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Abstract. By successively click on prescribed grammar captured in successful
genetic designs to assemble a range of genetic parts for example BioBricks, large
and complicated genetic systems composed of substantial functional blocks can
be constructed. As the number of genetic parts increases, each category of genetic
parts includes so many parts that the process of assembling a great deal of genetic
parts is costly, time-consuming and error-prone. GenoCAD is a web-based appli-
cation for synthetic biology to guide users through the design of artificial gene
networks, protein expression vectors and other complex genetic constructs by con-
tinuously click on predefined grammars according to the notion of genetic parts.
However, at the last step of a design in GenoCAD, it’s difficult for users to deter-
mine which basic part will be taken in every category. On the basis of statistical
languagemodel, a probability distribution over a string S reflecting how frequently
a string Swill occur and amathematical model to select basic genetic parts to form
a genetic construct can be determined. After converting the parts assembly process
into a mathematical model, adaptive maximum-minimum ant system (AMMAS)
proposed in this paper can be applied to the mathematical model to figure out an
optimal combination of parts of a design with maximum probability automatically
within seconds. The adaptive maximum-minimum ant system (AMMAS) can not
only optimize the parts selection process of a design but also can devise particular
projects performing specific functions based on former successful parts assembly
experience. Consequently, redundant operations can be reduced and cost as well
as time spent in biological experiments can be minimized drastically.
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1 Introduction

The rapid development of synthetic biology makes it essential to develop methodolo-
gies to streamline the design of custom genetic systems [1]. Gene expression network,
metabolic engineering and protein expression vector are some of applications in this field
[2, 3]. GenoCAD, a web-based application for synthetic biology, can satisfy the needs of
scientific studies in synthetic biology and allow users to quickly devise genetic constructs
based upon the notion of genetic parts [4]. GenoCAD is built upon a solid computational
linguistic foundation and can guide users through genetic designs by successively click

© Springer Nature Singapore Pte Ltd. 2020
H. Han et al. (Eds.): IDMB 2019, CCIS 1099, pp. 254–271, 2020.
https://doi.org/10.1007/978-981-15-8760-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8760-3_19&domain=pdf
https://doi.org/10.1007/978-981-15-8760-3_19


Optimization of GenoCAD Design Based on AMMAS 255

on prescribed grammars capturing design strategies of specific applications [4]. Users,
who elect to create a personal account, can log in the system to engineer project-specific
parts libraries, upload new parts into their workspace and save designs for later use
[5]. Designers usually decompose large biological sequences into functional blocks as
genetic parts to expand parts database including promoter, terminator, plasmid back-
bone, gene and ribosome binding site (RBS) which are necessary for designing genetic
constructs [6]. The compelling vision of libraries of biological parts enabling a fast and
cheap assembly of large biological systems is one of the foundations of synthetic biology
[7, 8]. There are several assembly standards to follow when assembling a set of genetic
parts into genetic constructs and the BioBrick Foundation (BBF) has been favorable
for promoting the BioBrick standard. A BioBrick standard compliant part is a DNA
fragment flanked by a prefix and a suffix segment having particular restriction sites [9,
10]. In addition, two BioBrick compliant parts can be assembled together using mul-
tiple specific ligations and restriction digestions independent of both parts sequences,
which indicates that any number of parts compliant with a same assembly standard can
be assembled into a new complex genetic construct by means of specific restriction
digestions and ligations.

When assembling series of genetic parts into intricate genetic systems, users com-
monly are unsure of selecting an appropriate basic part in a part category. In Conse-
quence, it’s always costly, error-prone and time-consuming for biologists to determine a
combination of parts of a genetic construct with biological experiments. For the sake of
minimizing time and cost spent in the parts assembly process, researchers have devel-
oped robotic platforms to automate the parts assembly process which can be used to
devise genetic systems by continuous click on the pre-defined grammars to convert the
structure of genetic designs. Ultimately users will choose a genetic part from every parts
category to fulfill their designs [11]. However, with the development of synthetic biol-
ogy, an increasing number of genetic parts are developed, which makes users confused
to select a suitable part from every parts category at the last step of a design (Fig. 1).
Therefore, this study is carried out to settle the problem of selecting a reasonable genetic
part from every parts category to build a project-specific genetic constructs. Above all,
statistical languagemodel (SLM) is introduced to facilitate the parts assembly process by
transforming the parts assembly process into a mathematical model according to inter-
action between parts. Applications of statistical language model are as diverse as speech
recognition, machine translation, word segmentation, part of speech tagging and other
natural language applications. The established mathematical model in this paper can
be solved by statistical parameters extracted from BioBrick standard parts downloaded
from iGEM website and the proposed AMMAS to work out an optimal combination
of parts with maximum probability to accomplish a genetic construct. Taking former
successful iGEM part assemblies and resulted statistical parameters into account, our
algorithm can be used to minimize cost and time spent in the parts assembly process.
Our suggested scheme can not only select an optimized combination of parts at the last
step of a genetic design in robotic platforms for example GenoCAD, but also can devise
new projects performing specific functions based on former successful experience.
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Fig. 1. Every icon has so many options.

