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10.1 Introduction

The rechargeable Li-ion battery (LIB) has attracted intensive research interest due
to their large spectrum of applications as energy storage devices for electric, elec-
tric/hybrid electric vehicles, and intermittent renewable energy sources [1–5]. The
LIB is referred to as a rocking-chair battery, because Li+-ions “rock” back and forth
between the anode and the cathode during cycling and they possess high energy
and power densities, no memory effect and long cycle life. The current generation
commercial LIBs are utilizing the electrode materials, which could store Li+-ions
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Fig. 10.1 Schematic representation and operating principle of lithium ion batteries

by insertion between their structural layers during charging and extracted out from
the layers during discharging (Fig. 10.1) without any significant structural change
leading to excellent cycling performance. In recent years, globally great efforts have
been paid by the researchers and battery technologists to develop and design high-
performance electrode materials in terms of energy density, cycling stability and rate
capability. Among different classes of anode materials such as intercalation, conver-
sion reaction, alloying/de-alloying reaction-type materials, transition metal oxides,
Co3O [6–10], FeOx [11–17], TiO2 [18, 19], MnO2 [20–22], and SnO2 [23–25],
iron oxide micro-/nanomaterials, such as hematite (α-Fe2O3) [26–28] and magnetite
(Fe3O4) [29–31], have been extensively studied as potential electrode materials in
LIBs. Iron oxide is popular in their higher theoretical capacities (1004 mAh g−1 for
α-Fe2O3 and 924 mAh g−1 for Fe3O4), has low toxicity, and is economically viable.

In spite of their lower cost and better safety, the capacity retention of Fe2O3/Fe3O4

remains a major drawback, due to the huge volumetric expansion/contraction during
the lithiation/delithiation process which ultimately leads to pulverization of the elec-
trode from the current collector, resulting in loss of electrical contact and loss of
morphological structure of the activematerial [32]. The electrochemical performance
is highly dependent on their diverse morphologies and micro-/nanostructure of an
anode material [33–37] The confining dimension effect and high surface area of the
nanostructured materials lead to the short lithium diffusion lengths and increased
active sites for Li+-ion insertion/extraction reactions [38]. Also, the cyclability of
the nanostructured electrodes significantly improved due to the sufficient free spaces
to relax the large volume changes during the continuous charge–discharge process
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[29]. Hence, various types of nanostructures have been employed as anode mate-
rials for LIBs. In order to mitigate the large-volume variation problem of transition
metal oxides and to increase the electronic conductivity, carbon coatings have been
extensively explored [39–50]. However, the compact carbon coatings on nanopar-
ticles cannot allow residual buffer space to accommodate the large volume change
of Fe3O4 nanoparticles during Li+ insertion/extraction. Thus, it remains necessary
to exploit an approach for the fabrication of suitable carbon matrix to accommo-
date volume expansion upon Li+-ion insertion as well as to increase the electronic
conductivity [51–53]. One-dimensional (1D) structure can efficiently improve the
performance of Fe2O3 as anodematerial in LIBs due to its excellent electron transport
along the lengthways direction and large surface–volume ratio [54–58]. Electrospin-
ning is now a convenient, inexpensive, simple, and versatile method to manufacture
the 1D structure including polymer, metal oxide, and organic–inorganic compos-
ites [59–62], especially the robust electrode for LIBs. The material obtained by
electrospinning can take full advantage of 1D architectures as well as the material
can form metal oxide nanoparticles/carbon nanofibers (CNFs) after being calcined
under an inert atmosphere. Uniformly dispersing the nano-sized metal oxide into
CNFs matrix can significantly enhance the electronic conductivity, buffer the large
volume change and pulverization of the electrode, and prevent the agglomerates of
nanoparticles [63–71]. The electrospinning technique facilitates to develop 1Dmetal
oxide nano-/microstructure with various morphologies including porous nanowires,
nanotubes, nanorods, and tube-in-tube by using non-coaxial electrospinning. This
chapter is presenting a detailed overviewon the facile fabrication and electrochemical
performance of hierarchal Fe2O3/Fe3O4 nanostructured anode for LIBs.

10.2 Principle of Lithium Ion Batteries

The global lithium-ion battery market is forecasted to grow from USD 36.20 billion
in 2018 toUSD109.72 billion by 2026, at a compound annual growth rate (CAGR) of
13.4%, during the forecast period. In recent years, lithium-ion batteries are increas-
ingly being used as the power source for hybrid (HEV) and full-battery electric
vehicle (BEV). Over the past couple of years, maximum sales of electric vehicles
have accounted by China, the USA, and the European region, which are primarily
high-end electric vehicles. Roughly, 1.6 million electric cars were on the roads in
China in 2018, followed by 810,000 in the USA. By March 2018, BEV production
and sales in China reached 27,673 and 24,127 units, rising 88.35 and 69.21% year-
on-year; such figures for plug-in hybrid electric vehicle (PHEV) were 11,210 and
11,171 units, rising 291.21 and 201.47% year-on-year [72]. The industry produced
about 660 million units of cylindrical lithium-ion cells in 2012; the 18650 size is by
far the most popular for cylindrical cells. The Tesla’s Model S electric cars SUVs
under 40,000 USDwith 85 kWh battery uses 7,104 of lithium ion cells. A 2014 study
projected that the Model S alone would use almost 40 percent of estimated global



280 N. T. M. Balakrishnan et al.

cylindrical battery production during 2014. Production of the cell was gradually
shifted to higher-capacity 3000+ mAh cells.

Based on the use type, LIBs are categorized as primary LIBs and secondary or
rechargeable LIBs. A primary battery is one-direction galvanic device designed to
be used once and discarded when it is fully discharged, and not recharged with
electricity and reused like a secondary or rechargeable battery; i.e., the electrochem-
ical reaction occurring in the cell is not reversible, or it has only discharging process.
Lithium primary battery hasmetallic lithium as anode. Hence, these types of batteries
are also referred to as lithium-metal batteries. Presently represent the primary EES
systems, with a production higher than 100 million cells/month and about 1500
tons/month of electrode materials. Lithium–manganese dioxide, lithium iron disul-
fide, lithium thionyl chloride, and lithium iodine batteries are the common lithium
primary batteries.Among different lithiumprimary batteries, lithium thionyl chloride
battery has the highest energy density of all lithium-type cells and has a service life of
15–20 years, while lithium iodine batteries provide excellent safety and long service
life. In batteries, during discharging, reduction happens on the cathode gaining elec-
trons and oxidation happens on the anode, which is losing electrons, as per the
electrochemical reaction shown below [73].

Cathode: MS2 + Li+ + e− discharge−−−−−→ LiMS2

Anode: Li
discharge−−−−−→ Li+ + e−

Full cell: Li + MS2
discharge−−−−−→ LiMS2

(M = Ti or Mo)

