
Chapter 13
Molecular Dynamic Simulation
of Intrinsically Disordered Proteins
and Relevant Forcefields
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Abstract Intrinsically disordered proteins (IDPs) exist in every form of life, from
bacteria to humans and viruses. They do not hold any well-defined or properly
folded structure in the physiological state but have the ability to gain different
structural conformations upon interactions with their physiological partners. The
limitations of experimental techniques to study high structural dynamics of IDPs
have led us to depend on computational simulations. The current scenario of
interdisciplinary studies to understand biology with physics has been advantageous
for exploring atomic-level dynamics of IDPs. To date, several physics-based
forcefields have been developed that calculates the microscopic parameters of a
biomacromolecule in an aqueous environment. In this chapter, we have discussed
the conformational behavior of IDPs and induced structural properties through
understanding the relevant forcefields for molecular dynamics simulations.

13.1 Introduction

By the end of twentieth-century and start of twenty-first century, the understanding
of disordered or unstructured proteins started developing. At present, a large number
of researchers from every corner of world have devoted their research to describe the
proper structure and functioning of disordered regions. A large proportion of gene
sequences appear to code not only for folded, globular proteins but also for long
stretches of amino acids that are likely to be either unfolded in solution or adopt
non-globular structures of unknown conformation (Wright and Dyson 1999).
Approximately 44% of genes in humans that code for proteins contain disordered
regions (Van Der Lee et al. 2014; Oates et al. 2013). Generally, these proteins or
regions are termed as intrinsically disordered proteins or regions (IDPs/IDPRs).
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These intrinsically disordered protein regions (IDPRs) can be highly conserved
within various closely related families or domains of proteins in both composition
and sequence (Van Der Lee et al. 2014; Chen et al. 2006). The disordered regions are
partially or fully unstructured and are characterized based on various parameters. In
other words, they do not possess a proper three-dimensional structure as they fail to
acquire structural propensity measured through spectroscopy techniques such as
X-ray, NMR, etc. (Dunker et al. 2001). The intrinsic lack of structure can confer
functional advantages to a protein like IDPs provide larger interaction surface area,
more conformational flexibility, and exposure to interaction prone structural motifs
allows IDPs to interact with several other proteins (Babu et al. 2011).

Furthermore, distinct post-translational modifications alleviate regulation of their
function and stability in a cell. Some IDPs can attain a fixed tertiary structure on
interaction with other molecules known as folders. In contrast, other are called
non-folders which do not possess any defined tertiary structure under any physio-
logical conditions. They have ability to undergo partial folding on interaction with
specific binding partner proteins (coupled folding and binding), whereas many
others constitute flexible linkers that have a role in the assembly of macromolecular
arrays (Nishimura et al. 2005). Their conformations may vary from random coils,
partially extended globules to collapsed globules with different contents of second-
ary structure. These distinctly variable structural behaviors of IDPs led to propose
multi-state protein structure theories such as trinity (collapsed, ordered, and
extended disorder) and quartet (coil, pre-molten globule, molten globule, and folded
structure) (Zhang et al. 2013; Dunker and Obradovic 2001).

To elucidate the structure of IDPs and detailed mechanistic insight into their
function, firstly, IDPs differential conformations need to be determined. The molec-
ular dynamics (MD) simulation is an excellent computational route for determina-
tion of proteins disordered states at atomic level. However, the peculiarities of MD
simulation results depend on the accuracy of the physical model (i.e. forcefield) used
(Robustelli et al. 2018). There are a number of force fields have been used for the
description of folded proteins, but limited for disordered structure prediction
(Nerenberg et al. 2012; Piana et al. 2015; Best et al. 2014; Mittal and Best 2010;
Lindorff-Larsen et al. 2012, 2013; Beauchamp et al. 2012; Lange et al. 2010).
Therefore, in this chapter, we are focused on the IDPs and how the computational
method MD simulation exploring the structure disorder via different force fields.

