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Abstract. Studying the original gene expression dataset is one of the essential
methods for analyzing biological processes. Many platforms were developed to
conduct this kind of study, such as GSEA, and the online gene list analysis por-
tal Metascape. However, these well-known platforms sometimes are not friendly
enough for inexperienced users due to the following reasons. Firstly, many bio-
logical experiments only have three duplicates, which make classical statistical
methods lack of efficient and accuracy. Secondly, different experiments could
result in different gene expression profiles, where standard differential expressed
gene identification methods still have room to be further improved. Thirdly, many
platforms work only for specific experimental conditions based on their default
parameters, where users are not easily setup parameters for their own studies. In
this study, we designed a comprehensive and flexible gene expression data anal-
ysis tool, where six novel differential expressed gene identification methods and
three functional enrichment analysis methods were proposed. Majority parame-
ters can be friendly setting by users and a variety of algorithms can be 9 according
to the user’s own study designing. Experiments show that our platform provides
an effective way for gene set series analysis, and has great performance in both
practicality and convenience.

Keywords: Gene expression · Differentially expressed genes · Microarray data ·
Functional enrichment analysis

1 Introduction

Detecting differentially expressed genes aims to find the classes of genes that are signif-
icantly expressed or depressed. In many biological experiments, taking drug discovery
as an example, researchers need to find genes that have significant changes in expression
levels due to drug action. Furthermore, biological changes typically involve a gene set in
which multiple genes are associated with individual biological pathways or GO terms.
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Therefore, researchers normally follow the following two steps to analyze gene expres-
sion datasets: i) identify differentially expressed genes, ii) perform functional enrichment
analysis based on differentially expressed genes, such as pathway enrichment analysis
or GO analysis.

Although many methods and tools have been widely developed for analyzing gene
expression data sets, there are still some shortcomings. Considering the flexibility and
practicality of the tool, we think that the current analysis tools can be further improved
in the following three aspects.

Firstly, due to the limited budgets or low sample availability, many biological exper-
iments have only three duplications for each condition. These limited number of sam-
ples makes many standard statistical methods inefficient, and the results based on these
methods contain many false positives, which is not reliable.

Secondly, Fig. 1(a) shows gene expression dataset that the majority of genes were
normally expressed, and only a small number of genes were expressed with very low or
very high levels. The standard fold-change method [1] works very well for this kind of
dataset. However, when it comes to the dataset like Fig. 1(b), this method may not work
well. The standard fold-change method could only detect genes with small expression
levels, because a slight change of the gene expression could result in at least two-fold
changes between the test and control groups, but a larger expression change is needed for
a gene if the its expression level is high [2]. A scatter plot of this kind of gene expression
with 3 test and 3 control samples was shown in Fig. 1(b). The simple fold change method
is not sensitive to expression noises [3], which not only results in lots of false positives,
but reduces the possibility of detecting highly expressed genes.

Fig. 1. The scatter plot of gene expression dataset. (a) A typical gene expression scatter plot where
majority of genes were expressed normally, with only small number of genes were expressed with
very low or very high levels. (b) Another gene expression scatter plot where the expression level
of majority of genes were very low.

Thirdly, many gene expression analysis tools are designed only for general experi-
ments and are not effective enough for other kinds of datasets. Many other tools only use
default values to encapsulate the parameters of the differential expressed gene detection
algorithms, and do not allow users to set parameters based on their own experimental
conditions.Moreover, some platforms only focus on either differentially expressed genes
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or functional enrichment analysis, which makes users have to combine at least two dif-
ferent platforms to complete the whole analysis processes. Since one platform generally
is designed only for specific kind of biological condition [4], the mixed combination of
different platform may introduce new biases. Besides, some online analysis tools only
allow limited gene expression data, for example, 3000 genes [5], which results in large
volumes of data that cannot be processed.

In this study, we designed a comprehensive and flexible platform for analyzing gene
expression data that allows for customparameter settings for almost all-important param-
eters. In addition, we proposed six new methods for identifying differential expressed
genes and two functional enrichment analysis methods. The platform is applicable to
different types of data, making the design platform more versatile and effective.

The structure of the article is arranged as follows. Section 2 introduces methods for
data cleaning and differentially expressed identification. Section 3 compares the results
of the proposed methods. Section 4 draws conclusions and discussions.

2 Methods

2.1 The Overall Framework of the Gene Expression Analysis Platform

The overall framework of the proposed platform is shown in Fig. 2.

