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Chapter 1 ®)
CADD: Some Success Stories from Creck o
Sanjeevini and the Way Forward

Ankita Singh, Shashank Shekhar, and B. Jayaram

Abstract Sanjeevini, a comprehensive drug design software suite, has been devel-
oped for lead molecule discovery taking off from protein and DNA as potential
targets. Sanjeevini is a culmination of multiple modules of significance including
detection of active sites in proteins and DNA in an automated manner, screening of a
library of a million compounds for hit molecule identification, docking and scoring
using all atom energy based algorithms and various other utilities which assist in
designing hit molecules with desired affinities and specificities against the given
targets. A few of the modules of Sanjeevini software suite along with some of the
success stories are illustrated in this chapter.
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2 A. Singh et al.
1.1 Introduction to Computer Aided Drug Design (CADD)

Drug discovery is considered to be a lengthy, expensive and technically intricate
process that has a limited number of matches in the entire R&D ecosystem.
Computer-aided drug design (CADD) methodologies are being routinely adopted
now by the pharmaceutical sector with an eye on both economy of scale and
economy of scope to accelerate the processes involved in the pipeline. On an
average, it takes approximately 1015 years of time and 2.6 billion US dollars to
launch a new drug into the market from conception, with production and testing of
lead molecules contributing significantly to the entire process (Daina et al. 2017)
(Fig. 1.1). Thus, it is apt to apply methodologies related to computational approaches
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Fig. 1.1 Conventional process of drug discovery and development (Daina et al. 2017)
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to identify hits and to eventually optimize the leads developed from the hits. This
exercise covers a wide chemical space while narrowing down the list of compounds
to be synthesized for further in vitro testing. Structure based docking analyses and
energy profiles for hit analogs, searching for new compounds using ligand-based
screening approach which have similarities in terms of chemical structures or having
improved predicted chemical affinities or better biological activities, estimation and
optimization of drug metabolism and pharmacokinetics (DMPK) and achieving
desirable absorption, distribution, metabolism, excretion, and toxicity (ADMET)
profiles (Shaikh et al. 2007) are all intrinsic parts of identification and optimization
of hit compounds using computational techniques. One of the major factors which
led to the wide range of acceptability and acceleration of the entire drug discovery
pipeline is the adoption of advancements and developments of technological inno-
vations in both software and hardware. In the context of qualities of the computa-
tional techniques, the contribution of computer aided drug discovery to the area of
life sciences is invaluable (Trott and Olson 2010; Yamada and Itai 1993; Khanna and
Ranganathan 2011; Xiang et al. 2012).

1.2 Active Site Prediction

1.2.1 Introduction

Active site is the region of a protein, an enzyme for instance, where the binding
partner or the substrate binds and performs the biological function. Active site has a
pocket/cavity located deep into the enzyme or at the interface between multimeric
enzymes (Kahraman et al. 2008). The site is lined up with a number of amino acid
residues which form chemical bonds or interactions with the substrate which
undergoes a chemical reaction, catalysis for instance. An active site can be easily
understood by considering a dynamic lock and key hypothesis; implying that an
enzyme has only an active site which can accommodate only a specific kind of
substrate. Bigger the pocket, more are the interactions polar and non-polar. Knowl-
edge of the active site inside the protein molecule is crucial to developing a blueprint
for a candidate lead/drug molecule in order to control the activity of that particular
protein.

1.2.2 Active Site Prediction Servers

Functionally relevant binding pocket or active site prediction from the tertiary
structure of proteins is one of the key steps in drug designing process (Szarecka
and Dobson 2019). Experimental evidence of the binding pocket of the target protein
molecule is beneficial but in case the experimental information on the active site is
not available, a large number of tools are freely accessible which can identify the
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cavities with high accuracies. Here we discuss our web-server AADS for active site
prediction.

AADS

AADS is a robust active site recognition, docking and scoring tool for proteins
(Singh et al. 2011). It predicts all cavities or potential binding pockets on the target
protein and ranks them based on a fuzzy score which utilizes the information and
properties of functional groups lining the active sites of the proteins. Physico-
chemical principles constitute the underlying properties. AADS was validated on
~620 proteins with varying amino acid lengths and known active sites and its
accuracy was 100% when the top ten cavities were considered. If the user wishes
to proceed further for automated docking, all top most 10 binding sites predicted are
then shortlisted for protein-ligand docking. An all atom energy-based Monte Carlo
method has been adopted for the development of the docking tool. Energy optimized
docked structures presenting varied positions and alignments of the candidate drug
molecule are preserved from different cavity points resulting in 80 docked structures
overall which are further optimized using an efficient free energy function to select
5 best docked structures (Fig. 1.2).

1.3 Virtual High Throughput Screening

Computational drug discovery relies heavily on screening of molecules against a
desired target (Lill 2013). The objective of virtual screening is to identify molecules
which bind to a macromolecular target with high affinity and specificity. With the
advent of faster computing devices, it is now possible to scan millions of compounds
in a relatively short period of time. Various techniques have been described using
which virtual screening can be achieved. Broadly these techniques can be divided
into two types: (a) on the basis of Ligand information and (b) on the basis of
Structural information. The success of these techniques can be measured in the
diversity they produce in identifying a small library of molecules which can poten-
tially bind to the biomolecule of interest. Ligand based methodologies rely on the
structural and binding information of previously known ligands. Perhaps the oldest
and the most popular method is of scanning using a pharmacophore. This technique
involves generation of a pharmacophore model using structures of bioactive mole-
cules against a target of interest. Scanning for a molecule with similar
pharmacophore is achieved using molecule libraries. Another methodology involves
identification of similar molecules using 2D comparisons. Techniques go a bit
further to compute 3D similarities and report similar molecules which could be
potentially active. Some methodologies involve breaking bioactive molecules to
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Fig. 1.2 Screen shot of the front-end of Automated Version of Active Site Prediction (AADS).
Web link: http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp

sub-structures and scanning a database of molecules for similar substructures to
eventually assemble newer molecules. In recent times, machine learning techniques
are also being harnessed to look for bioactive molecules (Macalino et al. 2015;
Hoque et al. 2017). Structure based methodologies use molecular docking programs
to dock every molecule to a known active site. These should ideally be the most
accurate but unfortunately are not applicable on large databases containing mole-
cules in excess of million. These methodologies are better suited for a smaller set of
molecules generated by other methods such as ligand-based methodologies (Imam
and Gilani 2017; Anderson 2003).
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1.3.1 RASPD

To recall, the aim of computer-aided drug design is to attain desired affinities and
specificities with inhibitors in the form of small molecules which bind to target
proteins. Additionally, it must be cost-effective and time efficient while investigating
scaffolds in terms of their novelty and ADMET characteristics. In pursuit of these
objectives, we have developed RASPD, a fast and efficient computational screening
protocol which can suggest probable candidates for a given target protein
(Mukherjee and Jayaram 2013). The active site cavity where the candidate molecule
binds to the target protein is scanned for hydrogen bond acceptors and donors,
hydrophobic groups and number of rings. Similarly, a large database of small
molecules is developed with pre-stored information of these physico-chemical
descriptors. The protein-small molecule complementarily is set up via a QSAR
type equation in the descriptor space for binding energy estimation of each molecule
in the database without actually docking these molecules. The exciting feature of this
technique is that it takes 10—15 min to compute the binding affinities of a million
candidate molecules with the target protein, in contrast to the many minutes for a
single protein-ligand molecule taken in the conventional methods of docking and
scoring. The precision of this technique is analogous to traditional methods aimed at
selecting good candidates. The RASPD web-server (Fig. 1.3) is freely accessible for
scoring a million small molecules to find hit molecules for a specified protein target.

1.3.2 BAITOC

Druggable biomolecules are limited but number of small molecules capable of
moderating their activities is huge. Instead of searching for a molecule for a given
target, a new approach of finding a target for a known molecule can also be utilized.
There are many molecules which are synthesized in laboratories across the globe but
are never tested for their bioactivity. Also, cases exist where bioactive compounds
are known but their biomolecular targets are unknown. BAITOC is an application
software (Fig. 1.4) which aims to fill this gap, by a quick examination against a
databank of pathogen’s protein structures. The application screens thousands of
protein structures at a time against input molecules using the RASPD logic and
provides information on potential protein targets for molecules under investigation.

1.4 Docking and Scoring

In computational approaches, to identify hit compounds and to further optimize
them, the conventional and the most common method employed is docking the small
molecule in the active site of the macromolecular target and then scoring the pose in
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Fig. 1.3 Screen shot of the front end of RASPD webserver. Web link: http://www.sctbio-iitd.res.
in/software/drugdesign/raspd2.jsp

order to realize potential complementarities to binding sites (Meng et al. 2011).
Numerous drugs have been developed in recent times adopting structure based
virtual screening (SBVS) strategies. Conformational information of the ligand
along with its orientation in the targeted binding site is obtained using the docking
process (Evanthia et al. 2014; Pinzi and Rastelli 2019).

1.4.1 Protein-Ligand Docking Server
ParDOCK

ParDOCK is a docking software which has been developed using an all atom energy-
based Monte Carlo procedure. It utilizes Monte Carlo based pose generation and
evaluation method to generate the most probable configurations of the ligand in the
active site. The method is comprehensively validated on 226 protein-ligand
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Fig. 1.4 Screen shot of the front-end of BAITOC: Bioactivity information of organic compounds.
Web link: http://www.scfbio-iitd.res.in/baitoc

complexes, resulting in a mean RMSD of around 0.53 A. ParDOCK outputs best
8 energetically favorable poses. This is followed by 2500 steps of protein-ligand
complex energy minimization. The energy minimized complex is then evaluated
using BAPPL scoring function. The resulting top four poses are provided to the user
as top results (Gupta and Sharma 2007) (Fig. 1.5).

BAPPL

BAPPL is a binding affinity prediction software. It evaluates the binding energy of a
docked protein-ligand complex. The prediction is based on electrostatics, van der
Waals, entropic and hydrophobic characteristics (Jain and Jayaram 2005). The
predicted binding energy is expressed in kcal/mol. Workflow for BAPPL is shown
in Figs. 1.6 and 1.7.

Bappl+

More recently, we developed Bappl+, an improved methodology of BAAPL for
predicting the binding affinities of protein-ligand and metalloprotein-ligand com-
plexes. It computes binding affinity based on the most important energetic contrib-
utors such as electrostatics, van der Waals, hydrophobicity and entropy of protein
and ligand. For metalloprotein-ligand complexes, it uses the explicitly-derived
quantum-optimized charges for various metal ions (Zn, Mn, Mg, Ca and Fe). It
uses a Random Forest algorithm to derive the final score. This methodology
(implemented in web server mode (Fig. 1.8)) is widely tested on the PBD bind
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Fig. 1.5 Screen shot of the front-end of ParDOCK webserver. Web link: http://www.sctbio-iitd.
res.in/pardock

datasets of 2007, 2013 and 2016 releases. Bappl+ achieves strong correlations with
respect to experimental affinities with all the core datasets with low standard
deviations and works better than most of the known state-of-the-art scoring functions
(Soni et al. 2020).

1.5 Sanjeevini

Sanjeevini is a collection of several modules, some of which are shown in Fig. 1.9
with linkages, to assist in lead molecule design. A user can input a bimolecular
(protein) target and a candidate drug molecule and upload them on the Sanjeevini
web portal. User may also decide to input a self-drawn molecule or opt to scan a
million compound library or a natural product library. The sub module of the
software AADS, predicts the potential active sites, whereas modules such as
ParDOCK dock and score the candidate drugs and gives back four best optimized
structures for each candidate molecule bound to the protein target. Also, estimates of
binding free energies can be obtained using one of the modules named BAPPL/
BAPPL+. The predicted four structures in the docked form represent the best
possible poses of the candidate drug molecule in the active site of the protein
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Fig. 1.6 A computational flowchart used for the calculation of binding affinities of protein-ligand
complexes
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Fig. 1.7 Screen shot of the front-end of BAPPL web server. Web link: http://www.scfbio-iitd.res.
in/software/drugdesign/bappl.jsp

biomolecule (Jayaram et al. 2012). Versatility of the methodologies of Sanjeevini are
partly captured in Fig. 1.9.

1.5.1 Sanjeevini’s Success Stories

(a) Anti-Cancer molecules
Breast cancer, in recent times, is considered as the most common form of cancer
found in women. Estrogen receptor (ER) is a popular drug target to discover
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Fig. 1.8 Screen shot of the front-end of BAPPL+ web server. Web link: http://www.scfbio-iitd.res.
in/bappl+

agents known as selective estrogen receptor modulators (SERMs). Existing
known drugs show severe adverse effects and some have developed resistance
over time. Thus, there is a need for better therapeutic profiles with newer agents.
ERa and ERp are two isoforms which share 56% similarity but show distinct
physiological functions and expressions in a number of tissues. With the help of
computational docking and molecular dynamics (MD) simulations, a few biphe-
nyl derivatives were designed, synthesized and successfully tested presenting
potential chemical agents for selectively targeting ERo (Bhatnagar et al. 2017).
(b) Anti-Alzheimer’s agents

In the progression of Alzheimer’s disease (AD), Acetylcholinesterase
(AChE) is considered as a vital enzyme and as a result it has been subjected to
intense drug discovery programmes. Using a multi-dimensional approach by
employing computational, chemical and biological pathways, a few derivatives
of pyrimidine with triazolopyrimidine based hybrid scaffold were developed as
AChE inhibitors for the treatment of AD disease (Kumar et al. 2018).
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(c) Anti-Malarials
Plasmodium falciparum caused malaria is one of the dreadful diseases par-
ticularly because of the ineffectiveness of the available drugs for curing malaria
and emergence of extensive resistance. A few triazine based novel derivatives
were designed and synthesized based on docking studies against P/PMT target, a
protein unique to the pathogen, and were found to be good inhibitors. These
molecules against malaria causing parasites showed activity in the range of low
p-molar to sub p-molar. The strategies based on Molecular dynamics simulations
have developed insights on inhibition based mechanism of action of the new
inhibitors of PfPMT (Shandilya et al. 2017).
(d) Anti-virals
Hepatitis A Virus (HAV) belongs to Picornaviridae family of viruses and can
be transmitted feco-orally. A viable drug target for HAV is 3C protease, which is
also common to other picorna viruses, for post-translational proteolysis of viral
polyproteins and for inhibiting host innate immune pathways. Chemical synthe-
sis and experimental validation after computational screening resulted in iden-
tification of a few low micromolar compounds which could inhibit HAV 3C
activity. Further experimental testing with comparable results were obtained
when these compounds were tested against the 3C protease of Human Rhinovi-
rus which is a member of the same Picornaviridae family (Banerjee et al. 2019).
More recently, Sanjeevini protocols have also been used to repurpose drug
molecules against CHIKV (Tripathi et al. 2020)
(e) Anti-Fungal
Fungal resistance to existing azole drugs has been a cause of severe concern.
However, due to the absence of required molecular level knowledge of the
mechanisms of activation of genes by transcription activators associated with
the disease, the therapeutic targeting efforts have been hindered. After further
investigations on this, it was discovered that the feasibility of blocking tran-
scription factor-binding site in mediator with small-molecule could bring out a
unique therapeutic strategy to deal with anti-fungal resistance (Nishikawa et al.
2016).

1.6 Dhanvantri

Dhanvantri is a pipeline incorporating several novel scientific methods and highly
efficient algorithms that combine the principles of chemistry and biology with
information technology for accomplishing drug design as shown in Fig. 1.10. The
pipeline covers all aspects of the genes, proteins, the active sites etc. from the
genome to the proposed final lead molecule. Automation at each stage facilitates
use of the pipeline (with default parameters) that provides scientifically significant
output in most cases of the disease. Also, users are allowed to make any necessary



1 CADD: Some Success Stories from Sanjeevini and the Way Forward 15

‘ﬁﬁ'mmcm ﬁ efine
e

Genome l | Proteome l

o

v
i} Chemgenome3.0

.

2>
N —4

Function
i sLastp  Prediction
iii) RPS Blast

iv) BhageerathH+

‘ o i RASPD

wiil) ParDOCK

v) ProtSav
vi) ASP

* Optional

Final Hits

Fig. 1.10 Pipeline of the Dhanvantari Software suite. Web link: http://www.scfbio-iitd.res.in/
software/dhanvantari_new/Home.html

changes to the pipeline parameters and enter at any stage of the pipeline as per their
requirement. The computational time required is ~6—12 h for the entire pipeline. In
short, this pipeline bridges the gap between diseases and their potential cures (Bhat
et al. 2020).

1.7 Sanjeevini Application in Android Mode

A mobile application developed for Sanjeevini software suite could be considered as
the portable version of our efforts in the area of computer aided drug discovery
(CADD) apart from the Web server version. The mobile application commonly
termed as Sanjeevini app comprises a variety of drug discovery modules for active
site prediction inside a protein molecule, screening hundreds or thousands of ligands
in little or no time, protein and DNA target based docking and scoring etc. It also
serve as a medium to connect to a million-molecule database developed on the basis
of physico-chemical properties. The application in its current form has an option to
use in-house developed software modules like ParDOCK, RASPD, AADS, DNA
Docking, Intercalator, BAPPL, BAPPLZ, SOM, TPACM4, PreDDICTA which are
already available in the Web server form for several years backed up by scientific
credibility though publications in peer reviewed journals (Fig. 1.11).
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Fig. 1.11 Screenshot of Sanjeevini mobile app. The application is freely accessible from google
play store and can be installed by searching for “Sanjeevini — SCFBio - CADD”. Link to download
the Sanjeevini mobile application on the google play: https://play.google.com/store/apps/details?
id=com.sanjeevini&hl=en; Application Web link on SCFBio’s Web portal: http://www.scfbio-iitd.
res.in/sanjapp/webSearch/Sanjeevini_webpage.html

1.8 Conclusions

New drug discovery is an important process to ensure human health. Recent
developments in this field have made it much faster, inexpensive and extremely
successful because of the amalgamation of computational techniques and biology
directed to the emergence of multiple tools and softwares. Sanjeevini provides a
viable option for structure-based computer aided drug discovery (CADD). The
software suite in its present form has been implemented on an 80-processor cluster
and is made freely accessible to the user community. The higher accuracies of the
individual modules, faster results through a nice graphical user interface enable the
users to design new lead compounds without much hassle. Building in toxicity filters
and further stringent experimental validations on a large number of targets could lead
to iterative improvements in Sanjeevini and in CADD in general.
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Chapter 2 ®)
Virtual Screening: Practical Application s
of Docking, Consensus Scoring

and Rescoring Using Binding Free Energy

Sunita Gupta, Mohd. Waseem, Naveen Kumar Meena, Roopa Kuntal,
Andrew M. Lynn, and Smriti Mishra

Abstract The chapter describes the development of a virtual screening workflow
involving open-source docking algorithms, consensus scoring, and rescoring using
binding energy estimation to identify hits in the drug discovery process. Plasmodium
falciparum dihydrofolate reductase (PfDHFR-TS, PDB 1J31) is used as an example
to describe the Virtual Screening (VS) workflow.

The open-source docking algorithms included in the workflow are Autodock4,
Autodock Vina, and DOCKG6. Post docking analysis is done using consensus scoring
to provide a standard scoring scheme across all methods. Sum rank, Sum Score, and
Reciprocal rank methods are evaluated. The results are visualized using enrichment
plots. Besides, the application of the molecular dynamics simulations to estimate
binding energy and rescoring is described.

2.1 Introduction

Virtual screening is a high-throughput computational technique adopted in a drug
discovery program to screen a library of ligands against a biological target and
identify the hit compounds. The screening method involves the evaluation of the
binding activity of the compounds to a target. Since it involves a virtual chemical
library, the chemical library to be screened in the experiment is easy to synthesize
and manage. Moreover, virtual screening reduces the time and cost to identify hits in
the drug discovery process. Virtual screening encompasses a plethora of docking
algorithms. Docking algorithms such as Autodock4, Autodock Vina, DOCKS6,
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GOLD, and GLIDE are widely used in the virtual screening of small molecules
(Kitchen et al. 2004; Warren et al. 2006). Amongst them, Autodock4, Autodock
Vina, and DOCK®6 are open-source docking algorithms. Moreover, Autodock4 and
Autodock Vina and DOCKG6 are frequently used in academia. Besides, algorithms
such as Autodock Vina exhibit good performance and are preferred to commercial
docking algorithms.

Open source tools are free to use and involve less strict license requirements.
Besides, the application source code of open source tools is easily accessible, and
modification of the code is possible. Open source algorithms also exhibit good and
comparable performance to commercial algorithms (Pagadala et al. 2017). However,
commercial tools are accessible on payment, involve stringent license requirements,
and may be costly. Unlike open-source tools, modification of the code may not be
easy. Hence, open-source docking algorithms are encouraged to use in the virtual
screening process.

Docking algorithms, in conjunction with consensus scoring, improves docking
results. Consensus scoring function is performed to screen, rank, and rescore the
library of ligands in early drug discovery. Moreover, consensus scoring is preferred
to overcome the discrepancy in results associated with different scoring functions.
Besides consensus scoring, the estimation of binding energy in the virtual screening
process overcomes the limitations of the docking results (Feher 2006). Refinement
and rescoring using binding energy improves the docking results and generate
reasonable scores and conformations.

The performance of VS docking approaches is tested using a benchmarking
dataset. Benchmarking dataset available for testing of VS approaches include Direc-
tory of Useful Decoys (DUD), DUD-Enhanced (DUD-E), Virtual Decoy Sets
(VDS), G protein-coupled receptors (GPCRs) ligand library (GLL) and GPCRs
Decoy Database (GDD), Demanding Evaluation Kits for Objective in Silico Screen-
ing (DEKOIS) and DEKOIS 2.0 Nuclear Receptors Ligands and Structures
Benchmarking DataBase (NRLiSt BDB), DUD LIB VS 1.0, reproducible virtual
screens database (REPROVIS-DB) and Maximum Unbiased Validation (MUV)
(Xia et al. 2015; Lagarde et al. 2015).

In this chapter, the application of Autodock4, Autodock Vina, and DOCKG6,
consensus scoring, and rescoring of the binding free energy in the virtual screening
process is emphasized.

2.1.1 Docking Algorithms: Autodock4, Autodock
Vina, DOCKG6

Docking algorithms are designed to predict the biological activity of small molecules
in the drug discovery process. A typical docking program includes algorithms to
search the conformations and score using scoring functions. Different search algo-
rithms and scoring functions are used to sample the conformations and score the
receptor-ligand interactions. The search methods are designed specifically to manage
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ligand flexibility and, to some extent, protein flexibility. Ligand flexibility may be
treated using systematic, random/stochastic and simulations search methods. The
systematic search method involves incremental construction, conformational search,
and databases. Stochastic involves Monte Carlo, genetic algorithms, and tabu
(conformational space) search approach. Simulations involve molecular dynamics
and energy minimization. To score the receptor-ligand interactions force-field based,
knowledge-based and empirical scoring functions are integrated into the docking
tools (Kitchen et al. 2004). The search methods and scoring functions integrated into
Autodock4, Autodock Vina, and DOCK6 docking algorithms are summarized
below.