13.2 IDPs and IDPRs: Structure-Function Relationship

The universal lock and key hypothesis for structure function paradigm changed the
protein science for a longer time. The proteins 3-D structures were mapped mostly
with X-ray crystallography. Despite that, most of the proteins lack complete struc-
tures and so-called missing electron density regions (Le Gall et al. 2007). These
proteins and regions are unfolded, unstructured and inherent properties of proteins,
hence named “intrinsically disordered proteins or intrinsically disordered protein
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regions (IDPs/IDPRs)” (Dunker et al. 2013). The comparison studies of ordered and
disordered proteins backbone revealed that the disorder proteins are rich in amino
acid Ala, Arg, Gly, Gln, Ser, Glu, Lys, and Pro (Williams et al. 2000; Romero et al.
2001).

As it is stated that the ordered protein follows the structure-function paradigm,
i.e., sequence-structure-function, whereas disordered protein follows the disorder-
function paradigm (Uversky 2013). The disordered proteins are abundant in all three
kingdom of life and viruses, which speculate their importance (Gadhave et al. 2020;
Garg et al. 2019; Giri et al. 2016, 2020; Singh et al. 2018a; Kumar et al. 2017, 2019,
2020a; Schad et al. 2011). The very interesting properties of these IDPs are their
versatility of performing functions, which can be explained by the “fly casting
mechanism” (Huang and Liu 2009; Shoemaker et al. 2000) (Fig. 13.1). Moreover,
IDPs can perform function either in native disorder state or can bind to a partner to
acquire folding state (Tompa 2005; Uversky and Dunker 2010, 2013; Tompa and
Fuxreiter 2008; Dunker et al. 2002). This functional diversity of IDPs lies in its
sequence heterogeneity, which allows it to bind with different partners and thus,
different conformation and functions (Oldfield et al. 2008). Further, the IDPs/IDPRs
possess larger surface area and structural flexibility. Due to the structural flexibility
of IDPs they tend to expose peptide regions having molecular recognition features
(MoRFs), which may fold while interacting with binding partners (Kumar et al.
2017, 2020a; Mohan et al. 2006; Oldfield et al. 2005; Uversky et al. 2005; Singh
et al. 2018b; Mishra et al. 2018). A classic example of this IDPs-binding partner
gaining multiple conformations can be illustrated with p53 C-terminal domain
(p53-CTD). The p53 CTD (residue 374–388) bound to different partners and acquire
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Fig. 13.1 The versatility of intrinsically disordered proteins
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different conformations viz., cyclin A (coil), sirtuin (sheet), CBP (coil), and S100bb
(helix) (Uversky 2009; Fadda and Nixon 2017; Kannan et al. 2016).

Besides the potential of IDPs/IDPRs of their multiple functions depending upon
the binding partners, surrounding environment need to be considered. There are
ample of IDPs which showed a change in conformation in the presence of varying
pH, temperature, ions, detergent, organic solvent, crowding agents, and lipids
(Kumar et al. 2020a; Uversky 2009; Lopes et al. 2013; Kjaergaard et al. 2010).
The surrounding environment imparts electrostatic interaction, hydrophobic inter-
action, and osmophobic effect, which help IDPs to gain structural conformation
(Uversky 2009).

13.3 IDPs in the Human Genome: Organizing Functions or
Problems?

Despite being physiologically disordered, IDPs play crucial roles in biological
activities. The abundance of IDPs in complex cellular organization displays its
importance in regulatory processes (Uversky et al. 2008). These processes include
molecular recognition, molecular assembly, entropic activities, and post-
translational modifications. Various studies have reported the presence of IDPs in
human regulatory proteins such as transcription factors and co-regulators. Eukary-
otic proteins seem to use disorder for transient binding purposes (signaling and
regulation), while prokaryotic proteins seem to use disorder for longer-lasting
interactions, such as complex formation. A recent report suggested that functional
misfolding can be induced by fugacious changes in protein environment, and
structure can be reversed by restoring the environment or modifications. These
induced nature and fugacious characters are important features of these IDPRs or
conditionally disordered protein regions (Uversky 2015). Some interesting studies
about the occurrence of IDPs in viruses have shown that it plays crucial roles in
hijack of host cellular functional machinery (Gadhave et al. 2020; Garg et al. 2019;
Giri et al. 2016, 2020; Xue et al. 2010; Kumar et al. 2020b).

