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Abstract. In the automotive industry, the use of advanced driver assisted systems
(ADAS) is gaining a lot of traction. ADAS systems are designed to assist the
driver by providing information regarding road users, lane information, traffic
infrastructures etc., and improve the road safety aspects of an automobile. In this
paper, we propose a real-time cross traffic alert (CTA) system based on fisheye
camera images having ~180° field of view (FOV). The main purpose of CTA is
to avoid unwanted collision with any approaching target by issuing an alert to the
driver at a T-junction. The main components of the proposed CTA algorithm are,
sparse optical flow vector tracking, object cluster formation and estimation of time
to collision (TTC) for each object cluster. The TTC calculation can be performed
without explicit depth reconstruction. We compute TTC based on homography
estimation between similar features of consecutive image frames. Under good
weather condition, the performance of the proposed CTA algorithm in detecting
approaching target is reasonably good with a true positive rate of nearly 88%,
but with significant false positive rate to the tune of 19%. A major contributing
factor to this high false positive is identified to be the inability to distinguish a
real crossing object and objects moving parallel to the host vehicle just using TTC
estimates. To suppress the unintended false positive cases, we propose a novel
solution based on statistics of the flow vector cluster and showcase its efficacy.
The classification result for the proposed approach indicates that we have achieved
to reduce the false positive rate to nearly 10% while maintaining the true positive
rate.
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1 Introduction

ADAS has great potential to enhance the driving comfort and more over the road safety
aspects. Road accidents are one of the leading causes of death and health hazards in
India. According to the Ministry of road transport and highways of India, during 2016,
there were cases of 55 road accidents and 17 deaths in every hour. This emphasizes
the necessity of ADAS, which can promote a safe driving by monitoring, warning, and
reducing the controlling efforts of a driver. The research on ADAS has become the
current trend in the automobile industry, which has been fueled by the consumer interest
and guidelines of regulatory bodies to strengthen the road safety measures.
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Now-a-days different ADAS functionalities are available, such as, adaptive cruise
control, blind spot detection, collision avoidance system, traffic sign recognition, lane
change assistance, pedestrian detection, parking assist among few of them. ADAS
uses different environmental sensors like RADAR, LiDAR, ultrasound, visible/infrared
imagers to assist the driver in recognizing and reacting to potentially dangerous traffic
situations. Each sensor has its own benefits and limitations. Data fusion techniques pro-
vide best solution by utilizing the complimentary nature of data [1, 2]. However, such
systems are expensive to enter the mass automobile market.

Designing any real-time system requires efficient algorithm with fast processing
time. Different techniques have been proposed by various authors. Cui et al. (2010),
used Haar and Adaboost classifier to detect moving objects [3]. In other research, Dagan
et al. (2004), estimated collision time directly from the size and position of the vehicle
in the image without computing a 3D representation of the scene [4]. To detect forward
vehicle detection and warning system, Jheng etal. (2015), designed Bayes classifier along
with vehicular symmetry detection and shadow detection technique [5]. Yet in another
research, Deng et al. (2014), used Haar-like feature and Adaboost classifier together
with SVM-based classifier with HOG feature to build forward collision warning system
based on monocular vision [6].

In this paper, we are proposing a real-time solution for front CTA system based on
fish-eye image for static host vehicle. The main steps in CTA are, feature detection, spare
optical flow tracking, object cluster formation and finally estimation of the collision time,
i.e., TTC. To calculate TTC, algorithm does not rely on the depth reconstruction between
the host and the target object, rather TTC is estimated by determining the homography
between cluster features obtained in the consecutive image frames. The proposed CTA
module demonstrated good performance statistics, however, it had a serious limitation,
where it was failing to differentiate between an object approaching the host and an
object moving parallel to the host. This contributed in a high false positive number. To
overcome this problem, we have come up with a solution which utilizes the statistical
characteristic of the flow vectors of an object cluster. Using this approach, we are able to
suppress the false positive cases to a greater extend. The rest of the paper is organized in
four major sections. We will start with the method, followed by the results, discussion,
and conclusion.