2 Materials and Methods

A static snapshot of iGEM Registry content in June 2014 containing 7242 parts is
available at http://parts.igem.org/das/parts/entry_points/ and Perl script is employed to
parse out and analyze the content of each part at the link http://parts.igem.org/das/parts/
features/?segment=part. Decomposed into a structured and unified data format, these
parts can be imported into a relational database MySQL. Using SQL sentences, finally
75744 features sequences are acquired. Genetic parts comprise both basic parts which
are unable to further divided into subparts such as promoter, terminator and ribosome
binding site (RBS) [12, 13] and composed parts consisting ofmultiple basic parts such as
system and device. Employing SQL sentences, basic parts and their usage frequencies in
composed parts can be counted as well as composite parts and the usage frequencies of
two adjacent basic parts (parts pair) in composed parts can be uniformly calculated. By
querying the MySQL database, we extracted 1682 basic parts including 405 promoters,
57 terminators, 42 RBSs and 1178 genes, which can be used to build complicated genetic
constructs. The experience of previous successful assembly of genetic constructs is uti-
lized to guide us into the parts selection so that the resulted genetic constructs according
to our algorithm will be reliable and scientific.

3 Mathematical Model

At the last step of a design in robotic platforms for example GenoCAD, there are somany
choices in every parts category to complete the design making it a hard nut to crack to
select the most suitable part from every part category (Fig. 1). It seems impossible and
impractical to carry out exhaustive search method by testing all possible combinations
of parts with wet biological experiments. And representing the structure of a genetic
construct by using a reasonablemathematicalmodel can simplify the process of choosing
a suitable combination of parts [14]. Tomeet our expectations, statistical languagemodel
(SLM) is suggested to convert the parts assembly process into a mathematical model
which takes the probability of occurrence of a sentence as a proof of its reasonableness.

http://parts.igem.org/das/parts/entry_points/
http://parts.igem.org/das/parts/features/?segment=part


Optimization of GenoCAD Design Based on AMMAS 257

A sentence S, denoted as a genetic construct, is composed of a strand of words which
can be regarded as basic parts and the probability of a genetic construct can be evaluated
accordingly.

S = part1, part2, . . . , partn (1)

P(S) = P(part1, part2, . . . , partn) (2)

In accordancewith conditional probability formula, following formula (3) canbederived.

P(S) = P(part1, part2, . . . , partn)
= P(part1) · P(part2|part1 ).

P(part3|part1, part2 ).

. . . · P(partn|partn−1, partn−2, . . . part1 )

(3)

In above formula (3), P(part1) is the probability part1 occurs in a design and
P(part2|part1 ) means the probability that part2 appears with part1 prior to it. More-
over, the probability partn occurs hinges on all the parts prior to it making it difficult
to calculate P(partn|partn−1, partn−2, . . . , part1 ) compared with computing P(part1)
and P(part2|part1 ) owing to so many variables involved in it distinctly. According to
Markov Hypothesis, the probability a part will occur is merely related to one or more
parts prior to it. Hence formula (3) can be described in a simplified way as follows:

P(S) = P(part1, part2, . . . , partn)

= P(part1) · P(part2|part1 )·
. . . · P(partn|partn−1 ) (4)

The formula (4) presented above is bi-gram of statistical language model which implies
whether a part will appear in a design is simply concerned with one part prior to it. In
line with the notion of conditional probability formula, conditional probability formulas
involved in formula (4) can be deduced.