A: Input file types. The designed platform allows for the entire process of gene expres-
sion data analysis, from data cleansing to data normalization, from identification of
expressed genes to functional enrichment analysis. Thus, it can support users either to
upload the raw gene expression data sets or provide a list of differentially expressed
genes for further enrichment analysis.

Two kinds of raw gene expression datasets are allowed as inputs, either in the form
of one file that contains both the control and the test dataset together, or in the form of
two files which contain the test group of data and the control group of data separately.
This makes the platform has high compatibility and the scalability.

The proposed platform also allows users to define differentially expressed gene
list as input, since in many cases, one only interest in the functional related analysis
of a group of genes, without re-selecting genes from a given file. Several promising
functional enrichment algorithms and network layout processes are employed to display
the analysis results interactively.

B: Data cleaning. Data cleaning is one of the most overlooked but also the most critical
steps in gene expression data analysis. In general, external experimental conditions
affect gene expression data. For example, the drug injection dose of a sample may be
proportional to the gene expression levels.

More importantly, gene expression data is affected by biological and technological
variations, and a certain gene may correspond to multiple expression level. Therefore,
the necessary data cleaning process must be performed prior to genetic analysis, which
is an essential step in any data analysis.
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Fig. 2. The framework of the gene expression dataset analysis.

C: Identifying differentially expressed genes. Although many traditional methods to
find differentially expressed genes in a given dataset, such as fold-change method [2]
and t-test method [6, 7], these tradition methods are not proper for certain situations.
For example, the fold-change based methods are not appropriate to this situation where
there are lots of low expression values (or zero values) in the raw data, and the t-test will
not perform well when the number of samples is small. Our platform improves existing
traditional methods with new five algorithms to identify the differentially expressed
genes in a given expression data set. The platform also allows users to set parameters
according to their own experimental conditions.

D: Functional enrichment analysis. Once obtaining a list of significantly differen-
tially expressed genes, the functional enrichment analysis will be conducted by inte-
grating pathways, Gene Ontology (GO) and some biological networks. The platform
implements different algorithms to functional enrichment analysis, as well as find the
relationships between pathways and genes, between GOs and genes, between pathways
and pathways, or between genes and genes.

E: Output information and results. The platform will finally prepare the outcomes
drew from the above results. Users can get the following information: (1) significantly
differentially expressed genes list, (2) pathways these genes enriched, (3) GOs that these
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genes enriched, (4) the relationships between significantly enriched pathways and (5)
the relationships between these differentially expressed genes.

For better observation of the relationships between pathways and pathways as well
as genes and genes, the platform will generate functional networks to show these rela-
tionships by using d3.js. Also, the platform will give bar graph to show the degree of
how significantly the pathways or GOs enriched.

2.2 Methods for Data Cleaning

A: Distinguishing gene data. In the raw gene expression data set, sometimeswe notice
that a certain genemay appearmore than once, thus this genemay havemultiple different
expression level. In order to choose the exact data for further analysis, we propose three
methods to distinguish gene data from the raw gene expression profiles.

Method 1. selecting the first occurrence of the data
For a certain gene that appears more than once, we use the expression data that

appears earliest and ignore all following profiles of the same gene.

Method 2. using the sum value
For a certain gene that appears more than once, we will find all expression levels of

this gene, and calculate the sum of the values in corresponding samples. Then, the new
data will be used for the further analysis.

Method 3. using the mean value
The average of all expression values is calculated for a particular gene as its new

profile.

B: Data normalization. To eliminate the effect of different concentration degrees of
the raw samples brought to data, the platform also provides normalization based on the
sum of columns.

2.3 Algorithms for Identifying Differentially Expressed Genes

Giving two sets of m control samples and n test samples, respectively. Let c1, c2, …, cm
be the expression value of control samples and t1, t2, …, tn be expression value in test
samples. Let

c̄ =
∑m

i=1 ci
m

represents the mean value of the expression data in control samples, and

t̄ =
∑n

i=1 ti
n

represents the mean value of the expression data in test samples, respectively.



A Flexible and Comprehensive Platform for Analyzing Gene Expression Data 175

The traditional fold-change based method can be describe briefly as the following
formula:

s = log2
t̄

c̄
(1)

If s is larger than 1 or smaller than −1 [8, 9], the gene will be regarded as signifi-
cantly highly expressed or depressed. However, there are some potential problems when
using this method. Firstly, a lower expressed gene is easier to obtain a two-fold change
compared to a higher expressed gene in term of their change requirement. Hence, this
method is biased to low expressed genes, and may misclassify differentially expressed
genes with small ratios but large differences, leading to poor identification of genes at
high expression levels [2]. Secondly, when the expression values in either the denomi-
nator or numerator are close or equal to zero, the ratio is not stable and even cannot be
calculated, and the fold change value can be disproportionately affected bymeasurement
noise. To solve these specific problems, we provide the following six methods to find
differentially expressed genes.

