, there is an evident use of Development-Consolidation cycle(s) to
convey learning expectations—learning relationally, and providing opportunities for
formative assessment to check on students’ level of mastery. In other words, the way
these teacher participants structured the phases of their lesson is one that exemplifies
Bloom’s concept of teaching for mastery learning.
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5.4.1.2 Teacher Survey

The experienced and competent teachers were asked to reflect on their teaching
practices and indicate how often they adopt the lesson structures that were observed
in their lessons (as in Table 5.1). The self-reported survey data are consolidated in
Table 5.4.

Based on the responses for “frequently” and “mostly/always”, the survey data
showed that 60 and 54% of the experienced and competent teachers used single
or multiple Development-Consolidation cycle(s), respectively within a lesson.
In addition, 64% of these teachers frequently or almost/always used multiple
Development-Consolidation cycles throughout a series of lessons taught for a partic-
ular mathematics unit. The survey data also suggest that the three lesson struc-
tures were used fairly consistently by experienced and competent teachers across all
courses of study. As compared to the other courses of study (at least 55% in each
course), it was observed that comparatively fewer teachers who teach theN(T) course
(33%) tend to deliver their lessons through a single Development-Consolidation
cycle within a lesson. On the other hand, fewer teachers who teach the IP (25%) used
multiple Development-Consolidation cycles within a lesson as compared to teachers
in the other three courses (at least 50% in each course). However, due to the small
sample of experienced and competent teachers in each course of study, care should
be taken when interpreting these results.

A comparison of the data drawn from video-recorded lessons and the teacher
survey revealed some discrepancies between these teachers’ observed practice and
their perceived use in the self-reported in the survey (see Tables 5.1 and 5.4). In partic-
ular, comparatively more experienced and competent teachers appeared to claim that
they made use of multiple Development-Consolidation cycles within a lesson and
within a series of lessons taught for a mathematics unit.

Other survey respondents (N = 647) were also asked to reflect on their teaching
practices and indicate howoften they adopt the lesson structures thatwere observed in
lessons taught by the experienced and competent teachers (as in Table 5.1). Based on
the responses for “frequently” and “mostly/always”, the survey data revealed that 70
and 61% of the survey respondents adopted the single or multiple Development-
Consolidation cycle(s), respectively within one lesson, and 51% of them used
multiple Development-Consolidation cycles throughout a series of lessons taught
for a particular mathematics unit (Table 5.5). The data also showed that the three
lessons structureswere used fairly consistently across all courses of study. In addition,
the survey data of these survey respondents appears to be comparatively consistent
with the data drawn from the survey responses of the experienced and competent
teachers (see Tables 5.4 and 5.5).



5 Teaching Practices That Promote Mastery … 91

Ta
bl
e
5.
4

U
se

of
D
ev
el
op

m
en
t-
C
on

so
lid

at
io
n
cy
cl
es

as
se
lf
-r
ep
or
te
d
by

ex
pe
ri
en
ce
d
an
d
co
m
pe
te
nt

te
ac
he
rs

L
es
so
n
st
ru
ct
ur
e

C
ou
rs
e
of

st
ud
y

Pe
rc
en
ta
ge

of
pa
rt
ic
ip
an
ts

N
ev
er
/r
ar
el
y

So
m
et
im

es
Fr
eq
ue
nt
ly

M
os
tly

/a
lw
ay
s

To
ta
l(
fr
eq
ue
nt
ly

an
d
m
os
tly

/a
lw
ay
s)

M
y
le
ss
on

is
ty
pi
ca
lly

st
ru
ct
ur
ed

th
is

w
ay
:I
nt
ro
du
ct
io
n,

D
ev
el
op
m
en
t,

C
on
so
lid

at
io
n,

C
on
cl
us
io
n

A
ll

10
30

53
7

60

IP
0

25
50

25
75

E
xp
re
ss

9
18

64
9

73

N
(A

)
11

33
56

0
56

N
(T
)

17
50

33
0

33

M
y
le
ss
on

is
ty
pi
ca
lly

st
ru
ct
ur
ed

th
is

w
ay
:I
nt
ro
du
ct
io
n,

D
ev
el
op
m
en
t1

,
C
on

so
lid

at
io
n
1,
D
ev
el
op

m
en
t2

,
C
on

so
lid

at
io
n
2,
C
on

cl
us
io
n
(o
r
si
m
ila

r,
i.e
.m

or
e
th
an

on
e
cy
cl
e
of

D
ev
el
op
m
en
t-
C
on
so
lid

at
io
n)

A
ll

3
43

41
13

54

IP
0

75
25

0
25

E
xp
re
ss

0
46

27
27

54

N
(A

)
11

22
56

11
67

N
(T
)

0
50

50
0

50

I
on
ly

ha
ve

on
e
In
tr
od
uc
tio

n
at
th
e

be
gi
nn
in
g
of

th
e
to
pi
c
an
d
on
e

C
on
cl
us
io
n
at
th
e
en
d
of

th
e
en
tir
e
to
pi
c.

T
he
re

ar
e
m
ai
nl
y
D
ev
el
op
m
en
ta
nd

C
on
so
lid

at
io
n
cy
cl
es

in
m
os
to

f
th
e

le
ss
on
s

A
ll

13
23

41
23

64

IP
50

0
0

50
50

E
xp
re
ss

9
27

46
18

64

N
(A

)
12

22
33

33
66

N
(T
)

0
33

67
0

67

N
ot
e
N

=
30
.n

(I
P)

=
4,
n(
E
xp
re
ss
)
=

11
,n

(N
(A

))
=

9,
n(
N
(T
))
=

6



92 N. H. Lee and L. Safii

Ta
bl
e
5.
5

U
se

of
de
ve
lo
pm

en
t-
co
ns
ol
id
at
io
n
cy
cl
es

as
se
lf
-r
ep
or
te
d
by

su
rv
ey

pa
rt
ic
ip
an
ts

L
es
so
n
st
ru
ct
ur
e

C
ou
rs
e
of

st
ud
y

Pe
rc
en
ta
ge

of
pa
rt
ic
ip
an
ts

N
ev
er
/r
ar
el
y

So
m
et
im

es
Fr
eq
ue
nt
ly

M
os
tly

/a
lw
ay
s

To
ta
l(
fr
eq
ue
nt
ly

an
d
m
os
tly

/a
lw
ay
s)

M
y
le
ss
on

is
ty
pi
ca
lly

st
ru
ct
ur
ed

th
is

w
ay
:I
nt
ro
du
ct
io
n,

D
ev
el
op
m
en
t,

C
on
so
lid

at
io
n,

C
on
cl
us
io
n

A
ll

6
24

47
23

70

IP
6

22
54

18
72

E
xp
re
ss

5
27

46
22

68

N
(A

)
7

21
44

28
72

N
(T
)

6
19

54
21

75

M
y
le
ss
on

is
ty
pi
ca
lly

st
ru
ct
ur
ed

th
is

w
ay
:I
nt
ro
du
ct
io
n,

D
ev
el
op
m
en
t1

,
C
on

so
lid

at
io
n
1,
D
ev
el
op

m
en
t2

,
C
on

so
lid

at
io
n
2,
C
on

cl
us
io
n
(o
r
si
m
ila

r,
i.e
.m

or
e
th
an

on
e
cy
cl
e
of

D
ev
el
op
m
en
t-
C
on
so
lid

at
io
n)

A
ll

7
32

44
17

61

IP
6

39
46

9
55

E
xp
re
ss

7
33

43
17

60

N
(A

)
9

31
47

13
60

N
(T
)

10
23

49
18

67

I
on
ly

ha
ve

on
e
In
tr
od
uc
tio

n
at
th
e

be
gi
nn
in
g
of

th
e
to
pi
c
an
d
on
e

C
on
cl
us
io
n
at
th
e
en
d
of

th
e
en
tir
e
to
pi
c.

T
he
re

ar
e
m
ai
nl
y
D
ev
el
op
m
en
ta
nd

C
on
so
lid

at
io
n
cy
cl
es

in
m
os
to

f
th
e

le
ss
on
s

A
ll

15
34

38
13

51

IP
17

28
42

13
55

E
xp
re
ss

14
31

39
16

55

N
(A

)
16

40
34

10
44

N
(T
)

12
39

40
9

49

N
ot
e
N

=
64
7.
n(
IP
)
=

54
,n

(E
xp
re
ss
)
=

36
9,
n(
N
(A

))
=

14
2,
n(
N
(T
))
=

82



5 Teaching Practices That Promote Mastery … 93

5.4.2 Worked Example and Class Practice Task Nexus

5.4.2.1 Video-Recorded Lessons

The video-recorded lessons were also coded for the way these experienced and
competent teachers structured the worked example and class practice task nexus
during their lessons. The lessons were coded according to whether it involved the
explanationof theworked example before or after class practice as shown inTable 5.6.

On the one hand, the video data revealed that 73 and 50% of the experienced and
competent teachers explained the solution of one or a fewworked example(s), respec-
tively before assigning class practice to students. On the other hand, 33% of these
teacherswere observed assigning class practicewithout explaining anyworked exam-
ples, and 20% of them tended to explain a few worked examples without assigning
class practice to students. None of the experienced and competent teachers were
observed to allocate class practice before explaining solutions to worked examples.

Teachers who taught the IP course tended to explain one worked example before
class practice (50%). 50% of IP teachers were also observed to assign class practice
without explaining any worked examples to their students. This is aligned with the
observation made by Kalyuga et al. (2001) as they felt that more knowledgeable
learnersmay benefitmore from problem solving than fromworked examples because
of redundancy posed by worked examples. In contrast, teachers who taught the
Express course of study tended to use worked examples in their lessons; 70% of
the teachers explained one worked example before class practice while 70% of them
explained a few worked examples before class practice. This was similarly observed
among teachers who teach the N(T) course of study; 88% of the teachers explained

Table 5.6 Use of worked example and class practice task nexus as observed in lessons conducted
by experienced and competent teachers

Approach Percentage of participants

IP
(n = 4)

Express
(n = 10)

N(A)
(n = 8)

N(T)
(n = 8)

Total
(N = 30)

I explain the solution of one worked example
before students go on with the practice
questions

50 70 75 88 73

I explain the solutions of a few worked
examples before students go on with the
practice questions

25 70 38 50 50

I explain the solutions of a few worked
examples without students working on practice
questions in class

0 30 25 13 20

I ask students to do practice questions without
showing any worked examples

50 20 38 38 33

I ask students to do practice questions first,
before showing worked examples

0 0 0 0 0
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one worked example before assigning students with class practice while 50% of them
explained a few worked examples before assigning students with class practice. On
the other hand, 75%of the teacherswho teach theN(A) course of studywere observed
to explain one worked example before class practice.

Figure 5.4 shows how an experienced and competent teacher, Teacher 17, used a
worked example to bring students’ attention to two Sine Rule formulas and how the
different formulas could be applied based on the context of themathematical problem.
For instance, the teacher made it explicit that sin A

a = sin B
b = sinC

c would work well
with problems that involve an unknown angle, while a

sin A = b
sin B = c

sinC would be
more appropriate if the problem requires one to approach it without any information
on the sides of the triangle. In this case, Teacher 17 weighed the possible ways to
approach the worked example, and helped students make appropriate selection and
application of problem-solving techniques.

In another lesson, Teacher 19 was observed showing a short video clip of real-
life applications of trigonometric ratios to the class. Teacher 19 proceeded with the
lesson by assigning students with a problem to solve without explaining any worked
examples. As seen in Fig. 5.5, the problem involves the application of previously
taught concepts and skills on Trigonometry.

[Teacher points to on the whiteboard]

Teacher 17: Because algebraically, it's advantageous to me. Okay? Otherwise, the formula is the same thing. 
Now, as for this other one… 

[Teacher points to on the whiteboard]

Teacher 17: , if I want to find an unknown side, finding ‘a’, making small ‘a’ the subject will be 

very easy for me. It will be . Okay, so this one is good for finding unknown sides.

Teacher 17: Now let's take a look at the formula, the Sine Rule. This is called the Sine Rule. What is this Sine 
Rule all about?

[Teacher writes on the whiteboard] 

Teacher 17: You stop, pause, and you take a look at these two. Yeah, we have arrived, these two relationships. 
Okay these are known as the Sine Rule. Now, they are both talking about the same thing but there 
are instances where I would prefer this formula... 

[Teacher points to on the whiteboard]

Teacher 17: Over this formula.

[Teacher points to on the whiteboard]

Teacher 17: Okay when do I use this, and when do I use the other one, the reciprocal relationship? Okay let's 
take a look. As long as I have an equation.  

[Teacher circles and on the whiteboard]

Teacher 17: I just take any two will suffice, equation. For this case, sin A = sin B , my take is this. If I want to a b
find the angle, from this relationship, from this equation, I can straightaway make sin A the 
subject right? I just have to multiply by ‘a’, then I get sin Bsin A =   × a. So if I want to find an b
unknown angle, I will tend to use this. 

Fig. 5.4 Use of worked example by Teacher 17 to teach selection and application of appropriate
problem-solving techniques
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In the diagram, B shows a bird flying above a point A on the horizontal ground AD. 
The distance of AD is 80 m. A boy’s eye level, E, is 1.7 m above the ground. His line 
of sight to the bird makes an angle of 54° with the horizontal. Find the height of the 
bird above the ground. 

Fig. 5.5 Problem involving the use of trigonometric ratios assigned by Teacher 19

The above exemplars illustrate how the worked example and class practice nexus
was adopted by two teachers in their lessons. Teacher 17 was explicit in conveying
learning expectations by using a worked example to teach students the application of
the Sine Rule before she proceeded to assign students with class practice of similar
nature. On the other hand, without explaining solutions to any worked examples,
Teacher 19 assigned a problem for students to solve as the concept and skills required
of the task has already been taught in previous lessons.

5.4.2.2 Teacher Survey

In the self-reported survey, the 30 experienced and competent teachers were asked to
reflect on their teaching practices and indicate how often they adopted the structures
of worked example and class practice task nexus that was observed in their lessons
(as in Table 5.6). The data are consolidated in Table 5.7.

Based on the responses for “frequently” and “mostly/always”, the survey data
showed that 40 and 64% of the experienced and competent teachers either explained
the solution of one or a few worked example(s) before assigning students with class
practice, respectively. In addition, 14% of the experienced and competent teachers
reported that they asked students to attempt practice questions before showingworked
examples, while 3% claimed that they asked students to attempt practice question
without showing any worked examples. None of the teachers reported that they
frequently or mostly/always explained the solutions of a few worked examples
without assigning class practice. Comparison across the four courses of study based
on the responses for “frequently” and “mostly/always” revealed some differences.
As compared to teachers who teach the IP (50%) and Express (64%) courses, there
were comparatively fewer teachers in the N(A) (22%) and N(T) (17%) courses who
indicated that they explained the solution of one worked example before assigning
students with practice questions. In contrast, there were lesser IP teachers (25%)
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who indicated that they explained the solutions of a few worked examples before
students work on solving practice questions as compared to teachers in the other
three courses (at least 65% in each course). It was also observed that the only experi-
enced and competent teacher who indicated that they assigned students with practice
questions without showing any worked examples was a teacher who taught the N(T)
course (17%). These results however need to be interpretedwith caution as the sample
size in each course of study is small.

A comparison of the data drawn from video-recorded lessons and the teacher
survey again revealed some discrepancies between the experienced and competent
teachers’ use of the various approaches relating to theworked example and class prac-
tice task nexus as observed in their lesson, and their perceived use in the self-reported
survey (see Tables 5.6 and 5.7). In particular, comparatively fewer experienced and
competent teachers appeared to self-report their use of a worked example before
class practice and worked example without class practice, and assignment of class
practice without explaining worked examples. This suggests that teachers might not
be aware that they adopt these approaches in their lessons as often as they think, and
as in most self-report instrument, the survey is still subjected to participants’ bias of
a “more politically correct” response.

Other survey respondents (N = 647) were also asked to reflect on their teaching
practices and indicate how often they adopted the structures of worked example and
class practice task nexus that were observed in lessons taught by the experienced and
competent teachers (as in Table 5.6). Based on the responses for “frequently” and
“mostly/always”, the survey data revealed that 59 and 69% of these teachers either
explained the solution of one or a few worked example(s) before assigning students
with class practice, respectively (Table 5.8). In addition, 8%of these teachers reported
that they explained the solutions of a few worked examples without assigning class
practice, 7% of them asked students to attempt practice questions before showing
worked examples, and 3% of the teachers them asked students to attempt prac-
tice questions without showing any worked examples. Moreover, the survey data
suggests that all five structures of worked example and class practice task nexus
were consistently adopted across all course of study.

This data also appears to be comparatively consistent with the data drawn from the
survey responses of the experienced and competent teachers (Table 5.7). Interestingly,
relatively more survey respondents (59%) reported that they explain the solution of
one worked example before assigning practice questions for students to attempt than
the experienced and competent teachers (40%) on a frequently and mostly/always
basis.
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5.5 Conclusion

This chapter provided some insights into the instructional approaches adopted by
experienced and competent mathematics teachers in Singapore to promote mastery
in learning in the classroom. The findings provide affirmation that in general,
experienced and competent teachers are well-guided by the intended curriculum
in their promotion of mastery in learning of mathematics. By conducting well-
structured lessons that are defined by closely knitted single or multiple cycle(s) of
the Development-Consolidation phases and the deliberate and mindful structuring
of worked examples and class practice to effectively link the two phases, the expe-
rienced and competent teachers are able to teach for relational understanding with
ample opportunities for formative assessment to check for students’ ability to apply
their learnt knowledge and skills in the mathematics class.

It is encouraging to observe that teachers across Singapore generally employ
the similar approaches in their lessons. However, as in many other uses of self-
report instruments, the survey data should be interpreted with caution. While the
collection and analysis of the video-recorded lessons may be more time-consuming
and resource-demanding, they provided more accurate insights to the practices of
the teachers, and allowed us to make better sense of the self-reported data.

The findings also bear important implications for instructional and educational
practices. Given the criteria that was used to select the sample of teachers for the
first phase of the study, the practices enacted by these experienced and competent
teachers have demonstrated a certain level of success in their classroom teaching. The
insights to their practice in promoting mastery in learning of mathematics provided
a repertoire of instructional approaches that could be promoted both at the pre- and
in-service level of mathematics teacher education.
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Chapter 6
Facilitation of Students’ Metacognition:
Some Insights Gleaned
from Mathematics Classrooms
in Singapore Secondary Schools
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Abstract Metacognition has been an active field of research since
the 1970s. Proponents operationalised the detection of metacognition in various
ways. Teacher education research into how use of metacognitive strategies can be
developed in students is crucial as there is compelling evidence that metacognition
has direct implications on problem-solving success. Drawing on video-recorded
lessons from Phase 1 of the project, this chapter first presents the strategies used by
30 experienced and competent teachers when facilitating students’ metacognition.
Four main strategies were found to be used, among others. Findings reveal that about
43% of these teachers encouraged students to compare different ways in solving
a problem. In addition, 40% of the teachers allocated time in class for students
to reflect and monitor their learning, while 30% of the same teachers required
students to check on the reasonableness of their solutions. Less than 27% of the
teachers, however, provided opportunities for students to assess their understanding
of the problem before solving it. Next, two case-study teachers working with
two mathematically diverse classrooms (i.e. mathematically strong versus math-
ematically challenged) are discussed with respect to their choice of instructional
strategies towards activating students’ metacognition. Finally, implications on
teacher education, teaching, learning, and future research are drawn.
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6.1 Metacognition

Coined by Flavell (1976), metacognition is defined as “one’s knowledge concerning
one’s own cognitive processes and products or anything related to them” (p. 232).
Flavell also articulated two preliminary-related components of metacognition:
“activemonitoring” and “consequent regulation”, emphasising the importance of the
“orchestration of these processes in relation to the cognitive objects on which they
bear, usually in the service of some concrete goal or objective” (p. 232). Metacog-
nitive knowledge was further unpacked in Flavell’s (1979, 1981, 1987) theoretical
model for capturing the thinking processes of a person through actions and inter-
actions between four aspects of a cognitive enterprise: cognitive goals, cognitive
actions, metacognitive knowledge, and metacognitive experiences. Metacognitive
knowledge is about awareness of how factors (i.e. person, task, and strategy) act and
interact to influence the outcome of the cognitive endeavour. Foundational research
in metacognition during mathematical problem-solving have mainly focused on
analysing the nature of use of metacognitive knowledge within monitoring and regu-
latory processes adopted by the solver (see Garofalo & Lester, 1985; Schoenfeld,
1985a). Until recently, more attention was paid to research into metacognitive expe-
riences and this consists of: “online task-specific knowledge” as well as “feelings,
judgments or estimates”, which can mainly be “non-conscious, non-analytic inferen-
tial processes” (Efklides, 2006, p. 3). Collectively, Flavell (1985) had espoused that
metacognitive knowledge, metacognitive experiences, and cognitive behaviour are
constantly interacting with one another during the course of a cognitive task (p. 108).
Metacognition has been an active, exciting field of international research since it was
first introduced as a construct in the 1970s.

Metacognition as a ground-breaking construct and subsequent pivotal research
on the role metacognition plays in mathematical problem-solving paved the way
for incorporating metacognition into the Singapore School Mathematics Curriculum
Framework in 1990. Since then, metacognition has been one of five key components
towards achieving the main goal of mathematical problem-solving in the Curriculum
(seeChapter 1, Fig. 1.2). According to the current Singaporemathematics curriculum
documents (Ministry of Education [MOE], 2018), metacognition involves a person
reflecting onhis or her thinking.Metacognition is further unpacked to include “aware-
ness of, and the ability to control one’s thinking processes, in particular the selection
and use of problem-solving strategies. It includes monitoring and regulation of one’s
own thinking and learning” (p. 11). In other words, metacognition is now perceived
to have three components: awareness, monitoring and regulating (Lee, Ng, & Yeo,
2019). The component of awareness also includes how cognizant is one about his or
her own affective responses towards a problem (MOE, 2018).

Nonetheless, there are several challenges facing researchers in capturingmetacog-
nition. The most pertinent is that metacognition exists as an internal process within
the self and is hence covert and unobservable. Furthermore, the distinction between
cognition and metacognition has to be operationalised during analysis of task-based
behaviours. In addition, when metacognition can occur in practice can also make
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a difference. Desoete and Roeyers (2002) articulated the difference between online
and offline metacognition and this can be useful in classifying the various methods
researchers have used to capture metacognition. This classification is also a useful
lens to examine teachers’ instructional strategies in metacognition. Online metacog-
nition refers to real-time metacognitive processes being activated as the person
attempts the task at hand. In contrast, offline metacognition comprises “predic-
tion” and “evaluation” (Desoete & Roeyers, 2002, p. 123). Predictive metacogni-
tive processes can occur when there is prior assessment of task objectives, effort to
be put in, and task difficulty leading to an estimation of task outcome and efficacy
before the task was engaged in. Evaluative metacognitive processes can occur after
the task was completed, where retrospective reflections take place. An example of an
online method for capturing metacognitive practices are think aloud protocols (e.g.
Schoenfeld, 1985b) where the person talks out loud his or her thinking processes
whil doing the task. One advantage of this is that there is direct immediate record of
metacognitive processes and behaviours as they occur.Verbal and video records of the
think aloud can be helpful for a more comprehensive interpretation of the metacog-
nition within the context. However, it will be a tedious and time-consuming analysis
process, particularly for larger sample sizes. Self-report questionnaires (e.g. Wong,
2007) are commonly used as an offline method for capturing metacognitive practices
with the obvious advantage of efficient large scale data collection. Nevertheless, as
discussed in Jacobse and Harskamp (2012), there can be item interpretation issues as
well as incomplete or inaccurate reports due to memory lapse during questionnaire
attempts.

6.2 Teachers’ Metacognitive Instructional Strategies
in Mathematics Classrooms

Research (e.g. Goos, 2002; Ng, 2008) revealed the need for problem solvers to
move between monitoring and appropriate regulatory attempts to achieve a more
efficient and effective solution process. Hence, the role of teachers is multi-fold to
build students’ metacognitive habits. Firstly, the development of students’ metacog-
nitive awareness and strategies has to be alongside with knowledge on when and
how to use these strategies. Secondly, there has to be opportunities for students
to reflect on how a problem-solving attempt can be done more efficiently, exam-
ining related macro managerial decision-making informed by effective monitoring-
regulatory cycles. Finally, provision of various problem types (including non-routine
and open-ended problems) serves as platforms for solution discussions and enact-
ment of think-aloud processes, allowing novice problem solvers to learn from the
experts.

There exists various intervention models of teachers’ metacognitive instructional
strategies in mathematics classrooms. Many of which have focused on providing a
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framework with clear interacting stages to guide students in activating their metacog-
nitive processes (see Foong, 1993; Hacker, Kiuhara, & Levin, 2019; Lee, Yeo, &
Hong, 2014; Raymond, Gunter, & Conrady, 2018; Teong, 2003). Metacognitive
strategies embedded within the frameworks can be explicitly taught, demonstrated,
or discussed during problem-solving lessons. For example, as reported in Lee et al.
(2019), the Problem Wheel (see Lee, 2008) framework used a series of question
prompts to help studentsmake sense of the basic structure of amathematical problem.
In addition, the question prompts also provided the means for students to become
aware of their existing knowledge, strategies, and related problem-solving experi-
ences for understanding the problem at hand and its context. Through the prompts,
students are reminded to select their strategies, monitor their use of strategies, and
engage in appropriate regulatory behaviours during the problem-solving process.
Nonetheless, such intervention models are often done on research timelines and
are not sustained nor expanded at post-research. In Singapore, despite metacogni-
tion being incorporated in the Mathematics Curriculum Framework since the 1990s,
there is still a lack of concerted efforts to promote teacher instructional strategies on
metacognition in mathematics classrooms.

One main reason for this is that metacognition is a difficult construct to grasp. Ng,
Lee, Seto, Loh, and Chen (2016) found that mathematics teachers from three primary
schools hadmisconceptions of whatmetacognitionwas, confusing the construct with
other thinking processes (e.g. critical thinking, higher order thinking) and teaching
approaches (e.g. engaged learning, making thinking visible). The same study also
found throughvideo-recorded lessons and teacher surveys that some teachers claimed
to have developed students’ metacognition in their classes when there was either little
evidence observed or there were misinterpretations of teacher practice. The research
by Ng and her colleagues is one of the few Singapore research on teacher metacog-
nitive instructional strategies. More can still be done to understand existing prac-
tices in Singapore schools pertaining to the development of students’ metacognitive
strategies in mathematics classrooms, across levels and courses of study.

This brings to mind another crucial piece of the puzzle: teacher education on
metacognition and its associated research. Teacher education on metacognitive
instructional strategies is important because there is compelling evidence that the
presence of metacognition and the nature of its use have direct implications on
problem-solving success (see Desoete & De Craene, 2019; Lee et al., 2018; Loh &
Lee, 2019). Moreover, there is also some evidence (as cited above) that teachers need
to have a clear conception of what metacognition is and how to develop metacog-
nitive strategies in their students. Knowledge of existing practices in Singapore
schools will help chart the way for more targeted and systematic teacher education
on metacognitive instructional strategies.

Drawing on the data of the project (see Chapter 2), this chapter first presents
an analysis of the strategies used by 30 experienced and competent teachers when
facilitating students’ metacognition. Next, two case-study teachers working with two
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mathematically diverse classrooms (i.e., mathematically strong versus mathemati-
cally challenged) are discussed with respect to their choice of instructional strate-
gies towards activating students’ metacognition. Finally, implications on teacher
education, teaching, learning, and future research are drawn.

6.3 Data Analysis Methods

Video-records of lessons of the 30 experienced and competent teachers, who partici-
pated in Phase 1 of the project (see Chapter 2, Sect. 2.3 for details), were scanned for
strategies teachers used to facilitate metacognition in their lessons. Four strategies
were revealed (see Table 6.1). Each strategy appeared to be indicative of a component
of metacognition. In the next section, we will present the use and comparisons of the
strategies by the 30 experienced and competent teachers across levels and courses of
study in terms of percentages.

Based on the video-recorded lessons, four case-study teachers, Teacher 30,
Teacher 22, Teacher 17 and Teacher 11, teaching the Normal (Technical) (N(T)),
Express, Integrated Programme (IP) and Normal (Academic) (N(A)) courses of
study respectively were selected from the 30 experienced and competent teachers for
further investigations. The teachers were selected by convenient purposive sampling
out of the 30 teachers. Three of the case-study teachers were assigned to the first
author to follow through during the data collection process. The remaining one was
selected based on field notes and video data which showed identified attempts at
using metacognitive instructional strategies by the research team. It was evident that
there were differences between how the four case-study teachers promoted students’
use of metacognition during their lessons. Only Teacher 17 and Teacher 11 were
selected for focus in this chapter because they exemplified the use of metacognitive
instructional strategies inmathematically contrasting classrooms. Teacher 17worked
with a mathematically strong class (Secondary 3 IP) while Teacher 11 taught in a
mathematically challenged class (Secondary 4 N(A)). The types of metacognitive
instructional strategies the two case-study teachers used and factors contributing to

Table 6.1 Teachers’ metacognition instructional strategies identified from the 30 competent
teachers gleaned from video-recorded lessons

No. Strategy Component of metacognition

1 I get my students to check on their understanding of a
problem before they commence on solving a problem

Awareness

2 I get my students to compare different ways of solving
a problem

Awareness

3 I get my students to reflect on their learning (including
helping them monitor their own learning)

Monitoring

4 I get my students to check for reasonableness of their
answers after solving a problem

Regulation
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their chosen instructional strategies will be discussed in the following sections. For
deeper insights, it was necessary to examine how these strategies were enactedwithin
the lessons because there is fluidity between when and how the three components of
metacognition are activated in students and the teachers’ corresponding facilitation
moves.

For the teacher cases, the following data were coded and analysed using
grounded theory methods (Strauss & Corbin, 1990, 1998): (a) transcripts of lesson
videos, (b) transcripts of teacher interviews, (c) lesson materials, and (d) student
work artefacts. Field notes were recorded and used to aid contextual interpretation of
the data. An analysis of the data sets listed provided insights into students’ online and
offline metacognition identified and facilitated by the teacher in real time. Grounded
theory methods adopt an inductive process to generate theories grounded from data
to explain a process, an action, or an interaction (Creswell, 2014). Grounded theory
methods require a rigorous process of analysis where researchers engage in iterative
cycles weaving empirical checks into the analytic process. This results in a progres-
sively more focused flow of analysis leading to coding categories which explain and
theorise the essence of the phenomenon being examined (Bryant & Charmaz, 2007).
We adopted the reformulated grounded theory methods advocated by Strauss and
Corbin (1990, 1998) because while we recognise the importance of deriving analyt-
ical categories from data, true to the nature of phenomenon, we also acknowledge
that researchers can exercise theoretical sensitivity when looking through the lens
of grounded theory in data analysis and interpretation. Theoretical sensitivity refers
to perspectives about the phenomenon in which researchers bring into the research.
This includes initial focus of empirical investigation based on beliefs, worldview,
assumptions, and relevant literature review. Three sequential coding processes were
outlined byStrauss andCorbin (1990): open, axial and selective coding. In the process
of generating analytical codes for the data, we also engaged in constant comparative
analysis (Glaser, 1992), working towards theoretical saturation of codes.

During the open coding process, data is interpreted within the context. Analytical
codes are generated to categorise segments of data. Such codes are represented by a
short name that simultaneously summarises and accounts for each piece of data. Two
types of analytical codes were used: in vivo codes (actual words/phrases in the data
used as codes) or active codes (meanings/interpretations of the phrases used as codes).
In vivo and active codes were combined, recategorised, and/or reworded during the
iterative process of empirical checks across different data sources and interpretations.
The coding process was informed by the components of metacognition (i.e. aware-
ness, monitoring, and regulation) and teachers’ metacognitive instructional strate-
gies synthesised from research. Table 6.2 shows excerpts from a preliminary coding
framework to elicit factors affecting teachers’ choice of metacognitive instructional
strategies.
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6.4 Metacognitive Instructional Strategies Used by the 30
Experienced and Competent Mathematics Teachers
Gleaned from Video-Recorded Lessons

Table 6.3 shows that 43.3% of the 30 experienced and competent teachers facilitated
students’ metacognition by inviting students to compare different ways of solving the
problem during the lesson. This provided opportunities for students to become aware
of the collective repertoire of knowledge and skills which they could draw upon for
the same problemwithin the class. Almost similarly, 40%of the experienced teachers
encouraged students to reflect on their learning during their lessons. This implied that
there was some form of students’ self-monitoring of their learning facilitated by the
teachers. About one-third of the teachers requested students to check for reasonable-
ness of their answers after solving a problem. This suggested that many of the experi-
enced teachersmight not have provided ample time in class for students to assess their
problem-solving attempts and subsequently perform appropriate regulatory actions
in view of these assessments, working towards a higher chance of problem-solving
success. In addition, only 26.7% of the experienced teachers required students to
assess their understanding of the problem before they start working on it. Overall, it
was revealed that less than half of the experienced and competent teachers have used
metacognitive instructional strategies in their mathematics lessons.

Across all four courses of study, itwas surfaced that all the experienced and compe-
tent teachers who taught IP classes in the sample had requested students to compare
different ways of solving the problem. The percentages of teachers teaching Express,
N(A), and N(T) classes who used the same approach were apparently less. Experi-
enced and competent teachers teaching Express classes appeared to have encouraged
students to reflect on their learning more, compared to other approaches such as

Table 6.3 Proportion of experienced and competent teachers who used the various types of
metacognitive instructional strategies identified from video-recorded lessons

Metacognitive instructional strategies Percentage of teachers

IP
(n = 4)

Express
(n = 10)

N(A)
(n = 8)

N(T)
(n = 8)

Total
(N = 30)

I get my students to check on their
understanding of a problem before they
commence on solving a problem

25.0 40.0 37.5 0.0 26.7

I get my students to compare different
ways of solving a problem

100.0 40.0 37.5 25.0 43.3

I get my students to reflect on their
learning (including helping them
monitor their own learning)

50.0 50.0 37.5 25.0 40.0

I get my students to check for
reasonableness of their answers after
solving a problem

25.0 20.0 37.5 37.5 30.0



114 K. E. D. Ng et al.

checking for reasonableness of answers. On the other hand, the same percentage of
experienced teachers for Normal (Academic) classes in the sample seemed to have
used all four metacognitive instructional strategies.

Although not captured by the four strategies listed in Table 6.3, it was discovered
from video records that Teacher 22 attempted to “model” her own metacognition
when solving problems during the lesson. She was teaching the solving of quadratic
equations by factorisation in a Secondary 3 Express mathematics classroom. The
teacher demonstrated how she used “think aloud” to articulate her awareness, moni-
toring, and regulation of her thinking processes. She explicitly highlighted that she
wanted the students to listen to her thinking process to learn not only how to solve
the equation, but also how to solve it efficiently. For instance, the teacher verbalised
her thinking as she attempted a problem by asking herself two questions: (a) Is this
a quadratic equation? (b) Do I need to expand the given equation? The teacher high-
lighted that these questions guided her in thinking about themethod that could be used
to solve the equation in an efficientway. Indeed, the teacherwas trying to articulate out
loud her macro tactical decision-making processes as she assessed “her” repertoire
of knowledge and skills while putting herself in the shoes of her students. Her choice
of methods was goal-oriented, deliberate, and considered in view of this repertoire.
She was just one step away from direct facilitation of her students’ metacognitive
behaviours. This teacher-case paved the way for a more in-depth investigation of
other teacher-cases who enacted various metacognitive instructional strategies to
directly facilitate students’ metacognition. We present two such teacher-cases in two
mathematically diverse classrooms.

6.5 Teacher 11 in a Mathematically Challenged Class

Teacher 11 hasmore than 20 years of teaching experience at the point of research. She
was very experienced in teaching mathematics in N(A) classes. She conducted seven
lessons on the topic of arc lengths, sector areas, and radianmeasures for theSecondary
4 N(A) class recorded in the research. Trigonometry is an important topic in school
mathematics. Weaker students often find the learning of arc lengths, sector areas,
and radian measures challenging, particularly the transition from degree to radian
measures. According to Moore (2012), quantitative reasoning plays a central role in
students’ trigonometric understandings. Teacher 11 had been teaching the same class
since the year before and shewas cognizant about her students’ lack of confidence and
self-esteem in mathematics and their need for constant “reminders” or “revision” of
what had been taught previously to drawconnections to new learning outcomes. Since
her first encounter with the class, she had adopted different questioning techniques
and activities to help students construct their understanding of the mathematical
concepts and quantitative relationships instead of telling the students directly. She
allowed time for students to share their reflections, understanding, and mathematical
reasoning during her lessons. It took her a long time to build such a learning culture.
Her students were encouraged to discuss in class and she gave everyone a chance



6 Facilitation of Students’ Metacognition … 115

to show their work during her lesson segments, using effective questioning to elicit
students’ thinking.

Teacher 11 was detected to have adopted all four metacognitive instructional
strategies outlined in Table 6.3 across her seven lessons. She often encouraged
her students to reflect on their learning (including helping them monitor their own
learning) using mini whiteboards, as shown in the teacher post-lesson interview
excerpt (Table 6.4) below. In this lesson, the teacher had asked each student to record
what he or she had learnt about Arc Lengths so that each student could actively
monitor and reflect on his or her learning progress thus far. She also used such
records to understand the needs of her students for this lesson. Throughout the topic,
as teacher interview data were triangulated with lesson videos and field notes, it was
observed that Teacher 11 had a built-in structure within all her lessons to allow time
for students to reflect on their previous learning by using mini whiteboards or by

Table 6.4 Excerpt from Teacher 11’s interview after Lesson 2 (Arc Length)

Person Line Contents

Teacher 11: 1 Okay for today’s lesson basically is for them to have more practice

2 with the formula, using the formula. At the same time my goal was

3 also to close the gap, for those students who were absent. Ya, so it’s

4 important that, you know, I have to make sure that they can be, they

5 can be back, asap. In terms of, you know the level that they are at,

6 ya, so, to, bridge that gap la. Ya. And so that’s why at the start of it, I

7 actually did a review ah

Interviewer: Mmm, yes, yes, so in a sense, you did the review and you had this mini
whiteboard, I noticed you had a mini whiteboard thing, at the beginning
right, where they did, and you actually asked those people who were absent,
to write what they remembered about the circle. And those who were
present yesterday to write what they learned about, from yesterday’s lesson.
So, was it really, was it something that you usually do, in terms of how you
want to link it back to the previous lesson?

Teacher 11: 8 Yes, usually I will do that, because to be fair to those who were absent,

9 they were not in the discussion, so they may not know, and knowing

10 these kids, they don’t read their textbook also, even though they know

11 that we’re gonna start on Chapter 4. Ya, so I thought the best way, you

12 know, so it serves two purposes. While I’m checking on the students,

13 you know, their understanding of yesterday’s lesson, at the same time

14 I’m able to introduce, you know, the lesson that they missed

Interviewer: So how did it work, you find, based on today, this strategy?

Teacher 11: 15 I’m happy with it, actually I’m happy with it, because I could see that

16 most of them could at least remember the arc length. Although there

17 were some students who could remember even more, you know, so I

18 was so, impressed
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Fig. 6.1 a Field notes of Lesson 1 (Introduction of Arc Length) by Teacher 11. b StudentWorksheet
from Lesson 1 (Introduction of Arc Length) by Teacher 11

individual sharing based on targeted questioning. It could be interpreted from the
data that one contributory factor which prompted the teacher to do so was her goal
to promote self -monitoring of learning (Table 6.4, Lines 2 to 5, 8 to 14) in view of
the class profile and her teaching style.

In addition, detectedonly through lessonobservations,Teacher 11had consciously
activated her students’ awareness of relevant prior knowledge before connections
were explicitly made to a new concept such as Arc Length by targeted questioning.
Figure 6.1a shows field notes of a lesson where Teacher 11 tried to draw out related
prior knowledge before moving on to revise on the necessary prerequisites for under-
standing the Arc Length formula. Figure 6.1b shows the worksheet used to guide
classroom discussion about the quantitative reasoning behind the derivation of the
Arc Length formula using the formula for circumference of a circle.

6.6 Teacher 17 in a Mathematically Strong Class

Teacher 17 had about 15 years of teaching experience at the point of research and
had served the same school throughout. She taught eight lessons on the topic of
Trigonometry (trigonometric ratios of obtuse angles, sine rule and cosine rule) in a
Secondary 3 IP class consisting of students who were mathematical strong and moti-
vated. Teacher 17 had been teaching advanced mathematics in most of her classes.
The culture and climate in the class being observed was very different than that of
Teacher 11’s. Teacher 17 preferred to challenge her classwith higher ordermathemat-
ical tasks which involved proofs and deductive thinking. She expected her students to
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read notes on their own before the lesson and to focus on mathematical communica-
tion (i.e. using correct mathematical terms, formulae, working steps) and reasoning
during class discussions when students clarified their learning. Although her class
was normally fast-paced and task-oriented, she allocated time for discussions and
cross-checking of solutions.

Teacher 17 also adopted all four metacognitive instructional strategies outlined
in Table 6.3 across her eight lessons. She often encouraged her students to reflect
on their learning (including helping them monitor their own learning) and compare
different ways of solving a problem. Table 6.5 shows an excerpt from a post-lesson
teacher interview after a lesson on the area of triangle formula ( 12ab sinC). During
the lesson, the teacher gave a real-world problem and encouraged her students to
compare the different formulae on the area of triangle they had previously learnt so
as to decide on which was the most appropriate for use on the given problem. She
wanted her students to assess the conditions in which each of these formulae could
be most effectively used. Here, it was observed that Teacher 17 had skilfully weaved
in questions to prompt students to reflect on their learning within purposefully facil-
itated comparisons of the different formulae for appropriateness and effectiveness in
the problem-solving scenario. Throughout all her lessons for the topic, there were
deliberate attempts by the teacher to factor in time during her lesson to help students
reflect and monitor on their use of the various formulae. One contributory factor
towards Teacher 17’s decision to enact the metacognitive instructional strategies
could be her goal to activate students’ offline regulation of their problem -solving
attempts (Table 6.5, Lines 7 to 8, 10, 15 to 17, 22 to 23) towards a more efficient and
effective choice of formula.

In another lesson, Teacher 17 followed up from a previous challenging problem
(given as homework) where students had to work on without a diagram to help
them. She asked students to check on their understanding of the problem before they
commenced on solving a problem. Then, she provided opportunities for students
to discuss what they understood from the problem and the various possibilities of
interpreting the problem using different diagrammatic representations. Here, Teacher
17’s choice of the problem and her facilitation moves to get her students to deliber-
ately return to examining their understanding of the problem were due to her goal
to emphasise the importance of assessing the understanding of the problem (partic-
ularly the given conditions and information in the problem) so that students could
consciously select the most appropriate methods to solve it. Table 6.6 shows Teacher
17’s rationale for this emphasis (Lines 4 to 8, 9 to 11).
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Table 6.5 Excerpt from Teacher 17’s interview after Lesson 5 (Area of Triangle)

Person Line Contents

Teacher 17: 1 The other thing I wanted to do is, this thing about the area of

2 triangles. By now they would have learned all the different ways of

3 calculating the area of triangle. Primary school is 1
2 × base × height ,

4 then earlier on in coordinate geometry they have learned the

5 surveyor’s formula, using the coordinates. Then after that, this lesson,

6 they will learn 1
2ab sinC . Then at the end they will learn Heron’s

7 formula. So I’m going to ask them also, to look at the affordances,

8 compare

Interviewer: Compare the different ways of actually calculating the area of triangles

Teacher 17: 9 Yeah

Interviewer: That’s nice. So that’s compare and contrast. So would you be anticipating
certain difficulties or you think they will be able to…

Teacher 17: 10 They, I think not all of them may be able to tell you the affordances

Interviewer: Okay, so not all of them will be able to tell you what is so special about
these formulas for certain cases…

Teacher 17: 11 I think I will tweak the question, maybe I will give you a plot of land

12 okay. So, area of a triangle, how would you calculate the area of this

13 plot? It might sound like that rather than what are the… Or I could go,

14 what are some ways you can find the area of triangle? Okay look at

15 the plot of land. What formula would you use? Because I think

16 anything involving angles, if you are slightly off by 1°, the distance

17 is large, the error will be…

Interviewer: In terms of error as well

Teacher 17: 18 The error, the error will be quite large. But then again I’m not sure if

19 they can come to that because it’s about life experience, if your

20 distance is large and your angle is a bit off. So that’s why if you have

21 all the distances ready, the Heron’s formula is quite nice 1
2ab sinC is

22 quite nice but provided you can find the perpendicular distance

23 because sometimes it’s not able to

Interviewer: So it will be, in the sense you have it a little bit fluid in the sense right?

Teacher 17: 24 Yes

Interviewer: How far you can go, how in-depth they would want to go into the topic,
you have to play by ear as the eight lesson progress

Teacher 17: 25 Yes
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Table 6.6 Excerpt from Teacher 17’s interview after Lesson 7 (Solving Trigonometry Problems)

Person Line Contents

Teacher 17: 1 Example 12 yesterday was, tough example because this diagram

2 wasn’t given. To draw this diagram is really difficult. It’s very

3 difficult. This is really testing, it’s really testing them a lot of things

4 because if they are not careful they might have assumed that A, O,

5 B points are collinear points. I did pre-empt that, so I drew all the

6 wrong triangles that they possibly have for Example 12. I asked

7 them you know, what’s wrong with drawing it this way, how do you

8 know it’s wrong. I did O in the centre, A, B at the side or O and A, B…

Interviewer: Different possibilities

Teacher 17: 9 Yeah different possibilities, so ask them what’s wrong with this. So

10 if this cannot be the diagram, what

11 does it imply about A, O, B? So yeah, I’m happy that one of the girls

12 said they cannot be collinear

6.7 Implications and Future Directions

In this chapter, we examined four metacognitive instructional strategies that 30 expe-
rienced and competent mathematics teachers in Singapore secondary schools were
found to have enacted, drawing upon video-recorded lessons during Phase 1 of the
Project. It was discovered that not all of the 30 teachers used the strategies on a
sustained, systematic, and purposeful basis like the two teacher-cases (Teacher 11
and Teacher 17) presented in this chapter.

Several observations stand out from the lessons conducted by Teacher 11 and
Teacher 17 in terms of whether and how metacognitive instructional strategies were
enacted in different classrooms, perhaps not limited to the teaching and learning
of mathematics. Firstly, teachers can use metacognitive instructional strategies in
mathematically diverse classroom settings, but attempts to weave in such strate-
gies during lessons hinge on how teachers can harness elements of students’ profile
towards a conducive climate of use. For example, Teacher 11 had incorporated the
need of her students to be “reminded” of their previous learning to her use of mini
whiteboards, promoting students’ self-monitoring of learning. In contrast, Teacher 17
activated students’ regulatory behaviours constantly in her lessons as the “extra push”
becausewhilemany of her students were able to draw connections betweenwhat they
have learnt, she also wanted them to be critical in their choice of solution methods.
Secondly, time needs to be spent on building students’ habit of mind for metacogni-
tion. This is embedded within the classroom culture co-created by both teachers and
students. For example, both Teachers 11 and 17 were observed to have consistently
built-in time during lessons to listen to and discuss students’ responses to their use
of metacognitive instructional strategies. Thirdly, the enactment of metacognitive
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instructional strategies can develop students’ online and offline metacognition-in-
practice. This can be observed from Tables 6.4, 6.5 and 6.6. Fourthly, facilitation of
students’ metacognition is not limited to only problem-solving lessons. For example,
Fig. 6.1a and b show Teacher 11’s attempts to activate her students’ awareness of
relevant prior knowledge during the introductory lesson to the concept of Arc Length.
Finally, the priority placed by teachers to promote students’ metacognition is crucial
for the implementation of metacognitive instructional strategies. Such a priority
governs the teacher’s classroom goals and prompts the teacher to consciously allo-
cate time for the enactment of themetacognitive instructional strategies towardsmore
productive student learning and a conducive classroom climate. This can be observed
from the two teacher-cases presented here. In particular, Teacher 17 had purpose-
fully chosen certain examples to be discussed in class to reinforce the importance of
assessing the understanding of the problem.

The findings presented in this chapter provide added dimensions to future direc-
tions for teacher education on metacognition. Teacher education on metacognition
has to work on at least two interconnected fronts: (a) educating teachers about what
metacognition is (see Ng et al., 2016) and the various metacognitive instructional
strategies, and (b) inculcating a climate of consistent, sustained use of these instruc-
tional strategies in mathematics classrooms. In addition, the rich data from video-
recorded lessons, particularly those exemplified in the two teacher-cases, also provide
anopening formore research tobedone focusingon supporting teachers in a sustained
enactment of metacognitive instructional strategies. Perhaps an in-depth, wider, and
more comprehensive study focusing on teachers’ understanding and use of metacog-
nitive instructional strategies will also be needed for more insights into the inhibiting
as well as favourable factors contributing to teachers’ use of metacognitive instruc-
tional strategies in a sustained manner. Findings from such a study will be useful
in planning purposeful teacher professional development programmes on metacog-
nition for sustained implementation in mathematics classrooms. In essence, in the
arena of metacognition in Singapore, the work has only just begun for mathematics
educators.
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Chapter 7
Cultivation of Positive Attitudes
by Experienced and Competent
Mathematics Teachers in Singapore
Secondary Schools

Joseph B. W. Yeo

Abstract In this chapter, I report how 30 experienced and competent Singapore
mathematics teachers tried to cultivate positive attitudes in their students and some
possible factors that might have influenced the teachers’ choice of instructional
approaches. The video recording of 209 lessons of the 30 teachers were analysed
and it was found that most of the teachers teaching lower-ability students attempted
to build their students’ confidence by starting with tasks that they could do before
progressing to more difficult tasks, and to encourage their classes to persevere and
to do well in mathematics. Meanwhile, most of the teachers teaching higher-ability
students tended to focus on helping their students appreciate the relevance of mathe-
matics by bringing in real-life examples and/or applications. Only a minority of the
teachers tried to make lessons interesting by using mathematics-related resources or
telling non-mathematics-related jokes. There was also evidence of a student bene-
fiting from watching a funny Korean drama which the teacher skilfully linked to the
learning of mathematics. On closer analysis of the data from classroom observations
and interviewswith the teachers and focus students, it was discovered that two factors
appeared to influence the teachers’ choice of the types of positive attitudes to develop
in their students: the abilities of their students and the beliefs of the teachers on what
mathematics is. The chapter concluded that other local teachers could emulate the
practices of the 30 teachers to build confidence in their students and to encourage
them to persevere, and that all teachers could perhaps pay more attention to helping
their classes appreciate the relevance of mathematics and to make their lessons more
interesting.
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7.1 Introduction

The Singapore SchoolMathematics Curriculum Framework (see Chapter 1, Fig. 1.2)
was first adopted as the framework for mathematics curriculum in 1990 (Ministry
of Education, 1990). The central focus of the framework is mathematical problem
solving and it consists of fivemain components: concepts, skills, processes, metacog-
nition and attitudes. Although the sub-components have undergone some minor
revisions, the Framework is still relevant today (Ministry of Education, 2018).

