
Domain Decomposition Based
Preconditioned Solver for Bundle

Adjustment

Shrutimoy Das(B), Siddhant Katyan, and Pawan Kumar

International Institute of Information Technology, 500032 Hyderabad, India
{shrutimoy.das,siddhant.katyan}@research.iiit.ac.in,

pawan.kumar@iiit.ac.in

Abstract. We propose Domain Decomposed Bundle Adjustment
(DDBA), a robust and efficient solver for the bundle adjustment prob-
lem. Bundle adjustment (BA) is generally formulated as a non-linear
least squares problem and is solved by some variant of the Levenberg-
Marquardt (LM) algorithm. Each iteration of the LM algorithm requires
solving a system of normal equations, which becomes computationally
expensive with the increase in problem size. The coefficient matrix of
this system has a sparse structure which can be exploited for simplifying
the computations in this step. We propose a technique for approximating
the Schur complement of the matrix, and use this approximation to con-
struct a preconditioner, that can be used with the Generalized Minimal
Residual (GMRES) algorithm for solving the system of equations. Our
experiments on the BAL dataset show that the proposed method for solv-
ing the system is faster than GMRES solve preconditioned with block
Jacobi and more memory efficient than direct solve.

Keywords: Computer vision · Bundle adjustment · Structure from
motion · Generalized minimal residual · Preconditioning · Domain
decomposition

1 Introduction

Many recent works in three dimensional (3D) reconstruction using Structure-
from-Motion (SfM) algorithms has focused on building systems [1,9,19] that
are capable of handling millions of images from unstructured internet photo
collections. Given the feature matches between images, bundle adjustment (BA)
[21] is a key component in most SfM systems. It is typically used as the last
step in a 3D reconstruction pipeline. For large scale problems however, BA

c© Springer Nature Singapore Pte Ltd. 2020
R. V. Babu et al. (Eds.): NCVPRIPG 2019, CCIS 1249, pp. 64–75, 2020.
https://doi.org/10.1007/978-981-15-8697-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8697-2_6&domain=pdf
https://doi.org/10.1007/978-981-15-8697-2_6

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 65

becomes very expensive computationally and thus, creates a bottleneck in the
SfM systems. As a result, there has been a lot of interest in developing scalable
large scale bundle adjustment algorithms [2,5,7,11,22].

The BA problem is typically formulated as the minimization of a nonlin-
ear least squares problem, which can be done by using a classical algorithm
such as the Levenberg-Marquardt (LM) algorithm. In each iteration of the LM
algorithm, a solution to a linear system is required, which is the most computa-
tionally expensive step. A lot of research has been focused on making this step
cheaper.

In [16], a direct method using Dense Cholesky factorization has been pro-
posed. However, these methods do not scale well as the problem size increases.
This has led to the application of iterative methods, specifically the Conjugate
Gradient (CG) [18] method, for solving these systems. The convergence of these
methods depend upon the condition number of the coefficient matrix. However,
it has been observed that BA problems are very ill-conditioned. To solve this
problem, preconditioning matrices or preconditioners [18] are applied to the sys-
tem. They lower the condition number of the systems, which in turn speeds up
the convergence of the iterative methods.

In this paper, we propose a new preconditioner which is based on the domain
decomposition of the coefficient matrix. As it has been pointed out in [2]: “each
point in the SfM problem is a domain, and the cameras form the interface
between these domains”. Using the domain decomposition method, we present
a technique that can be used for approximating the global Schur complement
of the matrix. We name this preconditioner as Mini Schur Complement (MSC)
preconditioner. One of the advantages of using this preconditioner is that it
is sparse, highly parallelizable and can be scaled up for very large problems.
However, the preconditioned operator is unsymmetric. Thus, we use another
iterative method known as restarted generalized minimal residual (GMRES). As
the results show, solving the normal equations using GMRES preconditioned
with MSC gives state-of-the-art performance on the BAL dataset.

The remaining part of the paper is organized as follows. Section 2 intro-
duces the BA problem and also gives a review of the recent work on the use
of preconditioned iterative methods. Section 3 gives a brief overview of domain
decomposition methods and describes the design and implementation of the
MSC preconditioner. Section 4 compares the results of our technique with direct
solver and block Jacobi preconditioned GMRES solver. In Sect. 5, we conclude with
a discussion.