P(parti|parti−1 ) = P(parti−1, parti)

P(parti−1)
(5)

Utilizing usage frequencies of basic parts and parts pairs extracted from the downloaded
feature sequences, we can estimate P(parti) and P(parti, parti−1) respectively.

P(parti, parti−1) ≈ count(parti, parti−1)

count(all_parts)
(6)

P(parti) ≈ count(parti)

count(all_parts)
(7)

By means of above formulas (5–7), we can calculate conditional probability formulas
involved in formula (4).

P(parti|parti−1) = count(parti−1, parti)

count(parti−1)
(8)
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In this way, all components in formula (4) can be estimatedmeaning the combination
of parts with maximum probability can be figured out. In accordance with the statistical
language model (SLM), the combination of parts with maximum probability is the most
meaningful and reasonable. There are too many candidate paths to accomplish a design
and a path will lead to an S (a path = an S = part1, part2, . . . , partn). The optimal path
among all candidate paths can be represented by PATH .

PATH = argmax(P(S))
all_S

= arg max
all_S

((P(part1) ∗
n∏

i=2
P(parti|parti−1))

(9)

Since the database we use is extracted from a relatively sparse corpus, zero-frequency
problem is inevitable when parts pairs never occur in the corpus meaning their corre-
sponding count will be zero. This circumstance causes the deviation in calculating P(S)

and PATH . To overcome this difficulty, Add-k data smoothing technology is applied to
settle the zero-frequency problem [15], and the corresponding conditional probability
formulas involved in formula (4) can be gauged as follows.

P(parti|parti−1 ) = count(parti−1, parti) + k

count(parti−1) + k|W | (10)

Furthermore, the target function in this paper is represented by f (S).

f (S) = P(S)

= P(part1) ∗
n∏

i=2
P(parti|parti−1 )

(11)

W is the total number of parts pairs and formula (10) is employed to replace the con-
ditional probability formula (8). Hence all components in formula (4) can be gauged
and the resulted PATH is regarded as the optimal path (S) with maximum probability
of occurrence among all candidate paths. After transforming the parts assembly process
into a mathematical model, adaptive maximum-minimum ant system (AMMAS) can be
exploited to automate this parts selection process efficiently.

4 Algorithms

The next step is to use the proposed algorithm to figure out a path, composed of a
sequence of basic parts with the largest probability, in this lattice. This algorithm can
direct us through the process of solving the target function f (S).

The ant system algorithm, inspired by the observation of ant colonies in real world,
was first proposed by Dorigo et al. in 1991 as a population-based approach to settle
difficult combinatorial optimization problems [16–18]. Furthermore, an interesting and
important behavior of ants is how to find a shortest path between their nest and food
sources. While walking from the nest to food sources and vice versa, ants deposits a
substance called pheromone on the ground, forming in this way a pheromone trail [19].
When deciding the direction to go, they choose paths which are marked by stronger
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pheromone centration with higher probability. Ant’s tendency to determine a specific
path is positively correlated with the intensity of a found trail. The basic behavior is
a foundation for a cooperative interaction relationship that results in the emergency
of the shortest paths. The ant system algorithm has been applied to plenty of difficult
combinatorial optimization problems such as the quadratic assignment problem [20,
21] and traveling salesman problem (TSP). The performance of ant system algorithm
can be enhanced by introducing maximum and minimum trail strengths on arcs, named
maximumandminimumant system, to alleviate the problemconcerning early stagnation.
However, long runs of the maximum and minimum ant system (MMAS) still show
stagnation behavior, despite of using minimum and maximum trail limits. Therefore, we
raised three main changes to further improve its performance.

4.1 Simulated Annealing Mechanism

Beginning by randomly generating an initial solution, simulated annealing is a neighbor-
hood search technique to resolve combinatorial problems. At each stage, a new solution
taken from the neighborhood of the current solution will be accepted as a new current
solution if it has a lower or equal cost; If it has a higher cost it will be accepted with
a probability which decreases as the difference in cost between two solutions increases
and as the temperature of the method decreases [22]. This temperature, simply a posi-
tive number, is reduced periodically according to the following formula, so that it can
gradually from a relatively high value to near zero as the algorithm progresses. At the
beginning of simulated annealing, most worsening moves are accepted, however, only
improving ones aremore likely to be accepted in the later stage of the algorithm. Further-
more, to enhance the intensity and diversity of simulated annealing searching procedure,
when a solution doesn’t show better performance within a prescribed number of continu-
ous cooling process, the restarting solution mechanism, called tempering mechanism, is
designed to generate new solutions for the further solution improving and the maximum
number of tempering is Hmax.