In contrast to lithium primary batteries, lithium secondary batteries, referred as
lithium-ion batteries, are rechargeable batteries in which lithium ions move from the
negative electrode to the positive electrode during discharge and opposite action
happens during charging. Research on LIBs started in the early 1980s, and the
principle of the current LIB was completed in 1985 and then first commercial-
ized in 1991 by Sony. Most of the technological developments to date have been
directed toward the needs of portable electronics, but now the focus tends to be
on the performance demands of medium- and large-scale applications. As shown
in Fig. 10.1, typically, LIB consists of three layers: (i) cathode or positive elec-
trode which commonly consists of LiCoO2 [74, 75], LiNiO2 [76], LiMn2O4 [77],
etc., (ii) anode or negative electrode consists of graphitic carbon [78], TiO2 [79],
Fe2O3/Fe3O4 [80], etc., and (iii) a separating cum electrolyte called gel polymer
electrolytes (GPEs) which is permeable to the ions and the electrolyte (e.g., LiPF6
in an organic solvent). GPEs are prepared by immobilization of organic liquid elec-
trolytes, e.g., a 1M solution of LiPF6, LiClO4, or LiTFSI into polymer structures [81–
83]. Polymers such as polyethylene oxide (PEO) [84, 85], polyacrylonitrile (PAN)
[86, 87], polyvinylidene difluoride (PVdF) [88, 89] and its copolymer polyvinyli-
dene difluoride-co-hexafluoropropylene (PVdF-co-HFP) [90, 91], and polymethyl
methacrylate (PMMA) [92, 93] are among the well-studied materials. As the name
implies, the working of a lithium-ion battery mainly relies on repeated transfer of
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lithium ions between the anode and the cathode. The electrochemical properties
of the electrodes are strongly influenced by the physical and chemical properties
of the electrode active material, such as particle size, homogeneity, morphology,
and surface area. Lithium-ion polymer batteries (LiPo batteries) are by far the most
common commercialized secondary cell polymer battery, with leading technology
among other types of metal-ion polymer batteries. A LiPo battery is a rechargeable
battery of lithium-ion technology using a polymer electrolyte instead of a liquid
electrolyte. LIBs are able to supply continuous energy due to the spontaneous oxida-
tion–reduction reactions occurring at the electrodes. During the charging process
(delithiation), Li+ ions are extracted from the cathodic material by supplying energy
by an external source. The extracted Li + ions diffuse in the electrolyte and enter
the anodic material (according to the reaction Cx + LiMO2 →Li(1−y)MO2 + CxLiy,
in the case of a traditional LIB [94, 95]), while electrons are simultaneously the
electrons transferred to the positive electrode through the external circuit. In the
discharge process (lithiation), the opposite process takes place (i.e., Li(1−y)MO2 +
CxLiy →Cx + LiMO2, in the considered example): i.e., Li+-ions, extracted from
the anodic material, are re-inserted into the cathodic material, and the cell provides
energy. The oxidation and reduction process occurred at two electrodes in the lithium
rechargeable batteries as shown below [96, 97].

Cathode: LiMn2O4 → Li1+xMn2O4 + xLi+ + xe−

Anode: xLi+ + xe− + C6 → LixC6

Full Cell: LiMn2O4 + C6LiC6 + LiMn2O4

Each combination of the aforementioned materials and compound will slightly
influence cost, voltage, cycle durability, andother characteristics of theLiPobatteries.
The secondary lithium-ion batteries, in general, operate 3.7 V and demonstrate a
capacity of 150 mAh g−1 [98].

10.3 Electrode Materials for Lithium Ion Batteries

LIB primarily contains four essential components, namely the anode, the electrolyte,
the separator, and the cathode. Typically, LIBs use an intercalated lithium compound
as the positive electrode and graphite as the negative electrode.However in the earliest
configuration of LIBs metallic lithium or Li–Al alloys was used as the negative
electrode, with a variety of chalcogenides (TiS2, MoS2, etc.), [73] as the positive
electrode in several prototypes and commercial products. Due to safety concerns,
lithium metal as an anode material in rechargeable batteries was ultimately rejected.
The unavoidable dendrite growth on the lithium metal surface during the repeated
cycling cause lithium plating that leads to internal short circuits.
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10.3.1 Positive Electrode (Cathode) for Lithium Ion Batteries

The cathode material requires a stable crystalline structure over wide ranges of
composition because during the process of lithiation, the oxidation reaction leads to
large compositional changes and therefore to unfavorable phase changes [99]. Also,
the cathode performance directly depends not only on the electrode microstructure
and morphology, but also on the inherent electrochemical properties of the cathode
material due to the fact that Li+-ion exchange with the electrolyte only happens at
the electrode–electrolyte interface [100, 101]. The development of electrochemi-
cally stable LiCoO2 as a positive electrode leads to the commercialization of the
lithium ion battery by Sony, Japan, paved a path to hunt novel electrode materials
which provided a step change in the approach to the development of advanced energy
storage based on lithium technology [102, 103]. Combining LiCoO2 with graphitic
carbon which provided a host for Li+-ions at low potential thus successfully removed
metallic lithium from the LIBs. The domination of LIBs as the power source in the
portable electronic and automobile market leads to the subsequent improvements in
the LIBs, which forced the scientific community to focus on developing new cathode
materials; thus, LMO, NMC, LFP, etc., were introduced. But recently, the introduc-
tion of nanocomposites comprised of Sn (theoretical capacity 992 mAh g−1) or Si
(theoretical capacity 4200 mAh g−1) led to major developments in anode materials,
which require higher-capacity cathode materials to provide optimum utilization of
the storage properties.

In LIBs, cathode materials can store energy through two different electrochemical
reactionmechanisms, (i) intercalation and (ii) conversion reaction [100]. Conversion-
type cathodes undergo a solid-state redox reaction during lithiation/delithiation
process, in which there is a change in the crystalline structure, accompanied by
the breaking and recombining chemical bonds, while the intercalation cathode mate-
rials act as a host for Li+-ions, so that the ions can insert in or extracted out from
the cathode material reversibly. Metal halides such as FeF2, CoFe, and NiF2 are
examples of conversion-based cathode materials. Due to the high volume expansion,
poor electronic conductivity, and hysteresis issues, development of conversion-based
cathode materials has faced a lot of challenges [100].

Intercalation-based cathode materials are mainly divided into three categories:
chalcogenides, transition metal oxides, and polyanion compounds. Due to the higher
operating voltage and higher specific capacity, most of research on intercalation
cathodematerials is focusedon transitionmetal oxides [100]. LiCoO2,LiNiO2 (LNO)
[104], LiNixMnyCozO2 (with x + y + z = 1 or NMC) [105, 106] are some of the
examples for the transition metal oxide-based cathodes in LIBs. Even though the
layered crystal structure of LNO is similar to LCO, LNO delivers 20–30% more
reversible capacity than LCO, but due to its inherent electrochemical properties
[104].

Over-lithiated oxides (OLOs) are relatively new replacement material for the
cathode in high-capacity LIBs due to their very high capacity over 250 mAh g−1 at
high-voltage charge over 4.5 V along with many other enhanced properties. OLOs
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have been developedwith a variety of stoichiometric variations of the general compo-
sition: Li2MnO3-(1−x)LiMO2 [107]. The major limitation of OLOs is their initial
irreversibility caused by Li2O formation [105]. Another class of important cathode
materials is spinel oxideswith a general formula ofAB2O4. Themost famous cathode
in this group is LiMn2O4 (LMO), which is a low-cost, reliable, non-toxic, and a high
electrochemical potential material, and delivers a practical capacity of 100–120mAh
g−1 (theoretical specific capacity is 148 mAh g−1); however, its reversible capacity
is less than that of LCO or LNO. The spinel structure of LMO creates a 3D frame-
work which promotes the easy movement of Li+-ions [105, 108] and undergoes less
damage during continuous charge–discharge cycles in comparison with the anode
materials having layered structure, because the continuous two-way transportation of
Li+-ions in the spinel structure does not make large volume change at room temper-
ature. However, at high-temperature LMO shows poor cycle as well as calendar
life [105]. The manganese dissolution, structural fatigue, and microcracks are other
issues associated with LMO,which lead to poor cycling stability and capacity fading.
Because of its low specific capacity and low practical capacity, LMO is not recom-
mended to be used as a single cathode material. It also suffers severely from the
Jahn–Teller effect, which is a geometric distortion of a nonlinear molecular system
that reduces its symmetry and energy. Hence, the cathode material in the new genera-
tion of commercially produced batteries consists of a complementary blend of spinal
LMO and layered NMC [109].

LiFePO4 (LFP) olivines are polyanionic compounds developed by John B. Good-
enough, who received Nobel Prize, in 2019, at the University of Texas in 1996, and
that have attracted a lot of attentions due to their thermal stability, environmental
friendliness, very flat potential during charge–discharge processes, and high-power
capabilities [105]. Again even in harsh environments, the release of oxygen from the
active cathode material is inhibited due to the strong P–O bond in phosphate and this
structurally stable material guarantees their safety [110, 111].

