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Abstract. Sparse coding techniques have shown to perform well in solv-
ing the conventional inverse imaging problems like inpainting and denois-
ing. In the recent past, the performance of deep learning architectures in
solving these inverse imaging problems have exceeded the conventional
approaches several times. The only limitation of these architectures is the
requirement of large volumes of training data. Deep dictionary learning
(DDL) is an emerging approach and has been shown to solve some impor-
tant classification problems in the scenarios where there is a scarcity
of training data. DDL framework effectively combines the advantages
of sparse coding and deep learning. In this paper, DDL framework is
adapted to solve the inverse imaging problem with specific focus on imag-
ing inpainting. An alternating minimization (AM) approach is proposed
to derive the dictionaries and their corresponding sparse coefficients at
each level of the DDL framework. The aim of this work is to show that
the multilevel dictionaries can be leveraged to derive the sparse repre-
sentations without compromising on the restoration quality of streaked
multispectral images. Inspite of being a conventional machine learning
based technique, we show that the performance of our approach is better
to the state-of-the-art deep learning approaches for multispectral image
inpainting.
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1 Introduction

Inverse imaging problems like denoising and inpainting play a very important role
as a pre-processing step for many of the machine vision tasks. Traditionally, these
problems were shown to be effectively solved by using compressive sensing (CS)
techniques. The main aim of CS is to exploit the sparsity in natural images in
the domain of standard basis like discrete cosine transform (DCT), wavelet, etc.
Dictionary learning (DL) has shown the possibility of solving the inverse imaging
problems by adaptively estimating the sparsifying basis rather than fixed basis
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as was done in CS. These are transductive learning techniques. Another class of
techniques, which are gaining importance in the recent past are based on neural
networks. These are inductive learning approaches, where the main assumption
is that the training data itself can be used to learn generalized model, which
in turn can predict the outcome of an unseen test sample. Here, large amounts
of data is needed to build the model and can be easily applied for the case
of natural images but not for other scientific data. Tariyal et al. [19] proposed
a deep dictionary learning (DDL) framework which combines the advantages of
both transductive and inductive nature of dictionary learning and deep learning,
respectively, and is very well suited where there is a scarcity of training data.
In some of the recent works, DDL was shown to be effective for classification
problems [13–15], load monitoring [18], and speech recognition [17]. In this paper,
the DDL framework is suitably modified to predict the intensity values in the
missing regions in a single band of a multispectral image, which is basically a
regression problem.

Every material in this world has its own unique spectral signature. However,
human eye can record the signature only within red, blue, and green bands of
the spectrum. Multispectral imaging can be used in scenarios where human eye
might fail in distinguishing materials. Although this approach was predominantly
used in satellite imaging, recently, it is finding multiple applications in biology
and medicine [11], and agricultural applications [10]. A multispectral image is
captured by using the sensors which are sensitive to different wavelengths beyond
the visible light range i.e., infrared and ultra-violet. For e.g., LandSat7 has seven
bands. One of the most important challenges in multispectral imaging is the
malfunctioning of on-board sensors. This typically results in missing information
and will appear as streaks in the acquired multispectral image. Filling the missing
information in these images is popularly referred to as inpainting in the image
processing literature.

Most of the classical inpainting techniques use the local or non-local infor-
mation within the degraded image itself to perform inpainting. Efros et al. [5]
proposed to fill the holes in the image by finding a similar texture in the same
image. Some other techniques exploit the natural image priors such as statis-
tics of patch off-sets [6], planarity [8], or low rank [7] to improve the efficiency
of inpainting. All these techniques use the information from the input image
itself to inpaint. When the missing information is large, then these single image
inpainting techniques will fail to perform well. Another set of techniques that are
emerging fast in the recent past are learning based approaches. Mairal et al. [12]
proposed a dictionary learning based technique which is solved by using K-SVD.
Xie et al. [20] proposed a method that combines the sparse coding and deep
networks, which are pretrained by denoising auto-encoders to perform denoising
as well as inpainting. Yeh et al. [21] proposed a deep generative network based
approach to perform blind semantic inpainting. Zhang et al. [22] proposed a
spatio-temporal based deep network architecture to address different kinds of
streaks that might be present in multispectral images. However, the main limi-
tation with any kind of deep network based technique is that they require large
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amounts of data for training. The prime advantage with DDL is that the training
data needed for it will be very less when compared to the data needed to train
deep networks. Hence, for multispectral imaging where the availability of public
datasets is very less, DDL will be a better way to perform inpainting.

