
Automatic Segmentation of Mitochondria
from EM Images via Hierarchical Context Forest

Jiajin Yi, Zhimin Yuan, and Jialin Peng(B)

College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
2004pjl@163.com

Abstract. To solve the problem of automatic mitochondria segmentation from
electron microscope (EM) images, a hierarchical context forest (HCF) model
using multi-level context features was proposed. Exploring effective contextual
information is crucial to address the challenges caused by the varied appearances
and shapes of mitochondria, and the complicated image content. To this end, a
novel class of features named local patch pattern (LPP) are designed to characterize
local contextual information, which are used to resolve the ambiguity caused by
similar appearances and intensities of different organelles. Furthermore, to capture
long-range contextual information, we also extract LPP features on intermediate
probability predictions of the HCF model. Moreover, a multiscale strategy is used
to capture different sizes of mitochondria. Solid validations of our method con-
ducted on public dataset demonstrated the effectiveness of both of the proposed
LPP features and the proposed model. The result of comparison showed that, the
proposed method achieved distinct improvement of results in terms of Precision,
Recall and F1-value score.

Keywords: Electron microscopy image · Mitochondria segmentation · Random
forest · Contextual information · LPP feature

1 Introduction

An automatic segmentation of mitochondria from electron microscope (EM) images
can greatly facilitate the analysis of mitochondria by precisely quantifying their vol-
ume, morphology and distribution, which have been directly linked to aging, cancer,
and neurodegenerative diseases [1, 2]. High resolution EM is one of the state-of-the-
art imaging devices for investigating the ultrastructure of cell, where mitochondria are
subcellular organelle. However, with images in the scale of nm3 and so in huge size,
manual segmentation, even with assisted tools [3], is labor-intensive, time-consuming
and also subjective. In fact, the very precise annotation could be a challenging task, even
for experts, due to the intrinsic ambiguity in the image delineation process (see Fig. 1).

J. Yi and Z. Yuan—These authors contribute equally to this paper.
J. Peng—Supported by National Natural Science Foundation of China (11771160), and Fujian
Science and Technology Foundation (2019H0016).

© Springer Nature Singapore Pte Ltd. 2020
H. Han et al. (Eds.): IDMB 2019, CCIS 1099, pp. 221–233, 2020.
https://doi.org/10.1007/978-981-15-8760-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8760-3_16&domain=pdf
https://doi.org/10.1007/978-981-15-8760-3_16


222 J. Yi et al.

(a) Original image                (b) Kumar [13]                  (c) Our method                  (d) Ground truth

Fig. 1. Segmentation of mitochondria from EM images, which is a challenge task.

Therefore, automatic methods are highly desirable to process the large volumes of
EM images and provide more reproducible results [4]. However, the large variability of
mitochondria in density, location, size and shape makes it a challenging task. Moreover,
the appearance and content of EM image are rather complex as shown in Fig. 1. For
example, image intensities representing mitochondria in EM images show large overlap
with intensities of other structures; strong gradients do not necessarily correspond to the
semantic boundaries of the target mitochondria. Thus, in order to determine the presence
of mitochondria at a given position and delineate their boundaries accurately, high-level
contextual information has to be explored, which is the focus of this study.

Recently, the detection and segmentation of mitochondria from EM images have
attracted a variety of studies [4–9, 12–15]. For example, Macke et al. [5] introduced
a semi-automated method based on level set for tracing of cell membranes, in which
segmentation from adjacent slice was utilized as prior constraint. Although themethod is
much faster than manual tracing, the performance is limited by its simple intensity based
features. For mitochondria segmentation, Narasimha et al. [6] explored a filter-bank and
textons as texture feature encoders, which were combined with several kinds of popular
classifiers. Neila et al. [7] extracted local visual features with both 2D and 3D image
filters (e.g., first and second order derivatives) in multiple scales to take into account
the varied shape of mitochondria and anisotropic image voxels; conditional random
field with an anisotropy-aware regularization is then employed for image segmentation.
However, the discriminative ability of these general texture features is still limited.