As mentioned in Chapter 2, the first aim of the programmatic research project
was to document how experienced and competent teachers enacted the school math-
ematics curriculum in secondary schools. In this chapter, I will report how 30 of these
teachers tried to cultivate positive attitudes in their students according to the above
Mathematics Curriculum Framework. It will focus on four out of the five types of
desired attitudes, namely, interest, appreciation, confidence and perseverance. The
last type of attitudes related to beliefs was not investigated because no teachers were
observed addressing this aspect in their lessons. According to the syllabus docu-
ment (Ministry of Education, 2012), a student has developed desired attitudes for the
learning of mathematics if he/she shows interest and enjoyment in learning mathe-
matics, appreciation of the beauty and power of mathematics, confidence in using
mathematics and perseverance in solving mathematical problems. The study only
investigated how the 30 teachers had tried to imbue such attitudes in their students,
as it is beyond the scope of this study to examine whether the students had developed
the desired attitudes. Although we also surveyed 677 mathematics teachers on how
they imbued desired attitudes among their students, it is beyond the scope of this
chapter to report the analysis of the survey data.

The research questions for this chapter are:

(1) How many of the 30 experienced and competent teachers tried to cultivate
positive attitudes among their students?

(2) Which types of positive attitudes did the experienced and competent teachers
attempt to imbue in their students and how did they do it?

(3) What are some possible factors that might have influenced the teachers’
respective approaches in imbuing desired attitudes in their students?

7.2 Literature Review

7.2.1 Definitions of Attitudes and Affect

The study of attitudes is very complicated, partly because there is no common agree-
ment on the definitions of terms, and partly because affective constructs are more
difficult to describe and measure than cognition (McLeod, 1992). From a social
psychological viewpoint, an ‘attitude is a psychological tendency that is expressed
by evaluating a particular entity with some degree of favour or disfavour’ (Eagly &
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Chaiken, 1993, p. 1, emphasis in original) and when Rosenberg (1956) introduced
the concept of attitudinal affect, it became a widespread practice to differentiate the
affective part of attitudes from its cognitive andbehavioural components (Schimmack
& Crites, 2005). According to Haddock and Huskinson (2004), the affective compo-
nent of attitudes refers to ‘feelings or emotions associated with an attitude object’
(p. 36) and an ‘attitude object can be anything a person discriminates or holds in
mind’ (Bohner & Wänke, 2002, p. 5), such as concrete objects (e.g. pizza), abstract
ideas (e.g. freedom of speech) or people. In other words, according to most social
psychologists, attitudes include beliefs, behaviour and affect (emotions), although
some of them (e.g. Simon, 1982) suggested using the word ‘affect’ as the more
general term to include beliefs, attitudes and emotions.

In mathematics education, researchers used to follow the same viewpoint as most
social psychologists. For example, Hart (1989) used the word ‘attitude’ towards an
object to include beliefs about the object (cognitive component), emotional reactions
to the object (affective component) and behaviour towards the object (behavioural
component), and many research studies at that time also use ‘attitude’ to include
beliefs about mathematics and self (McLeod, 1992). However, McLeod (1992)
decided to follow Simon’s (1982) suggestion of using the word ‘affect’ as the more
general term to include beliefs, attitudes and emotions. Since then,manymathematics
education researchers (e.g. Di Martino & Zan, 2011; Grootenboer & Marshman,
2015; Leder & Forgasz, 2006; Philipp, 2007; Tasmir & Tirosh, 2009) have followed
suit and use the word ‘affect’ as the more general term to include beliefs, attitudes,
emotions and even values. According to Furinghetti and Pehkonen (2002), ambi-
guity in terminologies is a known problem in research of affect in mathematics
education. However, with proper definitions this issue of ambiguity can be signifi-
cantly alleviated (Hannula, 2015). In this chapter (except for this section on Litera-
ture Review), the word ‘attitudes’ will be used as the more general term to include
beliefs, interest, appreciation, confidence and perseverance, partly because this word
‘attitudes’ was used as one of the five components in the Singapore Mathematics
Curriculum Framework described in Sect. 7.1.

7.2.2 Measurements of Attitudes

Since attitudes (not emotions) are latent, they cannot be observed directly (Krosnick,
Judd, & Wittenbrink, 2005). Therefore, we can only measure attitudes that are
revealed in overt responses, such as the traditional direct self-report method which
asks the participants to describe their attitudes. This can be in the form of question-
naire items or interviews (Aiken, 1970; Leder & Forgasz, 2006). One disadvantage
of self-reporting is that the participants may not be willing to describe themselves
accurately (Krosnick et al., 2005). Other implicit measurements of attitudes include
unobtrusive observation of behaviour, reaction to structured stimuli, performance
on tasks, and physiological reactions (e.g. heart rate, pupil dilation and galvanic
skin responses) (Kulm, 1980; Leder & Forgasz, 2006). However, the limitations of
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implicit measurement techniques are that an altitude may not always produce the
same behaviour to an attitude object, and there may be other factors that produce
the same response as the attitude to be measured (Krosnick et al., 2005).

7.2.3 Research on Attitudes

Krosnick et al. (2005) claimed that ‘attitude measurement is pervasive’ (p. 21)
because social psychologists regularly measure attitudes when studying their causes,
how they change and their effect on cognition and behaviour, even as early as the
early 1900s (Allport, 1935). But research on affect (emotions and feelings) by social
psychologists began much later in the mid or late 1900s (Forgas, 2001).

As for mathematics education, although there were quite a number of studies on
attitudes (including beliefs) towards mathematics in the late 1990s, McLeod (1992)
believed that ‘research on affect [attitudes, beliefs and emotions] in mathematics
education continues to reside on the periphery of the field’ (p. 575). For example,
in the International Handbook of Mathematics Education (Bishop, Clements, Keitel,
Kilpatrick, & Laborde, 1996), which consists of 1358 pages, affect was only
mentioned in the chapter on assessment (Clarke, 1996) under ‘assessing affect’ for
slightly over one page, with no mention of attitudes, beliefs or emotions. Leder
and Forgasz (2006) also observed that the number of Psychology in Mathematics
Education (PME) conference papers on affect seems to have decreased somewhat
in the early 2000s and that research on affective variables reported at PME confer-
encesmostly reflects studies undertaken by othermathematics education researchers.
Nevertheless, there is a recent proliferation of research in beliefs in mathematics
education (e.g. Leder, Pehkonen,&Törner, 2002;Maaβ&Schlöglmann, 2009; Pepin
& Roesken-Winter, 2015).

Most research on the affective domain in mathematics education tends to focus
on finding out students’ existing attitudes and their effect on other variables such
as test performance (Aiken, 1970; Leder & Forgasz, 2006; McLeod, 1992), and
students’ and teachers’ beliefs (Leder et al., 2002; Maaβ & Schlöglmann, 2009;
Pepin & Roesken-Winter, 2015). In Singapore, there were not many research studies
on affective variables. Those that did followed the same trend as overseas research:
relationship between attitudes (or anxiety) andmathematics achievement (or problem
solving) (e.g. Ng-Gan, 1987; Yeo, 2004); and students’ and teachers’ beliefs (e.g.
Kay, 2003; Tan, 2011). There were very few intervention studies on changing
students’ attitudes (Yeo, 2018). An example of the latter is a study on the effect
of an exploratory computer-based instruction on students’ conceptual knowledge,
procedural knowledge and affective variables (Yeo, 2003), although the focus of the
researchwas primarily on their learning and knowledge, rather than on their attitudes.
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7.2.4 Nature of Attitudes

Attitudes can be formed and changed by interactions with people and the environ-
ment (Bohner & Wänke, 2002). When a person receives external information, he
or she may form a new judgement based on this information and his or her prior
knowledge, which is then stored in their memory (Albarracín, Johnson, Zanna, &
Kumkale, 2005). Attitudes include both evaluative representations of these judge-
ments in memory as well as judgements that a person forms online or on the spot.
According to Bohner and Wänke (2002), there is some evidence that attitudes may
in part be genetically influenced. Because attitudes can be changed, it is worthwhile
to study what teachers do to imbue desired attitudes in their students. Therefore, the
present study can add to existing research because it examined how 30 experienced
and competent teachers tried to cultivate positive attitudes in their students.

7.3 Research Design

The research design for the collection of data for this chapter has been outlined
in Chapter 2. In this section, I will briefly describe how the data were analysed to
answer the research questions for this chapter. The 209 lessons of the 30 experi-
enced and competent teachers were examined to pick up episodes of the teachers
trying to imbue desired attitudes in the classroom. Then these episodes were clas-
sified according to the sub-components of attitudes in the Singapore Mathematics
Curriculum Framework described in Sect. 7.1. The transcripts of the researchers’
interviews with the teachers and with the focus students were also analysed to trian-
gulate the data obtained from the lesson observations. The findings will now be
presented.

7.4 Findings and Discussion

It was discovered that most of the 30 experienced and competent teachers tried
to cultivate four sub-categories of attitudes in the classroom using the following
instructional strategies:

● building students’ confidence in doing mathematics by starting with tasks that
they could do before progressing to more difficult tasks;

● encouraging their classes to persevere and to do well in mathematics;
● helping their students appreciate the relevance of mathematics by showing real-

world examples and/or applications; and
● making lessons interesting by using mathematics-related resources (such as

amusing mathematics videos) and/or telling non-mathematics-related jokes or
stories.
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An example of each of the above instructional strategies will be presented first,
followed by an in depth analysis of the findings.

7.4.1 Examples of Different Instructional Strategies
in Cultivating Positive Attitudes

7.4.1.1 Confidence

Figure 7.1 shows an example of progressively difficult tasks given to a Secondary 4
Normal (Technical) class by Teacher 9 to build her students’ confidence. Questions
1 and 2 are basic questions (Level 1): given the height of a cone and its base radius
or diameter, find its volume; Questions 3 and 4 are reverse questions (Level 2): given
the volume of a cone and its base radius, find its height; and Questions 5 and 6 are
application questions (Level 3). The level numbers were assigned by the researchers
based on the difficulty level of the questions.

7.4.1.2 Perseverance

The following transcript is an example of how Teacher 3 encouraged his Secondary 4
Express class to persevere and to dowell inmathematics. As the teacher was teaching
a difficult Additional Mathematics topic on Proofs of Plane Geometry, and his class
was the weakest Express class in the school, his intention was to urge his students to
at least attempt to attain some marks for this kind of examination questions and not
to give up:

Ok, this question during O-level, is going to be worth 6 to 8 marks. Did I say everyone must
score full marks? What is my aim? You must earn some marks. Nobody is going to give up
on this question. Nobody is going to get zero. So long as you attempt to write some property,
ok, show some understanding of how you can filter the question itself, it’s already very good.
Alright?

7.4.1.3 Appreciation

Figure 7.2 shows a task in a worksheet given by Teacher 21 to her class of Secondary
2 Integrated Programme students. There were pictures of five real-world objects or
phenomena in the task and the questionwas to identifywhich of themwas in the shape
of a parabola. The teacher not only tried to help her class appreciate the relevance of
mathematics in real life, but she was also concerned that her students might wrongly
model any ‘parabola-looking’ curve in the real world with the equation of a quadratic
function. Through this task, the teacher taught her students that some of these curves
were not parabolas but catenaries (the equation of a catenary is a hyperbolic cosine
function), e.g. the famous Gateway Arch in St. Louis is not a parabola but a catenary.
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Level 2

Level 3

Level of 
Difficulty Sample Questions

Level 1

Fig. 7.1 An example of progressively difficult tasks given by Teacher 9 to her students
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Fig. 7.2 Real-life examples and counter examples of parabolas in a worksheet given by Teacher
21 to her students

7.4.1.4 Interest (Non-mathematical Jokes or Stories)

The following transcript is an example of how Teacher 27 used non-mathematics-
related jokes or stories to make lessons interesting. The teacher was teaching a
Secondary 4 Express class on vectors. While talking about the starting and ending
point of a resultant vector, he was giving an example of the starting point being their
school and the ending point being their home. Then he asked which student stayed
the furthest from the school.

Teacher 27: Who stays the furthest away from school? I don’t know, are there anyone who
stay at Pasir Ris?

Student A: Student B

Teacher 27: JB? [JB stands for Johor Bahru, a town in Malaysia just north of Singapore]

[The class breaks into laughter]

Teacher 27: You stay at JB? Okay, so it’s a classic example right? So Student B stays at JB

[Teacher marks JB on the class whiteboard]

Teacher 27: So what time do you wake up? Very early?

Student B: 3

Teacher 27: 3 o’clock. 3 am. 3 am to come to school, but you are never late right? I don’t see
you in the latecomer list, but there are some people staying next block, can come
late

[The class breaks into laughter]

Teacher 27: Alright, I also stay next block, but I don’t come late

[Some students laugh]
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The reader may not interpret the above excerpt to be particularly humorous, as
slapstick humour and situational jokes typically lose their comedic quality when
narrated. However, the two focus students for the lesson, who were interviewed
separately after the lesson, said that this part (the teacher’s jokes) was the high of the
lesson.

7.4.1.5 Interest (Mathematics-Related Resources)

Teacher 6 had recently taught her Secondary 2 Express class the concept of
Pythagoras’ Theorem and her students had practised some questions on using the
theorem to find the unknown length of a side of a right-angled triangle. These ques-
tions were pure mathematics questions without any contexts. In the following lesson,
instead of using word problems (questions with fabricated contexts) from the text-
book to demonstrate how Pythagoras’ Theorem could be applied, the teacher decided
to show her class a 10-minute video containing snippets of a two-episode Korean
drama show (with English subtitles). The drama was a comedy about a girl called
Dan Bi who somehow travelled back in time to ancient Korea and helped a king
solve a mathematics problem using Pythagoras’ theorem. The whole class found the
drama funny because of the situational jokes and slapstick humour, but there was
little about this video that focused on the application of the theorem.

However, the teacher designed three problems with contexts that continued the
storyline in the drama for her students to solve in class using Pythagoras’ theorem
(see Fig. 7.3). In the first problem, the king shot a deer andwanted Dan Bi to record in
historywhat he had done. This involved a simple application of Pythagoras’ Theorem
to find some information. The second problem continued the storyline: to celebrate
the king’s success in shooting the deer, the palace was having a celebration and Dan
Bi was assigned to hang up a banner. This involved a more complicated problem of
dividing a trapezium into a rectangle and a right-angled triangle before Pythagoras’
Theorem could be applied. The third problem continued with the cooks needing to
retrieve water for the well to prepare a feast for the celebration. The pulley system
that Dan Bi designed required an even more complex application of Pythagoras’
Theorem to solve. Not only did the teacher make use of the storyline to make the
problems more interesting, she also designed them from simple to more difficult
levels.

After the students had completed the three problems in class and the teacher had
gone through the solutions, she gave them some word problems from the textbook
as homework. To her students, the contexts of these textbook questions were not
as interesting as the three problems done in class. However, one of the students,
who seldom handed in homework punctually, unexpectedly handed in this set of
homework on time. During an interview with the teacher, the following was what
she said of this student:

So through these two lessons you can see that at least she tried, because half the times I
have to call her to submit her assignments. You know every time, I have to tell her, ‘Eh, you
have to submit your work, assignment is very late’. But this time I realised that the moment
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Fig. 7.3 Three problems based on storyline of Korean drama designed by Teacher 6 for her students

I asked the work to be in, the work is actually handed in. And the quality of the work, okay,
it’s better than her norm. So that’s why I said, probably that video actually motivates them
a lot.

It seems that the student was somehow motivated by the Korean drama to solve
the three tasks in class and her routine homework questions promptly. But it was
observed that most of the students were laughing at the non-mathematics-related
situational jokes and slapstick humour in the video, and not the part where Dan Bi
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was solving the problem using Pythagoras’ Theorem. Therefore, what made most
of the class interested initially was not the mathematics part of the drama but the
non-mathematics-related jokes and stories. And the three tasks given by the teacher
were interesting only because of the storyline that continued from the drama. Hence,
we should not underestimate the power of non-mathematics-related resources to
generate interest and motivate students to learn mathematics.

However, there is a big difference between the non-mathematics-related jokes in
the drama used by the teacher here and the non-mathematics-related jokes told by
the teacher teaching vectors described earlier in this section: in the latter, there was
no direct link to the learning of mathematics (although some students may still be
motivated to learn the subject, more research needs to be done to ascertain whether
this is true); but in the former, the teacher was able to link the drama to the learning
of mathematics through the three tasks which she had designed for her class to do.
Therefore,whenever possible, teachers should try to linkwhat interests the students to
the learning of mathematics because the main purpose of making lessons interesting
is not to make students laugh but to provide conducive opportunities for them to learn
mathematics (Yeo, 2018; Yeo, Choy, Lim, & Wong, 2019).

7.4.2 LOVE Mathematics Framework to Engage the Hearts
of Mathematics Learners

One common problem with making lessons interesting that teachers face is that it is
not possible to make every lesson interesting or every part of a lesson interesting.
Yeo (2018) and Yeo et al. (2019) proposed that teachers should do it often enough:
at least once in most lessons. As with the case of Teacher 6 teaching Pythagoras’
Theorem, she conducted three one-hour lessons on this topic in which the first and
last lessons were not interesting. The first 15 min of the second lesson was also not
interesting, until she showed the video and gave the three tasks for the students to
do in class which was enough to make students interested in the topic. But that was
enough to make students interested in the topic. As mentioned earlier, one student
wasmotivated enough to hand in her homework on routine (not interesting) questions
on time. Moreover, both students, who were interviewed separately after the lesson,
said that the high point of the lesson was watching the video. One of them said:

I think the video that she showed was the most helpful … It tells us how we should use it …
and also it is in a fun and entertaining way.

Another common problem with making lessons interesting is that what fascinates
one student may not appeal to another because interest is a subjective construct
since different people have different tastes. So the key is to use a variety resources
to interest different students or different groups of students. Yeo (2018) and Yeo
et al. (2019) have addressed these concerns by developing the LOVE Mathematics
framework for engaging the hearts of mathematics learners. LOVE Mathematics
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stands for ‘Linking Opportunities in a Variety of Experiences to the learning of
Mathematics’. The framework consists of three components:

● Variety of Experiences: Use different resources to provide a variety of experiences
to interest different students;

● Opportunities: Do it often enough, at least once in most lessons, since it is not
possible to make every part of every lesson interesting; and

● Linking these opportunities to the learning of mathematics: The main purpose
to engage the hearts of students is still not to make them laugh but to learn
mathematics, so whenever possible, we should make use of these opportunities
to link them to the learning of the subject.

After looking at some exemplars that most of the 30 experienced and competent
teachers used to imbue desired attitudes in their students and the LOVEMathematics
framework, I will now analyse in more detail how many of these teachers across the
four courses of study attempted to develop types of desired attitudes among their
students.

7.4.3 Types of Positive Attitudes Cultivated by the 30
Teachers Across the Four Courses of Study

Table 7.1 shows the number (and percentage) of the 30 experienced and competent
teachers who attempted to infuse desired attitudes in their students according to
the four courses of study: Integrated Programme (IP), Express, Normal (Academic)
(N(A)) and Normal (Technical) (N(T)). The abilities of the students are generally
higher for the IP course than students in the Express course, which in turn are higher
than those in theN(A) course; while the abilities of the students in theN(T) course are
generally the lowest. The reader can refer to Chapter 2 for amore detailed description
of these four courses of study. In addition, because the last sub-component of making
lessons interesting consisted of two different instructional approaches, the separated
data are presented in Table 7.1.

We observed from Table 7.1 that most of the teachers (26 out of 30, or 86.7%)
had tried to cultivate positive attitudes in their students. On closer analysis, most
of the teachers (20 out of 30, or 66.7%) focused on building students’ confi-
dence in doing mathematics by starting with tasks that students could do before
progressing to more difficult tasks, followed by 50% of the teachers encouraging
the class to persevere and to do well in mathematics. Only 36.7% of the teachers
(11 out of 30) had attempted to help students appreciate the relevance of math-
ematics by showing real-life examples and/or applications. The least common
priority among the teachers (6 out of 30, or 20%) was to make lessons interesting
for their students. Interestingly, there were slightly more teachers (4 teachers) who
made lessons interesting by telling non-mathematics-related jokes or stories than
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Table 7.1 Use of instructional approaches when cultivating positive attitudes for the learning of
mathematics as observed in lessons conducted by the 30 experienced and competent teachers

Instructional approach Number (and percentage) of teachers

IP
(n = 4)

Express
(n = 10)

N(A)
(n = 8)

N(T)
(n = 8)

Total
(N = 30)

Attempting to cultivate any positive
attitudes in the students

2
(50%)

8
(80%)

8
(100%)

8
(100%)

26
(86.7%)

Building students’ confidence in doing
mathematics by starting with tasks that
students can do before progressing to more
difficult tasks

0
(0%)

6
(60%)

8
(100%)

6
(75%)

20
(66.7%)

Encouraging the class to persevere and to
do well in mathematics

1
(25%)

5
(50%)

5
(62.5%)

4
(50%)

15
(50%)

Helping students appreciate the relevance
of mathematics by showing real-life
examples and/or applications

2
(50%)

2
(20%)

4
(50%)

3
(37.5%)

11
(36.7%)

Making lessons interesting by telling
non-mathematics-related jokes or stories,
and/or using mathematics-related resources

0
(0%)

2
(20%)

2
(25%)

2
(25%)

6
(20%)

Making lessons interesting by telling
non-mathematics-related jokes or stories

0
(0%)

1
(10%)

2
(25%)

1
(12.5%)

4
(13.3%)

Making lessons interesting by using
mathematics-related resources (such as
funny mathematics videos)

0
(0%)

1
(10%)

1
(12.5%)

1
(12.5%)

3
(10%)

those (3 teachers) who did this by using mathematics-related resources, including a
teacher who did both.

Across the four courses of study, it is observed that all the teachers teaching
the N(T) and N(A) courses (which are for lower-ability students) and 8 out of the
10 Express teachers (i.e. 80%) had attempted to cultivate positive attitudes in their
students, but only 2 of the 4 IP teachers (i.e. 50%) had done the same. For the N(T),
N(A) and Express classes, most of the teachers had focused on building students’
confidence and encouraging the class to persevere, followed by helping students
appreciate the relevance of mathematics and making lessons interesting. But for the
IP course of study (which is for higher-ability students), the focus of the teachers
who imbued desired attitudes is more on helping students appreciate the relevance of
mathematics. In fact, only one of the four IP teachers had tried to encourage her class
to persevere and to do well in mathematics on only one occasion in all her seven
one-hour lessons that were observed over more than two weeks, i.e. encouraging
their students did not seem to be a high priority among IP teachers.
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7.4.4 Possible Factors Influencing Teachers’ Approaches
in Imbuing Desired Attitudes

From the above analysis, it appears that one factor that might have influenced the
teachers’ instructional approaches in cultivatingwhich kind of positive attitudes is the
abilities of the students whom they were teaching in their respective course of study.
For weaker students, their teachers tended to build their confidence and encourage
them to persevere in their studies. However, for students with higher abilities, their
teachers were more inclined to help them appreciate the relevance of mathematics.
This was further confirmed by interviews with the teachers. For example, Teacher
6 who showed the Korean drama (see Sect. 7.4.1) said that her type of students
(who were from a weak Express class) needed motivation to solve more difficult
mathematical problems, thus she used the video to provide the link to real life and
to entice her class to solve the problems. The following shows part of a transcript of
an interview with the teacher.

Interviewer: So, what is your purpose for showing them this video?

Teacher 6: It’s actually to, to entice them to be interested in doing mathematics because
sometimes when you realise that, when you keep on practising and they don’t see
how it can be linked, it is very difficult. So we want to see, eh, ancient times
people are already using Pythagoras’ theorem, right now you are also learning.
And probably ancient times scholars took 3 days to finish, by then within a few
minutes they already solved it using Pythagoras’ theorem. Because, my class, my
class I think they need this kind of motivation, because some of them will fall into
a world of their own very easily. So we wanted them to, you know, entice them to
this kind of thing, different kind of activity for them to do, erm, so after this, what
they will do is, the king has a series of problems, so they will try to solve the king’s
problems by Pythagoras’ theorem, whatever video is posed to them, by the king

Another factor thatmight have influenced the teachers’ instructional approaches in
cultivating which kind of positive attitudes is the beliefs of the teachers. For example,
Teacher 3 who told his students not to get zero marks for the O-level Additional
Mathematics examination question on proofs of plane geometry (see Sect. 7.4.1)
believed that mathematics is about resilience, and so he tried to encourage his class
not to give up on such examination questions but to score at least a few marks. The
following shows part of a transcript of an interview with the teacher.

(continued)
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(continued)

Teacher 3: And my rationale to them is I’m teaching this topic in a way where I do not want
them to skip the question. They may not be able to do the entire question, but I’m
very certain that they are able to, like, understand what the word problem is about…
to be able to apply techniques or even right now … certain theorems or concepts
which they’ve learned to secure a few marks. So my ultimate goal for teaching this
topic is no student should get zero out of 6 or 8 marks. … Of course the main thing I
think in mathematics is also about resilience, don’t give up easily. Ya. So as much as
I think this is a difficult topic, there is a high tendency that there is a lot of students
in looking at this question and they will entirely give up. But I think if we were to
tackle this question in a more structured and sequential manner, I think, ah, when
the students feel a little bit more comfortable, they are more assured, I think, they
are more willing to try the questions. So I’m quite certain in that sense, boosting the
confidence of students, and making sure that they do not give up easily

7.5 Conclusion

In conclusion, building students’ confidence and perseverance in mathematics were
of high priority amongst a large proportion of the 30 experienced and competent
teachers. To do so, they eased students into more difficult tasks by beginning with
easier questions and encouraged students to at least attempt to demonstrate their
understanding for harder problems if they were not capable of answering them in
full. Helping students to appreciate the relevance of mathematics andmaking lessons
interesting were of lower priority for the 30 teachers. However, there was evidence to
suggest that showing real-life examples and/or applications that may be of interest to
students could help them to feel more motivated to engage and consequently increase
their efforts to study the subject. While it is not possible to make every lesson inter-
esting for students, teachers should not underestimate the power of non-mathematical
resources to engage the hearts of students, although they must remember to link
the activities to the learning of mathematics whenever possible. The LOVE Mathe-
matics framework on linking opportunities in a variety of experiences to the learning
of mathematics, as described in Sect. 7.4.2, can serve as a viable framework in the
professional development of teachers in engaging the hearts of mathematics learners.
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Chapter 8
Balancing an Intuitive-Experimental
Approach with Mathematical Rigour:
A Case Study of an Experienced
and Competent Mathematics Teacher
in a Singapore Secondary School

Tin Lam Toh and Berinderjeet Kaur

Abstract This chapter reports a case study of an experienced and competent math-
ematics teacher teaching Angle Properties of Circles to a class of Secondary Three
students in the Express course of study. Geometry in the school curriculum serves
as a good platform for inducting students into the rigour of mathematical thinking
through deductive reasoning, and the world of deductive mathematical arguments in
the form of mathematical proof, which forms the common language of mathemati-
cians worldwide. It is this rigour and discipline that students usually encounter much
difficulty with. Quite contrary to our stereotyped image of a traditional geometry
lesson, the teacher used a variety of approaches to enrich the lesson. She used a series
of scaffoldings to lead the students from inductive exploration through discovery
activities to deductive reasoning and the formalism of writing of reasoning in geom-
etry, juggling between her belief on the importance of discovery learning and the
curriculum requirement of deductive reasoning in geometry. It was interesting to us
that the teacher, in transiting from students’ exploration to identifying the geometric
properties, made use of rich visual imagery related to circle properties to develop
in her students the concept images associated with the geometry property. Through
the use of visuals to facilitate her students’ learning, effort was made to ensure
her students truly understood the geometrical properties and used the properties in
working with problems. Deductive reasoning was introduced in the lesson closure
portion of the lesson to stress the interconnectedness across the various geometrical
properties. The stages that the teacher went through in guiding the students from the
intuitive-experimental stage to the deductive reasoning resonates with the van Hiele
levels of students’ learning of geometry. The teacher highlighted during the interview
about her conscious attempt to achieve a balance between an intuitive-experimental
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approach to facilitate her students’ learning andmaintainingmathematical rigour that
is required of the geometry strand in the Singapore school mathematics curriculum.

Keywords Teaching geometry · van Hiele levels ·Mathematical reasoning ·
Concept image

8.1 Introduction

The authors (hereafter, first person pronoun) are part of the project team
(see Chapter 2) that examined the enactment of the secondary school mathematics
curriculum in Singapore schools. In this chapter, we report a case study of an expe-
rienced and competent mathematics teacher teaching Angle Properties of Circles
to a class of Secondary Three students in the Express course of study. Our stereo-
typed image of a typical geometry lesson is one that is full of deductive mathematical
reasoning culminating in rigorousmathematical proofs; such lessons are difficult and
boring to laypeople of mathematics. What we observed in this series of lessons was
quite contrary to our preconceived idea of a geometry lesson. The teacher, whose
students were the upper-bound of average ability, used a variety of approaches,
ranging from an intuitive-experimental approach to the rigorous deductive approach.
How these various approaches unfolded in the first lesson on Angle Properties of
Circles is the focus of this chapter. Of interest are how the various geometry concepts
were skillfully developed and connected through the approaches in different parts
of the lesson. The teacher was fully cognisant of the syllabus requirement and her
belief about the importance of student engagement.

8.2 Teaching of Geometry in Schools

Geometry has been recognised by mathematicians as an ideal vehicle to introduce
students to “axiomatics” because of its “esthetic appeal” (Coxeter & Greitzer, 1967).
One of the main goals of teaching mathematics has always been to facilitate students
to develop deductive reasoning. Geometry seems to fit this goal perfectly (Ayalon
& Even, 2010; Herbst, 2002). It is thus not surprising that our preconceived idea of
a traditional secondary school geometry lesson is usually one in which students are
expected to prove theorems. Mathematical proofs are usually seen by students as the
“rules of the games”, which is the essence of mathematics and therefore the core of
academic mathematician’s daily practice.

The International Commission on Mathematical Instruction (ICMI), in prepara-
tion for the study on “Perspectives on the Teaching ofGeometry for the 21st Century”,
challenged academics to re-think the teaching of geometry, especially in the recent
decades with the advent of technology and geometry teaching aides (ICMI, 1995).
ICMI (1995) invited discussion among academics whether geometry teaching at the
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schools should take the form of an “intuitive” approach, or a “formalised” approach,
or perhaps a mixture of both approaches with a gradual shift from an intuitive to a
formalised approach “as the age of students and the school level progresses”.

A geometry lesson using an intuitive approach of teaching geometry is in direct
contrast to the traditional image (and even the objective) of a geometry lesson.
Associating with an intuitive approach of teaching geometry, one is likely to think
of computer-based learning environment such as the environment of the Dynamic
Geometry (DG). The justification of intuitive approach is based on existing educa-
tion literature on the positive impact of computer and technology on student learning.
Studies have shown that computer environments such as that of a DG can stimulate
learners to link their intuitive notions and formal aspects of mathematical knowledge
(e.g. Sutherland, 1998; Sutherland, Olivero, & Weeden, 2004). DGs enable learners
to manipulate objects by clicking, dragging, and measuring the objects in order
to discover mathematical relationships. Researchers have studied how teachers can
provide appropriate scaffolding for student learning through the use of appropriate
pre-designed files (e.g. Leung, 2011).

In the mathematics curriculum document provided by the Singapore Ministry
of Education (MOE) (2012), the underpinning theoretical principle in teaching of
secondary school geometry was explicitly stated as:

The learning of Geometry at this stage [i.e. at the secondary level] should adopt an intu-
itive and experimental approach. This approach is based on van Hiele’s theory of geometry
learning which advocates exploration and discovery through hands-on activities. (MOE,
2012, p. 32)

Using van Hiele’s theory as the guiding principle, Leong and Lim-Teo (2008) iden-
tified that the greatest challenge of a secondary school mathematics teacher is to
raise their students’ view from Level 1 (which is a purely visually driven mode) to
“one that focuses on their geometrical properties” (Leong & Lim-Teo, 2008, p. 121).
We were interested to know: How do experienced and competent teachers conduct
geometry lessons in Singapore mathematics classrooms?

Other than the various generic pedagogical principles outlined in the secondary
mathematics syllabus document, the SingaporeMinistry of Education (MOE) (2012)
does not prescribe precise delivery methods that teachers should adopt for their
classroom instruction. However, the syllabus documents contain a list of learning
experience statements (which are phrased as “Students should have opportunities
to …”) parallel to the syllabus content to be covered. A segment of the geometry
syllabus document for Secondary Three Express course of study is shown in Fig. 8.1.
The left-hand column delineates the content to be covered during the lessons while
the right-hand column contains the learning experience statements.

The learning experience statements in the right-hand column of Fig. 8.1 highlight
the processes learners need to experience in acquiring the corresponding content in
the left-hand column. As illustrated in Fig. 8.1, the topic Angle Properties of Circles
has two main emphases on the learning experience:
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G3.  Properties of circles Students should have opportunities to:
3.1    symmetry properties of circles

 Equal chords are equidistant from the centre
 The perpendicular bisector of a chord passes 

through the centre
 Tangents from an external point are equal in 

length
 The line joining an external point to the centre of 

the circle bisects the angle between the tangents
3.2    angle properties of circles

 Angle in a semicircle is a right angle
 Angle between tangent and radius of a circle is 

a right angle
 Angle at the centre is twice the angle at the 

circumference
 Angles in the same segment are equal
 Angles in opposite segments are supplementary

(a) Use paper folding to visualise symmetric properties of 
circles, e.g. the perpendicular bisector of a chord passes 
through the centre.

(b) Use GSP or other dynamic geometry software to explore 
the properties of circles, and use geometrical terms 
correctly for effective communication.

Fig. 8.1 An extract of part of the syllabus content for Secondary Three Geometry (MOE, 2012)

1. The opportunity for students to experience geometry through manual activities
such as paper folding, and technology such as the use of a DG software (e.g.
Geometers’ Sketchpad or GSP) to discover geometrical properties; and

2. The opportunity for students to use correct mathematical terms in geometry for
effective communication. As these are general guidelines, the actual activities are
not specified here and are left for teachers to interpret and enact in the classroom.
Thus, teachers are faced with enactment decisions, especially when they see the
need to fill in the “gaps” in order to enact the lessons (Kim & Atanga, 2013).

It was also interesting to note that the learning experience column of the syllabus
document in Fig. 8.1 suggests the use of technology, and education research seems
to suggest that teachers are generally resistant to the use of technology for various
reasons (Polly, 2014). Our combined classroom experience also seems to suggest that
some “experienced” teachers might not be very receptive to the use of technology for
mathematics classroom instruction. Thus, we were excited to observe how teachers
enact geometry lessons based on the newly introduced learning experience which
suggests the use of technology as part of teaching and learning.

8.3 The Case Study

8.3.1 Method

The teacher in our study is Teacher 5 in her early 50s. She met the criteria of an
“experienced and competent teacher” as she had more than five years of teaching
mathematics experience for a course of study, in this case the Express course. In
addition, the local education community and her school leaders also recognised
her as a good mathematics teacher. She is a Lead mathematics teacher, one who is
entrusted with the responsibility to develop fellow teachers in classroom practice. At
the time of our study, she had been teaching mathematics in Singapore schools for
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more than 20 years, of which 15 years were in the school where we conducted the
study.

The class that Teacher 5 taught was Secondary Three in the Express course of
study. It had 14 boys and 28 girls. Teacher 5 described the class as a highly moti-
vated group of students who took interest in learning mathematics actively. In addi-
tion to doing the core mathematics subject, known as Elementary Mathematics in
Singapore, the students were also reading Additional Mathematics, a more advanced
mathematics subject offered to higher ability students at the secondary level. During
the interview, Teacher 5 commented that she had used various innovative approaches
in engaging the students from this class. In designing her lessons for the class, she
was mindful that her students needed a more rigorous treatment of mathematics in
preparation for Additional Mathematics.

The sub-topic of geometry that Teacher 5 taught, and which is the focus of the
case study described here, is Angle Properties of Circles in ElementaryMathematics.
This sub-topic, as shown in section 3.2 of Fig. 8.1, covered four main properties:

● (Property 1) Angle at the centre of a circle is twice the angle at the circumference.
(P1)

● (Property 2) Angle in a semicircle is a right angle. (P2)
● (Property 3) Angles in the same segment are equal. (P3)
● (Property 4) Angles in opposite segments are supplementary (add up to 180

degrees). (P4)

Teacher 5 completed teaching this sub-topic in three one-hour lessons. Thefirst lesson
was an introduction to the above four angle properties of a circle. Following which,
she engaged her students in solving typical geometry problems and writing of short
proofs in the second and third lessons.What captured our attention about her teaching
was her selection of the instructional methods that she used during her introduction
of the angle properties of the circles in the first of the three lessons. Avoiding the
two extremes of totally using deductive approach or intuitive approach, she used a
good mix of strategies by tapping on both approaches. She engaged her students to
“discover” the geometrical properties of circles through the use of DG. This was
followed by application of the “discovered” properties to do mathematical tasks of
varying cognitive demand. In the lesson closure, she consolidated the lesson using a
more deductive approach, showing the close connection across the four geometrical
properties. The following sections detail and discuss the lesson.
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8.3.2 Data

8.3.2.1 Lesson Observation and Video Analysis

A researcher sat throughout all the three lessons that Teacher 5 used to teach the
sub-topic Angle Properties of Circles. The lessons were video-recorded using the
Complementary Accounts Methodology first proposed by Clarke (1998, 2001). You
may refer toChapter 2 for details. The teacher’s exposition and the teacher’s conversa-
tionwith students during the three lessonswere transcribed.At the end of each lesson,
the teacher and the focused studentswere interviewed to triangulate the data collected
through the video-recordings of the lesson. The interviews were audio-recorded and
transcribed.

8.3.2.2 Instructional Material Used by the Teacher

It is a common practice for mathematics teachers in Singapore to design their own
instructional materials based on existing teaching resources available for the teachers
and students. Teacher 5 used a variety of resources for her teaching: (1) she developed
her own instructional material to supplement her teaching; and (2) she selected a
variety of questions from various textbooks. She designed four exploratory activity
worksheets to scaffold students’ discovery of the above four geometrical properties
of a circle.

Teacher 5 designed one “exploratory activity” worksheet to correspond to each
of the four angle properties of circles in this sub-topic. A sample of the worksheet
for Property (P1) is shown in Fig. 8.2. Each worksheet consists of three portions:

(A) Instruction to explore the property using a DG software (exemplified by
instructions Steps 1 and 2 below);

(B) Instruction to guide the students to discover the properties and to complete
the statement; (exemplified by instruction Step 3 and the boxed statement for
student to complete); and

(C) Three practice questions which involve direct application of the discovered
results in (B) (exemplified by instruction Step 4 and the questions that follow).

As illustrated in Worksheet 2 above, Teacher 5 provided very clear instructions
for her students on the steps to access the online version of the worksheet (in the
right column of Fig. 8.2). Steps 1 and 2 in the worksheet provided the students the
procedure to access the online sketchpad operating in aDGenvironment. In the online
sketchpad, students were provided the opportunity to click and drag to observe the
geometrical property. The providence of the opportunity to allow users to click and
drag in order to observe the invariant property (the angle at the centre is twice the
angle at the circumference) amidst an arbitrary variation of conditions (varying the
sizes of the circles, the point on the circle, etc.). Step 3 brought the users back to the
focus of this worksheet to discover the relation between the angle at the centre of a
circle and that at the circumference of the circle.
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Fig. 8.2 Sample of a worksheet activity designed by Teacher 5

Step 4 of the worksheet immediately provided an immediate consolidation of the
concepts by engaging the students to apply this property to three basic questions.
These questions focus on an easy application of the property, checking the students’
sound understanding (or lack) of the property introduced in the worksheet. The same
four-step structure (as summarised in Fig. 8.3) applied for the other three worksheets
for this sub-topic. Teacher 5 confirmed that this was the general structure that she
would use to teach the other sub-topics of geometry in the syllabus.

In addition to the worksheets, Teacher 5 compiled a set of geometry questions
from both the textbook used by the school, and questions from other textbooks and
workbooks (not adopted by the school). We also noted that Teacher 5 did not use
the textbook for direct classroom instruction. Teacher 5 confirmed that the textbook
mainly served as the source of challenging mathematics questions and useful ideas
for classroom instructions.
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Student Self-
discovery Work

Student Guided 
in Discovery

Student Application 
of Discovery

Step 1:  Instruction on the Use of the Technological Tool

Step 2:  Students Have the Autonomy to drag with the tools to 
create variations

Step 3:  Students Guided to Discover the Geometrical Property

Step 4:  Students Guided to Apply the Geometrical Property

Fig. 8.3 The sequence of introducing a geometrical property used by Teacher 5

8.3.3 Analysis of the Data

The transcripts of the lessons and the teacher interview were studied in conjunction
with the video-recordings of Teacher 5’s lessons. In this chapter, as discussed in the
preceding sections, we focus on the first of the three lessons.
The first lesson could be divided into three main segments:

(1) Lesson Introduction [00:00 to 00:11];
(2) Exploratory Activity [00:11 to 00:53]; and
(3) Lesson closure [00:53 to 00:58].

8.3.3.1 Lesson Introduction

In the Lesson Introduction, which lasted about eight minutes, Teacher 5 placed much
emphasis on student understanding of the mathematical terms (“chord of a circle”,
which has been covered “the last time”). In the Lesson Introduction segment, Teacher
5 took the lead in providing the facilitation to get the students to focus on the concepts
involved in this lesson.

Part of the transcript of the Lesson Introduction that follows illustrates our
observation. We use the abbreviation T to represent Teacher 5 and S to represent
(any) student (without identifying the student engaged in the discussion) in the class
who participated in the discourse. Words appearing in square brackets [ ] refer to
extrapolation or an interpretation of Teacher 5’s speech and those in round brackets
( ) refer to the actions she performed in the lesson while she was involved in that part
of the conversation.
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Abridged transcript Commentary

T[1]: … The last time what we did was [to
study the properties] of a circle, remember,
chords of a circle (began by drawing chords of
circle on the whiteboard)… so today’s
objective is to find or use or understand angle
properties (wrote “Objectives” and “Angle
properties of a circle” on the whiteboard)
:

Teacher introduced the lesson by building on
their prior knowledge about the chord of the
circle. This will be used in describing the angle
on the circumference in today’s sub-topic

T[2]: Yeah, chord properties we will revise
tomorrow, along with this, so we have mixed
questions [i.e. questions that require the
combination of several sets of properties to
solve]. But today we focus only on angle
properties…

Teacher highlighted the focus of today’s lesson

T[3]: You’d come across a circle, there’s a
circle, centre (drew a circle with a dot in the
centre). You will see an angle like this – the
two chords, meeting at one point on the
circumference, ok. So, I have a circle with a
centre here. This angle, what is special about
this angle?
:

Teacher demonstrated the angle that was formed
by two chords meeting at a point on the circle

T[4]: On the circumference, and the angle that
is formed on the circumference here … What
is the arc subtending this angle (teacher wrote
arc subtending). The word you see will be
subtending (teacher underlined the word
‘subtending’), this angle means?

Teacher highlighted the language associated
with the angle subtended by the arc

T[5]: This angle is facing you in loose terms
ah, if this is the angle formed at the
circumference, this is called the arc (teacher
drew Fig. 8.4), which is subtending the angle,
right? It’s facing there

Teacher introduced another way of associating
the arc with the angle on the circumference

Developing in students the visual mode of the geometrical concept of an angle
subtended by an arc was the highlight of the Lesson Introduction, with the teacher
emphasis on the visual (Fig. 8.4). However, we also note that Teacher 5 did notmerely
establish a purely visually driven mode of the concept in her students. Instead, by
using the visual mode of the concepts, she built up the defining characteristics of
the geometrical concepts. The first concept: “the angle subtended by an arc” of a
circle was built on the concept of the space formed by two chords which intersect
on the circumference of a circle T[3]. Thus, the recap section at the beginning of the
introduction section of the first lesson was selective on the chord in a circle T[1];
revision of the other properties of chords of a circle which were not relevant to the
concept development in this lessonwas shelved for subsequent lessons, as mentioned
by Teacher 5 in T[2].
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Fig. 8.4 Teacher 5’s
diagram on the whiteboard
of angle subtended on the
circumference

In the Lesson Introduction, we observed an interesting feature of Teacher 5’s
lesson: Teacher 5 was focused on getting the students to recognise the concepts
and the precision of the terms used. She did not simply rest on students having
seen the required angle, but each underlined term in “Angle subtended by an arc
on the circumference” in relation to its visual representation. She skillfully switched
between the geometrical properties and its visual representation to enable her students
to link the concept and developing its concept image. We summarise this in Fig. 8.5.

The notion of the “arc” next served as an anchor to the next related concept of angle
at the centre of the circle. Here, we observed that Teacher 5 repeatedly emphasised
the word “arc” in preparation of the next concept of “angle at the centre of the circle”.
This is evident from the following transcript.

T: In exactly the same way, you will have another angle which will be formed at the centre
(drew dotted line for angle at the centre, Fig. 8.6). Do you see both these angles, a (at the
circumference) and b (at the centre), both are subtended by the same arc, correct? Both
subtended by the same arc. Can? Because they are both made by this arc, so endpoints
of this two angles are such that, they are made by this arc. Clear? So this is called angle
subtended at the…

A circle with centre, two 
chords intersecting on the 
circle.

Diagram of a circle with 
angle marked by the two 
intersecting chords. 

Shading of the arc 
opposite the marked 
angle (Figure 8.4) 

The arc is “subtending” 
the angle.

Geometrical Properties Visual mode

Fig. 8.5 Angle on a circle in both modes of using visuals and geometrical properties



8 Balancing an Intuitive-Experimental Approach … 151

Fig. 8.6 Teacher 5 used the
“arc” as the anchor between
the two concepts of the angle
at the centre and the angle on
the circumference of a circle

Segment:
T: Remember we drew a chord, we had a chord, and then we 
found out, we divided, we had a circle. And then we had a chord, 
here. What did we call this region?

S: Segment.

Angles in the same segment:
T: I give you a circle … using the two end points, I’m forming an 
angle at the circumference. And using the same two end point, 
forming an angle at circumference at another point.
: 
T: So this is one segment…So it’s angles in the same segment.

Fig. 8.7 Teacher 5’s use of the samemixedmode of visuals and geometrical properties to introduce
the concept of angles in the same segment

Here was the transition from the concept of a chord to an arc of a circle, which is the
anchor concept for both angle at the centre and the angle at the circumference of a
circle. The above was used with reference to Fig. 8.6.

A similar trend was observed when Teacher 5 next moved on to introduce the
concept of angles in the same segment, as summarised in Fig. 8.7.

8.3.3.2 Exploratory Activity

In the exploratory activity segment [00:11] to [00:53] (which lasted 42 min), the
students were engaged to work in pairs to discover the four angle properties of circles
(P1 to P4) through the use of a DG software. Teacher 5 had designed four exploratory
activity worksheets to be used in conjunction for exploration in this part of the lesson
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(The sample activityWorksheet 2was shown in Fig. 8.2). Each scaffoldingworksheet
consisted of three application problems on the related geometrical property. The three
problems involved immediate application of the property and were of increasing
level of complexity. We identified three key phases in the Main Lesson segment of
the lesson:

Phase 1: Students’ own exploratory work. Teacher 5 managed the students’
progress of the discovery activity and addressed the individual students’ concern
(see below).

Abridged transcript Commentary

T: OK, so, take the protractor and align it here,
and how much is this angle?
T: (to another student) Are you ok now? XXX
T: (back to the first student) This [angle shown
on the computer screen] is 140. So, that will be
the angle at the centre
S: But just now [my friend, i.e. another
student] got 132 [on the screen]
T: It’s a different [angle, because these angles
are] random[ly generated]
[00:24:30] to [00:24:46]

Teacher 5 went to the individual students to get
them to verify the angles that they had obtained
on the screen, and to address the confusion that
all the students got different angles as these
figures were randomly generated from the
system

Phase 2: Students’ application of their discovery to solve three related problems.
Here, an unexpected response from the student prompted Teacher 5 to address the
students. Teacher 5 had wanted her students to apply the properties that they had
discovered earlier; some students used the DG to construct the exact dimension of
the diagram in the problems in order to determine the unknown.