10.3.2 Anode Materials for Lithium Ion Batteries

Traditionally in commercial LIB anode, the negative electrode from which electrons
flow out toward the external part of the circuit is constructed from graphite and other
carbon materials coated on a thin copper foil current collector. However, they suffer
from serious safety problems, which have hampered their further development [98,
112]. To replace conventional carbon-based anodes, several studies have focused on
exploiting novel anode materials. As a result of extensive research, the anode in LIBs
can be fabricated from three distinguished groups of materials having very different
electrochemical energy storage mechanisms broadly categorized as (i) intercalation-
based materials, (ii) conversion-reaction-based materials, and (iii) alloying-reaction-
basedmaterials. The properties ofmost common anodematerials used for lithium-ion
batteries are summarized in Table 10.1.
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10.3.2.1 Intercalation-Based Materials as Anodes in Lithium Ion
Batteries

Graphite in its natural or artificial form is the best representative material in the
intercalation-based anode materials first introduced by Rachid Yazami, a Moroccan
scientist and engineer in 1980. He established the reversible intercalation of lithium
into graphite in an electrochemical cell using a polymer electrolyte. Eventually, his
discovery led to the lithium–graphite anode now used in commercial lithium-ion
batteries, over US$20B value market. In the intercalation-based anode materials, the
lithium ions are electrochemically intercalated into the space between the layers of
the active materials. Lithium-ion intercalation in graphite can be described by the

Table 10.1 Summarization of most common anode materials used for lithium-ion batteries

Anode material Theoretical
capacity
(mAh g-1)

Energy storage
mechanism

Properties

Advantages Disadvantages

Graphite 372 Intercalation High
electronic
conductivity
Nice
hierarchical
structure
Abundant
and low-cost
resources

Low specific
capacity
Low rate
capacity
Safety issues

Nanostructured
carbonaceous materials
(e.g., carbon
nanotube/graphene/carbon
nanofibers/porous
carbons)

Up to 1750 Intercalation

Metal oxides (Cu2O,
Fe3O4, Co3O4, MoO3,
etc.)

375–1170 Conversion reaction High specific
capacity
Nice
stability

Low
Coulombic
efficiency
Large potential
hysteresis

Metal nitrides (MxNy, M:
Fe, CO, Ni, Cu, Cr, V, Ti,
etc.)

400–1300 Conversion reaction

Metal sulfides (MxSy)
(Ni3S2, FeS2, MoS2, SnS,
SnS2, etc.)

447–1230 Conversion reaction

Metal phosphides
LixMyP4 (M: V, Ti, Cu,
Fe, Mn) (CoP3, NiP3,
MnP4, etc.)

700–1800 Conversion reaction

(continued)
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Table 10.1 (continued)

Anode material Theoretical
capacity
(mAh g-1)

Energy storage
mechanism

Properties

Advantages Disadvantages

Si 4200 Alloying/de-alloying Highest
specific
capacity
Rich,
low-cost,
clean
resources

Low electronic
conductivity
Large volume
change (100%)

Germanium 1384 Alloying/de-alloying High specific
capacity
Good
security

Low electronic
conductivity
Large volume
change (100%)

Tin 960 Alloying/de-alloying Highest
specific
capacity
Rich,
low-cost,
clean
resources
High specific
capacity
Good
security

Phosphorus 2596 Alloying/de-alloying

Antimony 660 Alloying/de-alloying

Indium 1012 Alloying/de-alloying

equation

xLi+ + C6(in graphite) + xe− ←→ LixC6

The reversible lithiation/delithiation (intercalation/deintercalation) reaction
proceeds less than 0.25 V versus Li/Li+, with a practical reversible capacity greater
than 360 mAh g−1 (theoretically at 372 mAh g−1 or 975 mAh cm−3) with high
Coulombic efficiency approaching 100% [113, 114]. However, one of the draw-
backs with graphitic anode is that some irreversible reactions happen during the first
charge (lithiation) process causing a cathodic decomposition of some constituents
of the electrolyte. Another major downside of graphite anodes is their low specific
capacity, which is addressed in great extent by increasing the surface area of the
carbonaceous materials; therefore, the active material can provide more space for the
intercalation of Li+-ions between the graphitic layers leading to the higher specific
capacity. Different carbon allotropes such as carbon nanotubes (CNTs), buckminster-
fullerene (buck balls), and graphene nanosheets (GNSs) [115] or carbon nanofibers
(CNFs) [116] are vastly studied as an alternative to graphite due to their larger surface
area as well as higher electronic conductivity which makes them suitable for high
rate charging/discharging [117]. Single-wall CNTs are expected to exhibit reversible
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capacities somewhere around 300–600 mAh g−1 [118], and for graphene the theo-
retical capacity is about 744 mAh g−1. A reversible specific capacity is as high as
1264 mAh g−1 at a current density of 100 mA g−1, and a capacity retention of 718
mAh g−1 is reported even at a high current density of 500 mA g−1 [115, 116, 119].

10.3.2.2 Conversion Reaction-Based Materials as Anodes in Lithium
Ion Batteries

The simple conversion electrochemistry of transition metal oxides (TMOs), sulfides,
phosphides, and similar compounds of p-block metalloids shares some interesting
and useful electrochemical features with other anode materials [120]. It was already
well understood, and different types of anode electrochemistries that qualify the
required norms set for the battery application, namely the operating potential of <2
versus Li/Li+, are categorized as intercalation, alloying, and conversion types. The
conversion reaction-based materials are based on the Faradaic reaction represented
as follows.

Ma Xb + (b · n)Li+ + ae− ←→ aM + bLin X

where M is the transition metal such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, W,
and Ru, X is the anion such as O, N, F, S, and P, and n is the number of negative
charges of X [121]. A variety of anode materials are possible in this group by a
simple combination of candidates of M and X even without considering multiple
oxidation states of M. The theoretical capacity of the conversion-reaction-based
anodematerials ranges from350mAhg−1 forCu2S to 1800mAhg−1 forMnP4 [121].
The relatively high theoretical capacity of conversion reaction-based compounds as
compared to graphite (372 mAh g−1) makes these materials as ideal anode materials.
However, compared to graphitic carbon, these materials have some major down
steps including lower Coulombic efficiency, electronic conductivity, inferior cycling
stability, and rate capability, which must be dealt with before being used as anode
material. In addition, the conversion-reaction-based anode materials undergo large
volume changes during lithiation and the following delithiation, which could lead
to pulverization or electric isolation leads to the fast capacity fade under cycling.
This means that the conversion reactions in conversion-reaction-based anodes would
have intrinsically limited reversibility [122, 123]. Again the reaction potentials of
conversion-reaction-based anode materials (Econv), at which the potential profiles
reach a plateau, are relatively higher than that of graphite. Higher Econv leads to
lower cell potential which results in a lower energy density than expected only from
capacities [121]. Although intercalation and alloying materials have received the
preferred focus by the battery technologist, conversion materials have thus far been
left out for any type of practical industrial applications owing to the aforementioned
specific shortcomings [124].
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10.3.2.3 Alloying Reaction-Based Materials

The third category of anode materials after intercalation and conversion reaction-
basedmaterials is the alloying reaction-basedmaterials. This group consists ofmetals
that can be alloyed with lithium such as silicon (Si), germanium (Ge), tin (Sn), and
their alloys [114, 125]. In this category, the Li ions are inserted into the structure
of anode material during the charge cycle, making an alloy with the anode. The
reversible alloying reaction is shown in Eq. 4, where M is the anode material [125].

M + xLi+ + xe− ←→ LixM

Alloying reaction-based materials are most famous for their high theoretical
capacity: 4200 mAh g−1 for Si in Li4.4Si, 1600 mAh g−1 for Ge in Li4.4Ge, 993
mAh g−1 for Al in LiAl, 992 mAh g−1 for Sn in Li4.4Sn, and 660 mAh g−1 for Sb in
Li3Sb [126]. However, the major disadvantage of these materials is their extremely
large volume change during charge and discharge [118]. They experience serious
pulverization resulting in electrical isolation of the active materials from electric
contact with the conducting agent (carbon black) and the current collector. Among
the alloying elements which can be used in this group of anode materials, the vast
majority of research and development has been focused on silicon because of its
highest capacity and its most serious detrimental volumetric change [126–129].

