Detecting Vulnerabilities of Web)
Application Using Penetration Testing L
and Prevent Using Threat Modeling

Sandip Sarkar

Abstract The number of Web attacks is increasing gradually, mainly the popularity
of Web application in organization, school, and colleges. For this reason, the security
of their sensitive information against attacker becomes very important for all orga-
nization and companies. In this paper, we describe different type of Web application
attack like SQL injection, XSS attack, CSRF attack, and Buffer overflow. Besides,
we discuss about different types of penetration tools for Web applications. Penetra-
tion testing try to find the vulnerabilities of Web application so that we can build
a defense mechanism to deal with Web attack. Finally, we build attack trees and
defense trees to represent the attacks and to prevent those attack.

Keywords Web application + SQL injection - XSS attack - CSRF attack - Attack
tree + Defense tree

1 Introduction

In the beginning of Web application, there were only static Web pages which
contained static information. Now, the popularity of Web application gradually
increases, and in the same time, the architecture of Web application become more
complex. Web applications are used in organizations, bank, so companies concen-
trate to secure their sensitive data like username, password, bank card numbers, etc.
An attacker can get sensitive information using malicious code. SQL injection and
cross-site scripting (XSS) are the two most famous vulnerabilities in Web application.
Detection or prevention of Web attack is a challenging issue. To detect the vulnera-
bilities of Web application, we have used different types of automatic vulnerabilities
tools but none of them can guarantee to find the vulnerabilities of Web application.
In our paper, Sect. 2 describes different types of Web attack. Section 3 gives some
brief description of different types of Web application-based penetration tools. We
build different types of Web attack trees and those are described in Sect. 4. Section 5

S. Sarkar (X)
Hijli College, Kharagpur, India
e-mail: Sandipsarkar.ju@gmail.com

© Springer Nature Singapore Pte Ltd. 2021 21
P. K. Mallick et al. (eds.), Advances in Electronics, Communication and Computing,

Lecture Notes in Electrical Engineering 709,

https://doi.org/10.1007/978-981-15-8752-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8752-8_3&domain=pdf
mailto:Sandipsarkar.ju@gmail.com
https://doi.org/10.1007/978-981-15-8752-8_3

22 S. Sarkar

gives the information that how to prevent those attack using defense trees. Finally,
Sect. 6 conclude the paper.

2 Different Types of Web Attack

In this paper, we discuss different types of vulnerabilities of Web applications.
Besides, counter mechanism for those Web vulnerabilities is given.

2.1 SOL Injection

SQL injection is one type of code injections in which malicious code injected into
the SQL query so that attacker can direct access to the database and leak confidential,
or even sensitive, information without proper authorization [1, 2]. The main reason
of SQL injection is mainly because of insufficient validation of user input. Table 1
describes the statics of SQL injection from year 2012 to 2019.

(a) Tautology

In SQL tautology, attacker user injects malicious code into one or more conditional
statements to bypass user authentication [3]. If a malicious user enters ‘OR’ 1 = 1- -
instead of a legitimate username into username fields, then the SQL query looks as
follows:

select * from user where name = ‘Alice ‘OR’ 1=1- - ‘and password ="

This statement is only checking the username field and successfully bypassing the
authentication mechanism. Similarly, attacker injects Alice/* into the username field
and */ into the password field to bypass user authentication. This malicious code.

select * from user where name = ‘Alice’/* ‘and password ="*/
select * from user where name = Sandip/# and password =#/

’.I‘gble. 1 Statistics of SQL Year Matches Total Percentage (%)
injection

2012 366 5288 6.92

2013 269 5187 5.19

2014 478 7937 6.02

2015 389 6487 6.00

2016 253 6447 3.92

2017 692 14,645 4.73

2018 732 16,512 443

2019 820 17,311 4.74

Detecting Vulnerabilities of Web Application Using Penetration ... 23

(b) Union Query

A common example of SQL injection to add the statement ‘union select’, along with
an additional target dataset so that queries return the union of the intended database
with the target database.

Select * from users where username = ‘union select * from student -’ and pwd =

Yyz’;

The first SELECT query gives no result but the second query returns all
information about student.

