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Abstract. Deep learning techniques have produced plausible results for
both regular and irregular masks for challenging task of image inpaint-
ing. Few approaches make use of extra information like edge priors for
generator network, which preserves the structure which is blurry and dis-
torted. On the other hand, certain approaches use surrounding patches
to flow information in the missing regions, which in some scenarios can
lead to erroneous output. Motivated by these approaches, we propose a
three-stage architecture, which consists of an Edge Generator, followed
by a Multi-Branch Image Generator and a Contextual Attention layer
to generate high quality plausible patches in the input hole image. We
evaluate the proposed architecture on the ICME 2019 Image Inpainting
challenge and places2 dataset. The proposed method out-performs state
of the art both quantitatively and qualitatively. This model can process
rectangular holes at arbitrary locations.
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1 Introduction

Image Inpainting refers to the process of filling missing portions in images in
a way that the filled portions are consistent, perceptually plausible and merge
smoothly with the whole image. The filled portions also need to preserve the
structures in the image and be semantically accurate. Image Inpainting has a
wide range of applications like restoring damaged or deteriorated portions of
images and video frames, removing unwanted objects and modifying undesired
regions of images.

Traditional techniques, in the field of Image Inpainting, use image statistics
and low level features from the remaining portion of the image to fill the missing
regions [3–6]. A lot of diffusion based approaches like [4,6] propose propagating
the information from neighbouring background regions to the missing regions
while some patch-based methods like [3,5] use patches from the available region
of image to fill the missing portions of the image. These techniques work well
for repetitive structures but lack the ability to capture high-level semantics for
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complex structures and non-repetitive regions. The major drawback of such tra-
ditional methods is the inherent assumption that the low level features or the
patches in the missing regions are present in the available image regions, and
hence, such methods lack the ability to imagine novel structures in the missing
region.

Recent deep learning approaches [11,14,17–19] have shown the capability of
Generative Adversarial Networks (GANs) to learn relevant semantics to gen-
erate coherent structures in missing regions. An illustrative work based on this
model is by Pathak et.al. [14], which uses encoder-decoder network, trained with
reconstruction and adversarial loss for imagining contents in missing region. Both
Pathak et. al. [14] and Yang et. al. [17] assumes 64 × 64 missing region in the
centre of 128 × 128 image. Iijuka et. al. [11] uses global and local discriminator
to generate consistent and coherent patches in the missing regions. These meth-
ods often produce blurry boundaries and texture artifacts primarily, because of
the lack of structural information.

Recently, two-stage methods [13,15,19] are proposed to overcome the issue of
blurry boundaries and texture artifacts. These methods try to recover structural
information in first stage and generate finer details in second stage. Song et. al.
[15] predicts semantic segmentation label in missing regions and then recovers
finer details. However, different structures can be present in same semantic label
region. Nazeri et. al. [13] first completes edges in missing region and then use
this information to inpaint the missing region. But, the edges can only provide
structural guidance for the inpainting step. Yu et. al. [19] tries to refine the
coarse output of first stage with an attention layer in second stage. However,
there is no attempt for preserving the structure. This attention layer flows the
information from surrounding regions based upon matching patches of coarsely
completed image from the previous stage. But it doesn’t know if any region of
the neighborhood needs to be ignored while inpainting in case they do not belong
to the same object that is being in-painted. This leads to erroneous filling in the
missing region. To mitigate this issue, we provide an edge map to contextual
attention layer, which serves as a segmentation guide. This forces this layer to
give weightage to edge of the image, thus improving structure as well as color
and texture in the missing regions.

