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Abstract. Super Resolution Mapping (SRM) is a land cover mapping method
that generates land surface cover maps at fine spatial resolution from a coarse
spatial resolution Remote Sensing (RS) image. Recently deep networks have
shown impressive performance for image super resolution and image segmen-
tation. Inspired by this performance a deep Multi-Scale Residual Dense Network
(MSRDN) is proposed for SRM application of satellite data which extracts hierar-
chical features that can efficiently map sub-pixels to an accurate class. AMSRDN
network is trained with coarse resolution images and its corresponding fine reso-
lution class cover patches to learn a super resolution mapping of land cover. The
accuracy of the Conventional SRM techniques is restricted by the performance
of soft classification methods. Hence this work utilizes the full power of deep
learning to generate a fine resolution land cover map directly from a coarse res-
olution image neglecting the intermediate soft classification result. The results of
the experiments show that MSRDN can become a best alternative to the conven-
tional SRM techniques, to generate a precise land cover information directly from
a coarse data.

Keywords: Super Resolution Mapping · Class proportion image · Coarse
resolution · Fine resolution · Land cover class

1 Introduction

WheneverLand andLand cover is being spoken of, there is often a propensity to disregard
the fact that it is a natural resource too, that needs preservation and wise usage. It
is a limited resource we cannot afford to take lightly. Since most of the land cover
is frequently being lost to floods, erosion, deforestation, overgrazing and other such
adversities, effective Land cover monitoring is a subject of eternal importance, for its
sustainable usage which requires accurate land cover mapping.

Accurate land cover mapping has important significance in multiple remote sensing
applications like wetland inundation [1], urban floods map [2], city planning, environ-
mental assessment and monitoring, land surface change detection, etc. But land cover
mapping of remotely sensed imagery always suffers from a bottle neck of mixed-pixel
problem especially when obtained from a coarse resolution sensor. Hard classification
usually neglects this and consider only one class per pixel thus losing significant class
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covers. Soft classification considers this mixed pixel problem and provides a convenient
method to estimate the proportion of different classes within a mixed pixel. The core of
Super Resolution Mapping (SRM) stems from the concept of dividing pixel into sub-
pixels, thereby increasing the number of pixels per unit area providing a more useful
High-Resolution Map for a coarse resolution image.

1.1 Related Works

Many SRMmethods have been a provenmethod to address themixed pixel problem. The
most prevalent technique that addresses the mixed pixel problem is based on maximum
spatial affinitymodel [3] inwhich a coarsemixed pixel is subdivided into subpixels. Each
subpixel is assigned a class value such that it increases the spatial attractivenesswithin the
pixel and its neighboring subpixels. This spatial affinity may be estimated at sub-pixel
level [3], sub-pixel/pixel level [4, 5] or multiple levels [6, 7]. These spatially attractive
models have been extensively used in SRM, but they are not appropriate for representing
complex land cover structures like highly disjoint lands [8] also the model employed and
the soft classifier used impacts the quality of the generated map strongly [9].

Many learning based SRM models have been developed to overcome the difficulty
associated with explicit spatial dependency of land cover. These algorithms learn from
an available fine resolution map. It works on the assumption that the coarse class pro-
portion is related to the fine resolution map [8], thus the model learns this relationship
from the available data to yield a SR map from a coarse class proportion image. These
learning models can also be present as isolated ones or in fusion with another model.
Learning models like back-propagation neural networks [10] and support vector regres-
sion [11] have been modelled to learn this relationship. Many hybrid learning models
have also been developed to serve this purpose. Integration of Back Propagation Neural
Network with Genetic Algorithm [1] for Super Resolution Mapping of Wetland Inun-
dation wherein, a fusion of the GA and BPNN is present to ultimately perform SRM.
The datasets used for this particular work were obtained from LANDSAT - TM/ETM
Satellites, captured over two regions namely, Poyanghu in China and the Macquarie
Marshes in Australia. This work was focused on Marshy Area mapping, and further
works went on to explore the possibilities of Land Cover Mapping [12] as well as Urban
Flood Mapping [2]. But practically its performance is limited in learning the complex
non-linear relationships.