A: Improved fold-change method. This method is designed for the situation where
there are zero values in the raw expression data, because zero cannot be denominator.
Traditional methods normally filtered those genes, but we think those genes still have
valuable information to interpret gene expressions.

Case 1. For normal gene expression values
This is the normal casewhere the gene expression data can be used to do fold-change.

For all the genes to be analyzed, we take the gene as differentially expressed gene when
the calculated s in (1) is larger than a fold threshold. Users can set the fold parameter or
choose the genes with top n% s as differentially expressed genes, where n can be set by
themselves according to requirements.

Case 2. data For gene expression values where c̄ = 0 or t̄ = 0
For all the genes with c̄ = 0, we look at the corresponding t̄. If a certain gene

with c̄ = 0 while its t̄ is in the highest k% of this kind of genes, we think this gene
as significantly expressed, where k can be set by users according to their requirements.
Following the same procedure, we process genes with t̄ = 0. Then, we put the two parts
of differentially expressed genes together as significantly expressed genes.

Case 3. For gene expression values where c̄ or t̄ closes to zero
Either in test group or control group, if there are more than two thirds of the gene

expression data is 0, we may consider that the non-zero values may be caused by noise.
So, in this case, we need to do some pretreatments, transferring the gene dataset to above
two cases. For a certain gene, if there are more than two thirds of the expression data is
0 in test group, then we calculate its t̄ After processing all this kind of genes, if the t̄ is
smaller than the k% percentile of all t̄ s of this kind of genes, we will view that the gene
does not express in test group and the small value is drawn from noice. The k% can be
set by users according to their requirements. Following the same procedure, we process
the genes with more than two thirds of the expression data is 0 in control group. We will
set its expression data in test group all to 0s. For the rest of the genes, when selecting
differentially expressed genes, do as the Case 1 and Case 2 do.
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The expected results of the differentially expressed genes should scatter uniformly
in different expression levels, rather than just concentrate on the areas where the gene
expression level is pretty low. To solve this problem, we provide the following methods.

B: A divided section-based method. To identify differentially expressed genes scat-
tered not uniformly in different expression levels, a set of divided sections was given
according to the mean expression values. Taking the highest n% logarithm of the ratio in
every divided section as differentially expressed genes, where n can be set by users. Still,
we will focus on the gene dataset in normal cases, the procedures are same in previous
improved fold-change method. The pretreatment procedure is discussed before.

Step 1. Pretreatments should be done to transfer the gene dataset to normal cases.
Identify differentially expressed genes in special situations firstly, and then rank the
expression level of genes according to t̄.

Step 2.Divide the genes into sections, ensuring that the number of the genes in every
section is same (except the last section). It will lead to under-fitting or overfitting if the
number of genes is too small or too big. In expected situation, every section includes
0.02%–0.03% of the total genes.

Step 3. In every section, calculate the fold-change score s in (1), taking the genes
with highest n% s score as differentially expressed ones.

This partition method has met the requirement of selecting differentially expressed
genes from low to high levels. However, there is still a little problem associating with
partition method. We divide the genes into lots of groups, but the boundaries between
groups will be very obvious if the number of groups is too small. In turn, it will lead to
overfitting, greatly lower the quality of the outcome if the number of groups is too big.
Thus, we design the following method to find a smooth curve, which shows that genes
above or below are selected to be differentially expressed genes.

C: Fitting Exponential Function Curve.We notice that the exponential function can
be a monotonically decreasing function, meeting the expectation that differentially
expressed genes are not uniformly distributed in lowand high expression level.Here,
we just focus on the gene dataset in normal cases, and the pretreatment procedure
is discussed in section A: Improved fold-change method.

Step 1. Rank the data of the genes according to the mean expression value in test
samples t̄.

Step 2. Finding out the gene with its mean expression value in test group, if its
expression value is in kth percentile of all mean expression value in test group, where
k can be set by users according to their requirements, denote this value as x. Similarly,
calculate its corresponding mean expression value in control samples, and denote this
value as y.