T (N + 1) = a × T (N ) (12)

In addition, in order to avert premature convergence of the algorithm, the simulated
annealing algorithm presented by the following formula (13) is carried out.

p =
{
exp(− f (Sglobal)−f (S)

T (t) ) f (S) ≤ f (Sglobal)

1 f (S) > f (Sglobal)
(13)

Where Sglobal is the global optimal route and S is a collection of paths resulted in
this round. To make the performance of our proposed algorithmmore robust, comparing
the calculated p by taking out solutions from S one by one with a random number γ

within the interval [0, 1] is necessary. It is noted that a good quality solution can be
confirmed in the case of p = 1 or p > γ ; Otherwise a path defined as a bad solution will
be determined. Moreover, the temperature reduction factor a of 0.9 is chosen, which has
been indicated to be satisfactory in the gradual temperature reduction process [23, 24].
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4.2 Adaptive Pheromone Concentration Updating Mechanism

Thepheromoneupdatingmechanism is designed to allocate a great amount of pheromone
concentration to short tours, in a sense, which is similar to the reinforcement learning
schema. It is widely recognized that better solutions will get a higher reinforcement.
The pheromone updating formula was intended to simulate the change of the amount
of pheromone in virtue of both the addition of new pheromone deposited by ants on
the visited edges and of pheromone evaporation. Ants have memory ability, however,
as time goes on, information is lost. In order to prevent the algorithm from getting into
local optimum due to large differences of pheromone density between the worst path
and the best path, pheromone updating formula is designed to dynamically adjust the
volatilization coefficient of pheromone as follows.

ρ(N + 1) = 1/ log2(1 + Nc) (14)

In this research, the volatilization coefficient of pheromone ρ reduces gradually up to
1/ log2(1 + Nc) < ρmin.

4.3 Adaptive Change of Weight Coefficient

As previously noted, to intensify and diversify the searching procedure and to make the
solution found more robust, a dynamic change mechanism of weight coefficient α and β

is designed to fulfill the purpose when the current global optimal path does not change
within 50 rounds. The idea is to maintain a high ability to search for new solutions and
prevent algorithm from getting into local optimum not only by reducing the relative
influence of pheromone, but also by increasing the relative influence of the heuristic
information, presented as follows, thus the goals of intensification and diversification of
the algorithm can be achieved.

β = sl/(3 · sum_column) (15)

Where sum_column is the total number of columns of the built lattice. In the above
formula, sl reflects the total number of ants which go through all edges of the optimal
solution of one iteration.

4.4 State Transition Rules

To achieve better balance between using prior knowledge and exploring new paths,
the pseudo-random rate rule is selected when ant k chooses next node j from node i,
specifically described as follows.

j =
{
arg max

u∈ allowedk

{[τiu(t)]α ∗ [ηiu(t)]β
}
, if q ≤ q0

pkij(t), else
(16)

pkij(t) =
⎧
⎨

⎩

(τij(t))α(ηij(t))β∑

l∈Allowedk (i)
(τil(t))α(ηil(t))β

j ∈ Allowedk(i)

0 else

(17)
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where q is a random number with uniform distribution in [0, 1] and variable q0, defined
as below, determines the relative importance degree between using prior information
and exploring new paths. α and β emphasize the importance degree of pheromone
concentration and heuristic information respectively while ηj represents the heuristic
information guiding the selection of the next node.

q0 = sum_column
/
sl (18)

ηj = P(partj|parti )
= P(parti,partj)

P(parti)
(19)

4.5 The AMMAS Algorithm

Then the improved ant colony system is designed to solve the problem of biological
parts selection and it consists of two steps as below.

First of all, a lattice is created. Each column, expressed by one icon, corresponds to
one parts category and every node in each column refers to as a basic part. Part name is
unique in the workspace.

Afterwards, the improved algorithm, composed of five steps, can be applied to solve
the built statistical language models and the algorithm flow chart is as follows.