Abridged transcript Commentary

T: OK, look up here everyone. I think I see a
few of you unable to understand the first part
of the worksheet [i.e. the three practice
questions printed on the first page of the
activity worksheet]… Now, I don’t want you
to, for these three questions, I don’t want you
to use the diagram in the [name of vendor’s
software]. You know angle at the centre is two
times the angle at circumference…

Teacher 5 brought across the objective of the
questions is not to construct the exact diagram
in the worksheet using the dynamic geometry
software in order to find the unknown angle,
but to apply the geometrical properties they
had just discovered

At this phase, Teacher 5 consciously facilitated her students to link their earlier
discovery to the associated geometrical properties when students appeared to have
difficulty in solving the immediate application problems at Step 2:
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Abridged transcript Commentary

T: See this angle, at the centre. Same angle at
the circumference. The arc is the same. So this
is 60 [degrees], this one should be half, half.
This is angle at the centre, this is angle at the
circumference. Same like this one. The two
angles, the one is up, so this is angle at the
centre. 60, same two end points, giving you
angle at the circumference. So double…

Teacher 5 consciously brought in the visuals to
establish the similarity with the geometrical
properties the student had discovered in the
earlier activity

Phase 3: Teacher’s explanation of the solution of the three practice questions. In
this phase, Teacher 5 continued facilitating her students to work towards the answer
by consciously relating the application problems to the geometrical properties that
they had earlier discovered.

Abridged transcript Commentary

T: This is the angle – this angle, this angle the
one that is shaded is actually ok yes correct it is
2x. This is x, and that is 2x, remember this is
130 …. That is half, so whatever is your
answer, divide [it] by two, you get the answer.
How about this one? OK let’s do it together
:
S: I don’t understand
T: See this angle at the centre? Same, angle at
the circumference. The arc is the same. So this
is …

Teacher 5 explained the first question in detail
using the geometrical property, and invited the
whole class to solve the next question
Teacher 5 addressed the students’ difficulty
during the lesson

To us, what was the most impressive was that Teacher 5 facilitated her students
to identify the meaning of the terms used to describe the geometrical properties with
the associated geometrical diagram in emphasising the importance. In addition to
identifying the “equal angles” in the geometrical statement that “Angles in the same
segment are equal”, she created the “segment” in the aforementioned geometrical
statement (illustrated in the transcript below).

Abridged transcript Commentary

T: Segment is the [region in the circle
partitioned by] the chord, one of the arc, and
one of the centre – er the one at the chord. This
is a chord. This angle here, this angle here, they
are equal… they are both in the same segment.
S: How do I know it’s the segment?
T: Basically we are looking at its two points
S: The same area on the …
T: Yeah, on the segment, both going the same
side…

Teacher 5 added in an additional chord to the
geometrical diagram to show how the two
angles initially called by angles subtended by
the same arc to explain that indeed they are
angles in the same segment

A part of the above diagrams is reproduced in Fig. 8.8.
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Fig. 8.8 A copy of the whiteboard writing by Teacher 5 who emphasised in addition to the two
angles being equal, also stressed on the “same segments” that the two angles were located

Studies have shown that the pure constructivist approach of discovery learning
on its own, which usually emphasises an extensive search of knowledge through
problem solving, has a limitation in enhancing the learners’ memory, and may in fact
cause less learning (Rittle-Johnson, 2006). The other aspect of guiding the learners
to pay attention to key knowledge that they have acquired is equally important to
improve their understanding and ability to apply what they have learned (Kirschner,
Sweller, & Clark, 2006). Here Teacher 5 has illustrated this very clearly as she
skillfully incorporated three practice questions immediately after the scaffolding for
discovering each geometrical property to focus the students’ attention on the key
geometrical properties.

Teacher 5 adopted a consistent structure in teaching each geometrical property to
her students consisting of the three phases which were outlined above. She adopted
a partial constructivist approach in getting her students to discover the properties
through DG activity, with teacher intervention in helping students to focus on the
key knowledge. The emphasis here is on students’ understanding of the properties
with the proof of the properties shelved to a later time. The proof of the properties
was deferred; Teacher 5 emphasised much on discovery and understanding and
application at this stage instead of deductive proof of the properties. We could
summarise Teacher 5’s instruction as consisting of the following cycle (Fig. 8.9) in
getting her students to learn the four geometrical properties.

Kaur et al. (2019) proposed that an instructional core drives the teaching and
learning of mathematics in the lessons of experienced and competent teachers in
the research, which she called the DNA of mathematics lessons. She observed that
the instructional core comprises a D-S-R (Development—StudentWork—Review of
Student Work) cycle. In the lesson of Teacher 5, we find that the cycle of instruction,
in Fig. 8.9, used by Teacher 5 followed the D-S-R cycle. The Development phase in
the geometry lessons we observed was the student discovery phase, in which Teacher
5’s students had the opportunity to discover the geometrical properties. The Student
Work phase we observed was their application of the newly discovered geometrical
results to solve three mathematical tasks. Following this, the Review phase consisted
of the teacher giving a direct exposition, with student participation, of the geometrical
results in relation to the mathematical tasks just completed.
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Student 
progression

Teacher facilitation for students 
to re-examine the geometrical 
properties of discovery

Student 
consolidation

Teacher re-engaged students to participate 
in contributing to the solution after deeper 
examination of the geometrical properties.

STUDENT APPLICATION OF 
DISCOVERED RESULTS

STUDENT 
DISCOVERY

TEACHER EXPOSITION AND 
STUDENT PARTICIPATION

Fig. 8.9 Cycle of instruction in Teacher 5’s lesson in developing each of the four angle properties
of a circle

Though at times the D-S-R cycle could be teacher-centric, as the teacher may
develop the lesson through demonstrations and explanations, Teacher 5’s lessons
show that the D-S-R structure is representative of both teacher-centric and student-
focused developments. In student-focused developments the role of the teacher was
then to serve as a guide to “value-add” to the student discovery by facilitating them
to focus on the attributes of the geometrical properties explored by the students.
The cycle of instruction, in Fig. 8.9, also depicts the development and consolida-
tion phases of lessons as detailed in Chapter 5. Student discovery takes place during
the Development phase. The application of discovered results by students accompa-
nied by teacher exposition with inputs from students when reviewing student work
takes place during the Consolidation phase. This phase aids in deepening conceptual
knowledge of the students.

How important was this “discovery” part of the lesson to the Teacher 5? We
transcribed our interview with her. In particular, when asked about her focus for
the lessons during the teacher interview segment, considering both content and non-
content goals, Teacher 5 highlighted that her [first] goal was for her students to
discover the [geometrical] rules. The importance of engaging students to explore and
self-discover was her main concern. This was reflected in the 20-minute interview
with Teacher 5 during which she used the words “explore” and “discover” a total of
12 times. Part of the transcript is shown below.

But for this particular topic [i.e. Geometry], I usually bring them to the computer lab to
get them to explore first. So, my goal initially is to get them to go through the process of
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exploration. Self-discovery of the rules. So it’s more of a deductive [should be “inductive”]
approach. Because you see a few cases, in terms of how the properties play out. And then
based on that, they are able to consolidate, which, so they’re able to summarise, or conclude,
that the relation between the angles is as what is being displayed.

The main objective of this first lesson was to engage her students in exploration and
discovery of the geometrical properties using DG software. The worksheets that she
had designed earlier served to provide the scaffold to serve this objective. People
using a raft to cross the river will eventually discard the raft after they have crossed
the river successfully. In the same way, Jones (2000) asserted that the first stage of
engaging students in mathematical exploration, seen by mathematicians as lacking
mathematical precision, is a crucial first step to mathematical explanations that will
lead the students to next transcend such imprecise discovery (in the form of the soft-
ware environment) to deductive geometric reasoning. From this lesson conducted by
Teacher 5, what followed the discovery activity was not immediately followed by
precise deductive mathematical proofs, but by three questions of immediate applica-
tion of the geometry concepts. This ensured that her students had truly understood
the geometrical properties just “discovered” by the students themselves. This was
evident from the following part of the teacher talk.

I don’t want you to play with the diagram and match it with these three online [i.e. create
the geometrical figures using the softwares]. So, it should be very fast, the page one. What
about the second one, the same way. Just observe the relationship, then move to the next.

Deductive reasoning and proofs of the geometrical properties did not immediately
follow the segment after the students’ discovery of these properties. Rather, to ensure
that her students had truly understood these properties was the most immediate
activity after that.

8.3.3.3 Lesson Closure

Teacher 5’s lesson closure for the first lesson was also of interest to us. Instead of
merely reiterating the four main geometrical properties that had been covered in
the lesson, she reiterated these four properties by using a semi-rigorous deductive
approach to show the connectedness of the four geometrical properties. After re-
stating Property (P1) (angle at the centre is twice the angle at the circumference)
without proof, Teacher 5 demonstrated howProperty (P3) (angle in the same segment
are equal) is in fact a special case of Property (P1).

Teacher 5 started with a special angle of 100° at the centre of the circle and that
of 50° at the circumference for two special cases. By deleting the angle at the centre,
Teacher 5 showed that the two angles on the circumference of a circle are equal (to
50°). The sequence of what was shown on the whiteboard is presented in Fig. 8.10.
She skillfully demonstrated that Property (P3) is indeed a special case of Property
(P1).
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Fig. 8.10 The sequence of two drawings used by Teacher 5 to demonstrate that Property (P3) is a
special case of Property (P1)

Abridged transcript Commentary

T: All these [four points in Fig. 8.10] have the
same two end points…. Look for these two
points, the common points, see whether they are
going to the centre, or the same two endpoints,
on the same side, going towards the
circumference, then they are connected. So I see
these two endpoints here. PQ. I go to the centre,
I see angle 100 [degrees]. If I go to the
circumference, it will be how much? 50. OK so
this is what we have seen. Same two points,
going again to the circumference, it’s 50

Teacher 5 referred to the left drawing of
Fig. 8.10 to reinforce that both angles on the
circumference are equal to 50 by applying
Property (P1) twice

T: If I remove this [angle at the centre of the
circle], do you realise that it looks like property
number three? If I don’t have the angle at the
centre, basically you have again the same two
endpoints,… Do you see the similarity?

Teacher 5 erased off the angle of the centre
and convinced to students that both angles at
the circumference are equal (i.e. Property
(P3))

In a similar approach, Teacher 5 demonstrated that Property (P2) is also a special
case of Property (P1) in Fig. 8.11.

Abridged transcript Commentary

T: Property number 2, what was the property
2? … You have a diameter. And what did we
find? When you see a diameter, [there are two]
endpoints [on the two sides of the circle].
When you go to the circumference (teacher
pointing to Fig. 8.11 on the whiteboard), you
get a 90 degree, you get a 90 degree here, 90
here. This is also a special case of one. Have
you realised that? This one, number 2, is a
special case of 1 (Bell rang at this juncture)

Teacher 5 led her students to realise that the
diameter can also be seen as having two points
on the circle and subtending an angle of 180°
at the centre of circle. Here the key message
appeared to be that Property (P2) is also a
special case of Property (P1)

(continued)



Fig. 8.11 The drawing used
by Teacher 5 to demonstrate
that Property (P2) is a special
case of Property (P1)
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(continued)

Abridged transcript Commentary

T: OK, and [property] number 4, you see a
quadrilateral, which I think most of you – in
fact all of you are able to see the connections a
+ b equals to, how much? 180 degrees. Also c
+ d equals 180 degrees

As the lesson had ended, Teacher 5 did not
continue to demonstrate that Property (P4) is
also a corollary of Property (P1)

When asked what was an ambitious part of the three lessons on teaching this sub-
topic on angle properties of a circle, she asserted that it was establishing the relation
across the four angle properties of a circle. Her intention was to start off the second
lesson by challenging them to derive a “proof” of Property (P4) from Property (P1).
This was left as homework for her students as she ran out of time in the first lesson.

Abridged transcript of teacher interview Commentary

T: Today actually frankly, I was not going for
ambitious things, it would only come in
tomorrow. Because today was getting them to
just explore, understand the four rules. I – my
ambitious part would only be that I just left it
to them, ok the instructions are there, do it, so
it’s the first time, ok, no it’s not the first time
actually

Teacher 5 felt that the ambitious part of the
lesson was to leave it for the students to
discover the four geometrical properties of the
circle through the activity worksheets

T: Actually I didn’t use it, as a, as a, carry over
you know, as a special case for this one. I gave
it a separate activity. I gave it as a separate
activity. And I try to later at the end, bring it
together and see, this is the, mother property,
and these two, you know, it just follows. So
tomorrow, maybe I will even start off by
asking, my ambitious part would be, why is it,
can you just show me, can you just prove it, so
we will start by proving this…

Teacher 5 planned for the students’ discovery of
the properties through inductive means and to
introduce the proofs at the end of the lesson to
show that the four properties could effectively
be reduced to one property. She left the proof of
Property (P4) to her students as homework
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Teacher 5wasmindful of establishing the connections across the properties within
this introductory lesson. As an after-note of the teacher interview, we were curious
about howProperty (P1)was left as the intuitive levelwithout attempting to prove that
the angle at the centre is twice the angle at the circumference deductively. Teacher
5 confirmed that as the proof of Property (P1) involves properties of triangles, she
deliberately chose not to expand this proof for fear of distracting the students; her
objective was to show to students the connections across these properties.

In lesson closure, she introduced two geometrical properties through a deeper
approach of using deductive reasoning and challenged her students to derive Property
(P4) as homework, and to attempt as many of the homework problems as possible
before the second lesson. She obviously demonstrated lesson closurewithout closure,
which was effective in her case compared to having a lesson with a neat closure with
all issues resolved.

8.4 Discussion and Conclusion

It is apparent that Teacher 5 built a positive classroomculture by enabling her students
to discover their own learning and equipped them with the crucial mathematical
tools (i.e. the correct mathematical terms) for their discovery. Her lessons were
well prepared with appropriate sequencing of appropriate activities, fully mindful
of her students’ capacity. To mathematics educators, the lesson was most impres-
sive because she did not simply get students to “apply memorised procedures”
(Schoenfeld, 2018, p. 499), but offers the conceptual richness of the mathematical
concepts.

The general curriculum approach in Singapore (including mathematics) adopts
Bruner’s spiral approach, in that concepts and skills are re-visited iteratively at each
higher level in order to ensure a coherent overall curriculum and a deep learning of
the mathematical concepts. The various topics of geometry, as in the topics in the
other major strands of mathematics, are distributed over all the years of secondary
school mathematics education. The content in each level builds on the earlier levels
as a foundation, which in turn serves as the foundation for the next higher level.
Within this first lesson to the sub-topic Angle Properties of a Circle, we observed
Teacher 5’s attempt to use a “spiralling” that occurs within this lesson in introducing
students to the geometrical properties by exploration, and in concluding the lesson
by showing a deeper connection across these geometrical properties by a deductive
reasoning approach.

It was interesting to observe that Teacher 5’s lesson enactment resonates with
van Hiele’s levels of learning of geometry. She started with the Level 1 (Visual)
by associating visuals with each geometrical entity during the lesson introduction
(Figs. 8.4, 8.5, 8.6, and 8.7). This was followed by leading the students to Level
2 (Analysis) through engaging them in self-discovery activity of the geometrical
properties using ICT. Immediately following this is students’ direct application of
the newly discovered properties to solve three problems for each problem, which



160 T. L. Toh and B. Kaur

corresponds to Level 3 (Relational). During lesson closure, she summarised the
geometrical properties covered in this lesson using a deductive approach highlighting
the relation between the geometrical properties—this corresponds very closely to
Level 4 (Deduction). This forms a good starting point for her students in the next two
geometry lessons in which Teacher 5 would emphasise deductive proofs. Although
Teacher 5 did not explicitly articulate her consideration of van Hiele’s levels of
learning of geometry in her discussion, it is clear that this sequence of teaching
was ingrained in her as she indicated that this is her “general approach” in teaching
geometry.
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Chapter 9
Meaningful Mathematics Talk That
Supports Mathematics Learning
in Singapore Secondary Schools

Lai Fong Wong, Berinderjeet Kaur, and Cherng Luen Tong

Abstract A wide variety of talk may occur within a mathematics lesson, but the
mere presence of talk does not ensure that understanding follows—only meaningful
mathematics talk can enhance learning. Talk may be used to convey meaning or
to generate meaning. There is evidence to suggest that conceptual understanding
is more likely to be associated with dialogic talk than with univocal discourse.
We can examine mathematics talk from the perspectives of the teacher (teaching
talk) and the students (learning talk) according to Alexander’s dialogic teaching
framework. Teaching episodes illustrate the kinds of mathematics talk (univocal and
dialogic) enacted in the interactions between an experienced and competent teacher
and his students. They show how the teacher uses the students’ talk to generate
meaning for both himself and the students, creates the learning moment by using
students’ responses as thinking devices, and thus provides opportunities for students
to construct their own knowledge. The implications for mathematics teachers in
Singapore secondary schools are discussed, as we acknowledge the reality of a
teacher’s classroom, which includes the competing demands of depth versus breadth
in content coverage, students’ differing abilities and interests, and time constraints.
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9.1 Introduction

The role of talk as central to knowledge building in mathematics classrooms has
been recognised for many decades, and there have been a number of research that
study the role of talk in supporting learning (e.g. Weaver, Dick, & Rigelman, 2005).
Analyses of classroom talk have identified the provision of opportunity for students
to voice and share ideas as an important component of learning that yields higher
level of conceptual exchanges and leads to more robust learning (Alexander, 2004).
However, themere presence of talk does not ensure that understanding follows – only
meaningful mathematics talk can enhance learning. The quality and type of talk are
crucial to helping students think conceptually about mathematics (Kazemi & Stipek,
2009; Lampert, Blunk, & Pea, 1998; Nathan & Knuth, 2003; Van Zoest & Enyart,
1998).

The teacher’s role is critical in how mathematics talk plays out in a mathe-
matics classroom, and research reveals that teachers’ instructional practices often
give students little opportunity to talk, discuss, conjecture, reason, and justify. The
Kassel project in 1995 on general features of mathematics instruction in Singapore
classrooms reported that teachers “presented knowledge to the pupils as a class by
telling and explaining” (Kaur, 1999, p. 195). The Learner’s Perspective Study (LPS)
in 2005 also revealed that “teachers played the most active role in expounding math-
ematical concepts and problem-solving skills” (Kaur, 2009, p. 340) and the most
common interaction pattern was the initiation-response-feedback (IRF) discourse
format (Sinclair & Coulthard, 1992) where the teacher asked a question, students
responded and teacher gave feedback. In their study of nature of teacher ques-
tions (performative, procedural, and conceptual), Hogan, Rahim, Chan, Kwek, and
Towndrow (2012) also noted that the prevalence of mundane IRF talk structure and
that a substantial proportion of performative questions eventually lead on to proce-
dural and explanatory talks, thus suggesting that Singapore mathematics classrooms
provide limited opportunities for students to engage in rich classroom conversations.

9.2 Meaningful Mathematics Talk

Most research on mathematics talk anchor on two perspectives on teaching and
learning: Vygotskian, and constructivism and socio-constructivism. A Vygotskian
viewpoint suggests that teaching is beneficial when it “awakens and rouses to life
those functions which are in a stage of maturing, which lie in the zone of proximal
development” (Gallimore & Tharp, 1990, p. 177), and learning occurs when assis-
tance is provided at opportune points in the learner’s zone of proximal development.
Thus, in a mathematics-talk learning classroom, both the teacher and students move
through their own learning zones of proximal development as they assist one another
in a recursive process of talking.
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Constructivism suggests that students make sense of their learning by relating
new information or ways of understanding to existing ideas or ways of thinking, and
hence, actively constructs newunderstanding. Piaget and Inhelder (1969) pointed that
new knowledge and experience can be assimilated when they fit comfortably into our
existing schema; butwhennew ideas donotfit,we are forced to accommodate themby
changingour schema, and thatwe sometimes resist.As cited inAtwood,Turnbull, and
Carpendale (2010), “Piaget considered cooperative interaction especially conducive
to learning because within conditions of cooperation individuals are more likely to
share their perspectives with others, perspectives that can be questioned, affirmed, or
revised” (p. 359), andChapman’s (1991) reconstructionofPiagetian theory supported
that “the experience of interpersonal argumentation provides children with the need
and the occasion to justify their assertions, ideally with arguments that have force
even for persons who do not share the same perspectives” (p. 220). In other words,
learning in schools is a social activity and the discussion of learning moves from the
individual to the group.

This implies the need to set up a learning environment that encourages students
to relate new ideas to existing ones in order to modify them, and together develop
knowledge as a co-constructed activity of all classroom members, constituted in
and through talk. Douglas Barnes (1992) advocated the idea that coming to terms
with new knowledge requires working on understanding, which can most readily be
achieved through talk because “the flexibility of speech makes it easy for us to try
out new ways of arranging what we know, and easy also to change them if they seem
inadequate” (Barnes, 2008, p. 5).According to him, twokinds of talk, exploratory and
presentational, contribute to learning but each has a different place in the sequence
of lessons.

There are many types of mathematics talk. In a research by Oregon Mathe-
matics Leadership Institute (OMLI) that addressed the research question:Can student
achievement in mathematics be significantly improved by increasing the quantity and
quality of meaningful mathematical discourse in mathematics classrooms?, the team
developed aClassroomObservationProtocol, specific to student talk. In this protocol,
they define 9 types of discourse (see Fig. 9.1).

These types represent a continuum of the mathematics discourse desired in math-
ematics classrooms where students are thinking and talking about mathematics.
The order of the discourse types represents the continuum of discourse in terms of
increasing levels of cognitive demand. That is, giving a short right or wrong answer
to a direct question represents the lowest level of cognitive demand and justifying
mathematical ideas and procedures and making generalisations represent the highest
levels.

According to Lotman (1988), talk may be used to convey meaning or to generate
meaning. Wertsch (1991) used the term univocal and dialogic, respectively to repre-
sent these two functions. In a univocal talk, the listener receives the “exact” message
that the speaker intends for the listener to receive, and once the speaker’s intention
has been conveyed, the talk ends. In contrast, in a dialogic talk, there is a give-
and-take communication that extends beyond the conveyance of an exact message
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Fig. 9.1 OMLI Classroom Observation Protocol for student talk (Weaver et al., 2005)

leading to generation of meaning through dialogue as a “thinking device” (Lotman,
1988). There is evidence to suggest that conceptual understanding is more likely to
be associated with dialogic talk than with univocal discourse (Knuth & Peressini,
2001; Wertsch & Toma, 1995).

Robin Alexander (2004) proposed that a different type of ‘talk’ is required within
the classroom to stimulate students’ thinking and learning, and he developed a
pedagogical approach to classroom teaching known as ‘dialogic teaching’. Dialogic
teaching is teaching based on more equal dialogue between teachers and students
and among students themselves. The principles of dialogic teaching provide a frame-
work to develop purposeful and authentic learning activities. According toAlexander
(2004), dialogic teaching harnesses the power of talk to stimulate and extend students’
thinking, and advance their learning and understanding as students’ talk is used as
a thinking device. It helps the teacher more precisely to diagnose students’ needs,
frame their learning tasks, and assess their progress.

Dialogic teaching is not just any talk. It is as distinct from the question-answer
and listen-tell routines of traditional teaching as it is from the casual conversation
of informal discussion. Dialogic teaching draws on a broad repertoire of strategies
and techniques—talk for everyday life, learning talk, teaching talk, and classroom
organisation.
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Students in dialogic classrooms do not just provide brief factual answers to ‘test’
or ‘recall’ type of questions, or answers that they think the teacher wants to hear.
Instead they are engaged in a spectrum of strategies specific to learning (known
as learning talk)—narrate, explain, analyse, speculate, imagine, explore, evaluate,
discuss, argue, justify, and even ask questions of their own (Alexander, 2010). While
Alexander did not provide further descriptions or explanations of these talk strategies
in the literature, the following descriptors are used in our identification of learning
talks occurred during the teaching episodes:

• Narrate: mere telling
• Explain: making an idea clear by providing more details
• Analyse: examine information in detail so as to explain and interpret it
• Speculate: predicting an outcome based on information provided
• Imagine: forming a supposition (of some idea not actually present)
• Explore: developing a concept through an investigation or finding alternatives
• Evaluate: forming an assessment or a judgement
• Discuss: talking about a topic in detail, taking into account different ideas
• Argue: exchanging or providing different views, with reasons in support
• Justify: showing or proving to be right or reasonable
• Ask questions of their own: (self-explained).

In Alexander’s dialogic teaching framework (2010), the spectrum of talk strategies
specific to teaching (known as teaching talk) are:

• Rote: the drilling of facts, ideas, and routines through constant repetition;
• Recitation: the accumulation of knowledge and understanding through questions

designed to test or stimulate recall of what has been previously encountered, or
to cue pupils to work out the answer from clues provided in the question;

• Instruction/Exposition: telling the pupil what to do, and/or imparting information,
and/or explaining facts, principles or procedures;

• Discussion: the exchange of ideas with a view to sharing information or solving
problems; and

• Dialogue: achieving common understanding through structure, cumulative ques-
tioning and discussion which guide and prompt, reduce choices, minimise risk
and error, and expedite ‘handover’ of concepts and principles.

According to Alexander (2010), rote, recitation, instruction, and exposition are
frequently used, and they are probably the default modes of teaching talk. While
there is always a place for these talk strategies, discussion and dialogue, which are
less common, are what students need to experience much more frequently. By using
discussion and dialogue, students do not merely listen and answer, but are empow-
ered both cognitively and socially to think, engage, and take decisions about their
learning.

Dialogic teaching requires interactions that encourage students to think, and to
think in differentways; questionswhich invitemuchmore than simple recall; answers
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which are justified, followed up and built upon rather than merely received; feed-
back which informs and leads thinking forward as well as encourages; contributions
which are extended rather than fragmented; exchanges which chain together into
coherent and deepening lines of enquiry; discussion and argumentation which probe
and challenge rather than unquestioningly accept; professional engagement with
subject matter which liberates classroom discourse from the safe and conventional;
and classroom organisation, climate, and relationships which make all this possible
(Alexander, 2010). Using Alexander’s dialogic teaching framework, we can examine
mathematics talk from the perspectives of the teacher (teaching talk) and the students
(learning talk).

Teaching episodes in the next section will illustrate the kinds of mathematics
talk (univocal and dialogic) enacted in the interactions between an experienced and
competent teacher and his students. The various talk strategies specific to teaching
and learning talks in Alexander’s dialogic teaching framework are identified in these
teaching episodes to illustrate how the teacher uses the students’ talk to generate
meaning for both himself and the students, creates the learning moment by using
students’ responses as thinking devices, and thus provides opportunities for students
to construct their own knowledge.

9.3 Mathematics Talk Enacted by an Experienced
and Competent Teacher

The teacher in focus is Teacher 27. An experienced and competent mathematics
teacher, he is the Head of Mathematics Department in his school. He is in the age
range of 40–49 years with 20–25 years of mathematics teaching experience. The
lessons of Teacher 27 were selected for study of mathematics talk as they represented
a comprehensive range of mathematics talk that was present in the lessons of the
30 experienced and competent teachers who participated in Phase 1 of the project.
Teacher 27 taught his secondary 4 class, of 17 students in the Express course of study,
the topic ofVectors that spanned495minof instruction timeover a periodof 8 lessons.
In this section, the three teaching episodes illustrate the kinds of mathematics talk
(teaching and learning talks) enacted in the interactions between Teacher 27 (T) and
his students (S). The goal of the lesson was to develop student understanding of
vectors and representations.

Episode 9.1

Line Teaching episode Teaching/learning talks

(1) T: You may have heard of vectors when you’re studying
physics. Now, can you give me an example of what you already
studied in physics which you understand as vectors? What did
you already know about vectors?

Recitation

(continued)
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(continued)

Line Teaching episode Teaching/learning talks

(2) S: Gravity Narrate

(3) T: Gravity, what else? I’m not going to correct you now. I’m
just letting you tell me what you understand about vectors. Tell
me what else you know about vectors

(4) S: Got direction Narrate

(5) T: So vectors have direction. Is that correct?
[Students nod.]
Give me an example

Rote
Exposition

(6) S: Velocity Narrate

(7) T: Velocity. Does velocity have direction? Exposition

(8) S: Yes

(9) T: If I run towards Sean [pointing at Sean] at a speed of 4 km/h
from here. Then I ask Hadi to run towards Sean also at a speed
of 4 km/h from there [pointing at Hadi], are the two of us
travelling at the same velocity?
Hadi, let us run towards Sean now
[Both T and Hadi move towards Sean.]
We are both running towards Sean but are we running in the
same direction?

Exposition

(10) S: No. Towards the same direction, yes. Ay? So same direction? Narrate

(11) T: We are both running TOWARDS Sean but are we running in
the same direction? I don’t know. Yes or no, I’m not sure. You
discuss

[Students discuss among themselves.]

(12) T: So, are Hadi and I running in the same direction?

(13) S: No

(14) T: We are not running in the same direction. Why? Exposition

(15) S: Because one person is pointed this way and the other person
is pointed the other way

Explain

(16) T: So we are running in different directions although we are
both running at the same speed

Rote

Up to line 16 in Episode 9.1, the mathematics talk enacted is primarily univocal
because the teacher’s intention is to convey the message that vectors have directions.
Teacher 27 ensures that his intended message for this lesson is adequately conveyed
by using a live demonstration of twopersons running at the same speed but in different
directions. His focus thus far is on how well everyone understands his perspective
rather than on making sense of the students’. The teaching talks invoked are Rote,
Recitation, and Instruction/Exposition; while the learning talks invoked are Narrate
and Explain.

However, the following Episode 9.2 reveals how the teacher carries on to leverage
students’ responses (Line 10 in Episode 9.1) as generators ofmeaning, illustrating the
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essence of a dialogicmathematics talk. The teaching talks invoked are still Recitation
and Exposition; while the learning talks have included Justify.

Episode 9.2

Line Teaching episode Teaching/learning talks

(17) T: But some of you have this idea that we’re running in the same
direction because we are running towards the same person? How
to disprove that? How can we show that both of us are not
running in the same direction?

Recitation

(18) S: Bearings Narrate

(19) T: Bearings? Can you show me how? Exposition

(20) S: This is Sean. [S draws a point.] Teacher is running towards
Sean in this direction. [S draws an arrow to the point.] Hadi is
also running towards Sean in this direction. [S draws another
arrow to the point.] North is in this direction. [S draws another
arrow to denote North.] We measure the bearing of the two of
you from Sean. So we can see that the two bearings are not the
same

Justify

The following Episode 9.3 further illustrates a mathematics talk that embodies
the dialogic characteristics.

Episode 9.3

Line Teaching episode Teaching/learning talks

(21) T: Let’s work in pairs. I want Partner A to draw any vector and

label it
→
AB. Now Partner B, how are you going to draw a vector

→
PQ such that

→
AB = →

PQ, that is, to replicate exactly the same
vector your partner has drawn?
[Students discuss in pairs.]

Instruction

(22) S: Use a protractor Narrate

(23) T: How to use a protractor to draw another vector that is equal to
this vector?

Exposition

(24) S: Draw another vector of same length and is parallel. Narrate

(25) T: So how do we make sure the two vectors are parallel? Exposition

(26) S: Use bearing. I use the protractor to measure the bearing like
this

Explain

(27) T: If you do not have a protractor, then how? Is there another
way?

Dialogue

(28) S: Use tracing paper Imagine

(29) T: That’s a good idea. What if I make it difficult for you and say
cannot use tracing paper? What other paper will you use?

Dialogue

(continued)
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(continued)

Line Teaching episode Teaching/learning talks

(30) S: I draw horizontal lines like lines in the exercise book. I also
draw vertical lines. Then I count how many lines and then draw
my vector like this

Explore

(31) T: Oh, that’s smart! So if the vector is drawn on grid like this [T
shows a vector drawn on grid]

Is it easier now to draw another vector that is equal to this?
Shane, show us how. [S draws a vector on the board.]

Discussion

(32) T: How do the others ensure that the lengths of the two vectors
are the same?

Dialogue

(33) S: Use the boxes Analyse

(34) T: How to use the boxes? Dialogue

(35) S: The vector you draw is between 6 boxes, so you find another
6 boxes and draw the vector

Explain

(36) T: I don’t quite understand what you’re saying. Can anyone help
to explain?

Dialogue

(37) S: The vector cuts across these 6 boxes. [S points the 6 boxes.]
So I copy and draw my vector that cuts same 6 boxes like this.
[S points the other 6 boxes.]

Explain

(38) T: Is everyone convinced that the two vectors are equal? How
are you so sure that they are equal?

Dialogue

(continued)
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(continued)

Line Teaching episode Teaching/learning talks

(39) S: The vector is from here to here. [S points at initial and
terminal points of the vector.] I start from here, it goes down by
2 boxes and then goes left by 3 boxes

 

Analyse

(40) T: So how are you counting? Dialogue

(41) S: Vertically and horizontally Analyse

(42) T: So if each box is a unit, the vector represents a movement of 3
units to the left and 2 units down

Rote

(43) T: How can we express this vector in a form that represent 3
units to the left and 2 units down?

Discussion

Again, Teacher 27 first attempts to see/hear what the students understand of equal
vectors and uses the students’ talk to generate meaning for both himself and the
students. He creates the learning moment by using student’s response (line 30) to
incept the idea of representing a vector horizontally and vertically. Rather than telling
the class directly how a vector can be represented in a column vector, Teacher 27
turns to the whole class for inquiry and discussion. He prompts students to use peers’
responses as thinking devices and provides opportunities for students to construct
their own knowledge.

Teaching Episode 9.3 is primarily dialogic. A significant mark of Teacher 27’s
classroom is the degree to which the students took ownership of the learning situ-
ation. The student-generated responses that emerged during the lesson encouraged
dialogues and discussions in a productive manner. The teacher encourages students
to build ideas on the basis of one another’s insights. Student collaboration is evident
as students attempt to refine one another’s ideas, help one another explain, and verify
one another’s claims. Teacher 27 does not attempt to convey a particular message by
engaging his students in a specific approach. Instead, he is open to his students’ ideas
and allows his students to pursue approaches, that may be quite unexpected to him,
to generate new mathematical understanding, and this is the essence of a dialogic
mathematics talk.

9.4 Mathematics Talk in the Classrooms of Mathematics
Teachers in General

As part of the survey, 677 teachers reflected on their lessons for a specific course of
study—Integrated Programme (IP), Express, Normal (Academic) (N(A)), or Normal
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(Technical) (N(T)), and indicated the frequency of their use of the kinds of teaching
talk. Chapter 2 provides details about the different courses of study in Singapore
secondary schools and also details of the survey. The aggregated data is shown in
Table 9.1.

From the data in Table 9.1, we see that about 60% or less of the teachers for
the IP course but 80% or more of the teachers for the Express/N(A)/N(T) courses
frequently or mostly/always draw on Rote and Recitation; about 55% of the teachers
for the IP course andmore than 65%of the teachers for the other courses frequently or
mostly/always draw on Instruction/Exposition; 80%ormore of the teachers for the IP
course and approximately 60–75% of the teachers in the other courses frequently or
mostly/always draw on discussion and dialogue. It is apparent that teachers for the IP
course draw less on the basic repertoire of teaching talk (rote, recitation, and instruc-
tion/exposition) but more on the larger oral repertoire (discussion and dialogue) as
their students are of higher learning ability. Nonetheless, it is encouraging to see that
more than 50% of the teachers for the other courses are also harnessing the power
of dialogic teaching talk to engage students, stimulate and extend their thinking, and
advance their learning and understanding.

In the survey, teachers were also asked to reflect on the kinds of learning talk
they engaged their students in and indicate the frequencies. Table 9.2 shows the
aggregated data.

The data in Table 9.2 informs the use of the basic repertoire of learning talk
(Narrate and Explain). Less than 60% of teachers for all the courses frequently or
mostly/always engage their students in Narrate; and about 70% of the teachers for
all the courses, except N(T), frequently or mostly/always engage their students in
Explain.However, on the use of the larger oral repertoire of learning talks, the teachers
for the IP course have provided more opportunities for their students to develop their
repertoire of learning talk (Speculate, Explore, Analyse, Evaluate, Discuss, Argue,
Justify, and Question). In fact, 55% or less of the teachers for the Express/N(A)/N(T)
courses frequently or mostly/always engage their students in learning talks, such as
Explore, Evaluate, Discuss (except for Express), and Justify.

9.5 Conclusion

The distinction between univocal and dialogic mathematics talks is at times difficult
to discern. A mathematics talk can be a continuum between univocal and dialogic.
Both univocal and dialogic can be appropriate forms of mathematics talk, depending
on the instructional goals. However, instances of meaningful mathematics talk in
which students are actively engaged in and are transforming one other’s thinking are
rare. Some challenges teachers faced when orchestrating meaningful mathematics
talk include supporting students to make contributions that are productive to further
the dialogue (Heaton, 2000; Staples, 2007);managing themathematical direction that
the mathematics talk takes (Jaworski, 1994; Sherin, 2002a; Silver & Smith, 1996);
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maintaining a ‘common ground’ which enables all students to follow the mathemat-
ical direction and to contribute appropriately (Staples, 2007); respecting the students’
claims that are mathematically incorrect while trying to transform them and support
the development of appropriate mathematical ideas (Chazan & Ball, 1999; Staples,
2007); seeing beyond one’s own long-held and taken-for-granted mathematical ideas
in order to hear and work with students’ ideas (Heaton, 2000); creating appropriate
norms for talking and interacting in the classroom (Cobb, 2000; Lampert, 2001); and
most crucially, the teachers’ sense of efficacy in anticipating and preparing for their
role in instruction (Sherin, 2002b; Smith, 1996, 2000).

We also have to acknowledge the reality of a teacher’s classroom, which includes
the competing demands of depth versus breadth in content coverage, the students’
differing abilities and interests, and time constraints. These factors often influence
the learning goals, which in turn influence the kinds of mathematics talk. Thus,
extensivemathematics talkmay not be included in everyday lessons. Nonetheless, we
encourage teachers to refrain from telling too much but to probe for students’ ideas.
Our data reveals that the mathematics talks enacted in our Singapore classrooms
are often straddling between univocal and dialogic such that no one kind of talk is
dominant over a significant period of time in a lesson. The two groups of univocal
and dialogic talks are not mutually exclusive, and all kinds of talks have their place.
We encourage teachers to continue to strive to engage the students in more dialogic
mathematics talks so that they can acquire a deeper understanding of mathematics
when they use their own responses, as well as those of their peers and teacher, as
thinking devices.
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Chapter 10
The Enacted Curriculum—Students’
Perspectives of Good Mathematics
Lessons in Singapore Secondary Schools

Ngan Hoe Lee, Berinderjeet Kaur, and Liyana Safii

Abstract This chapter presents the characteristics of goodmathematics lessons from
the lens of typical secondary school students in Singapore. This chapter begins by
examining the student perception in relation to the five inter-related problem-solving
components embodied in the Singapore SchoolMathematics CurriculumFramework
(SSMCF): concepts, skills, processes, metacognition and attitudes. Data from post-
lesson student interviews which were stimulated by videos of the lesson revealed
that the development of proficiencies in mathematics skills was most commonly
emphasised in the “highs” of mathematics lessons while emphasis on metacognitive
strategies was the least emphasised. This was true for all four courses of study (i.e.
Integrated Programme, Express, Normal (Academic) and Normal (Technical)). The
chapter further categorises the student data into teacher approaches and class activ-
ities that have been perceived by the students as the highs of mathematics lessons.
While the perceived value for teacher approaches differ across all four courses of
study, class practice and peer discussion were the most commonly cited class activi-
ties for all courses of study. Findings from the study provide important implications
on the way to better engage students in the teaching and learning of mathematics.
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10.1 The Student Perspective

Classroom instructions are no longer teacher-centred. Students are increasingly
playing an active role in classroom learning. The shift towards a collaborative partic-
ipation of teachers and students suggests that the mechanisms underlying teaching
and learning in the classroom cannot be construed only by examining the processes
that encapsulates the teacher’s participation in the classroom. In other words, “as
learning is dependent upon the situations and circumstances in which it is engen-
dered and the feelings these situations provoke in students, any attempt to improve
mathematics teaching must take into account both teacher practice, student practice
and their responses to each other’s practice” (Kaur, 2008, p. 951). In relation to the
learning of mathematics, this could mean that teaching and learning is perceived as
“the product of interactions among the teacher, the students and the mathematics”
(Kilpatrick, Swafford, & Findell, 2001). This implies that the students’ perception
and participation in the classroom should be emphasised along with the teachers’
perception and participation in the classroom (Clarke, Keitel, & Shimizu, 2006).

Research on classroom instructions through the teacher’s lens (e.g. teacher beliefs
and perceptions) have been widely explored and detailed in the literature. However,
the understanding of the teaching processes in the classrooms as experienced by the
learners could also provide valuable insights on how teachers deliver their lessons.
Ahmad and Aziz (2009) highlight that student perception plays an important role in
research on classroom instructions as their perception is “coloured by challenging
and interesting experiences that allow them to observe the learning and teaching
behaviours more intimately than the teacher” (p. 19). This suggests that students’
perceptions not only promote heightened awareness of their own classroom learning
experiences and their teachers’ classroom instructions, but also forms part of a feed-
back channel for teachers to reflect and improve on their classroom instructions
(Ahmad & Aziz, 2009). The study of student perception thus can provide valuable
contributions in the improvement of teaching and learning in the classroom.

Prior research have explored mathematics teaching through the learner’s perspec-
tive, providing insights into what students consider valuable for their classroom
learning. These studies are varied and include student perception on what consti-
tutes good teaching, effective teaching or a good teacher (e.g. Attard, 2011; Kaur,
2009; Martinez-Sierra, 2014; Murray, 2011; Shimizu, 2009; Wang & Hsieh, 2017).
Student perception gathered from these studies, however, have been mixed, possibly
attributed by various social and cultural norms that underlie the educational system
in different countries. Pang (2009) highlights that existing classroom instructions
need to be studied in relation to these norms in order to understand the beliefs and
values on which these practices are based upon. This is also emphasised in The
Learner’s Perspective Study (LPS), a large international comparative study on math-
ematics education which takes into account students’ perceptions in the study of
mathematics classrooms, learning and student outcomes around the world (Clarke,
Keitel, & Shimizu, 2006). The researchers of the LPS note that the findings from
the study showed how “culturally-situated are the practices of classrooms around the
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world and the extent to which students are collaborators with the teacher, complicit
in the development and enactment of patterns of participation that reflect individual,
societal and cultural priorities and associated value systems” (Clarke, Emanuelsson,
Jablonka, & Mok, 2006, p. 1).

Singaporewas also part of theLPS. Itwas discovered thatGrade 8 (Year 2 inSinga-
pore secondary school) students in Singapore perceived a good mathematics lesson
as one where their teachers adopted some of the following classroom instructions
(Kaur, 2009, p. 343):

1. Explainingmathematical concepts and demonstrating steps of procedures clearly
2. Showing demonstrations, or using manipulatives or real-life examples to make

it easier for complex ideas to be understood
3. Reviewing previously taught knowledge
4. Introducing new knowledge
5. Giving individual orwhole-class feedback using student individualwork or group

presentations
6. Giving clear instructions for activities that are expected to be completed during

or after class
7. Providing students with opportunities to work on interesting activities individu-

ally or collaboratively in small groups
8. Allocating sufficient practices as part of exam preparation.

Drawing upon the samemotivations that underlie the LPS, the current study exam-
ines students’ learning experiences through their perspectives. We first detail the
Singapore School Mathematics Curriculum Framework (SSMCF) to understand the
context of mathematics teaching and learning in Singapore. We proceed to discuss
the data and findings from one part of the project (detailed in Chapter 2) which
examines Singapore secondary school students’ perceptions of good mathematics
lessons. These perceptions would be presented in the form of characteristics of
good mathematics lessons, also referred to as the highs of the lessons. The highs
of the lessons include moments of the lessons that the students feel would consti-
tute part of a good lesson. These lesson characteristics would be analysed in rela-
tion to the five problem-solving components in the SSMCF (i.e. concepts, skills,
processes, metacognition and attitudes).We also draw upon the data of students from
four courses of study (i.e. Integrated Programme (IP), Express, Normal (Academic)
(N(A)) and Normal (Technical) (N(T))) to help us understand the perceptions of
students with diverse student learning profile. Details of the four courses of study
are provided in Chapter 1, Sect. 1.2. The student data was examined from two
perspectives—the teacher approach and class activity.
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10.2 Mathematics Instruction in Singapore

10.2.1 Singapore School Mathematics Curriculum
Framework

As briefly introduced in Chapter 1, mathematics instruction in Singapore is guided
by a robust problem-solving framework for the teaching, learning and assessment
of mathematics in the classroom. Known as the Singapore School Mathematics
Curriculum Framework (SSMCF), the framework was developed in 1990, and has
since undergone several changes and been an integral part ofmathematics curriculum
enactment in Singapore (Ministry of Education [MOE], 2012). The framework was
constructed with the intention of providing teachers with directions to create a “more
engaging, student-centred, and technology-enabled learning environment” as well
as to “promote greater diversity and creativity in learning” (MOE, 2012, p. 17).
The SSMCF (see Chapter 1, Fig. 1.2) draws upon five inter-related competencies
that focus on mathematical problem solving: conceptual understanding, skills profi-
ciency, mathematical processes, metacognition and attitudes, to develop students’
ability in solving a wide range of problems including straightforward and routine
tasks to complex and non-routine ones (MOE, 2018b). This is in line with Singapore
Ministry of Education’s (MOE) intention to equip students with twenty-first century
competencies to prepare them for challenges brought about by the fast-changing
world attributed by globalisation, shift in demographics and advancement in tech-
nology (MOE, 2018a). These twenty-first century competencies include skills such
as critical and inventive thinking, and communication, collaboration and information
skills. In the next section, we discuss the five components of SSMCF in further detail.
Introduce/construct mathematical concepts. Mathematical concepts in

numbers, algebra, geometry, probability and statistics, and calculus are “connected
and interrelated” (MOE, 2018b, p. 10). These concepts can be represented through
numerical/tabular, pictorial, graphical, verbal, symbolic (equations or expressions)
and physical/concrete (Cleaves, 2008). Goldin and Kaput (1996) postulate that
students’ comprehension of mathematical ideas is influenced by the mathematical
representations that teachers use. In particular, conceptual understanding can be
fostered through the use of multiple representations (Donovan & Bransford, 2005).
Students who grasp a coherent understanding of mathematical concepts are able to
“recognise the idea embedded in a variety of qualitatively different representational
systems, flexiblymanipulate the ideawithin given representational systems and accu-
rately translate the idea fromone system to another” (Lesh, Post,&Behr, 1987, p. 36).
As such, teachers are encouraged to adopt a wide range of learning experiences that
involve “hands on activities and the use of technological aids to help students relate
abstract mathematical concepts with concrete experiences” (MOE, 2012, p. 15).
Develop proficiencies in mathematical skills . Mathematical skills include “car-

rying out the mathematical operations and algorithms and in visualising space,
handling data and using mathematical tools” (MOE, 2018b, p. 10). Mathematical
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skills also comprise students’ ability to use software in the learning and applica-
tion of mathematics, especially in today’s classroom settings where ICT tools are
increasingly being incorporated into classroom learning. Bloom (1968) posits that
for students to develop these mathematical skills, teachers should establish clear
learning goals and complement student learning with formative assessments that
serve as a medium for determining students’ level of mastery. It is, however, impor-
tant that mathematical skills are “taught with an understanding of the underlying
mathematical principles and not merely as procedures” (MOE, 2012, p. 15). This
means that the acquisition of both instrumental and relational understanding should
be involved in the development of procedural fluency (Skemp, 1987). In other words,
the acquisition of procedural skills should not just focus on the “how” but should
also focus on the “why”.
Emphasise on mathematical processes. Mathematical processes that are

involved in the acquisition and application of mathematical knowledge require
students to use certain skills. As identified in the SSMCF (MOE, 2018b, p. 11),
these include:

1. Abstracting and reasoning—While abstraction is what makes mathematics
powerful and applicable, justifying a result, deriving new results and generalising
patterns involve reasoning;

2. Representing and communicating—Expressing one’s ideas, solutions and argu-
ments to different audiences involves representing and communicating and the
use of notations in the mathematics language.

3. Applying and modelling—Applying mathematics to solve real-world problems
often involves modelling, where reasonable assumptions and simplifications are
made so that problems can be formulated mathematically, and where mathe-
matical solutions are interpreted and evaluated in the context of the real-world
problems.