The versatile nature of IDPs associated with folding, signaling, and many more,
however, they are also implicated in many diseases. It is seen that selective muta-
tions in IDPRs (i.e., amyloid β-peptide, α-synuclein, and huntingtin) may lead to
structural complexity and enhanced aggregation propensity of these systems, which
are associated with numerous neurodegenerative diseases (Babu et al. 2011; Uversky
et al. 2008; Wu and Fuxreiter 2016). The IDPRs contain certain motif which are
important for interaction and a slight change in these motif lead to altered cell
signaling and thus cancer like diseases (Babu 2016; Hegyi et al. 2009; Colak et al.
2013).

According to the studies by disorder predictors, eukaryotic mammals are shown
to contain nearly 75% of signaling proteins that contain long disordered regions with
more than 30 residues, and about 25% of the predicted proteins are fully disordered
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in nature (Dunker et al. 2008a). Furthermore, eukaryotic proteins utilize the disorder
for transient binding purposes (signaling and regulation), while prokaryotic proteins
seem to use disorder for complex formation (Dunker et al. 2008b). Another example
of varied length intrinsically disordered proteins are Transmembrane proteins that
contain extracellular or cytosolic disorder regions (Uversky 2013; Xue et al. 2009).
A total of 40% of human integral plasma proteins is predicted to contain long
stretched disordered regions (Minezaki et al. 2007; Yang et al. 2008; De Biasio
et al. 2008). Disordered regions usually bind to multiple targets with low affinity,
which is an ideal condition for signal transduction (Dunker et al. 2002). Some recent
findings mention the functioning of ordered proteins on a decrease in the percentage
of their ordered structure and need partial or complete functional misfolding
(Uversky 2015).

13.4 Characterization of IDP and IDPRs

In the past two decades, rapid progress in the exploration of IDPs have radically
changed the understanding and importance of the field. The high occurrence of IDPs
in a cellular organization has increased the demand for new perspectives in structural
and functional studies. The conformational flexibility of IDPs did not allow it to
accurately study with old structural techniques. Therefore, it appeals to introduce
new methods to study functional aspects in IDPs (Habchi et al. 2014). The structural
studies of IDPs have shed light on the critical aspect that disorder lies in the amino-
acid sequence of a protein. The thorough studies of IDP sequences and structural
information suggest that disordered regions show low hydrophobicity and higher net
charge, and characterized by low hydrodynamic radius, high structural heterogene-
ity, and poor secondary structure organization (Uversky 2019). But it may have a
tendency to gain structural regions in presence of natural ligands. On the basis of
these structural and sequence-based data, various algorithms have been designed to
predict the structural disorder propensity of protein regions using disorder predictors.
These bioinformatics disorder prediction tools are commonly used to characterize
the protein disorderedness. The higher proportions of hydrophilic stretch of
sequences are analyzed by a web server such as DISPROT (Megan Sickmeier
et al. 2007), IUPred (Zsuzsanna Dosztányi et al. 2005), PONDR (Obradovic et al.
2003), PrDOS (Ishida and Kinoshita 2007), D2P2 (Oates et al. 2013) and ESpritz
(Walsh et al. 2012), which indicates the higher probability of disorder of those
regions. Some of the test sets for structural predictions have been further confirmed
by various experimental tools such as NMR, X-ray studies (Konrat 2014; Brutscher
et al. 2015). This represents the high reliability of disorder predictors and improves
the knowledge of the functional relevance of IDPs and IDPRs in various organisms.
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13.5 Molecular Dynamics Simulations: Relevance
with Structure Biology