2 Bundle Adjustment

Bundle adjustment tries to minimize the sum of reprojection errors between
the 2D observations and the reprojected 2D points which are determined by the
point and camera parameters. More information about this process can be found
in [21].

66 S. Das et al.

Suppose that the scene to be reconstructed consists of p 3D points (or fea-
tures), individually denoted as yi, i = 1, . . . , p, and these points are imaged
in q cameras, whose individual parameters are denoted as zk, k = 1, . . . , q.
Assume that the structure (point) and camera parameters to be estimated
are taken in a large state vector x ∈ R

(p+q) which has the block struc-
ture x = [y1, . . . , yp, z1, . . . , zq]T . Then, the reprojection error is defined as
fk(x) = rk(x) − mxk, for k = 1, . . . , q. Given the mean reprojection error for
each camera, the unknown 3D point and camera parameters can be estimated
by minimizing the total reprojection error. Define F (x) = [f1(x), . . . , fq(x)]T to
be a q-dimensional function of the given parameter vector x. Then, the bundle
adjustment problem can be stated as

x∗ = argmin
x

1
2
||F (x)||22. (1)

In (1), the objective function is non-linear. For solving non-linear least
squares problems of this form, the Levenberg-Marquardt (LM) algorithm
[3,15,17] is applied. It is an iterative method where, in each iteration, an affine
approximation of the cost function F (x) in a neighbourhood of the current iterate
xt, is minimized. It is shown in [3] that the next iterate xt+1 can be computed as

xt+1 = xt − (JTJ + λtdiag(JTJ))−1JTF (xt). (2)

Let HLM = JTJ + λtdiag(JTJ) and g = JTF (xt). Here, J is the Jacobian
of F (x) at xt and λt > 0 is a damping parameter which ensures that xt+1 lies
in a neighbourhood of xt. It should be noted that the definition of HLM results
in an approximation of the Hessian. Then, rearranging the terms in (2) gives

HLMΔx = −g, where Δx = xt+1 − xt. (3)

The Hessian HLM is symmetric and positive definite (SPD). Thus, (3) can be
solved as Δx = −H−1

LMg to get the exact solution. However, when the problem
size becomes large, computing the inverse of HLM becomes expensive. In these
cases, an inexact solution of the system (3) can be computed by using an iterative
method, such as GMRES. The convergence of the iterative methods depend on
the condition number of the coefficient matrix, the Hessian in this case. For
badly conditioned problems, such as bundle adjustment, the condition number
can be improved with the help of a preconditioner [18]. This paper proposes the
design and implementation of such a preconditioner, which exploits the special
structure of the Hessian HLM .

2.1 Structure of the Hessian

In the state vector x defined in Sect. 2, let s be the size of each point block and
c be the size of each camera block. For the BAL dataset used in this paper, c = 9

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 67

and s = 3. Given these block sizes, the Jacobian J can be partitioned into a
point part Js and camera part Jc as J = [Js;Jc], which gives

HLM =
[
JT
s Js JT

s Jc

JT
c Js JT

c Jc

]
=

[
D LT

L G

]
. (4)

Here, D ∈ R
ps×ps is a block diagonal matrix with p blocks such that each

block is of size s × s and G ∈ R
qc×qc is a block diagonal matrix with q blocks

such that each block is of size c × c. The matrix L ∈ R
qc×ps is a general block

sparse matrix. Thus, we can rewrite (3) as a block structured linear system as
follows [

D LT

L G

] [
Δxs

Δxc

]
=

[
gs
gc

]
, (5)

where Δx = [Δxs;Δxc],Δxs and Δxc correspond to point parameter blocks
and camera parameter blocks of Δx, respectively, and g = [gs; gc], gs and gc
correspond to point and camera parameter blocks of g, respectively. Different
approaches have been proposed for solving (5), which exploits the special struc-
ture of the Hessian.