Step 1: The initial pheromone information τij = τmax (a constant), the iteration
counter of the algorithm Nc, an adjustable parameter q0 involved in the state transition
rule, the maximum iteration Nmax, the maximum number of nodes Nm an ant passes in
each round are all to be initialized. The variable n is the number of nodes one ant goes
through and it is set to n = 1. To ensure that the pheromone distribution varies along the
paths at the beginning of the algorithm, the threshold U (U ≤ 10) can be employed to
determine whether ants choose next node according to formula (17) or not in the early
stage of the algorithm. m ants are randomly assigned to all nodes of the first column of
the established lattice.

Step 2: If Nc ≤ U , ant k chooses next node in accordance with formula (17) and
makes a step forward according to the selected node as well as places that node into its
taboo list Tabuk . If Nc > U , ants will choose appropriate node selection formula based
on the comparison between q0 and q.

Step 3: If the number of nodes ant k passed in this round has not reached the given
number Nm, the algorithm will go to Step 2 to decide next node, on the contrary go to
Step 6.

Step 4: When all ants complete this iteration, the route with maximum probability
among all candidate paths in this iteration can be gained. And volatilization factor of
pheromone ρ can be changed based on formula (14). In addition, pheromone information
on all paths can be updated globally, however, updating global pheromone information in
this way can’t well guide ants towards the global optimum. In view of this situation, the
introduction of reward and punishment mechanism regarding better and worse solutions
respectively is necessary. Different edges have diverse impacts on guiding ants towards
global optimal solutions. Considering this characteristic, we are intended to allocate
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more pheromone on good paths and less pheromone on bad paths as below. Updating
pheromone concentration in this way can accelerate the convergence speed.

τij(t + 1) = (1 − ρ)τij(t) +
m∑

k=1

�τ
good
ij (20)

τij(t + 1) = (1 − ρ)τij(t) −
m∑

k=1

�τ badij (21)

Where

�τ
good
ij = w · f (sbest) (22)

�τ badij = w · f (sworst) (23)

Where w(0 ≤ w ≤ m) expresses the total number of edge (i, j) appearing in all
candidate paths. Moreover, f (sbest) and f (sworst) depict best and worst value of the
target function in this round respectively.

Step 5: Compared with global optimal path, if the optimal path obtained in this iter-
ation is better than the current global optimal one, the global optimum will be replaced.
In order to jump out of the local optimal and expand the search range, β can be further
dynamically changed if global optimal path remains unchanged within fifty rounds.

The temperature T should be updated according to T ← aT , t ← t + 1. If T ≥
Tmin, the proposed algorithm goes to Step 2 to start a new iteration. If T < Tmin and
H = Hmax, the algorithm outputs the saved global optimized path. If T < Tmin and
H < Hmax, then H ← H + 1, T ← Tmax and it goes to Step 2.
Ultimately, the optimal combination of parts to form a genetic construct can be worked
out by the algorithm in seconds after entering the parts category sequences, which is also
an optimal solution with maximum probability to the target function f (S). In comparing
the proposed algorithmwith exhaustive algorithm, onemust bear inmind that the running
time of the former is on the order of seconds, which is acceptable in synthetic biology
(Fig. 2).
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Fig. 2. The algorithm and flow chart.
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5 Result

Developing grammars for modeling the structure of genetic constructs has become a
routine tool in synthetic biology [25]. There is a need for simple and versatile design
strategies to allow high throughput approaches in synthetic biology studies (rule-based
design). Therefore, we implemented a set of rules to design genetic constructs based
on the basic grammar which is PRO (promoter)-RBS (ribosome binding sites)-GEN
(genes)-TERM (terminator) [26]. The full grammaticalmodel, similar to the context-free
grammar (CFG), used in this system is available in Table 1.