Autodock4

Autodock is a grid-based automated docking algorithm. Autodock4 is a new version
of Autodock and integrates the Lamarckian genetic search algorithm and empirical
force field scoring function of Autodock3. Besides the characteristics of Autodock3,
Autodock4 incorporates limited flexibility in the receptor to assess the covalent
bound ligands. Autodock4 also includes simulated annealing and traditional genetic
search algorithms.

Lamarckian genetic algorithm (LGA) selects conformations with the lowest
binding energy. Autodock4 uses empirical force field-based scoring function to
evaluate the receptor-ligand interactions involving the binding energy of the ligand
molecules. It evaluates unbound and bound energy states of the ligand, protein, and
complex to predict the binding free energy. Autodock4 also includes a charge based
desolvation method. The desolvation method involves a typical set of atom types and
charges. The algorithm also includes protein flexibility involving side chains of the
amino acids (Morris et al. 2009; Forli et al. 2016).

Autodock Vina

In comparison to Autodock, Autodock Vina is easy to use, exhibits better perfor-
mance, more accurate in the prediction of binding mode, includes automatic grid
map calculation, and is compatible with Autodock tools. The docking tool is fast and
reduces the processing time involving multithreading approach on the multiple cores
of the machine (AutoDock Vina—molecular docking and virtual screening program,
http://vina.scripps.edu/). The algorithm includes iterated local search global opti-
mizer and conformational dependent scoring function. Vina scoring function is
inspired by the X score. Iterated local search global optimizer involves a local
optimization method (quasi-Newton method). Besides, Autodock Vina includes
protein flexibility involving amino acid side chains (Trott and Olson 2009; Jaghoori
et al. 2016).

DOCKG6

The DOCK algorithm involves geometric matching and incremental construction to
generate conformers of the ligand. DOCKG6 integrates the previous versions of the
DOCK algorithm. The algorithm has improved sampling and scoring functions. The
scoring function integrated into DOCKG6 is energy scoring (Allen et al. 2015).


http://vina.scripps.edu/

22 S. Gupta et al.
2.1.2 Consensus Scoring

Consensus scoring is used to enrich the number of active inhibitors at an early stage
of screening. The approach combines the individual scores, and the errors are
balanced. Consensus scoring integrates the results of the individual docking algo-
rithm. The method involves an average of the score or rank of each molecule
generated using the docking program. Popular consensus scoring approaches include
voting, coarse quantiles voting, rank voting, simple sum ranks, deprecated
sum-ranks, worst-best ranks, weighted sum ranks, regression schemes, and multi-
variate methods (Feher 2006; Palacio-Rodriguez et al. 2019).

2.1.3 Rescoring Using Binding Free Energy

The development of better algorithms and high-end computation accelerates the
process of estimating the binding (AGy,,g), contrary to the experimental procedure,
which is a time consuming and costly process in drug discovery. Therefore,
improved computational methods have been developed to reduce the cost and time
to discover new drugs. In structure-based drug design, molecular mechanics energies
along with Poisson-Boltzmann or generalized Born and Surface area continuum
solvation (MMPBSA and MMGBSA) are routinely adopted to estimate the free
energies of binding (AGpjnging) 0f small molecules to biological macromolecules.
Binding free energy is estimated using the equation
AGypinding = Geomiex — Greceptor — Giigana- The free energy of each of the system
are calculated as a sum of molecular mechanics energy (Enpy, the sum of the internal
energy of the molecule plus the electrostatic and van der Waals interactions in
vacuo), polar contribution to the solvation energy of the molecule (Gpsoy) and
nonpolar solvation free energy (Gupsory) as shown in the equation,
G = (Emm) + (Gpsol) + (Gupsoly)- Gpsorv s calculated by solving the Poisson-
Boltzmann (PB) and Generalized-Born (GB) equations for MMPBSA and
MMGBSA methods. In contrast, Gppsry is calculated using the equation
Grpsov = ¥ * SASA + b, where SASA is the solvent-accessible surface area
calculated using the linear combinations of pairwise overlaps or Molsurf methods.
MMPBSA approach is adopted to study relative free energies of macromolecules,
binding free energies between protein-protein, protein-ligand, and nucleic acid
systems (Kollman et al. 2000). However, the MMGBSA model involves Atomic
Born radii to calculate the approximations to the electrical polarization component
(Gpsoly) of solvation free energy. The MMGBSA approach is reported to give
comparable free energy with experimental results. In the estimation of binding free
energy, MMPBSA and MMGBSA involve a well-equilibrated system of small-
molecule-receptor complexes and explicit molecular dynamics (MD) simulations
(Genheden and Ryde 2015; Wang et al. 2018). The methods exhibit an accurate
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estimation of binding energy. But, the methods are time-consuming and cannot be
routinely used in the drug discovery process.

Hence, to reduce computational cost and time, Rastelli et al. 2009 developed a
method to rescore using binding energy (Rastelli et al. 2009). In this chapter, the
implementation of the method is described (Gupta et al. 2018).

2.2 Virtual Screening and Rescoring Workflow

2.2.1 Computational Requirements

All Computational studies are performed on a personal computer with Centos Linux
7 operating system involving Intel® Core™ i7-3770 CPU @3.40 GHz processor.
Molecular visualization is performed with Chimera 1.10.2 (UCSF Chimera Home
Page, http://www.cgl.ucsf.edu/chimera/). Open source tools—Autodock
(AutoDock—AutoDock, http://autodock.scripps.edu/), Autodock Vina (AutoDock
Vina—molecular docking and virtual screening program), Dock6 (UCSF DOCK,
http://dock.compbio.ucsf.edu/), MGLtools (MGLTools Website—Welcome —
MGLTools, http://mgltools.scripps.edu/), Putative Active Sites and Spheres
(PASS) (overview.html, http://www.ccl.net/cca/software/UNIX/pass/overview.
shtml; Brady and Stouten 2000), OpenBabel (Open Babel—Browse/openbabel/
2.3.2 at SourceForge.net, https://sourceforge.net/projects/openbabel/files/
openbabel/2.3.2/) Mayachemtools MayaChemTools: Home, http://www.
mayachemtools.org/), (About MODELLER, https://salilab.org/modeller/; Webb and
Sali 2016) and enrichvs (CRAN—Package enrichvs, https://cran.r-project.org/web/
packages/enrichvs/index.html) were downloaded and locally installed in the system.
Download and installation instructions are described in the supplementary document
(S1). R 3.2.3 is used to plot enrichment curves (R: The R Foundation, https://www.r-
project.org/foundation/).

2.2.2 Virtual Screening Using Docking

Virtual screening using docking involves a practical application of the Autodock4,
Autodock Vina, and Dock6 open-source docking programs. Plasmodium falciparum
dihydrofolate reductase PFDHFR-TS (PDB 1J31) (Yuvaniyama et al. 2003) complex
consisting of NADPH and two water molecules (W1249 and W1250) are selected to
demonstrate the virtual screening workflow (Fig. 2.1). The virtual screening
workflow is described in the following sections. The steps and the scripts involved
in the execution of the workflow can be obtained from the Supplementary.

Briefly, docking with Autodock4 involving a grid size of 50 x 50 x 50 with
0.375 grid spacing, and —0.1465 dielectric constant is constructed. Lamarckian
Genetic Algorithm (LGA) is used as the search method. The Auto Grid program
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determines the affinity maps of grids. The docking parameters included a number of
genetic algorithm (GA) runs: 10, individual population size: 150, the maximum
number of energy evaluation: 2,50,0000, and the maximum number of generation:
27,000.

Perl wrappers are used to execute the python codes for the library of ligand and
decoy. The PDBQT format of transformed receptor and dataset is involved in
docking with Autodock4 and Autodock Vina. The workflow for Autodock4 and
Autodock Vina is shown in Fig. 2.2.

Flexible docking is performed with Dock6. DMS program of Dock6 determines
the molecular surface and active binding site of the transformed receptor. Sphgen
tool generates overlapping spheres to describe the shape of the molecule or molec-
ular surfaces. The active site is determined by using a 10 Angstrom radius with
reference to WR1092. Grid is generated using a Showbox tool. The Showbox tool
involves an energy scoring method to generate a grid. The Mol2 format of the
transformed ligand library is used for docking.

Preprocessing of the Receptor and Ligand Library

Preprocessing of receptor and ligand involved the transformation of the receptor and
ligand to 0.0 0.0 0.0 coordinates, adding hydrogens and charge to the PDB structure
and small molecules. Charges are required to enable interactions between the ligand
and receptor. Modeling of missing residues is performed using Modeller.

Receptor

The PDB structure of PFDHFR-TS PDB 1J3I (Yuvaniyama et al. 2003) is retrieved
from RCSB Protein Data Bank. Chain B of PfDHFR-TS (PDB 1J3I) is used for
docking studies. Modeller models the protein and ten homology models are gener-
ated. The best model based on the DOPE score is validated using PROCHECK
(PROCHECK—DOE-MBI Structure Lab UCLA, https://servicesn.mbi.ucla.edu/
PROCHECKY/). All water molecules are removed from the protein except W1249
and W1250. W1249 and W1250 are in proximity to Asp54 residue of the active site.
The co-crystallized ligand WR99210 is removed from the complex. However, the
NDP cofactor is retained.

Ligand Library

The data set of PEDHFR-TS (PDB 1J3I) consists of ligands and decoys. It is obtained
from the directory of useful decoys in the SDF format (dhfr_ligands.sdf.gz and
dhfr_decoys.sdf.gz) (DUD—A Directory of Useful Decoys, http://dud.docking.org/
12/). The dhfr_ligands.sdf file is split, and duplicates are removed from the library
using SplitSDFiles.pl script of Mayachemtools. The dhfr_ligands.sdf file is split into
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new SDF files of the ligands, and the name of each new SDF file corresponds to the
ligand name. Subsequently, hydrogen atoms and gasteiger charges are added to the
molecule using Openbabel. Openbabel also generates the 3D structure of the ligands.

Transformation of the Receptor and Ligand Library

The transformation of the receptor and ligand library is a significant step included in
the virtual screening protocol. It involves positioning the coordinate center of active
site points to the center of the active cavity. Thus, coordinates are positioned to 0.0
0.0 0.0 of the predicted active site.

PASS algorithm determines the active site point (receptor.asps) in the receptor.
The script transform-receptor.py transforms the receptor to 0,0,0 coordinates.

However, the transformation of the ligand library involves the Perl script (trans-
form-ligand.pl). ~ The prepped transformed files of the receptor
(receptor_transformed.pdb), and ligand (ligand_transformed.pdb) may be used for
processing with different docking algorithms (see “Electronic Supplementary
Material”).

Processing

The transformed receptor and ligand are processed using Autodock4, Autodock
Vina, and Dock6 (Forli et al. 2016).

Preparing the transformed receptor and ligand in PDBQT format for processing
with Autodock and Autodock Vina

The transformed receptor and ligand library is prepared in the PDBQT
(receptor_transformed.pdbqt and ligand name_transformed.pdbqt) format using
python (prepare_receptord.py) and Perl (prepare_ligand.pl) wrapper, respectively
(see “Electronic Supplementary Material”).

Autodock4

Processing with Autodock4 involves the preparation of the grid parameter file,
calculation of grid maps for each atom type in the ligand using autogrid4, and the
docking parameter file (specifies the files and parameters for the docking
calculation).

The grid parameter file is obtained using prepare_gpf.pl Perl wrapper. The size of
the grid (npts = ‘50,50,50”) is mentioned in the Perl wrapper. Subsequently, the grid
maps are generated and include all the possible atoms types in the ligand. The final
step of the processing involves the preparation (prepare_dpf.pl) of the docking
parameter file (.dpf). The docking parameter files (.dpf) are listed and on the
execution of the script prepare_dlg.pl, docking log files (.dlg) are generated (see
“Electronic Supplementary Material”).



28 S. Gupta et al.

The results obtained using Autodock are evaluated using Perl script. Two direc-
tories (hi and hna) are created. The hi directory contains a copy of the docking log
files (.dlg). summarize_result.pl script. On the execution of the script
summarize_result.pl, a summary file including the root mean square deviation
(rmsd), Genetic Algorithm runs and calculated lowest energy is generated as an
output. The docking log files (.dlg) are processed and are converted to PDBQT
format using the prepare_write_complexes.pl. The prepare_pdbqt_to_pdb.pl script
may be used to convert PDBQT files to PDB format.

Autodock Vina

The receptor (receptor_transformed. pdbqt) and the ligand files (ligand
name_transformed.pdbqt) are processed using AutoDock Vina. A vina-folder direc-
tory is created. The vina-folder contains a copy of the recetor_transformed.pdbqt
and a directory lig_library. The lig_library contains a copy of all the ligands in the
PDBQT format (ligand name_transformed.pdbqt). The vina-folder also contains
vina_VS_input_final.sh and conf_input_final.py python script. A conf.txt file is
generated and mentions the grid parameters. Besides, a lig_lib is obtained containing
the docked files (see “Electronic Supplementary Material”).

DOCK®6

DOCKG®6 algorithm compatible receptor and ligands are prepared. The transformed
receptor (receptor_transformed.pdb) and transformed ligand library in the PDB
format (ligand_transformed.pdb) is used as the input file. Receptor and ligands are
prepared as described in the DOCKG®6 tutorial. The transformed ligand library in PDB
format (ligand_transformed.pdb) is converted to MOL2 format and combined to a
single file (transformed_ligand.mol2).

Grid generation and processing are performed as described in the DOCKG®6 tutorial
(UCSF DOCK, http://dock.compbio.ucsf.edu/DOCK _6/tutorials/index.htm).

Consensus Scoring

Post docking analysis is performed by ranking all the docked ligand and decoy
molecules obtained by Autodock Vina, Autodock, and Dock6 in the descending
order (highest to lowest score). In the early recognition of active compounds,
consensus scoring is done using the sum score, sum rank, and reciprocal rank
method (Feher 2006).


http://dock.compbio.ucsf.edu/DOCK_6/tutorials/index.htm
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Sum Rank

sum rank (i) = {1/(autodock_rank(i)/total no. of docked molecules) + 1/(vina_rank
(i)/total no. of docked molecules) + 1/(dock6_rank(i)/total no. of docked mole-
cules) }/total no of docking method

Reciprocal Rank

reciprocal rank (i) = 1/{((1/(autodock_rank(i)/total no. of docked molecules) + 1/
(vina_rank(i)/total no. of docked molecules) + 1/(dock6_rank(i)/total no. of docked
molecules)/total no of docking method))/total no of docking method }

Sum Score

sum_score (i) = {(autodock_score[i]/autodock_score_min) + (vina_score
[i]/vina_score_min) + (dock6_score[i]/dock6_score_min) }/total no. of docking
software

Enrichment Plot

Enrichment plots are drawn between the percentage of top-ranked database and
percentage of active compounds using enrichVS package. The performance of VS
open-source docking tools and consensus scoring approaches were evaluated using
the benchmarking dataset (ligands and decoys for PIDHFR-TS (PDB 1J3I). Sum
rank, sum score, and reciprocal rank were calculated using the docking scores of
Autodock, Autodock Vina, and Dock6. The performance of the open-source
docking tools and consensus scoring approaches were compared with GOLD and
GLIDE.

In the early recognition of the actives, the overall performance involving the
consensus scoring approach in the workflow was better than the open-source
docking tools. The open source tools in conjunction with consensus scoring
approach exhibits comparable performance. While the overall performance of
GLIDE and GOLD on the complete dataset is superior, the use of consensus scoring
actually provides better results for the detection of early hits. The number of actives
determined using the consensus scoring approach was approximately 65% in the top
10% of the ranked database. Amongst open-source docking tools, the performance
of AutodockVina was better than Autodock and Dock6 (Fig. 2.3).

2.2.3 Rescoring Using MMPBSA/MMGBSA

Rescoring using binding energy has emerged as an efficient tool to post-process the
docked poses. The approach was developed by Rastelli et al. 2009 and is popular as
Binding Estimation After Refinement (BEAR) (Rastelli et al. 2009). BEAR involves
a three-tier refinement (MM/MD/MM) process and rescores the ligands using
accurate scoring functions MM(PB/GB)SA (Rastelli et al. 2009; Anighoro and
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Fig. 2.3 Comparison of open source docking algorithms and open source docking algorithms in
combination with consensus scoring methods using the virtual screening workflow described in the
chapter. Y-axis represents the yield (percentage of the activities). X-axis represents the top
percentage of ranked database (pfDHFR data)

Rastelli 2013; Rastelli and Pinzi 2019). The refinement includes energy minimiza-
tion of the complexes followed by MD simulations. The approach allows the
movement of ligands and involves restrain on the receptor. The final step is the
re-minimization of the entire complexes (Degliesposti et al. 2011).

Preparation of the System: Receptor-Ligand Library Complex

Molecular docking yields receptor-ligand complexes. Post-processing is required to
filter the false negatives from the docking ensembles and to rank the top hits using
the binding free energy obtained via MM(PB/GB)SA (Sgobba et al. 2012). The
BEAR algorithm involves the pre-processing of docked complexes, refinement of
the complexes, and the estimation of binding free energy. The pre-processing
includes the parameterization of the receptor, ligands, and generation of complex
topology. Amber Molecular Dynamics package is used in the pre-processing, refine-
ment of the complexes, and estimation of the binding free energy (The Amber
Molecular Dynamics Package, http://ambermd.org/).


http://ambermd.org/
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Parameterization of Receptor and Ligand Library

The pre-processing step includes the addition of hydrogen atoms to the receptor. The
Leap module assigns Amber atom types and charges to the receptor using the
ff99SBILDN force field. The ligand library is parameterized and atomic charges
are calculated using the AM1-BCC model (Jakalian et al. 2002). The Antechamber
module builds molecular mechanics parameters of the ligands using Generalized
Amber Force Field (GAFF) (Wang et al. 2004). Parmchck assigns the missing
forcefield parameters.

Refinement of the Receptor-Ligand Complex

The refinement of the receptor-ligand complex involves the three-tier refinement
procedure. The initial MM energy minimization is performed on the entire receptor-
ligand complexes. It is followed by a short MD simulation involving restrain on the
receptor and the unrestrained movement of the ligand. In the last step, the entire
complex is re-minimized. The energy minimization of the complexes is performed
using the sander module of AMBERI16 (Case et al. 2016) for 2000 steps. It involves
distance-dependent dielectric constant & = 4r and a cutoff of 12 A. Subsequently,
100 ps MD simulation is performed and the ligand unrestrained. The final step is
again re-minimization and the entire complex is re-minimized for 2000 steps. The
MD is performed at a temperature 300 K. and involves SHAKE algorithm (Ryckaert
et al. 1977) to constrain the hydrogen atoms (time step of 2 f5s).

Rescoring

A single conformation of each refined complexes is selected for estimating the free
energy of binding using MMPBSA.py script available in AMBER module. An
automated script including parameterization, system preparation, refinement, and
rescoring, can be obtained from the supplementary.

2.3 Conclusion

The VS workflow integrates open-source docking programs (Autodock4, Autodock
Vina and DOCK®6), consensus scoring (sum rank, sum score, and reciprocal rank)
and rescoring using binding energy. The performance of the docking programs is
assessed by docking the PfDHFR-TS (PDB 1J3I) with a benchmarking dataset
downloaded from DUD. Consensus Scoring was done using sum rank, sum score,
and reciprocal method. The number of actives in early recognition was higher with
the consensus scoring method than with open source programs. Besides, rescoring



32 S. Gupta et al.

using binding energy estimation enables the efficient sampling of receptor-ligand
complexes. It also allows us to accurately rescore the docking poses at reasonable
time. Hence, it can be routinely used in the drug discovery process.
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Chapter 3 )
Aspects of Protein Structure, Function, e
and Dynamics in Rational Drug Designing

Daliah Michael, Namrata Bankoti, Ansuman Biswas, and K. Sekar

If we were to name the most powerful assumption of all, which
leads one on and on in an attempt to understand life, it is that
all things are made of atoms, and that everything that living
things do can be understood in terms of the jigglings and
wigglings of atoms.

-Richard Feynman, Nobel Prize in Physics, 1965

Abstract The availability of the first three-dimensional protein structure of myo-
globin, ever since, has changed the way drug designers approach the protein-drug
binding problem. Thereafter, the dogma shifted from the “lock and key” to the
“induced fit” and later the “conformational selection” model. This shift could be
attributed to the various experimental techniques used to solve the protein’s three-
dimensional structure and its function. The basis of this new ideology lies in the fact
that the atoms of the protein are not static but in constant motion. Furthermore, due to
the folding of the protein’s secondary structural elements to arrange themselves
spatially, there is a flexibility associated with the whole protein structure. In addition,
computational methodologies such as molecular docking and molecular dynamics
simulations have proved to be a boon to the drug designing process. This chapter
explains, in a nut shell, how protein dynamics and computer-aided drug design play
important roles in rational drug designing.
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3.1 Introduction

Proteins can be perceived as nanodevices/nanomachines that play many critical roles
in the body. They play a pivotal role in maintaining coordination in the structure,
function, and regulation of the cells, tissues, and organs through their function.
Proteins are made up of smaller units called amino acids, which are attached in a
linear sequence of peptide bonds to form long chains. Twenty naturally occurring
amino acids combine to form a protein. This linear arrangement of amino acids is
referred to as the primary structure of the protein. The sequence of amino acids in a
protein helps in determining its unique three-dimensional structure (Anfinsen and
Haber 1961) and its specific function. The different patterns adopted by these chains
based on the hydrogen bonds formed between the amino acids constitute the
secondary structure of the protein molecule. There are two major types of secondary
structures, alpha helix and beta-pleated sheets. It is interesting to note that long
before the first protein structure was made available, Linderstrom Lang (1952) had
postulated that protein sequences can form distinct structural motifs that will even-
tually fold into a three-dimensional structure. These motifs are nothing but the
secondary structural elements of the protein (alpha-helix and beta-pleated sheets).
Tertiary structure is when these features fold and arrange into three-dimensional
structures, which are actually the functional forms of the protein. Furthermore,
proteins can form larger macromolecule complexes to stabilize their structure and
function. This higher level of arrangement is referred to as the quaternary structure
of the protein. The best example to give here is that of the hemoglobin protein
structure (Fig. 3.1), a popular example that can be found in most textbooks. The
structure of hemoglobin was solved by Max Perutz in 1959 (Perutz et al. 1960) by
X-ray crystallography. Hemoglobin has a quaternary structure whose function is to
transport oxygen in the blood. It has two alpha chain and two beta chain subunits.