Step 3. According to x and y, we can get a specific exponential function (2).

y = ax (2)

However, the exponential function always intersects with y-axis on (0,1). So, the
exponential function should be moved rightward. The distance of the right-move is the
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kth percentile of all mean expression value in test group of genes, and denote this value
as x0. Then, we will get a new exponential function as follows.

y = ax−x0 (3)

Step 4.We use the mean expression value in test group of the genes as abscissa, and
absolute value of the logarithm of 2-fold change between mean expression value in two
treatments. We choose the corresponding gene as a differentially expressed gene if the
point is beyond the exponential function curve.

D: Mean difference-based method.Another alternative method is based on the mean
difference.We use the following formula to evaluate the changes of expression level
(4) for a certain gene gi,

xi = ∣
∣t̄i − c̄i

∣
∣ (4)

The genes with the difference in highest n% of all the differences are selected
as differentially expressed genes, where n can be set by users according to their
requirements.

E: PCA difference-based method. Similar to the previous method, but the only
difference is doing pretreatment before calculating the needed differences.

Step 1. For all the genes, drawing PCA to one dimension on their expression values
in test and control samples [10], respectively.

Step 2. For a specific gene, calculate the absolute value of the difference between
the principle component in test and control samples.

Step 3.After processing all the genes, choose the genes with the difference in highest
n% as differentially expressed genes.

F: Geometrical distance-based method. In this method, we use the geometrical dis-
tance of the raw expression data between two conditions. We view gene values in
test and control samples as two points respectively, if the “distance” between the
two points is very large, we may say that the expression level of the gene changed
greatly in test group and control group. Here, we use 2-norm to describe the “dis-
tance” between the two points. Notice that the method is just for the situation where
the numbers of samples in test group and in control group are same.

Step 1. For the genes, rank the expression values in test group and control group
respectively.

Step 2. Two vectors are constructed by using the sorted values for the test and control
groups, respectively.

T :
[
t
′
1t

′
2 . . . t

′
n

]
(5)
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C :
[
c

′
1c

′
2 . . . c

′
m

]
(6)

Step 3. Calculate the 2-norm of the two vectors, just like calculate the distance
between two points (7).

d = |T − C| (7)

Step 4. After processing all the genes, choose the genes with the d in highest n%
of all the ds as differentially expressed genes, where n can be set by users according to
their requirements.

2.4 Algorithms for Functional Enrichment Analysis

The comparison of individual gene expression values is not sensitive enough to detect
the subtle functional changes of biological systems, because cellular changes typically
involve in many groups of genes. Multiple genes are linked to a single biological path-
way [11, 12], and it is the additive change in expression within gene sets that leads to
the difference in phenotypic expression. Thus, researchers will not just focus on the iso-
lated genes, but turn to the pathways and GOs that these differentially expressed genes
enriched. The enrichment analysis helps researchers to understand and interpret omics
data from the point of view of canonical prior knowledge structured in the forms of
pathways and GO diagrams. This allows us finding distinct cellular processes, biolog-
ical changes or diseases that are statistically associated with selection of differentially
expressed genes between two samples [7].

The proposed platform supports four kinds of enrichment analyses, where two of
which are proposed to meet the basic requirements for the pathway enrichment and GO
enrichment analysis, respectively.

A: Pathway enrichment. Traditional enrichment analysis algorithm is based on
Fisher’s exact test [13]. In addition, the platform also supports additional two more
methods for enrichment analysis for different experimental conditions.

Method 1. Fisher’s exact test
The detail methods of the fisher’s exact test can be found in [14].
Method 2. Using the relationship between gene sets
We know that the membership overlap of two gene sets can be used to describe

the relationship about them. The bigger the intersection of the two sets, the closer of
their relationships. In this method, we apply this concept to enrichment analysis as
follows. For a certain pathway, we can easily know what genes it includes according the
information in the database at the backend of the platform. We use a new set U to store
the intersection part of the genes included in pathway and the differentially expressed
genes found before, and use another set V to store the union part of the genes included
in pathway and the differentially expressed genes found before. If the U is not null, we
calculate the quotient of the number of genes inU and V. The bigger the value, the more
the two sets overlap, which means the more significantly the pathway is enriched.
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Method 3. Using the weighted f-measure
We borrow the ideas from the concepts of precision and recall [15] in this method.

Let Pi denote the gene set of pathway i, and D the set of differentially expressed genes.
The precision is defined as the quotient between the number of genes in the intersection
of the two sets and the number of genes in difference, and the recall is defined as the
quotient between the number of genes in the intersection of the two sets and the number
of genes in interested. Then we calculate the f-measure to describe how the pathway is
enriched in given differentially expressed gene set. However, we notice that the number
of genes in the intersection of significantly differential is small when doing pathway
enrichment, which leads to the fact that precision is small. Thus, the f-measure is largely
depended on recall. So, we calculate the weighted f-measure to balance importance of
precision and recall, for example, we will make precision more important when we are
calculating the f-measure.