10.4 Electrospun-Based Iron Oxide Anodes for Lithium
Ion Batteries

Iron oxide-based nanocomposites including Fe3O4/carbon nanocomposite [43, 49,
130, 131] and Fe2O3/carbon nanocomposites [132–134] have been fabricated and
studied extensively as electrode materials for lithium-ion batteries. Iron oxide is a
paramagnetic material which has only two unpaired electrons. Because the lower
number of unpaired electrons irons oxide is less magnetic than iron, which has four
unpaired electrons. Iron (III) oxide or ferric oxide is the inorganic compound with
the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron
(II) oxide (FeO), which is rare, and iron (II,III) oxide (Fe3O4), which also occurs
naturally as the mineral magnetite. Fe2O3 can be obtained in various polymorphs.
In the main ones, α and γ , iron adopts octahedral coordination geometry; i.e., each
Fe center is bound to six oxygen ligands. α-Fe2O3 has the rhombohedral, corundum
(α-Al2O3) structure and is the most common form, which occurs naturally as the
mineral hematite while γ -Fe2O3 has a cubic structure and occurs naturally as the
mineral maghemite. γ -Fe2O3 is metastable and converted from the alpha phase at
high temperatures. γ -Fe2O3 is ferromagnetic, and however ultrafine particles smaller
than 10 nm are superparamagnetic. α-Fe2O3, γ -Fe2O3, and Fe3O4 are explored as
electrode materials in LIBs. The crystal structure of Fe2O3 is displayed in Fig. 10.2
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Fig. 10.2 The surface atomic configurations in a the (001) plane and schematic hematite structure
project along {001} and b the (010) plane and schematic hematite structure projected along {010}.
Adapted and reproduced from Ref. [162]. Copyright 2016 Springer

[162]. In principle, lithium storage capacity of iron oxides ismainly delivered through
the reversible conversion reaction between lithium ions and metal oxide forming
metal nanocrystals dispersed in a Li2O matrix. Even though this material is abun-
dant, inexpensive, and environmentally friendly and has high theoretical capacity
(Fe3O4: 924 mAh g−1 [135]; Fe2O3: 1005 mAh g−1 [136]), they are fraught with
several problems such as poor electronic conductivity, higher volume expansion, and
poor cycling stability. Among the major disadvantages, the cycle deterioration is the
most important one which is caused by several factors such as the decomposition of
the electrolyte solution and loss of the conductive path owing to electrode collapse
[137]. In addition, large volume change of the anode material during the continuous
charge–discharge cycling causes the cracking of the electrode, loose the contact
with current collector, and destruction of the solid electrolyte interface (SEI), which
result in the breaking of the continuous conductive path. Reducing the extent of
volume expansion and contraction would suppress these problems in a great extent.
Nanoscale processing of active material particles has been studied for this purpose
[138–140]. Carbon coating [141], mixing with electronically conducting materials
such as conducting carbon [142], carbon nanotubes [143], and graphene [144], is
the commonly adopted technique to control the extent of volume change and for
improving the electronic conductivity of iron oxides. Although the volume change
ratio depends on material-specific quantities, it is possible to control the extent of
volume change by controlling the particle size of the active material. Owing to the
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formation of short Li+-ion diffusion length by the size reduction of the active mate-
rial to nanoscale, the chemical reaction resistance also get reduced. However, there
are various processing difficulties associated in the use of nano-sized active material
particles and nanoscale processing such as poor dispersibility due to an increase in
the van derWaals force, low initial Coulombic efficiency due to high specific surface
area, and low safety due to high chemical activity. To solve out these issues, electrodes
prepared using composites of nanoscale active materials and carbon materials have
been reported extensively [140], owing to the reduction in interfacial area between
the electrolyte and active material by the composite effect, which suppresses the SEI
growth, thereby improving the Coulombic efficiency.

Carbon coating on iron oxide nanoparticles can form 0D nanospheres [145, 146]
1Dnanowires [36, 147], 2Dnanoflakes [148, 149], and3Dstructures of porous carbon
foam loading iron oxide [43, 45].Differentmethods such as solid-state reaction [150],
hydrothermal process [151], solgel method [152], spray-drying technique [153],
vacuum sintering [154], and vacuum decomposition are some of the commonly used
methods for doing the carbon coating. Electrospinning is one of the unique carbon
coating methods and has been used to fabricate 1D hybrid carbon coating iron oxide
nanofibrous composites [79, 155–158], 1D iron oxide nanofibers [12, 159], and 1D
carbon nanofibers for Li-ion batteries [160, 161]. The method can embed the iron
oxides into a conductive carbon by subsequent heat treatment which enhances the
electrochemical properties effectively due to the increased electronic conductivity.
The uniformly coated nanometer-thick carbon layer on the active material (iron
oxide) acts as the mechanical buffer, which prevents or minimizes the large volume
expansion and cracking of electrode during the continuous charge–discharge cycles.

10.4.1 Electrospun Fe2O3/Fe3O4 Nanostructures

Different coating methods for the preparation of nanostructures such as chemical
vapor deposition (CVD) [163], atomic layer deposition (ALD) [164, 165], electro-
chemical deposition (ECD) [166], and chemical bath deposition (CBD) [167–169]
or the conventional synthetic strategies such as hydrothermal method [170] and
scaffold-assisted synthesis method [170] are reported for the fabrication of nanos-
tructures of Fe2O3/Fe3O4. Unfortunately, these methods need to involve the multi-
step growth of designed shell materials on various removable or sacrificial templates,
which suffers from severe drawbacks. These methods are time consuming; tedious,
high-temperature, and complicated processes need expensive equipment. Compared
to the other synthesis methods, electrospinning is a facile, cost-effective, and flex-
ible platform for one-dimensional (1D) robust Fe2O3/Fe3O4 nanostructures. This
versatile method offers several advantages, such as high yield, mass production, easy
control over themorphology, and high degree of reproducibility of the obtainedmate-
rials [171–177]. More importantly, the electrospun nanofibers possess high surface-
to-volume ratios due to the formation of super long scale in length of thin fibers,
the completely interconnected pore structure, the porous substructure formed on
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the fiber during annealing, nano- to submicron size fiber diameters, and the great
control over the morphology by simply changing the electrospinning process, solu-
tion, or ambient parameters [172].When used these electrospun Fe2O3/Fe3O4 nanos-
tructured materials as electrode in lithium-ion batteries, the large specific surface
area and sufficient void spaces not only tolerate the volume change during the Li+-
ion intercalation, but also endow with more open channels for ions and electrons
to migrate rapidly, resulting in the improved electrochemical performances. There
are significant number of studies reported on the preparation of F2O3-/Fe3O4-based
nanostructured anodes having different morphologies such as nanotubes [159, 178],
nanorods [162, 179–182], porous structure [158, 183], microbelt [9], or hollow fibers
[12, 184].

10.4.1.1 Porous Fe2O3/Hollow Fe3O4 Nanotube

A nanotube is a nanoscale material that has a seamless tubelike structure. Among
the various nanostructures of Fe2O3 such as nanoparticles [185], nanorods [26, 186]
and nano fibers [187, 188] etc., (1D) Fe2O3/Fe3O4 nanotubes [159, 170, 189] gained
munch attraction due to their advantages properties, including the increase contact
surface area between electrolyte and active materials, shorten migration path for
Li+ and electron, and accommodate the volume variations via additional void space
during cycling.

Sun et al. [170] prepared 1D porous Fe2O3 nanotubes with 2-μm length, 220-
nm outer diameter, and 65-nm wall thickness via a low-temperature hydrothermal
method followed by thermal treatment. The resulted porous Fe2O3 nanotubes exhib-
ited enhanced electrochemical properties in terms of lithium storage capacity (1050
mAh g−1 at 100 mA g−1 rate), initial Coulombic efficiency (78.4%), cycle perfor-
mances (90.6% capacity retention at 50th cycle), and rate capability (613.7 mAh g−1

at 1000 mA g−1 rate). 1D porous Fe2O3 nanostructures have also been synthesized
via a SiO2 scaffold method, exhibiting the initial discharge and charge capacities of
1304.3 and 950.9 mAh g−1 at a current density of 100 mA g−1, respectively [170].
Also, the porous Fe2O3 nanorods deliver a capacity of 671 and 541 mAh g−1 at
current densities of 1000 and 2000 mA g−1, respectively, showing good rate capa-
bility. Although the aforementioned porous Fe2O3 nanotubes showed the enhance-
ment of lithium storage capacities, to fabricate porous Fe2O3nanotubeswith satisfied
properties via a facile technology is still an appealing challenge. Hence, the robust
electrospun Fe2O3 nanotubes are prepared and studied its electrochemical properties
in LIBs.