Based on structure, proteins can be broadly classified as fibrous and globular
proteins. (I) Fibrous proteins usually comprise a particular type of secondary
structural element in which the polypeptide units are arranged in strands or sheets.
Their function mainly lies in providing strength and support to vertebrates. Collagen
and keratin are two such proteins. (2) Globular proteins are made up of different
secondary structural elements, which are arranged in a globular shape. Enzymes and
most other functional proteins fall in the category of globular proteins; for instance,
hemoglobin, which isa protein that transports oxygen (Imai 1999). Globular proteins
are dynamic in nature and display a close relationship between sequence-structure
and function. Based on functions, proteins can fall into eight broad categories
(hormone, enzyme, structural protein, defensive protein, storage protein, transport
protein, receptor protein, and contractile Protein) out of which enzymes and receptor
proteins are crucial for drug designing (Geronikaki 2019; Marques et al. 2017;
Rekka et al. 2019; Yari et al. 2017).

From their function as detergents (Hasan et al. 2010) to complex ones (Sweeney
and Holzbaur 2018) in our body, enzymes are indispensable biological molecules
that are vital for a wide variety of functions in living organisms. Based on the
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Fig. 3.1 Depicting primary, secondary, tertiary, and quaternary structures of hemoglobin. (Source:
OpenStax College, http://commons.wikimedia.org/wiki/File:225_Peptide_Bond-01.jpg, cc by 3.0.)

Enzyme Commission (EC) number (Webb 1992), enzymes are classified into six
different categories (Koolman and Roehm 2005). These proteins are biocatalysts and
constitute different metabolic pathways in the cells.

In evolutionary related studies, the first impressions were that proteins having
high sequence similarity reflect high homology between proteins of different organ-
isms and thus have similar functions or have probably evolved from a common
ancestor. Later, after the relationship between sequence and structure was revealed
(Anfinsen and Haber 1961), it was established that if the sequences of proteins do not
share similarity, their three-dimensional structures were highly similar (Chothia and
Lesk 1986; Rost 1999; Sander and Schneider 1991). Such revelations led to the
affirmation that it was after all the structure of the protein that plays an important role
in determining its function. Proteins are dynamic molecules; they depict inter-
domain, secondary structure level movements (Biswas et al. 2017a, 2017b;
Chaudhary et al. 2018; Deocaris et al. 2009; Jana et al. 2011; Putri et al. 2019) for
their function. Homologous proteins display conservation in sequence, structure, and
dynamics levels and subsequently demonstrate similarity in function space. How-
ever, there are subtle differences in all these levels across homologous proteins,
which may lead to subtle changes in function as well.
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Often, proteins from pathogens are specifically targeted using small molecule
inhibitors in an attempt to design drugs against those pathogenic infections (Kumar
etal. 2019; Okuhira et al. 2017; Peixoto et al. 2017). Inhibitors are designed in such a
way that they do not target the homologous protein from the host. In this attempt, the
subtle differences in sequence, structure, and dynamics space across the homologues
are taken into account (Sledz and Caflisch 2018).

G-protein coupled receptors, more popularly known as GPCRs, form major part
of the human membrane proteins and constitute more than 1% of the human genome.
They comprise seven transmembrane helices that are conserved secondary structure
across all GPCRs. A recent survey revealed that approximately 40% of available
drugs have GPCRs as targets (Brink et al. 2004; Drews 2000; Klabunde and Hessler
2002). These drugs cover a variety of diseases ranging from diabetes, immune
disorders, cancer, and cardiovascular disorders. Furthermore, it is known that spe-
cific conformational changes in GPCRs activate them to cause intracellular signals
(Latorraca et al. 2017). Please refer (Lee et al. 2019) and (Lee et al. 2018) for further
reading on GPCRs. Thus, in recent years, this family of proteins has been involved in
various pharmacology studies (Wacker et al. 2017), especially in rational drug
designing.

3.1.1 Rational Drug Designing

Till around half a century ago, drug discovery was set upon the basis of “trial and
error” methods and the availability of basic materials. Ever since the three-
dimensional structures of proteins have been made available, over the years, the
basis of drug designing lies in studying the structure and function of the protein
target. The aim is to design drugs that are “tailor-made” compounds with high
specificity for the target protein, thereby specifically inhibiting the protein function
to obtain desired therapeutic effects. This procedure is known as “rational drug
designing.” This strategy requires the following steps: (1) a receptor molecule/
enzyme related to a disease, which is the target for the drug; (2) complete informa-
tion on the structure, function, and dynamics of the protein target; and (3) designing
potential and highly specificligands, which are suitable to bind to the target. The
structure and dynamics of the protein may decipher different aspects of ligand
binding—interacting residues and the types of interactions among their sidechains
and the small molecules, electrostatic properties of the binding site, and residue level
movements of the binding site (Guo et al. 2015; Naderi et al. 2019). These param-
eters are crucial in designing effective small molecule inhibitors. Current trends in
rational drug designing include computer-aided drug designing (CADD) techniques
as an integral part of the overall drug designing process.

An article, dating all the way back to 1986 (Hol 1986), states that ultimately it is
the precise three-dimensional structure of a protein complexed with many “lead”
molecules that provides the basis of drug design. The author states that taking into
account even the slightest conformational changes of the protein will result in the
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small molecules/ligands binding differently to the protein. This will eventually give
rise to active and effective “tailor-made” drugs, with a high degree of specificity.
However, obtaining a comprehensive view of protein dynamics requires the three-
dimensional structure of a protein as snapshots along the dynamic trajectory. Such
structures, as in the case of adenylate kinase, along the reaction coordinate solved
through X-ray crystallography, provide deep insights into the functionally important
movements during catalysis (Jana et al. 2011). Even a single structure comes with
the b-factor statistics of the atoms, which is a metric for atomic movements. Several
biophysical techniques, such as small-angle X-ray scattering (SAXS) and wide-
angle X-ray scattering (WAXS) (Lamba 2016; Walther et al. 2000), are able to
probe different protein dynamics in solution. Protein structure determination has
often been faced with the bottleneck of obtaining diffraction quality crystals. This
has partially been overcome by the advent of cryo-electron microscopy, which does
not require the crystalline state of the molecule for structure determination (Callaway
2015).

However, all these methods come with their limitations at different levels: (1) Pro-
teins should be of high purity and desired quantity; however, at times, during the
purification procedure, the protein expression becomes poor, leading to some
expressed eukaryotic proteins not containing functionally important glycans. (2) Pro-
tein purification, quite often, results in some impurity being retained, which is very
difficult to eradicate. (3) Highly dynamic regions of proteins often hinder the process
of crystallization, and crystallization trials are attempted with the deletion mutants of
protein samples, where those regions are deleted from the sequence. Therefore, the
crystal structures of the deletion mutants may not provide the dynamic information
of the full length protein. (4) Protein co-crystal structures with small molecules may
not be determined in certain cases (as in thymidylate kinase from Sulfolobus
tokodaii). Therefore, the specific interactions among residues and the small molecule
may not be determined, and the relative movements of protein binding site residues
with respect to the apo structure cannot be elucidated. (5) Expressing mammalian
proteins in a bacterial system results in proteins that are devoid of glycosylation.
However, glycans often play important roles in regulating protein functions in the
eukaryotic system (Corfield 2017; Varki 2017). Structures without glycans may not
provide full insight into protein dynamics.

CADD techniques may provide valuable insights about the system in the absence
of experimental insights. Homology modeling or ab-initio protein structure deter-
mination provides predictive three-dimensional models in the absence of crystal
structures. Thereafter, docking simulations can predict the possible ligand-bound
protein structures. Long molecular dynamics simulations of both apo and
co-structures provide possible trajectories of the functionally important movements
of protein structures. However, problems regarding drug design still persist owing to
the presence of experimental hurdles.
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3.2 Role of Protein Structural Biology in Rational Drug
Design

The first protein structure of myoglobin was solved using X-ray crystallography by
Max Perutz and John Kendrew in 1958 (Kendrew et al. 1958), which won them the
Chemistry Nobel Prize in 1962. Following this breakthrough, many other protein
structures have been solved by X-ray crystallography, of which the structures of
vitamin B12 and insulin, which won Dorothy Hodgkin the Nobel prize in chemistry
in 1962, are worth mentioning.

Structural biology is the study of the biochemical and biophysical characteristics
of protein structures after elucidating the three-dimensional structure. The three-
dimensional structure of proteins is determined, mainly, using X-ray crystallogra-
phy, amongst other techniques, and it is the atomic coordinates of the protein that
shed light on the function of the protein. The detailed analysis of the three-
dimensional structure of proteins facilitates the understanding of various structural
and functional roles of the proteins. For instance, the catalysis process that happens
at the enzyme active site, how or why two proteins interact with each other, and the
molecular basis of cell signaling. Such analyses provide us with immense knowledge
and open up avenues for further exploration of cellular machinery functions, such as
the viral or bacterial disease cycles.

Further advancements in X-ray crystallography, nuclear magnetic resonance
(NMR) spectroscopy, and electron microscopy (cryo-electronmicroscopy) tech-
niques have led to the phenomenal quantity and quality of information that can be
exploited to gain valuable insights into the structure, function, and dynamics of
protein structures. This treasure of knowledge will pave the way for precise and
specific drug designing. Therefore, since the determination of the first protein three-
dimensional structure, its knowledge has become crucial for the development of
drugs for protein targets.

As straightforward as it sounds, in reality, the information obtained from the
crystal structure of proteins is very complicated, plainly because the atoms of the
protein are not rigid/fixed but constantly “jiggle” and “wiggle.” Thus, a three-
dimensional structure is not a single snapshot of the protein but rather an ensemble
of different conformations. In other words, owing to the fact that protein molecules
are in constant motion, the structure of a protein can adopt different conformations.
This is the key ingredient to understand and study the protein conformational
dynamics and its effect on protein function and binding to drug molecules
(Eisenmesser et al. 2005; Frauenfelder et al. 1991; Zhuravleva and Gierasch
2015), and the drug Captopril is a successful example. Captopril is an angiotensin-
converting enzyme (ACE) inhibitor, which is being used to treat hypertension or
high blood pressure for decades. According to an early review article (Hol 1986), the
success of this inhibitor was based on the knowledge of the three-dimensional
structure of the proteins carboxypeptidase A (Rees et al. 1983) and thermolysin
(Holmes and Matthews 1982).
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3.3 Role of Protein Dynamics in Drug Design

Although enzymes are usually large globular protein molecules, only a part of it is
involved in its catalytic functionality. The active site (catalytic site + binding site) of
the enzyme is specific to its function as only a substrate with the particular shape will
fit into it. The three-dimensional structure of an enzyme has an important role in
determining the function of its active site, and any change in the amino acid
sequence could result in a change of its three-dimensional structure and function.

The active site of a protein/enzyme is mostly a cavity in the protein where a
substrate binds to activate a particular reaction (catalytic function). Active sites
comprise amino acids that are important for that catalytic function and are usually
highly conserved across protein families. These active site amino acids are respon-
sible for binding to the substrate to catalyze the chemical reaction. Amino acid
residues that are present on other areas of the protein also contribute to maintaining
the function, features, and properties of the protein and active site (Furst et al. 2019).
For instance, proteins fold and function via various interactions between the amino
acids, and these interactions in evolutionary times lead to a correlation between
residues. The residues that are situated around the active site of proteins are usually
conserved for ligand binding and catalysis. Structural studies have shown consider-
able interdomain movements in the protein active site during the course of catalysis.
For instance, studies on adenylate kinase (Jana et al. 2011) demonstrated how the
protein attains “open” to ‘“closed” conformations along the reaction coordinate.
Combined with molecular dynamics simulations, it was also demonstrated how the
protein active site attains an intermediate ‘“‘half open—half closed” conformation in its
dynamic trajectory (Adkar et al. 2011; Jana et al. 2011). Furthermore, several apo-
and co-crystallographic structures demonstrated the role of “allosteric regulation”
(described later in this chapter) in the function of Hsp70 (Stetz and Verkhivker
2017). Such studies enable us to identify the functionally important residues of the
protein. For proteins from pathogens, this helps to identify residues to be targeted for
highly specific inhibitor designing. Crystallographic structures of several sugar
binding proteins, such as lectins, and eukaryotic protein structures solved with
associated glycans demonstrate the molecular basis of cell to cell communication
(Varki 2017).

Moreover, conformational changes due to the binding of substrates/ligands in
these conserved sites are important factors for the study of information paths
between the substrates and protein (Singh et al. 2015). They help in identifying
the functionally important and correlated residues, which provide important insights
into the mechanism of enzyme catalysis (Chaudhary et al. 2018). Mutation of the
conserved residues during protein-protein interaction could have a detrimental effect
on the function of the protein. Thus, the concept of coevolving residues could be
used to study the compensatory mutation in the correlated residues, which can
restore the specificity of the protein, and the effect becomes neutral when together
or deleterious by itself (Adami 2004; Little and Chen 2009). Proteins undergo
considerable conformational changes in the cellular environment. Sometimes these
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conformational changes are triggered by the binding of some small molecules,
peptides, or proteins away from the site of interest. This is called allosteric regula-
tion. In combination with the protein structure network analysis of the trajectory of
protein dynamics, the functionally important residues both near the binding or active
site of the protein and away from the site of interest can be determined (Chaudhary
et al. 2018).

Active sites of proteins maintain a particular shape and size, which is suitable to
bind to specific substrates. It is to be noted that there are other binding sites on the
surface of the protein, which are shallower than the active site pocket. These binding
sites facilitate the binding of the protein molecule to other macromolecules, such as
protein-protein interactions and subunit associations. This is a very important step in
protein dynamics related to binding with ligands and substrates.

The earliest notion of protein-ligand binding was first presented as a “lock and
key” model (Fig. 3.2a) (Fischer 1894), where the active site of the protein is exactly
the shape of the rigid ligand so that it fits perfectly like a key into a lock. However,
when protein structures began to be solved by X-ray crystallography, as mentioned
earlier, protein molecules were found to be in constant motion and not rigid objects.
These movements can be at the atomic level, occurring in femtoseconds, or at the
secondary and tertiary structure levels, ranging from seconds to hours. The latter
refers to movements that occur during the event of protein folding and subunit
association. The flexibility and movement of these proteins affect the dynamics of
the active site, creating an ensemble of conformations and different cavity shapes.
Therefore, the limitations of the “lock and key” model theory were clearly seen.
Moreover, the “lock and key” model thrived during the era when protein three-
dimensional structures were not yet known. Soon, a new theory was introduced by
Koshland in 1958 (Koshland 1958), called the “induced fir’ model (Fig. 3.2b).
According to this model, the shape of the protein binding site/active site changes
and adapts according to the ligand that binds to it. Also referred to as the “hand and
glove” model (Sledz and Caflisch 2018), the specific ligand induces a conforma-
tional change in the active site such that it perfectly binds to the respective ligand. In
layman’s language, the hand is considered as the ligand and the glove as the protein’s
binding pocket. When the hand is put into the glove, the latter adjusts its shape such
that it snugly fits over the former. Another model describes proteins possessing
several different conformations, and the ligand selects the most suitable conforma-
tion and binds to it. This form of selective binding is called the “conformational
selection” model (Fig. 3.2c). This was first observed when conformational changes
in the protein binding/active site were noticed consequential to the allosteric binding
of a ligand (Monod et al. 1965) (allosteric binding will be talked about later in this
chapter). Moreover, the “conformational selection” model has been widely observed
and studied in various research (Changeux and Edelstein 2011; Vogt and Di Cera
2012). Coming back to protein dynamics, it is to be noted that both intrinsic protein
flexibility and the active/binding site conformational changes are contributory fac-
tors to the protein-ligand binding process. Several studies have shown that the
magnitude of these movements affects the “time scale” on which they occur,
which in turn influences the choice of binding model (induced fit or conformational
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Fig. 3.2 Diagrammatic representation of the three types of binding models. (a) Represents the
“lock and key” model, (b) represents the “induced fit” model, and (c) represents the “conforma-
tional selection” model. Here, P Protein, L Ligand, PL Protein-Ligand complex

selection) during the protein-ligand binding process (Gianni et al. 2014; Hammes
et al. 2009; Zhou 2010). Readers are urged to read this excellent article on “Protein
binding pocket dynamics”(Stank et al. 2016) for further understanding. The article
clearly mentions that a binding pocket should possess certain features to suit the set
of ligands that is capable of binding to it. Firstly, the volume of the cavity should be
proportionate to the size of the ligand, so as to be able to house it. Secondly, the
physiochemical properties of the active site should be suitable for the potential
ligands to bind. These properties include electrostatics, hydrophobicity, and other
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interactions of the active site residues (Henrich et al. 2010; Schreyer and Blundell
2009). At this juncture, it would be appropriate to mention that each distinct
conformation is associated with a different energy; the lower the energy value,
the higher the stability, thereby making the conformations with lower energy values
more favourable for binding. Proteins transition between different conformations
and the chances of transitions highly depend on the energy variation between the two
conformational states; hence, the lesser the variation, the more probable is the
transition. Another important factor to be considered in the protein-ligand binding
process is the “druggability” of the active/binding site (Hopkins and Groom 2002).
Druggability may be defined as the ability of the protein’s active site to bind to a
drug, which also takes into account its physiochemical properties. Having realized
the utmost criticality and underlying role of dynamics in protein function, a research
group (Hensen et al. 2012) proposed the concept of “protein dynasome” based on the
hypothesis that proteins with similar functions display comparable dynamic proper-
ties and thus possess a common “dynamic fingerprint.” Interested readers are
encouraged to refer to the mentioned article for further reading.

An excellent article (Csermely et al. 2010) elucidating the different binding
models highlights a fourth model, which is “extended conformational selection.”
Several studies (Grunberg et al. 2004; Wlodarski and Zagrovic 2009) have demon-
strated that after following the “conformational selection” mode of binding, a
“conformational adjustment” was observed in the final protein-ligand complex.
“Conformational adjustment” is nothing but the “induced fit” action, which takes
place after the ligand selected the specific representation of the same. Ubiquitin’s
binding site is a perfect example of this mode of binding (Wlodarski and Zagrovic
2009), wherein the side chains of the residues in the binding site tend to adopt the
“induced fit” model, and the rest of the protein settles for the “conformational
selection” type. Another classic study (Silva et al. 2011) also demonstrates how
the LAO (Lysine-, Arginine-, Ornithine-binding) protein first adopts the “conforma-
tional selection” approach and then finishes off with the “induced fit” model during
ligand binding. This study includes computational methods that are used in drug
discovery and also talks about the effect of allostery in binding.

Allosteric binding is an important factor in the dynamics of the protein-ligand
binding process and is especially significant in drug designing (Nussinov and Tsai
2015; Stank et al. 2016). Allosteric binding refers to the binding of a ligand or a
macromolecule to the receptor protein at a site other than the active/binding site.
Allosteric binding contributes to the dynamics of the protein’s active/binding site
causing further conformational changes, which ultimately influence the type of
binding: induced fit, conformational selection, or a combination of both. How
does this work? Well, when a ligand binds to an allosteric site on a protein, it causes
a conformational change in the active site such that only a specific inhibitor or an
activator molecule will bind, such as the ligand-induced allosteric effects on myosin
V (Coureux et al. 2004) and Hsp70 (General et al. 2014). Similarly, during protein-
protein interaction of either the same or discrete macromolecules, the movement
caused in the entire protein complex affects the dynamics of active/binding site,
thereby making it a target or receptor for specific ligands. Please refer (Nussinov and
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Tsai 2015) for further reading. Protein (i.e., the target) flexibility is one of the main
factors that affect receptor-drug binding kinetics. For further reading, please see
reviews by Pan et al., (Pan et al. 2013) and Klebe et al., (Klebe 2015).

3.4 Role of Computer-Aided Drug Design (CADD)

The last few decades have seen a sudden stir in pharmaceutical and life science
companies where everyone is talking about “drug designing,” wanting to make their
mark in the field, and why not? The advent of computational methodologies in the
drug discovery pipeline has accelerated the process of the designing of drugs
(De Vivo 2011; Jorgensen 2004) and optimizing drug candidates. Methods such as
molecular dynamics (MD) and molecular docking are being used very frequently
and are becoming indispensable CADD tools in the drug discovery process. This can
be attributed to the fact that their basis for analysis is protein dynamics and entropic
effects. This provides drug designers and researchers with a more accurate scenario
in terms of protein-ligand binding (De Vivo et al. 2016). The drugs indinavir,
ritonavir, saquinavir (Van Drie 2007), and tirofiban (Hartman et al. 1992), to name
a few, have used CADD as an integral part of their development process, and many
more are continuing to (Hillisch et al. 2015; Muegge et al. 2017). As mentioned
earlier, protein dynamics is one of the key factors in deciding the type of ligands that
are to be used in binding to a particular protein in structure-based drug designing.
Keeping this in mind, a brief outline of the two most widely used computational
methods in CADD, “molecular docking” and “molecular dynamics simulations,” is
presented below.

3.4.1 Molecular Docking

Virtual Screening, a rational drug discovery approach, can be categorized into two
methods: ligand-based and structure-based. The ligand-based method is employed
when the ligand molecules are known, but the structure of the target protein is
unknown; hence, methods like QSAR (Quantitative Structure Activity Relationship)
and pharmacophore modeling are used. Whereas, in structure-based drug design, the
structure of the target protein is known, and the molecular docking method is
adopted (Kuntz et al. 1982). Structure-based virtual screening aims to identify new
potential ligands for the specific protein target, and many such projects have been
accomplished. The molecular docking approach is used to identify the interaction
between a small molecule and protein, which in turn gives an insight into the nature
of the small molecules in the binding site of the target protein (McConkey et al.
2002). During the process of docking, prior knowledge of the binding site adds to the
docking efficiency. In the event that the binding site is unknown, the information can
be obtained either by comparing the target protein with a class of proteins having
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similar structure and function or by using prediction tools and servers, such as GRID
(Goodford 1985; Kastenholz et al. 2000), POCKET (Levitt and Banaszak 1992), and
MetaPocket (Huang 2009). In some cases, docking is done without any knowledge
of the binding site and is referred to as “blind docking.” The docking process
involves two inter-related steps: (1) sampling method: prediction of conformations
of the ligand in the active site and (2) scoring schemes: evaluating the binding
affinity via the scoring function (Meng et al. 2011). Both these methods are briefly
explained below.

Sampling Algorithms

1. Matching algorithms—follow the principle of matching the shape and properties
of the ligand to that of the active site (Brint and Willett 1987; Fischer et al. 1993;
Norel et al. 1994).

2. Incremental construction methods—first breaks up the ligand into fragments at
their rotatable bonds. The fragment of highest binding significance is first docked
into the binding site followed by the addition of the remaining fragments, piece
by piece (Des Jarlais et al. 1986; Leach and Kuntz 1992; Rarey et al. 1996).