B: Pathway Relationship. After finding out the pathways the differentially expressed
genes are included, we use the degree of overlap of the pathways to describe the
relationship between them.

Step 1. Find out the differentially expressed genes that contained in the pathway.
Step 2. Calculating the number of genes in their intersections and unions for the

given pathways.
Step 3. If the numbers of genes in the intersections and unions are not equal to zero,

calculate the quotient of the numbers of genes in the intersections and in the unions.
Then we use this quotient to describe the relationship between pathways. The bigger the
quotient, the closer connection between two pathways.

C: Gene Ontology Enrichment. Gene Ontology (GO) is a major bioinformatics ini-
tiative to unify the representation of gene and gene product attributes across all
species. The way we take GO enrichment analysis is the same to the previous
pathway enrichment. We support traditional Fisher’s exact test, as well as use the
relationship between precision and recall. The difference is that we use f-measure
as a standard when we use precision and recall to describe whether the GO is
significantly enriched.

D: GO Relationship. As we do in section B: Pathway Relationship, we use the same
method to find the relationships between the selected significantly enriched GOs.
However, GO is kind of a big term which contains many information. So, we don’t
pay much attention in this study. The updated version will contain this part.

E: Functional relationship network. A functional relationship network between
genes will then be generated by using PPI networks, where each node represents
a gene and edge represents the interaction between two genes. This functional
relationship network between differentially expressed genes should show potential
gene communities related to different biological functions, which is an important
supplementary for those canonical prior knowledges structured.
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3 Results

3.1 Effects of the Methods for Detecting Differentially Expressed Genes

We compared the performance of the proposed methods in terms of detecting dif-
ferentially expressed genes and their functional communities, as following figures
shows.

The x-axis represents the mean expression value in test group of the genes, and the
y-axis is the absolute value of the logarithm of the ratio of the mean expression value
between test group and control group (Figs. 3, 4, 5, 6, 7 and 8).

Fig. 3. The performance of the improved fold-change method for identifying differentially
expressed genes. Red spots represent all raw gene data in the expression data set, the blue spots
represent the gene that are differentially expressed. There are 291 nodes and 301 edges in the right
functional relationship graph. (Colour figure online)

Fig. 4. The performance of the divided section-based method for identifying differentially
expressed genes. The red spots represent all raw gene data in the expression data set, the blue
spots represent the gene that are differentially expressed. There are 955 nodes and 1254 edges in
the right functional relationship graph. (Colour figure online)
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Fig. 5. The. The performance of the fitting exponential function curve-based method for identi-
fying differentially expressed genes. The red spots represent all raw gene data in the expression
data set, the blue spots represent the gene that are differentially expressed. There are 369 nodes
and 404 edges in the right functional relationship graph. (Colour figure online)

Fig. 6. The. The performance of the mean difference-based method for identifying differentially
expressed genes. The red spots represent all raw gene data in the expression data set, the blue
spots represent the gene that are differentially expressed. There are 750 nodes and 979 edges in
the right functional relationship graph. (Colour figure online)

Fig. 7. The performance of the PCA difference based method for identifying differentially
expressed genes. The red spots represent all raw gene data in the expression data set, the blue
spots represent the gene that are differentially expressed. There are 755 nodes and 982 edges in
the right functional relationship graph. (Colour figure online)
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Fig. 8. The performance of the geometrical difference-based method for identifying differentially
expressed genes. The red spots represent all raw gene data in the expression data set, the blue spots
represent the gene that are differentially expressed. There are 729 nodes and 888 edges in the right
functional relationship graph. (Colour figure online)

4 Conclusion

We started with microarray data and explained data cleaning and data normalization.
Considering that the distribution of data samples may be uneven, we analyzed the distri-
bution of expression data. From the perspective of expressing data types, we proposed six
methods for data analyzing, which is greatly reflected in our platform.We also integrated
the enrichment analysis function in the platform.

This flexible genetic analysis platform eliminates the need for a separate platform
to perform different analysis processes. More importantly, the platform allows users to
input raw microarray data and can help filter data noise, users also can set parameters
themselves, which greatly improving the shortcomings of traditional platforms. Such an
integrated platform returns the final results in text and graphics, facilitating user analysis
and visualization of gene expression data. Experiments proved that the proposed platform
has good utilization value in both practicability and efficiency.
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