Currently in many computer vision and remote sensing applications Deep learning
models have shown remarkable performance by learning the non-linear relationship
between various parameters. One such work focused on Deep Learning for SRM is
DeepSRM [13] that learns the non-linear relation between fraction classes and fine
resolution map. But this class proportion is not readily available and not always reliable.
Though SRM techniques yield enhanced class cover map with coarse class proportion
image, its accuracy is always defined by the accuracy of the soft classification algorithm.

The implementation ofDeep Learning in obtaining Super ResolutionMaps (SRMap)
is a domain which is still in the incubator, not many works have been reported in this
regard, but a few, only in the recent past. Thus, a paradigm shift, leading to the devel-
opment and application of various algorithms in SRM, became the primal subject of
research. In this paper Deep Learning is implemented to learn a Multi-Scale Residual
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Dense Network for SRM application to obtain High Resolution Maps directly from LR
images as a single step process. Our work is devoted towards the induction of only Deep
Learning in obtaining HRM, thereby excluding the possible use of class proportion data.

1.2 Contribution

Remarkable success in deep learning technology has led to the development of many
computer vision task including Super resolution and image semantic segmentation to
achieve greater heights. But very few networks have been reported for SRM application.
Inspired by the performance of the Residual Dense Network (RDN) for image super
resolution [14], this work adopts the RDN model to generate SRmap by exploiting
the hierarchical features. Conventional SRM algorithms use class proportion data for
mapping and its performance relies on the accuracy of the soft classification algorithm
that gives the class proportion data. DeepSRM [13], the first paper on deep learning for
SRM application also make use of this class proportion data. But the proposed work
MSRDN, extracts multi scale features and does not rely on the accuracy of the output of
soft classification but rather takes the full advantage of deep learning to yield an accurate
land cover class map directly from a coarse image.

1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces the proposed Multi-
Scale Residual Dense Network for SRM. This section deals in detail about the network
architecture and the process flow involved in training, testing and land cover genera-
tion. Section 3 presents the experimental results, quality measurements and its analysis.
Finally, Sect. 4 concludes with a brief summary.

2 MSRDN: Multi-scale Residual Dense Network for SRM

SuperResolutionMapping generates aHigh-Resolution land cover informationCi, given
a Low-Resolution image ‘y’, where C is a binary image representing the presence of ith

land cover class. The proposed model is trained to accurately generate the land cover
information. This involves three steps: Dataset pre-processing, Training the MSRDN
net, SRmap generation. Figure 1 show an overview of our proposed method for network
training and SR land cover map generation.

2.1 Data Pre-processing

Generally Remote Sensing (RS) image data are too large to be processed by a network
model in a single pass. The minimum dimension of the image data tile from the dataset
Vaihingen provided by ISPRS is 2336 × 1281, which is way too large for a network’s
input considering the GPUmemory limitations. The other constraint is the limited avail-
ability of RS data along with its ground truth, whereas a deep network requires more
data for training. Considering both the GPU memory limitation and more training data
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requirement the available large dataset tile and its corresponding ground truth informa-
tion is divided into smaller overlapping patches with a simple sliding window. Now it is
possible to process the entire large data linearly. The dataset consists of classified map
for a remotely sensed image. The image is down-sampled to give a coarse image ‘y’.

The training pair
{
yp,Cp

i

}P
p=1 is generated by dividing into ‘P’ patches, the coarse image

and its corresponding HR classified map.

Fig. 1. Overview of Multi-Scale Residual Dense Network model for SRM application

2.2 MSRDN Network Training

The Fig. 2 shows the architecture of Multi Scale Residual Dense Network (MSRDN)
comprising of Residual Dense Blocks (RDB) [14] at multiple scales as the name sug-
gests, which extracts features at multiple level. The network is composed of three steps:
Shallow feature extraction (FSF) from two successive convolution blocks containing
Convolution, Batch Normalization and Relu layers, Dense feature extraction (FDi) at
multiple scales by making use of the RDB Blocks and the Transition Upscaling (TU)
Blocks. FSF is fed as the input to both the stages and the presence of multiple stages
can be justified by the order in which the TU Block and RDB blocks are brought to
the vicinity of the shallow feature input. Either upscaling is followed by feeding of the
corresponding output to the RDB Block or vice-versa. Finally, the fusion of multi-scale
dense features (FMSD) by concatenation followed by dropout layer.