Based on these insights, we propose a novel three-stage model for image
inpainting. The model uses edge priors for preserving structure and guiding
refinement. The proposed network consists of an edge generator, coarse image
generator and a refinement network. The edge generator completes edge infor-
mation in the missing regions to generate edge priors for next steps. It is based
on GAN framework that contain a generator and a discriminator. The coarse
image generator uses this edge prior to produce structure preserved coarse image
with holes filled. It is based on multi-channel network which uses convolutional
kernels with different kernel size to provide better receptive field for preserv-
ing structures. The refinement network then takes this coarse image to produce
meaningful textures in missing regions. It is based on two branch attention net-
work that uses attention layer to generate high level texture. We use edge prior
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as guidance in the refinement network. The proposed method achieves signifi-
cantly high quality inpainting results on ICME [1] and places2 [20] dataset and
out-performs previous state-of-art methods.

Contributions of the proposed method are as follows:

– Novel three-stage model for image inpainting which uses edge priors for pre-
serving structure and guiding refinement.

– Edge generator which completes missing edges to generate edge prior.
– Coarse image generator which uses edge prior to produce structure preserved

coarse image with holes filled.
– Refinement network which uses edge prior to produce meaningful textures.
– We conducted qualitative and quantitative comparison with several state-

of-the-art methods to show that proposed method can achieve competitive
results.

2 Method

The architecture of proposed inpainting network is shown in Fig. 1. The proposed
network consists of three parts: edge generator Ge, coarse image generator Gi,
and refinement network Gr. The edge generator Ge generates edge map Ê by
predicting the edges in missing regions. The coarse image generator Gi uses the
information from the predicted edge map Ê to output coarse inpainted image
Îc. The refinement network Gr, refines the coarse image Îc using guidance from
edge map Ê to output the final inpainted image Î.

2.1 Edge Generator

Similar to recent methods [13,15,19], we try to recover structural information in
first stage before filling the missing regions. The edge generator Ge is used to fill
edges in missing regions which preserve structures in the image. Let Igt be the
ground truth image and Egt be the ground truth edge map of Igt. The working
of edge generator can be expressed as,

Ê = Ge(Igray, Ein,M) (1)

where M is a binary mask in which 1 represents hole region and 0 represent
non-hole region, Ein = Egt � (1 − M) is the edge map of the input image
Iin = Igt � (1 − M) and Igray is the grayscale image of Iin. Here, � represents
element-wise product.

Furthermore, we apply generative adversarial framework [8] to train the edge
generator with the help of discriminator network De. The adversarial loss of the
network can be written as,

Le
adv = E[logDe(Egt, Igray)] + E[log(1 − De(Ê, Igray))] (2)
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Fig. 1. Architecture of the proposed method
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The generator Ge and discriminator De are trained jointly with the following
optimization,

min
Ge

max
De

= min
Ge

(λe
advmax

De

(Le
adv) + λfmLfm) (3)

where λe
adv and λfm are regularization parameter which are set to 1 and 10

respectively. We use feature matching loss Lfm which is computed on the acti-
vations of layers in discriminator De as proposed in [13].

2.2 Coarse Image Generator

After getting the edge map Ê, the coarse image generator Gi is used to generate
coarse image Îc. The processing of coarse image generator can be expressed as

Îc = Gi(Iin, Ê,M) (4)

Pixels near hole boundaries have less ambiguity than pixels that are far from
hole boundaries. So it is sensible to use different weights for these pixels when
calculating loss. Similar weight ideas are explored in [14,19]. Inspired by [19],
we use spatially discounted reconstruction loss using a weight mask Mw. The
weight of each pixel in mask is computed as γl, where l is the distance of pixel
from the nearest non-hole pixel. γ is set to 0.99. We calculate spatial discounted
L1 loss on the output coarse image Îc as following

Lcoarse
l1,hole =

∥
∥
∥Îc � Mw − Igt � Mw

∥
∥
∥
1

(5)

Lcoarse
l1,non−hole =

∥
∥
∥Îc � (1 − M) − Igt � (1 − M)

∥
∥
∥
1

(6)

where Lcoarse
l1,hole

and Lcoarse
l1,non−hole are the L1 loss in hole and non-hole regions

respectively. Spatial discounting loss is used in hole region L1 loss calculation
using mask Mw. Coarse image generator Gi is trained in conjunction with refine-
ment network Gr.