Rather than texture features, Smith et al. [8] devised a newclass of shape features, that
considered image characteristics at distant contour points to capture the irregular shape
information of mitochondria. In [9], Lucchi et al. combined Ray features with intensity
histogram features on supervoxels, and the segmentation was obtained using graph cut
with learned potentials. However, this graph learning and partitioning method is costly
in memory, which was improved in [10] with max-margin learning and a subgradient
descent using working sets. In [11], elliptical descriptor at different scales combined
with local Gaussian filters as [7] were investigated. To identify precise boundaries of
mitochondria, Giuly et al. [12] performed random-forest-based classification on candi-
date boundary contours using geometric and intensity based features, while candidate
contours were obtained by thresholding prediction results of another random forest clas-
sifier; the final fine segmentation is obtained with a geodesic active surface method.
To alleviate the negative impact of the complex image content of EM image, Kumar
et al. [13] proposed a class of more powerful features, Radon-like features, that allowed
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for aggregation of spatially distributed image statistics into compact feature descriptors
in the EM image. Final segmentation was extracted with thresholdings. Seyedhosseini
et al. [14] extracted shape and textural features ofmitochondria by algebraic curve, using
the random forest as the classifier. The mitochondrial boundary curves can be obtained
effectively by the method, however, it is easily attracted by the ridge structure of the
mitochondria.

In this work, we propose a fully automatic method for mitochondria segmentation
by integrating multilevel contextual and appearance features. More specifically, with a
class of newly designed features,we propose to extractmultilevel context and appearance
features with a classifier in cascaded architecture that is similar to the auto-context model
in [16, 25]. One contribution of this study is that, we design a novel class of features,
named local patch pattern (LPP) to encode local context and appearance from raw
images and middle-level context from intermediate predictions. To be specific, under
the framework of hierarchical classifier, we extract middle-level features using LPP
on prediction results from classifiers in lower layer. In this way, the features extracted
include information from a much larger receptive field, the size of which plays a crucial
role for the segmentation performance [17]. In this way, the amount of surrounding
contextual information is enhanced. To further capture mitochondria of different sizes,
we utilize a multi-scale strategy, which improves the efficiency and robustness of the
model.

2 Method

In this section, we provide a detailed description of our method. Taking into account
anisotropic voxels of our EM images, we perform segmentation in a slice-by-slice strat-
egy using image patches. Specifically, we split each slice of the image into overlapped
patches of size l × l, and assign the most probable label to each pixel x of a target image
according to the information from the patch Ix, centered on the pixel x. To achieve fine
segmentation, we train a hierarchical set of classifier, in which random forest model is
employed as the basic classifier due to its efficiency and scalability. The workflow of the
proposed framework is shown in Fig. 2.

2.1 Feature Extraction

Local Appearance and Texture Fatures. Gray-scale intensity, gradient magnitude,
and local binary pattern (LBP) are employed to capture appearance, edge and texture
information. In each patch, we compute 6 statistics (including mean, variance, median,
entropy, kurtosis and skewness) of intensities, gradients and local binary pattern (LBP)
[18] features in local image patches as local appearance and texture descriptors. Gray-
scale intensities and its statistics are themost prominent features of EM images; gradients
are the basic features indicating edges in images. LBP is one of the most widely used
texture features; it is computed by comparing each pixel in the image with each of its
P (such as 8) neighbors, giving an P-digit binary number, which is usually converted to
decimal (see Fig. 3 (a)). Specifically, LBP operator is defined as:
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Fig. 2. Workflow of the multiscale hierarchical context forest (m-HCF) we proposed. The heat
map in the figure is a graphical representation of probability map, in which the colder the color
is, the smaller the magnitude of estimated probability is. (Color figure online)
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Fig. 3. Illustration of LBP feature, Haar feature and the proposed LPP features.

fLBP(x, I) =
∑P

p=1
2p−1δ

(
xp − xc

)
, (1)
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where

δ(z) =
{
1 z ≥ 0,
0 z < 0.