The three-dimensional (3D) structure of biological macromolecules (e.g., proteins)
or chemically synthesized polymers are essential for structural biology and applica-
tions in drug discovery. These days, the structure elucidation through X-ray, NMR,
Cryo-EM techniques have been an advantage to understand their Structure-Func-
tion-Paradigm. However, there are many proteins which can not form rigid three-
dimensional structures. So their thermodynamic properties, microscopic energies,
and specific interaction with other molecules at the atomic-level cannot be under-
stood well through experimental methods (Chong et al. 2017). Therefore, the
characterization of proteins at the atomic level is more feasible through atomistic
computational simulations rather than experiments. Molecular dynamics
(MD) simulations are capable of determining conformational dynamics, structure
compositions, and organization of proteins in an aqueous environment
(Hollingsworth and Dror 2018). Additionally, the interaction of proteins with lipid
molecules, inhibitors, with partner proteins, etc. can also be determined through MD
simulations. Due to advancements in computer hardware, it is now possible to
explore such macromolecules in a deeper level for longer timescale up to seconds
to meet the experimental observations (Perilla et al. 2015). Various simulation
packages such as Desmond (Bowers et al. 2006), Gromacs (Berendsen et al.
1995), Amber (Ponder and Case 2003), NAMD (Phillips et al. 2005), etc. are
available with different optimized forcefields. Generally, a Forcefield (FF) can be
explained as the interatomic potential energy of a system, which is calculated along
with several parameters such as bonds, angle, torsion, dihedral, etc., defined on the
atomic coordinates (Jorgensen and Tirado-Rives 2005; González 2011). The atoms
which are held together by simple harmonic or elastic forces represent a molecule
within the specified region for simulation (González 2011). Also, van der waal
interactions and electrostatic interactions are the integral constituents of a forcefield.
The overall equation that defines a forcefield is,
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Where, oscillations about equilibrium bond length, bond angle, torsional rotation of
4 atoms about a central bond, and nonbonded energy terms (electrostatics and
Lenard-Jones (LJ)) are summed up for calculating potential energy.
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13.6 MD Force Fields and Their Role in Conformation
Dynamics

Several forcefields have been developed to date and are being used with different
purposes for investigation in almost every field of science. For biological macro-
molecules, OPLS (AA) (Jorgensen and Tirado-Rives 1988), GROMOS (Berendsen
et al. 1995), CHARMM (Vanommeslaeghe et al. 2009), AMBER (Ponder and Case
2003), Drude (Li et al. 2017) forcefields are optimized to deduce the conformational
change, structural composition, protein aggregation, binding efficacy with respect to
time in a given environment. All these forcefields have a different level of tendency
to estimate structural composition. However, for disordered proteins, it is essential to
be picky for selection of accurate forcefields. A wonderful comparison has been
made by Ham and colleagues between GROMOS, CHARMM, AMBER, and OPLS
forcefields for correct selection of forcefield to perform MD of an IDP. Among all of
them, OPLS-AA has proper balanced tendency to evaluate the helical and beta
property of protein (Chong et al. 2017). Also, for IDPs, OPLS, and a recently
introduced CHARMM36 (Huang et al. 2016) are used to simulate disordered regions
properly, which allow them to gain a proper helical or beta structure, if induces. Two
IDP models amyloid-beta and p53, have been extensively used as model systems for
testing of different forcefields and correlating them with experiments. Pacheco and
Strodel have investigated the accuracy of five forcefields on amyloid-beta (Aβ; one
of the responsible protein for Alzheimer’s Disease) where CHARMM22, OPLS,
Amber’s 99sb, 99sb-ildn, had high accuracy with the NMR results than 99sbildn-
NMR forcefield (Carballo-Pacheco and Strodel 2017). Recently, D.E. Shaw and
colleagues have modified Amber-ff99sb forcefield for disordered proteins which
correlate well with experimental observations. The improved forcefield ff99sb-disp
accurately calculates the transition states between ordered and disordered states
(Robustelli et al. 2018). Additionally, a short disordered peptide of 24 amino
acids, Histatin 5, was investigated through verities of Amber and Gromos forcefields
and compared with experiments (Henriques et al. 2015).