2.2 Previous Work

For solving (5), direct methods have been well studied in literature [16,21]. In
[4], the special structure of the Hessian is exploited to solve the system using
a reduced camera system and a reduced structure system. A survey of various
direct and iterative methods as well the use of various preconditioners can be
found in [21]. Cholesky factorization is used for solving the reduced camera
system in [16]. However, for large scale problems, this method does not scale
satisfactorily.

An advantage of using iterative methods, such as CG, is that these methods
require less memory compared to direct methods. This is because these meth-
ods require only matrix-vector products. However, since BA problems are very
badly conditioned, recent research has focused on obtaining efficient precondi-
tioners to speed up the convergence of these methods. In [2], several classical
preconditioners have been implemented and their impact on large scale prob-
lems is shown. In [6], Preconditioned Conjugate Gradients (PCG) is used for
solving (5) with an incomplete QR factorization based preconditioner. In [22],
PCG is used for solving the reduced camera system with the bandwidth limited
block diagonal of the Schur complement as the preconditioner. [7] exploits hard-
ware parallelism on multicore CPUs as well as multicore GPUs to solve the BA
problem by a new inexact Newton type method. Avanish et al. [14] utilizes the
camera-point visibility structure in the scene to form block diagonal and block
tridiagonal preconditioners. [11] explores a generalized subgraph precondition-

68 S. Das et al.

ing (GSP) technique which is based on the combinatorial structure of the BA
problem. In [12], a preconditioner based on a deflated two grid methods is used
with GMRES as the iterative method.

Usually for small to medium sized problems, direct methods converge faster
than iterative methods. In this paper, we show that our method is more memory
efficient than direct methods and faster than iterative methods preconditioned
with block Jacobi, for small to medium problems, to converge to a comparable
mean reprojection error. Also, it has been observed that the construction of the
MSC preconditioner does not take much time.

3 Domain Decomposition Method

Domain decomposition (DD) methods refer to a class of divide-and-conquer tech-
niques, that have been primarily developed for solving Partial Differential Equa-
tions over regions in two or three dimensions. However, the principles used in this
techniques have also been exploited in other fields of scientific and engineering
computational problems. The DD methods attempt to solve the problem on the
entire domain from problem solutions to the subdomains. For more details, see
[18,20]. One of the most widely used non-overlapping DD methods is the Schur
complement method, which is described below.

Consider the following block triangular factorization of HLM :

HLM =
[
D LT

L G

]
=

[
ID 0

LD−1 IG

] [
D LT

0 S

]

where ID ∈ R
ps×ps and IG ∈ R

qc×qc, are identity matrices. Here, S = G −
LD−1LT is the Schur complement of D in HLM . It has been observed that the
construction of S for large problems becomes computationally expensive. Also,
the Cholesky decomposition of S leads to dense factors, even though S remains
sparse. Here, we present a technique for approximating the Schur complement
and design a preconditioner using this approximation.

3.1 The Mini Schur Complement Preconditioner

In [13], several methods for approximation of the global Schur complement S
have been mentioned. Here, we construct the Mini Schur Complements (MSC)
using the MSC based on Numbering (MSCN) scheme, which is described below.

We consider the block 2 × 2 partitioned system in (4). The matrix HLM is
further partitioned as follows.

HLM =

⎡
⎢⎢⎣

D11 D12

D21 D22

LT
11 LT

12

LT
21 LT

22

L11 L12

L21 L22

G11 G12

G21 G22

⎤
⎥⎥⎦ (6)

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 69

Now, a further approximation of the matrix in (6) is constructed by dropping the
blocks Dij , L

T
ij , Lij and Gij for which i �= j. Thus the following approximation

Ĥ2 is obtained.

Ĥ2 =

⎡
⎢⎢⎣

D11

D22

LT
11

LT
22

L11

L22

G11

G22

⎤
⎥⎥⎦ (7)

Here, the subscript 2 in Ĥ2 denotes the number of principal sub-matrices of the
matrix G, namely, G11 and G22. The matrix in (7) is further partitioned to get
the following matrix

Ĥ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂11 D̂12

D̂21 D̂22

D̂33 D̂34

D̂43 D̂44

L̂T
11 L̂T

12

L̂T
21 L̂T

22

L̂T
33 L̂T

34

L̂T
43 L̂T

44

L̂11 L̂12

L̂21 L̂22

L̂33 L̂34

L̂43 L̂44

Ĝ11 Ĝ12

Ĝ21 Ĝ22

Ĝ33 Ĝ34

Ĝ43 Ĝ44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Again, a sparse approximation of (8) is done by dropping the blocks
D̂ij , L̂