Let ym be the input image patch for the network.

FSF = HSFE
(
ym

)
(1)

where HSFE represents shallow feature extraction. FSF, is the input to both the stages of
the MSRDN net. First stage comprises of the entry of FSF into the RDB Block (HRDB)
after which upscaling is performed by TU Block (HTU). The swapping of these events



502 D. Synthiya Vinothini et al.

occurs at the second stage. The TU block consists of convolution layer with stride ‘2’ to
upsample the input feature by a factor of ‘2’.

Fig. 2. Multi-Scale Residual Dense Network architecture for SRM application

RDB block comprises of residual connection of dense block, dense feature fusion
(FRDF) and residual learning. The input to RDB block is denoted as F0 and the
functionality of nth stage RDB is represented as follows

FnRDB = HRDB(F0) (2)

The dense block constitutes of dense connection of d convolution blocks.

FnRDF = HRDF([F0, F1, Fd, . . . FD]); (1 <= d <= D) (3)

where [..] represents concatenation of the features, HRDF represents the functionality
of fusion of dense feature within RDB block. The features from d convolution blocks
are concatenated and are subjected to a 1 × 1 convolution layer. Fd is the output of
dth convolution block of RDB block. Each convolution block consists of a convolution
layer followed by Batch normalization and RELU layer and its functionality is denoted
by HCBR.

Fd = HCBR([F0, F1, .., Fd - 1]) (4)

The residual learning feature (FRL) is the sum of the input feature F0 and residual dense
feature FRDF . This is followed by dropout layer (HDO) and a convolution block (HCBR).

FnRL = FnRDF + F0 (5)
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FnRDB = HCBR
(
HDO

(
FnRL

))
(6)

The outputs of both the stages aremarked as FD1 andFD2 respectively. FD1 is the upscaled
residual dense feature, whereas FD2 is the residual dense feature of the upscaled shallow
feature.

FD1 = HCBR(HTU(HRDB(FSH))) (7)

FD2 = HCBR(HRDB(HTU(FSH))) (8)

After which fusion of FD1 and FD2 by concatenation is performed and FMSD is obtained.
The dropout layer receives FMSD, which aids in removal of the correlated features and
prevents overfitting of the network. Finally

FMSD=[FD1, FD2] (9)

Cm = HCBR(HDO(FMSD)) (10)

3 Experimental Results and Discussion

This section analyzes the performance of the proposed network. It includes dataset
description, the experimental setup used for training the network and finally the
evaluation of the network and discussion on the results.

3.1 Dataset Description

This work uses the standard dataset provided by ISPRS covered over Vaihingen, Ger-
many. The data set is associated with 33 patches of different dimensions with an aver-
age dimension of 2064 × 2494 and each of them corresponds to True OrthoPhoto
(TOP), extracted from the larger TOP mosaic. The TOP and its ground truth are 9 cm
which corresponds to both the ground sampling distance. TOP contains three bands viz.,
Near infrared, red and green bands. Dataset have defined six categories viz., Impervious
surfaces, building, low vegetation, tree, car and clutter.

3.2 Experimental Setup

Stochastic gradient descent (SGD) algorithm is used to minimize the objective function.
The SGD weight decay is set to 10−7, momentum to 0.9 and mini-batch size to 16.
The network training is done for 100 epochs and 544 iterations per epoch. The initial
learning rate was set to 0.1 and decreased by a factor 10 at every 20 epochs and trained
with NVIDIA GeForce GTX 1050 Ti GPU.
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3.3 Network Evaluation

A total of 33 data patches is split into 60/40% for training and testing with 20 and 13
patches respectively. The training set is limited for training deep network hence the data
patches are divided into overlapping patches with a stride of 70 and a uniform patch
dimension of 128× 128 resulting in 8754 and 5767 disjoint training and testing patches.
The TOP data is further downsampled at fds = 2. The network parameters viz., the
number of convolution layers (D) in the RDB dense block and the growth rate (G) is set
to D = 3 and G = 16.