(c) Piggy-Backed Query

In this technique, malicious user supply relies on server configurations that allow
several different queries within a single string of code. For example, an attacker can
add a query delimiter such as ‘;’, use it in such as a way that can delete using drop
table command.

select name from student where password= ‘Kharagpur’;drop table user;
update employee set position.id = 2456’ where id = ‘255’; delete from orders
WHERE id = ‘C0201’;

2.2 Cross-Site Scripting

A cross-site scripting attack (also known as XSS or CSS) occurs, due to poor security
awareness of developers [4]. In this attack, the attacker executes malicious code on
the victim’s machine for lack of input validation [5—7]. There are two type of XSS
attack: (i) Reflected XSS attack and (ii) Stored XSS attacks. Figure 1 describes about

| w
2100 commat-..
— B " step2: websen ver s
— : the cammands n he "N
- database
T
SETP 1: Atache] sand b g o g ey |
1: Attache{ sands] \\ page wih l commands. 4
URL encodef STRA 2: Vietim requests lc\ﬁlne datates _a
makcious vasirpt page o e , R
o web server wih A P
STEP 3 Wob sorver refoct

malicicus code in Teeds UNSCAPED] Datatarse

the UAL .' data and |
the malicious code

back 1o the victm

f commants i
| tocsm |
STE q 1 Vichm request page

i marbcous code /
e sty servur

STEP 4: Victim's web
Browser sxecule
1he malicious code

Fig. 1 Reflected and stored XSS attack

24 S. Sarkar

Table 2 Stat'ist.ics of Year Matches Total Percentage (%)
cross-site scripting

2012 771 5288 14.58

2013 639 5187 12.32

2014 1092 7937 13.76

2015 780 6487 12.02

2016 409 6447 6.34

2017 943 14,645 6.44

2018 920 16,512 5.57

2019 856 17,311 4.94

reflected and stored XSS attack. Besides Table 2 shows the statistics of XSS attack
form year 2012 to 2019.

(a) Reflected XSS Attack

In a reflected XSS attack, the actual malicious code is not stored on server but the
malicious code are delivered to the victims via e-mail messages [8]. This type of
attack mainly occurs when data submitted by the client is immediately processed by
the server and send back the result to the client.

(b) Stored XSS Attack

In a stored XSS attack, the malicious code is permanently stored on the target server.
The actual attack is occurred at later, when the client requests a dynamic page that
is managed by this server. The user’s Web browser executes the malicious code.

2.3 Cross-Site Request Forgery

Cross-Site Request Forgery is one type of Web attack where attack performs unautho-
rized activities using victims’ authority and credentials [9, 10]. In this attack occurs
while victim is currently logged into their account [11]. In the same time, victim’s
browser automatically sends request to the server without user’s knowledge. In this
attack, the server cannot understand which request is from the legitimate user. For
example, a user sends a request to the server with its session ID while sending money
to an account. An attacker can steal that user’s session ID and send request to the
server after modification of that request. An attacker can steal the session ID and
send the request to the bank server and he can also put his account number. For this
reason, the bank server deducts the money from the user and credit to the attacker
account. Figure 2 describes the mechanism of this attack. The statistics of CSRF
attack is given in Table 3.

Detecting Vulnerabilities of Web Application Using Penetration ... 25

5. Bank check the session and Send
the money to the attacker

1. Victim logged into banking site o ’
i S
= P el
Vietim 3. Victim visit the Attacker
malicious page
with hidden img

2. Create session and send to the Victim
Banking Server

tag
4. Transfer money to the attacker account

Fig. 2 CSRF attack

Table 3 Statistics of Year Matches Total Percentage (%)

cross-site request forgery
2012 165 5288 3.12
2013 120 5187 2.31
2014 247 7937 3.11
2015 246 6487 3.79
2016 73 6447 1.13
2017 190 14,645 1.30
2018 154 16,512 0.93
2019 226 17,311 1.31

2.4 Broken Authentication and Session Management

Broken authentication and session management attack is one of the most common
application layer attack mechanism used by attacker [12, 13]. Developer uses
different type of cryptographic algorithms and session management tokens, but it
is still a major problem how to secure the authentication. Wireshark is well-known
packet collector tool to perform this attack. The network packet may contain pass-
word, session ID, cookies. If the logging session of a user was not managed properly
then after the user’s logout, session may still reside in the Web application. Another
reason of this attack is to use GET method. User’s private credential may be visible
if the developer of the Web application use GET method.