2 Method

The block diagram of the CTA system is shown in Fig. 1. To capture images, a video
camera with fish-eye lens is placed at the front bumper of the car. The fish-eye lens has
~180° FOV to capture image of a wide region. The video camera captures 30 image
frames per second, with image resolution of 1 megapixel. A pre-processing step is
performed, such as noise removal, brightness adjustment etc. before sending the image
to the CTA module. Next, CTA module detects any object approaching the host vehicle,
it generates alert. The alert can be either in visual or acoustic form. To save further
processing time CTA application runs only for two selected portions of the image. These
are called region of interest (ROI). There are two ROISs, left and right ROI. The choice
of ROI regions is to ensure that the movement of approaching objects (either from left
to right for left ROI, or right to left for right ROI) can be captured unhindered.
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Fig. 1. The block diagram of CTA module, the main components are camera, image processor,
CTA module.

Different components of the CTA module are discussed below.

2.1 Feature Detection

Harries corner Detector (HCD): Initial feature points were selected using HCD [7],
followed by feature densification method to further enhance the number of feature points.

Feature Densification. Apart from the HCD points for each frame, we try to populate
some more feature points, so that we do not miss any features which is not picked up by
HCD. Feature densification works like this, it picks up a random point of the image. Over
a 3x3 window region around that pixel it computes the luminance difference between
the central and surrounding pixels. If majority number of pixels inside that window have
luminance difference more than a predefined threshold, then we consider that pixel as a
feature point.

Once the features points are identified our next task is feature tracking. We have used
Lukas Kanade (LK) optical flow tracker for this purpose.

2.2 Lukas Kanade (LK) Optical Flow

Estimating the location of any image feature point between time frame t and t + 1
is called tracking. There are many tracking techniques available. Lucas kanade (LK)
optical flow tracker [8] is most popularly used sparse tracking technique. However, with
the conventional LK tracker the problem is to track larger movement or object with high
speed of motion. We have implemented four pyramidal layer LK tracker [9] to overcome
this issue.

Our next step is to group or cluster the flow vectors, which is performed in the next
step.
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2.3 Flow Filtering and Clustering

The Lucas-Kanade tracker has generated flow vectors between the subsequent frames.
In the clustering stage, we group these flow vectors according to their movement and
direction. Since we are concerned with the moving objects which are coming towards
the host vehicle, we only consider the flow vectors which are dynamic in nature, as
well as whose direction is towards the host vehicle. Clustering of these flow vectors is
performed by an algorithm similar to GRIDCLUS algorithm [10].

2.4 Kalman Tracking

Once the clustering is done, we have the location as well as dimensions of the cluster
as the output structure. In this step these clusters are tracked based on Kalman tracking
[11]. The process of tracking has been described below:

1. For all the available tracks, we set the Kalman state transition matrix and predict the
next state of the tracks. The state matrix of the track is given as:

X = [xPos xVel yPos yVel wBox 0 hBox O]T (D

The state transition matrix is based on the basic kinematics formula
We can write the above kinematics equation in the matrix form as

X =AxX(t—1) 2)

The Kalman prediction of the next state [12] of the tracks is done using below
equations:

e X()=AxX(t—-1)

Here we are predicting the mean of the next state. We assume that the target vehicles
are travelling at a constant speed, so the acceleration of the vehicles is zero. Therefore,
in the above equation, we are neglecting the control matrix since there is no known
external force.

e P()=AxPit—1xAT +Q
Here we are predicting the next state covariance [12]. Q is the Process noise covariance

matrix.

2. The track status is updated with respect to the objects in the frame. The types of
operation done on the tracks are track association, track deletion, and track merge.

Once object tracking is done next the TTC is computed for the object cluster.
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2.5 Time of Collision (TTC) Calculation

In this section we estimate the collision time between the host vehicle and target. TTC is
purely computed based on homography estimation using the feature points of a cluster
between two consecutive image frames. Hartley and Zisserman, 2000 have shown that
the homography induced by a 3D plane between two views is given by,

H= K’(R - tﬁT/D>K_1 3)

where R and 7 are the rotation and translation between two camera centres. K and K’ are
the intrinsic calibration matrix of the two cameras. D is the distance between the first
camera centre and the 3D plane, and 7 is the normal vector of the 3D plane.

Now, according to our setup, the host vehicle and the camera attached to it are static.
Images of any 3D object which is approaching towards the host is captured by the camera
at different time are being used to calculate homography H. These images are having
similar normal vector 7. Figure 2 depicts the situation.