LBP is widely used due to its powerful ability for texture discrimination and simple
calculation. However, it only captures the information in a smaller neighborhood, and
unable to encode the more discriminative information of context in longer range. Since
there are a large number of cell tissues with similar appearances and textures in the EM
image, the local features mentioned above is still limited in discrimination.

Local Patch Pattern (LPP) Features. The association between each pixel of the image
and its extended neighborhoods, called context information, that provides a way of elim-
inating the ambiguity of the local appearance and texture features [19, 20]. Inspired by
the classical LBP feature and the Haar features [21], we propose a novel class of fea-
tures (LPP) based on the local patch, which are used to capture local context information
effectively. The classical Haar features consider sub-regions of adjacent positions and
then calculate the difference of the sum of pixel intensities in these sub-regions, as shown
in Fig. 3 (b), it can quickly generate a rich set of features that are robust against the noise.
In this paper, we extend the LBP and Haar features into LPP features that capture the
context information effectively. The LPP features contain two subtypes, i.e. LPP-I and
LPP-II, which are calculated by extracting sparsely distributed sub-regions {Ri}Li=1 on
the image patch Ix.

LPP-I Feature. This feature is a kind of LBP-like Haar feature. For the LPP-I feature
extraction, we denote the central sub-region of the patch Ix as R0, then record the dif-
ferences between R0 and other sub-regions Ri, and also the binary code formed by all
positive, negative differences. The former is a real type LPP feature (LPP-Ir), the latter
is a binary type LPP-Ib feature (actually convert the binary code to decimal).

fLPP−Ir(Ix, Ri) = 1

|Ri|
∑

u∈Ri
Ix(u) − 1

|R0|
∑

u∈R0
Ix(v), (2)

fLPP−Ib(Ix) =
∑L

i=1
2i−1δ(

∑
u∈Ri

Ix(u) −
∑

v∈R0
Ix(v)). (3)

Specifically, the real valued LPP features fLPP−Ir for Ri (i = 1, · · · ,L) is obtained by
calculating the difference of the average pixel intensities of sub-regions {Ri}Li=1 (as
shown in Fig. 3 (c)) and the central one R0 in Ix. We also record L binarized summaries
of fLPP−Ir features through using different permutations of the fLPP−Ir values. For each
permutation, a fLPP−Ib feature is calculated by recording the sign of the fLPP−Ir values,
which is converted to decimal for convenience. From these steps, we have achieved the
extension of classical LBP feature to the context feature LPP-I.

LPP-II Features. We extend the calculation of the traditional Haar feature to randomly
select multiple pairs of sub-region of the same size Ri and Rj from a local image patch
(such as R1 and R2 that are shown in Fig. 3 (d)). For each pair of sub-regions Ri and



226 J. Yi et al.

Rj, fLPP−II is the difference between their average pixel intensities, that is defined as
follows,

fLPP−II
(
Ix,Ri,Rj

) = 1

|Ri|
∑

u∈Ri
Ix(u) − 1∣∣Rj

∣∣
∑

v∈Rj
Ix(v). (4)

LPP-II features encode the differences between different sub-regions in each local image
patch. It is a variant of Haar feature with randomly-extracted non-adjacent sub-regions.

Compared with LBP and Haar features, the LPP-I and LPP-II features reflect con-
textual information in relatively long-range that the category of a pixel depends on.
The contextual information in longer range is extracted by computing LPP features on
probabilistic predictions (see Sect. 2.2), which will be used as additional information to
refine the segmentation.

2.2 Hierarchical Context Forest (HCF)

We use the classical random forest [22] as the classifier, as it can effectively address
the relative large-scale and high-dimensional data. Moreover, it is easily parallelized.
Random forest obtains the final classification result by integrating the classification
results of an ensemble of separately trained binary decision trees; each tree in the forest
is trained only on the subset of the data and feature. The introduction of randomness
makes the random forest model relatively robust to noise and mitigate the over-fitting
problem. Each random forest can be described by the number of the trees used, the
maximum depth and the weak learner used.