2.5 Security Misconfiguration

The most common Web vulnerability is security mis-configuration which can occur
in any layer of Web application [14]. Most of the time, Apache HTTP server and
MySQL database server are used in Web application. Normally users use those

26 S. Sarkar

Web application environment with default settings. The configuration of MySQL is
controlled by my.conf file or using MySQL-specific directives in php.ini. For empty
root password of MySQL causes command injection attacks or denial of service
attacks. PHPSecInfo and PHP security edit are automatic tool to check security
mis-configuration. But both automatic tools are only limited to PHP.

3 Web Application Penetration Tools

A Web Application Penetration Test tries to provide a clear idea of the system and
also provide how to secure an organizations information from real world attacks. In
this section, I discuss about well-known penetration tools which help to detect the
vulnerabilities of Web applications.

3.1 AMNESIA

AMNESIA is a well-known penetration tool to detect SQL injection. This tool
consists of two parts: one is static analysis and another one is runtime monitoring.
This technique finds malicious code before being executed on the database. It uses
model-based approach. In static part, it analyzes the Web application code to build a
model of the legitimate queries. In dynamic part, it checks the dynamically generated
queries with the statically built model using run time monitoring. This model finds
the malicious queries and prevents it to access the database.

3.2 Xsser

Xsser is an automatic and open-source framework to find the vulnerabilities of Web
application. This framework contains several mechanisms to break different filters
and various special techniques of code injection.

3.3 Acunetix

Acunetix Web vulnerability scanner is an automated tool to find the vulnerabilities of
the Web application. Security analyst uses Acunetix to find the vulnerabilities such
that SQL injection, cross-site scripting, and weak passwords.

Detecting Vulnerabilities of Web Application Using Penetration ... 27

3.4 Sqlmap and Havij

Sqlmap Havij are both automated SQL injection tool that help the developers to check
SQL injection vulnerabilities of Web application. Attacker can retrieve username
and password from login database using those automated tools. Sqlmap is developed
using Python language and for this, it is independent of operating system.

3.5 Netsparker

Netsparker is a very powerful Web application security scanner and it can find
most of the vulnerabilities of the Web application. This penetration tool is platform
independent. It is very useful for security analyst to build a secure Web application.

4 Threat Modeling Using Attack Tree

In the previous section, we discuss different types of threats of Web application. These
threats can come inside the application or outside the application. For this reason,
threat modeling is very essential to prevent sensitive information which are stored
in the database. Threat modeling is mainly built to find problems before designing
of a system. Threat modeling can be achieved by different mechanism. Nowadays,
attack tree is very popular for the designing of threat modeling.

Attack trees describe a graphical representation of attacks which are performed
by the attacker. The root of this tree is the main goal of attacker. Each node of the
attack tree contains an action. There are two types of relationship (i.e., OR and AND
relationship) which connect the child node. For OR relation between child node, if
any of the child node is executed by the attacker, then attacker can access parent
node. Likewise, for AND relation between child node, if all child nodes are executed

Wweb attack
[[[[[|
saL CSRF attack security xss aftack Insecure direct Eroken
injection fnisconfiguratiol object authentication
References and session
managernent

Fig. 3 Attack tree of web attack

28 S. Sarkar

by the attacker then attacker can access parent node. Figure 3 shows the attack tree
of web attack.

We are trying to build an attack tree of Web attach which is shown in Fig. 4. It
describes the general view of Web attacks is divided into six main categories.