Porous Fe2O3 [159] and Fe3O4/C [178] nanotubes were prepared by electrospin-
ning a solution of iron (III) acetylacetonate and PVP (for porous Fe2O3 nanotubes) or
iron (III) acetylacetonate and polyacrylonitrile (PAN) (10:8wt./wt.) alongwith a 40%
mineral oil on weight of iron (III) acetylacetonate (for Fe3O4/C nanotubes). First, the
Fe2O3 or Fe3O4/C precursor fiber was prepared and then the fibers are heat-treated to
transform to the porous hollow nanotubes. Fe2O3 precursor nanofibers (Fig. 10.3a,
b) having an average fiber diameter of 520 nm possess continuous fibrous geometry
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Fig. 10.3 a, b Low- and high-resolution images of precursor fibers, c, d FE-SEM images of porous
Fe2O3 nanotubes. Adapted and reproduced from Ref. [159]. Copyright 2015 Elsevier

with a relatively smooth surface and without any pores or hierarchical nanostructure
were first prepared by electrospinning and then annealed at 500 °C. After annealing,
the as-prepared sample inherits the continuous 1D nanostructures from the precursor
fibers and shows a large quantity of tubelike structures having average diameter of
400 nm (Fig. 10.3c, d); i.e., the diameter of the precursor fiber gets reduced by the
shrinkage at higher temperature. For the production of Fe3O4/C nanotubes, the as-
spun nanofibers were pre-oxidized in air at 250 °C for 2 h to follow by the carboniza-
tion at 600 °C for 2 h under high-purity argon atmosphere. The resultant nanotubes
have outer diameter range from 200 to 400 nm and length of several millimeters.

During the electrospinning process, when the fibers are spun out from the spinning
needle, the solvent will evaporate rapidly from the surface of fibers. This leads to
the formation of a concentration gradient of solvent along the radial direction of
the fibers, as illustrated in Fig. 10.4a; hence, the concentration at the center of the
fibers is usually high than that of the surface. Due to the rapid evaporation of the
solvent, the PANwill solidify on the surface of fiber.During the solidification process,
the AAI and PAN will be extracted and reside at the shell of the fiber due to the
rapid phase separation result from their poor solubility in mineral oil. Hence, the
rapid evaporation of solvent produces a region near the fiber surface enriched in
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Fig. 10.4 a Schematic illustration of one step method to fabricate 1D Fe3O4/C nanotubes by
electrospinning, b SEM image on the surface morphology of the final Fe3O4/C nanofibers, and
the lower-left corner inset is an enlarged view of a single nanotube, and the scale bar is 200 nm,
c TEM images of the Fe3O4/C nanotube. Adapted and reproduced from Ref. [178]. Copyright 2014
Elsevier

PAN/AAI, and the mineral oil would diffuse from the surface to the core of the
fiber. With the continuing evaporation of the solvent, the concentration of PAN/AAI
decreases continuously from the surface to the center of fiber, and the mineral oil
tends to congregate at the center of fibers, as displayed in Fig. 10.4a. Further, the
mineral oil at the center of fibermight evaporate through thewall of the nanotubes and
PAN/AAI nanotubes were collected on the target. During the carbonization at 600 °C
in Ar atmosphere, PANwould be decomposed and carbonized completely leading to
the formation of Fe3O4/C nanotubes obtained. The tubes have a wall thickness of 40
and 150 nm hollow cores as shown in Fig. 10.4b, and it shows a roughness surface
that can be distinctly observed from Fig. 10.4c.

On contrary, during the production of porous Fe2O3, the electrospun precursor
nanofibers showed a smooth surface without porous or hollow structures. When the
precursor fiber is sintering in air atmosphere, the degradation of the side chain of
PVP formed through the intermolecular cross-linking reaction and the decomposi-
tion of iron acetylacetonate occur simultaneously. Upon increasing the temperature,
both PVP and iron acetylacetonate would be oxidized. The oxidation of PVP results
in the volatilization and evolution of CO2, while the oxidation of iron acetylaceto-
nate resulted in the formation of Fe2O3 nanoparticles. The outward diffusion of CO2
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generates a pressure to compress the Fe2O3 nanoparticles on the surface region of the
fiber and forms a porous shell. Then, the porous shell allows CO2 effusion from the
regions below the shell in the fiber and the iron precursor in the inner part of the fibers
would move toward the surface which is presumably accelerated by gaseous species
that are produced by the oxidation of PVP, and crystallized into Fe2O3 nanoparti-
cles. Finally, these Fe2O3 nanoparticles get connected together to generate porous
Fe2O3 nanotubes. However, the formation of porous annotate greatly depends on the
concentration iron precursor (iron acetylacetonate) in the electrospunned precursor
fiber. To get more insight into the actual evolution process of the Fe2O3 nanostruc-
tures, we carry out a series of concentration-dependent experiments which samples
are prepared by adjusting the concentration of iron acetylacetonate in the electro-
spun precursor solution. The precursor fiber having iron acetylacetonate higher than
about 45% in the precursor electrospun fibers resulted in the formation of Fe2O3

nanotubes. If the concentration of iron precursor is less than 45% obviously, it results
in the formation of a few Fe2O3 nanoparticles, which is difficult to keep the robust
frame of the nanotube shell. As a result, the collapse of the tube structure results
in the formation of the nanobelts (Fig. 10.5a). When the iron precursor concentra-
tion is lower than 37%, only nanobelts are formed (Fig. 10.5b), while the increase in
concentration to 47% forms both nanobelts and nanotubes (Fig. 10.5c).When the iron
precursor concentration is further extended to about 50%, the increase progressively
encourages the formation of a large number of Fe2O3 nanoparticles; as a result, the
Fe2O3 porous nanotubes appear (Fig. 10.5d). Hence, the evolution of Fe2O3 nanos-
tructures could be controllably synthesized by adjusting the concentration of the
electrospun precursor solution (Fig. 10.5e).

The cyclic voltammetry studies showed three cathodic peaks correspond to the
potentials 1.55, 0.89, and 0.55 V, indicating the different lithiation steps [12, 156,
190, 191]. The peaks at 1.55 and 0.89 V correspond to the intercalation of Li + ions
into the crystal structure of porous Fe2O3 nanotubes and the transformation from
hexagonal α-LixFe2O3 to cubic Li2Fe2O3 without any crystal structure destruction.
The high intensity peak observed at 0.55 V corresponds to the crystal structure
destruction accompanied by the complete reduction of iron from Fe(III) to Fe(0)
and the decomposition of electrolyte. The anodic polarization peaks observed at
1.85 V correspond to the oxidation of Fe(0) to Fe(II) and Fe(III) to re-form Fe2O3.
Compared to the first cycles, the subsequent cycles are significantly different, which
is due to irreversible phase transformation during lithium insertion and extraction in
the initial cycle. During the second cathodic process, the peaks at 1.55 and 0.89 V
disappear, which indicates lithium insertion and irreversible phase transformation
of hexagonal α-LixFe2O3 to cubic Li2Fe2O3. Also, a decrease in the peak intensity
with the number of cycles is observed, which indicates that the capacity is decreased
during cycling. However, the CV curves starts to overlap after the third cycle cathodic
scan, which indicate the reversibility and capacity stability the continuous charge-
discharge processes. The galvanostatic charge–discharge profiles of the porous Fe2O3

are consistent with CV curves [159].
The porous Fe2O3/Li metal half cells assembled by using Celgard 2400

membrane as the separator and 1M LiPF6 in ethylene carbonate/dimethyl carbonate
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Fig. 10.5 SEM images on the surface morphology of Fe2O3 nanostructures obtained by adjusting
the quantity of iron acetylacetonate (g): a 0.2, b 0.3 c 0.4, and d 0.5, respectively in the electro-
spun precursor solution. e Possible formation mechanism of Fe2O3 nanostructures. Adapted and
reproduced from Ref. [159]. Copyright 2015 Elsevier