Yet another important challenge of multispectral images is the storage, due to
their huge size. Sparse coding techniques have shown to perform well in obtain-
ing the sparser representations which in turn will aid in effective storage of
these images. In this paper, we show that the streaked multispectral image can
be inpainted as well as sparsely represented with performance similar or bet-
ter than the state-of-the-art inpainting techniques. The following are the main
contributions of this paper:

– An alternating minimization methodology for DDL is proposed for addressing
regression problems in image processing.

– The proposed DDL framework has been shown to be useful in inpainting
multispectral images.

– We leverage the multi-level architecture to derive the sparse representations
of multispectral images.

– The proposed method is experimentally validated and compared with state-
of-the-art inpainting techniques.

2 Deep Dictionary Learning

In this section, the mathematical framework of deep dictionary learning is
described, which was first proposed by [19] and it is adapted for regression
problem in image processing like inpainting as explained in Sect. 3. The shal-
low (single layer) dictionary learning will provide the sparse representation of
the input image. Let D1 and Z1 be the dictionary and sparse codes, respec-
tively, for the input matrix X, where its columns indicate the lexicographically
ordered input image patches. Mathematically, the relation between X, D1, and
Z1 is expressed as X = D1Z1. The multiple layer extension of the shallow dic-
tionary learning is defined as deep dictionary learning. This is motivated from
the concept of deep learning. If DN and ZN denotes the learnt dictionary and
sparse codes, respectively at N th layer, then the relation between X, DN, and
ZN can be mathematically expressed as X = D1φ (D2φ (D3φ (...φ (DNZN)))),
where φ is the non-linear activation function. In this multi-level architechture, it
is important to note that the sparse codes derived at one stage are passed onto
next higher level. Since the higher level dictionaries are derived corresponding
to sparse codes rather than intensity images itself, we show in Sect. 4.1 that the
degree of sparsity in sparse codes estimated at final stage of proposed framework
is much higher than when compared to the sparse codes derived from their single
level counterparts.

3 Alternating Minimization Methodology

In this section, we describe the alternating minimization methodology followed to
implement the DDL framework. The methodology for three layers is described.
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The same can be extended for N number of layers. Let Y be the input data
matrix where its columns are the lexicographically ordered streaked image
patches, R is the mask indicating the streaks, and X is the data to be recon-
structed, then

Y = R � X (1)

where, � is a pixel wise multiplication operator. For a three layer DDL frame-
work, the clean image X can be factorized as X = D1φ (D2φ (D3Z3)). The
dictionary and the coefficient matrix at each layer can be estimated by minimiz-
ing the following cost function:

min
D1,D2,D3,Z3

‖Y − R � D1φ (D2φ (D3Z3))‖2F + λ3‖Z3‖1
s.t Z2 = φ (D3Z3) ,Z1 = φ (D2Z2)

(2)

The augmented lagrangian form [9] of Eq. 2 is given by:

min
D1,D2,D3,Z1,Z2,Z3

‖Y − R � D1φ (D2φ (D3Z3))‖2F + λ1‖Z1‖1 + λ2‖Z2‖1
+ λ3‖Z3‖1 + μ1‖Z1 − φ (D2Z2)‖2F + μ2‖Z2 − φ (D3Z3)‖2F

(3)

where, λ1, λ2, λ3, μ1, and μ2 are the regularization constants. Above cost func-
tion is non-convex in nature as all the unknowns are coupled together by a mul-
tiplication operator (see Section 1 of supplementary material for proof). Hence,
we propose to solve by using an alternating minimization (AM) approach [2]. At
the first layer of DDL framework, Eq. 3 can be simplified as follows:

̂Z1 ←min
Z1

‖Y − R � D1Z1‖2F + μ1‖Z1 − φ (D2Z2)‖2F + λ1‖Z1‖1 (4)

̂D1 ←min
D1

‖Y − R � D1Z1‖2F (5)

For the sake of mathematical convenience, we introduce R and D1 in the regu-
larization term of Eq. 4 and can be modified as:

̂Z1 ←min
Z1

‖Y − R � D1Z1‖2F + μ1‖R � D1 (Z1 − φ (D2Z2))‖2F + λ1‖Z1‖1 (6)

Equation 6 can be further simplified as

̂Z1 ← min
Z1

‖R � A1Z1 − B1‖2F + λ1‖Z1‖1 (7)

where, A1 =
[

D1√
μ1D1

]

and B1 =
[

Y√
μ1R�D1φ(D2Z2)

]