Due to the complexity of the EM image content, the context features extracted from
raw image may be limited in discrimination. Besides, segmentation by independently
inferring the label of each pixel is sub-optimal, as images with semantic content show
obvious label dependencies between adjacent pixels. Therefore, it is preferred that the
ultimate prediction can be influenced by the model’s beliefs about nearby positions.

To solve these limitations, 1) we use a hierarchical classification model, which
cascades multiple random forests to improve the segmentation results iteratively; 2)
we extract LPP features on the output probabilities of random forest in lower layers
as additional features to the random forest in the current layer. Importantly, the LPP
features extracted from the intermediate segmentation probabilitymap of the hierarchical
model have a much larger receptive field, since the probability map of each position is
influenced by information in the l × l local patch. Different from the original image,
features on the probability map that is produced by the previous classifier can reflect the
defect of the previous classifier, which help the latter to pay more attention to the poorly
segmentation region in the previous probability map. Therefore, the LPP features on
probability maps are expected to be useful to enhance the original context information.
The above method follows the philosophy of the auto-context framework proposed in
[16]. However, our model differs in that we use the LPP features proposed above to
characterize the contextual information in long range.

Specifically, in the training step, a sequence of classifiers F = {Ft, t = 1, · · · ,T }
are iteratively trained, which with a total of T random forests, as shown in Fig. 2 (b). The
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first forest is trained by extracting the local image features described in Sect. 2.1 from the
training patches; subsequent random forests Ft(t > 1) not only use the original image
as training data, but also use the previously-estimated probability map as augmented
training data. Importantly, we also extract the LPP features from the probability map
as the probability context feature, which used to enhance the discrimination of features
extracted on the grayscale images.

In the testing step, each trained classifier Ft is used sequentially to predict the test
EM images It . In the first iteration, we extract the local image features on It described in
Sect. 2.1, then predict it with F1 to obtain initial mitochondrial probability map. In the
second iteration, we not only use the features extracted in It , but also input the probability
context features extracted from the previously-estimated mitochondria probability map
as augmented features into F2 for prediction. Repeat the above steps until all trained
classifiers are applied. The output of the final cascaded forest is the segmentation result.

2.3 Hierarchical Context Forest in Multi-scale (M-HCF)

To accurately capturemitochondria of different sizes and improve the validity, robustness
of the model, we use the multi-scale strategy to further enhance the performance of the
model.

Specifically,atthefirst,weobtainS imagesofdifferentresolutions
{
I0, I1, . . . , IS−1

}

by sequentially downsampling each training image I , where I0 is the original scale image
I and I j is obtained by downsampling I j−1 with 1/2 times. Then,we apply theHCFmodel
onmultiscale images (m-HCF), see Fig. 2 (a), in which the input of themodel at high res-
olution is the corresponding scale image and the classification prediction probabilitymap
at low resolution.The introductionofmulti-scale strategymakes themodel utilize context
information of different spatial extents. Actually, themulti-scalemethod has been proved
to be effective on both natural image [20] andmedical image segmentation [23, 26].

In the model prediction step, the S images of different resolutions are obtained by
downsampling the test image It at first, and then input the image patches extracted
at different resolutions into the m-HCF model, which is already obtained by training.
Finally, we can get the result of segmentation from the m-HCF model.

3 Experiments

3.1 Experimental Setting

We evaluated the performance of our method on the Drosophila first instar larva ventral
nerve cord (VNC) dataset [3, 24]. DVNC dataset contains 30 Drosophila abdominal
nerve images of size 512 × 512 with a resolution of 5 × 5 × 40 nm3/voxel, which was
acquired using continuous slice transmission electron microscopy (ssTEM). The first 15
images were selected for training and the rest were used for testing. Also we evaluated
the robustness of the proposed method with 5 different splits of the dataset.