These skills reflect the critical and inventive thinking competencies in the twenty-
first Century Competencies Framework (MOE, 2018a). In particular, the skills
required for mathematical problem solving could foster students’ ability to “think
critically” and “think out of the box” (MOE, 2018a). For students to develop profi-
ciencies in such mathematical processes, teachers are encouraged to provide suffi-
cient opportunities for students to engage in problem solving that involves complex
and non-routine tasks (MOE, 2018b, p. 10).
Emphasise on metacognitive strategies. Metacognition, as defined by Flavell

(1976), refers to “one’s knowledge concerning one’s own cognitive processes and
products or anything related to them…Metacognition refers, among other things, to
the active monitoring and consequent regulation and orchestration of these processes
in relation to the cognitive objects or data on which they bear, usually in the service
of some concrete goal or objective” (p. 232). Simply put, metacognition involves
one’s “awareness of, and the ability to control one’s thinking processes, in particular
the selection and use of problem-solving strategies” (MOE, 2018b, p. 12). These
processes also involve students’ ability to monitor and regulate their own thinking
and learning. Metacognition, particularly in the learning of mathematics, in essence
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involves three facets—awareness, monitoring and regulating (Lee, Ng,&Yeo, 2019).
To promote development of strategies that support metacognition, the SSMCF has
advocated that teachers provide students with opportunities to “solve non-routine or
open-ended problems” to provide opportunities for students to discuss their solutions,
think aloud and reflect on what they are doing, keep track of how things are going
and make changes when necessary (MOE, 2018b, p. 12).
Imbuedesired learningattitudes.Attitudes towardsmathematics learning reflect

the affective facet of learning that includes one’s “belief and appreciation of the value
of mathematics, one’s confidence and motivation in using mathematics, and one’s
interests and perseverance to solve problems using mathematics” (MOE, 2018b,
p. 12). In linewith Singapore’smove to achieve balance between academic rigour and
joy of learning, the Singapore MOE (2017) advocates that learning should promote
students’ discovery of their interests and passions, and love in the things that they
do. In other words, learning should go beyond external motivations and achieving
good grades. Teachers are recommended to incorporate fun learning experiences in
the acquisition of knowledge and skills to instil the joy of learning among students.
In particular, teachers are encouraged to use a wide range of resources to cater to
varied student interest (variety), use these resources sufficiently (opportunity) and
make connections between these resources andmathematics learning (linkage) (Yeo,
2018). These types of instructions are aimed at building students’ desired attitudes
towards the learning of mathematics.

10.3 Singapore Secondary School Students’ Perspectives
of Good Mathematics Lessons

To document students’ perspectives of good mathematics lessons, data was collected
through post-lesson video stimulated interviews that were conducted with 447 focus
students. These focus students were students of the 30 experienced and competent
teachers who were involved in the first phase of the project—the video segment—
where their lessons were recorded (detailed in Chapter 2).

Two parts of the post-lesson student interviews which were stimulated by videos
of the lesson were analysed when identifying characteristics of good mathematics
lessons. These parts involved portions of the interviewwhere the focus students were
asked to identify the highs of a particular mathematics lesson in which they were the
focus students. The highs of mathematics lessons were referred to as moments of
the lessons that the students felt would constitute part of a good lesson. In particular,
students were asked, “Can you share with me what the highs of this lesson were?”
and were provided with the recorded video of that particular lesson. The recorded
video served to help students in recalling how the lesson was taught. The students
were instructed to fast forward the recorded lesson video to the parts of the lesson
that they perceive to be the highs of the lesson.
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A total of 636 responses were collected from this part of the interview (i.e. 108
from IP, 196 from Express, 194 from N(A) and 138 from N(T)). Most of the students
shared at least one high moment of the lesson that they sat for. These responses were
categorised into two perspectives: teacher approach and class activity. The findings
will be presented in two parts. In the first part, we outline the teacher approaches
and class activities in relation to the five problem-solving competencies as embodied
in the SSMCF (i.e. concepts, skills, processes, metacognition and attitudes). In the
second part, we delve into the types of teacher approaches and class activity that
were valued by the students. The student interview data is also compared across the
four courses of study.

10.3.1 Problem-Solving Competencies in the SSMCF

Analysis of the post-lesson student interviews revealed that the focus students
perceived a variety of teacher approaches and class activities as the highs of mathe-
matics lessons. Table 10.1 shows how commonly cited the teacher approaches and
class activities were in relation to the five problem-solving competencies embodied
in the SSMCF. The interview data revealed that the development of proficiencies in
mathematics skills (42%) was most commonly emphasised in the highs of mathe-
matics lessons, followed by emphasis on mathematical processes (27%), imbuement
of desired learning attitudes (15%) and introductionof concepts to students or engage-
ment of students in constructing concepts (12%). The emphasis on metacognitive
strategies was the least emphasised (4%) in the highs of mathematics lessons.

The data also revealed that, generally, students across all four courses of study
placed similar emphasis on these competencies. Regardless of the courses of study
they were in, it appeared that students emphasise most on the development of profi-
ciencies in mathematics skills (at least 40% for all courses of study) and least
on metacognitive strategies (at most 5% for all courses of study) in the highs of
mathematics lesson. As compared to students in other courses of study, students in
the Express course (5%) appeared to place lesser emphasis on the introduction of

Table 10.1 Student perception of good mathematics lessons in relation to problem-solving
competencies

Problem-solving
competencies

Percentage of responses

IP (n = 108) Express (n =
196)

N(A) (n =
194)

N(T) (n =
138)

Total (N =
636)

Skills 41 43 43 40 42

Processes 35 25 28 21 27

Attitudes 5 22 13 17 15

Concepts 14 5 11 22 12

Metacognition 5 5 5 0 4
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concepts or engagement of students in constructing concepts in the highs of mathe-
matics lessons.On the other hand, students in the IP course (5%) seemed to emphasise
the imbuement of desired learning attitudes comparatively lesser than students in the
other courses of study.

10.3.2 Teacher Approach and Class Activity

The teacher approaches and class activities were further examined to understand the
nature of the highs of mathematics lessons, as identified by the students, as well as
the reasons underlying their choices. Table 10.2 shows the percentages of responses
for the different types of teacher approach and class activity that had been cited by
the students. For the purpose of discussion, only the teacher approaches and class
activities that recorded a frequency of at least 10 student responses, i.e. at least more
than 1% of the total responses, would be discussed.

A comparison of the teacher approaches and class activities across all four courses
of study revealed some similarities and differences. Class practice and peer discus-
sion were commonly cited by students in all four courses of study as the highs of
mathematics lessons. Apart from class practice and peer discussion, students in the
IP course deemed the parts of the lessons where their teachers reviewed student work
(12%) as the highs ofmathematics lessons. On the other hand, students in the Express
course tended to value teachers’ attempt to make jokes (6%) and share alternative
ways of solving problems (5%) during lessons. For students in the N(A) course, the
teachers’ attempt to review student work (9%) and explain how to solve a worked
example (8%)were some of the highmoments of the lessons. Six percents of students
in the N(A) course also identified assessment for learning, such as use of the entry
and exit cards, as the highs of the mathematics lessons. In addition, students in the
N(T) course appeared to appreciate teachers’ use of manipulatives when concepts
were demonstrated in the lesson (7%).

With reference to the video recorded lessons, Table 10.3 details the reasons under-
lying the students’ perceived value on the various teacher approaches and class
activities.

As seen in our inferences made in Table 10.3, the students’ reasons on their
choice of teacher approaches and class activities add pedagogical value to mathe-
matics lessons. It appears that the characteristics ofmathematics lessons that students
thought as important also reflect pedagogically sound practices. In other words, the
students seemed to value the importance of pedagogically sound practices in the
choice of teacher approaches and class activities that they had identified.
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10.4 Conclusion

The present study has enriched our understanding of how secondary students in
Singapore consider a mathematics lesson to be a good one. In particular, the purpose
of this chapter was to explore students’ perceptions of valued teaching and learning
experiences in mathematics classrooms, especially in relation to the context of
mathematics instructions in Singapore and for studentswith various learning profiles.

The findings revealed insights on students’ perception of good mathematics
lessons in relation to the five problem-solving components embodied in the SSMCF.
Students across all four courses of study appeared to be fairly consistent in what
they considered as valuable aspects of mathematics lessons. In particular, students
across all courses of study gave most priority to the proficiencies in mathematics
skills and least priority to the emphasis of metacognitive strategies when consid-
ering the characteristics of good mathematics lessons. The lack of priority given to
the emphasis of metacognitive strategies could be explained by the possible lack of
perceived value in metacognitive strategies or students’ lack of vocabulary to artic-
ulate their perceived value in relation to metacognitive strategies. The findings also
revealed that as compared to other courses of study, students in the IP course gave
lower priority to the imbuement of desired learning attitudes in mathematics lessons.
This observed lack of priority could be attributed by IP students’ self-sufficiency in
cultivating the desired learning attitudes in the learning of mathematics. Moreover,
with a climate that is heavily dependent on national examinations and placement, IP
students might consider themselves to be already academically successful, and so do
not place as much emphasis on developing interest or appreciation for mathematics.
Thus, theymight perceive the imbuement of desired learning attitudes inmathematics
lessons as less necessary than students in other courses. The findings also showed
that the preference for the use of manipulatives to demonstrate a concept appears
to be distinctive of students in the N(T) course. Manipulatives are often used as a
pedagogical resource tool to guide students in understanding abstract mathematical
ideas through concrete experiences, especially for weaker students. Thus, the lack
of priority given by students in other courses on the use of manipulatives could be
attributed to lesser use of manipulatives in mathematics lessons taught by teachers
in the IP, Express and N(A) courses.

The findings also highlighted eight key characteristics of good mathematics
lessons identified by the students. Despite the difference in student learning profiles,
it was observed that students across all courses of study appeared to value individual
mathematical task attempts allocated in class (class practice) and the exchange of
ideas with their peers (peer discussion). This suggests that students place impor-
tance on opportunities for mathematical application and checking for mastery of
learning and skills, as well as collaborative learning. It is also interesting to note that
five of these lesson characteristics—demonstrating a concept using manipulatives,
assessment for learning, class practice, explaining how to solve a worked example
and reviewing student work—are similar to the characteristics of good mathematics
teaching observed in Kaur’s (2009) study. In a nutshell, the characteristics of good
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mathematics lessons as viewed from the students’ perspectives generally seem to
resonatewellwith the framework that supportsmathematics instructions inSingapore
(i.e. the SSMCF). The students’ perspectives provided an enhanced understanding
of teaching and learning processes that occur in mathematics lessons as experienced
by learners, and provided directions in better engaging our students in the teaching
and learning of mathematics.

While the students perspectives of good mathematics lessons generally reflect
classroom instructions advocated in the SSMCF, students appeared to be lacking in
the ability to articulate what they deemed as important in the teaching and learning
of mathematics or have a superficial awareness of mathematical strategies. Our find-
ings thus call on teachers to provide support in the development of students’ vocab-
ulary that will help them to express clearly their needs or what is important to them
in the teaching and learning of mathematics. For instance, teachers could provide
more student exposure to the idea of metacognition as well as the teaching and
learning of metacognitive strategies. In other words, the address of metacognition
in the mathematics classroom may require a more deliberate rationalisation and
articulation.

The findings also suggest that there could be value in emphasising heterogeneous
grouping in mathematics lesson, as reflected in the students’ perceived value in
peer discussion during lessons. Piaget (1932) postulated that peer interaction has its
own advantages; peer interaction helps students to identify and correct their miscon-
ceptions, and develop high-level cognitive architecture. Research on groupings in
general, have been inconclusive as it appears that none of the group composition (i.e.
homogenous or heterogeneous grouping) is equally advantageous for high, average
and low-achieving students (e.g. Huang, 2009; Kaya, 2015; Saleh, Lazonder, &
de Jong, 2007). However, low-achieving students seem to benefit from heteroge-
neous composition throughmotivation and stimulation from high-achieving students
(Chang, Singh, & Filer, 2009). In particular, low-achieving students can benefit from
better performance and higher motivation (Saleh, Lazonder, & de Jong, 2005).
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Abstract This chapter examines how experienced and competent
Singapore secondary school mathematics teachers select and modify
materials for instructional practice. For the empirical section, we begin by
analysing survey responses of 677 participants across a wide range of secondary
schools to determine the extent of modification among teachers before identifying
which instructional materials were used as reference materials in their modification.
The findings showed that the teachers relied heavily on their school-based materials
as reference materials. We next analyse the instructional materials of 30 experienced
and competent teachers which reveal that the teachers’ selection and modification of
instructional materials were carried out in such a way as to integrate into their own
instructional conceptions. The characteristics of the instructional materials that help
teachers enact worthy instructional goals of teaching mathematics, such as making
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competent teachers’ interview transcripts and their instructional materials.
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11.1 Introduction

In this chapter and the next three chapters we turn to another aspect of the project
(see Chapter 2 for details) that focus on Singapore mathematics teachers’ use of
instructional materials. In an earlier paper, we reported a teacher’s use of instruc-
tional materials that he crafted to realise his goal of “making things explicit” (Leong,
Cheng,Toh,Kaur,&Toh, 2019a). Thepaper also illuminated how the teacher selected
and modified his instructional materials. In this chapter, we broaden our investiga-
tion to more Singapore secondary school mathematics teachers to: (i) gain deeper
insight on the selection or modification of materials for instructional practice, and
(ii) examine the characteristics of the instructional materials that help teachers enact
worthy instructional goals of teaching mathematics.

11.2 Instructional Materials

Teachers are key to effective curriculum delivery. “The effectiveness of their
curriculum delivery is connected to the quality of instructional materials (Ko &
Sammons, 2014)” (as cited in Lashley, 2019, p. 2). Indeed, instructional materials
are important mediators to connect teaching and learning. Not only are instructional
materials resources designed to support or supplement instruction (Remillard &
Heck, 2014), they are “one which is classroom-ready and that carries the teachers’
actual instructional goals” (Leong, Cheng, & Toh et al., 2019a, p. 50). Instructional
materials include textbooks, curriculum guides, descriptions of mathematical tasks,
and instructional software (Remillard & Heck, 2014). It is important that instruc-
tional materials maintain high standards because “the standards of the instructional
materials in the classroom for curriculum delivery directly impact the quality of the
learning experiences” (Lashley, 2019, p. 3). However, designing high-quality instruc-
tional materials requires considerable thought in order to achieve the needed impact
(Lashley, 2019).

11.2.1 Selection and Modification of Instructional Materials

“Textbooks and curriculum guides are the most common form of instructional mate-
rials used throughout the world and continue to play a critical role in national educa-
tion systems” (Remillard & Heck, 2014, p. 707). Teachers also frequently develop
their own materials (Steiner, 2018) and they seek after instructional materials that
would address their students’ learning needs. Their selection of instructional mate-
rials may be based on, for example, professional judgement and experience in selec-
tion of instructional materials (Bugler et al., 2017). They also added that criteria
such as accuracy and visual appeal, alignment to standards and depth of knowledge,
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ease of use and support, and engagement and ability to meet student needs are also
used for the selection of instructional materials. In order to improve the effectiveness
of the selected and produced instructional materials, learners’ interest and diversity
should be considered (Lashley, 2019). Research on learning styles, and the design
of instructional materials for flexibility, diversity, and balance can also be taken into
consideration (Rowntree, 1992). In the selection of mathematical tasks, it is critical
that the tasks selected to match the instructional objectives and that teachers recog-
nise the nature of tasks in order to maximise learning opportunities afforded through
different tasks (Lee, Lee, & Park, 2019).

“Teachers can use textbooks in any number of different ways, adapting and adding
to them – or omitting some or all of any given activity (e.g. Grammatosi & Harwood,
2014; Gray, 2010; Menkabu & Harwood, 2014; Shawer, 2010)” (Harwood, 2017,
p. 264). It is sometimes necessary for teachers to modify textbook tasks to respond
to new curriculum standards or educational aspirations. For example, nurturing
creativity is one of the essential twenty-first-century skills (Coil, 2013, 2014; Piirto,
2011) and creative thinking can be fostered through tasks designed for higher-order
thinking (Kaur & Yeap, 2009). According to Lee et al. (2019), although creativity
is explicitly addressed in the Republic of Korea’s mathematics curricula, secondary
school mathematics teachers did not feel the need for task modification (Kim &
Kim, 2014) as many tasks in the middle and high school mathematics textbooks still
require students to obtain correct answers by using procedures or algorithms (Kim&
Kim, 2013). Lee (2017) reported that “fewmathematics teachers design new tasks or
adapt the tasks from textbooks to be appropriate for a high-level cognitive approach
(Remillard 1999; Smith 2000; Stein, Grover, & Henningsen, 1996; Stigler & Hiebert
2004)” (p. 997).

Teachers also draw fromavariety of resources or references to design their instruc-
tional materials. These reference materials, also known as base materials (Leong,
Cheng, & Toh et al., 2019a), undergo some modification and selection process
before the teachers morphed them into a form that is considered suitable for use
in classroom work to advance their instructional goal. The teacher’s modification of
the textbook (reference materials) for his instructional materials could be to make
things more explicit for his students (Leong, Cheng, & Toh, et al., 2019a). Three
strategies were detailed in their report: (i) “Explicit-from” reference materials to fill
gaps in the textbook content such as critical ideas and links between representations,
(ii) “explicit-within” for students to revisit similar tasks in sequential units for skill
consolidation and concept linkage, and (iii) “explicit-to” in order to direct students
from the questions in the instructional materials to planned classroom enactments.
Several other strategies for task modification have been reported in the literature. For
example, Zaslavsky (1995), showed how to modify standard tasks that have only one
correct answer into open-ended tasks that allow learners to explore more solutions
to the tasks, to pose more questions, and to try various strategies. In the same vein,
Yeo (2018) provided examples of modification of a textbook problem into a more
open-ended task “that make[s] assumptions on the missing information” (p. 200).
Lee, Lee, and Park (2016) reported three types of task modification strategies by
pre-service teachers:
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(i) context modification refers to modification by changing the context of tasks,
making them student-friendly or diverse

(ii) condition modification refers to modification by adding, deleting, or trans-
forming the conditions in tasks (Prestage & Perks, 2007). This can also be
characterised by adding questions to remind students what they have learned,
“changed the condition of the task to step questions to facilitate students
with constructing mathematical concepts” (Lee et al., 2019, p. 979) and when
students’ cognitive level was considered, the condition of the task was modi-
fied to “provide the opportunity of inductive reasoning or informal justification”
(p. 980).

(iii) question modification refers to modification by changing what students are
required to answer. This can also be characterised by the opportunity “to facil-
itate students’ reflective thinking” (Lee et al., 2019, p. 980). For example,
including questions that require students to reflect whether their solutions have
any meaning in real life. It included also questions that required learners to
provide explanation about their solutions.

11.2.2 Characteristics of Instructional Materials

Many instructional materials have been published to respond to “new” curriculum
standards over the years, “with the explicit intent of helping teachers and students
enact reform-oriented subject matter and pedagogical goals” (Lloyd & Behm, 2005,
p. 48). According to González, Estrada, and González (2017), The Guide for Evalu-
ating Teaching Materials and Development reported in Travé, Pozuelos, Cañal, and
Rodríguez (2016) is a tool that can be used to evaluate instructional materials in
terms of six aspects:

(1) epistemological aspects of teaching material, e.g., material identifies school
knowledge results from the “interaction between scientific and everyday
knowledge” (p. 976)

(2) axiological aspects, e.g., “inclusion of cultural elements and promotion of
respect for the environment” (p. 976)

(3) psychological aspects, e.g., takes into account the kind of learning promoted by
the material and the role of previous knowledge

(4) pedagogical elements, e.g., considers:

● key competences
● objectives
● contents (e.g., organisation and connection with environment)
● methodology approach (e.g., non-directive, inquiry-based)
● activities (e.g., sequencing according to some structure; explanatory orienta-

tion that is applicable to textbook; theoretical–practical design that requires
description, explanation, argument and requires diversity of sources of
information and materials)
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● assessment where evaluation is viewed “as a process of understanding and
reflection for improving learning and teaching” (p. 977)

(5) teaching design, e.g., “based around the textbook with other complementary
material” or “based around self-produced materials complemented by various
other resources” (p. 978)

(6) professional development, e.g., “material promoted the design, development
and evaluation of the syllabus from an enquiry-based perspective” (p. 982).

As seen from the literature review, much has been reported about the quality of
instructional materials, but relatively less is reported about how teachers design
these materials. If we assume that teachers do not usually create their instructional
materials from scratch, it necessarily implies that they select and modify from refer-
encematerials. It will thus be interesting to examine these processes andmechanisms
teachers engage in when they select and modify reference materials for their instruc-
tional materials. This is the focus for the rest of this chapter as we proceed to the
empirical section.

11.3 Teachers’ Reference Materials

We first report findings from four survey items completed by 677 experienced and
competent Singapore secondary school mathematics teachers. The results of the
survey items inform us of the most useful reference materials for the teachers,
the reference materials that they based their modification upon, and the extent of
modification among teachers.

11.3.1 Item 1

Item 1 of the survey requires the teacher respondents to rank the materials (e.g., main
textbook, school-based material, etc.) in order of usefulness given a list of reference
materials.

Item 1: The following is a list of reference materials. Rank the materials in order of
usefulness, 9 being the one most useful to you.

Our analysis of this survey item revealed that the main reference material which
had the most influence on teachers was the main textbook, followed by school-based
materials. As shown in Table 11.1, out of 677 respondents to the survey, 432 chose
main textbook as what they consider as the most useful reference materials, followed
by 143 (21%) who chose school-based materials. The main workbook supplements
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Table 11.1 Most useful reference materials chosen by 677 survey participants

Reference materials 9 8 7 6 5 4 3 2 1 Total

Main textbook 432 117 55 18 7 7 7 11 23 677

Supplementary textbook(s) 6 93 73 91 112 113 104 65 20 677

Main workbook 16 143 95 97 102 80 66 66 12 677

Supplementary workbook(s) 3 10 27 80 90 137 144 122 64 677

School-based resource(s) 143 125 135 77 81 50 31 21 14 677

Commercial materials 5 33 82 81 98 90 115 133 40 677

Online resources 28 119 149 136 66 71 73 27 8 677

MOE-produced resources 8 29 51 79 100 94 92 190 34 677

Others 36 9 11 18 20 35 45 42 461 677

the main textbook and allows for more practice, assessment and development of
problem-solving and thinking skills.

Whilewe expect textbooks to be themain referencematerials for teachers, because
in Singapore, mathematics textbooks are “part of the official curriculum to the extent
that they are incorporated into the designated curriculum through authorised selection
or adoption processes” (Remillard & Heck, 2014, p. 710), we were surprised at how
highly the teachers valued school-based materials as references. This appears to be
a “new” finding as prior studies of this scale within Singapore had not revealed a
similar significant preference for school-based materials. If so, this may indicate a
quite recent phenomenon where school-based materials are gaining more influence
on secondary mathematics teachers. While we did not anticipate how highly the
teachers valued school-based materials (as shown in the finding from Item 1), we
were aware—through noticing that many of the teachers we studied in Phase 1 of the
research relied on school-based materials—that they were also used in a number of
secondary schools. As such, we wanted to survey the type of school-based materials
referred to across a broad range of schools. This is the purpose of Item 2.

11.3.2 Item 2

Item 2: Do you use any school-based resource(s) as your reference materials? If yes,
please specify.

We counted and sorted teachers’ responses to their use of school-based resources
into three categories (Fig. 11.1), namely, (i) past year papers (ii) other school papers
and (iii) within-school materials such as notes and teaching packages, lessons devel-
oped by the mathematics department. More than half of the respondents (410 out
of 677) indicated the use of within-school materials. This seems to signal a shift
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Fig. 11.1 Categories of
school-based resources used
by teachers as reference
materials

towards supplementing externally designed materials (such as textbooks) with inter-
nally designed school-based materials. As schools rely more on their “in-house”
expertise for instructional materials, what are some implications for teaching and
research? For one, since the quality of instruction is largely influenced by the quality
of the materials referred to, a study into the kind of actual within-school materials
used by schools would be a productive inquiry. However, to date, there have been
scarce research in this area within Singapore.

We then examined the reference materials that the teachers used for modifications
and selection to design their own instructional materials by analysing Item 3.

11.3.3 Item 3

Item 3:What were used or modified from the reference materials for the design of your
instructional materials (you may select more than one item).

The results showed a variety of tasks (e.g., practice items, challenging items,
diagrams, activity, worked examples, organisation of content(s)) that were being
modified from the reference materials for teachers’ design of instructional mate-
rials (Fig. 11.2). Practice examples were found to be the most frequently modified.
In separate studies, we zoomed-into the design principles used by some of these
teachers in crafting sequences of practice examples (Leong, Cheng, Toh, Kaur, &
Toh, 2019b, in press).

Lastly, we examined Item 4 to determine the relationship between Secondary
mathematics teachers’ reference materials and instructional materials. “By instruc-
tional materials (IM), we mean materials that teachers bring into the classroom for
instructional purposes, and in a form that is classroom-ready for students’ access in
the learning of mathematics” (Leong, Cheng, & Toh, 2019a, p. 90).
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Fig. 11.2 Items used for modification and selection of instructional materials

11.3.4 Item 4

Item 4: What is the relationship between their reference materials and their instruc-
tional materials?

Responses to this item were coded (see Table 11.2) as: (1) Exactly the same as refer-
encematerials, (2) Sometimes adaptation andmodificationweremade, (3)Frequently
adaptation and modification were made, and (4) Mostly/Always modifications were
made. The results revealed that only 3.5% of the respondents did not make any
adaptation and modifications from their reference materials, that is, 96.5% of the
respondents made adaptations and modifications from their reference materials (see
Fig. 11.3 for the graphical representation of this result). This means that a vast
majority of Singapore secondary mathematics teachers do not view their duty as
merely “lifting” items from reference materials to give to their students; rather, they
see their role as necessarily one of mediation between the reference materials and

Table 11.2 Relationship
between reference materials
and instructional materials

Code(s) Frequency Percentage (%)

Exactly the same 1 24 3.5

Sometimes 2 253 37.4

Frequently 3 262 38.7

Almost always 4 138 20.4

Total 677
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student learning: they are required to value-add by modifying them. This leads to a
natural question: how do teachers select and modify materials? This is the substance
of the next section of this chapter.

11.4 Teachers’ Strategies in Selection and Modification
for Their Instructional Materials

We inquire into this aspect of the investigation through two research questions.

11.4.1 Research Question 1: How Do Singapore Secondary
School Mathematics Teachers Select or Modify
Materials for Instructional Practice?

11.4.1.1 Method

The30experienced andcompetent Singapore secondary schoolmathematics teachers
who participated in the first phase of the project submitted their instructional mate-
rials they planned for the mathematics topics before they were interviewed (pre-
module interview) and before any observations on their mathematics lessons using
the planned instructional materials were made. From the instructional materials that
they initially submitted, we were able to trace several examples of modification and
selection from their reference materials, which was chiefly the main textbook (see
Sect. 11.3.1, Item 1). This suggests that modification and selection of materials was
done before enactment of the mathematics lesson (Stage 1 in Fig. 11.4).
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Fig. 11.4 Modification and selection before and during enactment of lesson

When asked whether the teachers have any special features that they have put in
place, through their instructional materials, that will help them assess whether their
students have attained the mathematical goals of the lesson, Teacher 1 said,

It would be through certain questions. These are the questions that, if they are able to answer,
that means, they will have learned what they are supposed to learn, that means, that sub, that
small content goals, smaller sub goals. So they’ll be like, so called particular questions, that,
by doing, by going through these questions, if they are able to answer, that means they know,
and then we can move on. Because if not, we probably have to go back and think of other
examples [modification during enactment]. Either other examples, other ways of showing
them, or they just need more practice questions. It really depends.

Teacher 9 said,

So, besides the notes, and the worksheets, I give them quizzes, and if I find that the classes,
not able to handle certain things like yesterday… I may need -will recap…So Iwill prepare
something [modification during enactment] to, a very short recap to go through the… Not
misconceptions, the gaps that they still have.

This suggests that modification and selection of materials were also made during
the enactment of the planned lessons, at different junctions of the topic (Stage 2 in
Fig. 11.4). During the enactment of the lesson, the teachers sometimes came up with
examples on the spot to respond to the students’ learning needs and we refer this as
emergent material to meet the instantaneous moment of teaching (Stage 3 Fig. 11.4).

In this chapter, we analysed only modification of instructional materials before
the enactment (First modification from Stage 1 to 2 in Fig. 11.4).
Phase 1:Webegin by examining in detail the interview transcripts of two randomly

selected exemplary teachers (Teacher 1 and 3) and looked for instances when they
explicitly communicated their instructional design moves before triangulating with
their instructional materials and reference materials. Here, we used reference mate-
rials as textbooks (mainly the teachers’ school main textbooks) approved byMinistry
of Education (MOE) in Singapore. The template in Table 11.3 serves as a way to
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Table 11.3 Example of analysis to determine participants’ modification and selection moves from
reference materials (Textbook)

Interview Transcript 

Teacher 14: I'll say that my questions that I gave them it's actually from level 1, level 2,… basically for level 1 um 
it's really more on the, the simple one like, even like identifying which one is a prism,… another level 1 question 
is also to be able to do the direct questions as well. So level 2 will be a little bit more wordy … So I slowly build 
up… I foresee that they might not be able to see, so that's why I give them the different orientation for them to get 
used to it… my building up to the volume of cylinder they will need to find the area of the, the 2D figure. So for 
area of 2D figure, I ask them to actually memorise like, to find the area of the circle is actually . So that's 
why … link it to the r. So the students will be more, I'll say, … they will relate better when it comes to radius … 
instead of diameter. So I give them the radius first, then after that the diameter … some of the higher ability one, 
the HA students right they can finish this exercise pretty fast, so that's why my level 3 question is to actually 
stretch them. 

Reference Materials  

We are unable to reproduce here the diagrams from page 254 of the source due to copyright 
reasons. 
Source: Toh, T. L. (2014). Maths 360 Normal (Technical) 2. Singapore: Marshall Cavendish Education.

Instructional Materials (Modified Tasks) 

collate and organise the relevant data for the first two teachers. Based on the template,
we derive categories of how these two teachers selected and modified reference
materials for their instructional materials.
Phase 2: We broaden the analysis to five other teachers (randomly selected from

the different tracks) using the categories by looking at their instructional materials
to trace modification and selection from their reference materials. We continued our
analysis of the instructional materials using Table 11.3. In summary, in this phase, (i)
three of the instructional materials are from the Express, Teacher 1, 3, and 8; (ii) two
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from Normal (Technical), Teacher 9 and 14; (iii) one Normal (Academic), Teacher
11, and (iv) one from the Integrated Programme, Teacher 13.
Phase 3: In this phase of the analysis, we scanned through the rest of the

teachers’ instructional materials to confirm and refine the categories. We examined
the instructional materials of 30 teachers.

11.4.1.2 Findings

Our analysis resulted in three categories that illuminate themodification and selection
design moves made by the teachers: (i) modified , (ii) new, and (iii) smoothened. We
elaborate and provide examples of the three modification and selection design moves
below.
(i) Modified
Teachers modified and selected their materials from the textbooks for varied

purposes. For example, the tasks in Fig. 11.5 were for Secondary 4 Express students
on the topic of Vectors. Textbook item (iii) was modified to item (c) in the teacher’s
instructional material. The modified item (c) required more thinking on the part of
the student as compared to item (iii) and thus themodification increased the cognitive
demand of the tasks.
(ii) New

Fig. 11.5 Modification from textbook for Secondary 4 Express Vectors (Teacher 1)
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Fig. 11.6 New items for Secondary 4 Express geometrical proofs (Teacher 3)

Teachers also created new instructional materials which were clearly not from the
teachers’ school main textbook and the innovations were for varied purposes. An
example is provided in Fig. 11.6.

It is clear from the teacher interview that the new materials are created to gradate
the level of difficulty. This gradation also reflects the teacher’s sensitivity and
response to students’ responses to pre-existing or available materials before class
instruction. The teacher created new materials at specific junctures of the topic to
fill learning gaps anticipated by the teacher for the group of students that he will be
carrying out the instructions.

The next example (Fig. 11.7) illustrates new material created in order to facilitate
the connections of mathematical concepts. Notice that the subheadings “Eliciting
Prior Knowledge” in the new instructional material explicitly highlighted students’
attention to recall area of a square and then connected this geometric representation
to the perfect square expressions.

The purpose of this new material is to connect to completing the square method
from geometric to algebraic representation.
(iii) Smoothened
While the teachers we examined do indeed modify items and add new items—as

described in the earlier sections—our further analysis shows that these two moves
alone do not adequately explain the teachers’ strategy of instructional design. When
both actions are visible to us within the same tasks, there is smoothening of the
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Fig. 11.7 New items for Secondary 3 Express quadratic equations (Teacher 8)

instructional materials. We define tasks as a series of work students are required to
do organised around an ostensible goal, e.g., identify four types of angles. Figure 11.8
illustrates smoothening of instructional materials.

The teacher combined two figures in Sect. 2.1 of the textbook into one. This
modification of diagrams (collapsing the number of diagrams) summarises several
key terms for this topic and draws out key differences between the terms such as
chord and radius. A table was created (new material) below the modified diagram in
the teacher’s instructional material to repeat some of the key terms such as radius,
diameter, chord, arc, and sector. Not only that, the students are required to describe
those terms in the space provided in the table. The students also have to draw the
radius in the circle provided in the table, diameter in the circle provided in the next
row of the table etc. The modifications made and the new material added appears as
an “entity” rather than separate activities. In other words, the teacher also smoothens
these components to provide continuity and connection in the students’ learning.
The reference materials are insufficient to help the targeted students learning and
the teacher modifies, adds, and smoothens the learning materials to facilitate this
learning transition. The teacher, Teacher 11, said during the interview for the topic
arc length,
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Fig. 11.8 Smoothened materials for Normal (Academic) Secondary 4 arc length (Teacher 11)

From my years of experience … I find that students are not comfortable … in listing the
radian… radianmeasure…my goal is really for them to be able to accept this radianmeasure
and be able to use it…when it’s required… they are not comfortable. So… that is something
I would like to … make it easy for the students.

Figure 11.9 illustrates another example where smoothening of instructional materials
can be observed from Teacher 11.

New rows for Fig. 4 and 5 in the teachers’ instructional materials were added as
compared to the textbook which provides rows for Fig. 1, 2, and 3. This provided
more specific examples for students to observe patterns and relationships from the
data generated for rows from Fig. 1 to 5 in the teacher’s instructional materials to
facilitate the generalisation process. The instructions in the teacher’s material were
added with each column labelled as (1), (2), and (3) to modify the instructions to the
task into a form that was less wordy. Question (c) and (d) in the teachers’ instruc-
tional material is a modification to Question 2 and 3 respectively in the textbook.
Question (c) and (d) are less wordy and have a more direct approach towards the
derivation of the formula for the length of arc in terms of r and θ as compared to
Question 2. This suggests the modification and selection move to “remove unnec-
essary work”. Once again, the modifications made and new material added appears
as a coherent activity which clearly smoothens students’ learning. Here, sensitivity
towards students’ responses to the existing materials before class and facilitating
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Fig. 11.9 Smoothened materials for Normal (Academic) Secondary 4 formula for arc length
(Teacher 11)
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Fig. 11.10 Modification
and selection instructional
design moves

students’ connections of mathematical ideas are evident from the modification and
addition of new materials.

Figure 11.10 summarises the teachers’ modification and selection of instructional
design moves. One can modify without adding items in the instructional mate-
rials. Smoothening occurs when teachers modify and add new items within tasks
in their instructional materials towards an ostensible goal. Our findings also reveal
the teachers’ selection and modification of instructional materials were carried out
in a way to integrate with their conceptions of instruction, such as (i) increasing
cognitive demand of task to raise students’ level of thinking, (ii) gradating level of
difficulty, (iii) being sensitive to students’ responses to the existing materials before
class, (iv) helping students tomake connections, and (v) removing unnecessarywork.
Not only do teachers create their own instructional materials, they also modify from
their referencematerials and smoothen it to become a coherent unit for their students.

Out of the 30 experienced and competent teachers, 29 of them modified material
from reference materials and 23 of them also inserted new materials. Out of this, 23
teachers modified, added, and smoothened the material.

11.4.2 Research Question 2: What Are the Characteristics
of Instructional Materials That Will Help Teachers
Enact Worthy Instructional Goals of Teaching
Materials and Help Students Achieve Desirable
Outcomes?

11.4.2.1 Phase 1

In order to investigate the characteristics of the instructional materials that help
teachers enact worthy instructional goals of teaching mathematics and help students
achieve desirable outcomes, we analysed interview transcripts of the 30 experienced
and competent teachers to the interview questions, in particular, the goals articulated
by the teachers for the following pre-module interview questions:

(i) Please share with us your goals for this series of lessons. You may include both
content and non-content goals
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(ii) Please share with us what mathematical goals you intend to achieve for each
set of materials that you will be using to determine.

We also extracted instances when the teachers explicitly articulated their goals in
the post-lessons interviews. We excluded affective goals in our analysis as this goes
beyond the scope of the chapter. From the goals that the teachers articulated during
their interviews,we locate examples of instructionalmaterials that help teachers enact
those goals and collated them in a table as shown in Table 11.4. From these two data
sources, we elicited and coded the characteristics of the instructional materials. We
collapsed our codes into categories as illustrated in Table 11.5.

We used the task analysis guide (lower-level demands, higher-level demands) by
Stein, Smith, Henningsen, and Silver (2009) to determine whether the instructional
materialswere challenging.Tasks thatwere identified as havinghigher-level demands
were those that required procedures with connections and doing mathematics.

Table 11.4 Example of analysis process for characteristics of instructional materials

Code(s) Extracts from
interview transcripts

Instructional materials Researchers’ notes

Relate from one thing
to another; connection
Category:
Making Connections

Teacher: … So for the
volume itself, volume
itself I would like to
link to understand
prism. Because prism
was covered in Sec 2,
then if they—I want
them to be able to
relate from one thing
to the other. Then the
prism and the pyramid
the volume is actually
related so I want them
to see the connection.
Even though the…
The cover page on the
examination, the
formulas are given,
but I want them to
understand how the
formulas come about.
It make meaning …
otherwise it’s just
throw them the
formula, it won’t
make meaning to what
they are learning

Activity:
• Find out what is the
relationship
between the volume
of prism and
volume of pyramid

• Find out the
formula for
Volume of Pyramid

Teacher planned to
help students make the
conceptual
connections between
the formulae for the
computation of the
volume of a prism to
that for a pyramid.
e.g. connect volume of
pyramid to volume of
prism learnt in Sec 2
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Table 11.5 Sample of codes and categories for characteristics of instructional materials

Codes from interview transcripts and
instructional materials

Categories

Link to the various forms, building on past
knowledge, build up, linkage, refer to, relate

Make connections

Infer, reason out, justify, explain why Reasoning

Higher order thinking, higher level questions,
stretch, challenging questions, advanced
questions, complex

Challenge

Quizzes, exit pass, entrance pass, assessment,
check students’ understanding

Assessment

Step by step, systematically, structure Template

Procedural, formula, practice examples, exercise Deliberate sequencing of examples

Context, real-life, applications Context

ICT, videos, on the portal, software ICT-related materials include space in
instructional materials to record e.g. ICT
explorations, making conjectures

11.4.2.2 Findings

Table 11.4 illustrates an example where the teacher’s goal is to make conceptual
connections between the formulae for the computation of the volumeof a prism to that
for a pyramid, i.e., connect volume of pyramid to volume of prism learnt in Secondary
2.The teacher’s instructionalmaterial clearly reflected this goal. Figures 11.11, 11.12,
11.13, 11.14, 11.15, 11.16, and 11.17 provide examples of ostensible goals of what
the teachers made explicit in the design of their instructional materials: reasoning,
challenge, assessment, template, deliberate sequencing of examples, context and
ICT to help students achieve desirable outcomes. Next, we tabulated the number
of teachers who made each of the above goals explicit in their instructional design
moves during the interviews (Table 11.6, Column 2).

Fig. 11.11 Reasoning as a goal for instructional materials from a Normal (Academic) Secondary
5 class on vectors (Teacher 2)
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Fig. 11.12 Challenge as a goal for instructional materials from an Express Secondary 4 class on
geometrical proofs (Teacher 3)

Fig. 11.13 Assessment as a goal for instructional materials from a Normal (Technical) Secondary
4 class on volume and surface area- pyramid & cone (Teacher 9)

11.4.2.3 Phase 2

We also realised that there were many instances in the teachers’ instructional mate-
rials that fit into some of the categories in Table 11.5, even though those goals were
not articulated by the teachers during the interviews. For example, the categories
challenge, assessment, template, deliberate sequencing of examples, context, and
ICT are categories that are generally identifiable from the instructional materials.
We apply the categories in Table 11.5 back to the teachers’ instructional materials
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Fig. 11.14 Template as a goal for instructional materials from an Express Secondary 4 class on
geometrical proofs (Teacher 3)

Fig. 11.15 Deliberate sequencing of examples as a goal for instructional materials from a Normal
(Academic) Secondary 3 class on trigonometric ratio of acute angles (Teacher 19)
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Fig. 11.16 Context as a goal for instructional materials from an Express Secondary 2 class on
Pythagoras theorem (Teacher 6)

Fig. 11.17 ICT as a goal for instructional materials from an Express Secondary 3 class on angle
properties of circles (Teacher 5)
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Table 11.6 Characteristics of
teachers’ instructional
materials

Number of teachers
(Interviews and
instructional
materials)

Number of teachers
(Instructional
materials only)

Challenge 21 27

Deliberate
sequencing of
examples

19 29

Making
connections

18 21

Assessment 16 23

Support
reasoning

12 19

Context 8 20

ICT 5 9

Template 4 13

to find their prevalence in the instructional materials. By doing so, we were trying
to locate characteristics implicitly embedded into the design of the instructional
materials. Table 11.6 (Column 1 and 3) summarises this result.

11.5 Discussion

In this chapter, we found that the textbook was the most useful reference mate-
rial for teachers, followed by school-based materials. 96.5% of the respondents
made adaptations and modifications from their reference materials. The teachers
modified a variety of tasks, such as, practice items, challenging items, diagrams,
activity, worked examples, organisation of content(s), from the reference materials
when designing their instructional materials—with practice examples being the most
frequently modified. From the finding above, it is clear to us that most of our teachers
do not merely offload or adapt their reference materials into their instructional mate-
rials. Rather, they intentionally select materials that are suitable for their goals and
make explicit efforts to coherently tie these in with new tasks that they construct
for their students. In other words, the instructional materials were mediated through
the goals of the teachers in a purposeful manner. This image of teachers’ use of
instructional materials was also depicted by Lee et al. (2019) as “active interpreter
and user of textbook” (p. 966). The instructional design moves could be categorised
into: (i) modified (ii) new, and (iii) smoothened. These instructional design moves
are under-reported in the international literature and the examples that illuminate the
design moves in this study can potentially provide a local-sensitive knowledge base
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for teacher professional development in designing quality instructional materials for
effective teaching and learning.

González et al. (2017)—as reviewed earlier—provided us an overview of possible
characteristics of instructional materials. Our findings are quite different as our study
examined the actual moves that teachers pull together in their design of instructional
materials. The teachers we studied reflected a number of the aspects reported in
González et al. (2017)—e.g., psychological aspects in their deliberate sequencing
of examples and pedagogical elements such as assessment—where all these are
integrated together in their instructional designmoves. “Challenge” is a characteristic
in 27 out of the 29 instructional materials which suggests that most of the teachers
made intentional effort to include challenging tasks in their instructional materials. In
this same book, we have devoted Chapter 12 on challenging itemswherewe elucidate
all the connections between all these aspects. More than half of the instructional
materials carry the characteristics of “support reasoning” and ‘making connections’.
This is not surprising as reasoning and making connections are two of the processes
in the Singapore mathematics curriculum. Almost half of the instructional materials
have templates and this interesting finding is reported in Leong, Cheng, and Toh
(2019b).

Using the curriculum materials effectively includes not only being able to recog-
nize and distinguish between high- and low-quality materials. Skilful selection and
modification of instructional materials guided by clear goals of the teachers—in this
study the characteristics inherent in the teachers’ instructional materials—for class-
room use are also critical. There has been a lot of interest recently in professional
development research that draws upon task design and analysis, and instructional
materials to develop teacher capacity (e.g. Journal of Mathematics Teacher Educa-
tion, 2007, Volume 10). We see this study as a further contribution to this body of
knowledge particularly suited for the local community.
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Chapter 12
Use of Challenging Items in Instructional
Materials by Singapore Secondary
School Mathematics Teachers

Yew Hoong Leong, Lu Pien Cheng, and Wei Yeng Karen Toh

Abstract Do Singapore secondary mathematics teachers include challenging items
regularly in their instructional materials, and if so, how do they help students engage
productively with them? We attempted to inquire into these questions in the study.
Using some of the actual challenging items used by the teachers in the first phase of
the project, we design a chronologically grounded survey that aimed at inquiring the
extent of use of challenging items among teachers across a wide range of secondary
schools. The findings revealed that teachers’ inclusion of challenging items range
on average between “Sometimes” and “Frequently”. Also, the picture that emerges
from their written comments is onewhere teachers are sensitive to students’ cognitive
ability and affective disposition to the extent that deliberate planning and supportive
mechanisms are the normwhen they plan to use challenging items in the instructional
materials.

Keywords Challenging items · Instructional materials · Chronologically grounded
survey

12.1 Introduction

This chapter focuses on Singapore teachers’ inclusion of challenging items in their
design of instructional materials for mathematics classrooms. This area of study
has been a domain of continual interest especially among mathematics education
researchers. One approach taken in this tradition is by looking at the level of “cogni-
tive demand”—a phrase widely attributed to Stein and her colleagues (Henningsen
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& Stein, 1997; Stein, Smith, Henningsen, & Silver, 2000; Tekkumru Kisa & Stein,
2015)—of tasks and how this demand can be maintained through students’ engage-
ment of the task duringmathematics lessons.Aswill be explicated in the later sections
of this chapter, wewill use their framework in analysing the level of cognitive demand
of task.

In light of the high performance of Singapore students in international comparison
tests such as TIMSS and PISA (Kaur, Zhu, & Cheang, 2019), it seems natural to ask,
“Do Singapore teachers regularly provide their students with opportunities to access
these challenging tasks? How do they help students to maintain engagement at a high
level of cognitive demand with these tasks?”

As the design setup of the project is elaborated in Chapter 2, only a brief review
that is related to our study is provided here. Recall in the first phase of the project
there are two investigations: one on the enactment of teachers in the classroom, and
the other on the teachers’ design and use of instructional materials to fulfil their
goals of enactment. The study reported in this chapter is located within the latter.
By instructional materials, we mean the actual materials that teachers bring into the
classroom for students to work on to attain the intended goals of learning. Within the
context of this study, we investigate particularly those portions of the instructional
materials that consist of challenging tasks for students.

We first carried out a depth-wise search for the types of challenging items that the
30 experienced and competent mathematics teachers in the first phase of the project
included in their mathematics instructional materials. Some of these items—and
their design principles—were extracted for the next, second, phase of the project.
The selection of these challenging tasks to be included in the survey in the second
phase is based on its fulfilment of the criteria as cognitively demanding, as will be
explicated in Sect. 12.2.1. We now turn to the second phase of the project as the rest
of the chapter will report findings from this latter phase.

12.2 Chronologically-Grounded Survey

The aim of the second phase is to examine the extent in which the design and use of
challenging items by the teachers in Phase One were also shared or modified by other
secondary mathematics teachers in Singapore. We administered a “chronologically-
grounded survey” (CGS)—based on items uncovered in the first phase of work—for
more than 600 secondary mathematics teachers across the full range of school-types
in Singapore (Leong, Cheng, & Toh, 2019). In terms of realistic methodology, it
is not feasible to proceed using the same research instruments and frames in the
first phase—that is, video-recording of representative lessons with teacher- and
student-interviews interspersed within these recorded lessons—at this larger scale.
As such, we drew the data in this second phase from teachers’ response to an online
questionnaire.

How do we translate the design moves we extracted from the earlier teachers into
survey items in such a way that other teachers who read the items could resonate with
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Your instructional materials on ‘Challenge’ reflect this design move:
Never/
Rarely Sometimes Frequently

Mostly/
Always

Maintain high cognitive demand at appropriate junctures

Insert numerous such tasks for every lesson

For ‘Challenge’, apart from these design moves, I will ...

Recap

Connect

Skill

Template

Formula

Context

Think

Challenge

Practice

Fig. 12.1 An extract of an online screen-page in the second section of the questionnaire on a
challenging item

its contextual meanings when responding to the questionnaire? CGS is an attempt
at addressing this question. The CGS carried these features: (i) it was based on the
actual instructional material used by teachers in Phase One; (ii) it presents (in the first
section of the questionnaire) a broad sweep of how the material was used by showing
chronological snippets of the material; (iii) the items (in the second section of the
questionnaire) zoom-into specific moves used by the teacher in each snippet to elicit
response; and (iv) the last section allows (optional) open comments. Figure 12.1 gives
an extract of one such online screen-page in the second section of the questionnaire
on a challenging item.

Figure 12.1 provides a concrete illustration of the four features: (i) the diagram at
the top-right is an extract from a teacher’s instructional material; (ii) the left column
retains the chronological categories that were covered in the first section of the
questionnaire; (iii) the response items below describe the zoomed-in design moves
relevant to this particular part of the teacher’s instructional material; and (iv) the
free-response section at the bottom allows for additional comments triggered by the
above sections.

We think that CGS has the potential of addressing these challenges that are
common with survey design: (a) [Construct validity]. The use of authentic instruc-
tional materials and the chronological arrangement strengthens the teacher’s close-
ness of interpretation to the intended meaning of the items. Singapore teachers
are known to organise their instructional plans and routines along temporal lines.
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Compared to “contextless” survey items, it is easier for teachers in the CGS environ-
ment to experientially connect to the chronological flow and contents of the instruc-
tional materials thus more readily respond to the items with a degree of mental
resonance (or dissonance); (b) [research-practice link]. We did not craft the items
based on some imaginary or purely theoretical starting point. Rather, as explained
in the preceding section, we drew from the actual instructional materials used by
the teachers in Phase One, and based on careful analyses, derived the character-
istics of design that are “grounded” in practice. This rigorous process strengthens
the closeness-to-practice within the research setup; (c) [belief-practice gap]. When
teachers commit to, say, “frequently” to a response item, they are indicating an
avowed belief towards the stated design move. It is acknowledged that there can
be a significant gap between this avowed belief and actual design moves. With the
items being “chronologically-grounded”, there is a higher likelihood that teachers
would not merely read these items in abstraction; rather, they would project mental
imageries of how these sections of the instructional materials square (or not) with
their lived professional experiences.