3. Stochastic methods—work by modifying the conformation of the ligand or group
of ligands, to identify the conformational space. The Monte Carlo (Goodsell et al.
1993; Hart and Read 1992) and Genetic algorithms (Jones et al. 1997; Oshiro
et al. 1995) are examples of stochastic methods.

Scoring Functions

Scoring function estimates the binding affinity between the protein and ligand,
thereby separating the correct orientations from incorrect ones. There are three
types of scoring functions:

1. Force-field based: evaluating binding energy based on non-bonded interactions
(electrostatic and Van der Waals).

2. Empirical scoring functions: Binding energy includes various energy compo-
nents (ionic interactions, hydrophobic effects, hydrogen bonds, and binding
entropy), and each contributes to the final score.

3. Knowledge-based scoring function: the distance between the ligand and protein is
obtained using the statistical analysis of protein-ligand complexes.

Thus, molecular docking is a method that is used to predict the binding of a
protein with potential ligands. Docking studies provide the best binding orientation
of the ligand to the protein’s binding pocket or active site. Docking can adopt two
strategies: structure-based and fragment-based. Structure-based docking is more
popular than fragment-based docking because the former uses the entire protein
structure in the process, while the latter uses only the binding pocket region. Since
protein flexibility and dynamics play an important role in protein-ligand binding, it is
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rather prudent to adopt the structure-based method. Furthermore, molecular docking
methods can either cater for the various conformations that the protein structure
might assume during the binding process (i.e., induced-fit mode) (Sherman et al.
2006) or use an existing ensemble of conformations (Erickson et al. 2004). This is
also known as “flexible docking,” which is a better strategy to employ rather than
“rigid docking.” The advantage of flexible docking is that the binding orientations
with the least binding energies can be preferred rather than being given only one
binding pose in rigid docking. A variation to the flexible docking mode is where
most of the protein is frozen, and only specific binding site amino acid residues are
left to “jiggle” and “wiggle” (Kuhn et al. 2016). Some of the most popular tools for
docking are Dock (Allen et al. 2015), GOLD (Jones et al. 1997), AutoDock (Morris
et al. 2009), Haddock (de Vries et al. 2010), and rDock (Ruiz-Carmona et al. 2014).

3.4.2 Molecular Dynamics Simulations

Molecular Dynamics (MD) (Cornell et al. 1995; Brooks et al. 1983; Weiner et al.
1984) is a computational method for studying the motion of atoms and molecules
and their interactions based on Newton’s physics. Though experimental techniques
like X-ray crystallography and NMR provide information about the various confor-
mations of protein structures, it is not sufficient in drug discovery, where the
knowledge of all possible conformations and motions is necessary for proper ligand
selection or specificity. This is where computational methods like MD step in to
make up for the existing lacuna.

The very first step is to develop a computational model of the molecular system
from experimental data (NMR, Crystallographic data, Homology modeling),
followed by the estimation of forces on each of the system atoms. The energy
parameters are made to fit quantum mechanical calculations and experimental data
to mimic the behavior of real molecules in motion (Durrant and McCammon 2011).
Together, these parameters describe the contribution of various atomic forces that
influence MD and are referred to as “force field” AMBER (Cornell et al. 1995),
CHARMM (Weiner et al. 1984), and GROMOS (Christen et al. 2005) are some of
the common force fields used in MD simulations. After the calculations of the forces
acting on each of these system atoms, based on Newton’s law of motion, the
positions of these atoms are shifted. In the end, the simulation time is incremented
by one or two quadrillionths of a second, and this process is iterated millions of
times. This is the reason why MD simulations require to be run on supercomputers or
clusters. Some of the popular MD software are AMBER (Case et al. 2005),
CHARMM (Weiner et al. 1984), NAMD (Kalé et al. 1999; Phillips et al. 2005),
and GROMACS (Pronk et al. 2013).

Since MD simulations cater for the flexibility and dynamics of both the protein
and ligand, it is often used to predict the near accurate conformations of the ligand
binding to the active site. Furthermore, in several cases, MD simulations have
predicted novel binding sites in a protein structure. One of the success stories
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based on this is the discovery of a new binding pocket adjacent to the known active
site of HIV integrase, which led to the designing of new inhibitors for
it. Spearheaded by Merck & Co., this project led to the development of the drug
Raltegravir (Summa et al. 2008).

In conclusion, when multiple conformations of both the ligand and protein are
considered during docking calculations, apart from the chance predictions of new
binding sites, the accuracy and efficacy of the interactions between the ligand and the
amino acid residues may provide valuable insights about the kinetics of the process.
Moreover, several studies have undertaken the evaluation of comparing and validat-
ing the MD data with experimental results (van Gunsteren et al. 2008), and a
substantial number of such cases are seen to be highly comparable (LaConte et al.
2002; Markwick et al. 2010; Peter et al. 2003; Showalter and Bruschweiler 2007). In
view of all these beneficial properties and the constant upgrade of computational
technologies, contrary to the old notion, molecular dynamics along with other
CADD techniques is becoming a standard feature in rational drug designing
(Borhani and Shaw 2012; Durrant and McCammon 2011). For the benefit of the
readers, a schematic, self-explanatory flow chart has been provided, which explains
the general process of CADD (Fig. 3.3).

3.5 Case Study: Computational Screening of Potential Lead
Molecules and Experimental Validation of Their
Anti-Influenza Effect

This case study is a published work (Liu et al. 2016), which has been used as an
example to demonstrate how CADD is an integral part of the drug designing
pipeline.

Influenza viruses, of the virus family Orthomyxoviridae, are one of the most
common causes of human respiratory infections. Influenza A virus eminently infects
the mucosa of the upper respiratory tract and might induce respiratory diseases
(Taubenberger and Morens 2008). Influenza viruses (A, B, C) are enveloped
negative-strand RNA viruses, consisting of seven to eight gene segments (Lamb
and Krug 1996), but all of them differ in host range and pathogenicity. All influenza
A viruses contain eight genes encoding for 12 different proteins (Gao et al. 2012).
The influenza A virus is classified into distinct subtypes based on the two proteins on
the surface of the virus: hemagglutinin (H) and neuraminidase (NA) (Smith et al.
2009). Previous studies have reported the crucial role of NA for the replication and
propagation of the influenza A virus; therefore, molecules inhibiting NA can act as a
potential anti-influenza A drug (Michiels et al. 2013; Nayak and Jabbar 1989).

At present, there are three anti-influenza drugs: amantadine, oseltamivir, and
zanamivir (Pica and Palese 2013), but owing to the emerging drug-resistant strains
of the influenza A virus, it has become critical to develop a new anti-influenza A
drug. This study demonstrates an in silico approach to identify potential anti-
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Fig. 3.3 A schematic representation of a general Computer-Aided Drug Designing process

influenza molecules, followed by in vitro and in vivo experiments to validate the
anti-influenza effects of the screened molecules (Liu et al. 2016).

In the current scenario, the most efficient approach to start with drug development
is computational screening, i.e., the in silico approach. In this work, the NA of A/PR/
8/34 HINI1 has been taken as the target molecule. The NA structure of A/PR/8/34
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HINI1 was computationally modeled using A/Brevig Mission/1/1918 HINI as a
template, by the SWISS-MODEL Workspace. The sequence alignment, employing
Clustal Omega, showed 93.25% identity for the two sequences, and the residues
crucial for NA activity were found to be conserved. The structure comparison
performed, using PyMOL, depicted close identity between the two structures, as
well as indicated the structurally conserved site for NA activity.

Next, the identification of potential anti-influenza small molecules was done.
Through literature survey, plants known to have anti-influenza effects were curated,
and fifteen bioactive components were gathered for further process. From the ZINC
database, the structures of small molecules were retrieved, and using the AutoDock
software, molecular docking was performed with the modeled NA structure as the
receptor. The binding energies calculated for the fifteen small molecules and
zanamvir depicted that the binding energies of chlorogenic acid and quercetin
were comparable with that of zanamvir. Further analysis of docking energies and
calculation of the inhibition constant indicated the significant NA inhibition ability
of chlorogenic acid and quercetin. Furthermore, the FAF-Drugs3 software was
employed for the chemical informatics analysis of Zanamvir, chlorogenic acid,
and quercetin. The results were promising as they indicated high drug-likeness of
the two small molecules. The two small molecules with high binding potential were
then further analyzed in vitro and in vivo to validate their NA inhibition ability.

3.6 Summary

It is evident that the knowledge of the three-dimensional structure and function of the
protein is indispensable for the successful prediction and selection of target-specific
drugs. This is where experimental techniques like X-ray crystallography, NMR, and
Cryo-electron microscopy share the throne. However, experimental methods are
usually very time consuming and cost intensive, and it is not certain that they will
result in the desired output. Thus, computational methods were sought after as a
means of reducing the time taken, especially in the case of virtual screening for
specific and suitable small molecules. Furthermore, computational methods cater for
and take into account the flexibility and dynamics of the target protein, as well as
those of the binding pocket and ligand. Molecular docking provides a user-friendly
and convenient yet reliable methodology for narrowing down to a set of ligands that
could bind specifically to the target protein, through various orientations. MD
simulations approach is gaining increasing popularity in drug designing, especially
owing to its ability to predict new binding pockets and take into account the various
movements in the protein molecule, even at the atomic level. Several successful
drugs, as mentioned above, are the consequence of this combined approach in drug
discovery, which is Computer Aided Drug Designing. As new pathogens are
emerging and evolving with higher virulence, the need of the hour is to develop
more robust computational tools to aid in the drug designing process.
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Chapter 4 )
Role of Advanced Computing in the Drug <=
Discovery Process

Ajitha Mohan, Suparna Banerjee, and Kanagaraj Sekar

Computers are incredibly fast, accurate, and stupid; humans
are incredibly slow, inaccurate, and brilliant; together they
are powerful beyond imagination.

—Albert Einstein

Abstract The classical experimental approach to drug discovery is a tedious task
for biological scientists as they are time-consuming and expensive. With the advent
of advanced computing techniques such as artificial intelligence and high-
performance computing, the problems of the traditional drug discovery approach
can be circumvented. In particular, computational approaches help in analyzing and
locating active binding sites and guide towards the selection of potential drug
molecules that can effectively and specifically bind to these sites. Once lead mole-
cules are identified, associated compounds can be chemically synthesized and tested.
So the iterative time-consuming process of identifying potential drug molecules can
be significantly reduced by implementing advanced computing techniques whereby
it controls the spread of pandemic diseases. This chapter gives some of the popular
high-performance techniques, automated statistical methods, and neural network
algorithms for data mining in the drug discovery process along with their scope
and application.
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4.1 Introduction

The field of drug design is a continuously developing area in which much progress
has been done in recent years and has been fueled by the completion of the Human
Genome Project and with the boom of genomic, proteomic, and structural informa-
tion. The potential of designing drugs rationally using protein structures in the early
1980s was considered as an impractical approach by many structural biologists.
Discovery of new lead drug targets is possible now due to enormous advances in
high-throughput crystallography, for instance, automation at all stages, magnet and
probe improvements in nuclear magnetic resonance (NMR), profound synchrotron
radiation, and new progress in phase determination which in turn have lessened the
timeline for structure determination. The availability of faster and relatively cost-
effective computer clusters has improved the pace at which drug leads can be
discovered and assessed in silico. The time committed to the drug design process
may designate only a fraction of the total time towards generating end drug products
for the market. Several years of research and development will be required to
transform a potential drug into an effective drug through clinical trials which will
be safe and tolerant for the human body. Based on the known structure of protein
molecules, computer-aided drug designing is broadly classified into the structure and
ligand-based drug designing (Fig. 4.1).
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Fig. 4.1 Types of computer aided drug designing. This figure represents the types of Computer-
Aided Drug Designing Methods. Structure-based and DE Novo methods can be applied if the three-
dimensional structure of the protein is known. Ligand-based method can be applied if the ligand
structure is known
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4.1.1 Structure-Based Drug Designing Approach

Structure-based drug design is an iterative process and often continues through
several cycles before an optimized lead enters into clinical trials phasel. The process
starts with the cloning, followed by purification and eventually structure determina-
tion of the target protein by one of two principal methods: NMR or X-ray crystal-
lography. Protein Data Bank is a repository of solved protein structures; for proteins
that are difficult to isolate or crystallize, modeling methodology can be employed.

Comparative or Homology modeling is an approach that largely depends on
sequence homology between the target protein and at least one known structure.
This process involves the following steps: Template identification of protein having
known homologous 3D structure(s); Alignment of sequences of a template and
target proteins; Based on the alignment and 3D structure of the template, model
generation for the target is done, followed by refinement and validation; To ascertain
the rationality of modeled structures, few parameters have to keep under consider-
ation like stereochemistry, energy profile, residue environment, and structure simi-
larity (Huang et al. 2010).

Threading (Fold recognition) is a method that is used to model proteins that do
not have homology with available protein structures. In the threading protocol,
taking into consideration both protein surface area and the abode of residues
interaction (Mishra 2009) similarity search is performed using the given amino
acid sequence with the 3D structures in a database of known folds. From these
folds, the construction of the structure of the query protein is done. For the prediction
of unknown protein structure, if the aforementioned protocols fail, the ab initio
method can be very instrumental although it is less convincing in terms of accuracy
and identity (Huang et al. 1998). The ab initio method of modeling is also termed as
de novo modeling or physics-based modeling. The basic aim is the prediction of
native folds which starts with the primary amino acid sequence of the query protein
that is searched for various conformations. After fold recognition and prediction, the
model is assessed for verifying the quality of the predicted structure. Another
important aspect of structure-based drug design is the determination of the active
site of the ligand. By conducting cocrystallization studies, a good target site can be
determined such that the target macromolecule is crystallized with an initial small
molecule inhibitor. Active site verification by location mapping of a ligand in the
crystal lattice is not possible for proteins that cannot be crystallized. To circumvent
this problem, different types of binding site determination protocols have been
designed wherein small molecular fragments are used as probes to explore the
protein surface. One such example is FTMAP (Brenke et al. 2009) Spots, where
small molecular fragments are clustered and expected to be the advantageous
druggable sites.

After the identification of structure and target site, there are various ways both
experimental and computer-aided to develop a potential lead based on the target
structure. An instance of the experimental method is combinatorial chemistry along
with high-throughput screening, in which millions of compounds are tested with
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biochemical assays. Structure-based design and combinatorial chemistry when inte-
grated can guide the parallel synthesis of the resolved compound library (Antel
1999) The computer-aided methods can be categorized into three main classes:
inspection, virtual screening, and de novo generation. In the first category, modifi-
cation of known molecules that are reported to bind the target site is done to become
inhibitors based on augmenting complementary interactions. Target sites may reside
in enzymes such as substrates or cofactors or peptide forms in protein: protein or
protein: nucleic acid interactions. As per the procedure of virtual screening, data-
bases of identified compounds or fragments of compounds are docked into identified
regions of the structure using computational algorithms. The identified compounds
are ranked based on predicted steric and electrostatic interactions with the target site.
Programs such as DOCK, SLIDE, FlexX, or FlexE and other dock compound
databases and subsequently score them based on their interactions with the target
site. In de novo generation, in silico positioning of small fragments of molecules,
such as amino groups, carbonyl groups, benzene rings, etc. is done in the target site,
followed by scoring and finally linking is performed. Subsequently from these linked
fragments, synthesis of final compounds will be done. Examples of de novo lead
generation programs are LUDI, GRID, MCSS, CONCERTS, SMogG, etc. (Anderson
2003).

After identification of a small molecule that has the potential to bind specifically
to the target molecule, evaluation of the same has to be done before any further
proceeding. Since the model of the target: ligand interaction is intrinsically an
approximation, the rank assigned by the scoring function may not be suggestive of
a true binding constant. It may so happen that the molecules that topped scoring in
docking run may fail in vitro biochemical assays. Therefore, lead evaluation
followed by lead optimization must be practiced for improved affinity. To become
an orally bioavailable drug, “Lipinski’s Rule of 57 (Lipinski et al. 1997) must be
satisfied which proposes that good leads generally have less than five hydrogen bond
donors and less than ten hydrogen bond acceptors leads generally have less than five
hydrogen bond donors and less than ten hydrogen bond acceptors, a molecular
weight <500, and a calculated log of the partition coefficient (log P) <5. Veber
and colleagues (Veber et al. 2002) opine that to increase the potential for oral
bioavailability, the number of rotatable bonds should be <10. Various factors,
such as cytotoxicity, chemical, and metabolic stability and the ease of synthesis,
are also taken into consideration before proceeding with a particular candidate lead.
For final evaluation best compounds or leads are brought into the wet lab for
biochemical assays. Although even today it is still required to refine the process
with an aim of more perfection, SBDD (Structure-based Drug Design) has become a
fundamental part of most industrial drug discovery programs (Anderson 2003).
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4.1.2 Ligand-Based Drug Design Approach

The ligand-based drug design approach is crucial when there is an absence of the
three-dimensional structure of protein molecules which acts as a drug target. In this
approach, lead compound optimization can be done by two methods such as
Quantitative Structure-Activity Relationship study and pharmacophore modeling.
This study correlates the activity of lead molecules based on the study of their
molecular structures and drug properties adhering to the concept that the structure
of the lead molecule contains some clue regarding their biological activity, that can
be implemented for lead optimization. These approaches are carried out successfully
with the help of prominent drug properties of a molecule such as Absorption,
Distribution, Metabolism, Excretion, and Toxicity (ADMET) which plays a major
role in the creation of pharmacophore and QSAR models. Initially, all such types of
drug properties of a molecule will be collected from the available primary database.
If data are scarce, then they can be retrieved from the literature survey. Based on the
statistical analysis, the information which is not matching with the properties of a
drug molecule is removed from the list. From the existing information, the standard-
ization of Ki value was done initially, then 70% and 30% of that source data are used
as training and test data to build the model respectively. Now, the collected list of
information related to the structural and biochemical activity of the lead molecule
will be implemented in the Quantitative study of structure and activity relationship.
Finally, the performance of the model is evaluated with test data using cross-
validation methods. In the Pharmacophore modeling method, superimposition algo-
rithms are applied whereas, in the QSAR study, two types of renowned statistical
approaches such as Multiple Linear Regression and Partial Least Square Regression
were used eminently to build the model.

Pharmacophore Modelling

The International Union of Pure and Applied Chemistry defines the term
“Pharmacophore” as an ensemble of electronic and steric features of a ligand
molecule that is capable of binding to a target and alters its biological activity.
This type of modeling method works on the base of the main concept that even if the
two ligand is structurally varied, due to their ensemble steric and electronic features
they will bind to the same biological targets. This modeling method predicts the
novel ligand through the implementation of superimposition algorithms and the
virtual screening process. This modeling process involves various significant steps,
it initially screens the list of the known structurally diverse ligand. These data are
used as training sets that contain both inactive and active compounds based on
various features such as aromatic rings, hydrophobic centroids, anions, cations, and
the number of hydrogen bond donors and acceptors. For the screened training sets
the low energy conformations are identified for each molecule by several tools such
as Discovery Studio and LigandScout etc. From this conformation, the best fit active
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compound is optimized by the superimposition of molecular frameworks. Finally, by
including their ensemble features, all the raw data are transformed into the abstract
annotation of molecular characteristics that contains the key information for the
interaction of the biological molecule with that of a ligand. This method is mainly
applied in the field of computational chemistry for developing the pharmacophore
model (Prajapat et al. 2017).

The main role of advanced computing in generating the pharmacophore model is
to automatically learn the rules from known compounds available at SCRATCH and
design the new models by assembling the molecule based on the learned
pharmacophore features. Thus the combination of modeling 3D-pharmacophore
and Artificial intelligence results in the development of many academically free
tools that are capable of generating 3D pharmacophores for virtual screening. Such
type of generation takes place by including their hydration and thermodynamics
properties.

QSAR
Multiple Linear Regression

Multiple Linear Regression approach is implemented in the study of the relationship
between multiple sets of independent variables with the dependent variable. By
fitting the linear line in the scatter plot, it predicts the linear relationship of dependent
and independent values. The fitting of the line takes place on the following Eq. (4.1):

Y = b0 + blx1 + b2x2 (4.1)

where b0 is the y-intercept, bl and b2 are regression coefficients, x1 and x2 are
independent variables and Y is dependent query variable. This model is
implemented to measure the quantitative relation between the training variables
whereby the relativity of a query dependent variable can be predicted.

Partial Least Square Regression

Partial Least Square Regression works on the basic rules of principal component
analysis as it fits the line in the scatter plot by projecting the observed and expected
independent variables in new space with fewer dimensions. The models which are
created by applying this method are also known as Bilinear factor models. This
method is mostly applied in areas of computational biology, chemometrics, anthro-
pology, and Neuroscience. At the time of model evaluation, it chooses its best model
by identifying the least sum of squares between observed and predicted values.
Specifically, Partial Least Square was applied at the condition when the number of
features is higher than their observations. In this condition, multiple linear regression
cannot be applied and this condition is called “Over Fitting”. In most cases, the
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validation process is done by applying LOO (Leave One Out) cross-validation
method and its accuracy level is measured by the PRESS (Predicted Residual
Error Sum of Squares) formula (4.2)

PRESS = 2(X — X)? (4.2)

where PRESS is the sum of the square of deviation of the observed mean value
(X) from the predicted mean value (X).

By the combo application of Multiple Linear Regression and Partial Least Square
Methods, a QSAR model is designed for 33 lists of alphal-adrenoreceptor antago-
nists retrieved from antipsychotic sertindole (Mehmood et al. 2012). This application
disseminates the significance of properties of binding pockets such as polar interac-
tion, molecular flexibility, and steric fit which is essential for drug-ligand interac-
tions. These methods are considered and employed automatically using recent
advanced computing techniques in the field of cheminformatics to solve
3D-QSAR problems. By applying such techniques the size and complexity of the
massive source datasets can be reduced. Such that from the source of 240 million
datasets from the PubChem database, the rules are learned by the advanced com-
puting techniques and finally the new model can be built to predict the parameters
related to pharmacological characteristics successfully.