Those are XSS attack, Insecure data object, Broken authentication and session
management, CSRF attack, SQL injection, and security miss-configuration. Figure 5
describes the attack tree of SQL injection. SQL injection can be performed using steal
system information or using attack against database. If any of the them is successful,
then the parent node means SQL injection is successful. Similarly, other nodes of

SaL
Injection

steal
system
infarmation

Altack
against
Database

rror-based
attack

0?1;::::‘;!‘ o Id“anm » Inject Inject o Sulor
based attack character command manipulation overflow
i—k—l —
[|] []
Identify Inject ime Tautology- union based Plggy-backed | | Perform long does not
injection point interface based attack attack attack string based restrict long
command attack input string

Fig. 4 Attack tree of SQL injection

Logged as
user's
credential

Obtain
usemarme/
password

Obtain Obtain Improper Hijack
usemame password session session id
validation
Dictionary Brute force Dictionary Brute force (Close browser| Analyze the Analyze the Brute force
based attack attack based aftack attack without logout rovwser histol traffic method to get
of the victim the next
session |0

Fig. 5 Attack tree of broken authentication and session management

Detecting Vulnerabilities of Web Application Using Penetration ... 29

Security
Misconfigurati

Aftack the
application
server

Attack the
database
Sener

Old version of Default Command Default root
operating settings injection attack| password
system
XSS attack
| | | |
Disable Zone security Checking the tic analysis of
Jjavascript referer header input string

Fig. 6 Attack tree of security mis-configuration and XSS attack

attack tree of SQL injection are executed using same scenario. Figure 5 shows that
architecture of broken authentication and session attack. Attacker can obtain user
name and password using brute-force attack and dictionary-based attack or user can
enter into the system using user’s session-id. Figure 6 described that xss attack is
divided into three subdivisions. To perform persistence XSS attack, attacker first
finds the injection point and then injects his code into the database. Here, the relation
is AND operation, if the two-child node are successful then the Persistence XSS
attack is successful. It is same for the reflected- and DOM-based XSS attack.

5 Defense Tree

Attack tree represents the attacking scenario based on attacker’s point of view. We
cannot secure our Web application using attack tree. For this reason, we need another
type of mechanism (i.e., Defense tree). Defense tree represent the counter mechanism
for different types of attack (i.e., described in attack tree). Figure 7 describes the
defense tree of SQL injection. Database can be protected using encryption, minimum
user privilege, and using prepare statement. In our previous section, we described
about SQL injection. Similarly, Figs. 7, 8, and 9 describe the defense tree of broken
authentication and session management, XSS attack, and security mis-configuration.

S. Sarkar

30
SaL
injection
steal Ajtah
system against
information Database
| .
I |
: Minimum user Using Checking the
Blind Error- L .
injection attack based attack FIiEns EHEnpion e
e T
Checking the Do not show the|
input field system specific
error

Fig. 7 Defense tree of SQL injection

Security
Misconfiguratio

‘Atack the ‘Attack the Attack m:g"l:?:;
application database perform action site
server server using victim's
identity
Change the Update the Change the Update the Do not browses Use secrete
default settings database server| |default settings database server| other website validation token

Fig. 8 Defense tree of security mis-configuration and CSRF attack

6 Conclusion and Future Work

In this literature survey, different type of security flaws of Web applications is
described. Web application vulnerabilities are mainly because of improper input

Detecting Vulnerabilities of Web Application Using Penetration ... 31

Broken
I authentication
and session

[[[]
Disable Zone security Chacking the tatic anatysis o
javascript referar header input string

Oblain
usemame and
password

Logged in
as users
cradential

Add an ILogged out from| Change the Password
identification the system after password should consists
token the use periadically of character and

number

Fig. 9 Defense tree of XSS and broken authentication and session management

validation and unawareness of security mechanism. In the same time, we also repre-
sent different Web attacks using attack tree. To prevent those Web attacks, we used
different types of mechanism which are presented by defense tree. In the future, we
plan to investigate new types of Web attacks which are top rank in upcoming years
and want to investigate better counter mechanism to prevent those attack.

References

1. Focardi, R., Luccio, F.,, & Squarcina, M. (2012). Fast sql blind injections in high latency
networks. In 2012 IEEE First AESS European Conference on Satellite Telecommunications
(ESTEL) (pp. 1-6), October 2012.