10 Electrospun Nanostructured Iron Oxides for High-Performance … 295

(EC/DMC,1:1 v/v) as the electrolyte delivered an initial charge and discharge capac-
ities of around 1045 mAh g−1, at a current density of 100 mA g−1. Particularly,
the porous Fe2O3 nanotubes still exhibit an excellent cyclic performance at a much
higher current density of 200mAg−1, and the capacity reaches 988mAhg−1 after 250
discharge and charge cycles. TheCoulombic efficiency rises rapidly in the subsequent
cycles, reaching up to 95% at the 5th cycle, and remains above 98% after 50 cycles,
suggesting an excellent reversible Li+-ion intercalation/extraction performance. The
specific reversible charge and discharge capacity decrease slightly up to the initial
50 cycles and reach 513 and 524 mAh g−1, respectively, and then increase signifi-
cantly and reach over 995 and 988 mAh g−1 by 250th cycle. The porous Fe2O3 also
showed good rate capability [159]. Similarly, the Fe3O4/C nanotubes also showed
good charge–discharge cycling stability and rate capability. In the half cell studies
using M LiPF6 in ethylene carbonate, diethyl carbonate and ethyl methyl carbonate
(EC/DMC/EMC, 1:1:1 vol) as the electrolyte and Celgard 2400 polypropylene as
separator showed an initial discharge and charge capacity of 1102 and 727 mAh g−1,
with a Coulombic efficiency of only 66% at a current density of 0.15 °C. The signifi-
cantly higher capacity loss (34% loss) during the first cycle [178] is corresponding to
the formation of SEI layer and the incomplete conversion reaction [192, 193]. When
the cell is cycled at 1600 mA g−1, the cell delivers a very stable capacity of 350 mAh
g−1, and when the current density is switched back to 0.15 °C, a capacity about 600
mAh g−1 is delivered, which is about 100 mAh g−1 less compared to the first cycles
at 0.15 °C [178].

In both porous Fe2O3 and Fe3O4/C electrodes, an initial capacity loss (25–35%)
is observed. Similar irreversible capacity loss was noted with other metal oxides or
metal oxide combinations reported in previous literature [12, 193, 194].

Compared to Fe3O4/C nanofibers prepared by a controlled fabrication process,
sample fabricated according to Wang’s reports [157] good electrochemical perfor-
mance. The charge–discharge studies at a current density of 0.15 °C displayed a
quick drop-down in discharge capacity to 300 mAh g−1 after 100 cycles, which is
about 50% discharge capacity of the F3O4/C. More clearly, F3O4/C nanotube shows
negligible capacity decreases from the 2nd cycle onward and displayed a discharge
capacity as high as 600 mAh g−1 (85% of the second cycle capacity) after 100 cycles
at a current density of 0.15 °C [178]. The lackluster cycling performance of Fe3O4/C
nanofibers is due to the solid structure of the nanofiber; hence, there is no enough
space to accommodate the mechanical stress of Fe3O4 nanoparticles along the fiber
axis of the nanofibers. The substantially subdued capacity fade in Fe3O4/C nanotubes
is due to the hollow nanotube structure having larger surface-to-volume ratio than
that of 1D nanofibers, which could effectively accommodate large volume changes
associated with Li+-ions insertion/extraction. In addition, the tubular structure can
increase the surface area accessible to the electrolyte facilitating the diffusion of Li+

ions at the interior and exterior of the nanotube. The charge–discharge capacity fade
under continuous cycling is mainly due to the pulverization of original aggregation
of Fe2O3 particles by the huge volume expansion and contraction during the Li+-ion
intercalation/extraction process and resulting in the loss of electrical connectivity
between the particles and current collector.
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A novel process for the preparation of aggregate-free metal oxide nanopowders
with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced.
Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various
nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald
ripening occurs during the selenization process, resulting in the formation of a
FeSe-C composite nanofiber exhibiting a hierarchical structure. These nanofibers
transform into aggregate-free hollow Fe2O3 powders via the complete oxidation
of FeSe and combustion of carbon. Indeed, the zero-dimensional (0D) and one-
dimensional (1D) FeSe nanocrystals transform into the hollow-structured Fe2O3

nanopowders via a nanoscale Kirkendall diffusion process, thus conserving their
overall morphology. The discharge capacities for the 1000th cycle of the hollow-
structured Fe2O3 nanopowders obtained from the FeSe–C composite nanofibers
prepared at selenization temperatures of 500, 800, and 1000 °C at a current density
of 1 A g−1 are 932, 767, and 544 mAh g−1, respectively; their capacity retentions
from the second cycle are 88, 92, and 78%, respectively. The high structural stabili-
ties of these hollow Fe2O3 nanopowders during repeated lithium insertion/desertion
processes result in superior lithium-ion storage performances.

Figure 10.6 outlines the mechanism of the formation of Fe2O3 nanopowders
exhibiting hollow nanostructures of different dimensions via the nanoscale Kirk-
endall diffusion process. Following the selenization processes at different tempera-
tures (i.e., 500, 800, or 1000 °C), the electrospun nanofibers (Fig. 10.6a) were trans-
formed into the hierarchical nanostructures. Selenization of the iron components
located close to the nanofiber surface resulted in the formation of FeSe nanocrys-
tals during the early stages of the process. Ostwald ripening then occurred during
further selenization to yield the hierarchical FeSe–C composite nanofiber. In this
process, the ultrafine FeSe nanocrystals formed inside the carbon nanofiber diffused
to the surface to produce FeSe crystals via Ostwald ripening. Complete seleniza-
tion at 500 °C resulted in the carbon nanofiber being uniformly embedded with
ultrafine FeSe nanocrystals (Fig. 10.6b). However, at higher selenization temper-
atures (Fig. 10.6c), crystal growth occurred via the segregation of nanocrystals
and spheroidization due to melting. Finally, the hierarchical FeSe–C nanofibers
transformed into hollow aggregate-free Fe2O3 nanopowders (Fig. 10.6d, e) via the
complete combustion of carbon and oxidation of FeSe. Furthermore, as shown in
Fig. 10.7, FeSe nanocrystals with 0D and 1D structures transformed into the hollow-
structured Fe2O3 nanopowders via a nanoscale Kirkendall diffusion process, thus
conserving their overall morphology. For simplicity, the hollow Fe2O3 nanopowders
obtained from the FeSe-C composite nanofibers prepared at 500, 800, and 1000 °C
are referred to as “Sel.500-Oxi.600,” “Sel.800-Oxi.600,” and “Sel.1000-Oxi.600,”
respectively [1].

10.4.1.2 α-Fe2O3 Nanorods

Nanorods are one of the nanostructured entities, reported as electrodes in LIBs.
Different synthesis techniques such as forced hydrolysis, solgel synthesis, template
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Fig. 10.6 Formation mechanism of the hollow-structured Fe2O3 nanopowders with 0D and 1D
structure. Adapted and reproduced from Ref. [182]. Copyright 2016 Springer

methods, molten salt process, spray pyrolysis, hot plate method, hydrothermal
method, and co-precipitation technique have been adopted to prepare various nanos-
tructures of hematite [34, 134, 191, 195–200]. Nanoscale Kirkendall diffusion
and Ostwald ripening processes, in which filled structures are transformed into
hollow structures during heat treatment, have been applied recently for the prepa-
ration of hollow nanospheres (0D) in the absence of templates [182, 201–205] α-
Fe2O3nanorods [156] and bubble-nanorod-structured Fe2O3-carbon nanofibers [179]
prepared by electrospinning are reported as high performance anode in LIBs.

The α-Fe2O3 nanorods are synthesized by electrospinning of polyvinylpyrroli-
done (PVP)/ferric acetylacetonate (Fe(acac) 3) composite precursors and subsequent
annealing at 500 °C for 5 h. The phase separation of Fe(acac)3 and PVP process
involving a polymer/precursor forms “islands” that account for the generation of
α-Fe2O3 nanorods having average diameter of the nanorods is found to be 150 nm
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Fig. 10.7 Conversion reaction of the FeSe filled structure into Fe2O3 hollow structure by nanoscale
Kirkendall diffusion effect,a hollow-structuredFe2O3 nanopowderwith 1Dandbhollow-structured
Fe2O3 nanopowder with 0D. Adapted and reproduced from Ref. [182]. Copyright 2016 Springer

upon heat treatment. The annealed electrospun α-Fe2O3 nanorods are composed of
agglomerates of nano-sized α-Fe2O3 particles. The electrospun α-Fe2O3 nanorods
exhibit a high reversible capacity of 1095 mAh g−1 at 0.05 °C, are stable up to 50
cycles (with capacity retention of 93% between 2 and 50 cycles), and also show high
rate capability, up to 2.5 °C. At a current rate of 2.5 °C, α-Fe2O3 nanorods deliver
a discharge capacity of 765 mAh g−1 and when the current rate is reduced from 2.5
to 0.1 °C after 70 cycles, still a reversible capacity of 1090 mAh g−1 is obtained
showing the good rate capability of the material. The high rate capability and excel-
lent cycling stability can be attributed to the unique morphology of the macroporous
nanorods comprised of interconnected nano-sized particles [156].