2.3 Refinement Network

The refinement network Gr takes the coarse image Îc, edge map Ê and outputs
the final image Î. The working of refinement network can be written as

Î = Gr(Îc, Ê,M) (7)

We train the refinement network Gr along with coarse image generator Gi fol-
lowing global and local Wasserstein GANs framework [2,9] using local and global
discriminator Dl and Dg respectively. Inspired by [9,19] we use gradient penalty
loss to both global and local outputs to enforce structural consistency.

Similar to Eqs. 5 and 6 we calculate Lrefine
l1,hole

and Lrefine
l1,non−hole for final image

Î. The full L1 losses is computed as

Ll1,hole = Lrefine
l1,hole

+ λcoarseLcoarse
l1,hole (8)



Structure Preserving Image Inpainting Using Edge Priors 105

Ll1,non−hole = Lrefine
l1,non−hole + λcoarseLcoarse

l1,non−hole (9)

Here, λcoarse = 1.2 is a regularization parameter, Ll1,hole and Ll1,non−hole cor-
responds to the reconstruction loss in hole and non-hole region respectively for
training Gi and Gr together. The adversarial loss including the gradient penalty
[9] terms can be written as

Llocal
adv = E[Dl(Îc,local)] − E[Dl(Igt,local)] + λgpE[(

∥
∥
∥∇Dl(Îc,local)

∥
∥
∥
2

− 1)2] (10)

Lglobal
adv = E[λglobalDg(Îc)] − E[λglobal[Dg(Igt)] + λgpE[(

∥
∥
∥∇Dg(Îc)

∥
∥
∥
2
− 1)2] (11)

Here, λglobal = 1 and λgp = 10 are regularization parameters. Îc,local and Igt,local
are the cropped images corresponding to the hole regions in mask M of Îc and
Igt respectively. We also compute well known Perceptual loss Lperc and style
loss Lsty [7,12] using pretrained VGG weights. The full objective function of the
W-GAN framework can be expressed as

L = Llocal
adv + Lglobal

adv + λhLl1,hole + λnhLl1,non−hole + λpercLperc + λstyLsty (12)

For conducting experiments, we choose λh = 6, λnh = 1, λperc = 0.5 and
λsty = 250.

3 Architecture and Training

The edge generator Ge follows encoder decoder architecture with residual blocks
[10] in middle to process features. Ge contains an encoder that down-samples
twice, followed by eight residual blocks and decoder that up-samples to the orig-
inal size. The edge discriminator De is a simple five layer convolutional network
that outputs whether the input edge image is real or fake. This architecture is
similar to that proposed by Nazeri et al. [13]. Canny edges are used to generate
incomplete edge input Ein which are fed to generator to hallucinate edges in
missing areas. We used pre-trained weights provided by [13] for edge generator
Ge to generate structural information in the missing regions.

The coarse image generator Gi contains three parallel branch with different
size convolutional kernels to get information from different receptive fields. It
also contains a merge layer to merge outputs of three branches together. This
architecture is inspired by [16]. A five layer convolutional network based local
discriminator Dl is used which takes only the mask regions input and outputs
whether an image is real or not. The refinement network Gr contains two parallel
branch and a merge layer to merge the outputs together. One of the branch uses
Contextual Attention layer that uses patches from non-hole regions in image as
kernels. The use of Contextual Attention layer is inspired by [19]. A five layer
CNN architecture based global discriminator Dg is used which takes full image
input and outputs whether an image is real or not. Figure 1 shows the proposed
architecture, their sample inputs and outputs.
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The proposed model is trained on places2 [20] and ICME [1] dataset. The
network is trained using 256×256 images with batch size 16. The hole generated
in mask M is rectangular in shape. The height and width of the hole is randomly
selected from the range (32, 64) pixels. The generated hole is placed randomly
to form the mask M with hole. Adam Optimizer is used with learning rate of
10−5. The proposed edge generator (Ge) has a total of 10.8M parameters and
takes 41.5 MB space. The proposed coarse and refinemnet generator (Gi + Gr)
has 14.7M parameters and takes 56.3MB space. Pytorch framework is used for
coding and training models. The models are trained on hardware with CPU
Intel(R) Xeon(R) CPU E5- 2697 v3 (2.60 GHz) and 4 GPUs GTX 1080 Ti.