T
ij , L̂ij and Ĝij for which i �= j, to obtain the following matrix

Ĥ4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂11

D̂22

D̂33

D̂44

L̂T
11

L̂T
22

L̂T
33

L̂T
44

L̂11

L̂22

L̂33

L̂44

Ĝ11

Ĝ22

Ĝ33

Ĝ44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here the subscript 4 in Ĥ4 denotes the number of principal sub-matrices
of matrix G. Eliminating the blocks L̂ii by using D̂ii as a pivot, we obtain an
approximation to the global Schur complement S by Ŝ4 = blkDiag(Sii) where
Sii = Ĝii − L̂iiD̂

−1
ii L̂T

ii.
The matrix Sii is called a Mini Schur Complement (MSC). Here, for sim-

plicity, we have partitioned the matrix recursively into a block 2 × 2 matrix.
During implementation, by taking advantage of the sparsity structure of the
Hessian HLM and the information about the size of the blocks, we could
directly identify the blocks Ĝii, D̂ii, L̂

T
ii and L̂ii, such that Sii is computed as

Sii = Gii − LiiD
−1
ii LT

ii, where i = 1 : m and m is the number of MSCs desired.

70 S. Das et al.

Fig. 1. The first two plots show the Schur complement of ladybug-372 and
ladybug-885 respectively. The third and fourth plots show their respective MSC
approximations (m = 30 blocks).

MSC Preconditioner: Let Ŝm denote the Schur complement approximation
computed from m MSCs. Then we construct the MSC preconditioner as

Pmsc =
[
D 0
L Ŝm

]

Here D and Ŝm have a block diagonal structure and also, D and L blocks are
already available from the coefficient matrix HLM . Thus, storing the required
blocks of the MSC preconditioner does not require much extra memory. In Fig. 1,
the Schur complement and the Mini Schur Complement approximation of two
problems are shown. It can be seen that the MSC approximation has a lot more
sparsity than the global Schur complement.

4 Experimental Evaluation

4.1 Implementation Details

For performing the experiments, we select block D such that the number of
rows (and columns) of D is given by 3× (number of points) and block G such
that the number of rows (and columns) is given by 9× (number of cameras).
The information about the number of points and the number of cameras are
available in the dataset. We construct the block Jacobi preconditioner as Pjac =
blkdiag(D,G) (as shown in [2]), where blkdiag forms a block diagonal matrix
using the given blocks. For constructing the MSC preconditioner, the number of
MSC blocks is taken as 30 blocks.

For the Levenberg-Marquardt algorithm, we use a freely available sparse
C++ implementation (SSBA)1, which has several cost functions that are used
by the LM algorithm for the BA step. Out of these, we choose the
bundle large lifted schur cost function implemented in the SSBA package,
which is discussed in detail in [23]. The LM algorithm runs for 100 iterations, or

1 www.cvg.ethz.ch/research/chzach/opensource.html.

www.cvg.ethz.ch/research/chzach/opensource.html

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 71

till the difference in norms of two consecutive residuals is not less than 10−12 in
magnitude, whichever criterion is met first. For solving the normal equations in
(3) using direct method, SSBA uses LDL factorization [10], which is a Cholesky
like factorization method for sparse symmetric positive definite matrices. COLAMD
is applied for appropriate column reordering. Both LDL and COLAMD have been
adopted from the SuiteSparse package [8].

We experimented with Preconditioned Conjugate Gradient(PCG) as the iter-
ative solver but the results we got using Pjac as a preconditioner were not encour-
aging. Hence, we implement an MSC preconditioned GMRES with restarts and
warm starts [3, p. 393] as an iterative solver in the SSBA package, for solving
(3). The restart parameter is taken as 40, thus forming a Krylov subspace of 40
vectors. The GMRES algorithm runs as long as the number of iterations is less
than 100 or the norm of the relative residual is not less than 10−2 (as taken in
[2]), whichever comes first. The GMRES method is implemented using the dfgmres
routine available in the INTEL MKL library, version 2019.4.243. All of the exper-
iments are performed on a subset of problems from the BAL dataset [2]. We run
all of the experiments on a machine with Intel Pentium(R) processor and 8 GB
of RAM. As all the problems from the BAL dataset cannot fit into memory, we
select 8 problems for which the number of points varies from 7K to 226K.