To evaluate the performance of segmentation,we selected Precision,Recall, F1-value
as the measurements, which are defined as follows,

Precision = TP

TP + FP
, (5)
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Recall = TP

TP + FN
, (6)

F1 - value = 2 × Precision × Recall

Precision + Recall
, (7)

where TP are the true positives, FP are the false positives, and FN are the false negatives.
F1-value is a metric that combines precision and recall, equivalent to the Dice similarity
coefficient, and it is one of the most commonly used comprehensive metric for evalu-
ating segmentation results. The larger the scores of the three metrics are, the better the
segmentation result is.

The model parameters were set as follows: for the multi-scale hierarchical context
forest (m-HCF), the scale number S was set as S = 2, which included 1/4 original image
size (I1) and the original image size (I0); for the hierarchical context forest (HCF), we
used 2 and 5 layers of random forests at the two scales, respectively; the patch size on
the size of 1/4 original image was set as 11 × 11, and on the original image size, set as
19 × 19. The discussion about patch size at I0 scale in Sect. 3.3. For parameters in the
random forest, the number of decision trees was 15, the maximum depth of each tree
was 50, and the minimum number of samples at the leaf node in each tree was 10. In the
experiment, we found that increasing the number of the trees, the depth of the trees and
the number of features selected by the non-leaf nodes, can improve the performance of
the model. However, this will result in much longer training time for the model and also
much larger memory requirement. The parameter setting in our experiments is a balance
of efficiency and accuracy.

3.2 Results and Comparisons

We evaluated the segmentation performance of our method and compared it with recent
mitochondria segmentation methods on DVNC, which are summarized in Table 1. We
compared our method with 1) the method of Kumar et al. [13], which devised a class
of powerful feature named Radon-like features for mitochondria segmentation; 2) the
novel pipeline of Giuly et al. [12], which combined patch classification, contour pair
classification, and automatically seeded level sets; 3) the method of Seyedhosseini et al.
[14], which originally extracted the shape and textural features of mitochondria by
algebraic curve, using the random forest as the classifier. We also tested the random
forest with the proposed features and the proposed HCF method using different scales
of images.

As shown in Table 1, our HCF method using 2 scales of images, with a balance of
computational efficiency and accuracy, achieved an average F1-value of 80.3%, 84.9%
Precision, and 78.5% Recall, indicating that it outperforms other methods in terms of all
metrics. In fact, the scores of the HCFmodel with only 1 scale (S = 1) is also higher than
most of other methods. Furthermore, using the proposed features, the simple random
forest method already achieved promising results, which show the discriminative ability
of the proposed features.
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Table 1. Performance comparison of different methods with multiple metrics on DVNC.

Methods F1-value (%) Precision (%) Recall (%)

Kumar [13] 56.6 59.3 54.2

Random forest (with proposed features) 62.6 71.4 55.7

Giuly [12] 60.4 64.2 57.0

Seyedhosseini [14] 72.9 78.5 68.0

Proposed method (S = 1) 77.8 72.0 87.5

Proposed method (S = 2) 80.3 84.9 78.5

3.3 Model Analysis

The Effectiveness of the Proposed LPP Features (see Fig. 4). In order to verify the
validity of the LPP features designed in this paper, we tested the multiscale HCFmethod
using different features and different feature combinations. To be specific, we firstly
set the baseline features (B in Fig. 4) as the 6 statistics (i.e., mean, variance, median
entropy, kurtosis, skewness) and central point pixel intensity from the image patch in
the grayscale image, gradient image, and probability map. Then, the baseline features,
Radon-like feature [13], LBP feature [18], Haar-like feature, the proposed feature LPP
including LPP-I and LPP-II and their combinations are compared.

Fig. 4. Comparison of segmentation results with different choices of features.