Table 1. Grammars used in this paper

Rule code Rule Description

1 CAS → 2CAS Convert a cassette into two cassettes (CAS)

2 CAS → Pro CIS TERM Convert a cassette into a promoter (Pro), a cistron (CIS),
a terminator (TERM)

3 CAS → Pro CIS Convert a cassette into a promoter (Pro) and a cistron
(CIS)

4 CIS → 2CIS Convert a cistron into two cistrons (CIS)

5 CIS → RBS GEN Convert a cistron into a rbs (RBS) and gene (GEN)

6 TERM → 2TERM Convert a terminator into two terminators (TERM)

7 GEN → 2GEN Convert a gene into two genes (GEN)

To describe how to assemble series of parts compliant with BioBrick standard into
a functional biosynthetic system by our algorithm, we select wintergreen odor biosyn-
thetic system (http://parts.igem.org/Part:BBa_J45700), designed and implemented by
MIT iGEM 2006. This system includes two expression cassettes: one can produce sali-
cylate acid from cellular metabolic and the other can catalyze the conversion of the sali-
cylate acid to methyl salicylate or wintergreen odor.We can perform the following gram-
matical model to direct users through the wintergreen odor biosynthetic system. Starting
with a CAS and by means of rule1, the design becomes CAS-CAS and the following
design is PRO-CIS-TERM-PRO-CIS-TERMby applying rule2 to both CAS. Employing
rule5 to bothCIS, the design turns into PRO-RBS-GEN-TERM-PRO-RBS-GEN-TERM
and finally it becomes PRO-RBS-GEN-TERM-TERM-PRO-RBS-GEN-TERM-TERM
according to rule6. After determining genes we want to express, our algorithm in Python
language can be applied to choose an optimal parts combination automatically for the
input parts category sequence which becomes PRO-RBS-J45004-TERM-TERM-PRO-
RBS-J45017-TERM-TERM to form the system. The resulted combination of parts by
our bi-gram model algorithm is R0040-B0032-J45004-B0010-B0012-R0010-B0032-
J45017-B0010-B0012. Compared with the validated combination of parts of the win-
tergreen odor biosynthetic systemR0040-B0032-J45004-B0010-B0012-R0011-B0032-
J45017-B0010-B0012, the simulation result from our algorithm (Fig. 3) is very similar
to that verified one of this system.

http://parts.igem.org/Part:BBa_J45700
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Fig. 3. The simulation results of the first
system.

Fig. 4. The simulation results of the second
system.

Moreover, for another example, we elect the banana odor biosynthetic system
(http://parts.igem.org/Part:BBa_45900), implemented and designed by teams enrolling
in iGEM in 2006. This system includes two expression cassettes: one can produce
isoamyl alcohol with BAT2 and THI3 and the other can catalyze the conversion of
the cellular metabolite leucine to isoamyl acetate or banana odor. We can implement
the following grammatical model to direct users through the banana odor biosynthetic
system. Starting with a CAS and by means of rule1, the design becomes CAS-CAS
and the following design is PRO-CIS-PRO-CIS-TERM by applying rule3 to the first
CAS and rule2 to the second CAS. Employing rule4 to first CIS and rule5 to the second
CAS, the design turns into PRO-CIS-CIS-PRO-RBS-GEN-TERM and it becomes PRO-
RBS-GEN-RBS-GEN-PRO-RBS-GEN-TERM according to rule5. Finally the design is
PRO-RBS-GEN-RBS-GEN-PRO-RBS-GEN-TERM-TERM according to rule6. After
determining genes to be expressed in this design, our algorithm in Python language
can be utilized to pick out an optimal parts combination automatically for the input
parts category sequence which becomes PRO-RBS-J45008-RBS-J45009-PRO-RBS-
J45014-TERM-TERM to form the system. The resulted parts series of this design by
our bi-gram model algorithm is R0010-B0030-J45008-B0030-J45009-R0040-B0030-
J45014-B0010-B0012. Compared with the validated combination of parts of the banana
odor biosynthetic systemR0011-B0030-J45008-B0030-J45009-R0040-B0030-J45014-
B0010-B0012, the simulation result from our algorithm (Fig. 4) is very close to that
verified one of this system.

In addition, we select the design RBS.GFP + PBad CFP (http://parts.igem.org/Part:
BBa_I13404), also designed and implemented by the team participating in iGEM in
2006, as another example to illustrate efficiency of our algorithm. Under the input design
RBS-E0040-TERM-TERM-PRO-RBS-E0020–TERM-TERM, the bi-grammodel algo-
rithm proposed in this paper recommends the parts series B0034-E0040-B0010-B0012-
R0010-B0034-E0020-B0010-B0012. As can be seen during comparison with the actual

http://parts.igem.org/Part:BBa_45900
http://parts.igem.org/Part:BBa_I13404
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combination of parts of the system B0034-E0040-B0010-B0012-I0500-B0034-E0020-
B0010-B0012, our simulation result (Fig. 5) is quite close to the valid one of the
system.