The network evaluation is done by comparing it with Unet [15] and Segnet [16]
based segmentation model. Since conventional SRM models use soft classified result
as an input for mapping, this work finds it meaningful in using a modified semantic
segmentation network for comparison. In this regard image segmentation models used
for Remote sensing images are modified by including an extra decoding layer at the
end to increase the resolution of segmentation result thus resulting in a SRmap. The
comparative results of super resolution mapping networks are shown in Fig. 3. It is
obvious from the observed result that proposed MSRDN has performed better than the
Unet and Segnet.

3.4 Quality Metrics

The assessment is performed using the following quality metrics: Accuracy, IoU accu-
racy, and weighted IoU. Accuracy is the ratio of correctly classified pixels to the total
number of pixels in that class, according to the ground truth.

Accuracy Score = TP

TP + FN
(11)

For the aggregate data set, Mean Accuracy is the average Accuracy of all classes in all
images. Intersection over Union (IoU) accuracy is the ratio of correctly classified pixels
to the number of ground truth and predicted pixels in that class i.e.,

IoU Score = TP

TP + FP + FN
(12)

where TP, FP and FN are the number of True Positives, False Positives and False Nega-
tives. Weighted-IoU is the Average IoU of each class, weighted by the number of pixels
in that class. This metric is useful when images have disproportionally sized classes, to
reduce the impact of errors in the small classes on the aggregate quality score (Table 1).

3.5 Robustness to Ambiguities and Mislabeled Ground Truth

In the ISPRS dataset the provided ground truth suffers from few uncertainties resulting
in erroneous labeled data. The ambiguities arise due to missing some objects while
labelling, sharp transitions in labelled data for unsharp true data. This has led the trained
network to overfit and misclassify compared with the ground truth but actually the
network has performed better than the ground truth. This is obvious in Fig. 4. To explain
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  (a)     (b)     (c)      (d)     (e)

Fig. 3. Comparative results of super resolution mapping networks. Patches from (a) TOP, (b) HR
ground truth, (c) Unet results overlayed, (d) Segnet results overlayed, and (e) MSRDN (proposed)
results overlayed.

Table 1. Results on ISPRS Vaihingen dataset.

Methods Global
accuracy

Mean accuracy Mean IoU Weighted IoU Training time
(sec)

Unet 0.7389 0.6568 0.4021 0.4985 31149

Segnet 0.7564 0.6729 0.4356 0.5687 26517

MSRDN
(proposed)

0.7732 0.7181 0.5281 0.6462 21093

better, there is visible presence of an impervious surface at the western corner of the
true image (TOP) in Fig. 4(a). Ironically, the Ground Truth displays it as a part of low
vegetation whereas the Unet and Segnet results map it as a building rather than labeling
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it as an impervious surface. In the second case of ambiguity, two small buildings at the
southern end in the True Image have been missed out by Ground Truth while Unet and
Segnet has mapped it along with the low vegetation cover but MSRDN has correctly
classified as building. The labeling in such scenarios is perfect pertaining to the results
of the MSRDN, dethroning the errors committed by Unet, Segnet and Ground Truth.

(a)          (b)          (c)

Fig. 4. Ambiguous results. Patches from (a) TOP, (b) HR ground truth, (c) Unet results (d) Segnet
results, and (e) MSRDN (proposed) results

4 Conclusion

Super Resolution Mapping (SRM) is a land cover mapping method that generates land
surface cover maps at fine spatial resolution from a coarse spatial resolution Remote
Sensing (RS) image. The performance of conventional SRM techniques is limited by
the accuracy of the soft classifier result, thus this work proposes a novel method fully
utilizing the power of deep learning to learn a non-linear relationship that exist between
the coarse resolution image and high-resolution map. In this regard, a deep Multi-Scale
Residual Dense Network (MSRDN) is proposed for SRM application of satellite data
which extracts hierarchical features that can efficiently map sub-pixels to an accurate
class. This network is trained with coarse resolution image and a fine resolution map
patches to learn a super resolution mapping of land cover. The results of the experiments
show that the proposed network provides an alternate solution to conventional SRM
techniques, in generating a precise land cover information directly from low resolution
images.
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