4.2 Results

We compare the direct solve, specifically, the LDL factorization method and the
restarted GMRES preconditioned with two preconditioners: (1) block Jacobi pre-
conditioner and (2) MSC preconditioner. The problems have been selected from
the BAL dataset. We experimented with different number of MSC blocks and
found that taking 30 blocks gave optimal results.

In Table 1, the time per LM iteration and the mean reprojection error for
various methods are shown. As we have tested mostly on small to medium sized
problems, we observe that direct solve is faster than iterative solve for these
problems. However, as can be seen from Fig. 3, the memory requirement for
direct solver increases with increase in problem size. Thus, iterative solvers are
essential for very large problems. In Table 1, it can be seen that using MSC as a
preconditioner results in faster computation time than using block Jacobi as a
preconditioner.

Also, from Fig. 3 it can be seen that the MSC preconditioned GMRES is the
most memory efficient of the three methods. In Fig. 3, as the number of cameras
increases, the size of the L, D factors of block G also increases. Thus, doing an
LDL factorization of block G during block Jacobi preconditioner solve requires
more time compared to that of MSC, as seen in Fig. 4. Thus, for larger problems,
using MSC as a preconditioner is a much better option for a memory constrained
system (Fig. 3).

72 S. Das et al.

Table 1. Average time (in seconds) per iteration for the LM solver using the three
methods on 8 problems from the BAL datasets using the bundle large lifted schur

cost function routine in SSBA. The time in bold represents the faster of the two pre-
conditioners for iterative solve. The problems are prefixed as: L for LadyBug, TS for
Trafalgar Square and D for Dubrovnik.

BAL Dataset Parameters Direct Solve Block Jacobi MSC (30)

Cameras Points Observations Time Error Time Error Time Error

L-49 7776 31843 0.1 0.73 0.6 0.96 0.6 0.65

L-138 19878 85217 0.4 0.89 1.1 0.82 1.6 0.88

TS-225 57665 208622 0.9 0.87 10.4 0.79 9.5 0.67

D-308 195089 1045197 8.2 0.71 29.4 0.71 26.2 0.72

D-356 226730 1255268 11 0.80 41.5 0.77 30.6 0.79

L-372 47423 204472 3.0 0.70 11.9 0.71 13.1 0.71

L-539 65220 277273 5.4 0.74 9.5 0.80 6.7 0.77

L-885 97473 434905 11.5 0.69 25.7 0.69 17 0.71

0 100 200 300 400 500 600 700 800 900
Number of cameras

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e(
in

 s
ec

s)

Direct(LDL)
Block Jacobi
MSC(30)

Fig. 2. Plot showing the total time taken for 100 iterations of the Levenberg Mar-
quardt algorithm, using direct solve, block Jacobi preconditioned GMRES and MSC

preconditioned GMRES.

5 Conclusions and Future Work

We proposed a technique for the approximation of the global Schur complement
and used this approximation to design a preconditioner. We showed some prelim-
inary results which were obtained by implementing our technique as a sequential

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 73

300 400 500 600 700 800 900
Number of cameras

0

1

2

3

4

S
iz

e(
in

 b
yt

es
)

10 7

Block Jacobi
MSC(30)
Direct

Fig. 3. Plot showing the memory requirement for the three methods for the 4 largest
problems in our paper, as the number of cameras increases. We have plotted the memory
for the three methods: L, D factors for direct solve, L, D factors of block G alongwith
the Krylov subspace and the memory for storing the MSC block, its L, D factors as
well as the Krylov subspace.