Fig. 5. The simulation results of the third
system.

Fig. 6. The simulation results of the fourth
system.

For the fourth example, we select the example I0500.Q04400.E0430 (http://parts.
igem.org/Part:BBa_E0611) which was designed and implemented by the group taking
part in iGEM in 2004. Under the input part category sequence PRO-RBS-C0040-TERM-
TERM-PRO-RBS-E0030-TERM-TERM for this genetic construct, our bi-gram model
algorithm recommends a combination of parts R0040-B0034-C0040-B0010-B0012-
R0010-B0034-E0030-B0010-B0012. According to the comparison between simula-
tion results and real results I0500-B0034-C0040-B0010-B0012-R0040-B0034-E0030-
B0010-B0012, there are two basic parts that differ from the real parts series in simulation
ones (Fig. 6).

Furthermore, we select a design from the link http://parts.igem.org/Part:BBa_
S01664, designed and implemented by the team participating in iGEM in 2004, as
the fifth example. Under the input design PRO-RBS-C0051-TERM-TERM-PRO-RBS-
C0012-TERM-TERM-PRO, the bi-gram model algorithm suggests the parts sequence
R0040-B0034-C0051-B0010-B0012-R0010-B0034-C0012-B0010-B0012-R0010. As
is illustrated during comparison with the actual combination of parts of the system
R0040-B0034-C0051-B0010-B0012-R0051-B0034-C0012-B0010-B0012-R0011, our
simulation result (Fig. 7) is similar to the verified one of the system.

The example [TetR][rbs][LuxR][dblTerm][LuxPR] + [rbs][LacI][dblTerm] “AHL-
dependent inverter” (http://parts.igem.org/Part:BBa_J23040), designed and imple-
mented by the group participating in iGEM in 2006, is chosen as the sixth example. Based
on the input parts category sequence of the design PRO-RBS-C0062-TERM-TERM-
PRO-RBS-C0012-TERM-TERM, a set of parts can be figured out (R0040-B0034-
C0062-B0010-B0012-R0010-B0034-C0012-B0010-B0012) by our algorithm accord-
ing to the specifications required for this design. In comparison with the real parts

http://parts.igem.org/Part:BBa_E0611
http://parts.igem.org/Part:BBa_S01664
http://parts.igem.org/Part:BBa_J23040
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Fig. 7. The simulation results of the fifth
system.

Fig. 8. The simulation results of the sixth
system.

combination of the design R0040-B0034-C0062-B0010-B0012-R0062-B0034-C0012-
B0010-B0012, our simulated result (Fig. 8) has only one different basic part from the
real one.

We consider the example QPI Test Construct Intermediate (Q04121.E0430) (http://
parts.igem.org/Part:BBa_I13021), designed and implemented by the group joining in
iGEM in 2004, as the seventh example. To meet specific needs of the design, our
algorithm presents a genetic construct B0034-C0012-B0010-B0012-R0010-B0034-
E0030-B0010-B0012 within seconds on the basis of the input parts series RBS-
C0012-TERM-TERM-PRO-RBS-E0030-TERM-TERM. It is obvious that our sim-
ulation result (Fig. 9) is pretty similar to the valid series of parts of the design
B0034-C0012-B0010-B0012-R0011-B0034-E0030-B0010-B0012.

Fig. 9. The simulation results of the seventh system.

http://parts.igem.org/Part:BBa_I13021
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Taken together, simulation results of our algorithmAMMASare exactly similar to the
actual parts combination of genetic designs. Compared with the dynamic programming
algorithm used in reference [26] to settle the 3-gram or 4-grammodel, our bi-grammodel
algorithm can also figure out an assembly highly similar to the real parts combination of
a design with fewer variables and less computation amounts, which prove the practical
significance of our scheme. Moreover, dynamic programming algorithm is a classical
implementation of the idea that sacrificing space to improve efficiency. When the size of
problem n increases, in theory, heuristic algorithms always present better performance
in solving such combinatorial optimization problems. If some parts are known to express
in a design, users can decide them first or evaluate them higher when entering the parts
series. We can also exclude some parts and iterate over our algorithm to meet the needs
of some other options needed for a design, which is instructive for synthetic biologists to
design new projects. Using the extracted statistical parameters and the proposed adaptive
maximum-minimum ant system (AMMAS) to solve the 2-gram mathematical model,
the resulted optimal combination of parts is scientific and reliable.