We crafted three sets of CGSs—each corresponding to respondents who
teach primarily Additional Mathematics, Mathematics (Express), and Mathematics
(Normal). In Singapore, Mathematics (Express) is the core mathematics subject for
the majority of secondary students. Mathematics (Normal) is offered to students
who would take an additional year to learn the same amount of content covered in
4 years inMathematics (Express). AdditionalMathematics is a separate mathematics
subject offered to students who have the potential to pursue more advanced mathe-
matics at the post-secondary levels. There is an earlier section of the surveywhere the
respondents were asked for the secondary mathematics subject they teach primarily;
the system will subsequently load the matching CGS according to the respondent’s
choice.

12.2.1 Challenging Tasks

Figure 12.1 shows the challenging task that was included in the Mathematics
(Express) CGS. In determining whether a task is to be considered challenging, we
adopted the framework developed by Stein and Smith (1998) with respect to the
different levels of cognitive demand of tasks. Figure 12.2 shows an extract of their
“Task Analysis Guide”.

In Henningsen and Stein (1997), tasks were considered of “high level of cognitive
demand” when they are categorised under “procedures-with-connections” or “doing
mathematics”. Similarly, we would consider a task “challenging” with respect to the
target student group if it is classified under these categories.

For the task shown in Fig. 12.1, we categorise it as “doingmathematics” because it
fulfils some of the descriptors listed in Fig. 12.2 under this category, such as “there is
not a predictablewell-rehearsed approach to the task”, “require students to explore…
the nature of mathematical concepts” (in this case, about roots of equation), “require
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THE TASK ANALYSIS GUIDE
Lower-Level Demands

Memorisation Tasks
Higher-Level Demands

Procedures With Connections Tasks

• involve either reproducing previously learnt facts, 
rules, formulae, or definitions OR committing facts, 
rules, formulae, or definitions to memory.

• cannot be solved using procedures because a 
procedure does not exist or because the time frame in 
which the task is being completed is too short to use a 
procedure.

• are not ambiguous—such tasks involve exact 
reproduction of previously seen material and what is 
to be reproduced is clearly and directly stated.

• have no connection to the concepts or meaning that 
underlie the facts, rules, formulae, or definitions being 
learned or reproduced.

• focus students’ attention on the use of procedures for 
the purpose of developing deeper levels of 
understanding of mathematical concepts and ideas.

• suggest pathways to follow (explicitly or implicitly) 
that are broad general procedures that have close 
connections to underlying conceptual ideas as 
opposed to narrow algorithms that are opaque with 
respect to underlying concepts.

• usually are represented in multiple ways (e.g., visual 
diagrams, manipulatives, symbols, problem 
situations). Making connections among multiple 
representations helps to develop meaning.

• require some degree of cognitive effort. Although 
general procedures may be followed, they cannot be 
followed mindlessly. Students need to engage with the 
conceptual links that underlie the procedures in order 
to successfully complete the task and develop 
understanding.

Procedures Without Connections Tasks Doing Mathematics Tasks

• are algorithmic. Use of the procedure is either 
specifically called for or its use is evident based on 
prior instruction, experience, or placement of the task.

• require limited cognitive demand for successful 
completion. There is little ambiguity about what needs 
to be done and how to do it.

• have no connection to the concepts or meaning that 
underlie the procedure being used.

• are focused on producing correct answers rather than 
developing mathematical understanding.

• require no explanations, or explanations that focus 
solely on describing the procedure that was used.

• require complex and non-algorithm thinking (i.e., 
there is not a predictable, well-rehearsed approach or 
pathway explicitly suggested by the task, task 
instructions, or a worked-out example).

• require students to explore and understand the nature 
of mathematical concepts, processes, or relationships.

• demand self-monitoring or self-regulation of one’s 
own cognitive processes.

• require students to access relevant knowledge and 
experiences and make appropriate use of them in 
working through the task.

• require students to analyse the task and actively 
examine task constraints that may limit possible 
solution strategies and solutions.

• require considerable cognitive effort and may involve 
some level of anxiety for the student due to the 
unpredictable nature of the solution process required.

Fig. 12.2 Extract of characteristics of mathematical tasks at each of the four levels of cognitive
demand. Taken from Stein and Smith (1998)

students to access relevant knowledge and experiences and make appropriate use of
them in working through the task”, and “require students to analyse the task and
actively examine task constraints that may limit possible solution strategies”.

Figure 12.3 shows the challenging task in theMathematics (Normal) CGS. Similar
to the task as shown in Fig. 12.1, this task was also classified under “doing mathe-
matics” as there is no prescribed method to follow to complete it. There is a need to
explore auxiliary lines that would connect to relevant knowledge within the context
of right-angled triangles, and then utilising the associated concepts and skills to solve
the problem.

The challenging task for the Additional Mathematics CGS is shown in Fig. 12.4.
We have classified it under “procedures-with-connections”. At first look, the task
appears to be one of mere procedural application of Chain Rule, and hence
“procedures-without-connections”. But a closer analysis reveals that careful re-
representing of the function using the index notation with the appropriate use of
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In the diagram, OA and OB represent two positions 
of the minute hand of a clock, OA = OB = 20 cm and 

AOB∠ = 130°. Find
(a) the distance AB, 
(b) the perpendicular distance from O to AB. 

[At this point, students were not yet taught cosine rule.]

Introduction

Template

Definition

Recap

Skill

Challenge

Context

Assessment

Homework

Your instructional materials on ‘Challenge’ reflect this design move:
Never/
Rarely Sometimes Frequently

Mostly/
Always

Use tasks of high cognitive demand of task at appropriate junctures
(in this case _ the teacher recognised that this item was ‘challenging’’ 
to most students but nonetheless necessary)

Insert numerous such tasks for every lesson

Deliberate set-up for students to struggle with a problem

For ‘Challenge’, apart from these design moves, I will ...

Fig. 12.3 An extract showing the challenging item in the Mathematics (Normal) Grounded
Chronological Survey (GCS)

Fig. 12.4 An extract showing the challenging item in the Additional Mathematics Grounded
Chronological Survey (GCS)
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brackets is necessary to correctly apply the Chain Rule. This means students need to
“suggest pathways to follow that are broad general procedures that have close connec-
tions to underlying concepts”, and “making connections among multiple represen-
tations [that] help to develop meaning”. Moreover, after applying the Chain Rule,
there is substantial manipulations required to work towards the form as given in the
task—and in the process, drawing upon index-related calculations learnt in earlier
Year levels. In other words, it “require[s] some degree of cognitive effort. Although
general procedures may be followed, they cannot be followed mindlessly.” These
descriptors fit those listed in Fig. 12.2 under “procedures-with-connections”.

12.3 Data

Responses to Section (iii) of each of the CGSs, i.e. the items (in the second section of
the questionnaire) that zoom-into specificmoves usedby the teacher in each snippet to
elicit response, were coded according to this numerical assignment: 1, 2, 3, and 4 for
each of Never/Rarely, Sometimes, Frequently, and Mostly/Always respectively. The
common item across all the CGSs is “insert numerous such tasks for every lesson”.
This is an item that we have deliberately inserted to check the quality of response to
this survey page (and more broadly, to the whole CGS). The logic is: if a respondent
read this item carefully (and the underline and italics are meant to help them do
so!), he/she is unlikely to express strong commitment to this statement. Thus, for
respondents who indicate “4” for this item and other items in the same page without
making a substantive remark under the free-response section, we assume he/she has
not read the items on the page carefully and have thus removed their data from
analysis in this study. Seven, six, and three of such data points were removed in this
exercise from the CGS of the Additional Mathematics, Mathematics (Express), and
Mathematics (Normal) respectively. The final respective number of respondents for
each of the categories are 149 (23%), 284 (43%), and 227 (34%). The means for the
quality-check item for these categories are 2.12, 1.90, and 1.94 respectively. That
is, on average, the response to this item is “Sometimes”. The means are the lowest
across all the survey items within each of the category. We have therefore reason to
interpret the survey data as arising mostly from respondents who have read the items
carefully and provided an honest response.

We devoted substantial effort in Section (iv) of the CGSs—we think that, since
the open-response section is optional, it takes extra effort to type in comments and if
so it should indicate something substantive which the respondents want to contribute
to. The numbers who wrote comments in this page of the CGSs were 61, 93, and
93 respectively. The percentages of those who provided comments in the respective
categories were 41, 33, and 41%. When we first read the comments, they appear
myriad and disconnected from one another. Since we did not have prescribed codes
to use to categorise the responses, we proceeded initially with seeking to summarise
each comment with oneword—and treat each of thesewords as codes for the analysis
of all the comments across all the three CGSs. This process yielded too many codes
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to be useful for further interpretation. We then re-examine these codes together with
each comment with a view of combining some of these codes, and going beyond
the surface meaning of the comment to the likely underlying instructional goals. To
illustrate this, I present three sample comments:

● Will differentiate the instructions for students with different abilities
● Provide some hints to get the students started
● Ensure that if the problem is too challenging scaffolds or hints [be] given.

On the surface, the three comments appear to have nothing in common. The logic of
linking them together flows along this direction: The first comment shows that the
ostensible goal is about students’ cognitive “ability” to handle task of high cognitive
demand. The second comment does not look like it is about “ability”. But, what is
the reason for wanting to “provide hints”? (This question shows our way of drilling
deeper in search of the underlying instructional goals). We think it has to do with the
respondent’s judgement that the item in itself is beyond his/her students’ “ability”
and thus the need to help them engage with the task through assistance in the form
of hints. That this connection between the first two comments is not purely our
theoretical speculation is strengthened by the third comment which explicitly links
“hints” to “problem too challenging”.

This process of reducing, comparing, and refining codes underwent numerous
cycles of modifications. We also wanted to develop a common set of codes across
the three CGSs for the purpose of comparison. The final set of codes are: task-affect,
place of task, student ability, and other supporting features. Task-affect refers to the
affective aspects of students in relation to challenging tasks. Place of task has to do
with the positional placement of such challenging tasks within the context of the
teacher’s overall instructional vision. Student ability are references to the cognitive
ability of the students with respect to challenging tasks. Other supporting features
includes all other comments that pointed to ways to support the goal of challenging
students to engage with these tasks productively. Where appropriate, we developed
sub-codes to uncover further details about each area of consideration. Examples
of responses that were placed under these codes and sub-codes will be shown in
Sect. 12.4. We also do not view these codes as entirely separate in the sense that
there is no logical relations between them; rather, we seek to draw links—where
reasonable—so that we have an overall portrait of how Singapore secondary mathe-
matics teachers think about and use challenging items in their design of instructional
materials.

12.4 Findings

A similar item on “cognitive demand” is included in Section (iii) of each of the
categories (see Figs. 12.1, 12.3, and 12.4) for the purpose of comparison across the
categories. Minor adaptations in the phrasing were given to fit the context of each
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Fig. 12.5 Frequency graphs of responses to the cognitive demand item across categories

CGS to help teachers resonate better with the item. The responses for this item across
the three categories are presented in Fig. 12.5.

The means for the Additional Mathematics, Mathematics (Express), and Math-
ematics (Normal) are 2.92, 2.56, and 2.49 respectively. The decreasing means also
correspond to the decreasing levels of mathematical competencies associated with
the respective subjects: as the mathematical “ability” level of students decrease, the
teachers’ commitment to setting tasks of higher cognitive demand decreases—which
is expected. In the case of Additional Mathematics, the more pronounced higher
commitment to more frequent use of challenging task may also have to do with the
cognitive demand of the task. Compared to the challenging tasks in the other cate-
gories that belong to the higher category of “doing mathematics”, the challenging
task in theAdditionalMathematicsCGS is on the lower demand of “procedures-with-
connections”. As such, respondents may be more ready to commit to its increased
frequency of use.

What may be surprising is the relatively high mean for Mathematics (Normal).
This subject is taken by students who perform roughly at the 15–35th percentile
range for the Year 6 common examination across all Singapore Primary schools.
One may expect that the type of challenges presented to students who are offered
this subject to be low. But based on the mean of 2.49, the average response to the
frequency of use of such items is in the middle of “Sometimes” and “Frequently”.
This means that, on average, Singapore secondary students who read Mathematics
(Normal) are still given challenging items to attempt on a sometimes-frequently basis.
We do not have the data to determine what this category of sometimes-frequently
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translates to in terms of number per time period. But if it means, say, once-a-fortnight,
over a prolonged period, it can still amount to substantial exposure to challenging
mathematics, and thus an expectation to push oneself to meet the level of cognitive
demand. For the rest of this section, will report the findings based on each of the
identified codes.

12.4.1 Task-Affect

Table 12.1 shows the comments included under this code. The italicised portions are
included by us to help the readers understand the reasons for coding them under the
“affect” domain of the task.

There is an immediately noticeable difference under the task-affect code across the
categories. The difference is not merely in the number of responses that attended to
task-affect—it is unsurprising that teachers involved mainly in the teaching of Addi-
tional Mathematics do not instinctively worry about students’ affect as it may be
assumed that only more mathematically-proficient and thus more motivated students
read Additional Mathematics. Neither is it surprising that more teachers of Mathe-
matics (Normal) made explicit their attention to affect than teachers of Mathematics
(Express). But there is also a difference in the response to students’ affect. While the
responses underMathematics (Express)were primarily that of avoidance or reduction
of challenging tasks so as not to discourage such students; in the case ofMathematics
(Normal), almost all the responses stated specific strategies they would employ to
help students’ engagement with challenging tasks. These strategies include group
work, placement of such tasks at a more suitable juncture, provision of incentives,
scaffolds for solutions, and gradation of tasks that will aid in the gradual build-up of
confidence.

There are dangers of generalising based merely on a small number of responses
as shown in Table 12.1. But the differences are so striking that we think an inference
has its place here: Due to a larger number of students who would struggle with
challenging tasks in the Mathematics (Normal) group, as compared to the other
groups, it is perhaps unsurprising that teachers of these student groups, over time,
need to attend more to the affective needs of these students through devising a range
of affect-enhancing strategies. In reality, however, this realisation can often lead to
the easier way out “on the ground”—“since the students don’t like these challenging
tasks, then we don’t give it to them”. Instead, the responses show that these teachers
accept that some students struggle affectively with these challenging tasks but at
the same time they are committed to finding ways to help them engage with them.
If this is indeed a widespread practice among Singapore Mathematics (Normal)
teachers, it would partially explain the high performance of Singapore mathematics
students in international tests: even our lower-progress students are regularly given
and encouraged to engage with cognitively-demanding mathematics tasks.
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Table 12.1 Comments coded under “task-affect”

Additional Mathematics Mathematics (Express) Mathematics (Normal)

[No entry] • Majority of my students are
weak, so cannot give too many
of these type[s] of questions, as
they will be discouraged

• I feel it runs the risk of
alienating them even further if
they cannot cognitively manage
the topic at easier levels.

• Challenge is to build confidence
through success

• Challenge question can still
vary in levels. Students feel
good if they are able to solve a
challenging question despite it
being only Level 1

• Those who are grappling with
foundations, I try not to
demoralise them with such
questions

• Provide incentive/rewards for
the students who can attempt
the tougher questions

• Put [challenging task] at the end
of the lesson instead of the
middle as it might disrupt their
interest in learning of all the
concepts in the lesson.

• Students require more
motivation with more
manageable task

• Build more confidence by
having easier examples first

• If I include a challenging
problem, I will definitely
address it in class to build my
students confidence in dealing
with tough problems

• I will put it as last question or
last page of the notes so as not
to put off students

• Make sure that students are
given some challenging
questions to practise after the
basic ones so as to challenge
their thinking skills further and
boost their morale further if
they are able to solve them

• I usually limit to a maximum of
one of such question in a lesson
so as not to discourage them

• Provide scaffolds for students
or hints if needed. Group work
can be done so students do not
feel like they are struggling
alone. This makes them more
likely to accomplish the task
with good motivation

• Not use such challenging
questions as it will deflate the
confidence of my students

• Design challenge questions
appropriate to students’ ability
(differentiated). Some high
cognitive demand questions
may just demoralise my
students

• I will use buddy mentoring to
level up the confidence of low
progress learners

5 comments 12 comments
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12.4.2 Place of Task

Similar to the previous category on task-affect, we have also included all the
comments coded under place of task as shown in Table 12.2.

As can be seen in the responses, “place” as used in this code has a number of
meanings. It is not restricted to a physical location (as in, its location in a set of
instructional materials). It also includes temporal location—with respect to the point
in time such tasks are introduced in a lesson or unit of lessons. In general, responses
that refer to a kind of positioning of challenging items within the context of the
teacher’s vision of teaching are included in this category.

Relatively, there are fewer comments under this code for the Additional Math-
ematics group. This may mean that lesser Additional Mathematics teachers are
conscious of the need to attend to placement of tasks. The common terms used—
especially in the other two groups—were “optional”, “homework”, “at the end”,
and “if time permits”. These terms—or their equivalent—are italicised in Table 12.2
for the ease of reference for readers. Taken together, the portrait of how teachers
use challenging items is one of lower priority compared to other items of lower
cognitive demand. They are thus brought in “optionally” and “if time permits”
into regular classroom instruction. Perhaps, assigning them as “homework” also fits
into this lower-priority scheme—students may not do them in class but motivated
students would still be given the opportunity to attempt them as homework. But these
items were seen to have a place “at the end” of a lesson (or a chapter), presumably
because students would then be more ready—having learnt more relevant content
and developed more related skills—to attempt them productively.

Upon closer scrutiny, there are also some differences between the Mathematics
(Express) group and theMathematics (Normal) group. There are five comments (bold
in Table 12.2 for ease of reference) under the latter group that is of a different consid-
eration from the lower-priority theme mentioned earlier. The foci of these comments
were on the surrounding context and the intentional goal of such tasks. The first
four comments mentioned the placing of challenging tasks within the context of
other simpler tasks that act as build-up mechanisms to ready students for greater
challenge. The last two comments (the 4th comment also belongs to the earlier set)
stated the use of challenging tasks with a specific deliberate goal—one for building
students’ confidence (that is, if students can solve even challenging tasks, it will
boost their confidence), and the other for twinning with a specific problem solving
strategy. In other words, these comments focused on specific design considerations
surrounding the challenging task so as to render it more effective for the instruc-
tional goal intended. These teachers do not see the challenging item “in isolation”;
rather, they are intentionally conscious of how to place it within an instructional
scheme to enhance purposeful instructional ends. It is interesting that none of these
considerations were mentioned under the Mathematics (Express) group. Again, we
can only surmise an inference: Teachers of Mathematics (Normal) classes are aware
that challenging tasks are not naturally readily accepted by students; there is thus a
need to intentionally build them into their instructional plan carefully.
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12.4.3 Student Ability

Therewere 19, 34, and 46 comments placed under the “student ability” code forAddi-
tionalMathematics,Mathematics (Express), andMathematics (Normal) respectively.
Again, the increasing numbers are not surprising when we consider that teachers of
mathematically low-progress classes aremore conscious of the task-ability gap. Since
there are a total of 98 comments under this code, they are too many to be displayed
in a table like the ones in Tables 12.1 and 12.2. We will instead report here on the
main themes highlighted by these comments.

The common themes across the groups are “high-ability”, “low-ability”, “differ-
entiation”, “guidance”, and “group work”. The comments under this code stress on
the likely “gap” that may occur between the ability of their students and the cognitive
demand of the task. This is where the high-ability versus low-ability talk comes in:
the assumption was that high-ability students are generally capable of attempting
these tasks productively on their own and should be left alone to do so with limited
extra resources from the teacher. Also, their cognitive needs should be attended to
and so the inclusion of such challenging tasks are necessary for them; in contrast,
the low-ability students would need far more resources from the teacher to make
progress in these tasks. One way to help these students is to provide “differentia-
tion”—give tasks that are gradated and the level of cognitive demand transparent
to students, so that low-ability students will start off with easier questions and then
move on to more challenging ones when they feel ready, or not at all. In any case,
these students need a lot of “guidance” with challenging questions. A number of
such guiding strategies were proposed in the comments: teacher guidance as and
when student requires, guidance that are built into the task such as partial solutions
or fill-in-the-blanks, or breaking down the task into scaffolding parts that would help
lead to the final solution. Another common way to help these low-ability students
is “group work”, with the assumption that these students would more likely make
progress in a group rather than being left alone to struggle with the task.

We do not detect significant differences for this code across the groups. There
were, however, four comments in the Mathematics (Normal) group which were very
specific. This level of specificity is not found in the comments of the other groups.
We reproduce the comments here:

● Get students to rotate the paper. Hint the concepts they learnt in trigo ratio.
● Extend AO to the right, drop a perpendicular line from B, investigate the new

triangle formed.
● I will change the order of the parts. I will begin with a similar triangle but with

AB as the base.
● Start with a right-angled triangle, and using the correct trigo ratios to find the

unknown side or angle followed by two right-angled triangles joined together
before giving them the challenging questions

To us, this indicates a finer-grained specificity that may be instinctive among teachers
of Mathematics (Normal) classes. Their experiences with particular difficulties
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students encounter in their classes may have afforded these teachers a response
towards specific pinpointed techniques to help these students become unstuck when
confronted with challenges.

12.4.4 Other Supporting Features

There were 36, 45, and 29 comments placed under the “other supporting
features” code for Additional Mathematics, Mathematics (Express), and Mathe-
matics (Normal) respectively. The common themes that emerge across the categories
were types of challenging task, sources of challenging tasks, thinking skills to focus
on, and teachers’ involvement. On types of challenging task, there were specific
suggestions of challenging tasks other than the ones shown in Figs. 12.1, 12.3, and
12.4, such as problems set in real-life context, application questions, and even spot-
the-error tasks. On sources of challenging tasks, there were recommendations that
such tasks can be taken from popular local online repositories, questions gener-
ated by students themselves, and specific pages from common textbooks. But most
teachers pointed to past year exam papers that had challenging items. Presumably,
these teachers preferred that students be familiarised with challenging questions that
are closer to the type in high-stakes examination. For thinking or reasoning skills
to focus on, there was a range of emphases: to provide the justification for solution
steps, to establish connections among mathematical ideas from different topics, to
not only solve the challenging problem but to also adapt/extend the problem so that
similar solutions strategies can be applied to them, to attend to alternative solution
strategies, and to communicate solutions to others—especially in presenting to fellow
students. On the teachers’ involvement, the focus was on teacher questioning and
thus guiding students to obtain or understand the solution to the problems.

From these themes, we may form an overall portrait—one that focuses not just
immediately on the challenging task presented but also the supporting setup to
achieve the underlying goal: to help students habitually engage with challenging
tasks. Indeed, to provide such tasks regularly, teachers need to know stable sources
for them (that is, where to look for such tasks instead of the impractical expec-
tation of teachers generating them on their own). Not only so, teachers are to be
conscious in selecting different types of challenging tasks so as to expose students
to a wide range of problem types. Also, it helps not only to focus on techniques that
are task-specific; rather, there should be an explicit teaching of thinking or reasoning
processes that cut across a range of challenging tasks. Finally, there is a recognition
that the teachers’ role—especially in design and actual scaffold of students through
suitable prompts—is vital for sustaining students’ engagement in challenging tasks.

Again, we noted that a number of comments from the Mathematics (Normal)
group are unique to this group:

● Discuss with students to check on their understanding before seeking input on
how they propose to solve the question
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● I get them to verbalise their thought process and demonstrate the thinking process
● Get students to notice what is different from the rest of the questions the students

have tried earlier and see if they can spot the extra step(s) that must be taken to
get them to a procedure that they are familiar with

● Get students to suggest how they would approach the problem
● Guide the students to check their answer.

The common thread across these comments is the sensitivity towards the need to start
with students and not just with the demands of the task. Those portions that reflected
this commonality are italicised within the comments for ease of the readers’ refer-
ence.We see again that some teachers who worked with lower-progress mathematics
learners were particularly attuned to the needs of the learners.

12.5 Discussion and Conclusion

The findings from this study—when the strands are weaved together—provide a
portrait of howSingapore secondarymathematics teachers think about the use of tasks
of high cognitive demand for their students. It is not one where teachers randomly
or arbitrarily insert these tasks to students as and when they appear in the teaching
sequence; nor, perhaps others outside of Singapore would surmise: that of constantly
“drilling” students to do repeatedly a series of such similar challenging tasks. [This
might be one image of howSingapore students do sowell in international comparison
tests]. Rather, the picture that emerges is one of deliberate inclusion of challenging
tasks in a way that takes into consideration the context and the students. In particular,
the teachers were cognizant of the task demands in relation to the range of cognitive
abilities of their students; as such, there needed to be careful planning of how the
task could be engaged in a sustained way for all their students. Strategies included
placement of the tasks at more suitable junctures of learning, differentiation of tasks
for different students, teacher scaffolding, and structures such as group work to
draw upon the resources of other students. The examination of the tasks were also an
important consideration—so that the nature of the taskmatched the specific reasoning
skills that were intended for the needs of the students. The selection of tasks—
the sources and the potential in providing a variety of problem-types—were also
mentioned as a critical process. Apart from these more cognitive aspects, managing
the affect of students was also flagged as an important consideration, especially
among the teachers of Mathematics (Express) and Mathematics (Normal) classes.

There is also evidence to suggest that some teachers of Mathematics (Normal)
classes have developed greater sensitivity to the difficulties that these students have
when confronted with challenging tasks. As such, they were more specific when
offering strategies to help these students engage with the tasks—down to the types
of gradating tasks leading to challenging tasks, how to (re-)word some of the tasks,
and efforts to start with the incorporation of students’ current ways of thinking about
the task. As the number of comments of this nature are small, we should be careful not
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to generalise these observations. However, if they do represent the thinking of a larger
group ofMathematics (Normal) teachers, it indicates a deliberatewillingness to think
of ways of regularly challenging these students who are viewed as “lower-ability” in
mathematics with tasks of high cognitive demand.

The findings here also provide some illumination on the question we regularly get
from international observers:Why do Singapore students do sowell in PISA—which
ostensibly alsomeasures ability of solving tasks of high cognitive demand? It appears
that the teachers take it as their responsibility (that is, they do not resist this notion)
of regularly exposing their students—regardless of their ability in mathematics—to
challenging tasks. But it is beyond mere exposure: the teachers take serious steps
to ease these tasks into their instructional scheme so that students are more able
to engage productively with these tasks—both cognitively and affectively. They are
concerned that when these tasks are introduced in class, that there are also carefully-
planned supportive features to heighten the chance of its acceptance by the students
and of its being productively engaged by them. The goal seems to be a normalisation
of students “rising up” to these tasks instead of “padding down” the tasks to suit the
students “level”.

In a global climate where the pressure seems to be that of reducing stress for
students (especially of mathematics), the conventional wisdom is tending towards
one where tasks ought to be always manageable by all students so that they would
not lose interest in mathematics. But this stance is hardly supported empirically.
Rather, it seems to us a slippery slope of an ever-increasing expectation of “making
things easy” which would in the long run result in a watered-down mathematics
syllabus that is ultimately not beneficial to the students. In contrast, the Singapore
experience is one of commitment towards regular (not excessive) exposure of tasks
of high cognitive demand as an appropriate cognitive challenge for students. Instead
of lowering this expectation, efforts are placed at devising strategies to help students
develop useful skills and habits to “rise up” to the challenges. The extant literature is
still scarce in this area of helping and sustaining students’ engagement with tasks of
high cognitive demand. This study contributes in part to the awareness of the kinds
of strategies that Singapore teachers use for this purpose. But much more can be
done in research and in the codification of coherent strategies so that professional
development work for teachers can be targeted to this area of international interest.
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Chapter 13
Sequencing of Practice Examples
for Mathematical Reasoning: A Case
of a Singapore Secondary School
Teacher’s Practice

Lu Pien Cheng, Yew Hoong Leong, and Wei Yeng Karen Toh

Abstract Variation of examples is a common technique some teachers use in the
design of their instructional materials. It is, however, not clear how mathematical
reasoning can be supported through teachers’ carefully selected examples. Through a
case studyof an experienced and competent Singapore secondary schoolmathematics
teachers who emphasised “reasoning” as a specific goal of his instructional practice,
we examine how practice examples were designed to target reasoning in the teaching
of mathematics. In particular, the study unpacks how mathematical reasoning can be
utilised as a glue in advancing a canonical technique alongside the development of
supportive lesson routines. The findings showed the following four design principles
(i) Deliberate use of examples to advance technique (ii) Advance technique through
comparing, inferring and justifying (iii) Special cases to expose and target students’
faulty reasoning undergirding the techniques they used (iv)Consolidate and formalise
the reasoning in standard written form through whole class instructional segment.

Keywords Mathematical reasoning · Instructional materials · Practice examples

13.1 Introduction

We are part of the project team (see Chapter 2) that aims to distil the distinctive
features of mathematics teaching in Singapore classrooms. In the course of our data
collection, themanner inwhich exampleswere usedbyTeacher 13particularly caught
our attention. Teacher 13’s use of examples was not merely for achieving fluency of
technique; his other ostensible goal was to use the examples to “advance” (a term he
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used) mathematical “reasoning”—a term he used very often in his interviews with
us and in his classroom teaching. As we studied the numerous instances in which
the examples were used to encourage students’ reasoning, we found that Teacher
13’s conception of these examples and how they were utilised in his classroom work
presented aspects that are still unreported in the current literature.

13.2 Use of Examples

Before we examine the case of Teacher 13’s use of examples to advance reasoning,
we turn to the literature that relates to this focus of study. In particular, we review
literature on task design, variation theory in the sequencing of tasks and practice
examples.

13.2.1 Task Design

Mathematical tasks are important vehicles for building student capacity for mathe-
matical thinking and reasoning (Stein, Grover, & Henningsen, 1996). The recently
published ICMI Study 22 on Task design in mathematics education presents an up-
to-date summary of relevant research about task design in mathematics education.
While there are advances in knowledge in areas, such as multiple frameworks and
sets of principles on task design—the design and implementation of task sequences
is one of the key areas identified as still needing further research (Watson & Ohtani,
2015). In this study, we limit the discussion on tasks with the ostensible goal of
students’ reasoning. Smith and Stein’s (1998) categorisation of tasks to different
levels of cognitive demands where the extent to which students engage in thinking
and reasoning differ in each level is relevant and influential. However, there is yet
little research on how tasks or a sequence of tasks can be employed to help students
advance their reasoning in the process of working through these tasks.

13.2.2 Sequences of Tasks and Variation Theory

In the design principles behind the design of task sequences, there is major contri-
bution in the literature from Variation Theory (VT). In the design of task sequences,
“VT focuses task designers on what varies and what remains invariant in a series of
tasks in order to enable learners to experience and grasp the intended object of learn-
ing” (Kieran, Doorman, & Ohtani, 2015, p. 45). Watson and Mason (2006) claimed
that “tasks that carefully display constrained variation are generally likely to result in
progress in ways that unstructured sets of tasks do not, as long as learners are working
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within mathematically supportive learning environments” (p. 92). Their paper illus-
trates how differently controlled variations can help students make different gener-
alisations and abstractions—generalisations as “sensing the possible variation in a
relationship” and abstractions as “shifting from seeing relationships as specific to
the situation, to seeing them as potential properties of similar situations” (p. 94).

Watson and Mason’s (2006) study reported a rare venture within the tradition of
VT-focusing on the mathematical content as the only “object of learning”- and they
explain “generalisations” that are afforded by a particular way of sequencing tasks.
This shift to “generalisations” brings this branch of VT-related research closer to our
inquiry on mathematical reasoning. In fact, we do not find mathematical reasoning
an explicit goal in much of the research reported under the banner of VT. Another
recent rare connection of reasoning to VT was reported by Vale, Widjaja, Herbert,
Bragg, and Loong (2017). They showed how justification or logical argument fits
into this sequence of learning experiences by mapping the variation in children’s
reasoning (e.g., comparing and contrasting to generalise and identifies verifying) in
number commonality problems. Their findings reiterated the importance of designing
the task so that the action of comparing and contrasting guides student awareness
of features that matter. Their paper, however, does not unpack the deliberate task
sequencing for the purpose of advancing students’ mathematical reasoning.

For the purpose of this study, insteadof using “task”which is a very board category,
we employ Teacher 13’s use of “examples” which we take to be a special type of
tasks.We think that examples are tools to provide variation to aid students’ reasoning.
Examples, especially “combination of several similar examples and further not-quite
similar examples” are necessary for students “to work on a higher level” that leads
to conceptual learning, fluency and accuracy (Watson & Mason, 2006, p. 97).

13.2.3 Practice Examples

From amathematical perspective, an example is often considered an object satisfying certain
conditions (e.g., Alcock & Inglis, 2008; Watson & Mason, 2005), or a representative of a
class (e.g., Mills, 2014; Zazkis & Leikin, 2007). Zaslavsky (2014) adds a requirement that
the person using the example should be able to answer the question: “What is this an example
of?” (Zaslavsky, 2019, p. 246)

Zodik and Zaslavsky (2008, p. 165) referred to examples as “a particular case of a
larger class, fromwhich one can reason and generalise”. Their treatment of examples
included non-examples that are “associated with conceptualisation and definitions,
and serve to highlight critical features of a concept; as well as counter-examples that
are associatedwith claims and their refutations” (p. 165). “Mathematical objects only
become examples when they are perceived as examples of something: conjectures
and concepts, application of techniques ormethods…” (Goldenberg&Mason, 2008,
p. 184). That is, examples may differ in their nature. An example of a concept such
as rational number is different in nature from an example of how to carry out a
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procedure (Zodik & Zaslavsky, 2008). Examples can also differ in their purpose
such as to illustrate how to find a common denominator of two proper fractions
for adding fractions, or to illustrate it so as to generalise the procedure to algebraic
fractions to solve more advanced equations (Zodik & Zaslavsky, 2008). Rowland
(2008)’s work informed us of possible considerations in the choice and selection of
examples; variation to be experienced by the learners in accordance to Marton and
colleagues’ (2004) Theory of Variation. Zodik and Zaslavsky (2008) also suggested
some considerations when teachers select or generate examples.

Two different use of examples in teaching were reported by Rowland (2008).
The first use is inductive—providing examples of something and the examples are
“particular instances of the generality” (Rowland, 2008, p. 150). The second use is
not inductive, but for the purpose of practice and is often referred to as “exercises”.
To illustrate this use: students learnt the procedures to find equivalent fractions and
then rehearsed and worked on the “exercise” so that they could remember it through
repetition and eventually developed fluency of the procedures. Examples used in this
way was “for practice”, also known as practice examples in that they are “vehicle
for [students] to gain fluency with the algorithm” (Rowland, 2008, p. 158).

In this chapter, we define Teacher 13’s sequence of practice examples as a care-
fully selected set of examples meant to fulfil his instructional goals. Reminded by
Zaslavsky (2019), we specify or define practice examples by referring to the goals,
“what is it an example of?”. In Teacher 13’s case, his practice examples were

1. For the purpose of practice to gain fluency by an underlying technique;
2. They are thus examples of the technique; and
3. As a set of vehicles to advance reasoning (This will be detailed in the analysis

later).

13.3 Method

13.3.1 Context

Teacher 13was identified as an experienced and competent teacher.An “experienced”
teacher is one who has taught the same mathematics course at the same level for a
minimum of five years; and “competent” selection is based on recognition by the
local professional community as a teacher who is effective in teaching mathematics.
Below, we summarise a number of factors about Teacher 13’s practices that lends
itself to an unpacking of his reasoning work:

1. Teacher 13’s repeated reference to “reasoning” in interviews articulating compre-
hensively his goals for the tasks in his instructional materials and his classroom
discourse determined our choice of Teacher 13 as a case study of mathematical
reasoning—a characteristic feature of case study.
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2. A full set of handouts (instructional material) for students use in class (hereafter
referred to as “Notes”) was developed with his colleagues before the start of the
module.

3. He constantly made references between his goals, his actual activity in class, and
his use of instructional materials. This enables us to study the interactions among
these major pieces of his instructional processes.

13.3.2 Teacher 13’s Class and Students

The class in which we recorded his teaching consisted of 20 students aged between
14 and 16. They were in their third year—akin to Year 9—of a six-year Integrated
Programme (IP). In Singapore, there are various education paths students can choose
to take after they complete six years of elementary school. Of which, students in the
IP pursues a six-year course which integrates the four-year secondary and two-year
pre-university education programmes.

13.3.3 Topic

The module that Teacher 13 taught was “Quadratic Graphs and Inequalities” over 10
lessons. The coverage includes from Ministry of Education (2012):

1. Solve quadratic equations in one variable using: (i) the general formula, (ii)
completing the square and (iii) graphical method;

2. State the conditions for a quadratic equation to have: (i) two real roots, (ii) two
equal roots and (iii) no real roots;

3. State the conditions for ax2 + bx + c to be always positive (or always negative);
and

4. Solve quadratic inequalities, and represent the solution: (i) using a graph, and
(ii) on the number line.

13.4 Data and Analysis

13.4.1 Data

The instructional materials used by Teacher 13 were mainly the Notes and questions
from the textbooks (Yeo, Teh, Loh, & Chow, 2013; Yeo et al., 2015) (as homework)
for the students. These instructional materials form the primary source of data. The
next data source are the interviews conducted with Teacher 13—one pre-module
interview before his lessons and three post-lesson interviews after three lessons he
selected (Lessons 3, 6 and 8). All interviews were video recorded. The pre-module
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interview was conducted to mainly find out Teacher 13’s instructional goals and
how he designed and planned to utilise his instructional materials to fulfil his goals.
Examples of the pre-module interview questions were:

• Please share with us some of the goals for this series of lessons. You can include
both content and non-content goals.

• Are there any specific difficulties you anticipate that some of your students may
have with some of the instructional materials?

The post-lesson interviews were conducted to find out if he had met his instructional
objectives with the instructional materials he designed and planned to use. Examples
of the questions were:

• What were the design principles you used in the instructional materials?
• What do you have in mind when you designed this/these item(s)? What learning

experience(s) do you want your students to go through?

The third source of data is Teacher 13’s enactment of his lessons in the module.
We adopted non-participant observer roles during the course of our study—one
researcher sat at the back of the class to observe Teacher 13’s lessons—for the
researcher to make relevant and specific references to his teaching actions when
pursuing certain threads during the post-lesson interviews. A video camera is also
placed at the back of the class to record Teacher 13’s actions. A total of 10 lessons
were video recorded for Teacher 13.

13.4.2 Analysis

We proceeded with our analysis illustrated in Fig. 13.1.
Stage 1: Identification of Units of Analysis of the Notes
From Teacher 13’s lessons, we noticed that the tasks, in the form of Examples, he
utilised from the Notes could be grouped into units according to the method applied
to solve them. In this paper we present detailed analysis of two units which contained
Teacher 13’s most references to reasoning goals. They are:

• Unit 1: Examples and Practice Examples 5, 6(a), 6(b), 6(c) and 6(d)
• Unit 2: Examples and Practice Examples 10, 11 and 12

Identification 
of Units of 
Analysis

Composition 
of

Chronological 
Narratives

Formation of 
Conjectures

Testing of 
Conjectures

Fig. 13.1 Analysis procedure
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We coded Teacher 13’s classroom vignettes of the respective lessons and the
responses he gave in the relevant interviews for these units of analysis. Some of the
initial codes were “reasoning”, “deducing”, “comparing” and “thinking”—words
Teacher 13 used often in his interviews and lessons. We then referred to Jeanotte and
Kieran’s (2017) conceptual model of mathematical reasoning in which they defined
mathematical reasoning as “a process of communication with others or with oneself
that allows inferring mathematical utterances from other mathematical utterances”
(p. 7). Eventually, we consolidated our coded data into three categories, “comparing”,
“justifying” and “inferring”. Comparing and justifying were taken from Jeannotte
and Kieran. We included inferring as a third category, by this we mean a conscious
guessing of another step in the deductive reasoning process. In other contexts, this is
equivalent to “deducing”; we avoid this latter term as it has a more restrictive use in
Jeanotte and Kieran (2017). These three categories will be elaborated in the findings
section to support our claim that Teacher 13 utilised his tasks to develop his students’
mathematical reasoning.
Stage 2: Composition of Chronological Narratives
For some of these selected units with related data on Teacher 13’s enactment and
interview comments, we crafted chronological narratives (CN), i.e. according to
timeline for each of them. In each CN, we integrated pre-module interview tran-
scriptions, post-lesson interview transcriptions, tasks in his Notes and his classroom
vignettes. The process for the composition of CN for Unit 1, for instance, began
when we examined his responses in a post-lesson interview. He commented that
Example 6(d) was specifically selected so that students could apply some reasoning
skills; and Example 6(c) was one that required students to be able to deduce from
the graph they would sketch. Hence, we studied the video clip of the corresponding
lesson segments carefully for the surrounding context. We noticed that the tasks—
Examples 6(c) and Example 6(d)—that required reasoning were similar to Example
5 which Teacher 13 demonstrated to his students earlier in Lesson 5. This led us to
re-examine Lessons 5 and 6 with a view of Teacher 13’s agenda in helping students
learn reasoning skills along the categories of comparing, inferring and justifying.We
consolidated the evidence and organised them chronologically in a table. Table 13.1
shows the CN for Unit 1.
Stage 3: Formation of Preliminary Design Principles related to Mathematical
Reasoning
We begin our intensive source of analysis to identify themes related to how Teacher
13 embedded reasoning in Unit 1. The themes were confirmed after several rounds
of discussions with several members of the research team and that the uncovered
design principles were supported by the data sources.
Stage 4: Testing of Preliminary Design Principles
In the final stage of analysis, we brought the design principleswe conjectured in Stage
3 and checked it against all the other CNs. Through this process, wemanaged to refine
the initial design principles into a form that contributes to theory generalisation. In
the next section, we present our findings on the processes of analysis under Stages
3 and 4 by first detailing the CN on Unit 1, followed by another CN on Unit 2.
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Table 13.1 Overview of the Chronological Narrative (CN) of Unit 1

Lesson no. Time spent Activity Data
(see Fig. 13.3 for Example 5 and 6)

1 8 min 41 s Whole Class Instruction
(Example 5 in Notes)

z Demonstrated and explained the
method to solve Example 5

z Explained that Example 5 is a case
in which the quadratic expression
cannot be factorised “very nicely”

z Presented solution using two
different methods

4 min 30 s Table-to-Table Instruction
(Example 6(a) in Notes)

z Walked around class to facilitate
students’ learning while they
worked on Example 6(a)

1 min 39 s Whole Class Instruction
(Example 6(a) in Notes)

z Presented and explained the
method to solve Example 6(a)

z Set Examples 6(b)—6(d) as
homework

2 6 min 56 s Table-to-Table Instruction
(Example 6(b) in Notes)

z Walked around class to facilitate
students’ learning while they
worked on Example 6(b)

z Encouraged students to reason and
think about their solutions

z Emphasised that students had to
present their solutions by using
formal reasoning

5 min 6 s Whole Class Instruction
(Example 6(b) in Notes)

z Stressed to students that they
should learn to solve Example 6(b)
by first understanding the
undergirding reasoning for
Example 5

z Probed students to think of
alternative solutions so that they
could compare the methods

z Encouraged students to think about
the methods they are applying

6 min 48 s Table-to-Table Instruction
(Example 6(c) in Notes)

z Walked around class to facilitate
students’ learning while they
worked on Example 6(c)

z Encouraged students to make
connections, infer, form
conjectures, justify, validate and
deduce

z Emphasised that students had to
present their solutions by using
formal reasoning

(continued)
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Table 13.1 (continued)

Lesson no. Time spent Activity Data
(see Fig. 13.3 for Example 5 and 6)

7 min 31 s Whole Class Instruction
(Example 6(c) in Notes)

z Explained the undergirding
reasoning behind Example 6(c)
which is an unusual problem

z Highlighted to students that they
could “deduce” the solution
without using the graph

2 4 min 26 s Table-to-Table Instruction
(Example 6(d) in Notes)

z Walked around class to facilitate
students’ learning while they
worked on Example 6(d)

z Encouraged students to make
sense, make connections, infer,
validate and reason

z Stressed the importance of
understanding the undergirding
reasoning in Example 6(d)

2 min 20 s Whole Class Instruction
(Example 6(d) in Notes)

z Presented and explained the
solution for Example 6(d)

39 min 49 s Post-Lesson Interview
(Lesson 06)

z Commented on his goals: Students
need to: (i) know how to write
formal reasoning; (ii) think about
what they are doing

z Commented that Examples 5 and 6
were designed to expose students
to “unusual cases”

z Mentioned that Examples 6(c) and
(d) are special cases.

z Articulated the design principles:
tasks were designed to promote (i)
thinking; (ii) reasoning

Evidences in support of these refined design principles are presented summarily in
a third unit.

13.5 Results

13.5.1 Analysis of Unit 1: Researchers’ Formation
of Conjectures

Conjecture 1: Advance one more
In Unit 1, the technique that Teacher 13 taught the students can be summarised into
these two steps:
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Step 1: Obtain the (type of) roots (e.g., factorisation, quadratic formula,
completing the square method)
Step 2: Use graphs to visualise the region that satisfy the inequalities

The technique was applied to Examples 3 and 4 (see Fig. 13.2).
To Teacher 13, Step 1 was merely a recall of the method of factorisation for all

these items; his focus was on Step 2, how the roots of the quadratic equation were
represented graphically as a visual to obtain the required regions that satisfy the
required inequalities. From Teacher 13’s post-lesson interview after Lesson 6,

The first section [Example 3 & Example 4(a), (b), (c) as shown in Fig. 13.2] is easy to
factorise [Step 1], just focus on using graphical method [Step 2]. Then advance one more…
in Example 5. Right, what happens if we cannot factorise properly [Step 1] … (Post-Lesson
Interview 2, 08:53)

Teacher 13’s “advance one more” caught our attention. Since he mentioned that
“advance one more” occurred first in Example 5, we studied the example and
contrasted it against earlier examples. Figure 13.3 shows Examples 5 and 6.

On the surface, it seemed that advance one more refers to the development of
the method (from factorisation to the quadratic formula) to find the roots to the

Example 3 Solve the inequality 2x2 – 7x + 6 < 0. 

Example 4 Solve the following inequality using a graphical approach: 

(a) x2 – 4x + 3 > 0  

(b) 3x2 – 4x – 7 < 0 

(c) 4 – x2 < 0 

Fig. 13.2 Examples 3 and 4 in the Notes

Example 5 Solve the inequality 2x2 + x – 4 > 0. 

Solution: We observe (or check) that the expression 2x2 + x – 4 is not easily factorised. 

In this case, we have to find the x-intercepts using the quadratic formula. We present 

our working in this way: 

Example 6 Solve the following inequalities, giving exact answers: 

(a) x2 + 4x – 7 > 0 

(b) 2x2 < 5 

(c) x2 + 2x + 11 > 0 

(d) 3x2 – 30x + 75 < 0 

Fig. 13.3 Examples 5 and 6 in the Notes
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quadratic equations in Step 1. Step 2 where students use graphs to visualise the
regions of the solution sets remains intact. Teacher 13’s Notes pointed out explicitly
that the expression given in Example 5 is not easily factorised (see Fig. 13.3).

Our analysis of Teacher 13’s enactment of this portion of the notes shows that
he carefully pointed out to students that Example 5 “is the case where you cannot
factorise very nicely” (Lesson 5, 25:59). Hence, an adjustment of the method to
solve the quadratic equation was needed which he demonstrated using the quadratic
formula. After finding the roots of the quadratic equation, he reverted back to Step 2
and emphasised, “… then you can do the usual [Step 2]. Everything else will follow
the previous procedure” (Lesson 5, 28:25). Our analysis of Teacher 13’s lesson
showed that the suite of examples in Example 6 was designed for students to practice
their technique to solve the quadratic inequalities. He said “Example 6 gives you
time to practice what to do when your quadratic expression is not very friendly - it
doesn’t factorise nicely. OK? So for simple ones, can you just try 6(a)”. (Lesson 05,
34:00).

It becomes clear to us that Teacher 13’s “advance one more” carried on to the
“special cases” of Examples 6(c) and 6 (d), “… 6(c) and 6(d) are special cases as
I said. … Example 4, they will say, Okay, I’m quite comfortable with the method
[technique], now these are all the unusual cases…” (Post-Lesson Interview 2, 10:04).
The special cases were situations when students usually conclude that there are no
solutions to the inequalities because Step 1 results in either no real roots (Example
6(c)) or equal roots (Example 6(d)).

Question 6(c) is a rather unusual question… your first instinct is to try to find x-intercepts,
alright? And then you realise that it doesn’t work … Now, if you are doing a quadratic
equation, and you use the formula and you see this you say, No solution. … But that’s not
the case for this inequality …. (Lesson 6, 21:51).

Through Examples 6(c) and 6(d), he expected his students to modify their technique
to solve quadratic inequalities by examining their incorrect conclusion—“no real
roots” means no solution to the inequalities—by referring them back to the graphical
representation. In other words, Teacher 13’s “advance one more”—in the case of
Example 6(c)—meant that the task required students to modify the learnt technique
further to accommodate the “no real roots” situation. In particular, the conclusion
“no real roots” in Step 1 does not prevent the use of graphical representation in Step
2 to obtain the required solution set for the inequalities.