The structure denoted as “bubble-nanorod composite” is synthesized by intro-
ducing the Kirkendall effect into the electrospinning method. Bubble-nanorod-
structured Fe2O3/C composite nanofibers, which are composed of nano-sized hollow
Fe2O3 spheres uniformly dispersed in an amorphous carbon matrix, are synthesized
as the target material using Fe(acac)3-PAN composite solution as the precursor.
Post-treatment of the electrospun precursor nanofibers at 500 °C under 10% H2/Ar
mixture gas atmosphere produces amorphous FeOx/carbon composite nanofibers,
and the further post-treatment at 300 °C under air atmosphere produces the bubble-
nanorod-structured Fe2O3/C composite nanofibers. The solid Fe nanocrystals formed
by the reduction of FeOx are converted into hollow Fe2O3 nanospheres during the
further heating process by the well-known Kirkendall diffusion process [179].

The formation mechanism of bubble-nanorod-structured Fe2O3/C composite
nanofibers is schematically displayed in Figs. 10.8 and 10.9.During the carbonization
at 500 °C, the PAN gets decomposed to form the carbon matrix and the decomposi-
tion of iron acetylacetonate produced FeOx, which is uniformly dispersed in carbon
matrix resulting in the carbon composite nanofibers. The significantly large amount



10 Electrospun Nanostructured Iron Oxides for High-Performance … 299

Fig. 10.8 Formation mechanism of bubble-nanorod-structured Fe2O3/C composite nanofiber by
Kirkendall-type diffusion. Adapted and reproduced from Ref. [179]. Copyright 2015 American
Chemical Society

Fig. 10.9 a Formation mechanism of hollow Fe2O3 nanosphere in the bubble-nanorod-structured
Fe2O3 carbon composite nanofiber by Kirkendall effect, b, c its chemical conversion process in the
surface region of a sphere. Adapted and reproduced from Ref. [179]. Copyright 2015 American
Chemical Society
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of carbon in the fiber disturbed the crystal growth of FeOx. The subsequent post-
treatment of the FeOx/carbon composite nanofibers at 300 °C under air atmosphere
produced the bubble-nanorod-structured Fe2O3C composite nanofiber. Reduction of
FeOx crystals surrounded by the carbon matrix into Fe metal occurred during the
post-treatment under air atmosphere by the following equation:

FeOx (s) + xC(s) → Fe(s) + xCO(g)

The crystal growth of Fe formed ultrafine Fe nanocrystals uniformly dispersed
within the carbon nanofibers during the early stage of post-treatment by the consump-
tion of some amount of carbon. The solid Fe nanocrystals were converted into hollow
Fe2O3 nanospheres during the subsequent heating process by the well-known Kirk-
endall effect. The Kirkendall effect, a vacancy flux, and subsequent void forma-
tion process resulting from diffusivity differences at inorganic interfaces were first
reported by Aldinger [206]. The Kirkendall effect results in the formation of a
thin Fe2O3 layer on the Fe metal surface (Fig. 10.8c), followed by simultaneous
outward diffusion of Fe cations through the oxide layer and inward diffusion of
oxygen into the nanospheres, creating an intermediate Fe@Fe2O3 core–shell struc-
ture (Fig. 10.9b). Fe cations diffused outward more quickly than oxygen diffused
inward, which is consistent with the larger ionic radius of oxygen anions (140 pm)
than Fe cations (Fe2+ is 76 pm, and Fe3+ is 65 pm). Accordingly, Kirkendall voids
were generated near the Fe/Fe2O3 interface during vacancy-assisted exchange of
the material via bulk interdiffusion (Fig. 10.9c), which gave rise to coarsening and
enhancement of pore growth in the spheres (Fig. 10.8d). Complete conversion of
Fe metal into Fe2O3 by Kirkendall-type diffusion resulted in the bubble-nanorod-
structured Fe2O3C composite nanofibers (the highly crystalline structure of the
hollow Fe2O3 nanofibers). The figure shows the TEM image and elemental mapping
of the nanofibers post-treated at 500 °C under H2/Ar mixed gas atmosphere. The
elemental mapping images shown in Fig. 10.10 show the trace amounts of carbon
present in the nanofibers.

The cell studies displayed discharge capacities of 812 and 285 mAh g−1, respec-
tively, for bubble-nanorod-structured Fe2O3/C composite nanofibers and hollow bare
Fe2O3 nanofibers for the 300th cycles at a current density of 1.0 A g−1, and their
capacity retentions measured from the second cycle are 84 and 24%, respectively.
The initial (first cycle) Coulombic efficiencies of hollow bare Fe2O3 nanofibers and
bubble-nanorod-structured Fe2O3/C composite nanofibers were 81 and 69%, respec-
tively. The initial irreversible capacity loss of the hollow bare Fe2O3 nanofibers
is ascribed to the formation of an SEI layer on the surface of the nanofibers and
the incomplete restoration of metallic Fe into the original oxide during the initial
charging process [156, 207]. The high amount of amorphous carbon, which has a low
lithium storage capacity and a large initial irreversible capacity loss, decreased the
initial discharge capacity andCoulombic efficiency of the bubble-nanorod-structured
Fe2O3/C composite fibers [208, 209]. The rate capability studies showed that the
stable reversible discharge capacities of the bubble-nanorod-structured Fe2O3C
nanofibers decreased from 913 to 491 mAh g−1 as the current density increased
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Fig. 10.10 Morphologies, SAED, and elemental mapping images of the nanofibers post-treated at
500 °C under H2/Ar gas atmosphere: a, b TEM images, c SAED pattern, and d elemental mapping.
Adapted and reproduced from Ref. [179], Copyright 2015 American Chemical Society

from 0.5 to 5.0 A g−1. Furthermore, the discharge capacity recovered to 852 mAh
g−1 as the current density was restored to 0.5 A g−1. The electrochemical studies
showed that the bubble-nanorod-structured Fe2O3C nanofibers showed superior elec-
trochemical properties as an anode material for LIBs as compared with the hollow
bare Fe2O3 nanofibers. The synergetic effect of hollow nanospheres and a carbon
matrix resulted in the superior cycling and rate performance of the bubble-nanorod-
structured Fe2O3/C nanofibers. The hollow nanospheres accommodate the volume
change that occurs during the continuous charge–discharge cyclingwhich leads to the
long-term cycling stability. The unique structure of the bubble-nanorod-structured
Fe2O3/C composite nanofibers results in their superior electrochemical properties by
improving the structural stability during long-term cycling.
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10.4.1.3 Metal/Fe2O4 or Fe3O4 Composite Nanofibers

In spite of their lower cost and better safety, the capacity retention of transition metal
oxides especially Fe2O3/Fe3O4 and turning of their energy/power density remain
as major drawbacks. However, transition metal oxide spinels (AB2O4) with two
transition elements (both A- and B-sites) provide the feasibility to tune the energy
density and working voltages by varying the transition metal content [210, 211].
Owing to it, zinc [212–215], Co, Cu, etc., have been substituted into iron oxide to
construct a ternary metal ferrite (ZnFe2O4/CuFe2O4/CoFe2O4, etc.) and possess a
lower working voltage to effectively enhance the total output voltage of the LIBs.
CuFe2O4 nanoparticles, nanorods, and hollow spheres have been fabricated through
wet chemical routes, and their electrochemical properties have been investigated
[216–218]. Cobalt ferrite (CoFe2O4) has been well regarded as a distinguished anode
due to its low cost, high chemical stability, and good environmental benignity [219–
222]. Especially, CoFe2O4 can deliver a high theoretical capacity of 916 mAh g−1