Fig. 2. Sample from ICME test dataset [1]: (left to right) damaged image, EdgeConnect
[13], Contextual Attention [19], proposed approach. Bottom row: zoomed in version of
a patch. In zoomed patch, the proposed method completes the line partitioning the tiles
while keeping the two well segmented regions to be inpainted without any overflow from
one region to the other. Whereas, Contextual attention method [19], fails to correctly
complete the line as it has no information of the underlying structure.

4 Experiments and Results

We evaluated the proposed inpainting method on two datasets: Places2 [20] test
dataset and ICME 2019 Inpainting challenge’s test dataset [1]. We compare the
output of proposed network with state-of-the-art methods [13,19].

For comparison on Places2 [20] test dataset, we used the pre-trained weights
provided by authors of [13,19], trained on Places2 dataset. For comparing the
results, we used images of resolution 256 × 256 with a hole at the image center
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of resolution 64 × 64. For comparison on ICME dataset, we fine-tune the pre-
trained weights (trained on Places2 [20]) provided by both networks on ICME
data [1]. We used regular masks with 4 rectangular holes provided in ICME [1]
dataset. All images were resized to 256 × 256 for training and testing.

All the results reported are direct outputs from the trained models. No post-
processing step is involved while reporting the results.

Qualitative Comparison. In Fig. 2 and 3, we show that the proposed three-
stage model generates superior results than EdgeConnect [13] and Contextual
Attention [19]. Proposed method uses edge as a prior information for contextual
attention layer, this aids the contextual attention layer to fill right texture in
the missing region.

Table 1. Results of PSNR and SSIM on ICME test dataset

Method PSNR SSIM

EdgeConnect [13] 31.3076 0.9781

Contextual attention [19] 30.7931 0.9784

Proposed method 31.9059 0.9791

Quantitative Comparison. We report peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [21] on ICME test data [1]. As shown in Table 1,
proposed method outperforms the other two methods in the reported metrics.
For comparison on Places2 [20] dataset, we report PSNR and SSIM metric on
both the patch as well as the full image. As shown in Table 2, proposed method
outperforms the other state-of-the-art methods.

Table 2. Results of PSNR and SSIM on Places2 test dataset

Method Inpainted patch Full image

PSNR SSIM PSNR SSIM

EdgeConnect [13] 16.6757 0.3099 28.7107 0.9563

Contextual attention [19] 15.8059 0.2922 27.7868 0.9530

Proposed method 16.7752 0.3181 28.8067 0.9569
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(a) (b) (c) (d) (e)

Fig. 3. Results on Places2 test dataset (a) ground truth image, (b) damaged image (c,
d, e) Results (c) EdgeConnect [13], (d) Contextual Attention [19], and (e) Proposed
method
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5 Conclusion

We proposed a three-stage image completion network, which comprises of an
edge generator, a multi-branch coarse image generator and refinement network
with contextual attention layer. Also, we demonstrated how the edge information
can be used to improve results of Contextual Attention Network. The proposed
method outperforms state of the art methods on both qualtative and quantita-
tive evaluation. The experimental results obtained, shows the feasibilty of the
proposed method. For future work, we plan to experiment on better prior than
Edges. We have observed that in textured regions, because of the spurious nature
of output from edge completion network, output from the proposed method is
not as expected. Furthermore, we would also like to extend this method for
high-resolution images.
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