. Similarly, at second layer
Eq. 3 can be simplified as

̂D2 ←min
D2

‖φ−1(Z1) − D2Z2‖2F (8)

̂Z2 ← min
Z2

‖A2Z2 − B2‖2F + λ2‖Z2‖1 (9)
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where A2 =
[

D2√
μ2I

]

and B2 =
[

φ−1(Z1)√
μ2φ(D3Z3)

]

, where I is the identity matrix. At
third layer, Eq. 3 can be simplified as

̂D3 ←min
D3

‖φ−1(Z2) − D3Z3‖2F (10)

̂Z3 ← min
Z3

‖D3Z3 − φ−1 (Z2) ‖2F + λ3‖Z3‖1 (11)

Equations 7, 9, and 11 are similar to sparse coding stage of K-SVD algorithm
[1] and we solve it by using standard orthogonal matching pursuit (OMP) [16] as
we found it to be effective and simple to use. After obtaining the coefficients Z1,
Z2, and Z3 we solve Eqs. 5, 8, and 10 by using the approach as was employed
for dictionary update stage of K-SVD [1]. The final inpainted image can be
reconstructed by using the following equation

̂X = ̂D1φ
(

̂D2φ
(

̂D3
̂Z3

))

(12)

The alternating minimization approach used for proposed DDL framework is
summarized in Algorithm 1.

Algorithm 1. AM framework for DDL to perform inpainting
Require: NUM ITER = 1, MAX ITER = 1000, D1 ← DCT64×128, D2 ←

DCT128×200, D3 ← DCT200×300

Ensure: Reconstructed output
1: while NUM ITER < MAX ITER do
2: Optimize Z1 in Eq. 7 using OMP [16].
3: Optimize D1 in Eq. 5 using the dictionary update stage of KSVD [1].
4: Optimize Z2 in Eq. 9 using OMP [16].
5: Optimize D2 in Eq. 8 using the dictionary update stage of KSVD [1].
6: Optimize Z3 in Eq. 11 using OMP [16].
7: Optimize D3 in Eq. 10 using the dictionary update stage of KSVD [1].
8: NUM ITER + +
9: end while

10: Reconstructed output ← ̂D1(φ( ̂D2(φ( ̂D3
̂Z3))))

It has to be noted in Algorithm 1, we have initialized D1, D2, and D3 as
over-complete dictionaries. This is due to the fact that we impose sparsity at all
the three levels. Even though our approach looks similar as proposed by [19], it
differs from the original formulation in the following ways:

– The DDL framework developed by [19] is used for classification while our
DDL is used for inpainting which is a regression problem.

– We use OMP at sparse coding stage while [19] use iterative soft thresolding
algorithm [4], which we found to be slow in finding the dictionary coefficients.

– Unlike [19], we added the additional constraints on the dependency of the
sparse codes on the previous layers which improved our restored results.
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– They used ‘tanh’ as the non-linearity between the layers while we found ‘tan’
to be more appropriate as the range of sparse coefficient values is beyond the
domain of ‘tanh−1’ in our scenario.

– Tariyal et al. [19] imposes sparsity at the final stage of DDL while we impose
at every stage which we found advantageous in obtaining the higher degree
of sparsity without compromising on the reconstruction quality.

4 Experimental Results

In this section, the experimental results are presented on inpainting of multispec-
tral images. We compare proposed technique with conventional exemplar based
method [3], deep dictionary learning approach by [19], and state-of-the-art deep
neural network technique [22]. Instead of working on the original streaked image,
we synthetically generate the streaked observations from original clean images
so as to do a quantitative analysis with state-of-the-art approaches. Patches of
size 8× 8 are extracted from the streaked image and then arranged lexicograph-
ically along the columns of Y. For all our experiments, we found the optimal
values for regularization constants as μ1 = μ2 = 0.1. The number of sparse coef-
ficients at first, second, and third layers were empirically chosen as 20, 10, and
5 respectively. We have tried multiple non-linear activation functions and found
that ‘tangent’ function suited the best for our experiments. We have included
an experiment in Sect. refsec:ddl of supplementary material where the compara-
tive study of the performance of proposed approach by using different non-linear
functions is presented.