0 200 400 600 800 1000
Number of cameras

0

1

2

3

T
im

e(
in

 s
ec

s)

Block G
MSC(30)

Fig. 4. Plot showing the time taken for LDL factorization of the G block and the MSC
block.

code. As seen in Fig. 3, this solver has much less memory requirement than the
other methods mentioned in the paper, and is also faster than using block Jacobi
as a preconditioner. This makes using MSC as a preconditioner a much better
choice. Also, since the MSC blocks are non-overlapping, they are independent of
each other. Thus, one possible direction of future work is a parallel implementa-
tion of the proposed solver. Another direction would be to assess the robustness
of the solver for very large scale problems.

References

1. Agarwal, S., et al.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)
2. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large.

In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312,
pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-
9 3

https://doi.org/10.1007/978-3-642-15552-9_3
https://doi.org/10.1007/978-3-642-15552-9_3

74 S. Das et al.

3. Boyd, S., Vandenberghe, L.: Introduction to Applied Linear Algebra -Vectors,
Matrices, and Least Squares. Cambridge University Press, Cambridge (2018)

4. Brown, D.C.: The bundle adjustment - progress and prospects (1976)
5. Byröd, M., Åström, K.: Bundle adjustment using conjugate gradients with multi-

scale preconditioning, January 2009
6. Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis,

K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 114–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9 9

7. Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In:
CVPR 2011, pp. 3057–3064, June 2011

8. Davis, T.: Suitesparse. http://faculty.cse.tamu.edu/davis/suitesparse.html
9. Frahm, J.-M., et al.: Building rome on a cloudless day. In: Daniilidis, K.,

Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1 27

10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

11. Jian, Y.-D., Balcan, D.C., Dellaert, F.: Generalized subgraph preconditioners for
large-scale bundle adjustment. In: Dellaert, F., Frahm, J.-M., Pollefeys, M., Leal-
Taixé, L., Rosenhahn, B. (eds.) Outdoor and Large-Scale Real-World Scene Anal-
ysis. LNCS, vol. 7474, pp. 131–150. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34091-8 6

12. Katyan, S., Das, S., Kumar, P.: Two-grid preconditioned solver for bundle adjust-
ment. In: 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 3588–3595 (2020)

13. Kumar, P.: Purely algebraic domain decomposition methods for the incompressible
navier-stokes equations (2011)

14. Kushal, A.: Visibility based preconditioning for bundle adjustment. In: CVPR 2012
Proceedings, CVPR 2012, pp. 1442–1449. IEEE Computer Society, Washington,
DC (2012)

15. Levenberg, K.: A method for the solution of certain non-linear problems in
least squares. Q. Appl. Math. 2(2), 164–168 (1944). http://www.jstor.org/stable/
43633451

16. Lourakis, M.I.A., Argyros, A.A.: SBA: a software package for generic sparse bundle
adjustment. ACM Trans. Math. Softw. 36(1), 2:1–2:30 (2009)

17. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
ters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

18. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003)
19. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo col-

lections. Int. J. Comput. Vis. 80(2), 189–210 (2008)
20. Toselli, A., Widlund, O.: Domain Decomposition Methods- Algorithms and Theory.

Cambridge University Press, Cambridge (2005)
21. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment

— a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA
1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44480-7 21

https://doi.org/10.1007/978-3-642-15552-9_9
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://doi.org/10.1007/978-3-642-15561-1_27
https://doi.org/10.1007/978-3-642-34091-8_6
https://doi.org/10.1007/978-3-642-34091-8_6
http://www.jstor.org/stable/43633451
http://www.jstor.org/stable/43633451
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1007/3-540-44480-7_21

Domain Decomposition Based Preconditioned Solver for Bundle Adjustment 75

22. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.: Pushing the envelope of
modern methods for bundle adjustment. IEEE TPAMI 34(8), 1605–1617 (2012)

23. Zach, C.: Robust bundle adjustment revisited. In: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 772–787. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10602-1 50

https://doi.org/10.1007/978-3-319-10602-1_50

	Domain Decomposition Based Preconditioned Solver for Bundle Adjustment
	1 Introduction
	2 Bundle Adjustment
	2.1 Structure of the Hessian
	2.2 Previous Work

	3 Domain Decomposition Method
	3.1 The Mini Schur Complement Preconditioner

	4 Experimental Evaluation
	4.1 Implementation Details
	4.2 Results

	5 Conclusions and Future Work
	References