4.2 Data Mining in Drug Discovery

In early periods of the drug discovery process, pattern identification from known
data takes place by applying the Bayes Theorem and regression methods with
limitations of training data sets. As the complexity and size of the input data increase
tremendously, it reaches the stage that the manual extraction of data is not possible.
But the advent of advanced computing techniques overcomes such limitations and
initiates the automated process of data collection, manipulation, and analysis. Such
an automated process is successfully proposed by the ensemble of statistics, machine
learning, and database systems known as “Data Mining”. Data Mining extracts the
information from the large raw data by applying three approaches such as Artificial
Intelligence, Machine Learning, and Deep Learning (Fig. 4.2). Information from
Data Mining is applied successfully by all the researchers from various domains
such as Predictive Analytics, Informatics, Business Intelligence, web mining, and
the medical fields. In recent years, the drug discovery process is accelerated rapidly
due to the application of the data mining process. Due to the unprecedented progress
of biomedical records, there is a need to apply the data mining process in the
biological field which gives safety hints to patients. Based on the biochemical
records such as log (IC50) values and their pKi values, new models can be built
by the following five indispensable steps in data mining processes such as Data
preprocessing, Data splitting, Modelling, Evaluation, and Deployment.
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Machine
Learning

DATA MINING

Deep Learning

Fig. 4.2 Categories of data mining. This figure represents Data Mining that includes three
components such as Artificial Intelligence, Machine Learning, and Deep Learning. Machine
Learning is divided into three types such as supervised, unsupervised and reinforcement based on
the availability of Actual outputs

In 2018, a novel model is developed using data mining process which predicts
drug properties, in which the model is trained with 762 compounds with thirty-five
physicochemical features such as binding energy to their target, exact mass, number
of carbons, molecular surface area, polar surface area, number of hydrogen bond
donors and acceptors, count of rotatable bonds, number of aromatic atoms and its
polar properties, etc. Based on the approved status of drugs from DRUGBANK,
366, and 396 compounds are discerned into drug and non-drug molecules respec-
tively from the 762 training data sets. As the first attempt in this model development
process, data visualization is carried out by using the t-Distributed stochastic neigh-
bor embedding method, as it is capable of analyzing the non-linear multi-dimen-
sional data (Yosipof et al. 2018). This method works with the background concept
that dissimilar and similar features are classified by the pairwise euclidean distance
of far and nearby points from centroids respectively, thus it is capable of reducing the
dimensionality of the training data. In specific, this work focuses on the disease
related to antineoplastic agents, cardiovascular and nervous systems. Evaluation of
this model is done and its calculated correlation rate is measured as 0.81. This model
is implemented in the field of the pharmaceutical era as it saves time and cost of
experimental drug design.
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4.2.1 Artificial Neural Network

Artificial neural networks resemble the structure of interconnected neurons frame-
work of the human brain. Latterly, it is highly used in chemoinformatics to design a
drug molecule based on the knowledge of 2D and 3D known chemical descriptors
of a compound. Such information can be retrieved from the database in the form of
PDB, MDL (Molfile), SDF (Structure Data Format) format. Due to the elevation of
descriptors data, these formats are simplified into line notation formats such as
SMILE (simplified molecular-input line-entry system), WLN (Wiswesser line nota-
tion, ROSDAL and SYBYL using ASCII codes by applying morgan algorithm. In
the computational-aided drug discovery process, MIF (Molecular Interaction Field)
is considered as a prominent chemical descriptor as it plays an eminent role in
binding with target molecules which can be predicted from the programs such as
PRODRG and RDKit (Lo et al. 2019). Artificial neural networks are applied in
3D-QSAR study to search compounds with similar chemical descriptors and finger-
prints by comparing their molecular interaction field (CoMIF), by the following
steps (Fig. 4.3).

FEED FORWARD

INPUT | | HIDDEN | | outPur |
LAYER LAYER | | . LAYER

BACK PROPOGATION

Fig. 4.3 The architecture of artificial neural networks. This figure represents artificial neural
network which includes three layers such as Input (I), Hidden (H) and Outer layers (O). W and B
indicate the value of weight and bias in the feed-forward process. The error value can be rectified by
adjusting the value of weight in the backpropagation process
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Initialization of Weights

Neural networks are similar to interconnected neurons of the human brain. It consists
of three layers such as the input layer, hidden layer, and output layer and each layer
consists of their corresponding nodes. If the input data are images then the input
layer converts it to several pixel numerical data. Such types of artificial neural
networks are applied to predict mystery data based on the final output of numerical
data between 0 and 1, which indicates the probability of correct prediction. So
initially the available data is fed into the input layer which contains nodes labeled
as I1, 12, I3, these nodes are connected to the hidden layer by parameters known as
weight (W) and bias (B). To get closer to the expected output, these weights and bias
are initiated by random numbers and fed into the nodes of the hidden layer such as
H1, H2, H3 by the following formula (4.3)

H = <Z LW, + Bi> (4.3)
i=1

Multilayer Perceptrons

Multilayer Perceptrons are a type of artificial neural network in which the informa-
tion flows only in the forward direction from the input node to the output node. The
weighted sum of the inputs (H;) with added bias (b) is explored in sigmoid or cost
activation function (@) as shown in (4.4) to get the desired output value between
0 and 1 in the forward direction and they are fed into the nodes of output layers (O1,
02, 03).

Activation Function (¢) = 1/(1 + ™) (4.4)

If the output value is >0.5, mystery data is predicted to be the second category, if
itis <0.5 it is predicted as the first category. This process is iterated automatically by
algorithms for every training data sets which contain actual inputs excluding the
actual outputs and from the nodes of the output layer the final outputs are predicted.
Finally, the error of the network model can be predicted by the loss function which
predicts the difference between the actual and predicted outputs as shown in formula
4.5).

Loss function = [actual output — predicted output]* (4.5)
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Backpropagation of Error

In this phase to reduce the error, weights and bias values are adjusted and passed
through the neurons in a backward direction known as back-propagation. By
adjusting the values several times until the final predicted output comes near the
actual outputs, back-propagation is done repeatedly to attain higher accuracy.
Finally, the minimum error value of a function is identified by the graphical method
by plotting weight versus loss function which is known as Gradient descent. The
correct weight is chosen based on the identification of the slope. A negative slope
indicates weight to be decreased and a positive slope indicates the weight to be
increased and this process comes to end when the zero slopes are identified. The
weight which gives us zero slopes is considered as the correct weight and now it can
be applied in the final model. Now the model is ready to predict the mystery data. By
applying the above steps a new model is developed, by which the ADMET proper-
ties of drugs can be predicted for the query molecule. Such types of artificial
intelligence techniques are proved as an eminent computing technique in the field
of drug discovery in recent scenarios. Their success rate mainly depends on the
characteristics of the input data such as the electronic medical report of patients
which is to be fed into the neural networks. Thus the large input data should be
compiled and annotated to learn the pattern automatically. Anyway to some extent it
needs the human decision to direct the target of recurrent neural networks. One of the
successful neural networks is ATOMWISE which learns the available structural
interaction patterns of ligand and protein from huge data to predict new lead
molecules and it performs better than the traditional drug discovery process.

4.2.2 Machine Learning

Machine Learning acts as one of the significant subgroups of Artificial Intelligence.
Over the last decade, machine learning plays an eminent role in handling huge
amounts of data and thus it is a boon to computer scientists. Especially, it accelerates
the drug discovery process in a tremendous way. As the successful outcome of
computer-aided drug discovery depends on various factors, for each issue different
machine learning techniques are applied. Machine learning techniques are broadly
categorized into two types such as supervised and unsupervised techniques which
include various phases (Fig. 4.4). If the input and output data are available for the
training of the model, then for prediction supervised machine learning techniques are
applied. In the reverse case, if the training data contains only the input data then
unsupervised techniques are applied. Thus in each issue, machine learning tech-
niques have their advantages and disadvantages, but this can be overcome by the
combination of machine learning techniques for model development.
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Phases in Machine Learning
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Fig. 4.4 Phases involved in machine learning techniques. This figure represents a supervised and
unsupervised model that can be deployed to identify the real value and anomaly detection
respectively

Supervised Machine Learning

In supervised machine learning techniques, the learning process depends on the pair
of input and desired output data. It is broadly divided into two types such as
Regression and Classification for quantifying and labeling problems respectively.

Regression

Regression is a type of supervised learning technique, which estimates the amount of
dependency of the dependent variable on the independent variable. It is widely
divided into linear and multiple linear regression based on the single and the multiple
numbers of independent variables.

Linear and Multiple Linear Regression

Linear and Multiple Linear regression can be applied to predict continuous data
using the linear function. It identifies the relationship between the dependent and
independent variables. Such a relationship is predicted based on the dependency
level of the dependent variable on the independent variable using a linear equation as
shown in (4.6). Over the decade, it is highly applied in the ligand-based drug
designing studies.
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Y=mx+c (4.6)

where m is the slope. c is the y-intercept. x and Y are independent and dependent
variables respectively. c is the y-intercept.

Classification

Classification is a type of supervised learning technique, which is applied to predict
the discrete class labels based on their probability value. Predictions from this
method can be assessed by the accuracy level which is not applied in
regression analysis.

1. Logistic Regression
Logistic regression is a type of supervised classification method in which the
model is trained with the labeled information to predict the binary results using a
sigmoid function. As the outcome of the dependent test variable is discrete and
not continuous, the graph is plotted with a range of O to 1. The final prediction is
successfully proposed based on the threshold value which is set to be a default
value of 0.50. Recently in 2019, a novel model is developed using the biomedical
records of 2098 patients who have undergone treatment for Hepatitis B and
Hepatitis C virus in Kermanshah province to identify the factors associated
with drug use transition injection (Najafi-Ghobadi et al. 2019). After the valida-
tion process, the average accuracy of the model is calculated as 91% and finally, it
predicts some significant factors such as heroin, cocaine, and hallucinogens are
responsible for drug use transition injection.
2. KNN
The K-Nearest Neighbors (KNN) is a very significant method as it can develop
a model using the available training data sets without limitation, where K
indicates the number of nearest neighbor vectors that decide the categories of
the classification. But the disadvantage of this method is due to updates, if the
value of K changes, then the classification category also changes. Rather than this
issue, it has more advantages such as learning from an instance-based training
data set; thus it is time and cost-effective. Recently, it is proved that a combina-
tion of the k-nearest neighbor method along with the genetic algorithm improves
their accuracy level and even their drawbacks can be amended by this method
(Sarkate and Deorankar 2018). This combination strategy is successfully applied
to classify the unknown novel type of drugs and their bias is rectified by the
application of genetic algorithms. Thus, the K-Nearest Neighbor approach is
highly recommended in the integrated form in the biomedical field.
3. Random Forest
As the name indicates, random forest methods classify the input data based on
the various number of decision trees and random majority votes. These decision
trees are generated by applying bagging ensemble methods and its main advan-
tages are it can be applied for both classification and regression problems.
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Recently, these models are applied to predict the activity and inactivity of lead
compounds against tumor cells based on the huge mutational status data from
oncogenes (Lind and Anderson 2019). As this data from cancer patients indicates
the response of each person for a drug candidate, this data is used as training data
in random forest model generation. Due to its added advantages, novel random
forest regression models are successfully applied in the field of precision medi-
cine, where the log (IC50) values were used as training data set to optimize the
inhibitors with a Pearson correlation coefficient value of 0.86. Among all super-
vised learning techniques, this method is proved as a top rank holder as it decides
the final output by aggregating all the features of input training data sets.

. Comprehensive Ensemble Methods

As a recent trend, the novel predictive models are built by the combination of
bagging (parallel training) and boosting (sequential training) ensemble methods
to predict the activity of drugs in the study of the QSAR approach. As evidence of
this comprehensive attempt in 2019, a novel ensemble method is proposed and it
is easily accessible on the specific website (Kwon et al. 2019). By applying the
second level-meta learning, this method breaks the caveats of single-subject
modeling. The assessment process is carried out successfully by applying
scaffold-based HIV data sets. This novel method proves that the accuracy level
of comprehensive methods is very high when compared to that of other methods
using ROC-AUC value.

. Naive Bayes Classifier

Naive Bayes classifier applies Bayes theorem to classify the data set by
ignoring the dependency or correlation between the known input and output
data. Initially, the Bayesian network model is developed using training data,
and based on the conditional probabilities the classification of data takes place.
Recently, it is proved that Bayes classifier models are deployed to estimate the
activity of multidrug resistance reversal agents (MDRR) using 424 training data
sets, and its accuracy is proved to be 82.2%. In 2017, by applying this classifier
method, a novel model is proposed to predict the mutagenicity of drug sub-
stances. This model was rated by employing the k cross-fold validation, where the
k value is 5 and the accuracy of the model is proved to be 89% and 74% for
internal and external data (Zhang et al. 2017). This newly created model is
leveraged to assess the risk condition based on the probability score derived
from the list of mutagenic chemicals which plays a major role in the ligand-based
drug discovery process.

Similarly, in 2019, BANDIT is a new model which is proposed by applying
the Bayesian network approach where the model is trained with the 2000+
integrated public known drug-target data (Madhukar et al. 2019). Then this
model is deployed to predict the target of the ONC201-anticancer compound as
their target remains uncertain still now. As one of the investigation processes, this
model is used to predict latent kinase targets, and based on their outputs it is
confirmed that the newly developed model is capable of guiding the experimental
screens. The final results derived from the BANDIT model are compared with
that of experimental results and confirmed to be similar. One of the outstanding
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Fig. 4.5 Hyperplane of support vector machine. This figure represents a support vector machine
that can be implemented to classify the non-linear data based on the support vectors which is
separated by the Hyperplane

capabilities of this BANDIT model is it can augment even the upcoming diverse
binding kinetics data sets by calculating their direct probabilities, whereby its
predictive power can be increased. Thus in the medicinal field, it can be employed
to identify the side effects of uncharacteristic off-targets.
6. Support Vector Machine

A support vector machine is a type of supervised learning technique, in which
the trained model can be applied to classify non-linear data with help of kernels.
As this method is used as optimization of the logistic regression method, its
application is very high over the last decade. It is also known as the Equal margin
classifier. Classification is done by fixing the hyperplane to separate two distinct
classes and this hyperplane is fixed based on points that are close to the opposing
class which are known as support vectors (Fig. 4.5) and the remaining points in
the training data sets are excluded.

A function that takes input vectors from its original space and transforms it into
new vectors by their dot products in the feature space is called a kernel function or
kernel tricks. Its main advantages are its reliability and cost-effectiveness, due to this
reason this method is applied to classify the target data in recent periods. Usually,
Non-linear support vector machines take three or four supporting vectors from the
two classes. By applying the vectors in the mapping function, transformed new
vectors can be identified. Then the bias unit is augmented with the newly formed
vectors and applied in the linear equation. By applying the above kernel functions,
the biological and chemical features of active compounds are predicted based on the
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available ADMET properties. It is also proved that meta-classifiers of the support
vector machine approach overcome their limitations and speed up the drug discovery
process (Heikamp and Bajorath 2014).

Unsupervised Learning
Principal Component Analysis

Principal Component Analysis is a linear transformation of data and its main
application is the reduction of huge dimensions of data without loss of any signif-
icant features from training input data. It is a type of unsupervised learning tech-
niques as it trains the model only with the training input data due to the absence of
output data. The dimensional reduction is done by identifying highly correlated data
and it considers that data into a single cluster by removing the consistency as the
redundancy causes more bias. Final results are generally represented as a PCA plot
which is a 2-D graph, which is plotted by analyzing the correlations of the input data.
Based on the cluster in the graph, the highly correlated data can be identified, thus
the number of clusters in the graph represents the number of correlated data in the
training data sets. These clusters are formed based on the covariance value. If the
covariance value is positive, then we can conclude that the data are positively
correlated and vice versa. This covariance tells us only their associations and not
their strength of the relationship. Based on this value, possible similar characteristics
of training data are picked up and clustered into a group and thus many-dimensional
data can be converted and plotted into a two-dimensional graph by the following
steps.

1. Standardization of the Data
Standardization of the data is the process of converting all the variables of the
input data to a standard range as shown in formula (4.7)

Z = (Variable — mean)/standard deviation (4.7)

2. Computing the Covariance Matrix
The covariance matrix is formed to identify the correlation between the
different variables in the data set based on the number of dimensions without
bias. It is a type of square matrix that contains variance values along their
diagonal, covariance values at their off-diagonals.
3. Calculating Eigenvectors and Eigenvalues
Eigenvectors and eigenvalues are calculated to compute the principal compo-
nents based on the following Eq. (4.8) If the resultant vector formed by the
product of a matrix and a vector, undergoes scaling function without any rotation,
then that vector is known as eigenvector. The scaling factor which supports the
eigenvector is known as an eigenvalue.
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Ax = Ax (4.8)

where A stands for a matrix. x stands for eigenvector and A stands for eigenvalue.
4. Computing the Principal Components
Principal components are the novel data sets which are formed after the
dimensional reduction. Principal components are ranked in such a way that the
first principal components contain the maximum number of variances compared
to others as they have maximum eigenvectors and eigenvalues.
5. Reducing the Dimensions of the Data Set
Replacement of initial data set with the newly formed principal component in a
specific arrangement reduces the dimensionality of data. Thus, all the principal
components are arranged in the order of high to low variance value. So that in
case of more dimensional data, the last few principal components can be removed
as it contains fewer variance data. Thus, there will not be any significant loss of
data. By following the above five steps, an algorithm is designed and applied to
decipher the multi-class mRNA expression data of control and PTSD (Post-
traumatic Stress Disorder) from stressed mouse hearts (Taguchi et al. 2015)

K-Means Cluster

Clustering is the method of grouping the data sets into different clusters based on the
possible similarity. This method is applied to develop a model with available input
data as a training data set. As these training data sets do not have any output data, it
belongs to the category of unsupervised learning. There are three types of clustering
such as exclusive clustering, overlapping clustering, and Hierarchical clustering.
K-means clustering comes under an exclusive clustering type, where the clustering is
done very exclusively in such a way that data points of two different clusters do not
overlap with each other. In contrast, overlapping will be there in overlapping
clustering between the data points from two different clusters and the C-means
clustering algorithm can be used to predict the overlapping clusters. Among the
overlapping clusters, similar data points are again categorized hierarchically which is
known as Hierarchical clustering. Over the last decade, the k-means clustering
algorithm is applied in most of the cases, where k stands for the number of clusters
or groups. It can be applied if the input data is continuous or numeric and it takes
them as training data sets and based on their similarity it segments the whole given
random data sets into clusters. Initially, for the segmentation process, it chooses two
data points randomly from the given input data (X1={il,i2..i10}, and X2={jl,
j2...j10}) which is called as centroids ((i4,i7), (j4,j7)) Then it measures the Euclid-
ean distance between the centroids and each data point from the data sets. Based on
the range of distance, the data sets with minimum distance are grouped into the first
cluster and the maximum distance is grouped into the second cluster. From the mean
of these clustered data points, appropriate centroids are identified by the algorithm to
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form the new clusters. This process is iterated automatically by cluster algorithms
using python or R modules.

1. Elbow Method
The Elbow method is used to find the appropriate number of clusters for the
given input data set. A graph is plotted with cluster numbers versus distortions
derived from the iterated process. As the line graph looks like a human elbow, it is
named as elbow method. The specific cluster number where the bend of elbow
shape initiates is identified as the appropriate cluster number in the k-means
cluster algorithm.
2. Silhouette Coefficient Method
The Silhouette Coefficient method is applied to find the accuracy level of each
cluster formation which can be done by applying in (4.9)

Silhouette Coefficient = ba/max(a, b) (4.9)

where a is the distance between the centroids and data points and b is the distance
between two centroids from two clusters. Finally, a cluster formation with a higher
silhouette coefficient value indicates the higher accuracy level of the model. Based
on the above steps a novel k-means model is proposed to cluster similar drug
candidates based on their ATC (Anatomical Therapeutic Chemical) classification
(Hameed et al. 2018) and the final model is evaluated successfully by comparing the
clustered drug results (Thioridazine, Indomethacin, Chlorthalidone, and Metformin)
with known clinical results.

DB-Scan

DB-scan is a type of unsupervised clustering method, where the clustering is done by
the prototypes. These prototypes are derived from the squared error of the k-means
clustering method. Their performance level is low, when it is applied individually
due to its quadratic computational complexity. It’s better to combine with that of the
k-means clustering method (Edla et al. 2012). Over the last period, a novel model is
developed and validated successfully by the combo of DB-SCAN with the k-means
method to cluster the gene expression data.

Reinforcement Learning

Reinforcement learning techniques apply dynamic programming to train the model
by ignoring the labeled input data. But due to its complex functionality, it is less
preferred individually when compared to that of other machine learning techniques.
But with the combination of other methods, it shows significant results in the study
of inhibitory activity against the Janus protein kinase-2 (Popova et al. 2018).
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By applying both supervised and unsupervised methods, novel metaheuristic
algorithms were designed to propose new drugs for various health issues such as
to treat particular infectious diseases, cancer, cardiovascular disease, Rheumatoid
Arthritis, and Parkinson’s diseases, etc. By biomarker development, it abstains from
the time consumption and expenditure of the traditional approach tremendously due
to the implementation of quantum computers instead of supercomputers. All these
projects are done successfully due to the huge availability of source data such as
gene expression, proteome, and next-generation sequencing data.

4.3 Deep Learning

Deep learning is a subset of machine learning techniques, which uses the geometric
conversion of multi neural layers for prediction from the known input data. The
phrase “deep” is directly proportional to the number of layers in the neural networks.
In these multilayers, the upper layer reads the highly significant data and the lower
layer reads their edges. It is mainly applied in image processing, where each input
pixel is convolved to a significant value. One of the main significance of this method
is it automatically sorts the significant data from higher to lower level and it feeds
that data into their corresponding layers. This method is classified broadly into two
types as Convolution and Deep Belief Networks based on the presence and absence
of a convolved process respectively.

Recently in 2016, by feeding the data from Pubchem Bioassays and STITCH
database, a novel model is generated using a deep learning approach to predict the
interaction between the compound and the protein. Evaluation is done by comparing
the results of a deep learning approach with that of the outcome of classification and
regression models of machine learning techniques and concluded that deep learning
models have higher accuracy when compared to that of others. In 2019, a novel
ensemble model of Convolution and Deep Belief Networks are generated with the
merge of molecular fingerprints of binding molecules with that of protein primary
sequence. All such types of data are retrieved from IUPHAR, KEGG, and
DRUGBANK database. Even though the number of input data is about 32,000,
they are fed into the multilevel layers and all the features of the data are deeply
learned to predict the drug-target interactions (Lipinski et al. 2019).

A prominent DEEPSCREENING web server is also proposed in 2019, based on
the deep learning approach to overcome the lack of tools to instantly perform virtual
screening in CADD (Liu et al. 2019). Besides various open-source deep learning
tools such as PACCMAN, INTERACT, PIMKL were proposed to predict drug
sensitivity, decipher research publication, and phenotype prediction from omic
data. Thus these methods act as robotic prototype drug designers by the collabora-
tion of Biotech scientists with various pharmaceutical companies such as
GlaxoSmithKline, Bayer Science, Cloud Pharmaceuticals, GNS Healthcare,
Exscientia, etc. One of the main challenging tasks for implementing such novel
computing techniques in the field of drug discovery is getting patent rights.
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Thus, data science is an astrologer to the computational scientist as they predict
and tell us the possible outcome of the upcoming experimental event in the drug
discovery process in advance. Due to the advent of advanced parallelization com-
puting techniques, High-Performance Computing acts as an empower for Data
Mining Process.