Similarly, Example 6(d) presented yet another “special case” of “equal roots”
which required yet anothermodification in theway students should use the technique,
in this case, the graphical interpretation of 3(x - 5)2 ≤ 0. Figure 13.4 gives a brief
outline of how Teacher 13 “advance one more” in between examples:

• 6(a) → 6(b): included alternative method to solve equation
• 6(b) → 6(c): no solution in equation does not imply no solution for inequality
• 6(c) → 6(d): graphical representation for “equal roots” case

We noted that there was careful design of Examples 5 and 6. Teacher 13 was not
just using examples merely to repeat practice the same procedures; he deliberately
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Fig. 13.4 Whiteboard work of Teacher 13 for Example 6(a) to 6(b) to 6(c) to 6(d)

used the sequence of examples to “advance one more”. By this, he meant that, where
appropriate, the next example provides the technique refinement/modification: “one
more” step in the direction of a more comprehensive applicability of the technique
to cases where students would normally not consider by themselves. Thus, our first
conjecture is that Teacher 13 designed the sequence of his notes in such a way to
achieve the design principle: (1) advance the technique.
Conjecture 2: Advance more through reasoning
Our analysis of Teacher 13’s intention through his carefully selected examples in the
Notes showed that he wanted his students to see each shift in the solution strategy
through the examples and to learn to “think flexibly”.
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Alright, there are different ways to actually solve this [writes on board as he speaks]. But
‘cause yesterday’s example [Example 5 & 6(a)] is [to] use quadratic [formula], then you just
use quadratic formula, right? Have to be a little bit more flexible than that. (Lesson 6, 11:36)

… if they keep using the same method, it indicates that they are not quite thinking about
what they are doing, alright. … So I want to break them out of that mode… (Post-Lesson
Interview 2, 14:23)

In particular, fromTeacher 13’s interview,we learn that the development of reasoning
was intentionally built into the Notes: “we purposely build in a lot of reasoning type
of steps for them to do”. Teacher 13 elaborated this during an interview,

… today the focus is on the non-standard examples [step 1 cannot be factorised] … So here
is to promote reasoning in general, because here the-the basic idea they want to learn is if I
can get the sketch of the graph [Step 2], I can use the graph to deduce a solution, […] This
way we make sure that they know the thinking behind the particular graphical method [Step
2], and we put in all these parts to make sure that they are actually applying the reasoning
behind the graphical method [Step 2]. (Post-Lesson Interview 2, 22:16)

In other words, “advance one more” was done through reasoning. We observed that
for Example 5, in Teacher 13’s Lesson 6, two methods were used to identify the
roots of the quadratic expression 2x2 + x – 4 = 0 in Step 1. Figure 13.5 shows the
two methods, namely, Method 1 (quadratic formula) and Method 2 (complete the
square).

He encouraged his students to think and choose the method they prefer. This act
was intentional and engineered into the design of the Notes as shared by Teacher 13
during the interview,

So again we give them the options, we don’t tell the students, we try not to tell the students
which way to do…This way, both ways are fine for us. So we give them option—you choose
the option that you think you prefer, that you think you are more likely to succeed in. So
that’s the design principle. (Post-Lesson Interview 2, 11:10)

14
+ 12 14 − 2 > 014) − ( 116) − 2 > 014) − 3316 > 0

14 + √334 14 − √334 ) > 0 etc. 

Method 2: Complete the square 

When ,−1 ± (1) − 4(2)(−4)2(2)
   =−1 ± √334

−1 − √334 −1 + √334

−1 − √334 −1 + √334

Method 1: Quadratic formula 

Fig. 13.5 Comparing methods in Example 5
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The comparison ofmethodswas also seen in Fig. 13.4, Example 6(b) and Example
6(c). From Teacher 13’s interview “[Example 6(b)] they [are] used to illustrate that
there are other methods [Step 1] we can use.” He expected his students to compare
the various methods to find the roots in Step 1 and decide on the easier method (see
Figure 13.4). Clearly, the reasoning process of comparing was intentionally built into
some of the examples.

In the vignette for Example 6(c) presented in Table 13.2, we unpack two other
reasoning processes used by Teacher 13: justifying and inferring for students in
Group A during their seatwork.

Table 13.2 Justifying and inferring with students in Group A for Example 6 (c) Lesson 6

Line Speaker Content

1 Teacher 13: Part (c), how?

2 Student 2: Part (c) no solution.

3 Teacher 13: No solution?

4 Student 2: Cause the discriminant is negative.

5 Teacher 13: What does that mean?

6 Student 2: 0…

7 Teacher 13: But this part- this calculation is to do what? You do this calculation is to?

8 Student 2: To find the value of x.

9 Teacher 13: To find the x-intercepts right? So no solution means what?

10 Student 2: No x-intercepts.

11 Teacher 13: No x-intercepts. Correct. So what? Therefore you can still carry on and
answer this question. It just tells you there is no intercept. You are not- your
task is not to find the x-intercepts, correct? Your task is to solve this
inequality. Correct. No x-intercept. So what can you deduce from there?
[infer]

12 Student 1: It’s not touching the x-axis. [claim]

13 Teacher 13: It’s not touching the x-axis, yah. So it’s “floating”, OK, you can say that.

14 Students: [students replied simultaneously but inaudible]

15 Teacher 13: OK, so does that help you answer this question?

16 Student 2: So what? So x is more than 0, ah? [infer, claim]

17 Teacher 13: Alright, because the idea is what? If I know the graph, I should be able to
answer this inequality question right? So knowing that there’s no x-intercept,
means you know how to draw the graph. So can you draw the graph?

18 Student 2: Oh, so this is above 0. [claim]

19 Teacher 13: So, if you can draw the graph, then you can answer. What kind of x values
makes the graph greater than 0? [infer]

20 Student 3: But there’s no answer. [claim]

21 Student 4: x more than 0, ah? [claim]

22 Student 2: x above 0. [claim]

23 Teacher 13: Is that true? Ask yourself that question. Is that true? [justify]
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Table 13.3 Justifying and inferring with students in Group B for Example 6 (c) Lesson 6

Line Speaker Content

1 Teacher 13: No x-intercepts, that means? [infer]

2 Student 4: That means it’s either above- [claim]

3 Teacher 13: That means cannot touch the x-axis at all right?

4 Student 4: Yah, so it’s above the thing [claim]

5 Teacher 13: How do you know it’s above? [justify]

6 Student 5: Is it horizontal line?

7 Teacher 13: How do you know it’s above?…Wait, wait, one by one. How do you know
it’s above? [pressing for justification ]

In Line 11, Teacher 13wanted the students in GroupA to infer what it meant when
there were no x-intercepts. Student 1 claimed that the graph did not touch the x-axis
in Line 12. Student 2 inferred and claimed that “x is more than 0” in Line 16. Student
2 made another claim that the graph “is above 0” in Line 18. The engagement with
reasoning does not stop here as Teacher 13 required Student 2 to justify her claim,
“Is that true?” in Line 23.

Table 13.3 presents another vignette for Example 6(c) where the two reasoning
processes, justifying and inferring, were unpacked with another group (Group B) of
students.

Here we noted that Teacher 13’s other design principle is: (2) the technique was
advanced through comparing, inferring and justifying. In the next two sections, we
present the evidence for the next two uncovered design principles.
Conjecture 3: Expose and target students’ faculty reasoning through carefully
designed examples
One of the reasons why Teacher 13 built-in reasoning opportunities through the
carefully selected examples in Example 6 was to deal with anticipated students’
misconceptions (e.g., no solution in equation implies no solution for inequality).

… or if there’s a misconception that keeps popping up, I’ll also bring them up. … Just now
this question, the one where the solution is all real values [Example 6(c)], so many of them
…will say, “Oh, no answer; cannot; no roots, because it’s square root negative 40”, and then
they want to stop there. So I have to address that point … (Post-Lesson Interview 2, 15:47)

Revisiting the vignette in Table 13.2, from Line 3, we noticed that Teacher 13 picked
up Student 2’s faulty reasoning in Example 6(c). In Line 4–6 he had Student 2
confront the faulty reasoning, and in Line 6–19 Teacher 13 addressed and corrected
Student 2’s faulty reasoning. FromTable 13.2, we see that Teacher 13 was not merely
correcting wrong technique but also the faulty reasoning underlying it. Hence, in the
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design of his Notes, he incorporated examples where he could expose the faulty
reasoning behind the wrong techniques. We therefore state that Teacher 13 utilised a
third design principle: (3) special cases to expose and target students’ faulty reasoning
undergirding the techniques they used.
Conjecture 4: Presentation of solutions to reflect reasoning
Teacher 13 was concerned about presentations of the written reasoning in a way that
is acceptable to the mathematical community and he required the students to present
their solutions very clearly. He emphasised to his students that “you have to be very
specific in your presentation so people understand what you are doing”. (Lesson 5,
25:59). For example, in Fig. 13.6, Teacher 13 showed his reasoning in arriving at the
correct solution on the whiteboard and pointed out the incorrect way of presenting
the solution for Example 5.

The working looks almost the same. [writes on board] But this is just so that you make it
very clear that, [here, in the italicised text, the teacher is telling the students how they can
write their justification] I’m not trying to solve the inequality, here. I’m only considering
what happens when it is equals to 0. So that I can draw my graph. So that statement is to
justify this set of working. So there’s no confusion. (Lesson 5, 28:49)

Reflecting on our analysis of the first unit of analysis, we noticed that the white board
appeared to be central in stringing together all the intended objectives by the teacher
as expressed in earlier stated preliminary design principle:

(4) The whole class instructional segment was used to consolidate and formalise
the reasoning in standard written form.

Figure 13.7 presents our provisional diagrammatic representational this stage of
our analyses.

−1 ± (1) − 4(2)(−4)2(2)
= −1 ± √334

When  ,−1 ± (1) − 4(2)(−4)2(2)
   =−1 ± √334

−1 − √334 −1 + √334 .

−1 − √334 −1 + √334  

Fig. 13.6 Formal reasoning in the written form
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Modify Modify 

Apply Apply Apply Apply 

Modify 
Example 6(c)
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Example 6(a)Example 5 Example 6(d) Example 6(b)

Step: 
1) Quadratic 

expression not 
easily factorised 
(use formula) 

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression 
not easily 
factorised 
(Several 
methods        
to locate          
x-intercepts)

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression not 
easily 
factorised (use 
formula) 

2) Use graphs to 
select the 
required 
sections 

Step: 
1) Quadratic 

expression not 
easily factorised 
(use formula; no 
x-intercepts) 

2) Use graphs to 
select the required 
sections

Step: 
1) Quadratic 

expression 
not easily 
factorised 
(use formula;    
Only one x-
intercept) 

2) Use graphs 
to select the 
required 
sections

Reasoning  Comparing Inferring, Justifying, Comparing 

Fig. 13.7 An example of technique and reasoning applied within and across Examples 5 and 6

13.5.2 Analysis of Unit 2: Further Examination
of the Conjectures

For Unit 2, the description is deliberately brief as we zoom straight into providing
evidence on how the design principles in the previous section are supported or refined.
The technique in Unit 2 involves the following steps:

1. Obtain the (expected) roots (same as Unit 1)
2. Algebraic deduction together with graphs to solve the inequality

13.5.3 Advance the Technique

Figure 13.8 shows the sequence of examples in this second unit of analysis. The
preamble in theNotes shows thatUnit 2was intended to continue to develop students’
techniques in solving quadratic inequalities using “algebraic approach”.

In Step 2, Example 10 (see Fig. 13.8), students “use the algebraic deduction to
solve the inequality” by considering two cases for (2x − 3)(x − 2) > 0.

Case 1: Make logical connections between (2x − 3) > 0 and (x − 2) > 0 and
with the aid of number line conclude that x > 2.
Case 2: Make logical connections between (2x − 3) < 0 and (x − 2) < 0 and
with the aid of number line conclude that x < 3

2 .

Putting the conclusions of the two cases together, x > 2 and x < 3
2 , and with the

aid of number line, students solve the inequality 2x2 − 7x + 6 > 0 when x < 3
2 or

x > 2. As indicated in the Notes, the inequality stated in Example 10 is identical to
Example 1. The cubic expression in Example 11 required the students to extend the
method of factorisation (Step 1) into products of linear and quadratic expression
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4. Solving Quadratic inequalities Using an Algebraic Approach 

It is possible to solve quadratic inequalities using a purely algebraic approach. However, this can be 

quite tedious, so we will normally not use such a method except for more complex problems where 

a simple graphical approach cannot be applied directly. 

Example 10 Solve the inequality 2x2 – 7x + 6 > 0 using an algebraic method. 

Solution: This is the same problem as that in Example 1. Compare and contrast the 

graphical method and the algebraic method. 

Step 1: We begin by factorising the expression 2x2 – 7x + 6: 

2x2 – 7x + 6  > 0 

 (2x – 3) (x – 2) > 0 

Step 2: Use the algebraic deduction to solve the inequality:  

Example 11 By factorising the expression x3 – x2 + x – 1, solve the inequality x3 – x2 + x – 1 < 0 

Example 12 By completing the square, show that 4x – x2 – 7 is negative for all real value of x.

Hence solve the inequality

Fig. 13.8 Examples 10, 11 and 12 in the instructional materials

x3−x2 + x−1 = x2(x−1) + (x−1) = (x−1)
(
x2 + 1

)

and subsequently apply a similar argument as Example 10 for Step 2. For Example
12, in Step 1, the numerator 3x2 +2x−1 can be factorised easily into (3x – 1)(x + 1)
but the denominator cannot be factorised into linear factors with rational coefficients.
Hence, flexibility in thinking in the use of the method is required - completing the
square was used instead. For Step 2, applying the algebraic approach, the numerators
and denominators of 3x2+2x−1

4x−x2−7 need to be considered separately (refinement and
development of algebraic method).

• 10 → 11: extend technique to cubic inequalities
• 11 → 12: extend technique to rational inequalities

Examples 10, 11 and 12 thus supports Conjecture 1.

13.5.4 Advance Technique Through Comparing, Inferring
and Justifying

As reflected in the instructions for Example 10 (see Fig. 13.8), the reasoning process
of comparing was intentionally built into Example 10 for students to compare and
contrast the graphical and the algebraic method. Teacher 13’s video Lesson 8 showed
him comparing the two methods (see Fig. 13.9).
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Example 10   Method 1: Graphical Method 

Example 10  Method 2: Algebraic Method 

From the graph,

when .

32 2

                                                        when  or  

∴ Case I:   AND  32 AND  

2
32 2 

∴ Case II: ( ) < 0  AND  ( ) < 032 AND  

32
32 2

Fig. 13.9 Comparing methods in Example 10

We also observed his use of inferring to develop the algebraic method through
Example 10 (see Table 13.4).

It is clear that Teacher 13 had reasoning in mind for Examples 11 and 12:

Yeah so, I brought them to the algebraic reasoning for this, showed them how to obtain a
solution andmain thrust of the message is that we try not to use this method [Step 2] for basic
quadratic inequalities,… But why we are talking about these kind of reasoning is because
of certain questions leading to these two [referred to Examples 11 and 12]. So these are
considered special cases. So, here… After they factorise one of these factors it’s like, ‘x2

+ 1’ I think. Ah, so have to guide them through the reasoning of if ‘x2 + 1’ is positive,
therefore the other factor has to be negative and so on. … (Post-Lesson Interview 3, 05:21)

Examples 11 and 12 were the examples in the Notes that served as vehicles to pull
along the development of mathematical reasoning as the technique was advanced.

Inferring was observed during the discussion of Example 11 in Teacher 13’s
Lesson 8. For example, during the class seatwork, Teacher 13 led his students to
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Table 13.4 Inferring for Example 10 in Lesson 8

Line Speaker Content

1 Teacher 13: Suppose I don’t want to draw the graph for comparison [(2x – 3)(x – 2) > 0],
for your knowledge, what can we do? So deduction here ah, going to ask
you, I have two numbers, these are two things right, two object multiplied I
get positive number, greater than zero.What can you say about these two
factors? [inferring]

… … …

5 Teacher 13: Both negative. OK so if I wanted to use an algebraic method, what I am
going to deduce here? So I have Case 1, this (2x – 3) is greater than zero and
this (x – 2) is greater than zero, alright. Or Case 2: Both negative. Alright, so
this is carry on to reason OK, that if both are positive, each of these
inequalities I can solve very quickly. [writes “therefore x > 3/2 and x > 2”]
OK, so next I am going to ask you, if something must be greater than two, at
the same time must be greater than 3/2, then what condition can combine
these two things? [inferring]

Table 13.5 Justifying and inferring for Example 12 in Lesson 8

Line Speaker Content

1 Teacher 13: Alright once you are able to justify that the expression is negative, right, then
you want to ask yourself, “Then, how do I complete the rest of the
question?” So I know 4x−x2−7 is negative, OK then so what? [inferring]

express the cubic expression in Example 11 as (x − 1)(x2 + 1). Next, he asked “…
Then what can you deduce about those two factors?” so that his students can infer
the polarity of the two factors for the cubic expression to be non-positive.

Inferring as well as justifying were observed in the discussion of Example 12 in
Lesson 8. For example, in Table 13.5, Teacher 13 required his students to justify
that 4x−x2−7 (the denominator) is negative. He also required his students to infer
how knowing the denominator to be negative for all real values of x contribute to the
overall polarity of 3x2+2x−1

4x−x2−7 .
Other incidents of justifying were also observed in Example 12, e.g., as Teacher

13 interactedwith a group of students (GroupC). Teacher 13 said to the group, “What
makes that for sure negative—may not be, right?… must have a stronger argument
than that” (Lesson 8, 21:54). And again with students in Group C, “so how do you
justify this, no matter what must be negative?” (22:38).

The built-in reasoning features of comparing, justifying and inferring to advance
the technique were evident in Examples 10, 11 and 12, thus supporting, Conjecture
2.
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Table 13.6 Example 11 in Lesson 8

Line Speaker Content

1. Teacher 13: OK, if you have a negative number, you square
root it is still pos- this square, alright x2, OK,
don’t make this mistake ah, don’t say x2 is
always positive, because it can also be zero.
[Exposing the faulty reasoning] Alright. So
reason out, since, x2 can be zero or positive (x2≥
0), cannot be negative, x2+ 1 has to be positive,
for all real x. [Addressing the faulty reasoning]
OK. So I have this factor, x2+ 1, it is always
positive.What can I deduce? Think along what
you [just] told me just now. So if this is always
positive, what is the deduction?…

13.5.5 Expose and Target Students’ Faulty Reasoning
Through Carefully Designed Examples

During the whole class discussion in Lesson 8, we observed Teacher 13 exposing
and addressing students’ faulty reasoning undergirding the technique they used for
Example 11, thus supporting Conjecture 3 (see Table 13.6).

13.5.6 Consolidate and Formalise Reasoning in Written
Form Through Whole Class Instructional Segment

When the students had difficulty writing the justification for Example 12, Teacher 13
referred students to his written justification on the board at the end of each example—
thus, the importance of whole class discussion and Teacher 13’s formal written
reasoning on the board work to consolidate and support the development of method
and reasoning through the sequence of examples. This supports Conjecture 4. In the
last post-lesson interview, Teacher 13 said that “we need to train them how to write,
how to justify that x2 + 1was positive [Example 11]” (25:04) and “I try to guide them
how to write the justification”. Teacher 13 was also seen to emphasise the importance
of communicating written reasoning clearly for Example 12 “and present properly”
(Lesson 8, 20:49).

Figure 13.10 summarises the technique and reasoning applied within and across
Examples 10, 11 and 12 from our analysis of Unit 2.

We present the findings of the third unit in summary form in Appendix A.
Figure 13.11 summarises the four design principles presented in this paper.
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Notes
Example 11 Example 10 Example 12 

Apply Apply

Modify Modify 

Reasoning  Comparing Inferring, Comparing, Justifying 

Step 
1) Factorise quadratic 

expression 
2) Use algebraic deduction  

to solve quadratic 
inequalities 

Step 
1) Factorise cubic 

expression 
2) Use algebraic 

deduction  to solve 
inequalities 

Step 
1) Factorise rational expression; 

completing the square; 
establish polarity  

2) Use algebraic deduction  to 
solve quadratic inequalities 

Fig. 13.10 An example of technique and reasoning applied within and across Examples 10, 11 &
12

(1) Deliberate use of examples to advance technique  

(2) Advance technique through comparing, inferring and justifying 

(3) Special cases to expose and target students’ faulty reasoning undergirding the techniques they 

used 

(4) Consolidate and formalise the reasoning in standard written form through whole class 

instructional segment 

Fig. 13.11 Summary of the four design principles

13.6 Discussion

As shown in the analyses, the design of practice examples involves a complex inter-
action among the sequence of practice examples, reasoning and explication of the
reasoning in Teacher 13’s lessons. Reasoning was not merely an afterthought or add-
on to the sequencing of examples in Teacher 13’s Notes. He arranged his sequence
of examples in such a way so that not only the technique of solving inequalities was
developed; it was also amenable to reasoning moves supporting each tweak of the
technique. He wanted students to reason along the whole trajectory of “twists and
turns” from one example to the next. They were intended for students to advance the
technique to increase their flexibility and mathematical reasoning as they practised
the 2 steps in the technique.

Repeatedly, Teacher 13 mentioned that helping the students to think flexibly was
his explicit goal of instruction. By this, he meant that as the students work through
the examples, they would learn beyond a direct application of technique. Instead,
they were expected to attend to necessary modifications to the technique and thus
adapt flexibly through reasoning to suit the change in each proceeding example.
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But reasoning was not merely embedded implicitly with the design of the Notes;
it was also explicated overtly as an instructional goal for the students during the
lessons. When they worked on the examples during seatwork, Teacher 13 repeatedly
pressed students to reason out their steps. He drew on students’ “raw reasoning”—
including faulty reasoning—as he ledwhole class discussions following the seatwork
to demonstrate sound mathematical reasoning in final written form. In the process of
completing the examples, students were expected to develop their ability to attend to
alternative solutions and utilise them flexibly in subsequent examples, in accordance
to Watson and Mason (2006). Comparison of strategies were also encouraged both
within an example and across examples. What came through strongly in the case of
Teacher 13 was his use of reasoning as a kind of glue to provide adhesive in these
ways:

1. Form the undergirding fallback to link the story of technique-tweaking across
the examples he designed in his Notes;

2. Link the seatwork component of his classroom practice to the whole class discus-
sion segment. In particular, he used students’ raw reasoning attempts during
seatwork as ingredients to present (and correct) reasoning in a way that sets the
standard of reasoning norms that is acceptable to the community;

3. Binds the instructional materials closely with the actual classroom enactment—
interaction between task design and pedagogies (Sullivan, Knott, & Yang, 2015).

For Point 3, we noted that it is not uncommon in actual classroom teaching of
mathematics to find incoherence between the design of instructional materials and
classroom enactment. For example, it is conceivable that the designed instructional
materials and classroom enactment are driven by divergent goals so that classroom
work goes down a different path from the intended trajectory embedded in the mate-
rials. In the case of Teacher 13, as his central focus was on reasoning, both the Notes
and the classroom practices are drawn together to build around the central coherence
of the reasoning process. The result was a tight materials–classroom link that was
strengthened through a heavy emphasis on rigorous reasoning. Evidence of this tight
link can be found in almost every “movement” across adjacent pairs of examples
(e.g., Example 5 → Example 6(a)). When we combine the insights with the find-
ings (they are also represented in Figs. 13.7, 13.10 and 13.11), we construct a visual
depiction of Teacher 13’s design work as shown in Fig. 13.12.

The centrality of mathematical reasoning in Teacher 13’s plan and action serve as
an organising frame to tie the various instructional pieces together. In other words,
the model as illustrated in Fig. 13.12 has the potential of depicting teachers’ ways of
organising and connecting instructional components that matter to them—in the case
of Teacher 13, it demonstrated his organisation around mathematical reasoning. In
identifying the “glue” and the key adherents around it, we can begin to characterise
teacher’s fundamental instructional methods. A discussion of alternative models—
around different glues and adherents—can be a productive way forward in teachers’
inquiry towards quality mathematics teaching.
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Fig. 13.12 An illustration of technique and reasoning applied across sequence of examples

13.7 Conclusion

Developing students’ mathematical reasoning is a core aspect of teaching and
learning the mathematics classrooms (Ball & Bass, 2003; Boaler, 2010). To promote
students’ mathematical reasoning, students need to be provided challenging learning
environments instead of lessonswhere students just solve exercises usingwell-known
procedures (Mata-Pereira & Ponte, 2017). However, suitable tasks are not enough
to ensure that students develop mathematical reasoning (Ball & Bass, 2003). It can
thus be challenging to design tasks that place reasoning as its ostensible goal where
the task must be just right to ensure that students develop reasoning. It is therefore,
important to know the explicit task design moves which lead students to engage and
advance in mathematical reasoning, and in what ways they may be used in the class-
room. Teacher 13’s case places reasoning as the centre piece (Fig. 13.12), as such,
it illuminates how sequences of practice examples could be designed and enacted
through careful and informed decisions to develop and advance students’ reasoning.
This paper, therefore, can provide the mathematics education research community
another perspective at designing tasks.

Appendix A

Third Unit of Analysis
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Chapter 14
Designing Instructional Materials
to Help Students Make Connections:
A Case of a Singapore Secondary School
Mathematics Teacher’s Practice

Wei Yeng Karen Toh, Yew Hoong Leong, and Lu Pien Cheng

Abstract It is widelx acknowledged that making connections is an important part of
learningmathematics—instead of seeingmathematics as comprisingmerelx isolated
procedures to follow, it is desirable that students learn the distinctiveness of math-
ematics as being a tightlx connected subject. In fact, the Singapore mathematics
curriculum framework listed “connections” as part of mathematical processes—one
of the five areas of major foci. In the studx reported here, we look specificallx at
how an experienced and competent secondarx mathematics teacher listed “making
connections” as one of her ostensible principles in the design of the instructional
materials for her lessons on quadratic equations. Themethod used can be summarised
as one of progressive widening of the analxtical lens: we started bx conducting an in-
depth examination of one unit of her instructional material to uncover the connecting
strategies she built into it. Based on the strategies we uncovered, we widened the
analxsis to include its adjoining unit. From here, not onlx did we test the applicabilitx
of these strategies on the next unit, we also explored her design principles on how she
connected between units. Finallx, we further widened the lens of focus to the whole
set of instructional material to studx other connecting strategies she used across all
the units in the material. The four design principles she used are: connections across
multiple modes of representation, conceptual connections, temporal connections,
and connections across different solution strategies. This teacher’s design princi-
ples with respect to making connections challenge conventional stereotxpes of how
Singapore mathematics teachers carrx out instruction—it is not merelx repeated
practice of unrelated procedures; rather, it is a careful structuring of instruction
such that the underlxing mathematical connections are made explicit. Not onlx so,
the deliberate design was not just carried out in-class; it was, as reflected in the
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careful crafting of the instructional material, an intentional plan prior to the teaching
of the unit. The principles used bx the teacher hold useful lessons for mathematics
teachers, especiallx within the context of teacher professional development. These
are discussed towards the end of the chapter.

Keywords Making connections · Secondarx mathematics · Instructional materials

14.1 Introduction

This chapter reports a case of how an experienced and competent secondarx math-
ematics teacher, Teacher 8, designed her instructional materials to “link everxthing
together” (Post-Lesson Interview after Lesson 5, 00:18:20). It is this remark, coupled
with ten other phrases with equivalent meanings that she made throughout her inter-
views, that intrigues us and motivated us to embark on our inquirx. We are curious
to investigate the wax she designed her instructional materials to achieve this goal.
When we examined her instructional materials, we found that she had designed some
of her tasks for the purpose of explicating certain intended connections. Hence, we
surmise that her conscious intents to create links within the topic is an undergirding
design principle that she applied in crafting the instructional materials. During our
inquirx, we also found other teachers in the project, though not as ubiquitous as
compared to Teacher 8, that consciouslx included making connections in the design
of instructional materials. This is shown in Table 11.6 of Chapter 11.

A quick scan of the literature shows that there are researchers who had examined
how mathematics teachers can teach in an interconnected manner (e.g. English &
Halford, 1995; Hill, Ball, & Schilling, 2008; Ma, 1999; Pepin & Haggartx, 2007;
Sun, 2019). Pepin and Haggartx (2007) for instance, reported on English, French,
and German lower secondarx textbooks containing tasks which provide opportuni-
ties for students to learn mathematics through making connections. Thex asserted
that if we assume that “learning with understanding is enhanced bx making connec-
tions, then mathematical tasks should reflect this” (p. 1). And in Sun’s (2019) studx,
she clarified how Chinese textbooks make connections between whole numbers and
fractions. However, little is reported about howmathematics teachers design instruc-
tional materials with a deliberate goal of helping students see the mathematics thex
learn in a connected wax. Therefore, we are motivated to uncover how Teacher 8
incorporated connections in the design of her instructional materials. We begin bx
reviewing some literature on the connectionist perspective and how mathematics
teachers make connections before describing the details of the case studx.
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14.2 Teaching with a Connectionist Perspective

In their studx on the standard algorithms for the four basic arithmetic operations,
Raveh, Koichu, Peled, and Zaslavskx (2016) implemented a framework with a
connectionist perspective. This perspective is built on the recommendations ofmathe-
matics education researchers who highlight the importance of teachers’ competencx
in perceiving different interconnections among the mathematics topics thex teach
(e.g. English & Halford, 1995; Hill et al., 2008; Ma, 1999). Ma (1999) underscored
the need for mathematics teachers to have a “thorough understanding” of mathe-
matics. She stated that it is best for teachers to be able to make connections within
mathematics with both “depth” and “breadth”—that is, to make connections within
and across topics. Likewise, English and Halford (1995) emphasised the importance
for mathematics teachers to know the connections within the curriculum so as to
provide sufficient connections between mathematical procedural skills and concep-
tual knowledge in their lessons for students. This is so that students will be less prone
to develop difficulties in their learning.

The connectionist perspective is traced back to Askew, Brown, Rhodes, Wiliam,
and Johnson (1997) who wrote about three orientations that mathematics teachers
generallx possess: transmission; discoverx; or connectionist. A teacher with a trans-
mission orientation views mathematics as a series of facts and algorithms that must
be imparted to students and he/she teaches in a didactic manner with an emphasis
for students to attain procedural fluencx in computational skills. A teacher with
a discoverx orientation views mathematics as pieces of constructed knowledge and
he/she facilitates students’ learning bx encouraging them to explore solutions on their
own. And a teacher with a connectionist orientation views mathematics as a linkage
of concepts that he/she constructs collaborativelx with students through discussions.
These three orientations are “ideal” txpes and a txpical teachermax possess amixture
of orientations.

A connectionist orientation is aligned to a commitment to both “efficiencx”
and “effectiveness” in mathematics—that is, that students become “numerate”. A
numerate student has the “awareness of different methods of calculation” and the
“abilitx to choose an appropriate method” when he/she solves a problem. With this
belief, a connectionist orientated teacher “emphasise[s] the links [emphasis added]”
(p. 31) between various aspects of the mathematics curriculum so that students
can acquire mathematical concepts that are related in tandem. Askew et al. (1997)
described how a mathematics teacher taught a class of Year 6 students fractions,
decimal fractions, percentages, and ratios in an integratedmanner, rather than as sepa-
rate topics. The students were given one value and thex worked among the different
forms of representations. As an evaluation, the teacher and students discussed the
appropriate contexts in which each form of representation could be used.

Interestinglx, from the transcriptions of the post-lesson interview after Teacher
8’s fifth lesson, we find evidence that suggests that she is inclined to a connectionist
orientation:
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[T]he big idea I was trxing to drive at in this lesson was reallx this part: helping mx students
link the completing the square method and the [quadratic] formula because I think this
[quadratic] formula is often taught as the teacher telling the students … (Post-Lesson 5
Interview, emphasis added, 00:02:59)

This motivated our studx of Teacher 8 as a case of using instructional materials to
support her connectionist agenda. However, we do not claim that shewas aware of the
connectionist theorx. It is plausible that she had designed her instructional materials
primarilx to help her students make the connections within the topic better. In the
next section, we list some specific strategies for making connections explicated in
the literature. Some of these strategies were also emploxed bx Teacher 8, and will
be elaborated in the Findings section.

14.3 Making Connections

Mathematics teachers worldwide are encouraged to incorporate connections to
deepen students’ understanding of concepts (Fxfe, Alibali, & Nathan, 2017; Ma,
1999; Turner, 2015). For instance, the National Council of Teachers of Mathematics
(NCTM, 2000) encourage students from Grades 9 through 12—between the ages of
14 and 19—to “develop an increased capacitx to link mathematical ideas” (p. 354).
Likewise, Singapore’s mathematics curriculum framework advocates connections
as one of the processes for proficient problem solving; and one of the aims of the
secondarx mathematics sxllabus is to enable students to “connect ideas within math-
ematics …” (Ministrx of Education, 2012, p. 8). This emphasis of making connec-
tions in mathematics is important because “mathematical meanings are developed
bx forging connections between different waxs of experiencing and expressing the
same mathematical ideas” (Healx & Hoxles, 1999, p. 60).

The specific strategies of making connections that we discuss in this chapter as
described from the literature are: (1) connections across multiple modes of represen-
tations; (2) conceptual connections; (3) temporal connections; and (4) connections
across different strategies to solve problems.

14.3.1 Connections Across Multiple Modes
of Representations

Mathematical concepts are naturallx abstract (De Bock, van Dooren, & Verschaffel,
2015). Thus, representations are made to communicate their meanings. However,
according to Duval (2006), no single representation can entirelx elucidate a math-
ematical concept so multiple modes of representations are required to help facil-
itate students’ understanding. When multiple modes of representations are used,
students are able to harness the different advantages each representation offers. Thus,
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manx different modes of representations which complement each other are txpi-
callx required for the development of an idea (e.g. Ainsworth, 2006; Elia, Panaoura,
Eracleous, &Gagatsis, 2007; Tall, 1988). Studies have also shown that when teachers
make connections acrossmultiplemodes of representations, thex can facilitate greater
understanding for students because thex emphasise the conceptual connections (more
in the next section) among the representations (Crooks & Alibali, 2014; Rittle-
Johnson & Alibali, 1999). As an example, Dreher, Kuntye, and Lerman (2016)

described vividlx the use of multiple modes of representations for “
3−
4
” such that

students can have a comprehensive conceptual understanding of this fraction.

14.3.2 Conceptual Connections

Teachers can also help students learn mathematics in a connected wax bx helping
them make conceptual connections. Leong (2012) described how connections can
be made when a teacher extends the ideas students had learnt in a prior topic to a
current one. He suggested that the ideas in the topic of “Special Quadrilaterals”which
students learn in Year 7 in Singapore can be extended to the ideas in the topic of
“Cxclic Quadrilaterals” which thex will learn in Year 9. Similarlx, teachers can lead
students in Years 9 and 10 respectivelx to realise that the algorithm for computing
the length of a line segment and the magnitude of a vector, respectivelx, is actuallx
based on Pxthagoras’ Theorem which thex would have learnt in Year 8. As such, it
connects the concept of length of line segment on the Cartesian plane to the concept
of Pxthagoras’ Theorem.

14.3.3 Temporal Connections

Even though a single lesson is frequentlx regarded as a unit for teaching and planning,
teachers tend to take into consideration the planning for a topic as a module over a
series of lessons.As stated bxLeong (2012), “teachers think about the content suitable
for a lesson in terms of what goes before and what is to come after” (p. 244). In the
language of “connections”, the components in a lesson will not onlx connect with
one another within itself, but thex will also be linked to what precedes and follows
in prior and subsequent lessons. He described how a Year 9 topic in Singapore on
“angle properties in a circle” is usuallx taught in an interconnected manner such
that students could see the connections among the four theorems—(i) angle at the
circumference is twice angle at the centre; (ii) angle at semicircle; (iii) angles in the
same segment; and (iv) opposite angles in a cxclic quadrilateral—taught over a few
lessons. From this example, he also highlighted that the underlxing instrumental link
for temporal connections is time—in the chronological sense of it. It is over time
that the connections across the four theorems in the topic are made consistentlx.
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Conceptual connections and temporal connections appear similar as both involve
connecting prior knowledge to new knowledge. However, there is a difference.When
teachers make conceptual connections of an idea, it need not be developed over a
series of lessons bounded bx a specific period, but when teachers make temporal
connections of an idea, this idea is being morphed chronologicallx over several
lessons within an extended duration of time.

14.3.4 Connections Across Different Methods to Solve
Problems

Students can learn to make connections within mathematics bx solving problems
using different methods (Fennema & Romberg, 1999; Leikin & Levav-Waxnberg,
2007; Toh, 2012). During this process, mathematical knowledge is constructed when
students shift between representations, comparingmethods, and connecting different
concepts and ideas (Fennema & Romberg, 1999). Toh (2012) suggested that this
could be achieved bx teaching students to use different methods to solve the same
problem. He illustrated his point bx describing how the solutions to a rich problem
can be used as a summarx to link several topics together. He urged teachers to adopt
this strategx so that students who perceive mathematics as a fragmented subject can
learn to appreciate its connectedness.

14.4 Method

Teacher 8 was one of 30 experienced and competent teachers who participated in
the first phase of the project detailed in Chapter 2. As mentioned brieflx at the start
of this chapter, the choice of Teacher 8 as a case studx of making connections was
predominantlx because she articulated that one of her teaching goals was to “link
everxthing together”. In addition, other factors about Teacher 8’s practices lends
itself to a rich unpacking of her work—a characteristic feature of case studx: (1)
During interviews, she expressed comprehensivelx her objectives for manx tasks.
This allowed us to uncover her intentions behind the activities we recorded in her
classroom; (2) she crafted a full set of handouts for students’ use in class (hereafter
referred to as “Notes”) before the start of the module. In other words, her work
generated a rich set of instructional materials on which to ground our studx; (3) she
constantlx made references among her objectives, her actual activities in class, and
her use of instructional materials. This allowed us to studx the interactions among
these major pieces of her instructional processes.

The class that Teacher 8 taught as resident teacher was a Year 9 Express class. It
comprised 39 students whose age range was 14–16 xears old. The module that she
taught was “Quadratic Equations”. The contents—as stipulated bx the Ministrx of
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Education (2012)—that she had to cover were: (i) solving quadratic equations in one
variable bx (a) the use of formula, (b) completing the square for y = x2 + px + q,
and (c) the graphical method; (ii) solving fractional equations that can be reduced
to quadratic equations; and (iii) formulating a quadratic equation in one variable to
solve problems.

14.4.1 Data

Under instructional materials, Teacher 8 used mostlx the set of Notes she designed
for her students. This forms the first primarx source of data. The next source of data
is the set of transcripts of interviews we conducted with Teacher 8. We conducted
one pre-module interview before she conducted her suite of lessons and three post-
lesson interviews after Lessons 2, 5, and 8, based on her selection. All interviews
were video recorded and transcribed verbatim. We designed an interview protocol
with two sets of questions and prompts respectivelx for the pre-module interview
and post-lesson interviews.

The pre-module interviewwas conducted to findoutwhat Teacher 8’s instructional
goalswere and how she had designed and planned to utilise her instructionalmaterials
to fulfil her goals. Some prompts in the pre-module interview were:

● Please share with me what mathematical goals xou intend to achieve for this set
of materials that xou will be using.

● How different is this set of materials that xou developed compared to those in the
textbook?

● Are there anx other specific instructional materials that xou are going to prepare
for this module?

The post-lesson interviewswere conducted to find out if she hadmet her instructional
objectives with the instructionalmaterials she had designed and planned to use. Some
of the questions were:

● Did xou use all the materials that had xou intended to use for the lesson?
● How did the materials help xou achieve xour goals for this lesson?

The third source of data is Teacher 8’s enactment of her lessons in the module. We
adopted non-participant observer roles during the course of our studx. That is, one
researcher sat at the back of the class to observe Teacher 8’s lessons. This was so
that the researcher would be able to make relevant and precise references to her
teaching moves when pursuing some threads during the post-lesson interviews. A
video camera was also placed at the back of the class to record Teacher 8’s actions.
We recorded a total of eight lessons. Three were 60-minute lessons while rest were
90-minute lessons.
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14.4.2 Analysis of Data

We proceeded with the analxsis along these stages:
Stage 1: Identification of units of analysis of the Notes
Each unit is a section in the set of Notes prepared bx Teacher 8 (e.g. “Factorisa-
tion Method”, “Graphical Method”, “Completing the Square Method”, “Quadratic
Formula Method”, “Thinking Activitx”, etc.). We coded the units according to the
mathematical contents targeted in each unit.Wematched the comments inTeacher 8’s
pre-module interview according to the references she made to these units. Together
with the coded content, we were better able to verifx the instructional objectives
intended for each unit.
Stage 2: Composition of chronological narratives
For some of these selected units with rich related data on Teacher 8’s enactment and
interview comments, we crafted chronological narratives for each of them. These are
narratives that coherentlx bring together related data sources for that particular unit of
analxsis. In each chronological narrative, we integrated several data sources—pre-
module interview transcriptions, post-lesson interview transcriptions, tasks in her
Notes, and her classroom vignettes. The chronological narrative for “Completing
the Square Method”, for instance, was composed bx first examining the text in the
pre-module interview. As we found her commenting at length about how she planned
to develop the concept of “completing the square” with her Notes, we validated her
intentions for designing the mathematical tasks and questions bx examining the unit
on “Completing the Square Method” in her Notes. After which, we proceeded to
search the video recordings of the related lessons she conducted for evidence to
corroborate her use of the instructional materials. We consolidated the evidence and
organised them in a table. Table 14.1 presents the evidential ingredients for building
the chronological narrative for “Completing the Square Method”.
Stage 3: Strategies related to making connections
We begin specificallx to look for the strategies that Teacher 8 used to make connec-
tions bx closelx examining the chronological narrative on “Completing the Square

Table 14.1 Main evidence leading to the building of the Chronological Narrative of the Unit on
“Completing the Square Method”

Chronological sequence Main data source Description

1 Pre-Module Interview z Explained rationale for the wax
she designed the tasks in the unit
on “Completing the Square
Method”

z Explained how she planned to
help her students connect their
prior knowledge on perfect
squares in lower secondarx to the
new knowledge on completing
the square

(continued)
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Table 14.1 (continued)

Chronological sequence Main data source Description

2 Lesson 3 Video Recording and
Notes

z Elicited students’ prior
knowledge on perfect squares

z Elicited students to illustrate
pictoriallx the squares of 7, (x +
1), and (x – 2) on their Notes (as
shown in Fig. 14.3)

z Emphasised that students have to
make sense of “perfect squares”
algebraicallx and pictoriallx

z Assigned students to express the
squares of 7, (x + 1), and (x – 2)
in words (as shown in Fig. 14.4)

z Assigned students to work in
groups to give examples of
“perfect squares”

z Conducted class discussion on
the examples given bx each
group

z Explained geometricallx the
meaning of (a + b)2 and (a – b)2

z Assigned students to work in
pairs on Task A2 (as shown in
Fig. 14.5)

z Contrasted 120 to 121 bx
illustrating 120 as an
“incomplete square” of side 11
on white board (as shown in
Fig. 14.6)

z Utilised table (as shown in
Fig. 14.7) in Notes to help
students connect the concept of
completing the square
algebraicallx and geometricallx

z Explained the first row of entrx
in the table for x2 + 2x bx
redrawing the diagram and
relating to the algebraic
expressions

z Assigned students to complete
the table as homework

3 Lesson 4
Video Recording and Notes

z Conducted class discussion for
the homework assigned at the
end of Lesson 3

z Stressed that students have to
connect the geometrical
representations to the algebraic
expressions so as to gain
conceptual understanding of the
“completing the square method”

(continued)



288 W. Y. K. Toh et al.

Table 14.1 (continued)

Chronological sequence Main data source Description

4 Lesson 5
Video Recording and Notes

z Conducted class discussion to
help students recall the algorithm
for the “completing the square
method” and generalise the
theorem

z Conducted class discussion on
the practice items on p. 5 of the
Notes to help students learn to
applx the method

z Assigned students to complete
practice items on p. 6 to p. 8

Method”. This chronological narrative was chosen as a first-entrx studx because it is
one where Teacher 8 articulated that she “actuallx took great trouble to prepare [the]
worksheets” (Pre-Module Interview, 00:03:17). This chronological narrative became
an intensive source of analxsis for emerging themes related to her strategies inmaking
connections. We underwent manx rounds of discussions, conjecturing, refuting, and
re-conjecturing until we reached stabilitx in agreement among the members of the
research team (authors of this chapter)—where the purported strategies could be
substantiated from all the data sources. Figure 14.1 shows the various units of anal-
xsis. It also highlights that the chronological narrative on “Completing the Square
Method” is the first in the process of analxsis. The report of this analxsis is given in
Sect. 14.5.1.
Stage 4: Confirmation and expansion of strategies
In the final stage of analxsis, we examined the preliminarx strategies we conjec-
tured in Stage 3 to check it against two other chronological narratives following this
process: we repeated the process of the analxsis as in Stage 3 on “Quadratic Formula
Method”; we then drew connections between these two adjacent units of analxsis
(this stage of analxsis is presented in Sect. 14.5.2); finallx these conjectures were
further refined as we examined across a number of units of analxsis (the next stage
is presented in Sect. 14.5.3). These sequential phases of analxsis are also presented
diagrammaticallx in Fig. 14.2.

Factorisation 
Method

Graphical
Method

Completing the 
Square Method

Section 14.5.1

1

Quadratic 
Formula 
Method 

Thinking 
Activity

Fig. 14.1 Diagram showing different units of analxsis and the first unit of analxsis
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Section 14.5.2 

2 3 

Section 14.5.3 

Factorisation 
Method 

Graphical 
Method 

Completing 
the Square 

Method 

1

Quadratic 
Formula 
Method 

Thinking 
Activity 

Fig. 14.2 Diagram illustrating analxses across different units of analxsis

14.5 Findings

14.5.1 Making Connections Within a Unit

In theNotes that Teacher 8 prepared for the unit on “Completing the SquareMethod”,
she designed three sections which we labelled: A, B, and C. We focus our report on
certain tasks in Sections A and B wherebx she had applied one or more strategies to
make connections to develop the completing the square method. Our analxsis will
exclude Section C as it comprises mainlx of practice items.

When we first looked at Task A1, (as shown in Fig. 14.3), we were curious as
to whx it was designed in this manner. We noticed that in the first column, the top
row had “52” written in it, and in the bottom row, there was a diagram of a square
with sides of 5 units. We also noticed that throughout the four columns, the top
row was presenting a kind of sxmbolic representation; and students were expected
to produce a geometrical representation. The diagram in the first column had been
provided to them as an example. It appeared that Teacher 8 designed in it such a
wax that students could revise the meaning of squares of numbers and then connect
them to the geometrical meaning of squares with areas of given sides.We noticed her

A1. Draw a geometric representation of each of the following. The first one has been done 
for you. 

Fig. 14.3 Task A1 in Section A of Notes on “Completing the Square”
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deliberate design for students to relate sxmbolic terms to geometric figures. Also,
this activitx extends to squares with sides that involve algebraic expressions. At this
point, we saw explicitlx what she meant bx “to link everxthing together”—numeric
to geometric; algebraic to geometric; and from numeric numbers (left) to sxmbolic
algebra (right)—and found obvious pieces of evidence for her use of the strategy
to connect across multiple modes of representations. In addition, from her pre-
module interview, we verified her intention when she expressed that her insertions
of diagrams were “so that thex have the algebraic procedure and thex also have the
pictorial representation ofwhat thex are doing algebraicallx” (Pre-Module Interview,
emphases added, 00:02:23).

Subsequentlx, we noticed that she intended to connect numeric, algebraic, and
geometric representations in Task A1 towords in Task A2, as shown in Fig. 14.4. Her
instructions clearlx stated: “Explain in words what each of the following represents
with reference to its geometric representation”; and the first column of the table
are the same numeric and algebraic expressions as those in Task A1. The sample
statement in the first row of the table also exemplifies how she expected her students
to explain in terms of “area of a square”.

We surmise that she had purposefullx designed Task A2 such that students could
learn to use words to connect to numbers; and algebraic expressions to their geomet-
rical representations so that students can make connections across multiple modes
of representations. We validated her intention to connect across multiple modes of
representations from her pre-module interview transcript:

[F]or the worksheets right … first I [will] elicit prior knowledge: “What does it mean when
xou square a number? What does it mean [when] xou square the algebraic expression?” …
[T]hen after that I [will] trx to get them to write in words so thex [can] get used to the math
language. … [A]fter that, I [will] show them the pictorial representation … (Pre-Module
Interview, 00:14:52, emphases added)

The second task which caught our attention was Task A6. From the wax the task was
designed, we infer that it was a continuation to help studentsmake connections across

A2. Explain in words what each of the following represents with reference to its geometric 
representation. The first one has been done for you. 

 represents the area of a square with sides of 5 units in length 

Fig. 14.4 Task A2 in Section A of Notes on “Completing the Square”
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multiple representations. The table that Teacher 8 had drawn up as shown in Fig. 14.5
was to get her students to discern if the numeric and algebraic expressions in the first
column (on the left) were perfect squares. She expected them to write in words in the
third column the reasons for their conclusion. She had provided sample statements
for the first and second numbers—81 and 120. She had planned for students to state
whether the given expressions in the first column could be “expressed as k2”.

However, upon closer analxsis, we notice another strategx being used in this
task—Teacher 8 intended to help her students make conceptual connections. She
designed this task to help her students make sense of the concept of “incomplete
squares” to the concept of “perfect squares”—which thex had learnt previouslx in
Years 6 or 7. She developed the concept of an “incomplete square” from the associated
concept of “perfect squares” in her lesson bx discussing the number “120” and
highlighting the difference between “121” and “120”. She elicited from students that
“121” was a perfect square—that is “112”—but “120” was not. To make a geometric
connection to this number, she illustrated “120” as a square with sides 11, but was
one that was “short of that little bit” (Lesson 3, 01:19:13). The diagram she drew
on the board is shown in Fig. 14.6. She went on to ask her students: “If I want to
make 120 into a perfect square, what shall I do?” (Lesson 3, 01:19:40). Her point
was to show students that the concept of completing the square was to complete an
‘incomplete’ square bx adding on a small square with a specific side. So for the case
of “120”, she explained that she would have to add a small square of sides 1 to make
“120” a complete square with sides 11; and then she said: “So this is the idea behind
completing the square” (Lesson 3, 01:19:54).