Along with a forcefield, the selection of water model for simulation is essential
for precise evaluation of interaction and behavior of a protein in an aqueous
environment. Water models are defined based on the interaction sites, which is
centered on the nuclei of water molecule. Most commonly, water models are SPC
(simple point charge; with HOH angle 109.47�), TIP3P (104.5�), and TIP4P
(104.5�) for protein simulations. TIP3P and TIP4P water models are basically
based on transferrable interaction potentials (TIPS) with three- and four-point charge
(Ouyang and Bettens 2015). Three-point charge has three interaction sites as water
molecule has three atoms, while four-point charge has an additional dummy atom to
improve the electrostatic distribution (Jorgensen and Tirado-Rives 2005). Moreover,
five-point and six-point charge water models are also available, which has dummy
atoms representing the lone pairs and one extra site for interaction (Fig. 13.2). These
water models are placed around the protein structure, which is centered in a
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simulation box (e.g. cubic, dodecahedron, etc.) with a defined size in the periodic
cell.

13.7 MD Simulation Terminology: Structural
Conformation Assessment

13.7.1 Energy Minimization, Equilibration, and Timescale

Building a simulation system to final production run, there are a number of steps for
successfully trajectory generation. Before simulating a protein, the minimized struc-
tural conformation is vital as the system might produce erroneous results due to
excess heat caused by unwanted and huge forces without minimization (Mackay
et al. 1989). For simulating IDPs, a very popular method, steepest descent method is
used for certain steps till it converged under required energy for the system.

Afterward, the simulation setup is subjected to equilibration as the minimized
system has unoptimized solvents (e.g., water) around the proteins. Generally, the
system is equilibrated under two conditions in constant temperature and pressure
because for simulating a protein at a temperature, the system needs to be in proper
positions without any unrestrained atoms. Two ensembles NPT and NVT are

Fig. 13.2 Representation of water models based on different interaction sites. Here, O and H are
oxygen and Hydrogen atoms while M represents the dummy atom in water models with 4, 5, and
6 interactions sites
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commonly used for equilibration in which the number of atoms (N), pressure (P),
temperature (T), and volume (V) are kept constant and the system is processed for
small simulation run upto few picoseconds or nanoseconds or till the system is
equilibrated.

Finally, the production run for all-atom classical MD is performed at a constant
temperature and pressure, which are maintained by specific thermostats and
barostats, respectively. Thermostats like Nose Hoover, Berendsen, and Langevin
while barostats such as Berendsen (Berendsen et al. 1984), Martyna-Tobias-Klein
(MTK) (Lippert et al. 2013), Parrinello Rahman (Parrinello and Rahman 1980,
1981) are used as per the simulation setup requirements. In the case of IDPs, Nose
Hoover (Posch et al. 1986) and Berendsen thermostats are preferred, and barostats
MTK or Parrinello Rahman are considered for controlling temperature and pressure
at an average value.

The simulation time is another important aspect to be looked carefully. As shown
in above Table 13.1, the purpose of performing any simulation should be accom-
plished successfully within an adequate range of time. This timescale also depends
on the number of atoms in a simulation setup and computer hardware. More number
of atoms require more time and vice-versa, therefore, all atoms MD demands time
from nanoseconds to few microseconds. However, apart from all-atoms MD simu-
lation, Coarse-grain (CG) MD is one of the examples where a group of atoms are
considered as a single bead, which reduces the degree of freedom among the atoms
and allow the system for longer simulation in comparatively less time (Kmiecik et al.
2016).

13.7.2 RMSD, RMSF and Radius of Gyration

For the conformational analysis from the simulation trajectory, Root mean square
deviation (RMSD) is the most critical parameter to be investigated. RMSD is
measured between two sets of atoms (backbone, c-alpha, heavy, side-chain atoms)
at a given time with reference to the initial one or the desired reference set of atoms
(Kuzmanic and Zagrovic 2010). Similarly, the fluctuation in residues with respect to
time can also be calculated as average of all simulated frames in the trajectory, it is

Table 13.1 Tabulation of the timescale of different simulation techniques based on their
applications

Sr.
no. Simulation methods Applications

Timescale
(seconds)

1. Quantum mechanics
(QM/MD)

Atomic motion (e.g., bond stretching, vibration) 10�15 to
10�12

2. All-atom MD Structural transitions, side-chain rotation, loop
movement, ligand binding

10�12 to
10�6

3. Coarse-grained MD Biological assembly, protein folding, protein
interaction

10�9 to 103
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known as Root mean square fluctuation (Martínez 2015). Both these values deduce
the conformational change of protein in the simulation environment over the time
course. Another parameter, Radius of gyration (RoG) states the compactness of a
protein structure. A well-folded or tightly packed structure will have lowest RoG
value and vice-versa.