4.4 High-Performance Computing in Drug Discovery

Advanced computing is an expansive term that is most commonly used to describe a
specific type of high-end computer and the associated processing undertaken on it to
solve a computationally-intensive problem. High-performance computing (HPC) is
the most prevalently used advanced computing paradigm. HPC is the facility to
process data and perform complex calculations at high speeds. Such problems are
either too large for standard computers or would take too long (Ge et al. 2013). For
instance, if HPC is not employed for a 10K chemical molecule repository, to carry
out only tens of nanoseconds of MD simulations will require years of computer time.
For an analogy, a modern laptop or desktop with a 3 GHz clock processor can
perform around 3 billion calculations per second. While that is much faster than any
human can achieve, it is insignificant in comparison to HPC solutions that can
perform quadrillions of calculations per second. Supercomputers are the best-
known example of HPC solutions. A supercomputer consists of thousands of
computing nodes that coordinate to finish one or more tasks in parallel. Powerful
supercomputers with state of the art sophisticated and complex algorithms can model
real-world phenomenon. They are also effectively used to compute the binding
energies between various small molecules and proteins. Few well-known HPC
architectures are (1) Computer Clusters; a set of interconnected computers controlled
by a centralized scheduler. (2) Grid Computing; a set of geographically distributed
and logically organized (can be heterogeneous) computing resources. (3) Grid
Computing; Dedicated parallel co-processor, used in computing data-parallel inten-
sive segment. (4) FPGA (Field Programmable Gate Array); Integrated circuits
containing an array of programmable logic blocks. (5) Cloud Computing; Pool of
computation resources (e.g. processing, storage) offered by a third party, attainable
on-demand, and ubiquitously over the Internet. (6) MIC (Many Integrated Core
Architecture); Dedicated parallel coprocessor installable in common desktop com-
puters, workstations, and servers.

In this section, we have focused our discussion on GPU and Cloud computing.
GPUs are multi-core processors originally optimized for 3D rendering and image
processing purposes. GPU devices are nowadays part of any desktop PC configura-
tions and they can be programmed with general-purpose programming languages as
well. These features make them easily accessible and cost-effective accelerator
platform. Today’s CPUs have 8, 12, 16, or even 32 cores, while GPUs have up to
512 cores or more in a single chip. Today’s computing applications typically have
data-intensive regions with scope of data computation parallelism. GPUs increase
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the speed of execution of parallel regions by spreading the calculation over hundreds
of cores. This strategy delivers significant speedups for many applications.

Cloud computing delivers HPC in the form of a service similar to other forms of
services that are already available in the cloud such as software as a service, platform
as a service, and infrastructure as a service. HPC users derive benefit from the cloud
in different aspects such as scalability, resources being available on-demand, fast,
and inexpensive. On the other hand, moving HPC applications to the cloud have
numerous challenges too. Few significant challenges are virtualization overhead in
the cloud, multi-occupancy of resources, and network latency issues. Research is
currently under progress to make HPC in the cloud a more realistic solution.
Depending on the requirements, it may be much cheaper to use a public cloud’s
high-performance computing service rather than replacing the high-performance
computing servers in the organization’s data center, so the cloud providers are the
ones buying lots of this high-end computation to keep up with the growing cloud
demand.

4.5 GPU Computing

Graphics Processing Unit is used as a co-processor in GPU computing which
accelerates the CPU’s usage for scientific and engineering computing. Besides, it
also accelerates the other programs running on the CPU by offloading some of the
in-depth portions of the computational code thereby it reduces the time consumption.
The user feels that the application is running faster because it’s utilizing massively
parallel processing power of the GPU to improve performance. A general-purpose
CPU typically has multiple cores where multiple threads can be run, and a large
cache for faster access to frequently used data, and also, sophisticated flow control
techniques such as branch prediction, data and instruction pre-fetching, and out-of-
order execution. Modern CPUs come with inbuilt floating-point ALUs which make
them very useful for generic scientific and engineering computing tasks. In contrast,
a GPU comprises a large number of execution units to process data in parallel. GPUs
lack sophisticated control flow mechanisms similar to CPUs, however, they can run
large numbers of threads, thereby providing large parallelism. If a program is split
into many threads all doing the same computation on different data, GPU perfor-
mance will be significantly faster than a CPU. On the other hand, if an application
contains complex control flow, performance on CPU is going to be significantly
faster than GPU. Programs that have leveraged the power of GPU computation have
found applications in the field of Bioinformatics and Computational Biology such as
sequence alignment, molecular dynamics, molecular docking, prediction and
searching of molecular structures, spatial-temporal simulation, spectral analysis,
cellular dynamics, genome-wide analysis, quantum chemistry, and Bayesian
inference.
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4.6 Parallel Programming Models

The availability of high-end computing hardware alone is not sufficient to improve
computation performance. Compilers and APIs that exploit the parallel features of
hardware should be available too. Parallel processing refers to the ability to tag the
segment of the code that can be executed in parallel and subsequent execution across
multiple processors or multiple cores. Broadly there are three types of parallel
categories: (1) Shared memory systems, i.e, systems with multiple processing units
attached to a common memory. (2) Distributed systems, i.e, systems comprising of
multiple computing units, each having its processing unit and physical memory, that
are connected with fast networks. (3) Graphic processor units (GPU), which are used
as co-processors for solving computationally intensive problems.

4.6.1 OpenMP

OpenMP is a parallel programming paradigm that is best suited for writing parallel
programs that are supposed to run on shared memory systems. It is not a program-
ming language but an add-on to an existing language, usually FORTRAN or C/C++
made available through an application programming interface (API). API of
OpenMP is a collection of (1) compiler directives, (2) run time callable functions,
and (3) environment variables. Compiler directives of OpenMP instruct the compiler
about the parallelism in the source code and provide instructions for generating the
parallel code. Supporting functions permit programmers to control and utilize
parallelism during the execution of a program. Environment variables permit the
adoption of compiled programs to a particular parallel system. OpenMP program
facilitates and coordinates various parallelization components, e.g. creating threads,
distributing computation among threads, and synchronizing work among threads.
OpenMP is significantly effective in parallelizing for-loops, where each thread is
assigned to execute a single iteration of the loop. OpenMP is supported by open
source community and major vendors, including AMD, IBM, Intel, Nvidia, Oracle.

4.6.2 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a parallel programming model suitable for
distributed memory architectures. Each processor has access to its memory and
different processors are connected through high-speed communication interconnect.
MPI provides a set of language-independent and platform-independent communica-
tion protocols for parallel computing, featuring point-to-point message passing as
well as collective operations via user-specified processors. MPI standard prescribes
facility for process creation and management, language bindings for C, C++ and
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Fortran, point-to-point and collective communications, and group and communica-
tor concepts. Processes are created by discrete processors/computing nodes execut-
ing different sections of the code. Each process gets its local variables and the
memory space; the parallelism is achieved by establishing communications between
processes by sending and receiving messages.

4.6.3 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA), developed by Nvidia is a program-
ming model for facilitating general computing on its GPUs. CUDA comes to the
advantage of programmers to accelerate the speed of compute-intensive applications
by utilizing the computational features of GPUs for the parallelizable part of the
computation. Software developers can access the CUDA platform through CUDA-
accelerated libraries, compiler directives, and extensions to industry-standard pro-
gramming languages including C, C++, and FORTRAN. CUDA makes of two
abstractions, (1) Host—The CPU and its memory (host memory), (2) Device—
The GPU and its memory (device memory) Basic steps in a GPU program are
(1) Declaration and allocation of both the host and device memories, (2) Initialization
of the host memory, (3) Transferring data from Host memory to device memory,
(4) Executing GPU functions (aka kernels), (5) Transferring data back to the host
memory.

4.6.4 Open Computing Language (OpenCL)

Open Computing Language (OpenCL) is an open-source standard for parallel
programming for heterogeneous processors found in, servers, handset devices,
personal computers, and embedded platforms. OpenCL describes constructs for
writing programs that can execute across different platforms like central processing
units (CPUs), graphics processing units (GPUs), and other types of processors or
hardware accelerators. OpenCL standard consists of a set of APIs in C-like language
to control a host processor and a variety of parallel devices and accelerators. A
typical parallel application comprises of a C/C++ code for the host and a collection
of kernels and special functions written in OpenCL for the accelerators. The paral-
lelism is achieved at different levels, including SIMT (Single Instruction Multiple
Threads), work-items, which are the smallest execution units, and work-groups in
the order of increasing degree of coarse-grained parallelization level. Vendors such
as Intel, AMD, NVIDIA, Altera Corp, Qualcomm, Samsung support OpenCL for
their hardware.
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4.6.5 Application of Parallel Programming Model and Tools
in Binding Site Prediction and Docking

Knowledge of interactions of protein-ligand in the context of protein-ligand binding
sites and ligand binding site residues is significant for understanding cellular mech-
anisms and is critical to understanding responses to drugs. These methods consider
the knowledge about interaction energy and van der Waals (vdW) forces for binding
site mapping. From a computational point of view, it represents a search problem
where potential favorable binding sites need to be identified by scanning the entire
protein surface. eFindSite (Feinstein and Brylinski 2016) is a program that employs
OpenMP pragmas and dynamic workload balancing mechanism to launch parallel
tasks for finding protein binding sites and residues. As reported earlier (Sanchez-
Linares et al. 2012) BINDSUREF leverages the power of CUDA based GPU parallel
computing. BINDSUREF divides the whole protein surface into independent regions
called protein spots and then processes the divided spots in parallel. Such a proce-
dure results in the screening of a large ligand database against the target protein over
its whole surface simultaneously with docking simulations for each ligand being
performed simultaneously using the massively parallel architecture of GPUs for all
specified protein spots. As a result, new spots are found after analyzing the distri-
bution of scoring function values over the entire protein surface. As per the study
(Guerrero et al. 2011), the CUDA implementation of nonbonded interactions in
parallel like electrostatics and van der Waals forces resulted in a speed of 260 times
compared to the sequential version of the same algorithm. In another study (Guerrero
et al. 2012) the parallelization effectiveness of the non-bonded electrostatic interac-
tions kernel for Virtual Screening was benchmarked on three non-identical types of
parallel architectures: a shared memory system, a distributed memory system, and a
Graphics Processing Units (GPUs). Four combinations of implementations were
implemented and tested based on MPI, OpenMP, Hybrid MPIOpenMP and CUDA
programming models. The speed-up factor was significant to the sequential version
for the aforementioned parallel modes: shared memory speed factor was 72 x using
OpenMP, for the MPI implementation and the Hybrid MPI-OpenMP implementa-
tion speed up factors were 60x and 229 x respectively, and finally, speedup factor
for CUDA implementation on the GPU architecture was 213 x outperforming all the
other implementations. AutoDock is a molecular modeling simulation program that
is particularly effective for protein-ligand docking. AutoDock4.2.6 version has
features implemented in OpenCL. The software utilizes the parallelism of its
Lamarckian genetic algorithm (LGA) by processing ligand-receptor poses in parallel
over multiple compute units. It targets platforms based on GPU as well as multi-core
CPU accelerators. FRODRUG (Sanchez et al. 2014) is a method that has used
spherical harmonic approximations method to increase the speed of the rotational
part of the docking search by deploying in multi-core and GPU systems. Astex
Diverse Set was used to benchmark the performance of the method. The speedup of
GPU implementation compared to a single CPU core was 30 times eventually
decreasing the docking time for a single ligand to only 50 ms. As per another
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study (Sanchez-Linares et al. 2011), the grid generation module of the program
FlexScren was implemented using the CUDA language for the GPU architecture.
For the ES and VDW grid calculations for proteins in the range of 1000 to 10,000
atoms, average speedups of up to 160 and 8 times respectively were obtained with
high accuracy in double floating-point precision. Bristol university docking engine
(BUDE) which is written in C++ and uses OpenMP and OpenCL is a general-
purpose molecular docking program that utilizes GPU acceleration to perform
(1) Virtual screening by docking of millions of small-molecule ligands, (2) Ligand
binding site identification on protein surfaces, (3) Protein-protein docking in real
space. MEGADOCK 4.0 is a structural bioinformatics software that implements
FFT-grid-based protein-protein docking and exploits the advantage of the massively
parallel CUDA architecture of NVIDIA GPUs and multiple computation nodes.
MEGADOCK 4.0, is implemented using a combination of hybrid CUDA, MPI, and
OpenMP parallelization.

4.7 Molecular Dynamics Simulation (MD)

MD is a computer simulation method that mimics the physical movements of atoms
and molecules presenting the real environment and helps in providing detailed
information on the fluctuations and conformational changes (Patodia et al. 2014) It
plays a pertinent role in the theoretical study of the structure, dynamics, and
thermodynamics of biological molecules and their complexes including the impact
of solvent molecules. Because of the huge molecular system size generally, it is
tedious to analyze such complex systems. Numerical methods in molecular dynam-
ics simulation can be employed to circumvent such analytic intractability. During the
simulation, the atoms are allowed to interact for a shorter period, which may help in
computing their trajectory in and around the protein molecule thus providing
intricate information about the individual motion of atoms as a function of time.
Firstly, MD simulation assumes a given potential energy function i.e the energy
function which allows us to calculate the force experienced by any atom given the
positions of the other atoms and secondly, relies on Newton’s laws that tell us how
those forces will affect the motions of the atoms. Using nuclear magnetic resonance
(NMR), crystallographic, or homology-modeling data, an initial model of the system
is obtained. The forces acting on each of the system atoms are estimated from force
field parameters that comprise of bonded and non-bonded interaction terms. Bonded
interactions include harmonic oscillator energy of bond lengths, bond angles, and
sometimes improper dihedrals and torsional dihedral, while non-bonded interactions
include Van der Waals and electrostatic interactions. Once the forces acting on
individual atoms are obtained, a basic MD algorithm is followed: calculation of
accelerations and velocities using classical Newton’s law of motion, updating the
positions of every atom, and subsequently, calculation of forces applied on the
investigated atom using inter-atomic potentials (Fig. 4.6).
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Fig. 4.6 Basic MD workflow. This figure represents the selection of initial conditions (positions,
velocities), Selection of ensemble (NVE, NVT, NPT) Selection of target temperature, density/
pressure. Performing simulation until equilibration is reached (property dependent), Performing
production simulation run to collect thermodynamic averages, positions, velocities

4.7.1 Applications of Advanced Computing in Molecular
Dynamics Simulation (MD)

From the computational point of view, MD is significantly intensive due to (1) gen-
eration of millions to billions of time steps before converging, (2) a substantial
amount of computation involved in each step, and dominated by nonbonded inter-
actions. The use of the graphical processing unit (GPUs) and sophisticated
algorithm-based optimization of energy calculation have significantly improved
the performance of MD simulations. The technology involved in the present gener-
ation of computers takes the benefit of parallelism and accelerators to speed up the
process. Modern simulation software packages, such as CHARMM, GROMACS,
AMBER, and NAMD are compatible with the Message Passing Interface (MPI),
which significantly facilitates the execution of complex tasks by software or program
executing concurrently on multiple processors. As per the study (Ge et al. 2013) on
three GPU based MD software AMBER, NAMD, and GROMACS, the speedup of
GPU instance of GROMACS was about 3324 times than that of GROMACS PC
instance. Significant speedups are reported for AMBER and NAMD as well. The
latest version of AMBER running on a single workstation which contains single
Titan-XP GPUs has achieved over 640 ns/day NVE benchmark. Consequent to an
increase in the number of GPUs to 8, the accumulated throughput of over 5.1ps/day
is possible.
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4.8 Cloud Computing

Cloud computing is the facility to provide computing system resources, like data
storage, computation power, various application functionality being made available
on-demand, and without the need for management by the user. Cloud services are
flexible wherein a user can limit the utilization of a service as they want at any given
time, while the services are completely managed by the provider. The cloud allows
customers to gain enhanced capabilities without investing upfront in new hardware
or software. Instead, customers pay their cloud provider a subscription amount for
only the resources they use. Users or Computing resources can be augmented on the
fly. Some of the essential characteristics are (1) On-demand self-service, (2) Broad
network access, (3) Resource pooling, (4) Rapid elasticity, and (5) Measured service.
The array of available cloud computing services mostly fall into one of the following
categories listed in Fig. 4.7. Each of the services provides varying degrees of control,
flexibility, and management catering to the requirements of different categories of
users.

Depending on how the cloud services are made available to users, Cloud com-
puting models are classified into (1) Public cloud; this category of the model
supports all users who want on a subscription basis to make use of a computing
resource, such as hardware (OS, CPU, memory, storage) or software (application
server, database), (2) Private cloud; this category of the model is used internally by
an organization, (3) Hybrid cloud; an organization makes use of interconnected
private and public cloud infrastructure that is distinct yet bound together,

Applications Platforms Infrastructure
Software as a service | Platform as a | Infrastructure as a
Cloud (Saas) is a method for| service (Paas) is | service(IaaS) is a method that
Clients delivering software | 2 method that | provides a way of delivering

Web \,/‘:> applications  over  the | supplies an on- | cloudcomputing
browser,

: Intemet, on demand and on | demand infrastructure—servers,
thin clients o . .
a subscription basis. | environment for | storage, network, and
Providers of Saas host and | developing, operating systems—as an on-

manage the  software | testing, delivering | demand service. Instead of

application and underlying | and managing | purchasing servers, software,
infrastructure and handle | software data-center space, or network
any maintenance, like | applications. equipment, clients instead buy
software upgrades and those resources as a fully
security patching. outsourced on-demand service.

Cloud Computing Services

Fig. 4.7 Cloud computing services. This figure represents the cloud computing service model is
divided into 3 broad categories (1) Applications (2) Platforms and (3) Infrastructure, each offering
different levels of service abstraction for catering to the varying requirement of users
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Cloud Computing

Service Model DeploymentModel

Saas Paas laas Public Private Hybrid Community

Fig. 4.8 Cloud computing architecture. This is based on the type of services it is offering as well as
the environment where the user is located. It is divided into two models: (1) Service model which
supports different types of services like Saas, Paas, and laas, whereas, (2) deployment model which
includes Public, Private, Hybrid, and Community that supports the user depending on his access
criteria

(4) Community cloud; this model supports multiple organizations sharing comput-
ing infrastructure and resources that are part of a community (Fig. 4.8).

4.8.1 Applications of Cloud Computing in Drug Discovery

The application of advanced molecular simulation techniques comes with the cost of
additional advanced computational resources deployment and includes both hard-
ware and software. Running advanced molecular simulation and analysis tasks in the
Cloud eliminates the need for establishing in house advanced data centers or as well
as access to high chargeable access to supercomputing resources. Consequently, it
provides a cost-effective and practical solution for many modeling tasks for small
and moderate size molecular dynamics simulations. As per the study (Guerrero et al.
2014), a comparison was done on the cost-effective performance of BINDSURF
program in both HPC and cloud environment, processing 6000 different ligands.
Each simulation had 5000 Monte Carlo steps. The results showed that the usage of
local infrastructure should be significantly high, ranging between 50% and 100% so
that local infrastructure sustainability is profitable; otherwise, cloud computing is a
more cost-effective alternative. Cloud infrastructure is cheap upfront and expensive
long term but provides flexibility, whereas setting local HPC infrastructure is
expensive upfront but cheaper longer term, however, it is inflexible. Cost-benefit
analysis has to be carried to decide from the two approaches.

The fact that the cloud computing platform provides access to HPC clusters
through virtualization and abstractions of services is not abstracted enough. The
end-users who do not have computing knowledge still need to understand and
implement some details to configure an HPC cluster, install middleware and appli-
cations before making the system available for any scientific usage. A typical
VMD/NAMD consists of (1) prepare simulation input data in VMD on a host
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computer; (2) locate an HPC cluster and book a slot; (3) transfer the prepared
simulation input profile from the originating computer to the cloud-hosted HPC
cluster and start the simulation; and (4) move the result back to the originating
computer for analyzing in VMD.

VMD and NAMD have been integrated into a new software plugin for Amazon
EC2 and this plugin also supports NAMD simulations on the Cluster Compute
Instances. The plugin enables users to (1) quickly create an HPC cluster (2) submit
a NAMD simulation from VMD to Amazon EC2 Plugin, and (3) transfer results
from the Plug into the host computer running VMD for post-processing. Moreover,
the Plug-in can integrate with the Interactive Molecular Dynamics (IMD) plug-in,
which can make a standard simulation interactive and display the simulation in real-
time. This implementation hides completely the details of any NAMD simulation
deployment in the underlying HPC cloud.

AceCloud (Harvey and De Fabritiis 2015) is one solution that provides
on-demand service for molecular dynamics simulation. It is designed to make
possible secure execution of large group simulations on an external cloud computing
service. The AceCloud client has been integrated into the ACEMD molecular
dynamics simulation package. The client provides an interface that is easy to use
and abstracts all aspects of interaction with cloud services. The user experiences that
all simulations are running on their local machine, minimizing the time to learn the
details associated with the usage of high-performance computing services.
CovalentDock Cloud (Ouyang et al. 2013), is an algorithm to the model covalent
binding. It is accessible directly online through a web server without any local
installation and configuration. The application provides a user-friendly web interface
to carry out covalent docking experiments and analysis online. The user has to enter
the structures of both the ligand and the receptor or retrieve it from online databases
with valid access id. AceCloud discovers the potential covalent binding patterns
followed by carrying out the covalent docking experiments and eventually generates
a visualization of the result for user analysis.