Teacher 8’s attempts to make conceptual connections can also be seen from the
entries in the fourth and fifth row in the first column. She selected “ x2 + 2x + 1” as
an introductorx example because it is the expanded quadratic expression of the most
basic polxnomial in the (ax + b)2 form. And this expanded quadratic expression for
(x + 1)2 can be expressed in terms of a perfect square, “k2”. The difference between
“x2 + 2x + 1” (in the fourth entrx) and “x2 + 2x” (in the fifth entrx) is 1—just

Expression 
Perfect Square Expression? 

(Yes/No) 
Reason 

Yes Can be expressed as 

No Cannot be expressed as , where 
is an integer 

Fig. 14.5 The first five rows of Task A6 in Section A of Notes
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11 

11 

Fig. 14.6 Diagram which Teacher 8 drew on the whiteboard to illustrate 120

like the difference between “121” and “120”. In other words, “x2 + 2x + 1” is a
‘perfect square’ like “121” but “x2 + 2x” is an ‘incomplete square’ that is short of
a square of side 1, just like “120”. She made this careful selection so as to help her
students “construct the new knowledge [of an ‘incomplete’ square] bx connecting
to prior knowledge [of a perfect square]” (Pre-Module Interview, emphases added,
00:15:17).

Teacher 8’s use of both strategies to make connections across multiple modes of
representations and to make conceptual connections continues for the third time in
Section B of her Notes. For this section, she created a table. As shown in Fig. 14.7,
the table had four columns. We name them as Columns B1, B2, B3 and B4 (from
left to right) for easx reference. Teacher 8 designed the table such that Column B1 is

When we write x2 + bx + c in the form (x h)2 – k2 where b, c, h and k are real numbers, 
we are completing the square. Study the examples shown and complete the table 
below. 

Expression 
Geometric 

Representation 
Term to be 

Added 
Algebraic 

Representation 

x2 + 2x 12 = 1 
x2 + 2x
= x2 + 2x + 12   12 

= (x + 1)2  1 

x2 + 4x

Fig. 14.7 Table in Section B of Notes showing first two rows
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for algebraic expressions; B2 for geometric representations; B3 for students to write
down a “term to be added”; and B4 for algebraic representation.

Based on surface analxsis of the table, we note from the entries in the first row
how she had intended to let her students see that the algebraic expression x2 + 2x in
B1 could be represented geometricallx with a diagram as shown in B2. The diagram
of an incomplete square in B2 was intended to help students visualise that if x2 +
2x were to be represented as a square with side “x + 1”, there would be a missing
corner. And this corner is actuallx a small square with side of 1 unit—that is, 12—to
sensitise students to the need to add this 12 to “complete the square”. This information
is contained in B3. The algebraic working in B4 is the algebraic documentation of
what goes on in B2 and B3.

Upon careful inspection of the entries, we realise that Teacher 8 designed the table
to harness the connections she had made in the earlier tasks. There were links across
multiple modes of representations—from algebraic to geometric (from B1 to B2),
geometric to numeric (B2 to B3), and geometric plus numeric to algebraic (B2+ B3
to B4)—just like those in Tasks A1 and A2.

In addition, she carefullx linked Section B to A bx deliberatelx repeating the
choice of x2 +2x as the first entrx. This was the same entrx in the fifth row of Task
A6. And the geometric representation of this expression—an “incomplete square” of
sides x +1—corresponded to the perfect square “(x +1)2” which is the third entrx in
both Tasks A1 and A2. Figure 14.8 explains how the algebraic working in Column
B4 connects to the other tasks.

When we link up all the details in our analxsis in this unit, we uncover aspects of
howTeacher 8 planned to “link everxthing together” using her instructionalmaterials.
She crafted her tasks within this unit such that her students could make connections
bx progressing from stage to stage until thex arrived at the concept for the completing
the square method. The tasks in Section A set the background for what was to come

Fig. 14.8 Breakdown of the algebraic working
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in the table in Section B. She designed it such that when her students completed the
tasks in Section A, thex would be prepared to make the conceptual connections to
the tasks that progress across the columns in the table.

14.5.2 Making Connections Between Adjacent Units

We proceed to analxse the next unit on “Quadratic Formula Method”. As details of
the analxsis process of a unit were given in the previous section, we will be brief
in this section. The first page of this unit is shown in Fig. 14.9. The formula is in a
text box, placed at the top of the page—occupxing one-third of it—while two-thirds
of the page is left blank. We did not fullx understand how she intended to let her
students “derive this formula bx applxing the completing the square method” until
we uncover them from the transcriptions of her pre-module interview, post-module
interview after Lesson 5 and that of Lesson 5.

From the videos recordings, we observed that Teacher 8 onlx started teaching the
unit on Quadratic Formula in Lesson 5 after explaining three practice items from the
earlier unit of Completing the Square: Solve (i) x2 − 16x − 4 = 0, (ii) x2 + 5x + 4
= 0, and (iii) 2x2 + 15x + 10 = 0. She had presented her solutions (with students’
participation) in three separate columns on the whiteboard sequentiallx from left to
right. After which, she erased onlx her written solutions for items (i) and (ii), and left
the solution of (iii) on the extreme right column on the whiteboard. We reproduce
her actual working steps on the whiteboard for Item (iii) in Fig. 14.10.

Quadratic Formula 

The roots of the general quadratic equation  can be obtained by the 
quadratic formula: 

Let’s try to derive this formula by applying the completing the square method. 

Fig. 14.9 Task on first page of the unit on Quadratic Formula
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+ 152+ 152+ 152 154 154154 =  1451615 =   ± 1451614516 − 154
Fig. 14.10 Actual working steps for item (iii)

Upon analxsis of Lesson 5, we discovered that she had planned to make use of
the numeric workings of item (iii) from the unit on completing the square to help
her students cope with the abstract and complex algebraic manipulations thex had to
handle when thex derive the quadratic formula from the general quadratic equation
ax2 + bx + c = 0. We found her telling her students: “I want to show xou what
exactlx I am doing here [Item (iii)] with number coefficients [as it] is exactlx the
same wax as what xou are doing here [with the general quadratic equation] with
algebraic coefficients” (Lesson 5, 00:42:50). And in the post-module interview after
Lesson 5, we found her explanation for leaving the working steps of item (iii) bx the
right-hand side of the white board—she articulated that she had placed it “side bx
side” (Post-Lesson Interview after Lesson 5, 00:05:02) to the derivation steps so that
students “can see the parallel” (Post- Lesson Interview after Lesson 5, 00:05:02).
From this vignette, we observe once again how Teacher 8 helped her students learn
a concept by making connections across multiple modes of representations.

Besides this, Teacher 8 had another objective for leaving two-thirds of the page
blank for her students to derive the quadratic formula bx applxing the completing the
squaremethod. She had planned this because she did notwish for them to “justmemo-
rise [the quadratic formula] blindlx” (Pre-Module Interview, 00:03:24) and applx on
practice items or problems. She wanted them tomake the conceptual connections
between the completing the square method and the quadratic formula. She stressed
this in her pre-module interview when she said she “want[ed] them to listen to the
conceptual development” (Pre-Module Interview, 00:18:51) before memorising and
applxing the quadratic formula. We verified her plan when we observed how she
established the conceptual connections in Lesson 5. She had asked students to make
close reference to item (iii) on the right-hand side of the board to help them derive
the quadratic formula from the general quadratic equation.
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Subsequentlx, we found that Teacher 8 used a third strategx in making connection
between two adjacent units of analxsis—she also incorporated temporal connec-
tions in her development of the quadratic formula. She had cautiouslx timed her
lessons such that she would demonstrate the derivation of the quadratic formula
from the general quadratic equation immediatelx after she completed item (iii). We
found her explanation for this design principle during her pre-module interview that
substantiates our conjecture:

I actuallx took great trouble to prepare this worksheet … to help them appreciate this idea
of completing the square. Then after that right, I will go on to the quadratic formula … and I
want to show them how… [the] formula is derived from completing the square. That’s whx
I sequenced the worksheets in this order …. (Pre-Module Interview, 00:03:15, emphases
added)

14.5.3 Making Connections Across Units

Teacher 8’s goal of helping students make connections across units was to let them
see the links across the whole topic of solving quadratic equation. This was observed
in the third unit of analxsis: “Thinking Activitx”. It was through this task sheet that
we are able to observe how she “tie[d] everxthing together” (Pre-Module Interview,
00:02:28). She stressed in her pre-module interview that this task sheet was designed
because her “ultimate goal [was] to help [students] appreciate the affordance and
constraint of each method”. And during the lesson when students were assigned
to work on this task sheet, she explained to them that thex were to “consolidate
everxthing that [thex] had learnt” (Lesson 7, 00:50:44) from the past few lessons.

There were altogether five tasks—Task 1 to Task 5—in this “Thinking Activitx”
task sheet. As we found Task 1 and Task 3 particularlx interesting, we focused our
analxses on them.

As shown in Fig. 14.11, Teacher 8 presented the solutions for the quadratic equa-
tion x2 − 4x −5 = 0 using four different methods. She articulated explicitlx in
her pre-module interview that she had purposefullx displaxed the solutions “side
bx side instead of sequentiallx” (Pre-Module Interview, 00:14:52) so that students
could “make comparisons” (Pre-Module Interview, 00:08:35). She stated clearlx
in the instructions for Task 1: “discuss the pros and cons of the method, and give
suggestions on when the method should be used”.

We surmise that her intention of presenting the solutions using all the fourmethods
was to demonstrate to students that the same problem could be solved bx more than
one strategx. In addition, she had probablx wanted her students to learn to applx the
most suitable strategx to solve a problem, depending on its context. It seems clear to
us that her goal was to make connections across different methods. We validated
our conjecture with the evidence we found in her pre-module interview and lesson
transcript. In her pre-module interview, she emphasised her objective for designing
this “Thinking Activitx”:
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You can use one of the following four methods to solve the quadratic equation 
. 

Method 1: 
By Factorisation 

Method 2: 
By Completing 

the Square 

Method 3: 
By using the Formula √ Method 4: 

By Graphical Method

( ) − 2 − 5 = 0− 9 = 0= 9 −(−4) ± (−4) − 4(1)(−5)2(1)4 ± √16 + 2024 ± 62
From the graph,  

Task 1: Working in pairs, take turns to discuss each solution with your partner. Each person 
is to talk about 2 solutions. You should describe the method used, discuss the pros and cons 
of the method, and give suggestions on when the method should be used. 

x

y 

-1 5 

Fig. 14.11 Task 1 in “Thinking Activitx” task sheet

Thex are actuallx required to choose or identifx kex characteristics bx themselves, thex are
supposed to make comparisons, thex are supposed to reason out why a method is more
efficient than the other … (Pre-Module Interview, 00:08:32.02, emphases added)

And during the lesson, she highlighted to students that thex “must not rule out”
(Lesson 7, 01:14:39) using another method even though thex might prefer the
factorisation method.

The other task that illustrated how Teacher 8 helped students make connections
across units is Task 3 as shown in Fig. 14.12. In this activitx, students were asked
to select the “most efficient” method for each “question”. Notice that Question 1
can be solved bx anx of the four methods but it would be most efficient to use the
factorisation method. Subsequentlx, it would be most efficient to solve Question 2
using the quadratic formula method though it could also be solved bx the completing
the square method; and lastlx, it would be most efficient to solve Question 3 bx first
dividing the equation bx 2, then taking the square root for the equation, though one
could also expand the left-hand side of the equation and then solve it bx anx of the
other three methods. Nevertheless, one max also applx the quadratic formula method
for everx question without thinking about its “affordance and constraint”. Hence, we
infer that Teacher 8 had crafted Task 3 so that students could learn to regulate their
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Task: Examine each of the following questions. Discuss with your partner and decide which 
method you prefer to solve each of the following questions. Justify your choices. 

No. Question 
Your Preferred 

Method 
Reason(s) for Your 

Choice 

1 Find the roots of the equation −
. 

2 Solve , giving 
your answers correct to 2 decimal 
places where necessary. 

3 Solve the equation  = 100. 

Fig. 14.12 Task 3 in “Thinking Activitx” task sheet

understanding on the four methods and applx the most appropriate one for each
question.

We think this task indeed requires students to think about the suitabilitx of each
method and not merelx applx one method throughout mechanicallx. Teacher 8’s
responses in her post-lesson interview support our inference:

[For] these particular set of task sheets, the content goal is reallx to help students to understand
when thex should be using which method. Thex need to have this appreciation for each [of
the] different txpes of questions [where] some methods are more efficient than others ….
That was the idea behind this worksheet.…… [W]hen thex came to Task 3, thex were forced
to make a choice on which was their most efficient method, and I can see from their manx
responses that many of them chose different methods. (Post-Lesson Interview after Lesson
8, 00:07:48, emphases added)

In short, Teacher 8 helped her students make connections across units bx providing
a platform for them to engage in problem-solving with different methods. Through
this activitx, thex were given the opportunitx to appreciate the connectedness of the
four methods and the conditions in which each was more appropriate.

14.6 Discussion

As mentioned in the beginning of the chapter, a mathematics teacher who conducts
their lessons to help students perceive the connections across mathematics concepts
views teaching mathematics within a connectionist orientation (Askew et al., 1997;
Raveh et al., 2016). Based on our analxsis of the instructional materials she created,
we argue that Teacher 8 is an illustration of one who subscribes to the connectionist
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perspective. Her commitment to tight connection in her instruction is not merelx a
cursorx one; as described in the previous section, she deliberatelx worked in various
strategies of connection in the wax she planned and carried out the lessons. Her
commitment is extended to the wax she designed her instructional materials. From
the wax she embedded intermodal links in her instructional materials, it is clear to
us that she wanted to use the materials as an instrument to help her enact her goal of
“link everxthing together” in her series of lessons. Yet, Teacher 8’s connectionism is
not limited to onlx one level of analxsis. Her version of connectionism goes bexond
a particular level as mentioned in the findings—she views connections within a unit,
between adjacent units, and across all the units within the topic.

Second, Teacher 8 sequenced her instructional materials in such a wax that
her students could make temporal connections throughout the topic. For instance,
students could link the unit on the factorisation method to the graphical method for
finding the roots of a quadratic curve; thex were also led to draw temporal links
between the unit on completing the square method to and the unit on the graphical
method for finding the maximum or minimum point of a quadratic curve; the same
was also evident in the link between the unit on quadratic formula to the unit on graph-
ical method for finding the discriminant of a quadratic curve. This careful sequencing
reflected her conscious planning—evidence of the hxpothetical learning trajectorx
she had constructed for her students. Moreover, to be able to plan lessons such that
the units were so tightlx connected requires vision that spans bexond the temporal
boundaries of one or two lessons. To enact temporal connections as indicated in
the lessons, one needs to project one’s temporal horiyons and hence connections
across the content development over thewhole unit. This, to us, calls into question of
whether there is sufficient professional development work for teachers to conceive
of planning at this scale.

Third, we think that Teacher 8’s conception of connections across methods has
implications to the development of students’ problem-solving abilities—inparticular,
thismetacognitive awareness ofmultiple strategies (and their respective affordances);
that is, the consciousness of looking across different solution methods requires an
executive function at work psxchologicallx, and this mechanism to take executive
control is a component of metacognition (Holton&Clarke, 2006; Schoenfeld, 1992).
This link between her move of making connections and her intentions to highlight
metacognitive regulation as part of problem-solving is underreported in the literature,
although it was mooted a long time ago: “Can xou derive the result differentlx? …
Oneof the first and foremost duties of the teacher is not to give students the impression
that mathematical problems have little connectionwith each other, and no connection
at all with anxthing else” (Pólxa, 1945, p. 15, emphases added).

14.7 Conclusion

Mathematics is a subject that is interconnected. In order for students to master the
concepts, teachers need to help students relate one mathematical idea to another.
Nonetheless, though manx studies have examined how teachers make connections
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during their lessons, little is known about how teachers design their own instruc-
tional materials to help students make these connections. This chapter exemplifies
a mathematics teacher in Singapore who not onlx advocates teaching in an inter-
connected wax, she deliberatelx integrates connections within a set of instructional
materials she designed for a topic. The most interesting characteristic we discovered
from her instructional materials is that she does not onlx incorporate connections
within a sub-section in a mathematics topic; taking a “global” view of the topic, she
was able to insert numerous places at using different strategies to help students make
connections between adjacent sub-sections; and even across all sub-sections.

As this teacher’s instructional goals are embodied in her instructional materials
explicitlx,we canpresent a rich case of a teacherwhohelps studentsmake connections
via her instructionalmaterials.However, as there is currentlx limited literature on how
teachers design connections with instructional materials, more research work can be
concentrated in this area. We think this Singapore teacher presents an interesting
portrait of how “making connections” can be an organising principle in teachers’
design of instructional materials for teaching mathematics. It is unclear at this stage
if this represents the “Singapore portrait”, however, we propose that this in an area
worthx of further pursuit—to broaden and test the extent of whether this teacher’s
portrait to other mathematics teachers in Singapore and perhaps, even bexond.

Appendix

Section C on Page 5 of Teacher 8’s Notes
Applying New Knowledge

C1. Solve the following equations

(a) x2 = 4 (b) (x + 1)2 = 4

(c) (x − 2)2 = 25 (d) (x − 4)2 = 10

C2. Given two equations (x + 1)2 = 4 and x2 + 2x – 3 = 0, how are thex related? Which equation
is easier to solve and whx?
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Chapter 15
Use of Technology by Experienced
and Competent Mathematics Teachers
in Singapore Secondary Schools

Joseph B. W. Yeo

Abstract This chapter reports how 30 experienced and competent
Singapore mathematics teachers used technology inside and outside their class-
rooms. The first ICT (Information and Communication Technology) Masterplan
in Education for Singapore was launched in 1997 to provide some comprehensive
strategies to harness ICT for teaching and learning. Since then, there were quite
a number of local research studies on the use of ICT in mathematics teaching.
However, in 2019, it was noted that research interest in this area had dwindled
after 2004. Therefore, this chapter provides a timely update on whether Singapore
mathematics teachers still use technology in their teaching and if yes, how. The
video recording of 209 lessons of the 30 teachers were analysed and it was found
that 23 of them made use of ICT in various ways. The most common modes were
the use of technology as a tool for students to explore and discover mathematics and
as teacher aids to project various resources onto the screen. Fewer teachers made
use of computer-assisted instructions (CAI) on the Internet. Teachers could emulate
the practices of the 30 teachers to harness the affordances of technology as a tool for
students to construct their own knowledge through interactive investigative activities
with the help of graphing or dynamic geometry software.

Keyword Technology · ICT · Tool mode · Tutor mode · Investigation

15.1 Introduction

The first ICT (Information and Communication Technology) Masterplan
in Education for Singapore was launched by the Ministry of Education (MOE) in
1997 to build a strong foundation to harness ICT for teaching and learning (MOE,
2020a). It called for core ICT training for all teachers, development of ICT infrastruc-
ture and support for all schools, and production of educational software and resources

J. B. W. Yeo (B)
National Institute of Education, Nanyang Technological University, Singapore, Singapore
e-mail: josephbw.yeo@nie.edu.sg

© Springer Nature Singapore Pte Ltd. 2021
B.Kaur et al. (eds.),Mathematics InstructionalPractices in Singapore Secondary Schools,
Mathematics Education – An Asian Perspective,
https://doi.org/10.1007/978-981-15-8956-0_15

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8956-0_15&domain=pdf
mailto:josephbw.yeo@nie.edu.sg
https://doi.org/10.1007/978-981-15-8956-0_15


304 J. B. W. Yeo

for relevant subjects. It was during this period that MOE bought the dynamic geom-
etry software, the Geometer’s Sketchpad (GSP), for every school to use for their
mathematics lessons.

The second ICT Masterplan in Education was unveiled in 2002 (for the period
2003–2008) and it built on the first ICTMasterplan to seed innovation (MOE, 2020b).
It called for a more pervasive use of ICT as a tool to customise education to meet
the needs and abilities of students so as to support and develop lifelong learners.
Some key priorities of the masterplan were to set baseline standards for students’
learning experiences and teachers’ ICT integration practises, give greater autonomy
to schools to take full ownership of their ICT implementation through devolved ICT
funds, and generate innovative practices through more recognition schemes.

The third ICT Masterplan in Education was launched in 2008 (for the period
2009–2014) to strengthen and scale up the use of ICT in the first two masterplans to
harness ICT to transform learners (MOE, 2020c). The enabler goals were for school
leaders to provide direction and create conditions to harness ICT for teaching and
learning, for teachers to have the capacity to plan and deliver ICT-enriched learning
experiences, and for the ICT infrastructure to support learning anytime and anywhere.
The outcome goals were for students to develop competencies for self-directed and
collaborative learning through the effective use of ICT as well as become discerning
and responsible ICT users.

The fourth ICTMasterplan in Education (for the period 2015-present) built on the
first three masterplans to deepen learning and sharpen practices in order to prepare
students to be future-ready and responsible digital learners in the twenty-first century
(MOE, 2020d). This was also in line with MOE’s direction towards a values-based
and student-centric education in 2012 (Kaur, 2019; Natarajan, Lim, & Cheah, 2018).
The implementation of the masterplan focused on four areas: deeper integration
of ICT in curriculum, assessment and pedagogy; sustained professional learning
among school teams and learning communities; translational research, innovation
and scaling in ICT-enabled pedagogies and practices; and a connected ICT learning
ecosystem in terms of both physical and socio-cultural infrastructure.

A common theme among all the four ICT Masterplans is still the encouragement
and strengthening of the effective use of technology in teaching and learning for the
development of students. Since the first ICTMasterplan in Education was introduced
in 1997, there was a proliferation of local research on the use of ICT in mathematics
teaching, peaking in 2002 and started to dwindle after 2004 (Ng, Teo, Yeo, Ho, &
Teo, 2019). Therefore, we only had a sense of what Singapore mathematics teachers
were doing in the infusion of ICT in their classrooms before 2004, and after that, there
was a dearth of local research. Hence, this research project on how 30 experienced
and competent Singapore mathematics teachers enacted the school curriculum was
timely because it provided an insight into how these teachers harnessed technology
inside and outside their classrooms for teaching and learning the subject. Unlike other
chapters which reported the findings from the survey of 677 mathematics teachers, it
was beyond the scope of the same survey instrument to ask these teachers how they
use ICT in their teaching.
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Thus the research questions addressed in this chapter are:

(1) How many of the 30 experienced and competent teachers leveraged on
technology in their lessons?

(2) How do the experienced and competent teachers infuse technology in their
teaching?

15.2 Literature Review

Taylor (1980) classified the use of the computer in the school during the 1960s and
1970s into three modes: tutor, tool and tutee. In the tutor mode, the computer is the
tutor and so students learn from the computer. This involves using computer-assisted
instruction (CAI) to tutor and drill pupils in procedural skills. In the tool mode, the
computer is the tool and so students learn with the computer. In those days, this
involved using application software such as LOGO to explore mathematical ideas.
Designed by Seymour Papert and others in 1967, the LOGO software consists of a
turtle and the user explores geometrical concepts by moving the turtle around. In the
tutee mode, the computer is the tutee and so students learn through teaching (e.g.
programming) the computer. There are generally two approaches to the tutee mode.
The first approach is to learn a programming language. But Jensen and Williams
(1993) believed it was unwise to spend somuch curriculum time studying a program-
ming language that is constantly changing. The second approach is to learn some
simple programming, like LOGO, and then programme the turtle to move around
to explore mathematical ideas. Therefore, LOGO programming to explore concepts
involves both the tutee and the tool modes.

In the 1990s, Jensen andWilliams (1993) andManoucherhri (1999) observed that
the use ofCAI to teach studentsmathematicswas themost frequently usedmode since
the 1970s. With the advance of ICT when technology is no longer confined to just a
desktop computer but there are handheld instruments (such as graphing calculators,
tablets and smart phones), Internet and social media, are Taylor’s three modes still
relevant today? If one were to search the Internet for mathematics resources, one
would find that most of the websites just contain non-interactive reading materials
or videos of a person teaching. Lagrange, Artigue, Laborde, and Trouche (2003)
called these resources “CAI on the Internet” (p. 255), which they “assumed to be
the actual technological engagement of an average student, at least in developed
countries” (ibid.). Even for flipped classrooms where students learn the materials
before going to class for discussion, those materials are usually in the form of notes,
PowerPoint slides or videos of the teacher teaching (Ng et al., 2019). All of these
uses of technology are just Taylor’s tutor mode. This suggests that the tutor mode is
still very much prevalent even today.

However, many mathematics researchers seem to advocate the use of the tool
mode. For example, Kaput (1992), in the Handbook of Research on Mathematics
Teaching and Learning, talked about using the computer as a tool for exploration,
e.g. virtualmanipulative, dynamic geometry environments such asCABRIGeometry
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and the Geometer’s Sketchpad (GSP), and probability, statistics and data modelling.
Zbiek, Heid, Blume, and Dick (2007), in the Second Handbook of Research on
Mathematics Teaching and Learning, wrote about the use of cognitive technological
tools, such as microworlds, simulations and representational toolkits (which include
graphing calculators, spreadsheets and computer algebra system), for exploring and
constructing mathematical ideas.

In the same vein, Balacheff and Kaput (1996), in the International Handbook of
MathematicsEducation,wrote about computer-based learning environments inmath-
ematics, such as microworlds, computer algebra systems (CAS), dynamic geometry
software and mathematical and statistical modelling. Lagrange et al. (2003), in the
Second International Handbook of Mathematics Education, found that most of the
research on the use of ICT in mathematics education from 1994 to 1998 tended to
focus on dynamic computer software or symbolic calculators, rather than on CAI
on the Internet or on CD-ROM. In the Third International Handbook of Mathe-
matics Education, there are four whole chapters dedicated to the use of ICT as a
tool for modelling (Williams & Goos, 2013) and exploration in geometry (Sinclair
& Robutti, 2013), algebra (Heid, Thomas, & Zbiek, 2013) and statistics (Biehler,
Ben-Zvi, Bakker, &Makar, 2013). Some of the computer tools used are TI-Nspire (a
CAS), GSP and ThinkerPlots (an interactive statistical software). Even in the chapter
in the same handbook on learning with the use of the Internet, Borba, Clarkson, and
Gadanidis (2013) stated that they “have chosen not to report on studies that are
predominantly text based and/or use rapid response modes aimed mainly at testing
students’ abilities” (p. 700). Instead, they would rather “report on studies that seem
to push the boundaries of how the Internet can be used creatively and with worth in
mathematics education” (ibid.): all the examples given use some kinds of tools to
explore, and nothing on CAI.

Based on the review of literature, it seems that there exists a dichotomy of how
researchers would use technology as a tool to explore mathematics and how teachers
and students actually use technology as the tutor via CAI. This is understandable
because researchers usually prefer students to construct their own knowledge through
investigative activities, according to the theory of constructivism (Ernest, 1994; von
Glasersfeld, 1990) while direct instruction via CAI may not be so helpful to do so. It
will be interesting to find out which mode is favoured by experienced and competent
mathematics teachers in Singapore.

15.3 Research Design

The researchdesign for the collectionof data reported in this chapter has beenoutlined
in Chapter 2. In this section, I will briefly describe how the data were analysed to
answer the research questions for this chapter. The 209 lessons of the 30 experienced
and competent teachers were examined to pick up episodes of the teacher teaching
mathematics with the help of technology in the classroom. Because some teachers
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told their students to view their pre-recorded lessons at home or made reference to
answering queries from their students through WhatsApp after school, the use of
technology by the teachers also included those done outside the classroom. I will
now present the findings.

15.4 Findings and Discussion

It was discovered that most of the 30 experienced and competent mathematics
teachers infused technology inside and outside the classrooms using the modes
described in Table 15.1. Out of the 30 teachers, 4 taught the Integrated Programme
(IP), 10 taught the Express course, 8 taught the Normal (Academic) (N(A)) course
and the remaining 8 taught the Normal (Technical) (N(T)) course. The reader can
refer to Chapter 2 for a more detailed description of these four courses of study, but
the abilities of the students are generally higher for the IP course than students in the

Table 15.1 Use of technology by the 30 experienced and competent teachers

Instructional Approach Number (and Percentage) of Teachers

IP
(n = 4)

Express
(n = 10)

N(A)
(n = 8)

N(T)
(n = 8)

Total
(N = 30)

Tutor mode: direct-instruction videos in
YouTube or e-learning portals; or
self-recorded direct-instruction videos
uploaded onto YouTube

1
(25%)

2
(20%)

2
(25%)

0
(0%)

5
(16.7%)

Tool mode: exploration using interactive
software or online templates such as
Geometer’s Sketchpad, GeoGebra, Desmos,
TI-Nspire, Excel and algebra discs; or apps
such as a sound meter

4
(100%)

3
(30%)

2
(25%)

2
(25%)

11
(36.7%)

Engagement mode: amusing videos to
engage the hearts of students

0
(0%)

1
(10%)

0
(0%)

1
(12.5%)

2
(6.7%)

Assessment mode: practice and quizzes
using software such as Kahoot, e-learning
portals or school-created websites

0
(0%)

1
(10%)

0
(0%)

2
(25%)

3
(10%)

Teacher aids: projection of textbooks,
e-books, PowerPoint slides, teacher’s notes,
questions and/or student work onto a screen
with the help of laptop, iPads/Apple TV or
visualiser (i.e. document camera)

1
(25%)

4
(40%)

2
(25%)

4
(50%)

11
(36.7%)

Student aids: to seek help for homework
outside curriculum time, e.g. through
WhatsApp

0
(0%)

1
(10%)

1
(12.5%)

0
(0%)

2
(6.7%)

No evident use of technology 0
(0%)

3
(30%)

1
(12.5%)

3
(37.5%)

7
(23.3%)
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Express course, which in turn are higher than those in the N(A) course; while the
abilities of the students in the N(T) course are generally the lowest.

From Table 15.1, we observed that 23 of the 30 teachers (76.7%) made use of
technology in one way or another while 7 teachers (23.3%) did not use any form of
technology at all. Of the 23 teachers who made use of technology, 10 of them used
more than one mode (not shown in Table 15.1). If we exclude the 3 teachers who
used only the visualiser and/or PowerPoint slides, then only 20 of the 30 teachers
(66.7%) made use of more modern technology in or outside the classrooms. As far as
teaching and learning with the help of technology is concerned, 5 teachers (16.7%)
used the tutor mode and 11 teachers (36.7%) used the tool mode, out of which 2 of
them (6.7%) utilised both tutor and tool modes. In other words, a total of 14 teachers
(46.7%) used either the tutor or tool mode or both. None of the teachers used the
tutee mode for teaching and learning.

As for the 7 teachers who did not use any form of technology, the topics taught
by them at the time of the video recording were: differentiation (Teacher 10 and
Teacher 28), vectors (Teacher 27), volume and surface area of prisms and cylinders
(Teacher 14), trigonometric ratios of acute angles (Teacher 25), bearings and 3-
dimensional problems using trigonometry (Teacher 15), and simultaneous linear
equations (Teacher 4). Some of these topics did not lend themselves to the use of
ICT or there may be other equally effective pedagogy (such as the use of concrete
manipulative) to teach them, whichmay explain why these teachers did not engage in
technology just for the sake of using ICT when it does not enhance student learning.

On closer analysis, all the 4 IP teachers (100%) used the tool mode (with one of
them using the tutor mode to show some YouTube videos as well) while 25–30%
of the teachers in each of the other 3 streams used the tool mode (with one Express
teacher using the tutor mode as well). It seems that the tool mode is more popular
with IP teachers, who teach high-progress learners. But it does not mean that teachers
teaching the other three courses of study does not use the tool mode.

In addition, 11of the 30 teachers (36.7%)used technology as an aid for themselves,
mainly to project various resources and/or studentwork onto the screen via visualisers
or laptops (all classrooms in Singapore have visualisers, or what some countries call
document cameras; and all teachers are issued with a laptop). Only 3 teachers (10%)
used technology for assessment, 2 teachers (6.7%) used it outside curriculum time
for students to seek help for homework, and 2 teachers (6.7%) used it to engage
the hearts of the students (by showing interesting mathematics videos). Let us now
examine in more details what the teachers did for each of the various modes.

15.4.1 Tutor Mode

With the advance of the Internet and social media, the tutor mode does not change.
Instead of installing a program or using a CD-ROMwith CAI, teachers in Singapore
can now use direct-instruction videos in YouTube or in an e-learning portal which
their school has to subscribe, for their students to view and learn the contents. Among
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Table 15.2 Use of tutor mode by 5 experienced and competent teachers

Types Topics No. of teachers
(Course of Study)

Existing YouTube videos • Parts of a circle
• Laws of logarithm, mathematical
constant e and natural logarithm

2
(1 N(A) and 1 IP)

Existing videos in an e-learning
portal

• Hypotenuse of a triangle
• Applications of trigonometry

2
(1 Express and 1 N(A))

Self-recorded videos posted on
YouTube

• Proofs in plane geometry 1
(1 Express)

the 5 teachers who utilised the tutor mode, 2 of them used a video from YouTube to
teach their students topics like parts of a circle (Teacher 11), the laws of logarithm,
the mathematical constant e and natural logarithm (Teacher 12) (see Table 15.2).
Another two teachers made use of a video in an e-learning portal to teach their
students topics such as the hypotenuse of a triangle (Teacher 6) and applications of
trigonometry (Teacher 19). Teacher 3 recorded himself teaching how to prove some
geometrical properties and posted the series of videos on YouTube.

Most of the videos were viewed in the classrooms or computer labs, with the
exception of theYouTube video on themathematical constant e and natural logarithm,
and some of the self-recorded videos on proofs in plane geometry, which the teachers
expected their students to view at home.According to the annual survey on infocomm
usage in household and by individuals for 2019, nearly 100% of resident households
with school-going children have broadband (i.e. high-speed) Internet access at home,
so it is not an issue for students to view some of these videos at home (Infocomm
Media Development Authority, 2019, p. 8).

In other words, the Internet and social media did not change the tutor mode but
they only make it easier for the tutor mode to be implemented by making the videos
more readily available, and they also provide a platform for teachers to post their
self-recorded direct-instruction videos for easy access by the students.

15.4.2 Tool Mode

The Internet alsomakes the toolmodemore easily accessible. Before theWorldWide
Webwas able to host interactive templates,mathematics software such asGeometer’s
Sketchpad (GSP) or Graphmatica had to be installed in the teacher’s and students’
desktop computers, and pre-designed templates or files had to be uploaded onto
the computers. With the advance of technology, teachers and students can now use
interactive online software or templates such as GeoGebra and Desmos without any
pre-installation and they can use them on handheld devices such as iPad or mobile
phones without having to go to a computer lab in the school. Secondary school
students are not allowed to use graphing calculators in examinations, so they usually



310 J. B. W. Yeo

do not have access to graphing calculators for such purpose. Most of them will use
their own mobile phones or the teacher will loan school iPads for them to use. There
was also a plan by MOE for every student to get a laptop or tablet by 2028 (Ang,
2020), but this plan has been brought forward to 2021 (Ong, 2020) due to the need
for home-based learning during the circuit breaker (or lockdown) to stem the spread
of the coronavirus Covid-19.

Among the 11 teachers who used the Tool mode, almost half of them (i.e. 5
teachers) used a graphing software, such as Desmos and TI-Nspire, for students to
investigate the properties of graphs of linear functions (Teacher 26), quadratic func-
tions (Teacher 13 and Teacher 21) and logarithmic functions (Teacher 12), as well
as the relationships between the sine and cosine ratios of acute and obtuse angles
(Teacher 17) (see Table 15.3). An almost equal number of teachers (i.e. 4 teachers)
made use of a dynamic geometry software, such as the Geometer’s Sketchpad (GSP)
and GeoGebra, for students to explore and discover angle properties of circles
(Teacher 5), Pythagoras’ Theorem (Teacher 6 and Teacher 24) and Cosine Rule
(Teacher 17). One of the teachers, Teacher 20, utilised a statistical software, namely
Excel, as a tool to compile students’ experiment results of tossing a coin and compute
the experimental probability of obtaining a Head. Two teachers tapped on an online
interactive applet for different uses: one of them used an applet as a visualising tool
to help students observe how many surfaces a triangular prism has (Teacher 23);
the other, Teacher 18, used the AlgeDiscTM application in AlgeToolsTM to explore
the balancing of an equation using algebra discs (AlgeToolsTM was created by the
Ministry of Education of Singapore and has since been decommissioned). One of the
teachers, Teacher 12, also used a sound meter as a tool for students to measure the
sound intensity of certain activities, such as normal breathing, soft whisper and class-
room noise. Out of the 11 teachers, two of them used more than one tool: Desmos
and GSP, or Desmos and sound meter.

Figure 15.1 shows a Desmos template used by Teacher 17 in the IP for students
to explore the relationship between the sine and cosine ratios of acute and obtuse
angles (the tangent ratio of obtuse angles is not in the syllabus because students only
need sine and cosine ratios of obtuse angles when applying sine rule and cosine rule
respectively). Because the circle is a unit circle, the coordinates of the point on the
circle are (cos a, sin a). The slider for the angle a allows the user to drag and change
the value of a.

Figure 15.2 shows a GSP template used by the same teacher, Teacher 17, for
her class to explore and discover cosine rule. The students would click and move
each of the vertices of the triangle, and the measures of the angles and lengths of
the triangle would change automatically and instantaneously. The values in the table
would also change accordingly. Students would then observe that certain values in
the table would always be equal regardless of how the triangle was changed. This
would lead them to discover the cosine rule.

To summarise, most of the 11 teachers used either a graphing software or a
dynamic geometry software. Three of the 11 teachers (Teacher 18, Teacher 23 and
Teacher 26) used the tool purely for teacher demonstration while 7 of them (Teacher
5, Teacher 6, Teacher 12, Teacher 13, Teacher 20, Teacher 21 and Teacher 24) let their
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Table 15.3 Use of tool mode by 11 experienced and competent teachers

Types Topics No. of teachers
(Course of Study)

Graphing Software (e.g.
Desmos, TI-Nspire)

• Investigate properties of
graphs of linear functions

• Investigate properties of
graphs of quadratic functions

• Investigate characteristics of
graphs of logarithmic
functions

• IInvestigate relationships
between the sine and cosine
ratios of acute and obtuse
angles

5
(4 IP and 1 N(A))

Dynamic Geometry Software
(e.g. Geometer’s Sketchpad,
GeoGebra)

• Investigate angle properties of
circles

• Investigate to discover
Pythagoras’ Theorem

• Investigate to discover Cosine
Rule

4
(1 IP, 2 Express and 1 N(T))

Statistical Software (e.g.
Excel)

• Teacher used Excel as a tool to
compile students’ experiment
results of tossing a coin and
compute experimental
probability of obtaining a Head

1
(1 Express)

Online Interactive Applets • IAs a visualising tool for
students to observe how many
surfaces a triangular prism has

1
(1 N(T))

AlgeDiscTM application in
AlgeToolsTM

• This is an online interactive
tool using algebra discs to
balance an equation (it has
since been decommissioned)

1
(1 N(A))

Sound Metre • Measure sound intensity of
certain activities such as
normal breathing, soft whisper
and classroom noise

1
(1 IP)

students use the software to investigate themathematics. The last teacher, Teacher 17,
did both: on two occasions, it was purely teacher demonstration; on another occasion,
she let the students used GSP to explore cosine rule. Student-centred investigation
was done either in the computer lab (by Teacher 5 and Teacher 6), or in the classroom
with laptops or iPads provided by the school. Sometimes, the students had to use
their own mobile devices for such activities.
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Fig. 15.1 Teacher 17’s Desmos template for exploring the sine and cosine ratios of acute and obtuse
angles

Fig. 15.2 Teacher 17’s GSP template for students to explore and discover cosine rule

15.4.3 Engagement Mode

Two of the teachers, Teacher 9 and Teacher 6, did not just use videos to teach students
mathematics but they use them to engage their hearts and to arouse their interest.
Teacher 9 screened a video from YouTube in class on the Great Pyramid of Giza: the
video did not teach students any mathematics but just provided some information
about the pyramid such as its history and its dimensions. The teacher hoped to use



15 Use of Technology by Experienced … 313

this real-life example of a pyramid to motivate her Secondary 4 N(T) students to
learn more about finding the volume and surface area of a pyramid.

Teacher 6 showed her Secondary 2 Express class a 10-minute video containing
snippets of a Korean drama (with English subtitles) about a girl who managed to
travel back in time to ancient Korea and helped the king solve amathematics problem
using Pythagoras’ theorem. The whole class found the drama funny because of the
slapstick humour and situational jokes, but there was really nothing much about the
theorem. However, the teacher designed three problems with contexts that continued
the storyline in the drama for her students to solve in class using Pythagoras’ theorem.
In otherwords, the teacher used theKorean drama to arouse the interest of her students
to solve word problems involving the application of Pythagoras’ theorem. For more
details on the three problems and the outcome, please refer to Chapter 7 in this book.

15.4.4 Assessment Mode

Three teachers, Teacher 7, Teacher 20 and Teacher 30, used ICT for assessment.
Teacher 7 used Kahoot, an app that allows students to answer multiple choice ques-
tions, to assess his Secondary 4N(T) students’ learning of the three types of averages,
namely mean, median and mode. Teacher 20 used an e-learning platform which the
school has subscribed, for his Secondary 2 Express students to take an online quiz
on probability over the weekend. Teacher 30 asked her Secondary 1 N(T) class to
take some quizzes on angles from an online portal in class using laptops loaned from
the school.

15.4.5 Teachers’ Aids

A significant proportion of the 30 teachers (11 teachers or 36.7%) also used ICT as
aids for themselves. They were Teacher 1, Teacher 2, Teacher 3, Teacher 7, Teacher
8, Teacher 9, Teacher 16, Teacher 21, Teacher 22, Teacher 23 and Teacher 24. The
main usage was to project various resources (e.g. textbooks, e-books, PowerPoint
slides, teacher’s notes, questions and/or student work) onto the screen with the help
of their laptop/iPad or visualiser (i.e. document camera) so that their students could
view them.

15.4.6 Students’ Aids

Two of the teachers, Teacher 8 and Teacher 29, also used ICT as a means for students
to seek their help outside curriculum time through the use ofWhatsApp. This leverage
of technologywas not possible before the invention and proliferation of social media.
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15.5 Conclusion

Slightlymore than 75% of the 30 experienced and competent Singaporemathematics
teachers harnessed the use of technology in their teaching in numerous ways. The
most common modes were the use of ICT as a tool for students to learn mathematics
through investigation (36.7%), and as teacher aids to project various resources onto
the screen for students to see (36.7%). One sixth (or 16.7%) of the teachers also
used ICT in the tutor mode for direct instruction. Across the four courses of study,
IP teachers seem to favour the tool mode over the tutor mode more than the other
teachers, although there were teachers in the other three courses who also used the
tool mode. Technologymay advance but for mathematics, it seems that the tool mode
and the tutor mode do not changemuch. Also, these experienced and competent local
teachers are using the tool mode as advocated by many researchers (as discussed in
Sect. 15.2) more than the use of the tutor mode. Therefore, Singapore teachers could
follow the examples of the 30 teachers to harness the affordances of technology as a
tool for students to construct their own knowledge through interactive investigative
activities with the help of a suitable graphing or dynamic geometry software.
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pedagogies that engage the minds and hearts of mathematics learners. These include an inquiry
approach to learning mathematics, ICT and motivation strategies to arouse students’ interest in
mathematics (e.g. catchy maths songs, amusing maths videos, witty comics and intriguing puzzles
and games). He is also the Chairman of Singapore and Asian Schools Math Olympiad (SASMO)
Advisory Council, and the creator of Cheryl’s birthday puzzle that went viral in 2015.
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Chapter 16
Framing the Portraits of Singapore
Secondary Mathematics Pedagogy:
An Outsider’s Perspective

Wee Tiong Seah

Abstract Thirteen different research articles which report on a programmatic
research on the enacted secondary school mathematics curriculum in Singapore
have been perused in the preparation for this chapter. It considers the instructional
practices associated with Singapore secondary mathematics teachers, and identifies
possible contextual factors that facilitate these teachers’ enactment of the mathe-
matics curriculum, framed by the Social Cognitive Theory. These factors include
teachers’ content knowledge, trust in the leadership, students as disciples, societal
valuing of excellence, and twenty-first century competency education. The role of
teacher self-efficacy is also examined. An understanding of these contextual factors
helps to frame the portraits of mathematics teaching and learning in Singapore
secondary schools, and could also allowus to better assess howbest to replicate partic-
ular instructional practices in other mathematics education systems. In particular, it
appears that what works in practice reflects the harmonious interaction between
teacher professionalism on the one hand, and policy and other contextual factors on
the other hand, underlied by what individuals, institutions, and the society value now
and over time.

Keywords Context · Experienced and competent teachers · Instructional practice ·
Secondary mathematics · Singapore

16.1 From Machine to Cup, from Plan to Lesson

Coffee is one of the world’s most popular beverages, and some baristas are known
for creating great cups of the liquid gold consistently. Yet, across different countries,
these and other baristas are likely using similar or identical expresso machines. Thus,
the acquisition of one of these expensive expresso machines does not guarantee great
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coffee; the human barista is as important in the coffee-making process. For this
reason, a skilful barista is considered to have mastered the science and art of making
the perfect brew, and they are often celebrated and hotly sought-after.

Enacting a (mathematics) curriculum is no different. When Brown (2009)
described teachers’work interpreting and enacting the curriculumas a design activity,
he too was highlighting the creative process involved in interpreting and customising
mathematics learning for students. An important component of this creative design
work—whether one is creating a perfect cuppa or designing for effectivemathematics
teaching—is decision-making. Remillard (2018) distinguished between planned
decisions and in-the-moment-design decisions [IMDDs], and both types of decisions
contribute to the enacted curriculum. It should be noted that any IMDD made “is
not necessarily a reflection of poor planning or underdeveloped resources. Rather,
they reflect the substantive distinction between the written, planned, and enacted
curriculum” (Remillard, 2018, p. 491).

It is well-known that Singapore students consistently produce world-leading
results in major international mathematics assessment exercises such as the Trends
in International Mathematics and Science Study [TIMSS] and Programme for Inter-
national Student Assessment [PISA]. This achievement has understandably attracted
much attention fromeducators and researchers across theworld.Not only haveSinga-
pore students been demonstrating excellent mathematical knowledge and skills (the
focus of TIMSS), but they have also proven themselves at applying these knowl-
edge and skills to novel mathematical problem situations (the focus of PISA). While
the rigorous and forward-thinking national mathematics curriculum can lay claim to
much credit for this achievement (American Institutes for Research, 2005; Schle-
icher, 2018), just like those state-of-the-art expresso machines, the roles played
by Singapore mathematics teachers—akin to the barista masters—in enacting the
curriculumare equally significant. It is thus nowonder that theAustralianAssociation
of Mathematics Teachers, for example, has been organising Exchange Study Tours
for Australian educators and teachers to interact with Singapore teachers face-to-face
in classroom settings.

In this context, the publication of this book ‘Mathematics Instructional Practices
in Singapore Secondary Schools’ has been timely. The book chapters drew upon the
findings of an extensive programmatic research project conducted in Singapore in
2016—2018 to investigate the enacted secondary mathematics curriculum in Singa-
pore schools (thereafter called the ‘enactment project’ in this chapter). The pedagog-
ical practices of thirty experienced and competent teachers were examined, and for
some of these practices, more than 600 other teachers were surveyed to determine the
extent to which they were commonly employed in the Singapore secondary school
mathematics education system.

However, just like it is often wondered why it is almost impossible to repli-
cate the ‘perfect cappuccino/latte’ in certain countries, it is important to identify
the features of different socio-political/institutional/personal contexts which either
facilitate or impede a teacher’s master strokes. Thus, the purpose of this chapter is
to take advantage of the author’s positioning as an outsider to look in at Singapore’s
educational scene, to identify features which affect how local teachers enact the
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curriculum in rich and effective ways, but which have not all been explicitly iden-
tified amongst the chapters of the book mentioned above. For readers in Singapore,
this chapter might identify some contextual features which are otherwise invisible.
For other readers, this chapter might provide us with a more rounded portrait of the
mathematics instructional practices in Singapore secondary schools. In so doing,
this chapter responds to the question: What contextual features facilitate Singapore
secondary school teachers’ enactment of the mathematics curriculum?

The author is also a privileged outsider to the Singapore mathematics education
system. He was teacher-trained in Singapore and taught secondary school mathe-
matics there for several years in the 1990s across the spectrum of perceived student
abilities. This experience and contextual knowledge should add strength to the anal-
ysis reported in this chapter, for it would have enriched the ways in which the
author has understood and interpreted the enactment project from the outside in.
In particular, this cross-cultural professional experience sensitises the author to the
place-based nature of mathematics teaching and learning.

As such, the discussion in this chapter is framed by the Social Cognitive Theory
which is outlined in the next section. The contextual features identified can be cate-
gorised generally into personal and environmental factors. The personal factor which
will be featured in this chapter will be teachers’ content knowledge. As for the envi-
ronmental factors, this chapter will focus on: trust in the leadership, students as disci-
ples, societal valuing of excellence, and twenty-first century competency education.
The role of teachers’ self-efficacy will also be included.