The results of comparison F1-value metric are demonstrated with a box-plot shown
in Fig. 4. It can be observed that LPP features are superior to the classical LBP, Haar
features and also the Radon features. The F1-value using baseline features is 61.5%;
compared with the LBP feature, the LPP-I feature (i.e., LBP-like feature) was better,
and the F1-value was improved from 64.4% to 73.8%; in comparison of LPP-II features
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with the Haar features, and the Haar + LBP features, we can see that the F1-value
increased from 75.5%, 77.2% to 77.9%, so the LPP-II features are not only better than
the Haar features, but also better than the combination of Haar and LBP features. In
addition, the full LPP features are significantly better than the combination of LBP and
Haar features, and the F1-value was increased from 77.2% to 79.8%.

These results proved the advantages of the LPP features designed in this paper. To
further increase the robustness of ourmodel, we combined the LPP featureswith the LBP
features in the final model, and the F1-value of the final segmentation was 80.3%. Three
reasons may explain the improvements using LPP features: 1) the LPP features contain
sufficient image contextual information to resolve the ambiguity of local appearance and
texture features; 2) the sub-patch based LPP features are more robust to noise; 3) a large
number of features provides guarantee for tree depth, which improves the performance
of the model.

The Influence of Patch Size (see Table 2). To verify the influence of different patch
sizes at I0 scale, we compared the segmentation results using different patch sizes at
I0 scale. As shown in Table 1, our model is relatively robust to different patch sizes.
Moreover, our model performed best when the patch size was set as 19 × 19.

Table 2. Segmentation results of different patch sizes at I0 scale.

Metric Patch size (pixel)

13 × 13 15 × 15 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25 27 × 27

F1-value (%) 77.4 79.5 79.8 80.3 80.2 79.6 79.5 78.6

The Influence of Scale Parameter (see Fig. 5). To verify the validity of multi-scale
strategy, we compare the segmentation results of single-scale (S = 1) and multi-scale
(S = 2). Figure 5 shows the intermediate results in the model iteration process, and the
comparative results of performance are shown in Table 1. Comparing the probability
maps of the second column of Fig. 5, it can be seen that the left lower non-mitochondrial
region detected error at I0 scale can be easily detected correctly at I1 scale, and the
probability map at the I1 scale is much more “cleaner” than the probability map at the I0

scale, which is more conducive to the subsequent classifier to refine the mitochondrial
classification probability map.

The Bias of Training Data Selection (see Fig. 6). To verify the robustness of our
model, we employed the 5 different splits of the dataset to train model. For each split of
the data, we randomly selected 15 images from the dataset as the training set, and the
rest as the testing set. Figure 6 shows the results of segmentation accuracy with the 5
different splits. The relatively low standard deviation of the performance show that our
method is less affected by the bias of training data selection, and the average value of
the results is close to our segmentation result shown in Table 1.
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S=1

S=2

(a) Original image         (b) First layer           (c) Second layer           (d) Final layer

Fig. 5. Probability maps at different layers of each scale. (a) Original image & ground truth; (b)
probability map of first layer; (c) probability map of second layer; (d) probability map of final
layer. The first row (b)–(d) at I0 scale; the second row (b) at I1 scale, (c)–(d) at I0 scale.

Fig. 6. Segmentation results of our method with 5 different splits of dataset for training and
testing. The standard deviation of the 5 segmentation results is 1.0.

4 Conclusion

This paper presented a multiscale HCF model for the automatic segmentation of mito-
chondria from EM images. To address the challenges of complex image contents, we
proposed a novel set of discriminative contextual features, named LPP, to encode multi-
level contextual information. Specifically, under the framework of iterative refinement,
we extracted features both on raw images and intermediate predictions, which can effec-
tively alleviate the negative impact of complex content of EM images on the mitochon-
drial segmentation task.Our approach is generic and can be used for similar segmentation
tasks. Validation and comparisons on the challenging DNVC dataset indicated that the
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proposed method is robust and effective for the automatic segmentation of mitochondria
form EM images. In the future work, we plan to extend our work to 3D analysis with
exploiting the 3D information of the EM image stack. In addition, we intend to apply
our model to other objects segmentation task of EM images.
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