4.9 Conclusion

In the modern era, apart from reducing time and financial cost, advanced computing
has proved their crucial role by identifying the various repurposing existing drugs
which improves the quality of pharmaceutical research. Still now nearby 43 Phar-
maceutical companies applied automated algorithms and parallelism techniques in
the drug discovery process and showed the conquest outcomes. As it reduces the
expenses of the Research and Development department of various Pharmaceutical
companies, in the future they are planning to still improve the computing techniques
whereby autonomous identification of promising drugs and novel pathways can be
done with zero human interference. To extend the benefit of advanced computing
they are also applied in the areas of personalized medicine based on the next-
generation sequencing data. Thus in the future, the whole drug discovery process
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is expected to be in the hands of intelligence algorithms and high-performance
techniques.
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Chapter 5
Protein Structure, Dynamics and Assembly: <o
Implications for Drug Discovery

Arangasamy Yazhini, Sohini Chakraborti, and Narayanaswamy Srinivasan

Abstract Most of the therapeutic drugs available in the market today, are targeted
against proteins. Drug molecules are designed to complement shape, size and
electrostatic fingerprints of the functional site of a target protein so that they can
bind to the protein and impede its molecular function. Details of functional site are
derived from 3-D structure of the protein obtained either through experimental
techniques or computational protein modeling and form the basis for structure-
based drug design. Knowledge derived from homologous proteins facilitates this
process by providing an understanding on common and unique features of the
intended target with respect to its close and distant relatives. This helps to design a
drug with high selectivity and affinity. Often inherent dynamic nature of proteins
facilitates inter-protein interactions and aid them to perform major cellular activities
as an assembled complex. With improved apprehension of structural biology,
consideration of multi-protein machineries and their associated conformational
dynamics is increasingly gaining importance in drug design and discovery. Suscep-
tibility of protein-protein interactions in disease conditions is progressively being
realized and this has attracted protein-protein interfaces as potential drug targets for
therapeutic intervention in the last few decades. In this chapter, we have discussed
the properties of protein structure, evolution, dynamics and protein complexes along
with explanations on how each factor contributes to the design of an effective drug
molecule that is safe and efficacious.
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5.1 Introduction

Proteins are workforces of cells. All the efforts in DNA recombinant techniques,
genome sequencing, structural genomics, etc., are eventually aiming for the holistic
knowledge of how proteins in the organism function and how to manipulate them for
human benefits. Proteins being the active rulers of cellular biomolecules, they use
nucleic acids to synthesize themselves, produce energy from carbohydrates and
guide lipids for energy storage. Therefore proteins play a dominant role in the cell
and their design by the nature should be such that proteins fit with successful life
stages of the organism during the course of divergent evolution (Pal et al. 2006). At
the atomic level, proteins comprise of thousands of atoms. To decipher recognizable
patterns, protein structures are described in hierarchical levels viz. primary, second-
ary, tertiary and quaternary. Further, proteins are intrinsically dynamic which is
influenced by aqueous surroundings and molecular crowding in the cellular milieu.
Proteins work independently and/or along with other biomolecules by forming
complexes and large assemblies. Hence, function of the protein depends on the
structure, dynamics and its assembly state in the cell.

Perturbation of the aforementioned factors could alter molecular recognition
between a protein and its interacting partners and may cause disease. In many
cases, undesirable modulation of protein function (which plays an important conge-
nial role for the disease condition) can be treated by administration of suitable
therapeutic agents (drugs) to alleviate the disease condition (Peng et al. 2019).
Due to the superior druggable properties of proteins among the kinds of biomole-
cules (viz. lipids, nucleic acids, carbohydrates etc.), most of the therapeutic drugs
available today are targeted against proteins. Receptors, enzymes, ion channels and
transporters are the group of proteins that are predominantly targeted by drug
molecules (Santos et al. 2016).

In this chapter, we describe the characteristics of protein structure, dynamics and
molecular complexes formed by protein-protein interactions. Understanding of
protein 3-D structure provides insights into characteristics of binding pocket of a
drug target. Such information is essential in drug design and discovery. Here, we
highlight a few successful examples of protein structure-based drug design (SBDD)
approach. We discuss how knowledge derived from homologs contributes to the
identification and characterization of target protein and for drug repurposing. The
relationship between protein dynamics and function is further explained with impli-
cations in protein-drug interaction studies. Subsequently, the properties of protein
complexes and their applications in drug discovery process are exemplified.
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5.2 Protein Structure

Primary structure of a protein governs the folding and functional tertiary structure
through formation of hydrogen bonds and other kinds of non-covalent interactions
among amino acid residues (Anfinsen 1973). A globular 3-D structure comprises of
stable secondary structures, namely a-helices and f-sheets that are characterized by
series of hydrogen bonds. These regular secondary structures are connected by
irregular turns and loops. In stable and compact three-dimensional (3-D) structure,
individual elements of secondary structure are arranged with one another through
tight packing of amino acid side chains. Depending on the composition of secondary
structures and their topology, different proteins may have different globular 3-D
structures (fold). Regardless of the nature of fold, water soluble proteins inevitably
possess a hydrophobic core as a result of clustering apolar residues in the interior and
a surface populated with polar residues.

An optimally folded 3-D structure holds functional residues at precise positions in
the active site which is essential for the protein to carry out its dedicated biochemical
functions. For example, alcohol dehydrogenase adopts GroES-like fold with
18 regions in a-helical conformation and 23 regions in f-strand conformation
(Fig. 5.1) (Li et al. 1994). Substrate binding site, co-enzyme (NAD™) binding
residues are placed in appropriate positions in the 3-D structure of this protein to
catalyze the conversion of variety of alcohols to respective aldehydes. Variations in
its amino acid sequence could affect the 3-D structure and consequently influence
substrate affinity and catalytic efficiency (Colby et al. 1998; Edenberg 2007). Hence,
protein 3-D structure is a key determinant of protein function by providing suitable
physicochemical environment for the active site and substrate binding residues.

In order to derive atomic details of protein 3-D structure, several experimental
methods or computational methods are used. X-ray crystallography is a common

substrate
binding site

Fig. 5.1 Example of protein structure. Cartoon representation of alcohol dehydrogenase structure
with annotation of critical residues (PDB code: 1ADG) (Li et al. 1994). Stick representation
highlights substrate binding residues in blue, co-enzyme (NAD") binding residues in yellow
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technique to determine 3-D structure of proteins (Blundell and Johnson 1976). This
technique has significantly contributed to the availability of experimentally deter-
mined structures which are deposited in the protein structure repository (Protein Data
Bank or PDB). Since mid-1980s, nuclear magnetic resonance (NMR) technique too
is being employed to determine protein structure. It provides an ensemble of
structures representing slightly different conformations of protein that are adopted
under solution condition and hence helps us to study the dynamical nature of protein
(Wuthrich 1995). Recently, cryo-electron microscopy (cryo-EM) has emerged as
another technique to determine structure of proteins and biomolecular assemblies.
Cryo-EM has enabled us to study the structural details of large protein-biomolecular
complexes (Subramaniam et al. 2016; Cheng 2018).

Despite the development of these experimental methods, 3-D structure for innu-
merable proteins with known amino acid sequences available from exponentially
growing data of next generation sequencing, is still unknown. Structure determina-
tion of such large number of proteins by experimental methods with an equal pace to
sequence data is currently an unattainable task. In addition, some proteins may not
be amenable to experimental techniques due to their incompatible nature such as
intrinsic dynamics and size limitations for experimental conditions. To address this,
computational methods have been developed to predict 3-D structure of proteins.
Homology modeling or comparative modeling is a widely used method to generate
3-D structure of a protein. It uses structural information from homologous protein of
known structure as a template and models protein 3-D structure (this approach has
been explained in Sect. 5.3.2). Threading method based on a library of information
about solvent accessibility, secondary structural state and neighbor contacts of
known folds or ab initio modeling based on thermodynamics and potential energy
landscape can also be employed to predict protein structure (Baker and Sali 2001).
Recently, the application of artificial intelligence in protein structure prediction
based on co-evolution and residue contact distance potential has resulted in a method
called ‘alpha-fold’. It has the potential to build 3-D structure of proteins and to
recognize plausible new protein folds (Senior et al. 2020). Thus, using experimental
techniques or computational tools, knowledge on protein structures could be derived
that is essential to understand the molecular basis of protein function.

In the following section, we have discussed the use of protein structure in drug
design process for therapeutic treatment.

5.2.1 Use of Protein Structures in Rational Drug Design
and Discovery

Function of a protein in cellular context largely depends on its interactions with other
molecules, broadly referred to as ligands. These ligands can be macromolecules like
other proteins, DNA, RNA and/or small endogenous molecules like neurotransmit-
ters and ions or other organic molecules like carbohydrates. The feasibility and



5 Protein Structure, Dynamics and Assembly: Implications for Drug Discovery 95

strength of such molecular recognitions mediated by binding of the partner mole-
cules (i.e., protein and ligand) are regulated by complementarity in shape and
electrostatic features of the interacting regions on the surface of each molecule
(Sowdhamini et al. 1995; Voet et al. 2013). These features, i.e., shape and electro-
static fingerprints, are presented by the arrangement of the amino acid residues in the
3-D structure of proteins.

A drug molecule intended to bind to a protein target modulates the function of the
target by altering its interactions with endogenous modulators. The drug molecules
targeting the orthosteric sites are designed in such a way that they mimic the shape
and electrostatic features of the endogenous modulators and can complement the
protein binding site, thereby engaging the protein in interactions similar to that of the
endogenous ligand. Understanding the features of the binding cavity helps the drug
designers to decorate the chemical scaffold of the ligand molecule with relevant
functional groups so that the interaction between the protein and the designed
molecule is optimal. For example, if the protein binding site harbours a hydrogen
bond donor (HBD), placement of a hydrogen bond acceptor (HBA) at a suitable
position on the designed molecule, is likely to optimize the protein-ligand interac-
tions. Similarly, when there is an aromatic amino acid residue in the binding cavity,
rational introduction of aromatic/cationic substituents on the ligand is generally
exploited to utilize the strength offered by m-m stacking or cation-m interactions,
respectively. Likewise, the placement of polar and non-polar substituent on a ligand
such that these groups are proximal to the polar and non-polar sub-pockets of a
binding cavity respectively would also aid in optimizing protein-ligand interactions.
It should be noted that such optimization of molecular interactions also considers
that two interacting species should never come too close to each other which can
result in steric clashes. Thus, if a sub-pocket of the protein binding site houses a
residue with bulky side-chain, a small substituent of appropriate size and shape needs
to be placed on the ligand’s scaffold.

How favourable is the interaction between a protein and a ligand, is quantified in
terms of free energy change (AG) associated with the binding event. A spontaneous
binding would result when AG < 0, indicating favourable accommodation of the
ligand in the desired binding cavity of the protein. Better the complementarity in the
shape and electrostatic features of the binding partners, stronger is the binding
affinity and results in lower value of AG (Patrick 2013). It can thus be well
comprehended that information (on shape, size and electrostatic features of the
binding cavity) derived from 3-D structures of a protein play a very important role
in designing the right ligand that fits favourably within the intended protein binding
cavity and elucidate the desired therapeutic benefits. This is an interesting area and is
commonly referred to as structure-guided/structure-based drug design or SBDD
which is primarily driven by computational techniques (Batool et al. 2019)
(Fig. 5.2). In the next section, we have provided a few examples of successful
application of SBDD.
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Fig. 5.2 Drug-target complementarity. This figure shows a schematic representation of comple-
mentarity in shape and chemical features of a target protein binding site (grey; bottom) with a bound
drug (top) that enables a good fit. The HBA on the ligand complements the HBD region in the
protein binding site. Similarly, the hydrophobic (HYD) and negatively charged (NEG) regions on
the protein binding site are complemented by HYD and positively charged groups (POS) on the
drug, respectively. This figure has been generated using Microsoft Powerpoint software

5.2.2 Overview of Drug Discovery Program and Few
Successful Examples of SBDD

The conventional drug discovery process takes nearly 15 years from the time of
target identification followed by target validation to its launching in the market after
successful clinical trials and it requires huge investments (~$one million dollars)
(Dimasi et al. 2010; DiMasi et al. 2016). With the advancement of computational
technology, SBDD has now become an integral part of any drug discovery program
which aims to reduce the overall timeline and investments required (Mohs and Greig
2017). In general, the first step in drug discovery programs involves the identification
and validation of a target to ensure that modulation of function of the identified target
would aid in addressing the disease condition. Once the target is validated, the hunt
for suitable ligands which would be able to bind to the target of interest begins.
SBDD principles play a vital role at this stage. The most popular technique that is
applied at the initial stage is molecular docking of large libraries of compounds to
identify the potential binders from a pool of non-binders (Abraham et al. 2010).
Thus, the primary requirement for docking exercise is the availability of a reliable
3-D structure of the target protein with information on the binding site. Experimen-
tally determined structures through X-ray crystallography (Petsko and Ringe 2010;
Maveyraud and Mourey 2020), Nuclear Magnetic Resonance (Sugiki et al. 2018),
Cryo-electron microscopy (Ceska et al. 2019) etc. serve as an important starting
point for SBDD. In the absence of a reliable experimental structure, computationally
generated models of the target protein are used (Franga 2015). In the recent times,
artificial intelligence/machine learning based techniques are also gaining popularity
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in the identification and generation of potential hits and leads (Mak and Pichika
2019; Vamathevan et al. 2019). The potential binders predicted from computational
studies (in silico hits) are then taken forward for experimental testing and the ones
(experimental hits) which show promising results are subjected to multiple cycles of
optimization to generate leads with improved pharmacokinetic and pharmacody-
namic properties by taking inputs from synthetic chemists, biochemists, pharmacol-
ogists, formulation scientists, regulatory experts and many more group of scientists.
A lead that passes all the criteria of preclinical phase is then considered as a drug
candidate eligible for clinical trials in humans. With successful completion of
clinical trials and approval from regulatory agencies, the drug can then make its
entry into the market (McNamee et al. 2017; Mohs and Greig 2017). Thus, a
successful SBDD is an iterative process that involves contributions from scientists
of diverse expertise. Indeed, a typical drug discovery program in the modern era,
definitely uses the principles of SBDD at some point of time during the entire cycle.

However, it is difficult to find plenty of well-documented scientific reports in the
public domain which discusses the development of drug that is primarily centred
around SBDD and have successfully made into the clinics. This, to a certain extent
can be due to the limitations associated with intellectual property rights. Also,
assimilating such data for a scientific report, would largely depend on the
diminishing recall of the entire crew of scientists involved in the project over a
long time span (~15 years or more) during the discovery, development and clinical
studies of the particular drug. Moreover, it is not easy to deconvolute the factors
attributing to the success of a drug discovery program and claim any one method-
ology (like SBDD only) to be the sole key to success unless it is predominantly
obvious. This is so because, as it has already been mentioned, a successful drug
discovery program is a result of combined efforts of a huge team of scientists with
diverse expertise. For brevity, here, we have discussed only a few of the many well-
known examples of successful SBDD programs.

The first successful case of SBDD dates back to the last decade of twentieth
century reporting a series of Food and Drug Administration (FDA) approved Human
immunodeficiency virus-1 (HIV-1) protease inhibitors (indinavir, saquinavir, etc.)
(Roberts et al. 1990; Wlodawer and Vondrasek 1998; Ghosh et al. 2016). Other
examples of successful story of SBDD involves the discovery of norfloxacin (anti-
biotic) (Rutenber and Stroud 1996), isoniazid (anti-tubercular) (Marrakchi et al.
2000), flurbiprofen (nonsteroidal anti-inflammatory agent) (Miller et al. 2015;
Dadashpour et al. 2015), amprenavir (anti-HIV) (Wlodawer and Vondrasek 1998;
Clark 20006), raltitrexed (anti-metabolite) (Anderson 2003). A major breakthrough in
SBDD is the discovery and approval of imatinib (BCR-ABL kinase inhibitor) in the
year 2001 for the treatment of chronic myelogenous leukaemia (Igbal and Igbal
2014). The history of discovery of imatinib has been a great example of learning for
all drug designers and therefore, no doubt why it is still called a ‘wonder drug’. The
underlying science behind the discovery of imatinib showed that how information on
conformational state (i.e., the inactive state which are less conserved among the
different kinases as compared to the active state) of the target protein derived from its
3-D structure can be helpful to understand the selectivity of the investigating
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Fig. 5.3 Imatinib bound to inactive conformation of tyrosine kinase ABL complex. The protein
tyrosine kinase ABL is shown as transparent surface representation (grey) and the ligand (imatinib)
is shown as green (carbon atoms) stick (left panel). The binding site of imatinib is indicated in red
colour. The protein backbone is depicted in thin cartoon representation where the helices are in
cyan, beta sheets are in pink, and the loops are in orange. Enlarged view of binding site of imatinib
(right panel). The protein residues which offer polar contacts (shown as black dashes) to imatinib
are shown in stick representation (white carbon) and are labelled in black font. The image has been
generated using the PDB entry 1IEP in PyMOL (The PyMOL Molecular Graphics System,
Schrodinger, LLC)

molecule and therefore design a safer drug (Capdeville et al. 2002) (Fig. 5.3). There
are many other examples of successful stories of SBDD as reviewed elsewhere
(Batool et al. 2019). Notably, the success of a drug molecule does not solely lie in
understanding the structure of its intended target. Knowledge of structures of other
closely related proteins and evolutionarily aspects of structural features are also
crucial in drug design as discussed in the subsequent sections.

5.3 Applications of Knowledge Derived from Homologous
Proteins in Drug Design

Proteins that have diverged from common ancestor are referred as homologs.
Homologous proteins retain much of structural and functional features. This feature
of homologous proteins comes with both advantages and disadvantages in the
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Fig. 5.4 Flow chart depicting applications of knowledge derived from homologous proteins in
drug design

context of drug design and development. In the one hand, conservation of binding
site properties of homologous proteins could end up in off-target binding of a drug
causing adverse side effects. On the other hand, one can exploit the features of
protein homology in repurposing drugs when the known target of a drug for a disease
is homologous to a putative target in the context of a different disease. This section
highlights the application of knowledge derived from homologs in SBDD, in
understanding rationale behind off-target effects of a drug and in drug repurposing
(Fig. 5.4).

5.3.1 Homology Detection in the Identification of Potential
Drug Targets in Pathogens

Identification of homologs is an effective approach for drug target identification.
Proteins that are essential for the organisms' survival is conserved among closely
related species (Jordan et al. 2002). In general, for the treatment of infectious
diseases, targeting proteins that are essential to the pathogen for its survival could
be an effective way for managing therapeutic conditions. Homolog recognition helps
in this process to identify proteins that are conserved among related pathogenic
organisms which in turn, indicate their essentiality for the life-cycle of targeted
pathogen. At the same time, the identified target should ideally have no homolog in
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the host system which further requires homolog recognition in host genome to
confirm that the target is unique to only pathogen. Such approach referred as ‘sub-
tractive genomics’ is commonly used for drug target identification of pathogenic
infections (Rath et al. 2016; Sudha et al. 2019). Similarly, in case of newly detected
pathogen, homolog search is used to understand whether the pathogen is similar to
any known clinical pathogen. If such relationship could be detected, conserved
proteins are further probed for identifying suitable drug targets in the newly emerged
pathogen. For example, main protease of the SARS-CoV-2 (SARS-CoV-2 MP™) has
been identified as a potential drug target for the treatment of the ongoing pandemic,
COVID-19. Based on the evolutionary relationship studies, it has been found that
SARS-CoV-2 MP™ is closely related to main protease of SARS-CoV. The enzyme is
known to be critical in maintaining viral life-cycle. Notably, active site residues of
this protein is conserved among all closely related coronaviruses and does not have a
homolog in human (Anand et al. 2003; Needle et al. 2015). Hence, targeting this
protein is likely to be an effective strategy to kill the virus with least adverse effects
to the human host. Earlier studies have already shown that main protease is a good
drug target for treating SARS infection (Dai et al. 2020).

5.3.2 3-D Modeling of Drug Targets Using Structures
of Homologous Proteins

Homology detection is immensely useful in preliminary stages of drug design. If a
target protein does not have an experimentally determined 3-D structure, identifica-
tion of homolog with known 3-D structure is helpful to obtain 3-D structure. With
growing deposition of experimental protein structures in the PDB (Berman et al.
2002), sequence of drug target whose structure is unknown can be searched in the
database using algorithms such as BLAST (Hu and Kurgan 2019). If homolog is
detected with significant sequence similarity, comparative/homology modeling is
widely employed to model 3-D structure of the target protein using structure(s) of the
identified homolog(s) (gali and Blundell 1993). A reliable 3-D model of target
protein forms the basis for virtual screening and molecular docking (Muhammed
and Aki-Yalcin 2019). Homology modeling provides a reliable 3-D structure of the
target protein when it shares high sequence identity with homologous proteins
(>60%) and use of multiple homologous structures have shown to improve the
model quality of both structure and dynamics features of proteins (Yazhini and
Srinivasan 2020). Whereas in case of poor sequence identity between target protein
and homologous protein, i.e. below 30%, the atomistic details of the generated 3-D
structure should be treated cautiously (Kryshtafovych and Fidelis 2009). Application
of homology models in SBDD is particularly useful for proteins which are difficult to
be solved by any experimental technique. For example, membrane proteins like
G-protein coupled receptors (GPCRs) are difficult to be crystallized. Even though
more than 800 GPCRs are encoded by human genome and these receptors form the
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leading drug targets, experimentally determined structures of GPCRs are available
only for a small fraction of the total space of druggable human GPCR targets.
Therefore, the GPCR community largely depend on homology models for SBDD
strategies (Cavasotto and Palomba 2015).

5.3.3 Homology and Drug Promiscuity

For a molecule to be a successful drug, it should have high efficacy and low toxicity.
Higher efficacy of a drug would result from its high binding affinity toward the
intended protein target and lower toxicity which means that the drug binds weakly to
off-targets. Now, one can have an obvious question that when a drug is designed to
bind to a particular target, why would it bind to off-targets/undesired targets? The
answer to this question again lies in understanding the 3-D structure of the protein. In
the course of evolution, protein structures are conserved better than sequences
(Chothia and Lesk 1986). Therefore, nature often repurposes protein folds leading
to retention of global structures and sometimes even local structures. Hence, by
virtue of similarity in local structures (shape and electrostatic features of binding
sites), many proteins might be capable of offering reasonably favourable, but
undesirable interactions to a given drug molecule (even though the drug molecule
was not designed to bind to these undesired targets) and leading to promiscuous
binding that results in adverse effects.

For example, protein kinases are a group of evolutionary related enzymes that
phosphorylates serine/threonine/tyrosine residues of their substrate proteins to medi-
ate multitude of signaling processes and hence become the second most attractive
drug targets after GPCRs. However, the main challenge in targeting kinase is to
achieve specificity. Since all typical serine-threonine kinases are known to adopt
conserved bi-lobal structure with common motifs for ATP and substrate binding, the
chances of cross-reactivity among different kinases for a given small molecule drug
become the leading issue in most drug discovery programs aiming to target protein
kinases (Shah et al. 2013). Hence, careful analysis of the binding site features is
required to understand the commonalities (conserved features) and differences
(diverse features) among binding sites with similar geometry and with similar
chemical groups. In this line, a recent study aimed at the identification of
off-targets by incorporating similarity search based on the 3-D target binding site
against the PDB. Using this approach along with transcriptome profile, data of
structure-activity relationships etc., isoforms of cyclin-dependent kinase and Glyco-
gen Synthase Kinase 3 Beta were recognized as off-targets for protein kinase C theta
inhibitor (A-1411735) which is used for chronic autoimmune and inflammatory
diseases (Rao et al. 2019). Likewise, other tools for identifying similar drug mole-
cule binding sites, such as PLIC (Anand et al. 2014) and ProBis (Konc et al. 2012),
are also available.
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5.3.4 Drug Specificity and Potency

The common features across similar binding sites in multiple proteins hint the
importance of such features in executing the respective functions of the proteins
which have been preserved during evolution. Engaging these conserved features in
optimal interactions would help in gaining potency and thereby aid in improving the
efficacy of the ligand. On the contrary, differences in certain features among the
apparently similar looking binding sites across multiple proteins suggest that such
features are not important from functional perspective of the proteins. However,
such differences offer tremendous opportunities to a designer in developing safer
ligands. Protein-ligand interactions which exploit the unique features of a binding
site is expected to be more specific and hence safer than those which fail to do
so. This is often the case with many new generations of drugs as compared to their
predecessors (Neu 1996; French and Gazzola 2011; Baldoni et al. 2014; Barnhart
and Shelton 2015; Chakraborty and Rhee 2015).