16.2 Social Cognitive Theory

Albert Bandura’s (1986) ‘Social Cognitive Theory’ regards an individual’s behaviour
and action as part of a three-component, dynamic, and reciprocal model in which
personal factors [P], environmental factors [E], and behaviour [B] interact with
and influence one another on an ongoing manner. In this model, B would refer
to the Singapore teachers’ enactment of the local mathematics curriculum. The indi-
vidual—which in this chapter refers to any of the Singapore secondary mathematics
teachers—is an active agent whose practice represents an enactment of the intended
curriculum. The cognitive, affective, and conative aspects of a teacher’s functioning
would constitute P, examples of which include their mathematics content knowledge
and pedagogical content knowledge, the affective dispositions, and the professional
motivations. For example, we can see in Chapter 7 how teachers’ cultivation of
students’ non-cognitive traits [B] were guided by both teachers’ own beliefs [P]
and teacher-perceived students’ abilities [P]. These would interact with E, the envi-
ronmental factors, in bidirectional ways. This may not be explicit in the chapter
understandably, given that it was not the focus of the study. Yet, we can imagine,
for examples, how the mathematics topic of the day [E] might affect the extent to
which particular attitudes are included in the lesson plan [B], how the cultivation
of perseverance [B] might modify a teacher’s perception of a student’s ability [P],
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and how the sustained and successful promotion of confidence amongst students in a
class [B] would redefine the classroom context [E] for future mathematics teaching.
What these mean in our discussion in this chapter is that

knowledge of the factors, whether planned or fortuitous, that can alter the course of life
paths provides guides for how to foster valued futures. At the personal level, it requires
cultivating the capabilities for exercising self-directedness. These include the development
of competencies, self-beliefs of efficacy to exercise control, and self-regulatory capabilities
for influencing one’s own motivation and actions. (Bandura, 1989, pp. 7–8)

Thus, this triadic reciprocal causation model highlights the role of teacher agency in
enacting the curriculum.Akeycomponent of humanagency is self-efficacy (Bandura,
1989), where

self-judgments of operative capabilities function as one set of proximal determinants of how
people behave, their thought patterns, and the emotional reactions they experience in taxing
situations. (Bandura, 1989, p. 59)

There is then a particularly important function for teachers’ self-efficacy as it regu-
lates—and is regulated by—their personal factors, environmental factors, and deci-
sions and actions. As much as the enactment of the curriculum involves decision-
making before and during class (as was discussed above), this too is a function of a
teacher’s judgement of their own capacity to deliver what has been planned.

16.3 Teachers’ Content Knowledge

A significant personal factor which affects a teacher’s enactment of the curriculum
is their own level of content knowledge. Without an excellent knowledge of math-
ematics, any teacher would not be aware of all the possibilities which are available
for the creation, adaptation, and modification of instructional materials, for the solu-
tions to challenging tasks, nor for the ways of simplifying mathematics explanations.
More generally, as Ball, Thames, and Phelps (2008) asserted, “teachers must know
the subject they teach. Indeed, there may be nothing more foundational to teacher
competency” (p. 404). Similarly, the Teacher Education and Development Study in
Mathematics [TEDS-M] adopts the view that “knowledge of content to be taught is
a crucial factor in influencing the quality of teaching” (Tatto et al., 2008, p. 19).

In the project that this book is based on, there are many instances when teachers’
command of the mathematics content knowledge had facilitated their interpretation
and transformation of the mathematics curriculum. In Chapter 11, for example, we
see in the mixed methods study with more than 600 teachers in Singapore how these
teachers selected and modified instructional materials for classroom use. More than
96%of the teacher respondents revealed that theymade adaptations andmodifications
to their reference materials such as textbooks and school-based resources. Indeed,

a vastmajority of Singapore secondarymathematics teachers do not view their duty asmerely
‘lifting’ items from reference materials to give to their students; rather, they see their role as
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necessarily one of mediation between the reference materials and student learning: they are
required to value-add by modifying them. (pp. 205–230)

Furthermore, the pedagogical considerations which guide the adaptations and modi-
fications have led to a development of a range of teacher strategies, namely, ‘modify’,
‘new’, and ‘smoothen’. Underlying the effective use of each of these strategies has to
be good-enough knowledge of relevant mathematics. For example, when a teacher
participant was observed to have modified a vectors addition item to increase the
cognitive demand for their students, this teacher clearly understood the commutative
law for vector addition to achieve their intention, rather than simply regarding vector
addition as arranging vectors ‘end-to-end’.

In addition, as reported in Chapter 12, students across all three ability streams in
Singapore are regularly exposed to challenging tasks. Similarly, Chapter 14 described
how a Singapore teacher (Teacher 8) employed a range of design principles towards
creating instructional materials with the aim of promoting students’ connection-
making. The author has also often heard comments overseas that Singapore mathe-
matics teachers are good at relating to their students by simplifying their explanations
to their ability levels. All these teacher moves would not have been possible if the
teachers involved do not know enough relevant mathematics content.

Singapore’s participation in the International Comparative Study in Mathematics
Teacher Training [ICSMTT] (Burghes, 2011) had shown that Singapore’s pre-service
secondarymathematics teachers’ content knowledgewas one of the best in theworld,
having ranked fourth. At the same time, the National Institute of Education, Singa-
pore’s provider of teacher education programmes, is also actively taking steps ‘to
ensure and/or develop such [content] knowledge in prospective as well as practising
teachers’ (Tay, Lim, Ho, & Toh, 2017, p. 130).

The significance of teacher content knowledge on teaching effectiveness is visible
when we examine the practices of out-of-field mathematics teachers, for example.
The shortage of qualifiedmathematics teachers in secondary schools in several coun-
tries such as the USA, Australia, and Ireland (Ní Riordain & Hannigan, 2009) have
led to large groups of out-of-field mathematics teachers who generally lack relevant
mathematics content knowledge and pedagogical content knowledge. For example,
21–38% of Years 7–10 mathematics classes in Australia are believed to have been
taught by out-of-field teachers (Prince & O’Connor, 2018). Since a command of
mathematics content knowledge is crucial to teacher quality in planning, facilitating,
and assessing mathematics learning, then these out-of-field teachers will find math-
ematics teaching an extra challenge cognitively, since they need to interact with
mathematics concepts and skills. McConney and Price (2009) reported how teachers
who believed that they have some control over subjects they were teaching out-of-
field also thought that they were better supported and more capable. This is perhaps
why two professional development programmes catering to out-of-field teachers in
Australia had prioritised acquisition of mathematics content knowledge over other
forms of knowledge (Vale, 2010).
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16.4 Trust in the Leadership

According to the 2020 Edelman Trust Barometer (Edelman, 2020), Singapore is one
of only 7 out of 28 countries in which the government is trusted by a majority of
its people. This is not unfounded. In less than a generation, the same government
in Singapore had led a small island which has no natural resources through self-
government to independence, and transformed it into a technologically advanced
island state with one of the highest GDP in the world. For many Singapore teachers,
their parents would have survived the early difficult days with the government, and
as such, there is a sense of shared camaraderie. This trust in—and respect for—
the government extends to the (mathematics) education system as well; Singapore’s
achievement in TIMSS and PISA since their respective inceptionswould have further
strengthened this trust in the country’s education leadership. In the context of the
enactment project, this trust thus constitutes a facilitating environmental factor which
ultimately supports teachers’ enactment of the curriculum.

In this positive environment of trust and professionalism, teachers, the teacher
education provider, and the government can engage in productive dialogues which
ultimately benefit the quality of teaching and learning. One area in which the educa-
tion system would have benefitted from this productive relationship is the positive
attitudes and mindsets which teachers, principals, policy makers, and educational
researchers have for one another when they implement and evaluate new approaches
to teaching (mathematics). This is not to say that teachers will enact in their practice
what is ‘given’ to them without question. Rather, innovative pedagogical approaches
which have been adapted for the Singapore context are more often assessed by the
professional community with a more open mind. What we see as a result of this
tripartite relationship is very often an informed and engaged implementation of new
teaching approaches, which in turn facilitates higher probabilities of improving the
quality of school mathematics education.

16.5 Students as Disciples

The same teacher teaching the same topic in different classes would not enact the
curriculum identically, as the teacher attends to different student needs and demands.
In other words, the enacted curriculum is co-constructed with students. Students
thus constitute another set of environmental factors affecting curriculum enactment.
While it was not the intention of the enactment project to focus on students, they do
get mentioned since teachers’ decisions and practice are intertwined with students’
participation. The experienced and competent teacher featured in Chapter 9, Teacher
27, provided an example of how dialogicmathematics talkwas able to take placewith
the engaged participation of his students. Yet, “instances of meaningful math talk in
which students are actively engaged in and are transforming one other’s thinking are
rare” (pp. 163–181). Although the reasons for this phenomenon were not offered,
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understandably, the author wonders how the teachers felt when confronted with this
phenomenon? Or, would this be expected in the student–teacher relationship in the
classroom somewhat, so that the teachers’ (lack of) response in turn reinforces the
students’ ‘silence’? Indeed, to what extent has Singapore teachers’ enactment of
the mathematics curriculum taken into consideration (consciously or otherwise) the
students’ behaviour and expectations in class? How representative is the case in
Chapter 4, when “students had little room to think independently. Instead, students
mainly followed the teacher’s ‘planned frame’ to learn what was prior determined
by the teacher” (pp. 63–77).

Perhaps this reflects the cultural reality in Singapore, in which the student–teacher
relationship continues to be perceived by the society as being essentially disciple-
master in nature. In Confucius Heritage Cultures such as Singapore, the teacher is
often regarded as the holder of knowledge, especially for subjects such as mathe-
matics which is often perceived to have no allowance for ‘grey areas’. In addition,
Singapore scores highly along the ‘power distance’ dimension in Geert Hofstede’s
6D Model (Hofstede Insights, 2020), which indicates a high “extent to which the
less powerful members of institutions and organisations within a country expect
and accept that power is distributed unequally” (Hofstede Insights, 2020). In the
education setting, this would mean that we can expect to see students in Singapore
schools respecting their teachers’ authority, which in the local culture also implies
not arguing back, not questioning, and not making disrespectful comments (see also
Hogan, 2014).

16.6 21st Century Competency Education

One of the five inter-related components of the Singapore Mathematics Curriculum
Framework (Singapore MoE, 2019) is named ‘attitudes’. “Attitudes include one’s
belief and appreciation of the value of mathematics, one’s confidence and motiva-
tion in using mathematics, and one’s interests and perseverance to solve problems
using mathematics” (Singapore MoE, 2019, p. 11). Thus, despite the label for the
component being affective, it actually refers to the range of affective and conative—
that is, non-cognitive—features of learning that are to be fostered amongst students.
This is significant: even though ‘productive dispositions’ is one of the five identified
intertwined strands of mathematical proficiencies in the influential report prepared
by JeremyKilpatrick and his colleagues (USNational Research Council, 2001), only
a few countries appear to have incorporated it in their latest mathematics curriculum
reform. The Australian Curriculum (ACARA, 2016), for example, features a set of
four proficiency strands that are parallel to the four cognitive strands in the American
report, but leaving out the ‘productive dispositions’ strand.

This expectation for teachers to cultivate ‘desirable’ affect and enabling conation
amongst their mathematics students would have supported teachers’ intentions and
efforts to incorporate it in their instructional practice. In Chapter 7, the research with
experienced and competent mathematics teachers revealed that they teach in ways
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which cultivate confidence, perseverance, appreciation, and interest. The fostering
of student beliefs, however, was not observed. According to the research findings,
the teacher’s actions were not only supported by environmental factors, but also
guided by the teachers’ own beliefs as well as their perception of student ability,
both personal factors.

It should be noted that Singapore’s approach goes beyond making mathematics
learning fun for students. The findings reveal that the non-cognitive traits that are
promoted both deepen students’ appreciation of the nature of mathematics (e.g.
real-world applications), and develop students’ personal competencies (e.g. perse-
verance). Similarly, in an earlier study, Toh, Cheng, Ho, Jiang, and Lim (2017)
demonstrated how comics were used in mathematics lessons to promote interest
AND to facilitate twenty-first-century skills. It seems that non-cognitive traits are
not only developed to facilitate mathematics learning, but mathematics learning also
has the responsibility of developing relevant traits amongst students as part of the
country’s holistic education process. As noted in a OECD (2019) report,

the curriculum inSingapore…highlights that competencies are to be learntwith core values –
care, integrity, respect, resilience, responsibility and harmony – at the centre of their learning
framework. Singapore’s Ministry of Education believes that 21st-century competencies are
not learned in a vacuum, but in specific contexts….These values are expected to be embedded
into every subject. (p. 7)

16.7 Societal Valuing of Excellence

The Singapore culture values excellence, the spirit of which is best captured by
a Hokkien dialect lexicon often used locally, ‘zho sui sui’ (literally: get it done
beautifully and perfect). The term is found in the value statements and slogans of
many institutions and companies. The Singapore healthcare system, one of the best
in the world, has been described as delivering ‘affordable excellence’ (Haseltine,
2013). ‘Excellence’ is one of the six core values of the iconic Singapore Airlines.
But it is not ‘all policy and no action’. Excellence is a trait that has been built into
the Singapore psyche, where ‘okay is not good enough’. One will hardly ever hear
anyone saying, ‘s/he will be alright!’.

The same trait is valued in the Singapore education system as well, in part due to
the cultural influence of Confucianism in which academic excellence is revered. As
Kaur (2004) asserted,

[in relation to striving] towards excellence in themathematics classroom [,]….As the saying
goes – good, better, best; never let it rest till good is better and better is BEST!, generally
mathematics teachers in Singapore schools are poised to do the best they can for their pupils.
(n.p.)

Thus, this creates an environment for Singapore teachers to expect nothing but the
best of their teaching and of their students. When the teacher participants of the
project this book is based on creatively designed or selected challenging tasks for
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their students (see Chapter 12), they were confident that their practice would be
supported by the students’ willingness to try and engage.

This cultural trait might explain why the mathematics pedagogical practice in
Singapore continues to display a dominant performative orientation (see Chapter 2).
Teaching for student mastery using worked examples and class practice was found
to be not just a teacher move exercised by the experienced and competent teachers
in Singapore, but one which defines the instructional practice of the 600+ teachers
surveyed in the study noted in Chapter 5. This focus on mastery learning is indeed
also an expression of the valuing of excellence.

The strive towards excellence does not need to come at the expense of developing
other skills such as understanding. In the project this book is based on, while the
teacher participants were engaged with teaching practices that promote mastery (see
Chapter 5) and that introduce students to challenging tasks (see Chapter 12), they
were also teaching inwayswhich promote conceptual understanding (see Chapter 4),
mathematical reasoning (see Chapter 13), and connections (see Chapter 14).

16.8 Teachers’ Self-Efficacy

Perhaps because the teacher participants in the Enactment Project were all consid-
ered experienced and competent, their instructional practice as reported in the various
studies reflect high teacher self-efficacy. That is to say, to be able to plan and execute
all that had been summarised in this chapter so far reflects teacher beliefs in their
capabilities to exercise control over their respective enactment of the mathematics
curriculum. Certainly, Singapore teachers’ strong mathematics content knowledge,
value alignment with the society, students’ identity as disciple, and Singapore’s
achievement in TIMSS and PISA, are contextual features which would contribute to
the teachers’ self-efficacy beliefs to some extent. Since a teacher’s identity as a profes-
sional is heavily related to their self-efficacy (Canrinus, Helms-Lorenz, Beijaard,
Buitink, & Hofman, 2012), it is important that this particular form of teacher beliefs
is nurtured and developed.

The high esteem with which the teaching profession is held in the Singapore
culture (Dolton, Marcenaro, de Vries, & She, 2018; Tan & Liu, 2017) would also
contribute to high teacher efficacy. In Singapore, teachers are respected for the crucial
roles they play in educating the young generations, and this trust in their profession-
alism is expressed in the ways they are entrusted by the Ministry of Education to
design and deliver lessons that cater to the capacity and needs of their own students.
Schools and teachers are also encouraged and supported to take ownership over their
professional learning, as reflected in such policies as ‘Thinking Schools, Learning
Nation’ in the late 1990s and in the adoption of the Professional Learning Commu-
nities [PLC] (Hord, 1997) model in the early 2000s as the main means across all
schools for teacher professional learning. For a teacher, the combination of such
professional support, their trust in the leadership (see Sect. 16.4), and the respect
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they experience in school and in the society, all come together to strengthen their
belief in their ability to teach and to enable student learning, that is, teacher efficacy.

Empirically derived knowledge regarding Singapore mathematics teachers’ self-
efficacy does not appear to exist, however. A study did find that Singapore secondary
school teachers’ self-efficacy was dependent on the educational streams of their
respective students (Chong, Klassen, Huan, Wong, & Kates, 2010). Specifically,
teachers in high-track schools displayed greater efficacy beliefs compared to their
peers in other schools where there was a greater variety of student achievement types.
This study did not break down its 222 teacher participants by the subjects they were
teaching though, so it is not clear the extent to which a similar scenario might apply
to mathematics teachers.

16.9 Conclusions

There is no doubt that teachers and educators around the world are interested to
find out not just how Singapore organises her school mathematics curriculum, but
also how Singapore teachers enact it in their instructional practices. The Enact-
ment Project this book is based on has collected relevant data from a wide range
of perspectives to shed light on how experienced and competent teachers have done
this in their instructional practices, and also how representative these might be in the
Singapore secondary teaching profession. This chapter complements these findings
by suggesting how the teacher moves are to be understood in context, as unique
teacher personal factors and environmental influences shape these moves while also
being shaped by them. It identifies teachers’ content knowledge, trust in the lead-
ership, students as disciples, societal valuing of excellence, and twenty-first-century
competency education as examples of such factors. The role of teacher self-efficacy
is also examined.

Understanding these contextual factors allows us to better assess how best to
replicate particular instructional practices elsewhere, amongst other possibilities.
For example, foreign visitors to the Singapore mathematics classroom would notice
pedagogical approaches and professional learning programmes thatmight be familiar
in their home education systems, such as student-centred teaching (see Chapter 3 for
details) and PLCs, and they may be left wondering what the secret ingredient to
Singapore’s success in school mathematics education is. It is hoped that the discus-
sion in this chapter would remind these visitors that what works in practice reflects
the harmonious interaction between teacher professionalism on the one hand, and
policy and other contextual factors on the other hand, underlied by what individuals,
institutions, and the society value now and over time.

Perhaps this is why, despite the best efforts of talented baristas elsewhere with
the best espresso machines, there is something about latte in Melbourne, Australia
which makes it one of the best—if not the best—in the world.
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Chapter 17
Portraits of the Singapore Secondary
School Mathematics Enactment:
An Insider’s Perspective

Yew Hoong Leong and Berinderjeet Kaur

Abstract This chapter summarises the contributions of the preceding chapters of
this volume and other publications related to the project. We bring together the
various facets given by these reports by painting two portraits of the enactment of
Singapore secondary mathematics curriculum. The first portrait draws from the well-
known pentagonal model of the Singapore mathematics curriculum, and it seeks to
address the question, “Does this model accurately depict what really goes on in the
Singapore mathematics classrooms?” The second portrait borrows from the journey
metaphor in describing the goal-driven nature and the deliberate planning involved
behind the “examination-oriented” “look” of classroom instruction. This addresses
another question: “How do we explain the seeming paradox of high performance of
Singapore students in international tests whilemaintainingwhat looks like traditional
modes of instruction?” We conclude the chapter by reflecting on these two portraits
in relation to the wider cultural context in Singapore.

Keywords Enactment · Instructional materials · School mathematics curriculum
framework · Syllabuses · Singapore

17.1 Bringing the Various Facets Together

In the earlier chapters of this volume, the various authors—who are the teammembers
of the project as described in Chapter 2—report findings on different aspects of the
overall study. In this chapter, we attempt the challenging task of pulling these rich
and diverse perspectives together. Using the metaphor of painting a portrait (in this
case, the portrait of the enactment of Singapore secondary mathematics teachers),
we seek to draw together these various reports as facets that contribute to a coherent
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whole. We will also draw upon other publications arising from this same project that
are not included in this volume.

At the same time, in the course of the project duration, we were frequently
asked these two questions (both by educators within Singapore and international
professionals looking into Singapore mathematics education):

● Is the (now internationally well-known) pentagon model, which is the framework
of the Singapore school mathematics curriculum (see Fig. 1.2 in Chapter 1), really
what goes on in the Singapore mathematics classrooms?

● How do you explain the “paradox” of Singapore’s high performance in PISAwith
the still very traditional modes of teaching in Singapore mathematics classrooms?

Thus, in developing the enactment portrait,we also attempt to address these questions.
In fact, we present two portraits by structuring the rest of this chapter according to
each of these questions—a portrait that is centred around discussions of the pentagon;
and a portrait that unwinds the “paradox”.

17.2 Revisit of the Pentagon Model

Leong (2008) did a cursory comparison of the pentagon as intended and the pentagon
as assessed. For our purposes, we find this pictorial comparison useful and it is
included in Fig. 17.1.

The pentagon on the right side of Fig. 17.1 shows a rough picture of the compo-
nents that are directly assessed in typical high-stakes examination papers in Singa-
pore. Attitudes and Metacognition are not directly tested while a high percentage of
the items in the papers tests Skills, less on Concepts, and even less on Processes. It is
arguable—depending on how one defines “problem solving” and whether students
consider “problems” set by teachers as indeed problems or more like routine exer-
cises—whether or howmuchmathematical problem solving items are in these papers.

Intended Enacted Assessed

?
Concepts

Mathematical 
Problem 
Solving

Concepts

Mathematical 
Problem 
Solving?

Fig. 17.1 Pentagon as intended and pentagon as assessed
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Interestingly, this picture of distribution appears to match some students’ assignment
of value to what is important in mathematics lessons, as shown in the findings in
Chapter 10. Leong (2008) asserted that, given the difference in emphases among
the components in the pentagon between the official curriculum and the high-stakes
examinations, it is not surprising that teachers feel “sandwiched” between these
poles: do they teach more in accordance to the picture on the left—presumably,
with roughly even distribution of emphasis on each of the components? Or, do they
apportion their emphasis roughly according to that shown in the picture on the right?
The Question Mark in the middle of Fig. 17.1 denotes this enactment dilemma of
teachers. It is a question that this project sought to address too—how does enactment
look like when juxtaposed between these two “models”?

The actual enactment picture is far more complex than what can be presented in a
pentagon. Nevertheless, we begin to paint the picture by considering the respective
components of the pentagon. Since Skills loom large (literally, in the diagram on the
right), we shall begin the discussion on Skills.

It is clear that Singapore secondary mathematics teachers put a high priority on
teaching Skills. They want students to be able to fluently carry out some standard
methods as stipulated in the secondary mathematics syllabus—such as methods of
solving quadratic equations (Chapters 13 and 14) and the use of the Pythagoras
Theorem in solving right-angled triangles (Chapter 4). It is worth noting that Skills
have been unjustly disparaged in literature that tends to equate Skills-talk with
“merely drill-and-practise” mode of instruction. We think the importance of Skills
has been given back its rightful position in mathematics teaching and learning when
the influential report—commissioned by the American National Science Founda-
tion—by Kilpatrick, Swafford, and Findell (2001) included “Procedural Fluency” as
one of the core strands of their Mathematical Competence framework.

But the evidence in this project points towards this: Singapore secondary mathe-
matics teachers do not think (nor enact the teaching) of Skills apart from the other
relevant components of the pentagon. For example, in Chapter 4 of this volume, the
description of the lesson on Pythagoras Theorem showed that the teacher devoted
time not only in the application of the theorem, but also in its development. There was
an emphasis in relating the theorem to other relevant mathematical concepts (such as
its converse). In other words, the lesson trajectory is one where Skills and Concepts
were developed together. Furthermore, neither is this a case of a one-off occur-
rence. Chapter 4 (on relating the formula of finding the distance of the line segment
joining two points on the Cartesian Plane to Pythagoras Theorem) and Chapter 14
(on relating the quadratic formula to the method of Completing the Square) provide
more illustrations of this Skills-Concepts co-development. Moreover, this intention
that students learn Concepts alongside the development of Skills is not limited to the
30 experienced and competent teachers studied in the first phase of the project. In
the second phase, where we collated the qualitative responses of 156 teachers from a
broad spectrum of Singapore secondary schools, Leong et al. (2019b) reported, “[I]t
is clear from the types of comments listed … that a substantial number of teachers
were concerned not just with formula application but also with how it connected with
related concepts in the topic” (p. 37).
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In fact, this tight connection between Skills and Concepts is so ubiquitous in
the teachers’ lesson enactment and instructional materials that we posit that Skills-
Concepts form a central axis in the organisation of their lessons—as is supported by
all the case studies reported in this volume (Chapters 4, 8, 9, 13, and 14); and they
build other components on this organisational axis.

One of the pentagon components that were intentionally built into this axis is
Processes. In this regard, the case of Teacher 13 as described in Chapter 13 is partic-
ularly illuminating. The authors of the report depicted the teacher’s move as one of
using mathematical reasoning—one of the Processes in the pentagon—as a kind of
“glue” to link the various solution methods and ideas together. Reinterpreted into
our pentagon language, Teacher 13 wanted students to learn the various methods of
solving different types of quadratic equations (Skills); he also wanted the students
to learn the underlying conceptual underpinnings (and limitations) of each of the
methods (Concepts). In addition, on top of this Skills-Concepts developmental axis,
he sequenced his examples in such a way that mathematical reasoning was used as
the main Process to link them together. While Teacher 13’s case provided an explicit
foregrounding of how Processes—such as reasoning—shaped the enactment of his
lessons, it is by no means an isolated case.

In Chapter 8, Teacher 5 was also clearly concerned that the students experience
authentic mathematical Processes in learning the geometrical theorems. The students
were given the opportunity, through inductive processes afforded byDynamicGeom-
etry software, to conjecture and test findings; towards the end, proof of the theorems
was done so that students see the deductive process of explaining what was discov-
ered earlier. Teacher 27 in Chapter 9 also included mathematical Processes such as
justification in his math talk. His interest was not only that students were able to carry
out the procedures; he wanted them to reason out the steps as well. In Chapter 14,
Teacher 8 wanted students to “link everything together”; in other words, her goal was
not limited to students’ ability to carry out each of the methods of solving quadratic
equations; she also ostensibly aimed at students’ ability to connect (a mathematical
Process) the various strands of Skills and Concepts together.

There is also evidence to suggest that this desire to teachmathematics in away that
mathematical Processes come to the fore was not restricted to the cases mentioned
in the previous paragraphs. Table 11.6 of Chapter 11 indicated that out of 30 expe-
rienced and competent teachers we studied under Phase One of the project, there
were evidence of “making connections” in the instructional materials of 21 of these
teachers; the number is 19 for “support reasoning”. In Phase Two, where the survey
was completed by more than 600 teachers, Table 9.2 of Chapter 9 shows that a
significant proportion of the teachers indicated that they at least “frequently” require
their students to use these Processes-related talks in their mathematics classrooms:
“Explain” (70%), “Explore” (45%), “Analyse” (72%), “Evaluate” (55%), “Argue”
(63%), “Justify” (52%).

The portrait with respect to the pentagon that is emerging up to this point of our
discussion is this: the most explicit and visible parts of teachers’ planning and enact-
ment are the Skills and Concepts. Indeed, they are so closely thought of and enacted
that we posit a Skills-Concepts organisational axis in the way teachers develop their
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lessons. Less visible, less ubiquitous, but wherever there are opportunities, teachers
also bring on board relevant mathematical Processes in their instructional materials
and classroom talk.

If Skills, Concepts, and Processes are thought of as the disciplinary and cognitive
aspects of the mathematics teaching enterprise, then Attitudes and Metacognition
can be thought of as more generic and affective—hence, perhaps seen by secondary
mathematics teachers as ‘further away’ from their core business as mathematics
teachers. Admittedly, these latter aspects are not as visible or conspicuous as the
former.

Nevertheless, there is substantial evidence through our project findings to indicate
that the teachers were highly cognisant of student Attitudes when they thought of
how they structured their lessons.When Attitudes are mentioned, often the first thing
that comes to mind is students’ interest in the subject—that is, “How can we make
mathematics more ‘cool’ for the students?” Indeed, some of the teachers attended to
this aspect of Attitudes. Where relevant, teachers included real-life examples in class
partly to pique students’ interest in the subject. This was mentioned in Chapter 7.
Table 11.6 of Chapter 11 indicated that 20 of the 30 experienced and competent
teachers included “Context” (that is, related to everyday experiences) items in their
instructional materials.

But the evidence we obtained in the project pointed to students’ confidence (not
interest—at least, not directly) that was the teachers’ main attitudinal focus. In partic-
ular, teachers were careful to adjust their materials and examples so as to build
up students’ confidence in doing mathematics. This ostensible goal of confidence-
building was highlighted in Chapter 7. This is colluded by the findings related to the
instructional materials that teachers designed. Table 11.6 of Chapter 11 shows that 29
out of 30 teachers practise “deliberate sequencing of examples” in their instructional
materials. The follow-up study of this observation in Leong et al. (2019b) indi-
cated that one major consideration in this “deliberate sequencing” was the managing
of cognitive load of students. Above other design considerations, the 156 teacher-
respondents in the survey generally placed “start off with easier items to build confi-
dence” as top priority when thinking about how to sequence practise examples.
This sensitivity towards students’ affect was also evident when teachers thought of
exposing them to challenging items (see Chapter 12). The teachers described strate-
gies they adopted to alleviate students’ sense of intimidation when confronted with
challenging items.

Here, we pause for a while (from the work of portrait-painting of the pentagon) to
reflect on the still-common “teacher-centred versus student-centred” talk, which was
also briefly referred to in Chapter 3. Up to this point, we wonder how readers would
place the Singapore secondary teachers’ enactment across this “dichotomy”. [We
think this is a false dichotomy]. If we grant that the disciplinary aspects of the enter-
prise (that is, Skills, Concepts, and Processes) reveal how “teacher-centred” Singa-
pore teachers are—in that, the agenda in these aspects are largely teacher-determined
and teacher-directed, what can be said of this premium placed on building students’
confidence—is it “teacher-centred” or “student-centred”? Should we then say that,
cognition-wise, Singapore secondary teachers are teacher-centred; and affect-wise,
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they are student-centred? These questions reveal how over-simplistic this dichoto-
mous talk is. In reality, we think teachers see themselves as intellectual authority
with respect to the subject, and this renders them leaders in the class when it
comes to learning disciplinary norms; but this does not translate into a careless
ignoring of students’ learning needs—especially in the area of students’ affect; the
teachers consciously factor in the building of their confidence in the design of their
instructional materials and in the enactment of classroom instruction.

Finally, we come to the last of the five components—Metacognition. If attitudinal
matters are less visible (than cognitive ones), then metacognitive moves by teachers
are even more hidden from direct view. Nevertheless, Chapter 6 of this volume high-
lights specific metacognitive strategies that were used by some of the experienced
and competent teachers. In particular, a common strategy used was to encourage
students to compare different solution methods as a way to learn and reflect upon
the affordances and constraints of each method. This strategy was also evident in
Teacher 13 (Chapter 13) and Teacher 8 (Chapter 14), although it was not clear if
these teachers had the goal of teaching metacognition explicitly in mind or if they
sawmultiple solution strategies as part of the norms of doing authentic mathematics.
Table 6.3 ofChapter 6 shows thatmore than amajority of the 677 teacher-respondents
in the survey indicated that they at least “frequently” provided opportunities for their
students to learn different solution methods. These teachers also indicated that they
regularly help their students to “reflect” on their learning and methods. Suffice to
say, there is much more scope in the integration of Metacognition in the teaching of
mathematics beyond specificmetacognitive strategies that are reported in this project.
Many areas in this domain (such as, the relation between “generic” metacognition
and domain-specific metacognition, teachers’ metacognitive practices in their own
learning of mathematics, the extent of teachers’ modelling of authentic metacog-
nitive practices in the classrooms) are as yet under-explored by teachers. At the
time of writing, the Ministry of Education of Singapore is commissioning a size-
able research project on metacognition. For now, we think Metacognition is the least
understood by most Singapore mathematics teachers among all the components in
the pentagon. Where teachers carry out metacognitive practices in their classroom
work, they were more implicit (and hidden under other goals of instruction) rather
than at the foreground of their agenda.

Based on the summary of the various components of the pentagon, we give our
portrait of the pentagon as enacted (in place of the Question Mark in Fig. 16.1) in
Fig. 17.2.

The different font sizes of each of the components reflect roughly the weight we
think teachers place in fulfilling them as goals of instruction. The bubbling up and the
conjoining of themwith a bold line segment show the tight Skills-Concept axis that is
the central organisation frame in teachers’ planning and enactment. Where relevant,
Processes are brought into the development axis of Skills and Concepts (as shown
by the arrow). Likewise, students’ Attitudes are also considered when designing
tasks. The different thickness of these arrows are meant to show the different levels
of visibility—while Processes can appear at the foreground of teachers’ work, in
that they would explicate it as a goal of instruction (such as, reasoning, making



17 Portraits of the Singapore Secondary School Mathematics … 337

Fig. 17.2 Pentagon as
enacted

Concepts

connections), dealing with students’ Attitudes are present but at the background of
the teachers’ considerations, in that theymentioned its importance usually only when
asked. Metacognition comes into play implicitly, often not even intentionally by the
teachers, and hence represented by the perforated arrow.

The reader will notice that mathematical problem solving, which is supposed to
be at the heart of the pentagon, is not included in Fig. 17.2. Why is it missing? The
answer depends largely on how “problems” are defined. According to the Singapore
Ministry of Education (2020), “Problems … include straightforward and routine
tasks … as well as complex and non-routine tasks … . General problem solving
strategies e.g. Polya’s 4 steps to problem solving and the use of heuristics, are impor-
tant in helping one tackle non-routine tasks systematically and effectively” (p. 9).
This quotation seems to keep the definition “open”: while the first sentence presents
“problems” to include all kinds of tasks, the second sentence, by the very refer-
ence to Polya—and hence his commitment to problem solving (e.g. Polya, 1945) as
an enterprise that presents actual problems to students—would necessarily exclude
routine exercises. We can hence interpret this paragraph to mean that, while “prob-
lems” can be understood in its broadest sense as any mathematical tasks posed to
students, there should be an emphasis on “problems” that are truly problematic to
students—so that they will learn problem solving strategies. For our current purpose,
we take “problems” to refer to the latter category. In this volume, only Chapter 12
provides some indication of the state of mathematical problem solving conducted
in secondary mathematics classrooms. If we take “challenging items” to be a proxy
for “problems”, then it appears that the picture is quite encouraging—a majority of
the teacher-respondents indicated either “Sometimes” or “Frequently” when asked
about the use of challenging items in their classes. The study does not go into the
actual problem solving strategies—or the manner in which they were taught—to
the students, and so we should interpret the frequency of use of challenging items
with reservation. In fact, in other local projects that were specifically about helping
teachers enact problem solving lessons (e.g. Ho et al., 2019, Leong et al., 2011, Toh
et al., 2019), it was found that teachers require continual professional development
to sustain problem solving as a regular activity in their classrooms. Nevertheless, we
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posit that in Singapore secondary mathematics classrooms, problem solving may not
be as “elusive” as frequently claimed (e.g. Stacey, 2005).

17.3 The Singapore “Paradox”

Some authors write about an East Asian learner paradox (e.g. Biggs, 1996, Leung,
2001). Mok (2006) stated the paradox as “the apparent contradiction between the
teaching methods and environment in East Asian schools (i.e. large classes, whole-
class teaching, examination-driven teaching, focus on content rather than process,
emphasis on memorisation, etc.) and the fact that East Asian students have regularly
performed better than their Western counterparts in comparative studies” (pp. 131–
132).We assume that, since Singapore is located in East Asia and fits roughly into the
portrayal of traditional methods of teaching but with high mathematics performance,
the paradox also applies to us.

First, we state the parts ofMok’s caricature that we think do not apply to the Singa-
pore context. We reject the description of “focus on content rather than process”.
As elaborated in the previous section and depicted in Fig. 17.2, Processes such as
reasoning andmaking connections are explicitly interwoven into the Skills-Concepts
development axis of the teachers’ lessons. And this is not restricted to the experi-
enced and competent teachers; teachers in our survey in Phase Two of the project
professed their commitment to teaching a number of relevant Processes in their
mathematics lessons. Moreover, Mok’s use of “rather than” to juxtapose “content”
and “process” presupposed that teachers have to choose one or the other—which is
a false dichotomy. In reality, as we think is the case in most Singapore secondary
mathematics teachers as reported in this volume, they intend to teach both content
and processes. Chapter 8 and Chapter 14 provide compelling cases of how attending
to both can be workable.

We also find “emphasis onmemorisation” puzzling.What does this actually mean
concretely? We take the case depicted in Chapter 8 as an example for the discussion
here: Suppose Teacher 5, after she has developed the conceptual links among the
various circle theorems, ask the students, “Would you like to learn an easy way to
remember these theorems?” After which, she proceeded for 10 min to teach them
quick ways to remember (or memorise) them. In this context, would we consider
Teacher 5 to “emphasise on memorisation”? And even if we do consider it so, what
is paradoxical about it—when the teacher follows up the content and process devel-
opment with an effort to consolidate the learning by helping students to commit it to
memory? Isn’t this sound pedagogy? Our point here is: based on the evidence of our
study, Singapore secondary mathematics teachers focus on both Skills and Concepts
(see Fig. 17.2); there is no evidence to suggest that they focus on memorisation of
procedures in isolation from or excessively over conceptual understanding. Where
“emphasis” is rightly done, there is no paradox.

Having clarified the aspects of the caricature that does not apply to the Singapore
context, we think the remaining descriptions are indeed shared by us. But as “large
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class size” and “whole class teaching” are more structural givens than conscious
pedagogical decisions, we will restrict our discussion on “examination-driven
teaching”.

Indeed, all the 30 experienced and competent teachers who participated in the
first phase of the project were “examination-driven”, in the sense that they set the
target of their students being able to do well for subsequent (especially, high-stakes)
examinations as one of their major instructional goals of teaching mathematics; also,
because of this goal, the instructional contents and student tasks they planned for
their lessons take their reference from typical examination items. Insofar as textbooks
items are trusted as indications of standard examination items, there is also this
associated adherence to textbook items as official proxies of what is expected in
examinations. During the teacher interviews in the project, it is not uncommon for
teachers to justify their inclusions of certain tasks in the lessons due to their being
“included in examinations” or “included in textbooks”.

Before we proceed further into the heart of the paradox, we would like to make
some related comments about being “examination-driven”. Often, this term has been
used to lambast teachers for being narrowly focused in their work of teaching. But
we should check such excesses against this reality: In a system where students’
examination results largely shape the career choices ahead of them, is it not socially
responsible for teachers to take it as their primary role to help students attain the
best they can in examinations? Conversely, would we think teachers are socially
responsible to their charges if they ignore the importance of examinations for their
students’ social-economic future just so that they can pursue their own educational
ideas about teaching mathematics?

Also, from an education-system point of view, is it really so bad that teachers
have a clear and concrete goal to prepare their students for? Perhaps this is clearer
when contrasted against an alternative option: there are no high-stakes examinations;
teachers can do what they think is professionally expedient as mathematics teachers;
the individuality of the teacher and his/her conscience become the guide for what
“drives” the mathematics instruction in class. To be sure, this is the utopian vision of
many teachers—that they be ‘left alone’ to do what they like; but seen as a system,
there remains no concrete goal to bring the many teachers in the system together with
a common vision and accountability of what is to be taught and to what degree of
rigour is to be expected. At its worst, teachers lose a sense of purpose and direction
to “drive” their teaching and students are worse-off for it. We like to imagine that
every teacher, left to himself/herself, knows what is best to teach for the students
over the long term. This assumption has yet to be proven at scale. If the alternative
to being “examination-driven” is being non-driven (a prospect we think very likely
although few talk about it), then the choice is clear.

In addition, one who is “examination-driven” need not be solely driven by exam-
ination in his/her instructional work. Examination-orientedness may only be one of
the goals of teaching. As seen in many of the case studies in this volume (Chapters 4,
8, 9, 13, and 14), the teachers are capable of keeping a keen eye on preparing their
students to be examination-ready while concurrently pursuing other worthy goals of
teaching mathematics.
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Another point about being “examination-driven” is the actual assessment content
of these examinations. If the examinations that we have in mind comprised merely
items of low cognitive demand, then being examination-driven in such a context
will indeed result in a great disservice to the students. It will indeed descend into a
training of mechanistic “drill and practise” automatons—a portrayal common in the
literature that presents being examination-driven as “bad”. But what if the “exam-
ination” to be “driven” towards typically consists of a significant number of items
that are considered of high cognitive demand (see Chapter 12)? This seems to be
the case in the Singapore context as depicted by the right pentagon in Fig. 17.1. For
a teacher to be “examination-driven” in this context, he/she will have to regularly
include items that are considered challenging to students so that what the students do
in class approximates the kind of items they will encounter in subsequent examina-
tions. From purely a content perspective, isn’t this kind of examination-drivenness
“good” for the students—do they get to engage with items of high cognitive demand
regularly? In fact, we think the content of Singapore mathematics examinations
partially explain the paradox: If Singapore secondary students, regardless of ability
bands (see Chapter 12), regularly engage in challenging items in preparations for
examinations, is it surprising that they will perform well in similar “examinations”,
such as the international tests presided by PISA?

17.4 The Heart of the Paradox

But, one may argue that simply giving challenging items to students does not neces-
sarily result in good performance in these items. In other words, to unwind the
paradox, we still cannot sidestep the heart of the issue: What actually takes place in
these Singapore examination-driven classrooms that prepare the students so well for
examinations such as the ones conducted by TIMSS and PISA?

The “examination-driven teaching” is a surface façade—and hence what usually
catches the eye of a cursory observer. As a number of chapters in this volume has
described,whenweplungebeneath the surface,wefindembellishments thatmayhold
the keys to a reconsideration of the just-drilling-for-examinations first impressions.

In Chapter 3, the authors reported that Singapore secondary mathematics teachers
commonly use or subscribe to the Development-Student work-Review (DSR)
sequence in their instructional practice. What is particularly insightful to us is that
these DSRs appear in cycles—and you can find a number of these cycles even within
a short instructional episode that spans merely a few minutes. The teachers do not
merely plan and execute at a broad-grained level; they also go meticulously into
a mode of repeated small-step development, monitoring of students’ learning, and
consolidations—all at fine-grained levels that approximate the incremental steps in
students’ acquisition of knowledge. Translated to the examination-driven context,
it means that the teachers do not merely give examination-type items (and some
challenging ones) to the students and leave them to work on them; they execute
detailed cycles of DSR moves to help students learn the requisite skills, concepts,
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and processes to be successful for these type of items. In the language of Chapter 12,
teachers offered carefully planned “scaffolds” to help students gain access to and
maintain engagement with these items (especially challenging items).

This careful fine-grained planning did not begin in the classroom. It was
also conspicuous in the instructional materials developed by these teachers prior
to their entering into the classroom. Chapters 11 to 14 of this volume report
how the teachers thought about and carried out the design of their instruc-
tional materials. A common underlying thread among these teachers that stood
out for us was how deliberate they were in weaving their agenda into the
tasks they crafted for their students. In Chapter 13, Teacher 13 was delib-
erate through his instructional materials in building opportunities for students to
use mathematical reasoning as they work on an item and move across items.
In Chapter 14, Teacher 8 was deliberate through her instructional materials in
helping students make connections among concepts and across solution methods.
This deliberate weaving is also evident in the samples shown in Chapter 11—
illustrations of how the teachers brought in “new” materials together with “mod-
ified” ones, and how these were “smoothened” so that they were presented as devel-
opmentally coherent to the students. This “deliberateness” challenges a narrow view
of examination-orientedness—as if being “examination-oriented” necessarily results
in a teaching mode where teachers just mindlessly hand out pages of examination
questions for students to work on. In the case of the teachers in our study, there
were deliberate and goal-driven efforts to transform textbook materials into care-
fully designed instructional materials that took into consideration the learning needs
of their students.

Not only was the design deliberate, wewere also fascinated at howmuch attention
teachers put into very fine-grained levels of details which would not have caught
the eye of most observers. Chapter 12 reports on the various strategies used by
the teachers (particularly, teachers who specialise in the teaching of low-progress
learners). The length to which teachers go—such as consideration for the placement
of items, the actual scaffolds, the motivational prompts—shows the level of detail
they thought about the items and how they are to be used in class. This attention to
details applies to example sequencing as well. Leong et al. (in-press) reported how
one of the experienced and competent teachers in this project (Teacher 10) carefully
sequenced her practise examples in away that affords variation (cf.,VariationTheory)
and took into consideration students’ cognitive load (cf., Cognitive Load Theory).
But hers was not an isolated case; it was found that this careful attention to example
sequencing was common across most of the teachers surveyed in Phase Two of the
project (Leong et al., 2019b). This finding is colluded by the report in Chapter 11
where evidence of “deliberate sequencing of examples” was found in 29 out of the
30 teachers.

In summary, we think that “examination-driven teaching” can be viewed at two
levels of zoom: one that is broad-grained and another that depicts thework of teaching
as bringing the students to “drive towards” examination requirements (shown in the
left side of Fig. 17.3). Asmentioned earlier, this is not an untrue portrait of thework of
Singapore secondarymathematics teachers—in that theyviewpreparationof students
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Examination requirements
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Fig. 17.3 Examination-driven teaching viewed in two levels of zoom

for examination as a key part of their role as teachers, and they take reference from
examination items in their selection of content for their students. However, there is a
second and a more fine-grained level of zoom which reveals, as uncovered in many
chapters in this volume and which we summarised in the preceding paragraphs, a
portrait which is more nuanced, consisting of sub-destinations and carefully planned
manoeuvres (as illustrated in the right diagram of Fig. 17.3).

This more nuanced portrait in Fig. 17.3 is largely motivated by the case of Teacher
2 as reported in Leong, Cheng, Toh, Kaur, and Toh (2019a). In his instructional
practice, we find many of the features that are discussed in this volume and so we
use his case as an illustration to pull together the various facets already discussed.

Before he began to teach amodule onVectors, he designed a full set of instructional
materials for the whole topic. Through analysing the materials and his responses
during interviews, we found that he had the whole development of the topic mapped
out—represented as paths and sub-goals in Fig. 17.3. He “drove” towards the exam-
ination requirements by bringing the students to various sub-goals which served
as milestones (following the journey metaphor). He did so through the careful and
deliberate planning of tasks which was coordinated with how he would implement
them in class (some of these strategies we reviewed in the earlier paragraphs). At
these milestones, he checked through formative assessments if the students met the
requirements of the sub-goals, and where necessary, he would zoom-into fill partic-
ular gaps in students’ knowledge. At suitable junctures, he would connect some of
these various strands of knowledge (represented as different paths in the diagram)
by helping students to work through tasks that required a coordination of these
knowledge areas.

The diagram in Fig. 17.3 is a gross over-simplification of Teacher 2’s (and many
other Singapore secondary mathematics teachers’) practice and as such does not do
justice to the deliberateness and intensity of his (and their) work. But we constructed
this portrait to uncover elements that are normally hidden in examination-driven talk.
As soon as we see that being “examination-driven” is not incompatible with a peda-
gogy that attends to careful details of students’ learning development in conjunction
with the content trajectory and which produces deliberately designed tasks that are
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student-friendly, the “paradox” dissipates. To us, there is no paradox between a peda-
gogy that is relentlessly “driven” towards examination content goals and towards
students’ attainment of those goals, and their sub-goals and high performance in
international comparison tests such as TIMSS and PISA. In fact, we think the former
substantially explains the latter.

17.5 Conclusion

As editors of this volume, we used the task of writing this concluding chapter as
an opportunity to reflect on Singapore mathematics education. It became clearer
to us in the preparation of this chapter that Singapore mathematics education is
a microcosm of Singapore herself. We think the ingredients which render Singa-
pore “successful” are also the same ingredients that render Singapore (mathematics)
education “successful” (if measured by the performance in international comparison
tests). Interestingly, this perspective is shared by Seah (Chapter 16) as he viewed
the findings in this volume from the broader lens of Singapore society’s strive for
excellence.

We have heard numerous visitors to Singapore making this comment (or its equiv-
alent), “I don’t know which ‘box’ to place Singapore in—it is neither East nor West,
neither socialist nor capitalistic …” This might also be how readers of this volume
feel, “Which pedagogical ‘box’ do I place Singapore mathematics education—it is
neither teacher-centred nor student-centred, neither procedure-based nor concept-
based…” If asked to use one word to describe Singapore (and concomitantly, Singa-
pore mathematics education), most would choose “pragmatic”. However, we prefer
the term “eclectic”. Our instinct as a people is not to merely follow the hollow theo-
retical models of others and assume that their avowed “success” would work for us.
We have a habit of being open-minded: drawing upon the affordances of different
models andmixing them—deliberately and experimentally—to seewhich configura-
tions work best for us given our unique context. We think this deliberate eclecticism
has been the underlying disposition for researchers and teachers to experiment with
different pedagogical mixes all along, resulting in the portraits that we present today
(and as illustrated in Fig. 17.2 and Fig. 17.3).

But the portraits will not stay “still”—it is a constantly “moving” portrait. Another
feature embedded deep in the Singaporean psyche is this, “We cannot afford to stay
still in this climate of tough global competition—we must keep working hard and
constantly evolve in response to the changing challenges”. This “working hard” and
“being ready for changes” also account for the practices of the Singapore secondary
mathematics teachers that we have reported in this volume. The picture presented
is one where the teachers are meticulous and hard working in attending to their
planning and design work as well as to the learning needs of the students. They
are also prepared to change—to improve—where the implementations do not work
according to plan; that is, they are not easily contentwith lowperformance of students
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and the status quo; rather, they are “driven”—in the positive sense of the term—to
help students attain their potential.

But constant evolvement also means that teachers do not easily rest on their
laurels. There are still areas for Singapore mathematics education to develop further.
As Fig. 17.2 shows, there are components of the pentagon that should fill the agenda
of teachers and researchers in the near future.
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