H=K({ - ti/D)K™

Xsre Xist

P S

Image frameatt —dt  Image frame at t

T D
Fig. 2. Homography introduced by 3D plane

Based on the above condition, Eq. (5) becomes,
H = K(I — TﬁT/D)K—1 (4)

where, D is the distance between object and camera at time 7. T is the translation/relative
displacement between the object at  — dt and ¢. The intrinsic calibration matrix K is
same as only single camera is involded here. Also there is no rotation between two image
frames thus rotation matrix R is an identity matix /. According to the above figure, the
TTC can be expressed as,

Time to collision (TTC) =D/ |T|| = dt = D]V (5)

where V = T /dt is the relative speed between the object and the camera.
Now, suppose, X5, and xgs; are the source and destination point of a flow vector.
These two points are connected by the homography matrix H, given by Eq. (6).

Xsre = H * Xgg
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Xgre = K([ — TflT/D)K_l * Xdst (©)

In the above equation, the only unknown is 7' /D, which we have termed as inverse
TTC (iTTC). We can approximate the normal vector 72, without introducing much error
in the system, since we are only concern about the moving objects which are crossing the
host vehicle. To solve the unknown quantity, we have built a system of linear equation
using all the flow vectors inside the cluster obtained from the tracking module. The
system of linear equation takes a form given by,

AxiTTC =B (7)

By solving the above equation, we get iTTC, inverse of this gives us as the collision
time TTC. The TTC is computed for each cluster which are having more than three flow
vectors.

The algorithm design of the CTA module is discussed above. It can run real time
with, with a processing speed of 33 ms and gives a reasonably good detection accuracy.
However, we faced a problem in CTA is that, it was unable to differentiate between any
incoming objects towards the host and the objects moving parallel to the host.

To overcome this kind of issue, we have applied suppression logic, which we are
discussing below.

2.6 Suppressing the Turning Cases

To understand the problem better, when introspected the behavior of the flow vectors,
we found out that, for each ROI, the flow vectors associated with an object which may
(a) approach the host or (b) move perpendicular to the host, have similar flow direction,
but shows different flow characteristics. Based on our observations the behavior of the
flow vectors are as follows,

e Approaching object: The object cluster which is approaching the host vehicle gets
bigger size due to the fact that flow vectors inside that cluster show divergence.

e Perpendicular moving/turning objects: The object cluster which is moving perpen-
dicular to the host vehicle gets smaller in size due to the fact that flow vectors inside
that cluster show convergence.

The above observations are attributed to the fish-eye distortion of the image. Figure 3
illustrates the flow characteristics. To suppress the detection of perpendicular moving
vehicle, for each cluster the standard deviation of the source points and destination
points was compared. If o5, > 045 — cluster is converging, perpendicular movement.
If o5 < 045 - cluster is diverging, approaching towards host. The suppression logic
removes the object cluster which shows oy, > 0.

3 Result and Discussion

The major challenge we have faced while designing this driving solutions is that we have
to consider various weather conditions, different lighting condition throughout to the day
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(a) (b)

(d)

Fig. 3. The flow characteristics is shown in the figure. In figure (a) and (c) the images from three
different time frames has been superimposed to show the object trajectory. Figure (b) shows the
flow vectors associated with the (a) approaching vehicle (from left to right towards the host). Here
the flow vectors are diverging in nature. Figure (d) shows the flow vectors associated with the (c)
moving away vehicle. Here the flow vectors are converging in nature.

time, type of target objects and various road conditions (different road junctions, parking
bay etc.). Therefore, we have tested our algorithm based on different 1) weather condition
(rainy, fog, dry, wet), 2) time of the day (Early morning, Mid-day, Late afternoon), 3)
target objects (bus, truck, car, two-wheeler etc.).

To validate the performance of the proposed CTA algorithm, we compared its result
with ground truth videos. These videos were captured by placing the differential global
positioning systems (DGPS) in the host and the target object. The DGPS is accurate up
to 10 cm. Videos of various length were captured ranging from 1 min up to 15 min.
Ground truth data were prepared by manually labelling the approaching objects towards
the host from either left or right ROL. The DGPS measured distance between the host
and target was used to calculated collision time per frame, which was treated as ground
truth TTC to compare the accuracy of the TTC alert of CTA.

3.1 Assessment of CTA Measured TTC

As mentioned earlier CTA estimated TTC was compared based on the DGPS derived
TTC. Figure 4 shows the plot of CTA TTC vs. DGPS measured TTC, for a target vehicle
of speed 35 kph.