2. Benjamin, A. (2016). Search-based SQL injection attacks testing using genetic programming.
In Genetic Programming: 19th European Conference, EuroGP 2016, Porto, Portugal (pp. 183—
198), March 30-April 1, 2016.

3. Dharam, R., & Shiva, S. (2012). Runtime monitors for tautology based sql injection attacks. In
International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec)
(pp- 253-258), June 2012.

4. Owasp top 10-2013. https://www.owasp.org/. The ten most critical web application security
risks.

5. Zeng, H. (2013). Research on developing an attack and defense lab environment for cross site
scripting education in higher vocational colleges. In 2013 Fifth International Conference on
Computational and Information Sciences (ICCIS) (pp. 1971-1974), June 2013.

6. Matsuda, T., Koizumi, D., & Sonoda, M. (2012). Cross site scripting attacks detection algorithm
based on the appearance position of characters. In 2012 Mosharaka International Conference
on Communications, Computers and Applications (MIC-CCA) (pp. 65-70), October 2012.

7. Avancini, A., & Ceccato, M. (2013). Circe: A grammar-based oracle for testing cross-site
scripting in web applications. In 2013 20 th Working Conference on Reverse Engineering
(WCRE) (pp. 262-271), October 2013.

8. Sun, Y., & He, D. (2012). Model checking for the defense against cross-site scripting attacks. In
2012 International Conference on Computer Science Service System (CSSS) (pp. 2161-2164),
August 2012.

https://www.owasp.org/

32

10.

11.

14.

S. Sarkar

. Alexenko, T., Jenne, M., Roy, S., & Zeng, W. (2010). Site request forgery: Attack and defense.

In 2010 7th IEEE Consumer Communications and Networking Conference (CCNC) (pp. 1-2),
January 2010.

Czeskis, A., Moshchuk, A., Kohno, T., & Wang, H. J. (2013). Server support for browser based
csrf protection. In Proceedings of the 22nd International Conference on World Wide Web, ser.
WWW 13 (pp. 273-284). Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee. [Online]. Available: https://dl.acm.org/citation.
cfm?id=2488388.2488413.

Barth, A., Jackson, C., & Mitchell, J. C. (2008). Defenses for cross-site request forgery. In
Proceedings of the 15th ACM Conference on Computer and Communications Security, ser.
CCS 08 (pp. 75-88). New York, NY, USA: ACM. [Online]. Available: https://doi.acm.org/10.
1145/1455770.1455782.

. Dinesh Chandra Misra, P. A., & Srivastava, A. K. (2012). Web application using broken authen-

tication and session management, cross site request forgery and scripting attacks and sql injec-
tion. In 2012 International Conference on VSRD International Journal of Computer Science
and Information Technology (Vol. 2, No. 4, pp. 356-364), January 2010.

. Huluka, D., & Popov, O. (2012). Cause analysis of session management and broken authenti-

cation vulnerabilities. In 2012 World Congress on Internet Security (WorldCIS) (pp. 82-86),
June 2012.

Eshete, B., Villafiorita, A., & Weldemariam, K. (2011). Early detection of security miscon-
figuration vulnerabilities in web applications. In 2011 Sixth International Conference on
Availability, Reliability and Security (ARES) (pp. 169-174).

. https://web.nvd.nist.gov/.

https://dl.acm.org/citation.cfm?id=2488388.2488413
https://doi.acm.org/10.1145/1455770.1455782
https://web.nvd.nist.gov/

	 Detecting Vulnerabilities of Web Application Using Penetration Testing and Prevent Using Threat Modeling
	1 Introduction
	2 Different Types of Web Attack
	2.1 SQL Injection
	2.2 Cross-Site Scripting
	2.3 Cross-Site Request Forgery
	2.4 Broken Authentication and Session Management
	2.5 Security Misconfiguration

	3 Web Application Penetration Tools
	3.1 AMNESIA
	3.2 Xsser
	3.3 Acunetix
	3.4 Sqlmap and Havij
	3.5 Netsparker

	4 Threat Modeling Using Attack Tree
	5 Defense Tree
	6 Conclusion and Future Work
	References