based on an eight-electron conversion reaction. Similarly, zinc ferrite (ZnFe2O4)
generates high capacity as lithium ions form an alloy with Zn and dealloy, while
Fe and Zn react with Li2O to absorb/release Li during lithiation/delithiation. Thus,
ZnFe2O4 implements both conversion [6, 223] and alloy/dealloy [224, 225] reaction,
simultaneously. Also, fabrication of nanostructured binary metal oxides could buffer
the mechanical strain during the cycling process. In particular, 1D hollow nanos-
tructure could not only provide sufficient void spaces to tolerate the volume change
during cycling process, but also allow for efficient electron transport along the longi-
tudinal direction, resulting in the improved electrochemical performance. Hence,
CoFe2O4 nanotubes [226], CuFe2O4 nanotubes and nanorods [227], CoFe2O4/C
composite fibers [228], interwoven ZnFe2O4 nanofibers [229], and N-doped amor-
phous carbon-coated Fe3O4/SnO2 coaxial nanofibers [230] were prepared by electro-
spinning and reported as anode in LIBs having enhanced electrochemical properties.
When evaluated as anode materials for LIBs, the CoFe2O4 nanotubes exhibited good
electrochemical performance with high specific capacity of 1228 and 693.9 mAh
g−1 at a current density of 50 and 200 mA g−1, respectively, long cycling stability
over 160 cycles, and good rate capability (214.7 mAh g−1 at 2 A g−1) [226], while
the CuFe2O4 nanotubes delivered a high reversible capacity of 1399.4 mAh g−1 at
a current density of 200 mA·g−1 and a capacity retention of ∼816 mAh g−1 after
50 cycles with a good rate capability (450 mAh g−1 at 2.5 A g−1) [227] which is
much higher compared to CoFe2O4 nanotubes (wall thickness of ∼50 nm, presented
diameters of ∼150 nm, and lengths up to several millimeters) [226]. The CuFe2O4

nanorods showed a discharge capacity of only ∼489 mAh g−1 after 50 cycles for
the same current density of 2.5 A g−1 which clearly suggest that the nanotubes have
superior electrochemical properties than their counterpart nanotubes [227]which can
be attributed to the continuous one-dimensional (1D) hollow nanostructure and their
higher surface area. However, compared to CoFe2O4 nanotubes [226], CoFe2O4/C
composite fibers consist of CoFe2O4 nanoparticles with a diameter of about 42 nm
well dispersed in the carbon matrix as anode material prepared by electrospinning
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Fig. 10.11 Scheme of the procedure for producing CuFe2O4 nanotubes. Adapted and reproduced
from Ref. [227], Copyright 2014 Elsevier

and thermal technique displayed a stable and reversible capacity of over 490 mAh
g−1 after 700 cycles at a rate of 2.0 C and good rate capability [228].

The (1D) CuFe2O4 nanotubes and nanorods were fabricated by a single spinneret
electrospinning method followed by thermal decomposition for removal of poly-
mers from the precursor fibers. It was found that phase separation between the elec-
trospun composite materials occurred during the electrospinning process, while the
as-spun precursor nanofibers composed of polyacrylonitrile (PAN), polyvinylpyrroli-
done (PVP), and metal salts might possess a core–shell structure (PAN as the core
and PVP/metal salt composite as the shell) and then transformed to a hollow structure
after calcinations as shown in Fig. 10.11 [227]. Based on the literature and the above
analysis, the electrochemical reactions involved in the cycling process are believed
to proceed as follows:

CuFe2O4 + nLi + +ne− → LinCuFe2O4

LinCuFe2O4 + (8 − n)Li+ + (8 − n) → xCu + (2 − x)Fe

+ FexCu(1 − x) + 4Li2O(0 ≤ 1 ≤ 4)

Cu + Li2O → CuO + 2Li+ + 2e−

Fe + 3Li2O → Fe2O3 + Li+ + e−

As a heavy metal, Co, is a toxic material, hence nanowebs consisting of inter-
woven ZnFe2O4 nanofibers are synthesized by a simple electrospinning technique,
to be employed as an environmentally friendly anode in lithium-ion batteries. The
morphological studies showed self-assembly of electrospun ZnFe2O4 nanofibers into
intertwined porous nanowebs with a continuous framework. Benefitting from the
one-dimensional functional nanostructured architecture, the application of electro-
spun nanowebs with ZnFe2O4 nanofiber (ZFO-NF) anodes in LIBs delivers the first
charge capacity of 925mAhg−1, exhibits excellent cyclability, and retains a reversible
capacity of 733 mAh g−1 up to 30 cycles at 60 mA g−1 as compared to ZnFe2O4

nanorods (ZFO-NR) with a capacity of 200 mAh g−1. The ZnFe2O4 nanowebs also
displayed a high capacity of 400 mAh g−1 at 800 mA g−1 (1C). The enhanced
capacity releases at higher current densities have shown the importance of having
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a well-connected electronic wiring during lithium insertion/extraction especially in
prolonged cycling [229].

N-doped amorphous carbon-coatedFe3O4/SnO2 coaxial nanofiberswere prepared
via a facile approach and studied as binder-free self-supported anode for lithium-ion
batteries and their electrochemical performance in LIBs. In the process of prepara-
tion, the core composite nanofibers were first made by electrospinning technique,
and then the shells were conformally coated using the chemical bath deposition and
subsequent carbonization using polydopamine as a carbon source (Fig. 10.12). The
coaxial nanofibers displayed an enhanced electrochemical storage capacity of 1223,

Fig. 10.12 a, bTEM, c high-resolution TEM images of the prepared single Fe2O3/SnO2 composite
nanofiber, d, e TEM, f high-resolution TEM images of the carbonized polydopamine-coated single
Fe3O4/SnO2 coaxial nanofiber. Adapted and reproduced fromRef. [230]. Copyright 2014American
Chemical Society
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Fig. 10.13 a, b TEM images of the carbonized polydopamine-coated Fe3O4/SnO2 coaxial
nanofibers after rate performance test. Adapted and reproduced from Ref. [230]. Copyright 2014
American Chemical Society

1030, 862, and 640 mAh g−1 at 100, 200, 400, and 800 mAg−1, respectively. Even
after the current density is increased to 1600 mA g−1, it still maintains a high charge
capacity of 402 mAh g−1. When the current density is restored to the initial setting
of 100 mA g−1, the carbonized polydopamine-coated Fe3O4/SnO2 coaxial nanofiber
electrode (Fig. 10.13) leads to a reversible capacity of 1070 mAh g−1 displaying not
only its superior capacity retention but also excellent capacity recovery performance.
Also, it was found that the morphology of the interwoven nanofibers was maintained
even after the rate cycle test. The superior electrochemical performance originates
from the structural stability of the N-doped amorphous carbon shells formed by
carbonizing polydopamine [230]. On the basis of the literature, the electrochemical
reactions of the carbonized polydopamine-coated Fe3O4/SnO2 coaxial nanofibers
can be described as follows

SnO2 + 4Li+ + 4e− → Sn + 2LiO

Sn + xLi+ + xe− → LixSn(0 ≤ x ≤ 4.4)

Fe3O4 + 8Li+ + 8e− → 3Fe + 4Li2O

10.5 Conclusion

For the achievement of best performing lithium-ion batteries, differentmaterialswere
greatly explored that can deliver a best performing system.Metal oxides possess great
significance in lithium-ion batteries since they are capable of exhibiting better elec-
trochemical properties. Similar to carbon base materials, currently, metal oxides are
also widely explored as anodes in LIBs. Iron oxide-based anode materials such as
Fe2O3 and Fe3O4 are promising due to its high capacity and lithium storage prop-
erties. Even though, despite of its high capacity, the poor cycling stability and high
polarization during lithiation and delithiation process limit its practical use in LIBs.
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Modifications of structural and surface characteristics are considered to be the best
method for the enhancement of electrochemical properties of these anodes. Electro-
spinning is considered to be the best method for this. Electrospinning is considered
to be the most versatile and simple method that provides a flexible platform for the
fabrication of nanostructures that can deliver better battery performance. Porous and
hollow iron oxide structure results by the electrospinning technique facilitate the
fast lithium-ion transfer as well as it accommodates the volume change that results
in unique electrochemical properties. Similarly, the hollow nanotubes and nanorods
that results by this technique can deliver high performance in battery owing to its
high surface area, controlled shape, and a low density. Further performance can be
enhanced by the structural modification by incorporating different metals to form
the composite structures which can result an enhancement in conductivity which is
significant for a better performing electrode material. These potential features make
iron oxide-based materials as the best performing anode material in LIBs.
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