Many IDPs, which tend to get converted into an ordered form upon interaction
with some physiological partners, are also vulnerable to different forcefields. In last
two decades, the computer hardware power has been increased gradually and
consequently, MD simulations have been very effective to explore the folding and
unfolding of a protein in the presence of different conditions such as mixture of
multiple solvents, membranes, ions, etc. at a constant or varying temperature and pH
ranges. Also, various categories of simulation have made it easier to investigate the
structural dynamics for longer timescale. A method where conformational swapping
occurs between a number of MD replicas to obtain a conformation with minimum
energy. These are known as Replica Exchange (RE) MD in which multiple replicas
run simultaneously which are formed based on temperatures (lower to higher),
required after selection through literature or experimental evidences (Sugita and
Okamoto 1999). In next section, we have discussed the REMD with a well-suited
example of p53, a tumor suppressor gene.

13.8 IDPs and Replica Exchange MD: In Perspective
of p53-CTD

In our recent study, we performed a Replica exchange molecular dynamics simula-
tion on p53-CTD using OPLS 2005 forcefield, embedded in Desmond simulation
package (Bowers et al. 2006). As aforementioned, OPLS forcefield has a proper
balance for alpha and beta propensity estimation in simulation. As illustrated in this
study, the temperature induces changes in structural conformation of IDP
(p53-CTD), which showed it’s highly dynamics/flexible nature (Kumar et al.
2020a). The hydrophobic and electrostatic interactions play an important role in
structural conformation of p53-CTD. The circular dichroism studies showed that the
higher temperature leads to the compaction of a peptide, which is associated with the
helical structural conformations (Kumar et al. 2020a; Kjaergaard et al. 2010).
Previously, NMR studies showed that the temperature-induced structural conforma-
tion is associated with the random stretch of amino acid (non-helical) in a peptide
(Kjaergaard et al. 2010). Our result also corroborated with theses finding where MD
simulation showed that the random stretch of amino acid or non-helical regions is
responsible for change in structural transformations.

The p53-CTD adopts random coil conformations and have a tendency to gain
structural conformation. According to REMD analysis, the highest structural com-
paction occurred at 80 �C where two major helical regions were formed (Fig. 13.3).
The total potential energy of p53-CTD in aqueous system was calculated to be more
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negative (�33914.25 kcal/mol) at high temperature (353.71 K) while at 300 K, the
potential energy of the system was�30382.4 kcal/mol. The p53 CTD could not fold
spontaneously due to high intrinsic free energy. In the presence of binding partners,
the p53-CTD possesses the minimum free energy and minimum binding energy
from partner. Thus, the competitive effect of energy minimization results in different
characteristic states, where each mechanism determines the sampling frequency of
each characteristic state (Han et al. 2017).

13.9 Future Prospects

In general, IDPs are very challenging to study at atomistic detail with current
computational simulation forcefields to achieve its accuracy with experimental
models. A great advancement has been made to counter these challenges, but still,
a lot of improvement needs to be done. However, Bioinformatics has made it
possible to a large extent, and specifically, molecular dynamics simulations are
being used extensively to explore IDPs at atomic level. The exact evaluation of
structural properties of IDPs/IDPRs have been very distinguished among different
forcefield. In this context, it can be seen as a high opportunity for development of
new FF or improvement of current FF, which unravel the atomistic details on IDPs’
conformational dynamics with respect to experimental measures. The outcome will
certainly lead to a better understanding of biophysics of IDPs and pave a potential
role in drug discovery.
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