Figure 1 shows the results for LandSat7 dataset [22]. The first and the second
rows represent the original and streaked images respectively. The output of [3]
is presented in the third row of Fig. 1. It is to be noted that the output recon-
structed by [3] has some boundary artifacts in the regions where the filling has
been done. The main reason behind such artifacts might be due to the absence
of smoothly varying regions in multispectral images. Restored result by [19] (in
fourth row of Fig. 1) could not fill in the missing regions completely. This can
be attributed to the reasons as mentioned in Sect. 2. The same is reflected in
the quantitative analysis as was presented in Table 1. Finally, we also compare
with a deep neural network approach [22]. The architecture proposed in [22]
needs temporal observations as test input, where one of the observation is clean
taken at a different time. Since all the competitive methods work on the single
degraded observation, for fare evaluation, we give both the inputs to the archi-
tecture in [22] as the same streaked observation and the corresponding ouptuts
are given in the fifth row of Fig. 1. It can be clearly seen that the streaks are not
completely filled which affects the visual quality of the output. This might be
due to the necessity of one clean observation among the test input given to its
architecture. Also, the neural network architecture in [22] might lack the ability
to generalize different kinds of degradations. The outputs of our approach are
presented in the last row of Fig. 1. It can be seen that the reconstruction quality
is much better than state-of-the-art qualitatively as well as quantitatively.
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Fig. 1. Results of Inpainting: (a) Example 1, (b) example 2, (c) example 3, (d) example
4, and (e) example 5. First row: original image. Second row: streaked image. Third row:
Output of [3]. Fourth row: Result of [19]. Fifth row: Restoration by [22]. Sixth row:
Proposed approach.
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Table 1. Quantitative analysis using PSNR.

Example 1 Example 2 Example 3 Example 4 Example 5

Criminisi et al. [3] 26.3618 25.2753 25.2400 26.6653 27.3390

Tariyal et al. [19] 16.0605 16.5332 16.8917 16.1195 16.3779

Zhang et al. [22] 19.4899 20.0894 20.5723 19.7015 19.8901

Proposed approach 29.4712 28.4403 28.1862 28.6552 29.2903

4.1 Sparsifying the Sparsity

In this subsection, we present a synthetic experiment to show another interesting
aspect of our proposed architechture with regards to its sparse representation
capability. Figures 2(a) and (b) shows the clean and synthesized streaked images,
respectively, of a single band in multispectral image from LandSat7 dataset. Here
we compare the degree of sparsity that can be attained by proposed approach
when compared to the single level dictionary learning technique in [1] without
the loss in reconstrcution quality. The outputs of [1] and proposed approach (3
levels) with the constraint on the number of sparse coefficients as 5 is shown in
Figs. 2(c) and (d), respectively. Quantitative analysis is mentioned in the caption
of Fig. 2. It can be clearly seen that the output of [1] has lots of artifacts which
significantly affects the visual quality. For the same degree of sparsity we were
able to outperform the single level approach by several times quantitatively and
the visual quality of our reconstructed output is much better than [1]. This was
possible as the higher degree of sparsity is obtained by working on sparse latent
codes (Z1 and Z2) domain rather than the intensity image domain as was done
by a single level dictionary learning approach in [1]. This ability to produce
sparse codes with higher degree of sparsity will help in the effective storage of
these large multispectral images without the loss in quality.

Fig. 2. Sparsifying the sparsity. (a) Clean image, (b) streaked observation. Output of:
(c) Aharon et al. [1] with 5 non-zero coefficients (PSNR = 20.7288 dB), (d) proposed
approach (PSNR = 36.3664 dB).
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5 Conclusions and Future Work

In this paper, an alternate minimization based strategy for deep dictionary learn-
ing is proposed for addressing regression problems in image processing. The DDL
framework is shown to be effective in terms of the sparsity while having a state-
of-the-art performance. Even though we have taken inpainting as an application,
the same framework can very well be used for other inverse problems like denois-
ing where the size of the artifact is small when compared to the size of the patch
used. Here, we inpainted the streaks in multi-spectral images. Compared to the
traditional inpainting approaches, the drawback of the DDL method includes
retraining the model for different scenarios. Further, the time taken by DDL is
dependent on the number of layers and based on the formulation, it is clear that
it takes more time than K-SVD. The main aim of this work was to achieve state-
of-the-art performance with smaller model sizes. In future, we plan to address
these issues by incorporating local neighborhood information within the DDL
framework in addition to new methods for dictionary update. We would like to
do further analysis on the image compression ability of proposed DDL frame-
work. Also, we plan to incorporate spectral consistency priors and improve the
reconstruction capability of the proposed technique with smaller model sizes.

References

1. Aharon, M., Elad, M., Bruckstein, A.: KSVD: an algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11),
4311–4322 (2006)

2. Boyd, S., Dattorro, J.: Alternating projections (2003)
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