In this context, the recognition of unique and common features in a protein target
upon comparing it with homologs in sequence as well as structure space, requires
knowledge on evolutionarily history of the target protein. Let us again take the
classic example of kinase inhibitors to understand this concept. The hinge region in
kinases that connects the N-terminal lobe to the C-terminal lobe of the protein, are
the structurally conserved region among all kinases. The adenine ring of ATP forms
hydrogen bonds with the specific residues in the hinge region. This helps in placing
the ATP in a suitable conformation that facilitates phosphorylation of substrate
proteins. It has been observed that ATP mimetic agents which do not establish
hydrogen bonds with those hinge residues fail to inhibit the enzyme either
completely or partially. This signifies the importance of engaging functionally
conserved residues in protein-inhibitor interactions (Arris et al. 2000; Xing et al.
2015). However, the gatekeeper residue just preceding the hinge residues are
considerably variable among different groups of kinases and targeting the gatekeeper
residue for protein-ligand interaction is one of the strategies to achieve kinase
inhibitor selectivity (Huang et al. 2010). Further, specificity toward a particular
isoform (Aurora kinase-A) within the Aurora kinase family has also been reported
upon systematically targeting unique residue (Thr217) in the binding site sequence
of the highly similar isoforms (Aurora kinase-A/B/C) (Bouloc et al. 2010; Bavetsias
et al. 2013). Another interesting example in the area of achieving subtype specificity
among closely related proteins is targeting the GPCRs. Studies have revealed that
albeit there are universally conserved regions in GPCR which allow them to elicit a
highly similar activation mechanism, there also exists “selectivity barcode” which
facilitates uniqueness in molecular recognition. Such selectivity features include
distinct pattern of amino acid residues which could be exploited in designing subtype
specific modulators (Flock et al. 2017).
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5.3.5 Homologous Proteins in Polypharmacology

Identification of similar binding pockets is useful in designing a drug that targets
multiple related proteins involved in a given disease pathway without modulating
the functions of undesired targets. Indeed, this approach is beneficial for the treat-
ment of multigenic diseases such as heart diseases, type 2 diabetes, mental retarda-
tion, leukemia etc. (Anighoro et al. 2014). For example, sunitinib is a multi-targeted
tyrosine kinase inhibitor that act upon PDGF receptor, VEGF receptors (1 and 2),
fms like tyrosine kinase 3 and c-Kit. Such promiscuous nature of sunitinib is helpful
in treating drug-resistant gastrointestinal stromal tumour and metastatic renal cell
carcinoma (Faivre et al. 2007). This principle of targeting multiple proteins with a
single drug is termed as ‘polypharmacology’ and it is being systematically exploited
in drug repurposing/drug repositioning approaches (Jalencas and Mestres 2013;
March-Vila et al. 2017). Drug repurposing has become an important branch of
drug discovery which aims at identifying new use of an already existing drug.
These approaches are less time-consuming and involve less investment of resources
as compared to conventional drug discovery programs aiming to find a new chemical
entity. The fundamental basis of most drug repurposing approaches revolves around
the theory of neighbourhood behaviour where similar binding sites are expected to
recognize similar molecules and vice-versa. This is especially relevant in the current
scenario (at the time of writing this article, April 2020) when the world is facing a
global health challenge of COVID-19 caused by a newly emerged coronavirus,
SARS-CoV-2. Since conventional drug discovery programs aimed at identifying
novel chemical entities are time-consuming, it is unlikely that any novel drug to treat
COVID-19 will be available in the next few months. Therefore, the research
community around the globe are putting efforts in identifying promising candidates
from the repertoire of existing approved drugs which can be helpful in treating
SARS-CoV-2 infection (Sanders et al. 2020). In the recent past, research from our
group has helped in identifying potential drugs which could be repurposed against
infectious diseases like malaria, tuberculosis, fungal infections etc. by exploiting the
principles of protein evolutionary relationships (Ramakrishnan et al. 2015, 2017;
Chakraborti et al. 2019a, 2019b). In continuity, we have recently identified potential
anti-COVID-19 drugs using the principles of neighbourhood behaviour (Chakraborti
et al. 2020). Albeit drug repurposing approaches contribute toward rapid identifica-
tion of potential drugs, the greatest challenge of any drug repurposing program lies
in exploiting the benefits of polypharmacology with minimum or no toxicity
(Pushpakom et al. 2018).

In addition, it should be noted that under physiological conditions, the biological
molecules are in dynamic state and undergo vibrational as well as large domain
motions (Moroni et al. 2015). Thus, the degree of complementarity in shape and
electrostatic features between a drug and its protein target(s) may vary with time.
Knowledge derived solely from static structures as discussed so far, might not
provide complete picture of molecular basis of a drug action. Hence, understanding
the changes associated with protein-ligand complex structures with time, is central to
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any successful drug discovery program. In the following section, we introduce the
concept of protein dynamics and emphasize on how dynamics play a role in drug
design with examples of therapeutic drugs.

5.4 Protein Dynamics

Proteins are inherently dynamic that helps them to evolve and adapt to diverse
cellular conditions (Tokuriki and Tawfik 2009). Protein function relies on the
synergy between structure and dynamics. Therefore, a molecular level understand-
ing of protein function requires the atomic details in both 3-D space as well as time.
Protein dynamics can be viewed at multiple levels in timescale starting from fluid-
like motions of atoms about its mean positions at picoseconds to sampling different
conformational substates at milliseconds or seconds (Van Den Bedem and Fraser
2015). Large timescale dynamics drive proteins i) to be at equilibrium between
different functional states, ii) to bind ligands, iii) to transport molecules, iv) to
catalyze enzymatic reaction, v) to have allosteric regulations etc. In the following
subsections, we have provided details of examples on how dynamics drive protein
function, methods applied to study dynamics of protein and protein-ligand interac-
tions, evolutionary aspect of protein dynamics and role of dynamics in drug design.

5.4.1 Role of Dynamics in Enzymatic Function

Specific and tightly regulated molecular recognition is central to all biomolecular
interactions. It has been reported that binding of several therapeutic drugs involve
dynamical motions of target proteins (Copeland 2011). Besides the classical Fisher’s
‘lock-and-key’ and Koshland’s ‘induced-fit” models, a model based on ‘conforma-
tional selection’ by Frauenfelder is the widely accepted theory for molecular recog-
nition (Frauenfelder et al. 1991). This model (and ‘induced-fit’ to some extent)
considers inherent nature of protein dynamics which is observed to be involved in
all binding events such as protein-small molecule, protein-protein, protein-DNA/
RNA as well as RNA-ligand interactions (Kumar et al. 2008). Conformational
selection process has been demonstrated in several enzymes including RNase A,
adenylate kinase, aspartate transcarbamoylase and dihydrofolate reductase (Boehr
et al. 2009). It explains the basis of molecular recognition as protein samples
ensemble of conformations which may differ in their energy state and ligand selects
a conformation that closely resembles the ligand-bound state (Frauenfelder et al.
1991).

Here, we have taken adenylate kinase as an example to explain how dynamics is
linked to molecular function of the protein. This enzyme follows conformational
selection for substrate binding (Kovermann et al. 2017). In addition, dynamical
motions at picosecond to millisecond timescale drives the catalytic activity of this



5 Protein Structure, Dynamics and Assembly: Implications for Drug Discovery 105

enzyme. It is known to catalyze reversible interconversion of adenine nucleotides
and has three domains, namely core, NMP (nucleotide monophosphate) and lid.
Collective motions involving opening and closing of lid domain in microseconds to
milliseconds scale have been identified to be the rate-limiting step for the catalytic
reaction (Fig. 5.5A). Fast motions such as backbone fluctuations by thermal energy
in picoseconds to nanoseconds facilitate such motions of the lid domain. This large
conformational motion is directly correlated with catalytic turnover rate of this
enzyme (Henzler-Wildman et al. 2007). Hence, dynamics at all hierarchy in the
timescale is essential and cognizance of such dynamical behaviour offers deeper
understanding on the mechanistic basis of enzymatic function.

In the field of drug design, dynamics and associated functional substates are
increasingly being recognized as important factors to design a highly selective drug
molecule. One of the effective ways of selectively targeting a protein is to target its
allosteric site, which is a secondary binding site that is capable of remotely altering
the conformation of the orthosteric site. However, allosteric sites are not always
evident. Computational techniques like molecular dynamics simulations as
discussed later could be helpful in predicting allosteric binding sites on the protein
surface. In the area of drug design, allosteric sites offer an advantage over the
orthosteric sites as the former are evolutionarily less well conserved than the later
and are most often unique. Therefore, achieving selectivity and hence better safety
profile for a drug targeting the allosteric site is generally possible (Abdel-Magid
2015). For example, p38 MAP kinase is targeted for treating inflammatory diseases.
It possesses a unique allosteric binding site whose accessibility to the therapeutic
drug (BIRB 796) is governed by a large conformational change in the DFG motif of
the kinase. Targeting this site has been shown to improve drug affinity (Pargellis
et al. 2002). Likewise, as mentioned earlier, imatinib, a drug against ABL tyrosine
kinase, is conformation specific drug molecule and binds only to the inactive
conformation of this enzyme (Igbal and Igbal 2014). Therefore, knowledge of
conformational dynamics of target protein lends a strategy to design conformation-
specific drug molecule.

5.4.2 Role of Dynamics in Membrane Receptor Function

Like globular proteins, the functions of membrane proteins are also largely associ-
ated with their inherent dynamics. In this section, by taking few examples which are
important drug targets, we have highlighted the importance of dynamics in designing
drugs targeted against membrane receptors. Dynamics of membrane receptor pro-
teins are particularly interesting to understand because these proteins generally
undergo large conformational changes especially when they are involved in facili-
tating passage of molecules through the membrane channel.

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated ion channels
involved in brain development and synaptic plasticity by permeating Ca®* ions
across cellular membrane in neurons (Traynelis et al. 2010). NMDA receptors are
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Fig. 5.5 Examples of protein dynamics. (a) Shown in cartoon representation is a large-scale
motion of the lid domain of adenylate kinase. Snapshot of each conformation is derived from
anisotropic network model based normal mode analysis using crystal structure of E. coli adenylate
kinase (PDB code: 4AKE) (Miiller et al. 1996; Atilgan et al. 2001). Color scale from blue to red
indicates the magnitude of residue motions from small to large. (b) Cartoon representation of
NMDA receptor in ‘closed’ (PDB code: 4TLL) (Lee et al. 2014) and ‘open’ conformation (PDB
code: 6IRA) (Zhang et al. 2018). Subunits GluN1 and GluN2 are colored in blue and orange
respectively. Memantine binding region is highlighted in a box. VMD (Humphrey et al. 1996) and
Chimera (Pettersen et al. 2004) were used to generate Fig. (a) and (b), respectively
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obligatory hetero-tetramers mainly comprises of two copies of GIuN1 subunit that
bind to glycine and two copies of GluN2 subunit that bind to L-glutamate. The
receptor function is governed by two factors: membrane potential and glycine as
well as L-glutamate binding. Receptor is inactive under membrane resting potential
(-70 mV) by adopting ‘closed’ conformation. When membrane gets depolarized and
ligands are bound, it acquires ‘open’ conformation in order to permeate Ca>* ions
into cytoplasm of the signal receiver neuron (post-synaptic neuron). For the next
cycle of neurotransmission to happen, NMDA receptor reverts to ‘closed’ confor-
mation. Hence, dynamic personality of NMDA receptor to switch between ‘open’
and ‘closed’ conformation is essential for neurotransmitter signaling. Indeed, appli-
cation of cryo-EM techniques has unveiled a detailed knowledge of NMDA receptor
dynamics and its regulation by proton and zinc concentration (Jalali-Yazdi et al.
2018). Duration of NMDA receptor in the ‘open’ conformation is directly related to
cognitive skills such as learning and memory.

On the account of its importance in brain function, dysfunctional NMDA recep-
tors are implicated in various brain diseases such as schizophrenia, Alzheimer’s
disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis
(Chen and Lipton 2006). For the therapeutic treatments, several antagonists have
been designed against glutamate-binding and glycine-binding sites. However, such
neuroprotective drugs have failed in clinical trials due to adverse effects by
compromising the normal function of this receptor. Under neurological disease
conditions, the activity of NMDA is elevated by retaining ‘open’ conformation for
a longer period of time than it has to be. By taking the differences in the conforma-
tional states into account, memantine, a drug molecule to specifically target the
‘open’ conformation of the receptor as an uncompetitive antagonist, was designed
(Fig. 5.5B). As a result, it has become successful therapeutic intervention and the
drug blocks the ‘open’ conformation of the receptor under excessive glutamate
condition and minimize the side-effects by not interfering with the receptor’s basal
level activity (Chen and Lipton 2006). Likewise, several allosteric modulators that
consider dynamics states of NMDA receptor are used as therapeutic drugs for the
treatment of many neurological diseases (Traynelis et al. 2010).

Along the same line, dynamics nature of GPCRs has been extensively exploited
for the design of therapeutic drug molecules. GPCRs sample several conformations
and undergo conformational transition between ‘active’ to ‘inactive’ states which is
critical for signal transmission. The conformational transition involves a
rearrangement of transmembrane helices (5-7) through inward and outward move-
ments. It has also been shown that the intracellular component of the receptor is more
dynamic than extracellular region however subtle changes in extracellular loops
influence the binding kinetics for ligands (Latorraca et al. 2017). Interestingly,
dynamics of these surface loops facilitates the formation of alternative binding
sites for allosteric modulators (Dror et al. 2013). This observation emphasizes that
the mechanism of ligand binding and signal transmission across membrane in
GPCRs is facilitated by their dynamical motions.

Furthermore, in the ongoing life-threatening condition due to ‘COVID-19 or
SARS-CoV-2 infection’, cryo-EM has provided details on the viral entry vis-a-vis
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how the viral spike protein interacts with human ACE2 receptor (Walls et al. 2020).
Spike protein comprises of two subunits responsible for host receptor binding
(S1) and membrane fusion (S2). S1 subunit interacts with ACE2 receptor in the
trimeric form. For interaction between spike protein and ACE2 receptor to happen,
receptor binding domain of S1 subunit has to undergo large scale motions from
‘closed’ to ‘open’ conformational state. Since ‘open’ conformation is essential for
ACE2 receptor binding, an alteration in the conformational sampling between ‘open’
and ‘closed’ state appears to be correlated with the rate of virus transmissibility and
disease severity (Walls et al. 2020). Hence, dynamics of spike protein plays a
significant role in the viral entry to human cells.

Therefore, from the above examples it can be appreciated that conformation-
specific drug design comes with the benefits of drug being highly selective to
specific conformation that is related to disease condition. Consequently, it obviates
adverse effects caused by perturbing basal level function of the target conferred by
other conformational states or interactions with off-targets that are homologous to
the intended drug target but largely differ by their characteristic conformations.
Currently, there are several experimental and simulation methods available to
study protein dynamics as mentioned in the following subsection.

5.4.3 Methods for Studying Protein Dynamics

Structures determined by X-ray crystallography are space and time averaged entities.
However, analysis on multiple structures from independent X-ray crystallographic
studies of the same protein provides structural basis for dynamics (Marino-Buslje
et al. 2019). Also, ensemble structures from solution NMR technique provides
details about large scale dynamics of proteins. Especially, Carr-Purcell-Meiboom-
Gill relaxation dispersion, paramagnetic relaxation enhancement and native-state
HD exchange NMR techniques are used to study higher energy conformations that
are important to protein function (Baldwin and Kay 2009). Single molecule Forster
Resonance Energy Transfer (smFRET) is also widely used to obtain information
about protein dynamics (Kalinin et al. 2010). Recently, resolution revolution in cryo-
EM have made this technique as a promising method to study large scale confor-
mational dynamics of proteins and molecular assemblies (Cheng 2018). Albeit these
experimental techniques give realistic insights into protein dynamics, they are time-
consuming and require expensive resources. Alternatively, computational tech-
niques such as molecular dynamic simulations are fast and inexpensive to obtain
information of dynamics of biomolecules as explained below.

Molecular dynamics simulations allow us to study dynamics of proteins and
protein-biomolecular interactions in silico. Using this method, flexibility associated
with binding site residues of target protein and time-dependent variations in the
interaction patterns between protein and ligand molecules in the aqueous medium
can be studied. Since dynamics simulations account for protein flexibility and
entropy effects, a combination of ligand docking and molecular dynamics helps to
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identify binding modes of ligand molecules (De Vivo et al. 2016). Generation of
ensembles of target protein structure from dynamics simulations and docking of
ligand molecules to each of the protein conformation obtained from simulations is
helpful to accurately predict the binding energy of protein-ligand interactions. Along
with molecular dynamics simulation, Monte Carlo simulations are also used to
traverse through the conformational landscape of proteins (Cole et al. 2015).
Hence, these simulation methods have also been employed in free-energy perturba-
tions (FEP), thermodynamics integration (TT) and lamda-dynamics to study alloste-
ric mechanisms and the role of water molecules in ligand binding (Wang et al. 2015).
Recently, elastic network based normal mode analysis also widely used to study
large scale motions of proteins that are relevant to their functional mechanisms. It
comes with the advantages of analysing large proteins as well as membrane receptors
with less demand on computational power and time which are in general the
limitations of molecular dynamics simulations (Skjaerven et al. 2009; Zheng et al.
2017). Such approaches are employed during the process of lead optimizations in
SBDD to design drug molecule with improved affinity for the intended target.
Therefore, both experimental methods and computational simulation methods pro-
vide useful information to study dynamics associated with protein and aid to
understand time-dependent interaction profiles between protein and drug molecule.

5.4.4 Evolution of Protein Dynamics in Target Identification

Dynamics being an inherent feature of a protein, not surprisingly, dynamics of
homologous proteins with similar function is conserved. Like sequence and struc-
ture, the extent of conservation of dynamics features is higher among members of the
same family than across members of difference families (Kalaivani et al. 2016;
Narayanan et al. 2018). Such observation had led to a concept of ‘dynasome’ that
states proteins with similar functions share common dynamic fingerprints (Hensen
et al. 2012). Studies involving evolution of protein dynamics have become an
emerging area and have shown that dynamics is manoeuvred in the course of protein
evolution (Tokuriki and Tawfik 2009; Klinman and Kohen 2014). In conformity
with this, differences in dynamics have been observed between two distantly related
proteins. For example, hexokinase-1 from H. sapiens is a multidomain domain
protein and its homolog in E. coli has only single domain (Vishwanath et al.
2018). Dynamics of these two homologous proteins are different as weaker correla-
tions in residue motions are observed in single domain hexokinase-1 when compared
to that of multi-domain hexokinase-1. Differences in the dynamics can explain the
difference in substrate affinity of these two homologous enzymes which share
identical substrate binding site. Hence, while target identification using information
derived from distant homologs, it is important to be aware of the differences in the
substrate affinity and associated dynamics between the homologs of interest. All
these observations underscore that dynamics play an important role in biomolecular
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recognitions and analysis on dynamics is considered as an important aspect in the
early phase of drug discovery (Amaro et al. 2018).

5.4.5 Role of Dynamics in Drug Design and its Therapeutic
Response

Since dynamics helps a protein to respond to its environment and influence its
interactions with different partners, it is important to consider protein dynamics in
the process of drug design (Moroni et al. 2015). Sometimes, conformational changes
of the protein uncover many treasures like cryptic sites which provide rare opportu-
nities to target the otherwise undruggable protein (Beglov et al. 2018; Kuzmanic
et al. 2020). The inherent dynamics of proteins often regulate allosteric signalling
pathways. Understanding the molecular mechanism of such pathways have attracted
considerable attention among the research community because of their potential
benefits in the field of drug discovery and developments (Amamuddy et al. 2020).
Although there have been striking advancements in predicting protein-ligand bind-
ing affinity, development of techniques to study protein-ligand dynamics is still an
ongoing research. This is mainly limited by computational resources and the vast-
ness as well as diversity of the chemical universe of ligands (Salsbury 2010).
Nevertheless, in the recent times, there have been appreciable advancements
which allow us to sample different conformations of protein-ligand complexes
over a considerably long timescale using advanced molecular dynamics simulation
techniques that captures atomistic details. This has opened avenues for studying
even drug unbinding pathways which were otherwise computationally expensive
and were beyond the resource capacity for many researchers in both academia as
well as in industries (De Vivo et al. 2016; Hollingsworth and Dror 2018).

Another aspect of protein-drug molecule interactions is the stability. In general,
greater the stability of the interactions between a drug and its target, better is the
efficacy. However, a prolonged interaction is not desirable as that might lead to toxic
effects due to drug accumulation. Thus, an optimum interaction between the drug
and the target is needed so that the drug remains strongly bound to its intended target
only during the timespan when the desired therapeutic benefit is expected. Once the
therapeutic response is obtained, the drug should quickly leave the protein binding
cavity to avoid any toxic outcomes. Hence, study of conformations and residence
time of drug-target complexes help to gain understanding of various aspects of
ligand binding and unbinding which in turn dictate the efficacy and safety of the
drug (Schuetz et al. 2019; Gobbo et al. 2019).

As mentioned earlier, the dynamical nature of a protein helps it to interact with
many other proteins or other biomolecules during its lifetime. Through the inter-
molecular interactions, protein forms permanent or transient complexes and per-
forms its function. Studying such phenomena are increasingly becoming popular as
these are the real machineries driving key cellular events. In the following section,
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we have discussed the importance of protein-protein complexes and their implica-
tions in drug discovery.

5.5 Protein-Protein Complexes

Proteins in general interact with other molecules to carry out their cellular functions.
Although, proteins are likely to encounter random physical contacts with other
biomolecules in cellular milieu, the frequency, duration and specificity of the
interactions rely on functional significance. An observation that 85% of proteins in
yeast genome have designated interaction with another protein(s) indicates the
prevalence of specific interactions among proteins (Reid et al. 2010). Such interac-
tions govern the formation of protein-protein complexes that mediate nearly all
biological processes in the cell. A protein complex is an assembly of at least two
protein molecules which behave as a single entity with an ability to play a specif