In above cases, R0010 always appears at the same time as B0012. One of the reasons
for this is that the database we use is sparse, and the other reason is that the bi-gram
statistical language model can’t well reveal the interaction relationships between parts
categories. To address this issue, it is essential to adopt higher-gram model to depict the
interaction relationships between parts categories.

6 Discussion

This paper presents an efficient algorithm AMMAS to guide users through the design of
genetic constructs performing specific function by selecting an optimal parts combina-
tion for a genetic construct at the last step of a design in GenoCAD and to devise projects
meeting specific requirements. Utilizing the concept of statistical language model and
conditional probability, the parts assembly process can be converted into a mathematical
model. The parts assembly process being transformed into a bi-gram model, adaptive
maximum-minimum ant system (AMMAS) can be carried out to choose an optimal
solution with the largest probability. In addition to selecting an optimized parts com-
bination at the final step of a design in robotic platforms for example GenoCAD, this
method can be used to automate DNA assembly process as well. We entering the parts
category sequence of a design, our algorithm can work out a set of suitable parts to form
the genetic construct automatically based upon the previous successful assemblies on
iGEM website. In this way, redundant operations and time as well as cost spent in bio-
logical experiments can be minimized greatly. As depicted above, bi-gram of statistical
language model proposed in this paper signifies that whether a part can be enabled in a
design is simply related to one part prior to it, which can’t well reveal the mechanism
of DNA assembly process in real world. For example, whether a gene will be expressed
efficiently is not only concerned with its promoter, but also its RBS and plasmids back-
bone as well as other regulating sequences. To simulate the parts assembly process in real
world, higher-gram models should be introduced. Higher than 2-gram models indicate
that one part involved in a design is related to more than one part prior to it. However,
there are so many variables involved in these higher-gram models making calculating
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conditional probability formulas a hard nut to crack. When developing higher-gram
models, computers of high performance are necessary [27] though the accuracy of the
results has improved greatly.

Since the dataset we used was extracted from a relatively sparse corpus, zero-
frequency issue is inevitable when some parts pairs never appear. When calculating
conditional probability formulas involved in the mathematical model, we employed
Add-k smoothing technology to address the zero-frequency issue. However, it’s not a
good idea to utilize Add-k smoothing due to its disadvantages such as considerable
amount of the probability space allocated to unseen events. It is used just for simplicity.
Therefore, other smoothing techniques will be considered to improve the accuracy of
the results such as Katz Backoff smoothing, Good-Turing smoothing, Witten-Bell and
so on [28]. Some parts are likely to appear in any analysis so that the simulation results
of the algorithm have a certain deviation from the real values. The reason may be that
the existence of noisy data in the dataset results in the deviation. We intend to adopt
the commonly used basic parts and parts pairs with high usage frequency (more than
three times for basic parts and parts pair) in the corpus next. The commonly used basic
parts and parts pairs with high usage frequency (more than three times for basic parts
and parts pair) are regarded as successful words while the others are referred to as noisy
data. In addition to improving data smoothing techniques, it is also of great importance
to expand the database. However, expanding the corpus needs more operations to rep-
resent the notion and definition of parts and features in a unified format. That is, we
should eliminate inconsistencies between features and redundant data in the corpus. The
problem can be resolved by developing the ontology giving the community a controlled
vocabulary to depict parts and features in a uniform format. And developing the synthetic
biology open language (SBOL) will accelerate this process remarkably.

Based upon statistical language model, we present an efficient computational sup-
plement for designs in robotic platforms of synthetic biology for example GenoCAD.
In synthetic biology, it’s an important question that too many choices are offered at the
last step of a design. It’s a matter of considerable interest to take the previous successful
assemblies into account when we develop new projects. For those who don’t have the
expertise in synthetic biology, it’s fairly difficult to elect a suitable part in a particular
category. Users can choose a train of suitable parts to form a design according to a body
of existing experiences by our algorithm. Our newly proposed method will facilitate the
popularity of synthetic biology to a wider community and can help to eliminate incon-
sistencies in this field. In the future, further successful assemblies will be considered and
we can devote ourselves to developing efficient algorithm to guarantee the reliability of
results.
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