As shown in the above graph, the CTA estimated TTC and the DGPS TTC almost
follow a 1:1 relation. We can see some deviation, which is more prominent when the
target vehicle is far from the host. This was expected, as we are calculating TTC based on
homography between two clusters of an image frame. This method of TTC calculation
is adopted to reduce the run time. So, it can be said, to improve the run time, we have
compromised in the accuracy of collision time. However, as the target comes nearer to
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Fig. 4. Comparison of Algo TTC vs. DGPS derived TTC

the host, say between 1.5 s to 0 s, (in this particular case target is ~15 m away from the
host) the CTA derived TTC is accurate, which is crucial, as chances of accident is more
in this zone.

3.2 Classification Assessment of CTA

We have tested the CTA application under varying environmental conditions. Data cata-
logue was created to cover all weather conditions, road scenarios, target objects. Table 1
shows the classification accuracy of the proposed CTA module, along with the number
of video clips used to test CTA under different weather and lighting conditions. Table 1
shows that except high luminance and foggy condition, the performance of CTA is rea-
sonably good with true positive rate of ~86%. The reason behind the poor performance
of CTA for above mentioned cases is that there is a drop in overall scene contrast, which
affects the algorithm performance. As mentioned earlier, before the implementation of
flow suppression logic, CTA was wrongly detecting parallel (w.r.t host vehicle) moving
target objects, which was degrading the false positive rate. For example, the 1st row of
Table 1 has total 1049 videos, among them nearly 400 videos have turning case scenario.
Due to this reason, the false positive rate was ~19% before the flow vector suppression.
Our proposed solution, based on the statistical characteristics of the flow vectors shows
a good suppression of the turning cases, and thus the false positive rate has improved to
15%. If we compare the overall performance of the CTA module we can see the overall
false positive detection has been improved from 11% to 9% without affecting the true
positive detection rate.
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Table 1. Classification matrix of CTA module

Test conditions Total video clips | Before turning After turning case
case suppression | suppression logic
logic

Weather Luminance TP (%) |FP (%) |TP (%) |FP (%)

1 Dry Low 1059 88.88 19.19 88.07 15.66
2 Dry Medium 952 94.24 3.35 93.88 2.86
3 Dry High 813 68.21 10.69 67.39 9.36
4 | Wet Low 909 91.71 7.92 91.25 5.86
5 Wet Medium 576 90.07 8.06 89.66 6.63
6 | Wet High 365 81.79 18.85 81.07 15.07
7 Snow/Rain | Low 910 86.21 12.36 85.75 11.05
8 Snow/Rain | Medium 339 73.56 18.69 73.32 16.59
9 Fog Low 328 55.66 9.98 54.65 10.22
10 | Fog Medium 418 54.24 1.2 53.45 1.33

Average (%) 78.45 11.03 77.84 9.46

4 Conclusion

In this paper, we have presented real-time CTA application with run time of 33 ms. The
main functionality of CTA is to alert the driver for approaching target, at T-junction
or parking bay. Proposed system purely works based on feature detection and tracking.
The TTC calculation is based on homography estimation between two planes. Estimated
TTC is accurate when the target vehicle is in the vicinity of the host (Fig. 6). Overall
the detection accuracy of the CTA is 80%, with a false positive rate of 9%. Earlier, CTA
was suffering from inability of detecting crossing traffic targets with the targets moving
parallel to the host. We have addressed this by exploiting the converging/diverging nature
of the optical flow to improve the overall performance. This is evident from Table 1,
which shows a drop in false positive rate from 11% to 9%, without affecting the true
positive detection (~80%). Our proposed CTA module can deal with the cases of static
as well as moving host vehicle with small velocity between 0-10 KMPH. In the case
of dynamic host, we use ego-motion compensation. The ego motion compensation part
is not mentioned in this paper as our main purpose here was to present the main CTA
algorithm. Since there is no real-time benchmarking data available, so there is no baselin-
ing for CTA. But we have extensively studied the performance of the proposed system
with collected ground truth data (Table 1), and able to achieve intended performance.
In future, we will try to improve the classification accuracy, without compromising the
processing time. Currently, CTA works under day light condition, so in future, we are
planning to increase its applicability by running it under dark, where the possibility of
accident is more. Also, our plan is to not to constraint the application inside ROI, rather
build a semantic segmentation-based detection system.
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